INFLUENCE OF STORAGE AREAS

ON TIDAL WAVE PROPAGATION

FIGURES

Frank R. Rijsberman

July 1981
Location of the Mesuji river.

FIGURE 1
Hydraulic parameters for Computation i (waterlevels at both boundaries).

FIGURE 2
Boundary values for Computation 1.
Discharges Computation 1.
Reservoir storage area as a function of the water level

FIGURE 8
waterlevels as boundary values upstream and downstream

reservoir at the upstream boundary

waterlevel and discharge at km 128; Computation 2
Hydraulic parameters Computation 5 (reference comp.)

Hydraulic parameters Computation 4.
Maximum and minimum water levels for computation 4 and 5.

FIGURE 12
Maximum and minimum discharges for the Reference Comp.
Phase-lag with regard to the rivermouth. Reference Comp.

FIGURE 16
Momentaneous slope lines
Reference Computation

FIGURE 17
Waterlevels and discharges $B_b = 1.5 \times B_s$

km 32 - 64.

FIGURE 19

FIGURE 20
Phase-lag with regard to the rivermouth.

FIGURE 21
Momentaneous slope lines, Bb = 1.5Bs,
km 32-64

FIGURE 23
Water levels and discharges, $Bb = 1.5 Bs$
km 96-128.
Maxima/minima discharges
Bb = 1.5Bs, km 96-128
Momentaneous slope lines, $B_b = 1.5B_s$, km 96-128

FIGURE 30
Momentaneous discharge lines,
Bb = 1.5Bs, km 96-128

FIGURE 31
Maxima/minima water levels, $Q_0=250 \text{ m}^3/\text{s}$.
$B_b=1.5B_s$, km 96-128

FIGURE 32
Maxima/minima discharges, $Q_0=250 \text{ m}^3/\text{s}$.

FIGURE 33
Waterlevels and discharges at km 0 and 8
Figure 36: Waterlevels and discharges at km 88 and 96

Figure 37: Waterlevels and discharges at km 88 and 96