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Abstract

Extreme precipitation, like floods and landslides, poses major risks to
safety and the economy, underscoring the need for sophisticated weather
forecasting to predict these events accurately, enhancing readiness and
resilience. Nowcasting, which uses real-time atmospheric data to pre-
dict short-term weather, is key in addressing this challenge. Traditional
nowcasting systems, reliant on extrapolation from rainfall radar obser-
vations and constrained by simplistic physical assumptions, often strug-
gle to detect complex, nonlinear weather patterns. This gap has opened
the door for deep learning models, which have shown significant promise
in improving the accuracy and reliability of short-term weather predic-
tions, making them a focal point of recent research and the basis of this
thesis’s approach.

This thesis introduces a deep generative model designed for the
nowcasting of extreme precipitation events up to 3 hours ahead, utiliz-
ing a Vector-Quantized Variational Autoencoder (VQ-VAE) to compress
radar data into a low-dimensional latent representation, and an Autore-
gressive Transformer for predicting future radar images. Additionally,
a binary classifier works in conjunction with the Autoregressive Trans-
former to identify extreme versus non-extreme weather events, using
these classifications to inform an Extreme Value Loss (EVL) function.
This loss function aims to improve the accuracy of predicting extreme
weather events by addressing the data imbalance between normal and
extreme precipitation occurrences. The proposed model displays com-
parable performance with the state-of-the-art conventional methods and
other deep learning nowcasting models in predicting extreme events.
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Abstract

Extreme precipitation, like floods and landslides, poses major risks to safety and the
economy, underscoring the need for sophisticated weather forecasting to predict these
events accurately, enhancing readiness and resilience. Nowcasting, which uses real-time
atmospheric data to predict short-term weather, is key in addressing this challenge. Tra-
ditional nowcasting systems, reliant on extrapolation from rainfall radar observations and
constrained by simplistic physical assumptions, often struggle to detect complex, nonlin-
ear weather patterns. This gap has opened the door for deep learning models, which have
shown significant promise in improving the accuracy and reliability of short-term weather
predictions, making them a focal point of recent research and the basis of this thesis’s
approach.

This thesis introduces a deep generative model designed for the nowcasting of extreme
precipitation events up to 3 hours ahead, utilizing a Vector-Quantized Variational Au-
toencoder (VQ-VAE) to compress radar data into a low-dimensional latent representation,
and an Autoregressive Transformer for predicting future radar images. Additionally, a
binary classifier works in conjunction with the Autoregressive Transformer to identify ex-
treme versus non-extreme weather events, using these classifications to inform an Extreme
Value Loss (EVL) function. This loss function aims to improve the accuracy of predicting
extreme weather events by addressing the data imbalance between normal and extreme
precipitation occurrences. The proposed model displays comparable performance with
the state-of-the-art conventional methods and other deep learning nowcasting models in
predicting extreme events.
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Introduction 1
1.1 Background: Precipitation Nowcasting

Intense precipitation can significantly affect the economy, beginning with its impact on
outdoor activities which leads to the postponement or cancellation of events. This dis-
ruption extends to delays in ground transportation, flight cancellations, interruptions or
shutdowns of power stations, and the cessation of marine services. Furthermore, such
precipitation can destroy agricultural crops, exacerbating the economic strain. As the
consequences of high precipitation intensify, they evolve from mere inconveniences affect-
ing both private and public events to posing serious threats to infrastructure, triggering
landslides, compromising public safety, and, in the worst-case scenario, endangering hu-
man lives.

To mitigate these far-reaching impacts, the implementation of an early warning sys-
tem becomes indispensable. Such a system would empower governments and responsible
entities to take timely action to prevent such hazards. Weather Nowcasting acts as an
early warning system, nowcasting is a method to predict the rainfall intensities over a
specific region and at a short period of time (usually up to 6 hours).

This thesis concentrates on a weather prediction approach known as nowcasting. Now-
casting techniques are designed to forecast imminent weather changes over a brief period
(usually under 6 hours), a timeframe during which Numerical Weather Prediction (NWP)
models are less effective. NWP, the predominant method for predicting weather, uti-
lizes mathematical representations of the atmospheric and oceanic conditions to forecast
weather. However, initially, due to its intricate nature, NWP had a lower resolution and
required significantly longer processing times than nowcasting methods, rendering it less
appropriate for immediate forecasting needs [1]. Although advancements in computing
have enhanced NWP’s resolution in recent times, it still falls short of the predictive ac-
curacy achieved by nowcasting systems. Despite nowcasting’s limitation to forecasting
only up to 1-6 hours ahead, its precise and dependable outcomes are crucial for promptly
alerting against severe weather-induced risks like floods and landslides [2].

In precipitation nowcasting, the primary representation of weather conditions comes
from radar precipitation fields generated by weather radars. These systems rely on a
range of methods for extrapolating radar data. Typically, a nowcasting model’s inputs
consist of precipitation data from recent history (often spanning the last 1 to 3 hours),
with the model’s outputs being forecasts of upcoming radar precipitation fields.

Weather patterns are categorized into four levels of motion: global, synoptic,
mesoscale, and microscale, in descending order of size. Initially, due to constrained com-
putational capabilities, Numerical Weather Prediction (NWP) models were limited to low
spatial and temporal resolutions. This limitation meant they could only identify patterns
at the mesoscale and were unable to detect microscale phenomena, such as minor con-
vective patterns critical for short-term rainfall forecasting. In response to this challenge,
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radar-extrapolation techniques were developed. These techniques utilize radar observa-
tions of the atmosphere’s current state to predict future weather conditions. They offer
the benefits of simpler models, higher resolution, and superior forecasting accuracy within
the first few hours (typically less than 6 hours). Presently, radar-extrapolation approaches
remain fundamental to the majority of operational nowcasting systems.

Weather patterns are categorized into four levels of motion: global, synoptic,
mesoscale, and microscale, in descending order of size. Initially, due to constrained com-
putational capabilities, Numerical Weather Prediction (NWP) models were limited to low
spatial and temporal resolutions. This limitation meant they could only identify patterns
at the mesoscale and were unable to detect microscale phenomena, such as minor convec-
tive patterns critical for short-term rainfall forecasting [1]. In response to this challenge,
radar-extrapolation techniques were developed. These techniques utilize radar observa-
tions of the atmosphere’s current state to predict future weather conditions. They offer
the benefits of simpler models, higher resolution, and superior forecasting accuracy within
the first few hours (typically less than 6 hours). Presently, radar-extrapolation approaches
remain fundamental to the majority of operational nowcasting models.

In recent times, the integration of deep learning techniques for nowcasting applica-
tions has gained attention among researchers. Similar to traditional approaches, these
advanced models predominantly utilize radar precipitation fields to depict weather condi-
tions, aiming to forecast future precipitation patterns. The inaugural deep learning model
for precipitation nowcasting, dubbed ConvLSTM, was introduced by Shi et al. in 2015
[3]. This innovative model approaches nowcasting as akin to predicting sequences in a
video, employing convolutional operations within an LSTM framework to simultaneously
capture spatial and temporal dynamics. Another research team approached the problem
as one of image transformation, developing a deep learning framework grounded in the
U-Net architecture [4]. While deep generative models like GANs and VAEs have achieved
success in various deep learning domains, their application in precipitation nowcasting
has also gained popularity in recent years. In 2021, DeepMind (Google) [5] constructed a
conditional GAN model for nowcasting purposes (90 - 120 minutes prediction). Moreover,
Bi et al. in 2023 [6], implemented a VQGAN model with an EVL loss function for the
purpose of Extreme Precipitation nowcasting. The work of Bi et al. [6] has also been
used as the benchmark for the work shown in this thesis as well.

