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Abstract

Enabling mobile robots to autonomously navigate complex environments
is essential for real-world deployment in commercial, industrial, military,
health care, and domestic settings. Prior methods approach this prob-
lem by having the robot maintain an internal map of the world and then
use a localization and planning method to navigate through the inter-
nal map. However, these approaches often include a variety of assump-
tions, are computationally intensive, and do not learn from failures. Re-
cent work in deep reinforcement learning shows that navigational abilities
could emerge as the by-product of an agent learning a policy that maxi-
mizes reward.

Deep Q-Networks (DQN), a reinforcement learning algorithm, uses ex-
perience replay to remember and reuse experiences from the past. A sam-
pling technique determents how to sample the experiences that are to be
replayed from the experience replay buffer. Here we studied the effect of
different sampling techniques on the learning behavior of an agent using
DQN in partially observable navigation tasks. In this work five sampling
techniques are proposed and compared to the original random sampling
technique.

We found that sampling techniques focusing on surprising experiences
learn faster than random sampling techniques. Secondly, we found that
the final performance of all sampling techniques usually converge to the
same policy. Finally, we found the correct use of importance sampling is
essential when using prioritized techniques.
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1 Introduction

Globally, it is estimated that 1.3 million industrial robots will be added to
factories in 2018 [1]. Some call it the “fourth industrial revolution." Re-
gardless the numbers are proof that robots are exponentially being incor-
porated into our lives. A large part of these robots is mobile. These can be
used in many applications, for example transportation tasks, surveillance,
cleaning, factory work, entertainment or health care. Mobile robots have
three main advantages compared to humans in tasks that require mobility.
The first main advantage being reliability, uninterrupted and reliable exe-
cution of monotonous tasks such as surveillance. Secondly, safety, inspec-
tion of sites that are inaccessible to humans, e.g. tight spaces, hazardous
environments or remote sites. Lastly, cost, transportation systems based
on autonomous mobile robots can be cheaper than standard track-bound
systems.

Recent work showed a mapless motion planner can be trained end-to-end
(sensor input to steering control commands) in a virtual environment us-
ing reinforcement learning [2].

Reinforcement Learning (RL) is a type of machine learning. In reinforce-
ment learning an agent is interacting with the environment and using
these interactions to learn an optimal or near-optimal behavior. The idea
of reinforcement learning is inspired by the way nature works. The goal
of reinforcement learning is to learn good policies for sequential decision
problems, by optimizing a cumulative future reward signal.

Deep reinforcement learning or deep learning, a subfield of reinforcement learn-
ing, uses neural networks, an interconnected system of artificial neurons
designed to mimic the operation of a brain, as function approximators.
Because of this deep learning can automate feature engineering which in
turn means reliance on domain knowledge is significantly reduced[3]. Re-
cently there are some exciting achievements of deep learning, benefiting
from the exponential growth of stored data, powerful computation, new
algorithmic techniques, mature software packages and architectures, and
strong financial support[4]. This lead to breakthroughs like learning to
play Atari games at human-level performance[5][6] and beating the top
human player in the game of Go[7].

5



Reinforcement learning agents update their policy while they observe a
stream of experience. In its most basic form reinforcement learning dis-
cards incoming experiences after a single update. This approach has two
main problems. First, a common assumption when training a function ap-
proximator, such as a neural network, is that the training examples, in this
case experiences, are independent and identically distributed (i.i.d.) [8].
While typically in reinforcement learning sequential experiences are often
highly correlated and the distribution of these experiences may change as
the agent learns new behaviors. This could cause catastrophic forgetting
[9] or getting trapped in a poor local minimum. Secondly, all the experi-
ence generated is only used once, which is very inefficient data usage.

To solve these problems a technique called experience replay is used where
the agent’s experiences at each time-step are stored in a replay memory.
This experience replay makes it possible to use experiences multiple times
and mix more and less recent experience in a sample. In most applications
experience replay will reduce the amount of experience required to learn,
which means fewer interactions with the environment. However, it does
increase the amount of computation and memory needed, but these are
usually less expensive resources.

However, even when using experience replay deep learning can still be
data inefficient. For example, one of the state-of-the-art reinforcement
learning algorithms [10] using experience replay needs about 18 million
frames on average to reach human level performance in 57 Atari games.
This corresponds to about 83 hours of game play at a normal 60 frames per
seconds, a lot of time for an Atari game that most humans pick up within
a few minutes. For games and other environments where simulation is
possible, this is not a huge problem. To the contrary, for most real-world
settings generating experience takes time and could be costly [11]. This is
why efficient use of experiences is essential.

The Deep Q-Networks (DQN) algorithm, used to play many Atari games
at human-level performance, was the first to use a combination neural
networks, experience replay, and Q-learning, a value-based reinforcement
learning algorithm. Since then, many extensions have been proposed that
enhance its speed or stability [12][13][14].
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In DQN the experiences are sampled uniformly from the replay mem-
ory, however, other sampling techniques are possible. This study investi-
gates the effect of different sampling techniques on the learning behavior
of an agent using DQN in navigation tasks. It compares five sampling
techniques to the original random sampling technique in a virtual envi-
ronment. The sampling techniques studied in this thesis are based on the
idea that an RL agent can learn more effectively from some experiences
than from others. In particular, it is based on the idea that the magnitude
of an experience’s temporal-difference (TD) error, the difference between the
estimated value of a state and the better estimate using the feedback from
the environment, can indicate the expected learning progress of that ex-
perience [13]. In this thesis sampling methods that prioritize experiences
with high TD errors are named prioritized sampling techniques.

The hypothesis is that RL agents using these prioritized sampling tech-
niques have a better sample efficiency than the original random sampling
technique.

In the first section, an overview of the most relevant parts of DQN is given.
Then the concept of experience replay is elaborated with an emphasis on
sampling techniques and importance sampling. The research question is
clarified in section 2. A method to answer the research question is pro-
posed in the next section, this includes a new environment and architec-
ture. Using the method described simulations are done resulting in data
about each sampling techniques test performance over time. These results
are then compared using performance metrics like the stability and speed
of convergence. In the fifth section, this research is discussed and com-
pared to other research. Finally, in the last section, conclusions are drawn
from this research and recommendations are done for future work.

1.1 Background

In this section concepts and fundamentals in machine learning, deep learn-
ing and reinforcement learning are introduced.
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1.1.1 Machine learning

Machine Learning is the science of getting computers to learn and improve
their performance on a specific task over time in autonomous fashion. All
machine learning algorithms are composed of a dataset, loss function, op-
timization procedure, and model.

Machine Learning is usually divided into three categories: supervised,
unsupervised, and reinforcement learning [15]. Supervised learning is the
task of learning a function that maps an input to an output based on exam-
ple input-output pairs called labeled training data. The goal is to predict
the class label for new unseen data based on the relationships it learned
from the labeled training data. In unsupervised learning, a model tries
to learn relationships between unlabeled examples by looking for hidden
structures, patterns or features within those examples. The last category
of machine learning, the category this thesis is focused on, reinforcement
learning aims at using observations gathered from the interaction with an
environment to take actions that would maximize the reward or minimize
the risk.

