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T Faculty of Civil Engineering and Geosciences, Delft University of Technology, P.O. Box
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Abstract

This paper introduces a multidomain-staggered technique for coupling multiphase flow in a porous
medium, dominated by the Darcy laminar flow, with multiphase flow in a wellbore, dominated by the
Navier Stokes viscous, compressible flow. The Darcy flow in the porous medium is formulated using
the averaging theory, and the Navier Stokes flow in the wellbore is formulated using the drift-flux
model. The governing equations are discretized using a mixed discretization finite element scheme, in
which the partition of unity finite element method, the level set method and the standard Galerkin
finite element method are combined in an integrated numerical scheme. A multidomain technique is
utilized to uncouple the physical system into two subdomains, coupled back by enforcing flow
constraints at their interaction boundaries. The resulting system of equations is solved using an
iterative staggered technique and a multiple time-stepping scheme. This combination between the
multidomain technique and the staggered-multiple time-stepping technique enables the use of different
mathematical and numerical formulations for the two subdomains, and facilitates the implementation
of a standard finite element computer code. The proposed model is tailored to simulate sequestered
CO, leakage through heterogeneous geological formation layers and abandoned wellbores. A
numerical example describing different leakage scenarios is given to demonstrate the computational
capability of the model. The numerical results are compared to those obtained from a commercial
simulator.

Keywords: integrated wellbore-reservoir simulator, multidomain, staggered techniqug, CO
sequestration

1 Introduction

Coupling multiphase flow domains exhibiting significant difference in their velocity fields using
standard numerical discretization schemes is computationally nuisance and can cause severe numerical
oscillations. Fluid flow in porous media related to most geoscience applications is relatively slow, and
the use of Darcy’s law is practically valid. Whereas, fluid flow in pipes, such as wellbores, is relatively
fast and can only be described using the Navier-Stokes equations, or some of their derivatives.

In reservoir engineering, the underground reservoirs can be useful and functional only if they are
connected to the ground surface. The connection is usually made using wellbores, which are utilized
for injection of fluids, such as water or supercritical C& pumping of fluids, such as geothermal
water or fossil fuels. Despite this intimate link between reservoirs and wellbores, numerical simulators
utilized for design and analysis of projects related to reservoir engineering, are mostly separated. The
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main reason for this separation is the difficulty treating the distinct fluid flow characteristics
between the reservoirs and the wellbores.

In general, there are three main techniques ulilift@ reservoir-wellbore integration. In one
technique, the wellbore is assumed to constituppraus domain with Darcy flow (Pruess, 2004;
Réveillere and Rohmer, 2011; Zeng et al. , 201hjs @ssumption is, in many cases, not valid, since
the wellbore is in reality a hollow space filledtwiluid, where, upon flowing, the Navier-Stokesvii
is physically occurring. In the other techniqueg thellbore and the reservoir are modeled using
separate simulators, which are linked externallyaapost-processing. This is the most common
technique in reservoir engineering (Ebigbo et 20Q7; Pawar et al. , 2009). In the third one,ghsra
full coupling between the two domains (Nordbotterale , 2004; Pan et al. , 2011). Yet only few
simulators are of this type, and mostly, standamherical procedures are utilized to discretize the
governing equations, entailing the need for findgand large CPU time and capacity.

Here, we develop a coupling technique for multighésw in a reservoir, connected to a wellbore.
The fluid in the reservoir is governed by Darcy iaan flow, and in the wellbore by Navier-Stokes
viscous, compressible flow. The two subdomains spatially and temporally coupled, using a
multidomain-staggered technique. The multidomashmégue is utilized to uncouple and re-couple
the physical system, and the staggered techniquéilized to solve the system of equations. The
physical domain is divided into two subdomains espnting the reservoir (and other rock
formations), and the wellbore. At the contact pwirfdetween the two subdomains, constraint
conditions, controlling the fluid flow between therare enforced. This multidomain-staggered
combination allows for the use of different dis@ation schemes for the two subdomains, and more
importantly, different time integration schemes,iathcount for the slow fluid motion in the porous
domain and the fast fluid motion in the wellbore.

The proposed model is tailored to simulate sequex$t€€Q leakage through heterogeneous
geological formation layers and abandoned wellbdZ€} geosequestration is a technology designed
to mitigate the amount of GCGemitted into the earth atmosphere in an attempedoce the likely
greenhouse effect. Selection of an appropriateogémdl formation and a proper design of a,CO
sequestration plant require a good assessmentafsks of leakage. Leakage of £ the ground
surface or upper layers containing underground miatéazardous and is considered as one of the
major concerns of applying this technology. Thaee tavo major CQ leakage mechanisms: leakage
through geological layers, for which the theorynadiltiphase flow in heterogeneous layered porous
medium is applicable; and leakage through faults @vandoned wellbores, for which the theory of
fluid dynamics is applicable.