Deep learning models for nowcasting present a stark contrast to traditional radar-
extrapolation approaches by being entirely data-driven, highly adaptable, and not reliant
on predefined physical laws. These models enhance the ability to capture non-linear phe-
nomena through the incorporation of activation functions, addressing a key limitation of
conventional methods in accurately simulating non-linear weather events, such as convec-
tion initiation. Despite their advantages, the application of deep learning to precipitation
nowcasting poses unique challenges not encountered in other domains where deep learn-
ing has been successfully applied. Common issues include the generation of results with
blurred features (especially, in longer horizons), and difficulties in modeling rare and ex-
treme events. Further exploration and explanation of these nowcasting techniques are
provided in Chapter 2.
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1.2 Motivation

Traditional nowcasting techniques often rely on assumptions based on physical principles,
which may not always be applicable in real-world scenarios, hindering their ability to de-
tect crucial weather patterns. The advent of deep learning in the field of nowcasting offers
a promising alternative. These advanced methods, driven purely by data, are capable of
directly forecasting future precipitation without the need for physical assumptions. As
a result, numerous deep learning-based nowcasting models have been developed. While
these models generally demonstrate an enhanced ability to forecast low-intensity rainfall
events more accurately than traditional approaches, their effectiveness diminishes signifi-
cantly in predicting severe or heavy precipitation events [5]. The issue of blurry forecasts
has been attributed by various scholars [5] to the absence of physical constraints and the
reliance on mean square error (MSE) as a loss function. Furthermore, experts in the
computer vision field have shown that adversarial training can yield sharper and more
lifelike outputs. This concept was corroborated in a contemporary study on nowcast-
ing by DeepMind [5], which introduced a GAN-based model specifically for precipitation
nowcasting, achieving clear and precise predictions. Motivated by these promising results,
our research intends to investigate the application of diverse deep generative models to
enhance the nowcasting process.

Furthermore, a common issue with many of these models is their tendency to produce
blurred and unrealistic forecasts for longer prediction intervals. However, Bi et al. [6]
successfully addressed these challenges in their study, proposing a solution to the issues
highlighted above. Consequently, the primary goal of this thesis is to build upon the
foundational work of Bi et al.[6], aiming to develop a deep learning model that mitigates
some of the constraints identified in their research.

The nowcasting challenge is distinct from conventional deep learning applications like
video prediction, despite apparent similarities in inputs and outputs between the two.
A key differentiator for nowcasting is its approach to managing extreme and anomalous
events [1]. In standard tasks, such occurrences are often treated as outliers and ex-
cluded from consideration. Yet, in nowcasting, these rare but intense rainfall events are
of paramount importance, as they can have significant economic and societal impacts.
Most deep learning models for nowcasting fail to adequately account for these extreme
precipitation patterns, leading to their omission in forecasts. Conversely, traditional tech-
niques aimed at emphasizing these events, such as class weighting or oversampling, can
introduce overfitting issues and result in exaggerated precipitation forecasts [7]. Given
the challenges associated with accurately modeling both typical and extreme weather phe-
nomena, this research investigates the application of extreme-value theory in developing
a more effective model for nowcasting.

1.3 Research Goal

The objective of this study is to create a deep generative model focused on forecasting
severe precipitation events within catchment regions in the Netherlands, offering forecasts
up to 180 minutes ahead, at 30-minute intervals. This goal is divided into two key aims
for the nowcasting system: firstly, to produce accurate and skillful forecasts across the
entirety of the Netherlands; and secondly, to ensure that the model can consistently
identify extreme precipitation events occurring within specific catchment areas.
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To achieve the set goals, this thesis explores two primary subjects. The initial focus is
on the creation of an innovative deep generative model for the nowcasting of precipitation.
This model draws inspiration from recent advancements in visual synthesis technology,
employing a dual-stage framework that integrates a VQVAE in its first phase and an
autoregressive transformer in the subsequent phase. The second area of focus is the inte-
gration of extreme-value theory with the deep generative model to enhance the prediction
of extreme weather events. This approach involves an addition of a binary classifier which
classifies the tokens generated by the VQVAE as extreme or non-extreme and, adapting
an extreme-value theory-derived loss function, termed Extreme Value Loss (EVL) [7].
The EVL loss function is integrated into the auto-regressive transformer component of
our model.

Based upon this, the thesis work tries to cover two research objectives:

• To develop a deep generative model capable of reliably predicting precipitation fields
for the upcoming 3 hours (180 minutes).

• To define and detect extreme precipitation events, and to accordingly adapt the
model to enhance its ability to identify such extreme events.

1.4 Thesis Outline

In this section, the outline of the whole thesis has been defined:

1. Chapter 2 provides a comprehensive literature review of the existing nowcasting
models. These models include both conventional numerical weather prediction mod-
els based on optical-flow (such as PySTEPS) as well as typical deep learning-based
models. The subsequent sections of this chapter cover the significance of Extreme
Value theory and its applications in modeling extreme behaviors in data.

2. Chapter 3 covers the details of the data used in this thesis work. At first, the KNMI
radar dataset is introduced followed by the analysis of it in the later sections. Based
on the statistics derived from the data analysis, specific problem statements are
formulated. The chapter also covers the significance of extreme events specific to
the scope of this thesis work.

3. Chapter 4 consists of the description of the proposed model in this thesis work. The
model consists of a VQVAE with an auto-regressive transformer along with a binary
classifier (similar to a vision transformer - to classify Extreme and Non-Extreme
tokens). The auto-regressive transformer is mainly trained on the Cross entropy
loss function but the transformer suffers from the huge imbalance in the dataset
(very small number of extreme events). Therefore, the EVL (Extreme Value Loss)
function is incorporated along with the cross entropy loss function (as regularization)
to handle this class imbalance. The application of the EVL loss function is discussed
in detail in this chapter. Finally, the different verification metrics for both the
precipitation nowcasting task (in the whole Netherlands region) as well as extreme
event detection task (on the catchment level) have been described in detail.

4. Chapter 5 presents the conducted experiments and the evaluation of the correspond-
ing results. The experiments are mainly divided into two sections. The first section
focuses on the evaluation of different nowcasting (both NWP and deep learning)
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models on the whole Netherlands region whereas, the subsequent section describes
the analysis of the extreme event detection on the catchment level. The detection
performance is evaluated in two ways: one with defined and fixed extreme thresholds
for different catchment areas, and the other with the same sets of extreme thresholds
for catchments to assess the overall detection performance.

5. Chapter 6 encompasses the thesis’s conclusion, providing a summary of the efforts
and outcomes related to the proposed research objectives. Additionally, it outlines
potential future avenues for this project, highlighting the limitations encountered
during the thesis work and offering related recommendations and suggestions for
future research.
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Literature Survey 2
The literature review is divided into two main areas of interest: current approaches to
nowcasting and the principles of extreme value theory. In the first part, we explore and
compare traditional nowcasting techniques alongside more recent deep learning strategies.
The second part delves into extreme value theory, a statistical field that examines the
likelihood of rare events, presenting its basic concepts and how they are applied.

2.1 Existing Nowcasting Methods (Models)

In this section, the existing nowcasting models have been discussed in detail. The con-
ventional nowcasting models cover topics such as Numerical Weather Prediction (NWP)
models as well as radar-echo-extrapolation approaches whereas the subsequent section
covers various types of deep learning models applied in nowcasting purposes.

2.1.1 Conventional Nowcasting Models

Traditional approaches to precipitation nowcasting models fall into two categories: those
based on Numerical Weather Prediction (NWP) and those utilizing radar echo extrap-
olation. Due to the extensive computational demands of NWP techniques, radar echo
extrapolation algorithms are more commonly employed in operational nowcasting sys-
tems, which is the primary emphasis of this discussion.