1.1.2 Neural networks

Artificial neural networks, in this thesis called neural networks, consist of
a collection of connected units or nodes called artificial neurons, which
loosely model the neurons in a biological brain [16]. The artificial neuron
receives one or more inputs that are separately weighted. It then sums
them to produce an output that is passed through a function known as an
activation function. Typically, artificial neurons are aggregated into lay-
ers. Different layers may perform different kinds of transformations on
their inputs. Signals travel from the first layer (the input layer) towards
the last layer (the output layer).

To update the weights in a neural network a method called backpropa-
gation is used to calculate gradients of the weights using the loss function
[17]. Then these gradients are used in an iterative optimization algorithm
like gradient descent to update the weights. This way neural networks can
learn to perform tasks by considering examples, generally without being
programmed with any task-specific rules.
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1.1.3 Reinforcement learning

Reinforcement learning has a wide range of applications. Games and
robotics are two classical RL application areas, but there are other applica-
tions like natural language processing, computer vision, neural architec-
ture design, business management, ads, recommendation, customer man-
agement, marketing, finance, healthcare, industry, smart grid, intelligent
transportation systems, and computer systems [18].

In reinforcement learning an agent interacts with an environment over
time in a Markov Decision Process (MDP). In an MDP there is a state space
S and an action space A. Each time step t the agent is in a state st in S
and then selects an action at fromA using a policy π(st), which represents
the agents behavior. Then the agent receives a reward rt and ends up in
the next state st+1. For a process to be an MDP the next state should only
depend only on the current state and action, but not on the past.

The value function Vπ(s) in reinforcement learning is an estimate of ex-
pected return J, i.e. discounted future reward, measuring how "good" each
state is:

Vπ(st) = E[J|St = st] (1)

J =
∞

∑
t=1

γt−1rt (2)

with discount factor γ ∈ (0, 1], used to determine the importance of future
rewards, and rt the reward at step t. The agent aims to find the optimal
policy π∗ that maximizes the expectation of such long term return from
each state. An optimal action-value function Q∗(s, a), the value for choos-
ing an action in a state, can be formulated using the Bellman Principle of
Optimality that states: ”An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must con-
stitute an optimal policy with regard to the state resulting from the first
decision.”

Q∗(st, at) = R(st, at) + γ ∑
st+1

max
at+1

Q∗(st+1, at+1)T(st, at, st+1) (3)

where the transitions between states are modeled as
T(st, at, st+1) = P(st+1|s, a) and R(st, at) is the reward function depend-
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ing on the current state and action. In this thesis the agent does not know
apriori what the effects of its actions on the environment are, i.e. state
transition and reward models are not known to the agent. This means the
action-value function has to be actively learned through interactions with
the environment.

There are a wide variety of action-value function based reinforcement learn-
ing algorithms. One class of these algorithms that do not need a explicit
transition function are the temporal difference (TD) methods. In TD meth-
ods an earlier action value is updated by calculating a TD error, the dif-
ference between the old estimate and a new estimate of the action-value
function. When a value of an action is updated based on the current es-
timate of that value it is called bootstrapping. This is done in a popular
TD learning algorithm Q-learning [19]. It learns the action-value function,
with the update rule:

Q(st, at)← Q(st, at) + α[rt + γmaxat+1 Q(st+1, at+1)−Q(st, at)] (4)

were learning rate α ∈ [0, 1] is used to progressively approximate the op-
timal policy and therefore usually decreased over time in stationary en-
vironments. The Q-learning algorithm approximates the action-values in
order to approach the optimal action-value function. It is guaranteed that
the action-values converge to the optimal values in an infinite run by se-
lecting each action in the appropriate state infinitely often [20]. Then the
optimal policy is the policy that selects the action with the maximum value
in each state.

1.1.4 Deep learning

In small, discrete state and action spaces an action-value function is stored
in a tabular form. However when the state or action spaces are too large or
continuous function approximation is a way of generalizing these spaces.
It is called deep reinforcement learning or deep learning when neural net-
works are used to approximate the action-value function. In deep learning
the neural networks used to approximate the action-value function have
one or more hidden layers between the input and output layer. This en-
ables end-to-end training: a learning model that uses raw inputs without
manual feature engineering to generate action values for each state and,
more importantly, estimate the action values of unseen states based on
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earlier similar states.

Recently many different RL algorithms that work with deep networks are
proposed. Deep Q-Networks, one of the first breakthrough successes in
applying deep learning to RL, is sufficient to explore the sampling tech-
niques discussed in section 2.1.

1.2 Deep Q-Network

The first deep reinforcement learning method proposed by DeepMind,
and the method this work is building on, is called deep Q-networks (DQN).
It showed a way deep neural networks can empower RL to directly deal
with high dimensional states like images by integrating supervised learn-
ing techniques into RL. Simply replacing a tabular action-value function
with a neural network in normal Q-learning leads to unstable or even di-
vergent results. There are two main reasons for this instability. First, the
supervised learning techniques used to train the neural network prefer in-
dependent and identically distributed (i.i.d) data. This means the training
examples used to optimize the neural network need to have similar data
distributions and are independent of each other. If the i.i.d. assumption
is not met the model could overfit, i.e. the policy will not be generalized.
Secondly, supervised learning techniques do not perform well when labels
of the same input are changed over time. In RL the labels of state-action
pairs, i.e. their estimated action-values, are called targets and these change
after every update of the action-value function.

To overcome these problems DQN proposes four important techniques:

1. Experience replay, further elaborated in section 1.3

2. A target network, a periodic copy of the neural network used to es-
timate the action value which is not directly optimized.

3. Stacking frames, using a history of frames as a state instead of only
the last frame.

4. Reward clipping, fixing all positive rewards to 1 and negative to -1
this limits the scale of the error.
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To train an agent using DQN there are several steps involved. First, the
agent selects an action using a ε-greedy selection strategy: with probabil-
ity (1− ε) an action is chosen using the current policy π(s) or else, with
probability ε, a random action is chosen. Because the agent can not get a
complete state of the environment with only one frame, i.e. the environ-
ment is partially observable, it does not comply with the Markov property.
This states that the conditional probability distribution of future states of
a process must depend only upon present state. One way to alleviate the
Markov property is to allow decisions to be based on the history of recent
observations [21]. Thus a new state is created by stacking the most recent
frame and the last three frames. Another way to do this would be using
recurrent architectures to capture arbitrary long-term dependencies [22].
Next, an experience, also called transition, (st, at, rt, st+1) is added to the
replay memory. The following step is to sample a batch of random expe-
riences from this replay memory. Then the targets of all the experiences in
the batch are calculated using the following equation:

Qtarget(st+1, rt) = rt + γ max
at+1

Qθ̄(st+1, at+1) (5)

where rt is the reward of taking action at in state st. To determine the im-
portance of future rewards the discount factor γ is used like in equation 2.
The action-value function approximated by the target network is denoted
by Qθ̄(st, at), this is a periodic copy of the online network Q(st, at), i.e. the
neural network the current policy uses to estimate the action values. In
practice this means the weights of the target neural network θ̄ are peri-
odically replaced by the the weights in the online network θ. In standard
DQN the maximum action value in the next state st+1 is used when calcu-
lating the target. The next step is to calculate the TD error δ:

δ = Qtarget(st+1, rt)−Qθ(st, at) (6)

this TD error δ is used in a loss function like mean squared error (MSE):

L = E[δ2] (7)

The last step is to train the online Q-network Qθ by minimizing the loss
function. This can be done by an iterative method for optimizing like
stochastic gradient descent (SDG). SDG simply does away with the ex-
pectation in the update and computes the gradient of the weights θ using