In an earlier work, Arzanfudi et al. (2014 and 2Pf#roduced two numerical models describing
these two C@leakage mechanisms. A mixed discretization schieasebeen utilized to solve these
two leakage mechanisms. For the first, a statioparjition of unity finite element method (PUM)
was utilized to model the discontinuity betweenelay of different physical properties, and the
standard Galerkin finite element method (SG) walzed to model the continuous fields. For the
second, the drift flux model was utilized, takimga consideration all relevant phenomena occurring
along the wellbore, including advection, buoyamiyase change, compressibility, thermal interaction,
wall friction and slip between phases. In this, teeel-set method (LS) was utilized to trace the
movement of the CPOfront, the partition of unity to model the fronhcthe standard Galerkin to
model the continuous fields. In both cases, theleampntation of the mixed PUM-LS-SG
discretization scheme has enabled the use of staa;tfixed meshes, regardless of the complexity of
the layer geometries and the fluid front movement resulted in an effectively mesh-independent
finite element solution. In this paper, these twodels will be spatially and temporally coupled. A
brief description of these models is given hereafte

2 Two-phase flow in a heterogeneous layered domain

The physical domain is assumed two-dimensional itayér, rigid, isotropic, homogeneous within a
layer, and isothermal with local thermal equililiuTwo fluids can simultaneously exist in the



reservoir: a wetting phase, represented by thedtiom water; and a non-wetting phase, represented
by the injected C® The fluids in the reservoir are incompressibiemiscible and do not exhibit
phase change.

For CQ geosequestration, these assumptions might notcberae in the area immediately
surrounding the injection point, but further aw#yey are valid. Typically, COleakage occurs via
upper layers and abandoned wellbores, which ar@lydar from the injection point. Additionally, ¢h
CQO; in the reservoir is usually in a supercriticatstavhich is significantly less compressible then i
gas state. Moreover, the focus here is on the ricateoupling between the two domains, which can
readily be applied to more detailed conceptual nsode

2.1 Governing equations

The continuity equations of an isothermal, immikzibnd incompressible flow of a wetting phase
(formation water) and a non-wetting phase {Ci® a rigid porous medium domain can be expressed
as:

Wetting phase
~¢—-V-[k\,(Vp, —p,0)|=0 (1)
Non-wetting phase

98 . _
- kaAn 0 )

dp
Vp, + VS —
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in which A\, =k, / i, and X\, =k, / 1, are the wetting and non-wetting phase mobilgyis the
gravity force vectoryp,, is the wetting phase mass density,is the non-wetting phase mass density,
S, is the wetting phase saturatio®, is the non-wetting phase saturatignjs the porosity,p,, is
the wetting phase pressurg, is the capillary pressurd, is the absolute permeabiliti,, andk,
are the wetting and non-wetting phase relative pability (functions of saturation), and, and .,

are the wetting and non-wetting phase viscositye Tapillary pressure-saturation and relative
permeability-saturation are described by Brooks @arky (1964Yelationships.

2.2 Numerical discretization

We adopt the wetting phase pressure — non-wettiage saturation formulation. The wetting phase
pressure in Egs. (1) and (2) is continuous actosdoundaries between heterogeneous layers, but the
non-wetting phase saturation (and the capillargguee under certain conditions) exhibits a jumpe Th
presence of these complicated physical conditidnthe@ boundary between layers exerts severe
difficulties on the numerical solution proceduréheTstandard Galerkin finite element method, for
instance, is not capable of simulating this probdmuourately, even if a fine mesh is utilized. Tckta

this, we employ a mixed discretization scheme, liictv we use the standard Galerkin method (SG) to
discretize the continuous wetting phase pressuréd,the partition of unity finite element method
(PUM) (Babuska and Melenk, 1997) to discretizedlseontinuity in the non-wetting phase saturation
field, such that

P (X, t) = N(X)p, (1) 3
and

S, (%, ) =N)S,()+ N"()S,(9 (4)



in which N(x) is the nodal vector of shape functions, gndt) is the nodal vector of water pressure,
S, (t) and Sn (t) are the conventional and extended nodal vectotseohon-wetting phase saturation,
and N®"(x) is an enriched shape function, defined as

N*"(x) = N(x)H (x) ®)

whereH (x) is any function that can accurately describe thmap profile of the field within the
element, which contains the discontinuity. The ab¢he partition of unity entails decomposing the
saturation field into a continuous part and a disicoious part, where the latter is enhanced byofise
function which closely describes the nature ofjtimep in the field (the Heaviside function in cageo
strong discontinuity, for instance).

The weighted residual method, together with theemhidiscretization scheme highlighted in Egs.
(3)-(5), are utilized to solve Egs. (1) and (®)detailed description of the discretization prasedand
the finite element matrices is given in Arzanfutdak (2014).

The advantage of this model is mainly two-fold. sEirit is capable of accurately capturing
multiphase flow fields discontinuities between layeSecond, the physical discontinuity between
layers is modelled regardless of the finite elemmaash. Therefore, the mesh is not restricted to be
aligned with the boundary between layers, and it ba structured, geometry-independent and
relatively coarse. Fig. 1 shows the possible usegifuctured mesh to model a multilayer system.