The radar-echo-extrapolation approach attempts to incorporate precipitation-related
physics into simple methods, such as Euler persistence and Lagrangian persistence as
mentioned by Germann et al.[8]. The Eulerian persistence approach utilizes the most
recent observation as the predicted precipitation field. It can written as:

Ψ̂ (t0 + τ, x) = Ψ (t0, x) , (2.1)

where ψ is the observed precipitation field, t0 is the initial time (start time of the fore-

cast), τ is the lead time and, Ψ̂ is the predicted precipitation field at time t0+τ . Eulerian
persistence approach assumes that the precipitation fields remain static over time. There-
fore, another approach is introduced in [8], known as the Lagrangian persistence method
which takes into account the movement of the precipitation parcels. It is expressed as:

Ψ̂ (t0 + τ, x) = Ψ (t0, x− λ) , (2.2)

where λ is the displacement vector and the other variables have the same definition as
mentioned above in equation (2.1). Most of the radar-based nowcasting methods are
based on the Lagrangian persistence method.

Utilizing the premise that optical flow techniques from the field of computer vision can
be adapted for nowcasting purposes, these methods typically involve two crucial steps:
first, deducing the motion field based on observed data, and then, projecting the most re-
cent observations forward along this motion field to create forecasts [1]. While Lagrangian
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persistence is a proven concept in the realm of precipitation nowcasting, serving as a cor-
nerstone for numerous systems, its assumptions often fall short when predicting the actual
movement of precipitation. To enhance the accuracy of nowcasting models, there’s a shift
towards incorporating probabilistic and stochastic methods. These methods not only
account for the advection process but also introduce a measure of uncertainty into the
forecasts. Essentially, they offer a more flexible approach to the concept of Lagrangian
persistence by allowing for variations within the advection field [1].

The open-source initiative, PySTEPS, which encompasses a variety of the previously
discussed precipitation nowcasting algorithms, serves as a benchmark for this project.
The configuration and the workflow of PySTEPS has been described in the subsequent
section.

Benchmark: PySTEPS

PySTEPS is a collaborative, open-source Python platform dedicated to precipitation now-
casting. It offers a range of algorithms for constructing nowcasting systems, supporting
both deterministic and probabilistic setups [2]. This framework is widely recognized and
regarded as leading-edge in the field of nowcasting tasks.

PySTEPS has both probabilistic as well as deterministic configurations which are
guided by two main core algorithms namely, STEPS (Short-term Ensemble Prediction Sys-
tem) and S-PROG (Spectral PROGnosis). STEPS, a method for probabilistic forecasting,
combines nowcasting outcomes with downscaled NWP (Numerical Weather Prediction)
results [2]. The Royal Netherlands Meteorological Institute (KNMI) has recently adopted
STEPS as its operational nowcasting system, and it will also serve as the benchmark
for this thesis project. The implemented PySTEPS method in this thesis work follows
the same configuration as mentioned in [2]. Specifically, the workflow of PySTEPS is as
follows:

1. Read radar composites, transform the radar reflectivity data to rainfall (mm/h),
then log-transform the result to dB scale.

2. Use the optical flow method to determine the motion field.

3. Use the advection method to extrapolate future radar precipitation field.

4. Use FFT to decompose the rainfall field into a multiplicative cascade, with each
level representing a different spatial scale and rainfall intensity. An example of the
decomposition result is shown in the below-mentioned figure 2.1.

5. Estimate the auto-correlation matrix for each cascade level, then estimate parame-
ters for an AR model using Yule-Walker equations, and apply the model in time to
handle temporal evolution and correlation within precipitation structure. The AR
model is expressed as the equation below:

Rj(x, y, t) = ϕj,1Rj(x, y, t−∆t) + ϕj,2Rj(x, y, t− 2∆t), (2.3)

where R is the radar map, (x, y, t) is the coordinates, ϕj is the model parameter,
and j is the number of cascade levels.
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6. Add stochastic perturbations to the AR models and advection field. This way, the
uncertainty in rainfall intensities and the motion field is considered.

7. Recompose the cascade with the AR model and the stochastic perturbations to get
the result of the nowcasting ensemble.

Figure 2.1: An example of the spatial decomposition at different cascade [9].

2.1.2 Deep Learning Models

Deep learning models surpass traditional reliance on mathematical representations of the
atmosphere and meteorological assumptions, offering a more flexible approach. These
models benefit from the large number of radar observation images, aiming to more ac-
curately capture non-linear phenomena such as convective initiation and heavy precip-
itation. By directly predicting precipitation rates, they have demonstrated significant
improvements, particularly at lower precipitation levels. The application of deep learning
models in nowcasting can be divided into three perspectives (based upon the choice of
the deep learning model) as: Spatial-temporal Convolution Networks, U-Nets, and deep
generative models such as VQGAN, ClimaX (Vision Transformer based).

To achieve an efficient rainfall prediction, weather nowcasting should be treated as a
spatial-temporal prediction task. Utilizing Long Short-Term Memory (LSTM) networks,
a variant of Recurrent Neural Networks (RNNs), facilitates such spatiotemporal predic-
tions. LSTMs have a unique gating mechanism that helps them remember and utilize
information over extended periods, making them ideal for capturing the complex depen-
dencies essential for accurate temporal and spatial weather predictions. The first such
deep learning model used in precipitation nowcasting was introduced by Shi et al. in
2015 [3], known as the ConvLSTM. In ConvLSTM the traditional fully connected lay-
ers (in LSTM’s state-to-state and input-to-state) are replaced with convolutional layers.
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This enables the model to extract better spatio-temporal features, resulting in improved
performance in nowcasting tasks when compared with the state-of-the-art conventional
methods. Morevoer, additional improvements were made by Liu et al. [10] on the Con-
vLSTM model by incorporating the self-attention mechanism along with the memory
module, known as ST-LSTM SA (Spatio-Temporal LSTM with Self Attention). The self-
attention mechanism helps the model extract global and local dependencies between the
extracted features and displays better nowcasting performance when compared with the
traditional ConvLSTM.

Rather than viewing weather forecasting as a spatiotemporal prediction challenge,
some researchers adopt an alternative perspective by framing nowcasting as an image-
to-image translation issue. To address this, they utilize a renowned encoder-decoder
architecture known as UNet. Unlike LSTMs, UNet does not have a specific component
for memory modeling. It takes a radar image or a sequence of merged images as input
and produces the subsequent forecast map as output. In simple terms, a U-Net is a CNN-
based encoder-decoder architecture with a ”U” shape. The input to the U-Net are radar
maps as images and it outputs a single map as the future frame [4]. Therefore, because
of this reason, the prediction is carried out recursively in the case of U-Net.

Researchers have been refining the fundamental UNet architecture to enhance its pre-
dictive precision and efficiency. A significant innovation is the SmaAtUNet model, which
integrates attention mechanisms and depth-wise separable convolutions [11]. By using
Convolutional Block Attention Modules (CBAMs), the model systematically highlights
salient features in both the channels and spatial dimensions of the input, leading to im-
proved feature extraction. Despite having substantially fewer parameters, SmaAtUNet
nearly matches the performance of the original UNet, offering a well-balanced trade-off
between efficiency, speed, and accuracy.

Further advancements in model development have emerged from integrating attention
mechanisms, as demonstrated by Bojesomo et al. with their model that combines 3D
Swin Transformer blocks within a UNet structure [12]. This model is distinctive for its
use of patch merging, multistage encoding with Swin Transformers, and a sliding window
approach for localized self-attention, which allows it to capture a range of interactions. In
the decoding phase, a cross-attention mechanism synergizes the encoder’s outputs with
the inputs, thereby significantly amplifying the model’s ability to integrate and process
information across various stages of the network.

In contrast to spatio-temporal networks, U-Net based prediction models enable tailored
forecasting intervals, potentially enhancing short-term accuracy. They also benefit from
a more simplified training approach. Nonetheless, it has been suggested that the iterative
nature of this prediction method could result in error propagation over extended periods
[13]. Many existing Deep Learning (DL) approaches focus on predicting weather for
specific locations and at a specific temporal resolution, rather than providing probabilistic
forecasts for entire precipitation fields. This limitation reduces their operational utility
because they can’t offer consistent predictions across multiple spatial and temporal scales.

