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[1] Monitoring hydrological redistributions through their integrated gravitational effect is
the primary aim of the Gravity Recovery and Climate Experiment (GRACE) mission.
Time-variable gravity data from GRACE can be uniquely inverted to hydrology, since
mass transfers located at or near the Earth’s surface are much larger on shorter timescales
than those taking place within the deeper Earth and because one can remove the
contribution of atmospheric masses from air pressure data. Yet it has been proposed that at
larger scales this may be achieved independently by measuring and inverting the elastic
loading associated with redistributing masses, e.g., with the global network of the
International GPS Service (IGS). This is particularly interesting as long as GRACE
monthly gravity solutions do not (yet) match the targeted baseline accuracies at the lower
spherical harmonic degrees. In this contribution (1) we describe and investigate an
inversion technique which can deal jointly with GPS data and monthly GRACE solutions.
(2) Previous studies with GPS data have used least squares estimators and impose solution
constraints through low-degree spherical harmonic series truncation. Here we introduce a
physically motivated regularization method that guarantees a stable inversion up to
higher degrees, while seeking to avoid spatial aliasing. (3) We apply this technique to GPS
data provided by the IGS service covering recent years. We can show that after removing
the contribution ascribed to atmospheric pressure loading, estimated annual variations of
continental-scale mass redistribution exhibit pattern similar to those observed with
GRACE and predicted by a global hydrology model, although systematic differences
appear to be present. (4) We compute what the relative contribution of GRACE and GPS
would be in a joint inversion: Using current error estimates, GPS could contribute with
up to 60% to degree 2 till 4 spherical harmonic coefficients and up to 30% for higher-
degree coefficients.

Citation: Kusche, J., and E. J. O. Schrama (2005), Surface mass redistribution inversion from global GPS deformation and Gravity

Recovery and Climate Experiment (GRACE) gravity data, J. Geophys. Res., 110, B09409, doi:10.1029/2004JB003556.

1. Introduction

[2] The primary objective of the GRACE mission is to
monitor hydrological mass redistributions through their
integrated gravitational effect [Tapley et al., 2004]. In
August 2004, the first monthly gravity fields have
been released to the public, covering April 2002 to April
2004. Yet it has been proposed by Blewitt et al. [2001] and
Blewitt and Clarke [2003] that at larger scales this may
be achieved independently by geometrically measuring
the elastic response of the Earth to the loading associated
with redistributing masses, e.g., with the global network of
the International GPS Service. This is particularly interest-
ing as long as GRACE monthly gravity solutions do not
(yet) match the targeted baseline accuracy at the lower
degrees.

[3] In principle, gravity field changes sensed by the two
GRACE satellites and surface loading observed by GPS
networks include the combined direct and indirect effect of
all mass redistributions within the Earth and its atmospheric
and fluid envelope. It is well know that one cannot uniquely
solve for 3D density distributions from gravity data;
however, the majority of the mass transports important on
timescales from daily to interannual occur at or near the
Earth’s surface [Chao, 2005]. Under this hypothesis, gravity
changes on these timescales can be uniquely inverted into
mass redistribution within a spherical shell at the surface.
Because the atmospheric contribution to the surface density
change can be reasonably modeled using atmospheric
pressure data, GRACE gravity and GPS displacements
allow to detect changes in the Earth’s larger hydrological
storage systems.
[4] However, in any case, the analyst is forced to con-

strain solved-for mass configurations either by low-degree
truncation, by spatial averaging [Swenson and Wahr, 2002],

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, B09409, doi:10.1029/2004JB003556, 2005

Copyright 2005 by the American Geophysical Union.
0148-0227/05/2004JB003556$09.00

B09409 1 of 13



or by regularization operations employing mathematically
or physically motivated constraints. This is because the
errors in GRACE or GPS-derived spherical harmonic coef-
ficients are not ‘‘white’’ over the spectral domain but
increase with higher resolution because load Love numbers
quickly lose their power and so the spectral sensitivity
decreases, and in the case of GPS inversion, the Earth’s
coverage with observations is far from homogeneous.
Combining satellite gravity and geometrical displacements
in a joint inversion may help to relieve these constraints and
improve the reliability of estimates, but in particular, it
offers prospects for cross validation and for a more realistic
quality assessment. We describe a concept for such a joint
inversion.
[5] For this study, our motivation was to analyze global