—
-
--_—.

Fig. 1. Structured and geometry-independent mesh itwo-phase flow in a heterogeneous layered domain
model

3 Multiphase flow in a wellbore

The physical domain is assumed one-dimensionalfiphalse, and constituting two compressible
fluids: air and C@ The air is a homogeneous gas, and the 8@ multiphase mixture exhibiting
phase change. The physical process of such a dasng@verned by the Navier-Stokes equations.

3.1 Governing equations

We utilize the one-dimensional drift-flux model samulate the transport of air and €@ the
wellbore. This model adopts the area-averaged appravhere detailed analysis of the local behavior
of the involved phases is averaged over the cresiemal area of the wellbore (Faghri and Zhang,
2006; Ishii and Hibiki, 2006; Pan and Oldenburgl20Wallis, 1969; Zuber and Findlay, 1965).
Important aspects of fluid dynamics, such as tleetim force, buoyancy, compressibility, wall frii,
drift velocity, and flow profile are considered.

The fluid velocities and pressures at the interfaetsveen the two fluids are continuous, but thesmas
density and specific enthalpy exhibit discontinugyich that:



\/ = Vair

co,

pco2 = pair atrd (6)
[[pm]] - pco2 ~ Pair
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in whichv,, andv,, are the velocities of CQand air, andh,, andh,, are their specific enthalpies,
respectively.

Taking the interface conditions, Eg. (6), into dadesation, the drift-flux model is modified and
expressed as:

Mass balance

P 2 (o) +lp ol (2 2)=0 ©

Momentum balance

0 0 op  Fpulvalv -
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Energy balance
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where ¢ is the Dirac delta functionz, is the coordinate of the interface between,@@d air,n is
the unit normal vector (here equal to £1)js the inner radius of the wellborg,, is the mixture mass
density, v, is the mixture velocity,p is the pressuref is the wall friction coefficientg is the
gravitational constant? is the inclination angle of the welh, is the specific enthalpy of the
mixture, Q is the heat exchange between the well and it®snding formation, and, describes the
slip between phases.

3.2 Numerical discretization

We adopt the velocity — pressure — density fornmatFollowing Eq. (6), the velocity and pressure
are continuous at the interface between, @@d air, and thus the standard Galerkin finitenelat
method suffices, entailing

V(2 )=N(29v () (10)
p=N(2p(1) (11)

in which N(z) is the shape functions vector, (t) andp(t) are the nodal values of the mixture
velocity and pressure, respectively.

On the other hand, the mass density is discontimabthe interface between génd air, and for
this, the partition of unity method is utilized taiting

Pm(2.)=N(Dp () +NT(2p () (12)



wherep, (t) andp,(t) are the conventional and extended nodal valueheimixture density, and
N°"(2) is an enriched shape function.

The level-set method is utilized to trace the mgvinterface,I';, between the air and the €O
Zones.

The weighted residual finite element method, togettvith the mixed discretization scheme
highlighted in Egs. (10)-(12), are employed to sdhgs. (7), (8) and (9). A comprehensive descmptio
of the discretization procedure and the finite edlatrmatrices are given in Arzanfudi and Al-Khoury
(2015).

As for the heterogeneous layered domain modeljbi advantage of this model is two-fold.
First, it is capable of capturing the discontinuitgtween the initial fluid (air, in this case) ati
leaked CQ accurately. Second, the discontinuity at the bampdbetween the two fluids is modelled
regardless of the finite element mesh. It allows tise of a fixed, structured, and relatively coarse
mesh.

4 Multidomain-staggered coupling scheme

As it can readily be noticed, the mathematical faations of the fluid flow in the reservoir and the
wellbore, given respectively in Sections 2 andrg, @nsiderably different. In the reservoir, theafl

is relatively slow, dominated by Darcy flow; andtime wellbore, it is relatively fast, dominated by
Navier-Stokes flow. The time scales of events ie two domains are significantly different.
Accordingly, coupling them in a single domain usstgndard numerical discretization procedures and
time integration schemes can cause numerical asoilis and requires an extensive CPU time and
capacity. This may explain why most numerical semoils, which are in use in reservoir engineering,
separate the two problems. Here we couple the twaaihs using a multidomain-staggered technique.

In solid mechanics, the multidomain mixed approxiora is mainly conducted via domain
decomposition and frame methods. In the first,dbmain is divided into several smaller subdomains
and linked together using the Lagrange multiplemalty method or Nitsche method (Zienkiewicz et
al. , 2005). They link the subdomains via the toact(the derivative of the primary variable). The
difference between the Nitche method and the ateris that it includes the Dirichlet boundary
condition between the divided domains. These themhniques necessitate modifying the finite
element equations. The Lagrange multiplier addextra degree of freedom to the finite element
equations, and the penalty method and Nitsche rdethodify the stiffness matrix by adding a
constraint parameter. The frame method, on ther tittied, links the subdomains via the displacement
field (primary variable) at the boundaries betwéeem. Accordingly, the link is made via standard
stiffness matrix formulation, making it more sui@bor computer implementation.