12



only a single or a few training examples. Updating the weights is done by:

θ = θ − α5θ
1
n ∑

n
Ln(θ) (8)

where n is the number of experiences in a batch and the loss of experience
n is denoted by Ln. The learning rate α is a hyperparameter used to control
the size of the updates. Choosing the proper learning rate and schedule
(i.e. changing the value of the learning rate as learning progresses) can be
fairly difficult. SGD can lead to very slow convergence, especially when
the learning rate is too low or high. This is why recently more advanced
optimization algorithms are used like Adam [23], an algorithm for first-
order gradient-based optimization of stochastic objective functions, based
on adaptive estimates of lower-order moments. These moments are calcu-
lated by keeping track of the velocity v of a weight update:

v = β · v + α5θ Ln(θ) (9)

where β determines how much of the previous gradients are incorporated
into the current update. The main benefits of using Adam are that the
magnitudes of parameter updates are invariant to a rescaling of the gradi-
ent, its stepsizes are approximately bounded by the learning rate, it does
not require a stationary objective, it works with sparse gradients, and it
naturally performs a form of learning rate annealing. All these benefits
make it a widely used optimization algorithm and the reason it is used in
this thesis.

Several limitations of DQN are now known and many extensions have
been proposed that enhance its speed or stability. In deep learning al-
gorithm Rainbow [10] six of these extensions are combined. An ablation
study is then done that shows the contribution of each component to over-
all performance. Prioritized experience replay (PER) [13], replaying more
often experiences from which there is more to learn, is the extension that
proved to be the most crucial component of Rainbow. That inspired the
research topic of this thesis.

One of the extensions to DQN used in this thesis is double Q-learning
(DDQN) [12], in order to make this study comparable to PER which also
uses this extension. Conventional Q-learning is affected by an overestima-
tion bias, due to the maximization step in equation 5. The idea of Double
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Q-learning is to reduce overestimations by decomposing the max opera-
tion in the target Qtarget into action selection and action evaluation. This
action selection and evaluation is done using the online Q-network. This
changes the target, equation 5, to:

Qtarget(st+1, rt) = rt + γQθ̄(st+1, argmax
a

Qθ(st+1, a)) (10)

1.3 Experience Replay

Experience replay is originally proposed in 1993[24]. Since 2015 experi-
ence replay enjoys great success in the deep RL community and has be-
come a new norm in many deep RL algorithms. Only learning from the
most recent experiences without saving them in a replay memory has sev-
eral shortcomings discussed in the introduction. In summary, it is data
inefficient, causes rapid forgetting, does not produce i.i.d. data to train
a neural network and could cause unwanted feedback loops. Experience
replay not only provides less correlated data to train a neural network but
also significantly improves the data efficiency [21].

In experience replay, experiences (st, at, rt, st+1) are written to a buffer,
called the replay memory. To train the Q-network’s prediction of the ac-
tion value a batch of random experiences is sampled from that buffer. This
breaks the temporal correlations of the experiences updating the neural
network. It increases learning speed and sample efficiency of the algo-
rithm because the use of batches makes for better estimations of the gradi-
ents. Finally, it counters catastrophic forgetting. By using experiences mul-
tiple times the network is less likely to abruptly forget previously learned
information upon receiving new experiences.

There are still several challenges relating to experience replay. How many
experiences must be kept in the replay memory? Which experiences should
be discarded to make room for new experiences? How many experiences
should be in a batch? Are there other more efficient ways to sample ex-
periences from the replay memory for replay than randomly selecting a
batch of experiences?
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2 Research Question

As stated in the introduction, experience replay significantly improves the
data efficiency. There are however some unexplored areas of this experi-
ence replay. One design choice that has to be considered is which experi-
ences to replay and how to do so. In other words how to make the most
effective use of experience replay for learning.

2.1 Sampling Techniques

Recent work shows that one of the most effective ways to make learning
from experience replay more efficient is by selecting samples for replay
that the agent can learn the most from [13]. In biology, neuroscience stud-
ies have identified evidence of experience replay in the hippocampus of
rodents, suggesting that sequences of prior experience are replayed, either
during awake resting or sleep. And in these studies sequences associated
with rewards appear to be replayed more frequently [25][26], this indicates
more efficient ways of selecting experiences for replay are possible.

In statistics, sampling is the selection of a subset of individuals from within
a population to estimate characteristics of the whole population. How-
ever, when sampling experiences for reinforcement learning, the goal is
to select the experiences that can make experience replay more efficient
and effective than if all experiences are replayed uniformly. In this sec-
tion an overview is given of the six sampling techniques used in this re-
search, starting with the original random sampling. The other five build
on ideas from prioritized reinforcement learning [13], further elaborated
under "prioritized" below.

All the sampling techniques proposed below are tested three times. First
without importance sampling, then with importance sampling and finally
with importance sampling and the most recent experiences added to the
batch.

2.1.1 Random

This sampling technique was originally used in DQN. It is the most com-
mon way of sampling, simple random sampling. Each experience has an
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equal probability of selection. This minimizes bias and breaks the tem-
poral correlations between the experiences. This important because the
algorithms used to update the neural network assumes independent and
identically distributed training data, as discussed in section 1.2. However
random sampling will inevitably sample experiences from which there is
not much to learn: experiences that are less surprising, redundant, or not
task-relevant [13].

2.1.2 Prioritized

This sampling techniques is similar to prioritized experience replay [13],
with three small changes described at the end of this section. Probability-
proportional-to-size sampling is where the selection probability for each
experience is set to be proportional to its size measure. This sampling
technique can improve efficiency by concentrating samples on large ele-
ments that have the greatest impact. However a drawback could be that
different portions of the population may be over- or under-represented
based on their size measure.

In reinforcement learning the size of an experience is best indicated by
the magnitude of an experience’s TD error δ, described in equation 6. This
sampling technique is used in prioritized experience replay, it replays ex-
periences more frequently relative to the last encountered absolute TD er-
ror. The prioritization of experiences with a high magnitude of their TD
error has four problems. First, it can lead to a loss of diversity, initially
high error experiences get replayed frequently. Secondly, the TD error of
every experience changes after an update but to avoid expensive sweeps
over the entire replay memory, TD errors are only updated for the experi-
ences that are replayed. Experiences that have a low TD error when they
are added to the replay memory may not be replayed for a long time or
not at all. Third, it is sensitive to noise because this increases the TD er-
ror of irrelevant experiences. Finally, it introduces bias because it changes
the distribution of the training data breaking the i.i.d. data assumption
needed for stochastic gradient descent, and therefore change the solution
that the estimates will converge to.

To solve the lack of diversity a stochastic sampling technique is intro-
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duced, it defines the probability of sampling experience i as:

P(i) =
pα

i
∑k pα

k
(11)

where the exponent α determines how much prioritization is used, with
α = 0 corresponding to the uniform case. The priority pi of picking expe-
rience i is either one of two variants:

pi = |δi|+ ε pi =
1

rank(i)
(12)

with ε being a small positive constant that prevents the edge-case of ex-
periences not being revisited once their error is zero. In the other variant
rank(i) is the rank of experience i when the replay memory is sorted ac-
cording to |δi|. In this thesis, the first variant is used, called proportional
prioritization.