Deep Generative Models are crafted to focus on probabilistic nowcasting. These mod-
els are data-driven and place a particular emphasis on the data’s probability distribution.
This emphasis enables them to encapsulate the inherent uncertainty in weather forecast-
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ing, thereby enhancing the accuracy and usefulness of the predictions. Ravuri et al.
proposed Deep Generative Model for Radar (DGMR), the model uses a Conditional Gen-
erative Adversarial Network (GAN), where the generator is trained with losses from the
two discriminators and a regularization term. The schematic diagram of DGMR is shown
in the figure 2.2. DGMR is fed an input of four consecutive radar frames (with a temporal
resolution of 5 minutes so the previous 20 minutes of radar observations) as context for the
generator, allowing the prediction of 18 future precipitation maps (90 minutes lead time).
The spatial discriminator aims to produce spatially consistent and detailed predictions
while the temporal discriminator ensures temporal consistent predictions. This model
gained improvement in terms of location accuracy, capturing and predicting small-scale
weather phenomena, maintenance of statistical properties of precipitation, and avoidance
of blurry predictions but has limitations in maintaining the intensity of heavy rainfall at
longer lead times or extreme precipitation [5].

Figure 2.2: A schematic diagram of the model DGMR [5].

To solve the problem of predicting high-intensity rainfall, Bi et al. [6] proposed another
deep generative model which consists of a Vector Quantization Generative Adversarial
Network and a Transformer (VQGAN + transformer) known as, Nuwa-PyTorch (VQ-
GAN). A schematic diagram of the model has been shown in figure 2.3. The functionality
of the model is to convert the radar data into a compressed, efficient representation in the
latent space using a Vector Quantized Variational Autoencoder (VQVAE) and a spatial
discriminator to differentiate between the reconstructed and the original images. The
auto-regressive transformer is able to predict future patterns using the latent space rep-
resentation of the data from VQGAN, the attention mechanism used in the transformer
is the 3DNA which is suitable for the 3D data structure. To handle extreme events, the
Extreme value loss (EVL) is added to the cross entropy loss of the transformer. EVL is
formulated on the basis of extreme value theory which helps the model to emphasize on
better prediction of extreme events. Therefore, it can be concluded that the addition of
EVL enhances the ability of the model to handle data imbalance by focusing on rare but
extreme events [6].
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Figure 2.3: A schematic diagram of the model Nuwa-PyTorch (VQGAN) [6].

Nguyen et al. [14], introduced ClimaX, a flexible and generalizable deep learning
model for predicting weather, which has been trained on a diverse array of datasets. This
model builds upon the Transformer architecture, specifically the Vision Transformer, by
incorporating vector tokenization and aggregation blocks. The research demonstrates
ClimaX’s flexibility and effectiveness for a range of applications, including local weather
forecasting and long-term climate predictions. However, the model has not been applied
to nowcasting, particularly for predicting severe rainfall events. Additionally, ClimaX
requires a larger dataset for training compared to other deep generative models, which
may limit its use in nowcasting extreme precipitation events due to the typically limited
availability of such data.

Conclusion

Based on the above literature survey, it can be concluded that the key advantage of
deep learning models is their flexibility when compared with conventional nowcasting
methods. When comparing deep learning methods for nowcasting, models based on U-
Net and ConvLSTM encounter two primary challenges. Firstly, while these models predict
low-intensity rainfall with high accuracy, their performance significantly drops for high-
intensity events, often leading to underestimations in the predicted radar maps. Secondly,
the reliance on quadratic loss functions like mean square error (MSE) prompts the models
to produce vague predictions as a way to mitigate the increased uncertainty associated
with forecasts over longer periods.

The study of deep generative models for nowcasting is relatively new compared to
other approaches. The Deep Generative Model for Radar (DGMR) demonstrates promis-
ing solutions to previously mentioned issues. It leverages adversarial training to enhance
the sharpness of forecast images, addressing the problem of blurry outputs. Addition-
ally, DGMR shows improved accuracy in forecasting medium to high rainfall intensi-
ties, marking a significant advancement in predictive capabilities for such weather events.
Furthermore, ClimaX also shows promising results in the prediction of weather but the
performance of ClimaX concerning extreme weather phenomenon is yet to be quanti-
fied. Meanwhile, Nuwa-PyTorch (VQGAN) also displays promising performance in the
prediction of extreme precipitation when compared with the other models.
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2.2 Extreme Value Theory and its applications

Extreme value theory is a segment of statistics that focuses on analyzing values that
significantly diverge from the median in a probability distribution. This theory has found
applications in predicting severe weather events [15], including instances of heavy rainfall
and flooding. Furthermore, there has been exploration into its integration with deep
learning models. For instance, the theory has been adapted into the loss function as seen
in one study as the Extreme Value Loss (EVL) function [7], and in another, it has been
combined with a Generative Adversarial Network (GAN) for the purpose of modeling
spatial extremes [16]. While the theory encompasses both the analysis of minimum (left
tail) and maximum (right tail) extreme values, the emphasis here is on the maximum
values due to their relevance in forecasting precipitation events. The below-mentioned

sections contain the main definition of the Extreme Value Distribution function (including
the different types of it), the applications of Extreme Value theory in various real-world
scenarios as well as in deep learning task, and lastly, the mathematical derivation of the
EVL loss function stated in [7] with relevant graphs describing the behavior of the loss
function.

2.2.1 Generalised Extreme Value Distribution

Similar to how the Central Limit Theorem suggests that the sample mean will tend
towards a normal distribution for large sample sizes from nearly any distribution, the
Extreme Value Theory (EVT), also known as the Fisher-Tippett-Gnedenko Theorem,
posits that for certain types of distributions, the maximum value in a large sample will
conform to a Generalized Extreme Value (GEV) distribution [17]. Therefore, it can
be said that Generalised Extreme Value Distributions are limiting distributions for the
maxima of independent random variables sample from the same distribution. According
to EVT, there are three distinct extreme value distribution models, commonly referred to
as Gumbel, Fréchet, and Weibull distributions [18]. The cumulative distribution functions
(CDF) for each are specified as follows:

• The Gumbel distribution (Type I) is characterized by a CDF that applies across all
real numbers, indicative of data with lighter tails, similar to the normal distribution.

• The Fréchet distribution (Type II) describes heavier-tailed data distributions, typi-
cally used for modeling economic data and meteorological elements such as precipi-
tation.

• The Weibull distribution (Type III) is appropriate for bounded variables, like certain
environmental measurements.

These distributions merge into the Generalized Extreme Value Distribution (GEVD),
represented by the following equation:

G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}
, (2.4)

Here, µ and σ denote the location and scale parameters, dictating the central tendency
and variability of the distribution, respectively. The shape parameter ξ determines the
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form of the distribution: when ξ = 0, the model simulates the Type II distribution, and
for ξ > 0 and ξ < 0, it corresponds to Type II and Type III distributions, respectively.
Figure 2.4 shows the GEV distribution function with respect to different shape parameter
values, thus, giving a better understanding of the influence of ξ on the shape of the
probability density function of GEV.

Figure 2.4: An example of GEV distribution with different shape parameters

The corresponding cumulative distribution function (CDF) versions for each type are as
follows:

F (x) = exp(−e−x), −∞ < x <∞ (2.5)

F (x) =

{
0 x ≤ 0,

exp(−x−α) x > 0, α > 0
(2.6)

F (x) =

{
exp(−(−x)α) x < 0, α > 0,

1 x ≥ 0
(2.7)

2.2.2 Applications of Extreme Value theory

According to De Haan [18] and Coles [17], understanding the distribution of extreme
events has several practical applications. For instance:

• Based on the annual highest tide measurements over the past 20 years, determine
how high a barrier needs to be to avoid a once-in-a-century catastrophe where water
overflows the barrier and floods the community.