In most solid mechanics applications, for which timeltidomain technique is adopted, the
boundaries between subdomains are homogeneous,thenddisplacement field is essentially
continuous. In the application which we are dealiith, however, there is a Cauchy type boundary
condition between the reservoir and the wellborgdno hole, and between the wellbore and the rock
formations. The first boundary condition descrilties hydraulic pressure gradient between the two
subdomains, and the second describes the temperadient. In C@Qgeosequestration, the hydraulic
pressure gradient boundary condition is manifebiethe possible leakage of G®om the reservoir
to the wellbore bottom. The pressure in both sutalogis a primary state variable. The gradient in
pressure at the contact point between the reseavmirthe wellbore determines the amount of, CO
leakage to the wellbore. This sort of interactionakes the reservoir an external source to the
wellbore, and the wellbore an external source #oréservoir. No homogeneous boundary conditions
exist between them.

To solve this problem, we utilize a combinationven a multidomain technique and a staggered
technique. We utilize the concept of the frame meétho link the two subdomains by their force
vectors, and we enforce a Cauchy type constraintheir primary state variables at the boundary



between them. The resulting system of equatiossliged using a staggered technique and a multiple
time-stepping scheme.

The staggered technique is essentially an iteratolation method, which can be employed to
solve large, coupled sets of algebraic equatiohss Iconducted by partitioning the equations
describing the coupled state variables, usuallpldcement and pressure, into two (or more) sets of
equations, and relating them via their force vextdrewis and Schrefler (2000) gave an elegant
overview of the standard staggered technique amdipplications. The stability of the staggered
algorithm has been thoroughly discussed and adeltdes a broad range of coupled field problems in
several literatures, including Park et al. (19P8rk (1980), Zienkiewicz et al. (1988) and Farhatle
(1991).

The main advantage of using the sequential itexatoheme is that it allows for the use of different
spatial discretization schemes, and, importaniljer@nt time integration schemes, which efficigntl
count for the significant difference in the fluid velocities in the two subdomains. This entéilat
the finite element matrices of the two subdomaires kept intact, and only the force vectors are
modified.

4.1 Boundary condition between reservoir and wellbore

The coupling between the reservoir and the wellloa@urs at the location where the wellbore bottom
hole is connected to the reservoir. We assumethieasealing plug at the wellbore bottom hole might
deteriorate with time, giving rise to a leakagengatthe wellbore.

The leakage velocity at the wellbore bottom hole lsa described as:

Wetting

v= L e B (13)
Non-wetting

4 =25 L (B P 14)

where pres aNd p, . are the local reservoir G@nd water phases pressures, respectigly, is
the wellbore bottom hole pressule, is the effective permeability of the defective esmplug, and

L is the thickness of the plug.

The proposed model is generic and the wellboreobottole pressurg,,,, might arise from the

wetting phase or the non-wetting phase. But toysthd worst case scenario that might occur during
CO, geosequestration, we assume that the wellboratially filled with air and allows only C®to
leak. The C®in this case exhibits high advection and can tgpiEhch to the top of the wellbore with
large quantities.

4.2 Spatial Coupling

The physical domain is partitioned into two subdoreathe porous media and the wellbore. The
porous media are represented by the reservoir@idformation, where the Darcy flow is dominant;
and the wellbore is represented by the boreholerevthe Navier-Stokes flow is dominant. The two
subdomains are coupled at the point where the warellbnd the reservoir are connected. Numerically,
this implies that the wellbore acts as an extesaairce to the reservoir, and the reservoir actsnas
external source to the wellbore.

Recall the finite element system of equations af thultiphase flow in the reservoir from
Arzanfudi et al. (2014). It reads:
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wherep,, is the nodal vector of the wetting phase pressBrés the nodal vector of the non-wetting
phase saturation, which exhibits a jump at the Haon between layers of different physical
properties, as outlined in Eqg. (4); (~) represémesextended degrees of freedom due to the partfio
unity; O is the Newton-Raphson increment; and the supetsg)i is the Newton-Raphson iteration
number. The first and second matrices on the kfidhside of this equation are the stiffness and the
capacitance matrices, respectively. These, togetiertheir corresponding matrices on the rightdhan

side, are obtained from the mixed PUM-SG discrétina outlined in Section 2. Details of the
matrices are given in Arzanfudi et al. (2014).