To correct the introduced bias prioritized replay experience uses a tech-
nique called importance sampling (IS), normally used for estimating prop-
erties of a particular distribution, while only having samples generated
from a different distribution than the distribution of interest. To integrate
this in the DQN an importance sampling weight wi is calculated for each
experience in a batch:

wi =
( 1

N
· 1

P(i)

)β
(13)

with the number of experiences in the replay memory N and an exponent
β to control the amount of compensation for the non-uniform probabilities
when selecting experiences, fully compensating with β = 1. These impor-
tant sampling weights are then used to scale the TD errors δ, reducing
the gradient magnitudes of experiences that are replayed often because of
their high TD error. Because the unbiased nature of the updates is most
important near convergence at the end of training β is linearly annealed
from its initial value β0 to 1.

There are three differences between the implementation used in the orig-
inal prioritized replay experience paper and the one used in this thesis
based on initial results. These results, displayed in appendix A, showed
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that the original implementation was instable and has a worse final per-
formance in the environment used in this study. The changes were made
to reduce this instability and increase final performance.

First, because a forward pass through the neural network is not that com-
putational intensive with only one hidden layer, the TD error for the ex-
periences in a batch is calculated again after optimization. Then that δ is
used for calculating the probability distribution for selecting experiences
in the next iteration. This makes it less likely that experiences are picked
again when there is not much to learn from them anymore.

Second, no normalization on the importance sampling weights is done.
In the original implementation these weights are normalized by scaling
them with 1/ maxi wi. Because the smallest TD error in the replay mem-
ory approaches zero in the later stages of training, the chance of those
experiences getting picked approaches zero. Consequently, the maximum
importance sampling weight increases so much that the losses are reduced
to a really small value. Also, since the Adam optimizer keeps an pair of
running averages like mean/variance for the gradients these fluctuating
losses do not help.

The last difference is only in the last test, where last experiences are added
to the batch. This guarantees all the samples are used at least once.

2.1.3 Age

This sampling technique is a variation of the prioritized sampling tech-
nique proposed in this thesis. Because stochastic gradient descent updates
may result in significant changes to the policy, it can change the distribu-
tion of states observed from the environment. This, in turn, may lead to
incorrect gradient estimates. In this sampling method, an age-factor η is
proposed. This factor is used in calculating the priority of each experience,
lowering the priority of older samples. The idea is that this accounts for
and limits the dissimilarity between the current policy and past behaviors
in the replay memory. The age-factor is calculated using the age κi, the
number of experiences added to the replay memory after experience i.

ηi = κ−0.05
i (14)
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with the oldest age κ being the size of the replay memory. With a replay
memory size of 50000 this would mean the age-factor is in the range of 1
to 0,58. The exponent of 0.05 was chosen after a small grid search. This η
is then factored into the probability distribution:

P(i) =
ηi · pα

i
∑k ηk · pα

k
(15)

Keep in mind that by changing the probability distribution a bias is in-
troduced. This bias is compensated in the later stages of the exploitation
phase using importance sampling, because the unbiased nature of the up-
dates is most important near convergence [13].

2.1.4 Sequences

This sampling technique, proposed in this thesis, tries to increase the speed
of convergence. Most experience replay approaches use individual expe-
riences, however replaying sequences of experiences could offer certain
advantages. For example, if an action-value function update results in a
relatively large change in the value of the corresponding state-action pair,
this change will have a considerable influence on the bootstrapping tar-
gets of state-action pairs that led to this experience. If instead of individ-
ual experiences, sequences of experiences are replayed, the propagation of
this change can be achieved faster. The idea is that these sequences, when
replayed, allow the action-value function information to trickle down to
larger sections of the state-action space, thereby making the most of the
agent’s experience. This is similar to eligibility traces, an effective tech-
nique to accelerate reinforcement learning by smoothly assigning credit
to recently visited states. Experience replay makes the implementation of
eligibility traces impossible because states are not processed in the order
they are visited [27].

In this sampling technique, half the experiences in a batch are chosen us-
ing the prioritized approach. Then the experiences preceding those chosen
prioritized experiences are added to the batch. Importance sampling is
done only on the experiences selected using the prioritized sampling tech-
nique. The other experiences get the same importance sampling weight as
their successive prioritized experiences.
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As with the other sampling techniques, in the last test, experiences that
are new to the replay memory are added to the batch.

2.1.5 Hybrid

This sampling technique, proposed in this thesis, attempts to combine the
advantages of random and prioritized sampling. Random sampling in re-
play memory stabilizes stochastic gradient descent (SGD) by disrupting
temporal correlations and extracts information from useful experiences
over multiple updates. Prioritized sampling samples more frequently those
experiences from which there is more to learn, but thereby changes this
distribution of the experiences. In this hybrid sampling technique, half
the experiences selected are random samples, the other half are selected
using the prioritized technique described above. The idea is that this way
advantages of both random and prioritized sampling can be used.

2.1.6 Prioritized memories

This sampling techniques, proposed in this thesis, is based on the idea of
awake replay, the sequential reactivation of hippocampal place cells that
represent previously experienced behavioral trajectories in the awake state
[28]. In normal DQN a single actor interacts with a single environment.
This prioritized memories sampling technique requires an extra actor to
act in parallel and a backup of the complete state of the environment at
every step. This is impossible in a real-world setting, but it can be done in
virtual environments. This backup does require a large amount of mem-
ory, especially in more complex environments.

It works like this, actor one acts in its own environment and sends its ex-
periences to a central replay memory. The environment of this actor at
each step is also saved in the replay memory. Then, every 100 experiences
the replay memory receives from this actor, an experience from this actor
is selected for replay using the prioritized approach. Actor two then loads
the environment just prior to the selected experience, 25 steps earlier. Ac-
tor two performs 30 steps in this environment and sends its experiences to
the same central replay memory. This should fill that replay memory with
experiences around surprising experiences.
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Both actors periodically receive the Q-network from a central learner, elab-
orated in section 3.2. The prioritized sampling technique is used on the
central replay memory to pick a batch of experiences for the learner to
learn from.

2.2 Question

This study compares these six sampling techniques and tries to answer the
research question:

What is the effect of different sampling techniques on the learning behavior of
an agent using DQN in a navigation task in a partially observable environment?

The question is based on the idea that learning can be made more effi-
cient by prioritizing updates in an appropriate order. So it is expected
that there are techniques that make more effective use of the replay mem-
ory for learning. In section 2.1 sampling techniques are discussed two
of which have already been studied in previous work, the random and
prioritized sampling techniques, while the other four are based on those
techniques. The effect of these sampling techniques on the learning be-
havior will be quantified using three metrics: the maximum performance,
learning speed, and stability. These metrics will be elaborated in section 4.
The next section will describe the environment and the system architecture
used.
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3 Method

To validate the sampling techniques proposed in this study to real-world
settings, an experiment using a mobile robot is preferred. However, to
find the effect of sampling techniques on deep learning algorithm DQN
a simpler virtual world will suffice. That is why the tests in this study
are done in a simulation that can be adapted to a real robot with a small
amount of fine-tuning. A lot of frameworks have been proposed to create
accurate simulations of navigation tasks in real-world environments. For
example, the THOR framework[29], which provides an environment with
high-quality 3D scenes and physics engine, or Labyrinth a first-person 3D
game platform extended from OpenArena. These environments, however,
have rich visuals, realistic physics, textures are often dynamic so as to con-
vey a game world where walls and floors shimmer and pulse, adding sig-
nificant complexity to the perceptual task. This, in turn, adds a lot of sim-
ulation and training time.