• Other extreme events that can be studied: extreme temperature (cold or heat), wind
speed (e.g. in a hurricane), water (drought or floods), earthquakes, forest fires, or
financial collapse.

13



Research by Levine [19], highlights the significance of EVT in fields such as Risk man-
agement in financial markets. For instance, Omari et al. in their research [20] implement
EVT to compute Value-at-Risk (VaR) forecast for a portfolio of currency exchange rates.
Specifically, they use EVT for modeling the tail distribution of the daily stock market
returns. Moreover, EVT has also been implemented in deep learning models in the re-
cent years for time series prediction tasks. Boulaguiem et al. in 2022 [16], incorporated
EVT with GANs (known as, evtGAN) to model the spatial dependencies between climate
extreme variables such as precipitation and temperature. The process involves fitting ex-
treme climate data to a generalized extreme value distribution (GEVD) for each location
and then normalizing that data. Subsequently, a GAN is trained on the normalized data,
generating new samples. These samples are then re-normalized to align with the original
GEVD-fitted observations. The results of evtGAN have proven to be better than standard
GANs as well as statistical approaches in spatial extremes tasks [16].

Ding et al. [7] in their research, identified that the limited capability of deep learning
models to capture extremes is due to the traditional quadratic loss function. The authors
suggest enhancing this by integrating extreme value theory into the loss function to im-
prove detection of extreme events in time series analysis. The model, which is built upon
a standard GRU framework, incorporates two novel elements: a memory network module
that records and utilizes past extreme events for current predictions through an attention
mechanism, and an Extreme Value loss (EVL) that employs weighted cross entropy to
correctly classify extreme events, with weights derived from the extreme value theorem
probabilities.

The Extreme Value Loss (EVL) function has been adopted in the studies by Bi et al. [6]
and Chen et al. [21], demonstrating its utility in modeling extreme events. The following
section will provide a mathematical derivation of the EVL loss function, illustrating its
theoretical foundation and application in extreme event analysis.

2.2.3 Mathematical proof of the weights used in EVL loss function

As mentioned in [17], if there is a sequence of independent and identically distributed
(I.I.D) random variables as X1, X2, . . . , Xn, having marginal distribution function F . It
is natural to regard as extreme events those of the Xi that exceed some high threshold u.
Denoting an arbitrary term in the Xi sequence by X, it follows that a description of the
stochastic behavior of extreme events is given by the conditional probability:

Pr{X > u+ y | X > u} =
1− F (u+ y)

1− F (u)
, y > 0. (2.8)

Starting from the L.H.S we have :

Pr{X > u+ y | X > u},

Using the formula : P (x | y) = P (x,y)
P (y)

=
P (X > u+ y,X > u)

P (X > u)

=
P (X > u+ y)

P (X > u)
.
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Applying the formula: P (X > x) = 1− F (x) we get,

=
1− F (u+ y)

1− F (u)
.

According to [17], if the parent distribution F was known, then the distribution of thresh-
old exceedances in equation (2.8) would also be known. However, that is not the case.
Therefore, Coles et. al. [17], suggest the application of Extreme Value theory (EVT)
for the approximation of the distribution of maxima of long sequences when the parent
population function (distribution) F is unknown. For the sequence of Random Vari-
ables (R.Vs) mentioned above (with common distribution function F ), maximum order
statistics has been used to characterize extremes:

Mn = max {X1, X2, X3, . . . Xn} ,
P→ x∗, n→ ∞. (2.9)

where
P→ denotes convergence in probability and, x∗ denotes the right endpoint which is

x∗ = sup{x : F (x) < 1} Therefore, for a large n we have :

P (max (X1, X2, . . . , Xn) ⩽ x) = Pr (X1 ⩽ x,X2 ⩽ x,X3 ⩽ x, . . . Xn ⩽ x) . (2.10)

Since, they are I.I.D we can also write equation (2.10) as,

P (max (X1, X2, . . . , Xn) ⩽ x) = [Pr(X ⩽ x)]n = [F(x)]n.

Hence,
[F (x)]n → 0 for x < x∗,

[F (x)]n → 1 for x ⩾ x∗.

it can be said said that [F (x)]n is a degenerate function as it converges to a single point
when n becomes sufficiently large. To mitigate this, EVT states that for a sequence of
constants an > 0 and a real bn there is a non-degenerate distribution function G stated
as :

ltn→∞ [F (anx+ bn)]
n = G(x), (2.11)

where G(x) is the Generalised Extreme Value distribution function (GEV). The GEV is
given by :

G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}
, (2.12)

where µ is the location parameter, σ is the scale parameter and, ξ is the shape parameter.

Also, equation (2.11) can be written as :

[F (anx+ bn)]
n ≈ G(x)

=⇒ [F (x)]n ≈ G {(x− bn) /an}
=⇒ [F (x)]n = G∗(x).

where G∗ is another member of the GEV family. In [17], it is stated that if equation
(2.11) allows the approximation of [F (anx+ bn)]

n by a member of the GEV family for

15



large n, then [F (x)]n can also be approximated using a different member of the GEV
family (G∗(x)) which has the same definition as mentioned in equation (2.12) but with
different values of µ, σ and ξ. Therefore, we can then write :

F n(x) ≈ exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ
}
, (2.13)

Taking natural logarithm on both sides,

n lnF (x) ≈ −
[
1 + ξ

(
x− µ

σ

)]−1/ξ

,

For large values of x, a Taylor expansion implies that,

lnF (x) ≈ −{1− F (x)}.

substituting this in the above equation we get,

1− F (x) ≈ 1

n

[
1 + ξ

(
x− µ

σ

)]−1/ξ

. (2.14)

Therefore, we substitute the above result obtained in equation (2.14) in the R.H.S of
equation (2.8), for a large u and y > 0,

1− F (u) ≈ 1

n

[
1 + ξ

(
u− µ

σ

)]−1/ξ

,

and,

1− F (u+ y) ≈ 1

n

[
1 + ξ

(
u+ y − µ

σ

)]−1/ξ

.

Hence, equation (2.8) can be rewritten as:

Pr{X > u+ y | X > u} ≈ n−1[1 + ξ(u+ y − µ)/σ]−1/ξ

n−1[1 + ξ(u− µ)/σ]−1/ξ

=

[
1 +

ξy/σ

1 + ξ(u− µ)/σ

]−1/ξ

=

[
1 +

ξy

σ̃

]−1/ξ

.

(2.15)

where σ̃ = σ + ξ(u − µ). This distribution function is known as the Generalised Pareto
Distribution (GPD) function which helps in modeling observations over a large enough
threshold u (Peaks Over Threshold method - POT) and is written formally as :

H(y) = 1−
(
1 +

ξy

σ̃

)−1/ξ

, (2.16)

defined on {y : y > 0 and (1 + ξy/σ̃) > 0}, where

σ̃ = σ + ξ(u− µ).
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According to De Haan et al. [18], the above relation in equation (2.15) implies that, if
block maxima have an approximating distribution G, then threshold excesses also have a
corresponding approximate distribution within the GPD family (H). Also, the parameters
of GPD can be uniquely determined by those of the associated GEV distribution of block
maxima. Moreover, the GEV distribution function and the GPD distribution function are
related to each other since they have the same shape parameter ξ. A rough mathematical
relation between these two distribution functions can be derived as :

H(y) = 1 + ln(G(y)). (2.17)

for some location (µ) and shape (σ, σ̃) parameters.The relationship in equation (2.17) has
also been utilized by Gencay et al. [22] to incorporate EVT in applications of Value-at-
Risk for the relative performance of stock market returns in emerging markets. Conse-
quently, equation (2.8) can be re-written with the help of the derived results in equations
(2.15) and, (2.16) as :

1− F (u+ y)

1− F (u)
=

[
1 +

ξy

σ̃

]−1/ξ

=⇒ 1− F (u+ y)

1− F (u)
= 1−H(y)

=⇒ 1− F (u+ y) ≈ (1− F (u))(1−H(y))
(2.18)