Similarly, recall the finite element system of etjpias of the multiphase flow in the wellbore from
Arzanfudi and Al-Khoury (2015). It reads:

Ky 0 Ky Koyllov, 0 0 Cy; Cyjov,
Ky Ky Kooy Kool op L= 0 C ,C L)op
Ka 0 K Kogliop, 2 C 5 C 5C 4|0,
Ka 0 Kg K uJop, nC »2C ,4C Lél;)m (16)
f, K, O 0 0 ||vy, 0 0 C} Cl|v.
Jnl ke ks kLK pT] £ 0 ey el
fs Kgl 0 K(3)3 K 24 Prn Cgl ng ng C%4 Prn
f] (K 0 K& K4Jlpn) (Ch CL ClL CoUlpn

wherev , is the nodal velocity vector of the mixture (€@ our case)p is the nodal pressure vector

of the mixture, ang,, is the nodal mass density vector, which exhibitsirap at the boundary

between air and CQas outlined in Eq. (12). The first and secondrites on the left-hand side of this

equation are the stiffness and the capacitanceiagmestrrespectively. These, together with their
corresponding matrices on the right-hand side, abtained from the mixed PUM-LS-SG

discretization, outlined in Section 3. Detailstbé matrices are given in Arzanfudi and Al-Khoury
(2015).

Coupling these two equations, Eqg. (15) and (18heit source vectors, and put them in a compact
form, they can be written as

K redX restC Re@x Res:f Res-WéTf F (17)
K Wel(SY Wel +C WeIéY Wel :f WeI-Res_H: We (18)

in which all matrices and vectors terms are kefatdn) except that the right-hand side of the equati
is augmented with f_ ., andf,. ..., Which are the coupling source vectors that inelube

boundary forces at the contact node/surface bettreewellbore and the reservoir. They are defined
as
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where '™ is the boundary between the reservoir and thebwed| v, and v, are the velocities of

leaking water and CQgiven in Egs. (13) and (14), apg... and h ... are the density and specific
enthalpy of CQ at the reservoir, respectively. The first termthe f._ . vector belongs to the

conservation of mass of the wetting phase, thergebelongs to the conservation of mass of the non-
wetting phase and the third is the enhanced pattieofhion-wetting phase, obtained by applying the
partition of unity method on the saturation fieRimilarly, the first term in thé,, ...vector belongs

to the conservation of mass of the non-wetting ehaise second belongs to the conservation of

momentum, and the third and fourth belong to theseovation of energy obtained by applying the
partition of unity method.

At the element level, and as the reservoir uppentary with the cap layer is embedded inside the
finite elements, the contact point between thebee# bottom hole and the reservoir does not need to
conform to a node. Rather on a point inside theneid, shown in Fig. 2. Using standard finite
element procedure, the flux in this point is dimsted at the element nodes. For a 4-node 2D element

the integral over the element length in Eq. (19ifributed over the four nodes, and the integral
Eq. (20) reduces to a point, such that

NRi Vw

f

Res-Wel —

NV, (21)

eh
N Ri Vn

i i 10

I
[N




and

- NWlpn/ResVn
2
- NWlpn/Resvn

1
fWeI-Res =1 NWlpn/ResVn [ h1 /Res_l_ E Vn2] (22)

1
h1 IRes+ E Vn2]

eh
- NWlpn/ResVn

in which the subscript W1 represents the 1D weddoottom hole node, and R1-R4 are the 2D four
nodes of the element where the coupling occursKgpe?). Consequently, the coupling is carried out
without conforming with the mesh.

The coupling element shown in Fig. 2, has two oygilag functions: partitioning the
heterogeneous layered domain, via the partitiourofy method; and coupling the reservoir and
wellbore subdomains, via the multidomain technique.

Wellbore

Permeable
cap-rock
R4 R3
llﬂ-,f___.-——_’d
R1 R2
Aquifer

Fig. 2 Coupling element and nodes.

As described above, the two subdomains are coup#etheir force vectors, without the use of
Lagrange multiplier or penalty methods. This estdlhat no extra degrees of freedom or other
constraint parameters are added to the finite alestéfness matrix. However, in order to enforbe t
constraints at the boundaries between the subdspastaggered solution scheme is employed.

In the staggered scheme, an iterative solution é@twhe reservoir and the wellbore is conducted
sequentially, by solving the two systems of equegtimdependently, but updating their force vectors,
Egs. (21) and (22). The iteration continues untfilfing the coupling condition:

v _kpkrnl
n L

n

( pn/Res - pWeD <e (23)

wheree is an allowable error.

Coding the staggered algorithm requires two nedtings: an outer loop, to establish the coupling
condition between the reservoir model and the wedlmodel, Eq. (23); and an inner loop, for solving
the reservoir and wellbore sets of equations. Timple Picard iterative scheme is sufficient to solv
the resulting nonlinear scheme.

4.3 Temporal coupling

Sequestered GOn saline formations is likely designed to remaima supercritical state within the
reservoir. Upon its leakage into the wellbore, @@, is expected to undergo phase change from the

10



supercritical state to the gaseous state, follolwedh sudden expansion due to the relatively low
pressure inside the wellbore. This results in & ftegime in the wellbore that is much faster tHaat t
inside the reservoir. This entails having a sigaifitly different time scale in the system: oneha t
order of months or years and another in the orflemimutes or hours.

This considerable contrast in the time scale née#ss the use of different time discretization
schemes. We adopt a nested multiple time integratbeme, illustrated schematically in Fig. 3. élui

flow in the wellbore is discretized using an adepttime step sizelM,,,,, which is considerably

smaller than that used in the reservditg,..
place at the end of the reservoir time step.