weekly GPS station coordinates and covariance matrices
made available through the IGS service for the time span 26
June 1999 to 20 June 2004. One can show that estimator
design and parametrization issues such as truncation degree
and station distribution affect the estimation of large-scale
mass redistributions like center of mass affected by loading
[see Wu et al., 2002] and seasonal changes of low-degree
spherical harmonic coefficients from these data. Previous
studies [Blewitt et al., 2001; Blewitt and Clarke, 2003; Wu
et al., 2003] have used least squares estimators and impose
solution constraints purely through low-degree spherical
harmonic series truncation. Wu et al. [2003], recognizing
this problem, have developed a technique where the degree
of truncation in an otherwise unconstrained least squares
estimator is guided by a priori statistics about GPS obser-
vation errors and aliasing errors using a load model. New in
our approach is that we employ a regularized least squares
estimation technique, which directly applies a physically
motivated constraint only over oceanic areas, where no data
are given. We can show that this technique renders the
truncation problem in a less serious one. This is because one
can choose a rather high degree of series expansion whereas
unreasonable strong high-frequency signals are effectively
damped in the inversion procedure. At the same time,
unmodeled high-frequent signals are prevented from alias-
ing into low-degree estimates. In this case, linear combina-
tions of spherical harmonic coefficients beyond degree 4,
solved from IGS GPS data, contain significant information.
Continental-scale averages at a Gaussian smoothing radius
down to 2000 km exhibit visible correlations to GRACE
results and those predicted from global hydrologic models.
This technique might be also helpful in other inversions for
spherical harmonic coefficients where discrete geophysical
data are spatially restricted in coverage. On the basis of
recent error assessments, we assess the contribution of
adding GRACE monthly solutions in a joint inversion on
the individual spherical harmonic coefficients.

2. Inverse Methodology

[6] When considering large-scale mass redistribution in
the Earth system on a timescale ranging from weekly to
interdecadal, it is reasonable to assume that all relevant
processes occur in a thin layer at the Earth’s surface. This
assumption, together with a purely elastic model of the
Earth’s response to a unit loading mass, allows then a
unique inversion of geopotential and Earth shape changes

into mass redistributions. In our analysis, we assume that
the gravitational and geometrical response of the Earth can
be described by Farrell’s [1972] theory, where the load
Love numbers (LLNs) only depend on the spherical har-
monic degree. Whether such an approach is appropriate or
not depends on the situation at hand; it might be not in a
forward modeling problem when actual observations are to
be corrected; but this will not be discussed in this study.
Here we will consider the inverse problem where the
scientific question is if a meaningful mass redistribution
signal can be extracted from the data. This signal will be the
sum of all atmospheric, hydrological, and oceanic loads that
are not yet corrected for in the routine GRACE and GPS
IGS data analysis. Whether these signals can be compared
to each other or further separated depends on the quality of,
e.g., atmospheric pressure models and the validity of the
inverse barometric (IB) response model and is not the target
of our research.
[7] Let Ds(l, q) denote the spatially varying surface

density anomaly; which has to be interpreted pointwise as
a departure with respect to a multiyear mean. With the
density rw of seawater, assumed as 1025 kg/m3 throughout

this study, typically load thickness T =
Ds
rw

is expressed as

an equivalent water column. A spherical harmonic (SH)
expansion for the surface density anomaly reads

Ds l; qð Þ ¼ arw
X
l;m

DCs
lm cosml þ DSslm sinml

� �
Plm cos qð Þ ð1Þ

with Earth’s mean radius a (6378 km), spherical harmonic
degree l and order m, and SH load coefficients DClm

s and
DSlm

s . We will exclusively use fully normalized Legendre
polynomials Plm and spherical harmonics Y lm = (Y lm

c , Y lm
s ),

Y lm
c (l, q) = Plm(cos q) cos l, Y lm

s (l, q) = Plm(cos q) sin l in

this study, following the convention

Z
W
Y lmY l0m0dw =

4p dlmdl0m0. One relates the load SH coefficients to observable
quantities, such as geoid change and crustal deformation.
The choice of degree-1 LLNs implicitly defines the
coordinate system to which subsequent inversions refer
[Blewitt and Clarke, 2003]: in this study we work with l01 =
0.134, h01 = �0.269 corresponding to the center of figure
(CF) frame. The CF frame, as we use it here, is conceptually
defined such that the surface integral of the vector
displacement field is zero, corresponding to an ideal no-
net translation projected along any axis [Blewitt, 2003]. It
will be close but not identical to realizations of the no-net
translation systems where only a finite set of reference
stations can be used instead of a continuous surface. On
adopting the loading theory as in the work by Farrell [1972]
and according to IERS standards, the spectral mapping for
geoid, height, and lateral displacement SH coefficients is
simply

DC
g
lm ¼ 3rw

re

1

2l þ 1
1þ k 0l
� �

DCs
lm ð2Þ

DCh
lm ¼ 3rw

re

1

2l þ 1
h0l DC

s
lm ð3Þ

DC
y
lm ¼ 3rw

re

1

2l þ 1
l0l DC

s
lm ð4Þ
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re and rw are mean density of the Earth (5517 kg/m3) and of
seawater (1025 kg/m3), and k0l, h

0
l, l

0
l are load Love numbers.