This is the main equation for the tail approximation of observations exceeding a threshold
u [18] and can be written more formally as :

1− F (x) ≈ (1− F (t))

{
1−Hξ

(
x− t

f(t)

)}
, x > t (2.19)

where Hξ is the GPD function with the shape parameter ξ. Therefore, we use the result
derived in equation (2.18) to derive the weights of the EVL loss function formulated
by Ding et al. [7]. However, the authors of [7], utilize the GEV distribution function
to define the underlying distribution of the time series data used in their experiment.
The main objective of their experiment is to predict outputs YT :T+K in the future given
the observations (X1:T , Y1:T ) and future inputs XT :T+K . For the sake of convenience, the
authors define X1:T = [x1, · · · , xT ] and Y1:T = [y1, · · · , yT ] to denote the general input and
output sequences without referring to specific sequences. Therefore, for T I.I.D random
variables y1, · · · , yT sampled from a distribution FY , the distribution of the maximum is
realized using EVT as :

lim
T→∞

P {max (y1, · · · , yT ) ≤ y} = lim
T→∞

F T (y) = G(y), (2.20)

for some linear transformation as mentioned in [7], where G(y) is GEV distribution func-
tion. We can observe that equation (2.11) and equation 2.20 have the same meaning
(but with different variables in their definitions). Moreover, the authors define the GEV
function in the paper as :

G(y) =

{
exp

(
−
(
1− 1

γ
y
)γ)

, γ ̸= 0, 1− 1
γ
y > 0

exp (−e−y) , γ = 0
(2.21)

where γ is known as the extreme value index (the shape parameter) with condition γ ̸= 0.
It can also be observed that the definition of GEV function in equation (2.21) is similar
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to the definition mentioned in equation (2.12) but with ξ = − 1
γ
, µ = 0 and, σ = 1. For

modeling the tail distribution of the corresponding time-series data used in the research
experiment presented in [7], the authors use equation (2.19). However, as mentioned
before, rather than using the GPD function the authors use the GEV distribution function
to model the tail approximation. Therefore, we substitute the relationship mentioned in
equation (2.17) as − ln(G(y)) = 1−H(y) in equation (2.19) and get the following result :

1− F (y) ≈ (1− F (ξ))

[
− logG

(
y − ξ

f(ξ)

)]
, y > ξ (2.22)

where ξ is the threshold and, f(ξ) is a scale function as mentioned in [7]. Also, the authors
define an extreme indicator sequence V1:T = [v1, · · · , vT ] as :

vt =

{
1 yt > ξ
0 yt ⩽ ξ

(2.23)

where ξ is the threshold. For time step t if vt = 0 then the output yt is considered as
a ’normal event’ and if vt = 1 then yt is considered as an ’extreme event’. The authors
mention a hard approximation for the term ( y−ξ

f(ξ)
) as ut in equation (2.22) which is the

predicted indicator by the neural network used in their research experiment. This can
be interpreted as a normalization technique which restricts the values of the output y
between [−1, 1]. Therefore, considering this to be true, equation (2.22) can be re-written
as :

1− F (y) ≈ (1− F (ξ)) [− logG(ut)] , (2.24)

Substituting the definition of GEV (as described in equation (2.21)) in the above equation
(2.24) we obtain :

1− F (y) ≈ (1− F (ξ))

[
1− ut

γ

]γ
, (2.25)

The term 1 − F (ξ) (with the help of equation (2.23) and the definition of cumulative
distribution function) can be written as :

1− F (ξ) =Pr(y > ξ) =⇒ 1− F (ξ) = Pr(vt = 1), (2.26)

where Pr(vt = 1) is the proportion of extreme events in the dataset. Therefore, equation
(2.25) with the above substitution, can be re-written as :

1− F (y) ≈ Pr(vt = 1)

[
1− ut

γ

]γ
, (2.27)

This tail approximation is incorporated as adaptive weights in the standard Binary Cross
Entropy (BCE) loss function to define the main EVL loss function as mentioned in [7].
However, the authors in paper [7] define the weight as :

1− F (y) ≈ (1− Pr(vt = 1))

[
1− ut

γ

]γ
, (2.28)

Upon simplifying the term (1− Pr(vt = 1) we get :

1− Pr (vt = 1)

=Pr (vt = 0)

=Pr(y ⩽ ξ)

=F (ξ).

(2.29)
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Therefore, we get the expression 1− F (y) ≈ (F (ξ))
[
1− ut

γ

]γ
which does not match with

the main tail approximation in equation (2.22). However, Chen et al. [21] in their research
have also utilised EVL loss function but the adaptive weights are in congruence with the
weights derived in equation (2.27). Therefore, applying the weight derived in equation
2.27 to the standard BCE loss function, we get :

EVL (ut, vt) =− Pr(vt = 1)

[
1− ut

γ

]γ
vt log (ut)

− Pr(vt = 0)

[
1− 1− ut

γ

]γ
(1− vt) log (1− ut) .

(2.30)

whereas the standard BCE loss function is given by :

BCE (ut, vt) =− vt log (ut)

− (1− vt) log (1− ut) .
(2.31)

with ut being the predicted probability and vt being the binary label (0 or 1).
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Dataset Analysis and Problem
Formulation 3
3.1 Dataset

In this section, the details of the dataset used in this thesis work are explained. The
section has been divided into two main categories namely:

1. The research concentrates on nowcasting within the Netherlands, utilizing precipi-
tation data sourced from The Royal Netherlands Meteorological Institute (KNMI).
This study examines the RT dataset which is the Real Time dataset obtained directly
from the KNMI website. However, for event selection purposes another dataset is
used alongside the RT known as, MFBS dataset.

2. Since, RT dataset is the primary dataset for the training of the deep learning model
presented in this thesis work, a statistical analysis of the precipitation intensities
has been presented in the second sub-section.

3.1.1 KNMI Radar Datasets

Weather radar is primarily utilized by meteorologists for observing precipitation. In the
Netherlands, the Royal Netherlands Meteorological Institute (KNMI) operates two C-
band weather radars situated in Den Helder and Herwijnen. Prior to 2017, the operational
radar was located at De Bilt, before being replaced by the one in Herwijnen [23]. The
locations of these KNMI weather radars, along with a real-time radar map, are depicted
in the below-mentioned Figure 3.1. Weather radars generate initial data known as radar
reflectivity Z, representing the quantity of radiation reflected back at an altitude of 1500m
across the Netherlands, as relevant to the datasets discussed in this thesis.

Figure 3.1: Three Radar stations in the Netherlands: Den Halder, Herwijnen and De Bilt [23].
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For the estimation of the rainfall rate from the radar reflectivity, a fixed Z-R transfor-
mation is implemented [24] given by:

Zh = 200R1.6, (3.1)

where Zh represents the radar reflectivity (unit: mm6m−3) and R represents the rainfall
rate (unit: mmhr−1). The original radar reflectivity has the unit of dBZ which can be
converted to mm6m−3 using Zh(dBZ) = 10 log10 (Zh). In this process, reflectivity below
7dB (precipitation intensity < 0.1mmhr−1) are ignored and reflectivity above 55dB (pre-
cipitation intensity > 100mmhr−1) are fixed at 55dB. Moreover, isolated pixels have been
ignored. This discard of reflectivity values is mainly done to prevent noise (precipitation
intensity < 0.1mmhr−1) and also, to prevent strong residual clutter-induced reflection
(precipitation intensity > 100mmhr−1) [23]. Therefore, the data after the aforementioned
conversion is the Quantitative Precipitation Estimation (QPE) data from the KNMI web-
site, known as the RT dataset [25].