Exchange of data between the two subsystems takes

We utilize the@ -finite difference time integration scheme to didime Egs. (17) and (18).
Applying this scheme, for instance, on Eq. (17¢)ds
(CRes+0AtK Regéx RE‘L—H,]_:(C Res (1_0)AK Rls@( Fltﬁs

(24)
+ 6AtfRes-Wel| + (1_ H)Atf Res-WJIn + OAtf RFJFn+1 + (1_ G)Atf RL

n+1 A

in which n is a time step, an@<6 <1 is the time integration parameter. The equatiosaled
using a standard direct solver.

Wellbore model v
(small time step) [ : [ : : :

time
t=0

. At
Reservoir model Res

(large time step)

)

C—> Smalltime step
> largetimestep

- —+ Dataexchange

Fig. 3 Multiple time-stepping scheme.

Coding this multiple time-stepping scheme withie #taggered solution requires an extra nested
loop to take into account the small time steppisgoaiated with the fluid flow in the wellbore. The
coding algorithm is as follows:

0. Initializep,,, (wellbore bottom hole pressure) afy.., (Iocal CQ phase pressure at reservoir)

Do loop over i (reservoir time stefdy..)
Do loop ovew,

Initializev, using Eq. (14)

Calculatep,ges
Do loop over j (wellbore time steps, ., )

1.

2

3

4. Solve reservoir model, Eq. (17)
5

6

7 Solve wellbore model, Eqg. (18)
8

End Do loop over j.
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9. Calculatep,,,

10. Calculate the wellbore leakage residuadreEq. (23). If the conditions in Eq. (23) doeast n
hold, modify v, using Eq. (14), and go back to step 4. Otherwis#etlee loop.

11. End Do loop ovev, .
12. Updatep,,, and p,q..
13. End Do loop over i.

5 Numerical example and validation

We present a numerical example highlighting the matational capabilities of the proposed model to
simulate possible leakage of sequestered @®the upper boundary of a reservoir and throagh
abandoned wellbore. Three cases describing diffeleskage scenarios are discussed: coupled
leakage, leakage via the wellbore only, and leakagethe reservoir upper boundary only. A
comparison between numerical results obtained fiterproposed model and those from the Eclipse
simulator (Schlumberger, 2015) is also given.

5.1 Coupled leakage

A CO, sequestration reservoir undergoing a possiblealgakhrough both an upper layer and a
wellbore is assumed. The conceptual geometry isnshio Fig. 4. Supercritical CQs injected at the
lower left corner of the aquifer. On the top of thguifer, a permeable upper layer exists, with a
hydraulic conductivity smaller than that of the deu A leaky wellbore is intersecting the aquisr

90 m from the injection well. The properties of tguifer and the permeable upper layer, as well as
the fluid properties are given in Table 1. The fayare initially saturated with water. The propestof

the wellbore and its surrounding formation are gnésd in Table 2. The wellbore is initially filled
with air, connected to the atmosphere at the wedlhead, and in thermodynamic equilibrium with the
surrounding formation layers. The permeability be tleaky cement plug is assumieg= 4 X

10~*3m?2. The CQ s injected with a rate of 1.4 kg/s.

The relatively high permeability for the upper (fdpyer and the cement plug are chosen to
emphasize the leakage mechanisms, which constiteteore subject of the proposed model. They
represent the worst case scenarios that might acqractice. The cap layers might be fissuredtdue
natural causes, such as earthquakes or chemictibreabetween COand the cap rocks. The same is
valid for the wellbore sealing plug.
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Fig. 4 Conceptual geometry.
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Table 1 Fluid and domain properties.

Fluid properties inside the reservoir Water CGo,
Density [kg/m3] 1045 479
Viscosity [Pa.s] 2.535x1(' 3.950x10°
Porous media properties Aquifer Upper layer
(high (low permeable)
permeable)

Permeability [m2] 2.0x10% 7.5x10"7
Porosity 0.15 0.1
Entry pressure (Brooks-Corey ) [kPa] 225 260

6 (Brooks-Corey ) 4.0 2.0
Water residual saturation 0.20 0.20
CO, residual saturation 0.00 0.00

Table 2 Wellbore and formation data.

Well Data

Well inner radius [m] 0.1
Thickness of plug [m] 1
Heat transfer coefficient at the wellbore-formatioterface (J ) [W m-1 K-1] 15
Roughness of the wellbore [-] 5.0x10°
Formation Data

Surface temperature [K] 275.15
Geothermal Gradient [K/m] 0.058

The computational domain is illustrated in Fig. BeToverburden top layer is not modeled; instead,
the upper layer is subjected to a pressure bourwtangition equivalent to the pressure exerted by th
overburden layer. Four mesh sizes were utilized: 2824, 792 and 999 four-node elements. The
wellbore is modeled using only four, two-node 1Breénts. The use of this highly coarse mesh to
model the fluid flow in the wellbore is only pos&ldue to the utilization of the mixed discretipati
scheme to solve the wellbore governing equatiomzgi#fudi and Al-Khoury, 2015).
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Fig. 5 Computational domain.