One problem of using reinforcement learning in navigation tasks is that
rewards are often sparsely distributed in the environment. This means a
lot of exploration to find the goal location, especially dynamic goal loca-
tions. Previous work solves this problem by supplying the robot with a
goal location with respect to the robot [2] or by augmenting the loss with
auxiliary tasks, for example predicting if the current location has been vis-
ited before [30]. In this thesis, the effect of sampling techniques on learning
performance in navigation tasks is investigated.
In the following sections the environment is described and then there is a
section about the architecture used for simulation.

3.1 Environment

The environment created in this study is inspired by Freeway the video
game designed by David Crane for the Atari 2600 video game console. In
this game, one or two players control chickens who can be made to run
across a ten lane highway filled with traffic in an effort to "get to the other
side."

There are however five key differences between the simulation in this
study and Freeway the game. First, the robot in this simulation is allowed
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to travel in all directions, not only up or down. Secondly, there is only one
car, if it is hit the simulated robot re-spawns on its start location. Third,
contrary to the two minutes, sixteen seconds in the original game there is
no time limit in this simulation. Fourth, when the other side is reached the
robot does not re-spawn at the bottom but instead has to cross the road in
the other direction. Lastly, there is no cluck sound when a chicken/robot
is struck by a car. A screenshot of the simulation used in this study can be
seen in figure 1.

Figure 1: Road environment.

There are three main elements in this environment: the robot, car, and
sidewalks. All sizes are expressed in meters and modeled on their size in
the real-world.

To make the simulation resemble a real-world scenario a stretch of road
with a length of 40 meters is simulated. The road is 6 meters wide and has
two sidewalks with a width of 2 meters next to it. One of the sidewalks,
represented in green, is the goal sidewalk. When the road is crossed the
other sidewalk becomes the goal sidewalk.

The car is on the right side of the road moving from left to right on the
screen. It is 4 meters long and 2 meters wide. Because this is a crossing the
car has a slow walking pace of 1.4 m/s, this remains constant throughout
the simulation. When the car crosses the border on the right side of the
screen the car re-spawns on the left side.

The robot spawns in the middle of the sidewalk on the bottom of the
screen. The speed and turn speed are derived from the preliminary re-
search into the real-world robot Pepper. This robot has a top speed of 0.83
(3 km/h) and turn speed of π

2 rad/s (90◦ per second), these also remain
constant during the simulation. Each step the robot can choose one of
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three actions: forward, left or right. The agent observes its environment
using simulated laser range sensors, based on the laser sensors used for
collision avoidance in Pepper. There are 20 lasers spread out evenly from
−120◦ to 120◦ with respect to the orientation of the robot, notice that there
is no laser pointing directly forward. These simulated lasers have a maxi-
mum range of 15 meters, this means the robot is always in range to detect
at least one of the borders of the environment. When by moving forward
one of these borders is crossed the car does not move instead. Unlike a real
robot, this simulated robot has no size, it is represented by a single point
and angle.

The agent receives a reward of 1 if the road is crossed and -1 if a car is
hit, called extrinsic rewards. An additional reward of 0.01 is given for
moving forward this is called an intrinsic reward and is a common way to
encourage exploration [31]. Trying to cross the border results in a reward
of 0.

When testing the amount of laser range sensor readings per second Pep-
per could send an average of about 4 readings per second was found. This
is why one discrete time step in this simulation is 0.25 s. The amount of
readings per second has a large effect on the size of the state space, the
amount of exploration needed to find the goal, the difficulty of evading
the car, and the ratio between intrinsic and extrinsic rewards. In practice,
this time step means all speeds are divided by four to get the speed per
step.

3.2 Architecture

With the environment in place now the architecture used in this thesis
can be discussed. The architecture used in this study is inspired by A3C,
mentioned in section 1.2, and the Gorila architecture [32], the first mas-
sively distributed architecture for deep reinforcement learning. In this re-
search DQN also acts and learns in parallel, using a distributed replay
memory and distributed neural network. This leads to a massive reduc-
tion in training time when training on a single CPU with multiple cores.
This architecture divides the algorithm into three parts: Actor, Learner and
Replay memory. Figure 2 is an overview of this architecture. The solid ar-
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rows show the data streams in its basic form, while the dotted lines are
data streams that are added when more advanced sampling techniques
are used.

Figure 2: Overview of the architecture

Mainly by separating the learning and acting part in different processes
acting on separate cores within the CPU a speedup by a factor two was
achieved. The only thing the actor has to do is generate experiences and
periodically update its policy with the latest policy received from the learner.
While the learner’s task only consists of optimizing the policy.

3.2.1 Actor

Each step the agent in the actor process must select actions at to apply in its
environment. To do this the agent uses a behavior strategy called ε-greedy,
described in section 1.2. A random action is chosen for a proportion ε of
the steps, the other steps an optimal action is chosen according to the latest
policy. This policy is received from the learner in the form of a Q-network,
which is used to determine the action with the highest value. The weights
in this Q-network are updated with values received from the learner.

The input of the policy is the 20 lasers range readings. These only provide
the distance to a obstacle, not if that obstacle is a car or wall. Two steps
of preprocessing are done. First, the readings are normalized, this way all
input values are a value between 0 and 1 depending on the distance to an
obstacle, where 1 is the maximum distance of the sensors. Secondly, the
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last four readings are stacked to represent a state st, resulting in a 80 di-
mensional input vector. This effectively gives the algorithm a measure of
velocity for moving objects. The output of the Q-network are values for
the three actions: forward, left and right. Either a random action is chosen
or the action with the highest value, using the ε-greedy strategy.

Once an action is chosen the actor interacts with the environment and re-
ceives a reward and perceives the next state. Another variable, collision
a boolean, is used to keep track of the experiences a collision with the car
occurred. When the target of an experience with a collision is calculated
only its reward, -1, is considered not the value of the next state, because
the next state is a crash. The state, action, reward, collision and next state
are then sent to the replay memory as an experience. Lastly, the next state
is used as the current state and the cycle is repeated. If there is a collision
the environment is reset and a new state is created by performing four
random actions. In figure 3 an overview of the process of an agent.

Figure 3: Overview of the actor

3.2.2 Memory

The experiences generated by the actor are stored in a replay memory. It
stores the latest 50000 experiences including their collision value discard-
ing the oldest experiences in favor of new ones. Then, at regular intervals,
it samples a batch of 32 experiences using one of the six sampling tech-
niques described in section 2.1 and sends them to the learner.

When using a prioritized approach a TD error is associated with every
experience. The newest experiences are always sent to the learner to ob-
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tain a TD error for each experience. Each time an experience is sent to the
learner its TD errors is updated using their latest TD error returned by the
learner.

3.2.3 Learner

The learner is tasked with computing the desired changes to the param-
eters of the Q-network. First, it receives a batch of experiences from the
replay memory. From each experience the learner begins with process-
ing the state, next state and reward to calculate targets using equation 10.
When an experience contains a collision only the reward of -1 is used as
target. The next step is to find the current action value Q(s, a) using the
state and action in an experience from the batch. This current action value
is subtracted from the target, this results in the TD error δ. This TD error
is used in a loss function called Huber loss:

L(δ) =

{
1
2 δ2 |δ| ≤ 1
|δ| − 1

2 |δ| > 1
(16)

where c is 1. Huber loss is used because it is less sensitive to outliers, ex-
periences with large TD errors scale linearly. This, unfortunately, reduces
the effect of sampling techniques. However, Huber loss is needed to limit
the gradient of the loss and thereby stabilize the learning behavior. In case
of using importances sampling this loss is weighted by the importance
sampling weight of each experience. The loss is then used to update the
weights of the Q-network using back-propagation in combination with an
advanced stochastic gradient decent algorithm like Adam to minimize the
loss.