When relating these coefficients to observations, we are
now in a position to add nuisance parameters like datum
offsets, rotations or a scaling. For a time-averaged geoid
coefficient (like approximately over one month with
GRACE), i.e.,

DC
g
lm ¼ 1

Dt

Z tþDt

t

3rw
re

1

2l þ 1
1þ k 0l
� �

DCs
lm tð Þdt ð5Þ

or for GPS displacements in height, east, north

Dh ¼ a
X
l;m

DCh
lm cosmlþ DShlm sinml

� �
Plm cos qð Þ

þ eh �#x� aDs ð6Þ

De ¼ a

sin q

X
l;m

m �DC
y
lm sinmlþ DS

y
lm cosml

� �
� Plm cos qð Þ þ ee �#xþ en � ��� ð7Þ

Dn ¼ � a
X
l;m

DC
y
lm cosmlþ DS

y
lm sinml

� �
� @
@q

Plm cos qð Þ þ en �#x� ee � ��� ð8Þ

Here #x, ���, Ds are the parameters of a residual Helmert
transformation, following the IERS standard model in sign
conventions, and eh, ee, en refers to the unit vectors in a local
spherical frame. (Note that we understand height/east/north
and vertical/horizontal generally as radial/tangential
throughout this paper; that is, we work always in the
spherical local frame.) Whether it is useful or harmful to
estimate a residual Helmert transform, which then refers to a
mean system in the considered time frame, depends on the
particular context: It weakens the condition of the normal
equation system somewhat, but on the other hand it gives a
good indication how well pure translation and degree-1
loading can be separated for a particular station distribution
and data noise realization. In general, estimated Helmert
parameters are small when compared to degree-1 loading,
and they do not exhibit seasonal trends as the degree-1
loading coefficients clearly do. On assuming the degree of
expansion is sufficiently chosen, equations (2)–(8) con-
stitute a Gauss-Markov model [Koch, 1999]

yþ e ¼ Ax E ef g ¼ 0; E ee0f g ¼ C ð9Þ

where the unknown parameters DClm
s , DSlm

s together with
nuisance parameters are collected in x. A refers to the
design matrix, y holds gravity and displacement data, and e
refers to an error vector assumed as stochastic with
covariance matrix C (E{�} is the mathematical expectation
operator). In connection with GPS data, this inverse
problem has been posed originally by Blewitt and Clarke
[2003], whereas here additionally the combination with
GRACE monthly gravity fields is considered. Moreover, the
estimability of parameters, the degree of truncation, and the
role of other constraining operations have to be discussed in

detail. In this contribution we propose a physically
motivated regularization technique if GPS data only are to
be inverted. With combining GRACE and GPS in the
future, one would expect these problems less serious, but it
might turn out that additional ‘‘empirical’’ parameters
would have to be introduced to absorb systematic model
errors. An account on the relative contribution of both data
sources in a combination solution is given in section 6.

3. Estimability, Truncation, and Regularization

[8] It is obvious that one can only estimate a limited
number of spherically harmonic coefficients from a limited
number of observations. However, any truncation of the SH
expansion leads to a potential aliasing of unmodeled higher-
frequency mass redistribution signals into the solution. A
method to circumvent the problem may include the choice
of tailored base functions, extraction of stable linear combi-
nations of SH coefficients (which is the essence of applying
Gaussian averaging filters), and regularization. When
the truncated part of the Gauss-Markov model (9) is denoted
by ~A~x, that is y + e � ~A~x = Ax, this will create a bias b =
E{x̂ � x}

b ¼ A0C�1A
� ��1

A0C�1 ~A~x ð10Þ

which may corrupt the least squares solution x̂LS =
(A0C�1A)�1A0C�1y. For degree-1 inversion from GPS data,
Wu et al. [2002] have investigated this effect on the basis of
different load models ~x. One might then search for
smoothed solutions of the general form

x̂ ¼ A0C�1Aþ a7
� ��1

A0C�1y ¼ IþWað Þ�1
x̂LS ð11Þ

with Wa = a(A0C�1A)�1
7, with damping parameter a and

regularization matrix 7. From the second form it becomes
clear that this well-known scheme may be interpreted as a
filtering operation that applies to the solved-for coefficients
from a least squares solution. The estimation bias becomes

b ¼ A0C�1Aþ a7
� ��1

A0C�1 ~A~x� a7x
� �

ð12Þ

for the regularized estimate. Equations (11) and (12) suggest
that by choosing an appropriate regularization operator one
might seek to minimize the total mean square error
(propagated data error and bias) in a statistical sense, when
adopting an a priori statistic about the possible load models.
The mean square error [Xu and Rummel, 1994] will be

A0C�1Aþ a7
� ��1

A0C�1A A0C�1Aþ a7
� ��1 þ bb0 ð13Þ

The optimal design of regularization operators and the
correct adjustment of the smoothness imposed by a priori
models is, however, a challenging problem; see Xu and
Rummel [1994] for a general discussion; a recent account in
satellite gravity modeling is given by Ditmar et al. [2003],
and for geomagnetic modeling from discrete heterogeneous
data, see Korte and Holme [2003]. Optimization might be a
topic for separate research. In section 4 we will investigate
the possible aliasing error according to equation (12) simply
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on the basis of a simulated load model x, ~x, and the
regularization operator chosen as described subsequently.
[9] In the present case, the land-ocean imbalance in the

station distribution causes an inherent problem. Therefore
we introduce an optimization principle that adds an ocean
load variability constraint to the least squares objective
function,