Fig. 6 shows the computed distribution of mass dgngressure, temperature and velocity along
the wellbore. Despite that a very coarse meshiligad for the wellbore, the discontinuity in detysi
and temperature fields between the air and thgi€@ccurately captured.

Three important phenomena can be observed:

1. Once entering the wellbore, the £@ensity reduces significantly, as compared to thathe
reservoir,

2. with time, the C@density starts to increase, and also
3. along the wellbore, it decreases.

Explaining these phenomena requires a closer exdiom of the pressure and temperature
behavior along the wellbore. GOupon entering the wellbore, expands and exhibitgnificant
reduction of pressure due to the Joule-Thomsorcteffereen, 2008). This results into a significant
reduction of density. With more leakage, the,@@cumulates at the bottom of the wellbore, leading
to an increase in pressure. This gives rise tmarease in density. Along the wellbore, and dughéo
hydrostatic pressure, there is a reduction of pres&ccompanied by a reduction of density.

The same happens to the temperature. Upon the sigpanf CQ, the temperature drops
significantly. But after that, and due to the setalmule-Thomson mechanism, there will be an
increase in the kinetic energy of g @hich gives rise to an increase of temperatuogether with the
thermal interaction with the neighboring formatitime temperature, first increases along the wedlbor
and then follows a reduction trend similar to tle@tpermal gradient.

Regarding the velocity, at the beginning the véjoid relatively high, but due to the increase of
pressure and density with time, the velocity desesaHowever, along the wellbore, and due to the
decrease of pressure and density, the velocitpases.

The CQ saturation fields in the reservoir and the uppget are shown in Fig. 7 for different mesh
sizes, att = 1 day. The G®reakthrough times, i.e. the times when the €@rts to leak through the
upper layer and through the wellbore, correspontinthe different mesh sizes, are given in Fig. 8.
The amount of stored GQas well as the amount of leaked Jm the upper layer and the wellbore,
att = 1 day, are shown in Fig. 9. The figures shioa¥ the breakthrough times as well as the stored
and leaked values computed from the 204 elemergh gige very close results to those from the finer
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meshes. However, results obtained from the 80 eltsmaesh are reasonably accurate. This indicates
that the proposed model is effectively mesh-inddpaty and analyses using coarse meshes are

feasible.
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Fig. 6 Field variables in the wellbore for the coufed leakage problem: (a) density, (b) pressure, (c)
temperature, and (d) velocity.
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Fig. 7 CO, saturation in the reservoir for the coupled leakag problem: (a) 80 elements, (b) 204 elements,
(c) 792 elements and (d) 999 elements.
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Fig. 8 Breakthrough times for the CQ leakage start-up through the upper layer and weliore.
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Fig. 9 Amount of leaked and stored CQ@through the cap-layer and the leaky wellbore at the t = 1 day.

5.2No layer leakage

The same problem is repeated, except that the presgure of the upper layer does not allow the CO
to leak from the aquifer, and the leakage can onbur through the wellbore. The same mesh sizes as
for the previous example are utilized.

Fig. 10 shows the CGaturation field in the reservoir for the diffet@nesh sizes, att = 1 day. The
amount of stored and leaked €@t t = 1 day are given in Fig. 11. The resultsimghow that the
stored and leaked values obtained from the analy#lshe coarse meshes are close to those obtained
from the finer meshes.

Sn

+4.00e-001
+3.20e-001
+2.40e-001
+1.60e-001

+8.00e-002

+0.00e+000

(b)

() (d)

Fig. 10 CQO, saturation in the reservoir for the “no layer leakage” problem: (a) 80 elements, (b) 204
elements, (c) 792 elements and (d) 999 elements.
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Fig. 11 Amount of leaked and stored C@for the “no layer leakage” problem at time t = 1 day.

5.3No wellbore leakage

A similar case is conducted, but now the leakageutyh the wellbore is blocked. The same mesh
sizes as in the previous example are utilized.

Fig. 12 shows the Csaturation field in the reservoir and the uppgetafor the different mesh
sizes, at t = 1 day. The amount of stored and t&® at t = 1 day are given in Fig. 13. The results
again show that the stored and leaked values @utdirom the coarse meshes are close to those
obtained from the finer ones.

An interesting finding from these analyses can é#uded from the computed values of the leaked
CO,, as shown in Fig. 13. The amount of leakage touthyger layer occurring in the no-wellbore
leakage case is more than the total amount of ¢ggakacurring in the coupled leakage case, by a
factor of 2. This can be attributed to the fact tha existence of a leaky wellbore leads to aiaamt
change in the pressure and fluid distribution ia thservoir that eventually affect the mechanisms
leading to the leakage through the upper layereNbeless, leakage through the wellbore comes with
a greater risk because it can rapidly reach tctineace.
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Fig. 12 CQ, saturation in the reservoir for the “no wellbore leakage” problem: (a) 80 elements, (b) 204
elements, (c) 792 elements and (d) 999 elements.
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Fig. 13 Amount of leaked and stored C@for the “no wellbore leakage” problem at time t=1day.