The Q-network used in this study only has one hidden layer with 79 neu-
rons, this size is chosen to have enough hidden neurons to learn a decent
policy while also keeping the number of neurons between the number of
input and output values [33]. This hidden layer uses a rectified linear unit
(ReLU) as activation function, this means the output of a neuron is 0 if the
sum of the weighted inputs is negative and the value of that sum other-
wise. As described in section 1.2 there are actually two networks with the
same structure: the online and target network. The online network is used
to select actions and the target network is a periodic copy of the online net-
work which is not directly optimized. The use of a target network enables
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relatively stable learning of the action value function.

After the weights are updated and if a prioritized sampling technique is
used the TD error of each state is calculated again in order to send the
most recent value back to the experience replay. Lastly, the learner sends
the weights of the Q-network periodically to the actor. An overview of the
learning process is given in figure 4.

Figure 4: Overview of the learner

3.3 Measures

Testing using the performance of the training agent is problematic. It is
difficult to differentiate between an increase in performance due to a bet-
ter policy or because of a decrease in exploration. This is why a separate
actor process is created on a different CPU core where a test agent runs
in parallel on its own environment. This test agent receives the same Q-
network from the learner but sends no experiences to the replay memory.
There are three main differences between the train and test agent. The test
agent has an ε-greedy policy with ε = 0.001, this means it practically only
takes the action with the highest action value in the current policy. The
small value of 0.001 was chosen to model some noise on the action space
that could be present in a real world system. Secondly, the test run re-
sets every 1000 steps to prevent it from getting stuck due to a suboptimal
temporary policy. Lastly, the test run only counts the reward for getting
to the other side of the road, not the intrinsic reward for moving forward,
because this is the true performance of the agent.
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The performance metric used in this thesis to quantify an agents perfor-
mance µ is the moving average of the reward as a fraction of the theoretical
maximum reward. The theoretical maximum reward is theoretical maxi-
mum performance in the environment without the car. It can be calculated
because the fastest way to the other side is obvious and the rewards for this
route are known. Four aspects of the performance are important: final per-
formance, learning stability, maximum performance and learning speed.

Final performance µ
f inal
r is calculated using the average of the mean per-

formance per step over the last 100000 steps of a test. This metric expresses
the average quality of a policy that the sampling technique used in that test
converges to.

The stability of the learning process σ
f inal
r is calculated using the standard

deviation of the moving average in the final step of a test. Even when
a good policy has already been learned the learning process can become
unstable and the final performance can vary significantly, a low σ

f inal
r is

therefore desired.

The maximum performance µmax
r is the maximum performance of all runs

in a test. While stability is desired, it is important not to forget that rein-
forcement learning is about finding the true optimal policy, i.e. the policy
with the highest returns.

The last metric sampling techniques are judged on is learning speed µ0.8
r .

This metric will be expressed in rise time 0.8, i.e. the step at which the
performance is 0.8 * µ

f inal
max divided by the total steps in the test. Where

µ
f inal
max is the maximum final performance, µ

f inal
r , of all the sampling tech-

niques. This metric can only be calculated after all final performances are
known and the metric is infinite for tests that never reach the 0.8 * µ

f inal
max

threshold.

3.4 Experimental configuration

The hardware and software configurations used for testing will be ex-
plained below.
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3.4.1 Hardware

Testing was done on the INSY cluster, a collection of large computing re-
sources. The compute servers are all multiprocessor machines running
Linux. All machines have multiple central processing units (CPUs) that
perform all the computations. Each CPU can process one thread (i.e. a
separate string of computer code) at a time. This means the actor, learner
and replay memory each need there own CPU, as well as a few other parts
of the program like the main program starting all these processes and col-
lecting their data. This is why 8 CPUs are requested for each test. Tests for
every sampling technique are done in parallel, this means using 48 CPUs
simultaneously. A test consists of 50 times one run, i.e. 800000 steps, each
time resetting all parameters. The training time of one run is about 45
min, making the time to test all sampling methods once 37 hours and 30
minutes.

3.4.2 Software

To test the effect of different sampling techniques all hyper-parameters
have to be set to the same values for each test. In table 1 all these hyper-
parameters are presented with a some of the reasoning behind them.
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Table 1: Hyper-parameters

Hyper-Parameter Value Explanation
Steps 800000 Length of a run
ε0 1.0 Start value of ε
εend 0.01 Exploration linearly decreased to this value
Exploration steps 200000 Step where ε = εend
Q-network update rate 4 Balance computational cost with accuracy
γ 0.99 Discount factor
Learning rate 0.001 Based on a small grid search
Target network update rate 100 Based on a small grid search
Size replay memory 50000 Based on previous work
Batch size 32 Balance computational cost with accuracy
Sample rate 4 Balance computational cost with accuracy
Prioritized α 0.6 Based on previous work
Prioritized β0 0.4 Based on previous work
Prioritized βend 1.0 Based on previous work

31



4 Results

With all the most important concepts in place, the results of the tests will
now be elaborated in this section.

4.1 Baselines

In figure 5 all the sampling techniques are tested without importance sam-
pling and without the addition of the most recent experiences.

Figure 5: Performance of the test agent, all lines averaged over 50 runs.
On the vertical axis the moving average of rewards as a fraction
of maximum reward. On the horizontal axis the step of a test run
as a fraction of the amount of steps that test agent could perform
in the time the training agent needed to perform 800000 steps.
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The random technique has the highest performance. This is expected be-
cause this technique feeds the optimizer more independent and identi-
cally distributed (i.i.d.) data. This means the experiences sampled have
no correlation other than they are in the replay memory and each sample
has the same probability distribution as the others. Because the random
technique samples experiences across the whole state-action space slightly
more steps are needed before its performance increases, but when it does
increase it surpasses all other techniques.

The sampling techniques most dependent on the TD error such as priori-
tized, age and prioritized memories without importance sampling clearly
perform significantly worse. In these techniques, the beneficial re-sampling
of the state-action space distribution is not compensated by the unwanted
re-sampling of the environment dynamics and reward distributions. With-
out importance sampling the need for experience diversity and i.i.d. data
is not fulfilled, the function approximation is trying to optimize mostly on
experiences with a crash or where the sidewalk is reached as these tend to
be the most surprising. Interesting is that these techniques increase their
performance first during exploration. As exploration decreases there are
more crashes and sidewalks reached, this in turn skews the environment
dynamics and reward distribution in the batch.

The two techniques that seem to be the most resistant to this prioritized
sampling are the more random oriented techniques hybrid and sequences.
These techniques both choose half of the experiences in their batch using
the TD error. Because of this, they seem less affected by the chance of en-
vironment dynamics and reward distributions. Whether the other half of
the experiences is strongly correlated to the first half, the preceding expe-
riences, or random experiences does not seem to have any influence.