J a ¼ ky� Axk2
C�1 þ a

Z
O
Ds2dw ð14Þ

where O is the ocean area. The main purpose of our
regularization operator is to allow SH representations of
surface mass redistribution to follow continental signal.
Oceanic mass variations are much smaller; the main signals
correspond with diurnal and semidiurnal ocean tides which
are corrected during the IGS GPS and GRACE data
processing. A second more serious signal is that of
atmospheric pressure variations. However, since we assume
an inverse barometric (IB) behavior over the oceans, this is
only relevant for loading over continents. Because there are
very few meteorologic and GPS data over Antarctica, we
extend the regularization also to this region.
[10] Numerically, our regularized inversion comes down

to solving the common type of normal equation system
(A0C�1A + a7O)x̂ = A0C�1y. The particular regularization
matrix 7O associated with (14) equals the Gram matrix that
appears in the base function orthonormalization method and
the product-sum formulation of spherical harmonics.
Computing its entries requires in principle either a spherical
harmonic analysis of the harmonics Y lm masked with the
ocean function O (1 over ocean and 0 over land),

7O;lm;l0m0 ¼
Z
w
O Ylm Y l0m0 dw

¼ 1

4p

X
l00 ;m00

Ol00m00

Z
W
Y lmY l0m0Y l00m00dw ð15Þ

or the evaluation of recursive algorithms involving Clebsch-
Gordon coefficients. For such recursions, see Hwang
[1995], Pail et al. [2001], and Blewitt and Clarke [2003,
and references cited therein]. We chose to implement the
spherical harmonic analysis method, requiring only standard
algorithms after a suitable discretization on regular grids.
The parameter a controlling the weight of the constraint
against the data fit is sometimes determined from trade-off
investigations, but we propose to apply a discrepancy
principle here: by adjusting a we force the total spatial
variability of the inversion result, on average with respect to
time, to an average value obtained from a geophysical
model time series (see section 5). The matrix 7O, on the
other hand, is determined by the constraining norm in
equation (14). Other reasonable principles, which all share
the property that they force smoothness of the inversion
outcome over oceanic regions, include constraining the
surface gradients (r*Ds)2 and the surface Laplacian
(D*Ds)2 of the mass redistribution instead of the total
variability Ds2. It is not difficult to derive the corresponding
regularization matrices for these cases, which contain
additional degree-dependent factors in (15).
[11] Our regularized inversion operator differs thus sig-

nificantly from the constrained inversion scheme proposed

by Blewitt and Clarke [2003]. In their methodology,
an unconstrained low-degree least squares inversion
(A0C�1A)x̂LS = A0C�1y initially provides the SH coeffi-
cients of the total mass redistribution. Then, postulating that
the marine geoid and sea bottom deformation changes
associated with the mass redistribution must correspond
point-wise to relative sea level changes (assuming thus that
the ocean is in hydrostatic equilibrium, responding to a
forcing by continental loads), sea level SH coefficients are
split off the estimated mass redistribution SH coefficients
using the product-to-sum transformation of spherical
harmonics. The remaining part is ascribed to the land part
of the mass redistribution SH coefficients in their analysis.
Oceanic and continental loads are computed spatially using
‘‘quasi-spectral’’ SH coefficients, which are obtained from
SH coefficients through projection by 7O. Numerical results
were provided for truncation degrees 1. Conversely, in our
methodology a physically motivated constraint about
possible oceanic loads is already incorporated in the
estimation scheme; whereas hydrostatic equilibrium is not
postulated explicitly.

4. Simulation Analysis of the Spatial
Aliasing Bias

[12] In order to investigate the possible spatial aliasing
bias according to equation (12), we have conducted a
simple simulation. Our load model consists of a spherical
harmonic expansion complete to degree 90, derived from
converting the August 2003 GRACE atmosphere-ocean
de-aliasing (AOD) model from the GRACE project into
a load expansion and adding the corresponding CPC land
hydrology anomaly model [Fan and van den Dool, 2004].
Thus, for August 2003, it represents the combination of
atmospheric pressure, the response of a barotropic ocean
model, and the hydrologic variation with respect to a
multiyear mean. However, the details of its creation are
in fact less important, as long as the model provides a
realistic load distribution, because the purpose of this
model is to serve as the truth model within the simulation.
The latitude-weighted global RMS of the load distribution
is 4.6 cm, with peak values of about 35 cm. We apply this
model to generate horizontal and vertical deformation data,
by means of equations (6)–(8), for the same 142 IGS
station positions that we extract in the analysis of real data
from the IGS combination SINEX file for week 1230
(August 2003), as described in section 5. RMS of the simu-
lated deformation vector components are 2.8/0.3/0.4 mm
in height/east/north direction from the full degree-90
expansion; the aliasing signal part above degree 7 (the
maximum degree that we solve for in the inversion)
contributes to 1.2/0.2/0.2 mm RMS. No stochastic errors
are introduced. In the light of equation (12), the truth
model consists of two parts: x holds those coefficients
complete to degree 7 that we estimate with a possible
regularization bias from the simulated data, in ~x are those
above the truncation degree in the analysis causing a
spatial aliasing bias.
[13] For the first simulation experiment, the data have

been taken from the degree-7 truth expansion x, with all
deformation component data weighted equally. The simu-
lated problem is consistent in algebraic sense, i.e., the error
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vector e in equation (9) vanishes. The unconstrained solu-
tion, with an