5.4 Model validation

It is difficult to find in literature benchmark nwerical examples including all features of the pisgzb
model. As a consequence, we conducted a limited erivat validation comparing common
computational aspects with Eclipse commercial simulator based on the finite diffeeemethod
(Schlumberger, 2015). This simulator is commonlylizgd for the analysis of compressible,
multiphase flow in geological formations.

We compared the computational results of the thee#&age scenarios, given above, with those
obtained from Eclipse. However, the comparison @aly be applied to the multiphase flow in the
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heterogeneous porous formation. Two aspects ar@ossible to be compared: (i) fluid flow in the
wellbore; Eclipse does not explicitly incorporatee ttransient fluid flow in wellbores, and (ii)
compressibility in the reservoir; the proposed ni@ssumes incompressible flow in the reservoir. To
tackle these two limitations in both simulatorse thumerical example is adjusted such that we make
use of common features. The leakage via the wallioEclipse is prescribed manually. Leakage flow
rates computed by the proposed model at diffeierg steps are imposed as a production history in
Eclipse at the cell where the wellbore is connettethe reservoir. The reservoir in Eclipse is made
nearly incompressible by making the variation afidl density and viscosity, together with the
formation volume factor, with pressure small.

A black oil two-phase flow model, built-in in Ec8p, is utilized for this purpose. The geometry of
the reservoir and the surrounding formation, togethith the initial and boundary conditions, as
given in Fig. 5, are employed. The material properéind the Brook-Corey parameters are as given in
Table 1.

The geometry is discretized in Eclipse using 30,0@i¢e difference grid cells, and in the proposed
model using 999, four-node rectangular finite eletador the porous formation, and 4, two-node
linear finite elements for the wellbore.

Fig. 14 shows the computational results of the thieskage scenarios computed by both
simulators. The figure shows that there is a cloa&ch between the two results. The slight diffeeenc
in the front shape, however, is due to the diffeesim the compressibility of the materials.

+0.00e+000

Gas saturation

Gas saturation (SGAS)
ey 040
—0.35
—0.30
—0.25
—0.20
—0.15
—0.10
[ 0.05
0.00

@ (b) (©

Fig. 14 Comparison of computed results obtained fim the proposed model (top) and Eclipse (bottom): ja
no cap-layer leakage, (b) no wellbore leakage, (@pupled leakage
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+8.00e-002

6 Conclusions

In this paper we introduce a coupling techniqueafle for integrating multiphase flow in a porous
medium, dominated by the Darcy laminar flow; withltiphase flow in a wellbore, dominated by the
Navier Stokes viscous, compressible flow. The pregdschnique is tailored to simulate sequestered
CO, leakage mechanisms, which might occur via abardlevedibores and underground formations.
Leakage of C@to the ground surface or upper layers containirgumgd water is hazardous and
considered as one of the major concerns of app@i@gsequestration technology.
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As the fluid flow in the porous medium is significly different than that in the wellbore, it is
essential to design a coupling scheme, which iatdepof efficiently and robustly solving the digtin
mathematical formulations of the two subdomainsretHéhe two subdomains are spatially and
temporally coupled using a multidomain-staggeretiriejue.

In the proposed multidomain-staggered technique, rhultidomain technique is utilized to
uncouple and re-couple the physical system, andtémggered technique is utilized to uncouple and
solve the system of equations. The physical dongadivided into two subdomains representing the
reservoir (and other rock formations), and the k. At the contact points or surfaces between the
two subdomains, constraint conditions are enforddte governing equations describing the two
subdomains are formulated separately, but augmevitadhe constraint conditions at the boundaries,
where the two systems physically interact with eather. The use of the staggered technique
alleviates the need for adding a Lagrange multigieother constraint parameters into the governing
equations, normally needed in the multidomain dzation technique. Rather, the two subdomains
are linked via their force (source) vector and, leeindary constraints at the contact surfacesfpoint
are enforced iteratively. This eventually allows tbe use of different time integration schemes,
which count for the slow fluid motion in the poradismain and the fast fluid motion in the wellbore.

In contrast to the standard multidomain techniqtles proposed multidomain-staggered technique
is essential for multiphase flow problems exhilgitisignificant differences in their fluid flow
velocities for three main reasons:

1. It allows for the use of different mathematiGd numerical formulations for the two
subdomains, fostering innovative discretizationessls that can save significant computational
capacity and CPU time. The computational efficieatyhe proposed model is manifested by the use
of structured and fixed meshes, and the gain aofingéy- and effectively mesh-independent results.

2. The two subdomains are spatially coupled vid toece (source) vectors, keeping their finite
element matrices intact. This makes the computplementation straightforward.

3. The two subdomains are temporally coupled uaingultiple time-stepping scheme, which takes
into consideration the significant difference ir tituid flow velocities. The time step of the waeilte
is made small and nested in that of the reservoir.
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