4.2 Performance with importance sampling

In figure 6 the performances of different sampling techniques using im-
portance sampling are compared to the random sampling baseline.
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Figure 6: Performance of the test agent, all lines averaged over 50 runs.
On the vertical axis the moving average of rewards as a fraction
of maximum reward. On the horizontal axis the step of a test run
as a fraction of the amount of steps that test agent could perform
in the time the training agent needed to perform 800000 steps.

All performances increase as exploration decreases, but some increase their
test performance before others. The more prioritized based techniques in-
crease their performance first with the more random oriented techniques
following. The first technique to increase is prioritized memories with im-
portance sampling and last are the more random techniques.

All lines display a decrease in performance after an initial increase. The
whole task of getting to the other side can be split up in three subtasks
it has to learn. First, the robot needs to find the other sidewalk and turn
around. The next task is to evade the car. And lastly it needs to find the
optimal route to evade the car and get to the other side. The shape of the
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lines clearly shows these task being learned in succession. As the robot
makes more greedy action choices on the first task, to get to the other side,
the more likely it is to crash into the car. Then after crashing into the car
a couple of times the next task, evading the cars, is learned. Then slowly
the last task of optimizing the path is done.

The techniques that use a more prioritized based technique peak first but
lower than random ones. Because of the decrease in exploration more col-
lisions are made, this, in turn, increases the number of experiences with
a high change of being sampled. This means the progress optimizing a
path to the other side is slowed down to focus on the task of evading
the car. This is especially apparent in the prioritized memories sampling
technique, it does increase its performance relatively early in the explo-
ration phase but when exploration is decreased more crashes are made.
This, in turn, means more crash experiences are added skewing the sam-
ples. When more importance sampling is introduced by increasing β this is
compensated and the performance starts to increase again after 0.2 fraction
of test. With a memory full of surprising experiences the prioritized mem-
ories technique can improve its performance slightly earlier than both the
prioritized and age techniques.

After the exploration phase prioritized based techniques with importance
sampling are better at finding that optimal path compared to random ori-
ented techniques. Because of the importance sampling, they perform a lot
of small updates on states with large errors, this leads to a faster increase in
performance. The more random oriented techniques all follow the same,
slower, learning trajectory.

In the end all sampling techniques converge to the roughly the same per-
formance with a slight edge to the prioritized methods.

4.3 Adding recent experiences

A final test was done to check how adding the latest experiences to a batch
influences the performance of the different sampling techniques. This
means instead of the usual 32 experiences chosen for a batch 28 experi-
ences are chosen and the four most recent experiences are added to that

35



batch. In figure 7 test runs are plotted with importance sampling and
adding the last experiences.

Figure 7: Performance of the test agent, all lines averaged over 50 runs.
On the vertical axis the moving average of rewards as a fraction
of maximum reward. On the horizontal axis the step of a test run
as a fraction of the amount of steps that test agent could perform
in the time the training agent needed to perform 800000 steps.

These results are almost the same as results of the last test. There are how-
ever two slight differences.

After the exploration phase the techniques with half the experiences in
a batch prioritized and the random technique with the most recent ex-
periences added increase their performance marginally faster than pure
random sampling. The addition of the most recent experiences could be
helping those techniques because these experiences are not compensated
by importance sampling since their TD error is not known yet. This, in
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turn, could be helping to create a batch representing the current environ-
ment dynamics and reward distribution more accurate.

In the end, all sampling techniques converge to almost the same perfor-
mance. However, the final performances of those techniques with the most
recent experiences added do not outperform the performances without the
most recent experiences added.
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4.4 Performance Metrics

In the following table, the performance measurements, as described in sec-
tion 3.3, are shown. The bold numbers are the best values in the column.
For µ

f inal
r and µmax

r the best value is their highest value, representing the
best final and maximum performance. For σ

f inal
r and µ0.8

r the best value
is their lowest value, representing the lowest variance and most rapid in-
crease in performance.

Table 2: Performance metrics

Method µ
f inal
r σ

f inal
r µmax

r µ0.8
r

Random 0.6688 0.0517 0.7704 0.5233
Random+last 0.6747 0.0637 0.7667 0.4671
Prioritized 0.4256 0.0711 0.6415 ∞
Prioritized+is 0.7168 0.0636 0.8341 0.3728
Prioritized+is+last 0.6944 0.0975 0.8156 0.3747
Age 0.4490 0.0776 0.6607 ∞
Age+is 0.7237 0.0521 0.8178 0.3799
Age+is+last 0.6943 0.0926 0.8037 0.3773
Sequences 0.5267 0.0719 0.6956 ∞
Sequences+is 0.6540 0.0737 0.7511 0.4588
Sequences+is+last 0.6618 0.0673 0.7970 0.4706
Hybrid 0.5075 0.0982 0.6844 ∞
Hybrid+is 0.6582 0.0574 0.7570 0.5563
Hybrid+is+last 0.6938 0.0495 0.7911 0.4352
Prioritized_mem 0.4363 0.0890 0.6481 ∞
Prioritized_mem+is 0.6945 0.0839 0.8348 0.3603
Prioritized_mem+is+last 0.6819 0.0950 0.8156 0.3755

In this table, it becomes clear where adding the last experiences helps. The
more random oriented techniques (random, sequences, and hybrid) bene-
fit from the addition of the newest experiences while adding them to the
more prioritized techniques (prioritized, age, and prioritized memories)
hurts the performance of these techniques.

The prioritized and age techniques are clearly the best performing tech-
niques, however, the other performance metrics show this is only in terms
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of final performance. Hybrid with importance sampling and the last ex-
periences added has decent final performance and the lowest σ

f inal
r , this

means more runs actually achieve that performance.

The prioritized memories sampling technique has both the best run and
the fastest rise time. This shows the potential of this technique, however,
it suffers from some instability. It also needs to be noted that this tech-
nique adds extra experiences to the replay memory so the memory fills up
in less training agent steps, this could be the reason for the fast rise time.
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5 Discussion

In this work, existing and novel sampling techniques are investigated by
applying them to a navigational problem. By doing so a search is done
to find sampling techniques that make experience replay more efficient
and effective than simple random sampling in navigation tasks of mobile
robots with range sensors. In this section the fidelity of the simulations
will be discussed, then this study is compared to recent work and some
recommendations for future work are done.

5.1 Simulation

The difficulty of transferring simulated experiences into the real-world
is often called the "reality gap." The reality gap is a subtle but impor-
tant discrepancy between reality and simulation that prevents the simu-
lated robotic experience from directly enabling effective real-world perfor-
mance. The challenge with simulated training is that even the best avail-
able simulators do not perfectly capture reality. Models trained purely on
synthetic data fail to generalize to the real-world, as there is a discrep-
ancy between simulated and real environments, in terms of both visual
and physical properties. The simulated environment used in this study
has three main differences with the real world.

First, the environment is perfectly symmetrical, the walls around the road
are straight lines. This means there are a lot of duplicate states. This in-
creases the difficulty of a navigation task since there is less information to
learn from.

The second issue is with the laser sensors, in the simulation, these only
have a small amount of artificial noise added. Experiments using a real
robot showed however that the noise of some of these laser range finder
sensors is not following the standard normal noise distribution used in the
simulation. Instead, the sensors either showed the maximum or minimum
range if a faulty measurement was done.

Finally, there also is the issue of re-spawning, placing the environment in
its initial state when the robot gets hit by a car. This is trivial in a simulated
environment, but re-spawning a real robot is often more difficult.
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5.2 Comparison to recent work

In this section, the study is linked to existing research on the topic of ex-
perience replay and navigation.