RMS ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

#coeff

X
l;m

DCs
lm�cDCs

lm

� �2

þðDSslm�cDSslm�2
s

of spherical harmonic coefficient errors of less than 0.7 mm,
appears indeed close to the truth model; which is an
expected result because the station distribution oversamples
the spherical harmonic expansion. Care has to be exercised
when interpreting relative errors: even in this aliasing-free
case they may easily reach 200% due to the smallness of
some coefficients. The fact that there are errors at all in the
unconstrained inversion from error-free data can be
attributed to the fast decay rate of the Love numbers and
the inhomogeneous station distribution, which in combina-
tion cause the normal matrix to become ill conditioned. The
errors in the constrained solution (RMS spherical harmonic
coefficient error of less than 1.0 mm) equal to the bias b in
equation (12) in the case ~x = 0. This solutions should be
seen as a reference solution with respect to the aliasing
problem, which we consider subsequently.
[14] For the second experiment, the data have been taken

from the degree-90 truth expansion, with the inversion
complete up to degree 7. An aliasing term ~x of realistic
magnitude is thus present in this simulation. Equally
weighting all data is, however, not realistic, and it is not
what happens in the real-data inversion. We have therefore
applied a real, dense GPS variance covariance matrix C
from the SINEX file of GPS week 1230 for decorrelating
the data. In Figure 1 we draw in log-log scaling the square
root of the inverse normal matrix eigenvalues corresponding
to the least squares solution and to two regularized solu-
tions. Because all estimated parameters are scaled to metric
quantities (in [m]), these can be directly compared in their
contribution to the overall error covariance. Helmert and
degree-1 parameters are estimated unconstrained in our
method, corresponding to the first ten eigenvalues in

Figure 1, and we can see how SH coefficient contributions
of higher degree are progressively damped. The two regu-
larization parameter a0 = 0.3 � 105 and a00 = 0.9 � 105 used
in this simulation are the same that we applied in the real-
data analysis; see section 5 for their derivation using
different external geophysical models. We find the RMS
of SH coefficient errors to about 2.5 mm for the uncon-
strained inversion, about 1.8 mm for the regularized inver-
sion with a0, and about 2.1 mm for the regularized inversion
with a00. The least squares solution exhibits significant
oscillations, even in regions sufficiently populated with
data, which we explain by the fact that aliasing errors get
amplified in the inversion procedure. Regularization
smoothes these oscillations efficiently. However, most of
the larger features of the truth signal are still preserved. Like
in all inversions from the degree-90 data, there appears a
problem with North America (large high-frequency signal
and many stations at west coast United States/Canada). This
is particularly interesting because a similar pattern can be
observed in the comparisons of real-data inversion and the
land hydrology model (section 5). The maximum error in
degree-1 coefficients here is 5.8 mm (c10), corresponding to
an error of

ffiffiffi
3

p
(rw/re) = 1.9 mm in north-south (interhemi-

sphere) geocenter motion. Finally, for comparison, we have
run two simulations where the constraints are applied purely
through truncating the series expansion. The same data as in
the previous experiment have been used, but the inversion is
solved for either up to degree 2 or up to degree 4. In the first
case the RMS of SH coefficient errors for degrees 1 and 2
was 1.6 mm, whereas we found 1.0 mm (a0) and 1.2 mm
(a00) from the regularized degree-7 inversions. In the second
case the RMS including degrees up to 4 was 1.4 mm, with
1.2 mm (a0) and 1.4 mm (a00) from the regularized degree-7
inversions. This shows clearly that degree-2 inversions may
suffer considerably from aliasing, and that constrained
degree-7 solutions may perform better for degrees �4 than
the unconstrained degree-4 solution.

5. Analysis of IGS GPS Coordinates

[15] We have applied our analysis to weekly IGS GPS
combination coordinate sets spanning 1999.5–2004.5 (26
June 1999 to 20 June 2004), obtained from the IGS ftp site
as SINEX files (igsyyPwwww.snx) and equipped with full
variance-covariance matrices. In total 158 sites which
contribute for more than 2 years in the mentioned time
span and for whose time series visible inspection did not
reveal steps were selected. Linear station movements have
been removed, and all time series are centered about the
mean. Note further that since the summer of 2001 there is a
significant increase in the number of sites.
[16] Within the inversion, we solved for a maximum

resolution of l = 7 in the spherical harmonic expansion
for each week. Regularization with the ocean damping
matrix 7O, and using two different values for the damping
parameter was applied: either a00 = 0.9 � 105 correspond-
ing on average with respect to time to an a posteriori total

spatial variability of

Z
O
cDs2dw = x̂07Ox̂ of (0.014 m)2 (an

average value taken from an ECCO ocean bottom pres-
sure model [Stammer et al., 1999]); or a0 = 0.3 � 105

corresponding on average to

Z
O
cDs2dw = x̂07Ox̂ of about

Figure 1. Square root of eigenvalues of the inverse normal
matrix, unconstrained (dots) and regularized (circles, for the
two damping parameter used in the real-data analysis)
inversion, in m. Inversion for degree-7 expansion and
Helmert parameters.
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(0.032 m)2 (the value following from an analysis of the 18
published GRACE gravity field models from University of
Texas Center of Space Research, projected tomass variability
by inverting SH coefficients through equation (2)). These
‘‘calibration’’ values from the geophysical models follow
from spherical harmonic expansion and expressing the
total spatial variability in the same spectral band where
the inversion is to be constrained. Loosely speaking, we
can choose between constraining our inversion model to
an oceanic spatial variability derived from an ocean

model or from the satellite gravity estimates. As with the
simulation, we exclude degree-1 deformation from the
regularization. Furthermore, we rejected some 1% of
observations where either height, east or north displace-
ments did not pass a statistical test in the unconstrained
analysis; with the test criterium chosen to meet no more
than 5% probability of failing to reject a true outlier.
Figure 2 shows the estimated load moment m evolution,
expressed as a variation of the CF frame with respect to
the center of mass of Earth plus load (CM) system. The