In addition to the previously mentioned RT dataset, the KNMI website [26] also offers
access to the MFBS dataset. This dataset shares the RT dataset’s spatial and temporal
resolutions. Nevertheless, it is refined using data from a comprehensive network of rain
gauges, which includes 356 gauges spread across the Netherlands, to fine-tune the initial
QPE. Consequently, it yields a more precise estimation of the rainfall rate. Despite its
accuracy, the MFBS dataset is updated on a monthly basis on the KNMI website, and
the extensive manual labor involved in operating the rain gauge network means that the
dataset does not provide real-time (RT) data (it is updated once a day). Therefore,
the RT dataset has been chosen as the main dataset for training and testing the deep
learning model proposed in this thesis work. However, for the selection of the rainy events
as mentioned in section 3.3, the MFBS dataset has been utilised since, it contain better
estimation of the rainfall intensities.

The RT dataset contains radar images from the year 2008-2021. Each radar map is
765× 700 image with a spatial resolution of 1km and, a temporal resolution of 5 minutes.
This means that the dataset contains radar images at every 5 minutes for the whole region
of Netherlands.

(a) (b) (c)

Figure 3.2: Example of Radar Images from the RT dataset for three different time stamps.

An example of the images from the RT dataset has been shown in the above-mentioned
figure 3.2 from the year 2009, and the month May. From the figure, it can be observed
that most of the area in the images is masked (the circular region has a diameter of
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approximately 400km). The circular area covers the Netherlands region along with some
surrounding areas from Belgium and Germany. However, the main objective of this thesis
is to perform extreme precipitation nowcasting with regards to the region of Netherlands.
Therefore, we crop the respective images in the RT dataset with dimensions 256× 256 as
shown in the below-mentioned figure 3.3.

(a) (b)

Figure 3.3: Example of Radar Image from the RT dataset with the area of 256km× 256km.

The main reason behind this cropping is that it covers most of the land area of the
Netherlands including all the 12 catchments where it is crucial to identify the occurrences
of extreme precipitation. In figure 3.4 presented below, it can be observed that the red
bounding box covers all the 12 catchments, part of this study. The left sub-figure 3.4a,
shows the actual locations of the catchments in the Netherlands map while in the right
sub-figure 3.4b the catchment regions are highlighted with respect to the RT dataset
images.

(a) (b)

Figure 3.4: Representation of the catchment regions in the 256km × 256km area chosen for
this thesis project.
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3.1.2 Data Analysis

In this section, the analysis of the RT dataset images has been done. Firstly, the pre-
cipitation distribution of the pixels in the whole map (entire Netherlands region) has
been analysed followed by the analysis in the 12 catchments selected for the detection of
extreme precipitation.

For the analysis in the whole Netherlands region, a total of 60,000 radar images span-
ning from the years 2008 to 2014 were chosen (the main reason behind the choice of
this interval of year is that it constitutes the training dataset). The first image is taken
from 00:00, 01/01/2008, and then one image sampled every hour consecutively (60,000
times). Table 3.1 shows the occurrence of different precipitation intensities in the respec-
tive images mentioned above.

Rainfall intensity X Occurrence Percent

X ≤ 0.1mm/h 3.724E+09 94.7%
0.1mm/h < X ≤ 1mm/h 1.653E+08 4.2%
1mm/h < X ≤ 5mm/h 3.992E+06 1.0%
5mm/h < X ≤ 10mm/h 2.356E+06 0.06%
10mm/h < X ≤ 20mm/h 5.213E+05 0.013%
X > 20mm/h 1.731E+05 0.004%

Table 3.1: Summary of the occurrence of different types of rainfall intensities in pixels for the
whole Netherlands region.

Moreover, based upon the data in table 3.1, a histogram along with an empirical
Cumulative Distribution Function (CDF) plot of the precipitation intensities for all these
images have also been constructed and shown in figures 3.5 and 3.6.

Figure 3.5: Histogram of the precipitation intensities distribution of the selected RT images.

It can be observed from figure 3.6 that lower rainfall (X ≤ 1mm/h) intensities are
much more common than higher (1mm/h < X ≤ 5mm/h) and very high (X > 10mm/h)
intensities. From sub-figure 3.6b, it can be seen that the Cumulative Probability rises
quite steeply till 0.98 (approximately) suggesting that the images contain low-intensity
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rainfall the most. As the rainfall intensity increases, the CDF curve becomes less steep
and starts to plateau, indicating that higher rainfall intensities are less common. For
example, the cumulative probability doesn’t increase much beyond a certain point on the
x-axis (10mm/hr approximately), suggesting that very high rainfall intensities are rare.

(a) (b)

Figure 3.6: Representation of the Cumulative Distribution of the different rainfall intensities.

Catchment regions are defined as territories where surface runoff gets collected in
particular locations. These areas are the most susceptible to floods and stagnation of
water after heavy rainfall because of their locations. Therefore, the nowcasting outcomes
for these catchment regions are of significant importance because they can be employed in
hydrological models to provide early warnings of potential flooding. In the scope of this
thesis work, 12 Dutch catchments will be analyzed as shown in figure 3.4a. A detailed
locations of these 12 catchments along with their respective area coverage have also been
shown in the below figure 3.7 and, table 3.2.

Figure 3.7: Map of the Netherlands [6].

Number Catchment name Area (km2)

1 Regge 957
2 Aa 836
3 Delfland 379
4 Reusel 176
5 Linde 150
6 Rijnland 89
7 Roggelsebeek 88
8 Dwarsdiep 83
9 Beemster 71
10 Luntersebeek 63
11 Grote Waterleiding 40
12 Hupsel Brook 6.5

Table 3.2: Catchment areas and their re-
spective sizes.

For the analysis in the catchment level, the average rainfall accumulation has been
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calculated for a 3-hour window for all the relevant catchment areas. This serves as the
main indicator of the rainfall intensity for the catchment areas. The radar images selected
for analysis correspond to the same period, namely 2008 to 2014, which was used for the
comprehensive analysis of the Netherlands region. Figure 3.8 shows the distribution of
the 3-hour average rainfall intensity. It can be observed that approximately 90 % of the
catchment averaged precipitation is smaller than 1mm/3hr (similar to the analysis shown
in figure 3.5, for the whole region of the Netherlands).

Figure 3.8: Histogram of the precipitation intensities distribution of the selected RT images
(Catchment-level).

Conclusion

Therefore, based on the above analysis it can be concluded that the distribution of the
rainfall intensities (complete Netherlands region and catchment level) is highly imbal-
anced (since, majority of the distribution favours low-intensity rainfall). Consequently,
this imbalance causes difficulties in fitting the data using standard deep-learning models.
To alleviate this problem, additional techniques are necessary (for instance, the incorpo-
ration of the EVL loss function). The distributions still have a relatively (compared with
exponential distribution) high probability in its tail part, so a heavy-tailed distribution
may be required to model the rainfall intensity [27].

3.2 Problem Formulation

The objective of the model is twofold: firstly, to predict skillful precipitation nowcasting
results with respect to the whole region of the Netherlands, and secondly, to detect extreme
events in the 12 catchment areas, respectively.

In pursuit of the first objective, the aim of this thesis is to perform nowcasting up to three
hours ahead, with updates every 30 minutes. This means that each event is represented by
a sequence of six images (at T+30, T+60, T+90, T+120, T+150, and T+180 minutes),
using the radar images from the preceding 90 minutes (at T-60, T-30, and T minutes)
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as input. As shown in figure 3.3, each image of an event is of size 256 × 256 since this
area covers 90 percent of the land area of the Netherlands and all the relevant catchment
locations.

For the second objective, extreme events must be defined within the catchment areas.
Given that the scope of the second objective aligns with the problem formulation outlined
by Bi et al. [6], this thesis also adopts their definition of extreme events. Usually, extreme
rainfall is identified based on the distribution of the maximum annual rainfall. However,
with only 14 years of data available, the dataset of yearly maxima is insufficient for
effectively training and evaluating models [6]. Consequently, this definition has been
relaxed and the precipitation within a catchment is classified as extreme if the average
precipitation over a 3-hour period falls within the highest 5% of all measurements recorded
from 2008 to 2021. More details on the procedure of selecting events have been mentioned
in the following section 3.3.