5.2.1 Prioritized replay experience

Most of the sampling techniques researched in this study are based on the
paper about prioritized replay experience [13]. It would only be appro-
priate to try to make a comparison between these works. There are some
differences in the environment as discussed in section 3.1, however, the
task is almost the same, i.e. to get to the other side of the road. In fig-
ure 8 learning curves (in raw score) for Double DQN (uniform baseline, in
black), with rank-based prioritized replay (red), proportional prioritiza-
tion (blue), for the freeway game of the Atari benchmark suite. Each curve
corresponds to a single training run over 200 million unique frames.

Figure 8: Learning curves from the prioritized replay experience paper for
the freeway game. On the vertical axis the raw score of a game.
On the horizontal axis the amount of frames.

The figure shows that using pixel input in the freeway game there is no
significant difference in using prioritized replay experience and not using
it. While this thesis found that in a similar task using local navigation,
i.e. using range sensors as input, there is a difference between sampling
uniform and prioritizing certain experiences.
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5.2.2 Experience retention

In this recent paper [34] methods for experience retention are discussed.
When the experience memory is full, some metric should decide which ex-
periences should be overwritten. In that study, they consider three criteria
for overwriting experiences: age, surprise, and exploration. Two bench-
mark problems are considered in that paper. In the pendulum task, an un-
deractuated pendulum needs to be swung up and balanced in the upright
position by controlling the torque applied by a motor. In the magnetic
manipulation (magman) task, a steel ball (top) needs to be positioned by
controlling the currents through four electromagnets. A selection of the
results relevant for comparison to this research is shown in figure 9.

Figure 9: Performance of representative experience selection methods in
[34] with and without importance sampling on the benchmarks
with sensor and actuator noise.

FIFO, first in first out, is the method of retention used in this study. The
most recent experiences are added to the replay memory and oldest are
thrown out, this is the method used in this thesis. TDE is based on the
temporal difference error: the memories with the lowest temporal differ-
ence are thrown out. In brackets is the sampling technique used, PER is
the same prioritized technique used in this study and IS means importance
sampling.
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The effect of different retention methods in the two benchmarks is clearly
visible in the results. They conclude that the need for diverse states and
actions largely depends on the ease and importance of generalizing across
the state-action space, which is benchmark dependent. On the swing up
task, TDE is the better method while the FIFO method of retention is better
for the magman task. This result makes it difficult to compare the results
to this study. Still, there are two interesting comparisons to be made be-
tween the two studies.

First, in both benchmarks, there is no difference in rise-time 0.8 over all
FIFO tests, while in this thesis a clear difference is shown. In this thesis
PER without IS performing worst and PER with IS having a faster rise-
time 0.8 than the uniform method. This is mainly because the two bench-
marks, swing-up and magman, are fully observable and have a continuous
reward signal. This enables any sampling technique to learn near optimal
policies relatively quickly.

Secondly, the TDE[PER + IS] method, comparable to the prioritized mem-
ories technique, hurts the final performance of the magman task while
in the results of this thesis the technique does not hurt performance and
even has the fastest rise-time 0.8. This could be because the two bench-
marks have more noise added to the sensors and actuators. This, in turn,
increases the tendency of TD error based techniques to seek out noisy ex-
periences and that is hurting performance.

5.3 Recommendations for future work

Interesting directions for future research are proposed in this section.

5.3.1 Noise

Recent work by Open AI shows that adding noise to every aspect of the
simulation helps to transfer in simulation learned behavior to physical
robots [35]. In this study, only a small amount of noise is used on the
laser range readings, many more aspects of the agent and environment
could be randomized.

43



5.3.2 More actors

Using a lot of parallel agents each generating experience in their own envi-
ronment and sending information to a central learner is a popular research
direction recently[36][37]. The benefits are clear, more less correlated ex-
perience is created. In the prioritized memories sampling technique pro-
posed in this research one extra actor is created. This approach could be
scaled to as many actors as there are free CPUs.

5.3.3 Network architecture

Another important topic open for discussion is neural network architec-
ture. In this study this part is kept as simple as possible using an architec-
ture with just one hidden layer. There are however many other options in
areas for example number of layers, number of hidden units per layer, acti-
vation function, optimizer, and learning rate. With navigational problems,
in particular, the option of recurrent neural networks is an interesting di-
rection for future research. Although in this study four concurrent laser
sensor readings are concatenated and used as a state, a recurrent architec-
ture could find connections between states over longer periods increasing
the performance.

An advantage and actor-critic setup, used in A3C [36], setup could also
improve results and help decide what samples should be replayed. The
advantage judges actions based on how much better they turned out to be
than expected. An actor-critic setup separates the value estimate from the
policy in two final fully connected layers. This changes the TD error and
could help the prioritized sampling techniques what experiences to replay.
An extra benefit of this architecture is that it allows for a continuous action
space better suited for robotic control.

5.3.4 Reward

The spare extrinsic rewards and constant intrinsic reward used in this
study can be improved upon. For instance, by adding auxiliary tasks [30],
in the road environment this could be predicting the goal location (up or
down), or by replacing the rewards by curiosity-driven learning [38], that
use a reward signal based on how hard it is for the agent to predict the
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consequences of its own actions. By improving the reward signal the TD
error changes helping the prioritized sampling techniques to choose the
optimal experiences to improve learning.
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6 Conclusion

To our knowledge, this is the first study that systematically investigates
a significant set of sampling strategies in a partially observable environ-
ment. A number of sampling techniques are presented and explored. All
these sampling techniques are tested in a simulated environment with and
without importance sampling. Based on the results three conclusions can
be drawn and two recommendations are done.

First, prioritizing all experiences in a batch with larger TD errors improves
the speed of learning, demonstrated in the prioritized, age, and priori-
tized memories sampling techniques. Contrary, more random based sam-
pling techniques, like hybrid, sequences, and random, increase their per-
formance slower.

Secondly, when given enough training time all sampling techniques con-
verge to almost the same performance. In the later stages of training less
high TD error experiences are encountered making the difference between
sampling techniques smaller.

Finally, it can be concluded that importance sampling has a significant in-
fluence on the performance. When used correctly it can increase final per-
formance and stabilize learning, especially for the more prioritized based
techniques. Without importance sampling, to correct for the skewing of
the state and reward distributions, all prioritized sampling techniques per-
form worse than simple random sampling.

To facilitate quick and stable learning of a policy with good performance
the following recommendation can be done. First, it is best to use a sam-
pling technique based on prioritizing experiences with higher TD errors.
Secondly, when doing this, it is imperative to use importance sampling.
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Appendix A. Original and proposed PER

In figure 10 the original prioritized experience replay (PER)[13] and the
prioritized method proposed in this thesis are plotted.

Figure 10: Performance of the test agent, all lines averaged over 3 runs. On
the vertical axis the moving average of rewards as a fraction of
maximum reward. On the horizontal axis the step of a test run
as a fraction of the amount of steps that test agent could per-
form in the time the training agent needed to perform 800000
steps.

The original prioritized replay technique has a quick increase in perfor-
mance in the second half of the exploration phase. However, the method
proposed in this thesis increases its performance first and has a better fi-
nal performance. It is also clear that this final performance is more stable.
Thus the proposed method is used in this study.
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