Figure 2. Load moment expressed as CF frame variation [m] with respect to CM from GPS inversion,
in X, Y, Z direction (CF center of figure system, CM joint center of mass of Earth and load). Weekly
estimates (dots), and running 30 day mean (line).
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Figure 3. Low-degree load harmonic coefficients [m] from GPS inversion (a0 derived from GRACE
time-variable gravity models). Weekly estimates (dots), running 30 day mean (line), and two models from
SLR analyses.
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load moment vector is defined as by Blewitt [2003]
(equation (9)). This means, the

X ¼ 1

M
mx ¼

1

M

4pa4rw
3

DCs
11

Y ¼ 1

M
my ¼

1

M

4pa4rw
3

DSs11

Z ¼ 1

M
mz ¼

1

M

4pa4rw
3

DCs
10

ð16Þ

are displayed. 1-sigma standard deviations for the individual
weekly estimates are about 4–5 mm. The period 1999.5–
2001.0, after scaling displacements by Earth’s mass M =
6.0 � 1024 km, fits very close to Figure 1 from Blewitt et al.
[2001], who solved for degree-1 only. In comparison with the
results of Wu et al. [2003] for 1999.5–2002.0, we find
similarities notably in Z, but our amplitudes are significantly
larger within this period although they decrease for more
recent years. We find a yearly amplitude (in mm) and phase
(day of maximum amplitude, counted from 1 January) of
3.9/23 in X, 2.7/26 in Y, 7.6/58 in Z direction. Dropping the
residual Helmert parameters (whose values are generally
estimated to be below the 1 mm level) from the estimation
alters these values to 5.4/25 in X, 1.1/323 in Y, 5.9/52 in Z.
Estimated statistical correlations vary between �0.1 and
�0.6 in our regularized inversion, depending on site
distribution and coordinate axis. One should add that these
degree-1 results appear as almost insensitive with respect to
the specifically chosen constraint, the chosen station subset
(we used more than twice the number of stations that Blewitt
et al. [2001] used), or the degree of series truncation, as long
as one applies a reasonable constraint at all when extending
the truncation degree. They are, on the other hand, sensible
toward the chosen degree-1 LLNs and the underlying
reference frame concept.
[17] In Figure 3 we show some estimated low-degree

spherical harmonic coefficients for the regularization pa-
rameter derived using time-variable satellite gravity models.
For comparison, two spherical harmonic models for annual
and semiannual gravity changes from SLR analysis [Nerem
et al., 2000; Cheng et al., 2002] have been projected to
loading mass variations and included in Figure 3. Table 1
summarizes annual amplitude and phase for these low-
degree coefficients, where we included results obtained
using both constraints a0 and a00 as well as from the
unconstrained inversion for completeness. Obviously, the

amplitudes are indeed somewhat sensitive to the particular
choice of the constraint, whereas the annual phase in our
estimates agrees generally quite well with the SLR results.
Differences between the second and third column indicate
to which extent our analysis results depend on external
information introduced through the damping. For higher
degrees (l > 2) there is typically less power in our regular-
ized estimates than in those obtained from SLR analyses, as
shown here for l = m = 4. Moreover, our results suggest that
energy is transferred from the north-south (Z) annual
oscillation to C20. This pattern reappears when we repeat
our computation with different station subsets, so it is
probably not related to the increasing number of IGS
stations. However, care has to be exercised when judging
individual spherical harmonic coefficients, as the simula-
tions in section 4 have shown.
[18] The weekly SH coefficients are corrected for known

oceanic and atmospheric mass variations. We assumed an
inverted barometer response over the oceans and continental
air pressure loading using the National Center for Earth-
quake Prediction (NCEP) reanalysis air pressure data.
Several versions have been implemented and our current
results are based upon a gravitational consistent theory as
described by Wahr [1982]. We did not obtain significant
differences when applying the standard local IB correction
whereby a constant reference pressure is assumed, the
modified dynamical IB correction that allows variations in
this reference pressure so that there are no net mass changes
over the oceans (recommended as an option by TOPEX/
Poseidon and JASON science working team), or when
applying the theory of Wahr [1982] that combines air
pressure loading on land and sea level variations in a
gravitational consistent manner. The corrected GPS inver-
sions should then basically be comparable to what GRACE
delivers at the large spatial scales. Then, we derived the
annual cosine and sine modes from the last two years of our
analysis (for better comparison with the GRACE solutions).
We represent annually varying spatial mass distribution in
Figure 4a graphically at resolution of l = 3. . . 6, derived
from GPS (using the damping a0 from adjusting the oceanic
spatial variability to GRACE). For comparison and valida-
tion, Figure 4b gives the corresponding annual surface mass
change (l = 3. . . 6), as computed from the CPC land
hydrology model, and Figure 4c shows these changes as
derived from the CSR GRACE level 2 product (when
referred to a mean GRACE solution). Note that no spectral
filtering has been applied to the GRACE fields. Annual
mass changes from GPS inversion appear generally less
pronounced than the GRACE results, and the separation
between strong sine and weak cosine mode is less clear.
However, the visual correspondence between our inversion,
the hydrology model, and the GRACE-derived solutions is
still striking, given the relatively sparse data distribution.
We do not attempt any geophysical interpretation of the
misfits.
[19] Finally, we have computed time series of large-scale

spatial averages of mass distribution for the individual
continental surface of Europe/Asia, Africa, Australia, North
America and South America (see Figure 5) from our
inversion. Also for these graphs the atmospheric pressure
contribution has been removed from the GPS inversion
results in a postanalysis step. Corresponding time series

Table 1. Annual Amplitude/Phase for Low-Degree Load Harmo-

nic Coefficientsa

Unconstrained a0 a00
Nerem et al.
[2000]

M. K. Cheng et al.
(unpublished

manuscript, 2002)

DC20
s 6.2/40 4.6/89 3.4/90 8.8/56 10.3/31

DC22
s 9.7/142 6.5/170 4.7/172 1.2/187 3.2/134

DS21
s 14.1/359 6.3/384 4.5/20 3.5/8 4.2/332

DC44
s 16.2/284 5.6/269 3.4/266 8.9/287 13.4/254
aAnnual amplitude is in mm and phase is counted in days from 1 January

from GPS inversion (unconstrained, and with a0 = 0.3 � 105 derived from
GRACE and a00 = 0.9 � 105 derived from ocean bottom pressure model)
and after Nerem et al. [2000] and M. K. Cheng et al. (unpublished
manuscript, 2002).
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from the CPC models [Fan and van den Dool, 2004] and
monthly results from the GRACE project (CSR fields) are
included for comparison. Here, all spatial averages are
obtained through applying an identical Gaussian filter
procedure with averaging radius of 2000 km to spherical
harmonic expansions truncated at degree l = 7 (the maxi-
mum resolution within the GPS inversion), in order to avoid
Gibbs effects and to reduce the noise. These filter coef-
ficients suppress more than 92% of the unmodeled signal at
degrees >7. The GPS and GRACE curves for Europe and
Asia fit quite well in amplitude and phase, an offset may be

identified for Africa (still remarkable correspondence seen
the few contributing GPS station), but no similarity appears
between GPS inversion and GRACE-derived results for
North America. For South America with its large hydrologic
basins exposing a pronounced signal which is clearly
identifiable in GRACE solutions [Tapley et al., 2004],
GPS inversions appear phase-lagged and of smaller ampli-
tude. Adding these results up, including degree-1 harmonics
and scaling appropriately by the total continental surface
area times seawater density, represents the exchange of
water mass between these five continents and all those

Figure 4. Annual surface density variation in equivalent water height [m], (a) from GPS inversion, l =
3. . .6 (atmospheric effect removed (from NCEP)), (b) from CPC land hydrology model, l = 3. . .6, and
(c) from CSR GRACE models, l = 3. . .6. (left) Cosine mode, (right) sine mode. See color version of this
figure at back of this issue.
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water storage systems which do not load the continental
surface. When we assume that the atmosphere plays a minor
role in the water exchange, this would be the ocean
(including the arctic region) and Antarctica. We derive an
annual amplitude of 2.1 � 1015 kg with a minimum in early
September for mass exchange, noting that the degree-1
terms (something which is not provided with GRACE
solutions) dominate this result. However, a clear decrease
in amplitude can be observed, so that this value can only rep-

resent a mean in the time frame 1999.5–2004.5. Blewitt and
Clarke [2003] found an annual amplitude of 2.9 � 1015 kg
with a minimum in late August from analysis of data
spanning the period 1996.0–2001.0; however, their meth-
odology differs significantly from the one presented here.
We conclude that there appear differences in amplitude and
phase between GRACE results and GPS inversions, which
are probably too large to be considered as purely stochastic.
It is tempting to apply a rigorous joint inversion of the

Figure 5. Monthly surface density variation in equivalent water height [m] averaged over continental
regions (EA, Europe plus Asia; AF, Africa; AU, Australia; NA, North America; SA, South America).
GPS inversion (running 30 day mean, solid line), CPC hydrology model (dotted line), and GRACE
(dashed line). Gaussian smoothing with 2000 km averaging radius applied. Degrees 2. . .7 used
exclusively. Atmospheric effect removed (from NCEP).
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two data sources, combining equations (5)–(8), but such
systematic differences should be investigated first before
being masked by an adjustment procedure. However, in
section 6 we will investigate which spherical harmonic
coefficients would gain in such a joint inversion based on
an error assessment.

6. Simulation of GRACE Full Covariance and
Relative Contribution

[20] What would be the contribution of GPS in a joint
monthly inversion, that is, when one combines monthly
GRACE gravity coefficients (5) and GPS station displace-
ments (6), (7), and (8) from four consecutive weeks? Note
that the GRACE accuracy for 2003 is ranked significantly
better than that for 2002. In order to assess this question, we
have therefore used the GPS variance-covariance matrices
Ch,y that we extracted from the GPS week 1180 (August
2002) and 1230 (August 2003) SINEX files for the com-
putation in section 5 together with the calibrated 1-sigma
information of the corresponding monthly CSR GRACE
solutions [Tapley et al., 2004]. However, because the
GRACE files are not given with a full covariance matrix
(there is no correlation information), we have built up such
matrices Cg from simulation with the energy balance
approach for gravity field recovery [Jekeli, 1999] and 30
days of simulated orbits [Ilk et al., 2003] and scaled
subsequently coefficient-wise to match the actual CSR

calibrated coefficient standard deviations. The contribution
of GRACE can then be judged by evaluating the partial
redundancy for a particular gravity coefficient DClm

g [Koch,
1999], and the contribution of the GPS site distribution to
DClm

s is 1 � qlm,

qlm ¼ a
g
lm

0
Ag 0Cg�1Ag þ Ah;y0Ch;y�1

Ah;y
� ��1

Ag 0Cg�1elm ð17Þ

where alm
g is the corresponding column of the design matrix,

and elm a vector with 1 in the position corresponding to l, m
and 0 elsewhere.
[21] The projections (Figure 6) show clearly that the

gain through adding GPS lies in the very low degrees and
to some extent in sectorial and near-sectorial harmonics.
There is a 60% contribution up to degree 4, and about
30% contribution up to higher degrees in sectorial and
near-sectorial coefficients. Of course, our methodology
here assumes that the data errors are perfectly modeled
through the covariance matrices Cg and Ch,y and that no
model errors exist, which is probably not the case in
reality. Also, with increasing GPS site density and increas-
ing GRACE accuracy such projection will have to be
reconsidered.

7. Conclusions

[22] We have analyzed publicly available weekly IGS
GPS time series from the years 1999.5–2004.5 for mass

Figure 5. (continued)
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redistribution through loading inversion. Truncation and
regularization issues affect the estimation of low-degree
mass changes; due to nonhomogeneous site distribution
and the amplification of errors. Our results show that a
regularized inversion technique, which takes only the
physically motivated constraint of limited oceanic variabil-
ity via the IB assumption into account, renders this
parametrization problem into a less significant one. Spher-
ical harmonic coefficients well beyond degree 4 appear to
contain significant information. We can show that after
removing the contribution ascribed to atmospheric pressure
loading following a gravitationally consistent IB theory,
estimated annual variations of continental-scale mass redis-

tributions exhibit pattern similar to those observed with
GRACE and predicted by a global hydrology model,
although systematic differences appear to be present.
Further research should concentrate on identifying these
systematics. For instance, in the present analysis we do not
take possible systematic or seasonal error sources in the
GPS system into account. On the other hand, it is difficult
to quantify the reliability of global hydrologic models and
even the ‘‘calibrated’’ error estimates from the GRACE
project are hard to validate. Improvements with GRACE
modeling and data processing methodology will probably
change this picture, but dependent on the quality of future
reprocessed monthly solutions, there might be still a

Figure 6. Projection of the relative contribution of GPS (a) August 2002 and (b) August 2003 in a joint
4-week GRACE-GPS inversion; 1, coefficient completely determined from GPS; 0, from GRACE.
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potential for combination with GPS. Moreover, reliable
GPS time series date much longer back in the past than
GRACE is in existence.
[23] One might argue that in our method the physical

constraint provides a rather coarse description of the ocean
dynamic behavior, and that one could go one step further
and penalize the deviations from a seasonal mean sea level
model instead of the absolute oceanic mass variability.
Ocean dynamics can in fact be introduced into the inver-
sion scheme on various levels of information content: with
no constraint at all on one end of the scale and a weighted
least squares inversion combining an ocean model with
GPS and/or GRACE on the other end. Naturally, with
increasing the importance of prior information the depen-
dence on the prior model of ocean dynamics will increase.
For the moment we have chosen a rather conservative
approach, but more elaborated constraining mechanisms
are under investigation. Also the question, whether to
include frame-dependent degree-1 load coefficients into
the constraint would improve the solutions, is being
investigated. An argument for the current approach is that
we can derive the weight of the constraint alternatively
from GRACE.
[24] Finally, the method as outlined in this article may be

extended to applying additional constrains over land areas,
for example to deal with areas of sparse GPS coverage or
with GRACE errors which increase strongly at higher
degrees of truncation. In fact, applying Gaussian-type
averages as is common in the interpretation of GRACE
gravity fields is just another way of filtering the uncon-
strained inversion outcome (equation (11)).
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Figure 4. Annual surface density variation in equivalent water height [m], (a) from GPS inversion, l =
3. . .6 (atmospheric effect removed (from NCEP)), (b) from CPC land hydrology model, l = 3. . .6, and
(c) from CSR GRACE models, l = 3. . .6. (left) Cosine mode, (right) sine mode.
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