The reason for choosing extreme events on the basis of rainfall accumulation over 3
hours in the catchment level rather than on the complete Netherlands map is because given
an extreme threshold (let’s say 10mm/hr) a single pixel value greater than this threshold
does not mean there is an extreme-rainfall event. Hazards due to extreme rainfall events
are usually caused by heavy and long-term precipitation in certain areas where rainfall
gets collected (such as, in the case of catchments). Hence, the event selection process has
been carried out on the catchment level with a 3-hour average rainfall accumulation.

3.3 Event Selection

In this study, an event within a catchment is classified as extreme if it results in an average
precipitation accumulation exceeding the catchment’s specific extreme threshold over a
period of 3 hours. Therefore, an extreme event threshold for a certain catchment can be
defined using the below-mentioned steps:

1. Identify a catchment as the focal area of study.

2. Categorize each event as either a non-rain event (average catchment precipitation
< 0.1mm/3h) or a rain event (≥ 0.1mm/3h).

3. Organize the events by the average precipitation within the catchment and classify
the top 1% as extreme events [6]. This process then sets the extreme threshold for
that specific catchment.

However, extreme events (top 1%) alone do not provide an adequate dataset for train-
ing a deep learning model. Therefore, events classified within the top 5% of precipitation,
referred to as heavy rain events, are also included in the dataset for the catchment. The
selected events are split into 3 parts for training, validation, and testing purposes. Events
from the years 2008 to 2014 cover the training dataset, 2015 to 2017 cover the validation
dataset whereas, 2019 to 2021 cover the testing dataset. Based on this, the total number
of events in the training dataset is 30632, whereas the validation dataset contains 3453
events and the testing dataset contains 357 events. The testing dataset only contains
all extreme events (i.e., the top 1% events) leading to the least number of events when
compared with all the other datasets.
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Methodology 4
4.1 Proposed Model

In this section, we describe the model proposed in this thesis in detail. The proposed
model - World Model (EVL) consists of three distinctive components. The model
consists of a Vector-Quantized Variational Autoencoder (VQ-VAE), an Autoregressive
Transformer, and a Binary Classifier (also a Transformer). Each component has been
described in detail in the subsequent subsections, respectively.

4.1.1 Vector-Quantized Variational Autoencoder

The first component of World Model (EVL) is a Vector-Quantized Variational Autoen-
coder (VQ-VAE). VQ-VAE was first proposed by Oord et al. [28]. VQ-VAE have similar
structures when compared to standard autoencoders, i.e., they consist of an encoder and
a decoder which learn a forward and reverse mapping from an input space onto a com-
pressed continuous space called the latent space. However, in the case of a VQ-VAE, the
continuous latent space is replaced by a discrete latent space [28]. This method is effec-
tive in capturing the complex, multi-dimensional features of data. VQ-VAE operates on
an encoder-decoder framework with a discrete codebook, where the encoder compresses
input data into a discrete set of codes, preserving essential features through a reduction in
spatial dimensions and an increase in feature channels. The decoder then reconstructs the
input from these codes, aiming for a close approximation to the original, thereby enabling
efficient and structured data representation suitable for tasks like image reconstruction.

Several researchers have used this architecture and improved upon it such as the VQ-
VAE model proposed by Esser et al. [29] in their main model framework - VQGAN.
The main advantage of the VQ-VAE proposed by Esser et al. is the incorporation of
the Perceptual Loss in the main loss function used for training the VQ-VAE. The addi-
tional implementation of the Perceptual loss helps the VQ-VAE to learn perceptually rich
representations of the features present in the original images [29]. The perceptual loss
function was proposed in the context of computer vision tasks by Johnson et al. [30].
The authors propose that rather than encouraging the reconstruction of an image x̂ to
match exactly with the ground truth x, it would be beneficial to have similar feature
presentations between the two as computed by loss network ϕ. Therefore, perceptual
loss functions are actually deep convolutional neural networks themselves, that have been
pre-trained for image classification tasks [30]. One of the most popular choices of ϕ is the
pre-trained 16-layer VGG network as suggested by Esser et al. [29], Johnson et al. [30].
Mathematically, the loss function is defined as:

Lperceptual(x̂, x) =
1

CjHjWj

∥ϕj(x̂)− ϕj(x)∥22 , (4.1)

where Cj, Hj,Wj are the dimensions of the feature map ϕj(x) from the jth layer of the
convolutional neural network whereas x and x̂ are the target image and output image.
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Hence, it can be observed that the perceptual loss function is the Euclidean (squared,
normalized) distance between the feature representations of x and x̂. Therefore, this is
why the VQ-VAE chosen for the model part of this thesis project (World Model (EVL))
has been inspired by the research of Esser et al. [29].

The encoder uses downsampling convolutional layers to gradually make the original
image smaller in size but richer in detail by increasing the number of channels. After each
downsampling layer, there are two Res-Net blocks. These blocks are crucial for enhancing
the encoder’s ability to recognize and represent the important features of the images,
especially as the encoder adds more downsampling layers and becomes deeper (also helps
in mitigating the vanishing gradient problem with the increment in the depth of the
model). The decoder has a similar structure as the encoder but consists of upsampling
layers instead of downsampling layers. A schematic diagram of a standard VQ-VAE has
been shown in figure 4.1. In the below-mentioned figure, x is the input radar image of
dimensions b = batch, h = height, w = width and t = time (sequence length).

Figure 4.1: Schematic diagram of a VQ-VAE.

The training of the VQ-VAE is done with the help of four loss functions namely, Recon-
struction Loss, Codebook Loss, Commitment Loss, and Perceptual Loss. Mathematically,
they can be written as:

L(E,D,Z) = ∥x− x̂∥22 + ∥sg[E(x)]− zq∥22 + ∥sg [zq]− E(x)∥22 + Lperceptual(x̂, x),
(4.2)

where E,D and Z represent the Encoder, Decoder and the Codebook. ze = E(x) ∈
Rh×w×nz represents the encoded image while x̂ = D(zq) is the reconstructed image using
zq. We obtain zq using an element-wise quantization q(.) of each spatial code ẑij ∈ Rnz

given by:

zq = q(ze) :=

(
argmin

zk∈Z
∥ẑij − zk∥

)
∈ Rh×w×nz . (4.3)

In the above equation (4.2), the term ∥x − x̂∥22 is the reconstruction loss that optimizes
the encoder and the decoder. The terms ∥sg[E(x)]− zq∥22 + ∥sg [zq]− E(x)∥22 together
comprise the codebook loss and the commitment loss which ensure that the encoder
reliably produces outputs close to the codebook vectors. The term Lperceptual(x̂, x) is
the perceptual loss which helps the VQ-VAE learn perceptually rich features (shown in
equation (4.1)).

The Vector Quantization layer as shown in figure 4.1 is responsible for the quantization
of the latent space generated by the Encoder of the VQ-VAE. It takes ze and selects
the closest embedding from the Codebook (based on Euclidean distance) and outputs
zq. Acknowledging that backpropagation is infeasible through the arg min operation in
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equation (4.3), gradients are instead propagated by approximating the gradients using the
stop gradient operator sg, from zq to ze. This approach does not directly minimize the
loss function but allows the transfer of some gradient information back for model training.

Due to the constraints on computational efficiency, the input radar images have first been
downsampled to a spatial resolution of 128 × 128 from 256 × 256. The downsampling
does not change the semantic information represented by the input radar maps as shown
in the below-mentioned figure 4.2. Moreover, it helps in efficient memory usage of the
Graphical Processing Unit (GPU) while training the VQ-VAE in the achievement of a
lower dimensional latent space (8× 8× 1024).

(a) (b)

Figure 4.2: Representation of an input radar image in the training dataset with spatial reso-
lution (a) 128× 128 and (b) 256× 256.

As mentioned-above already, the encoder consists of 5 downsampling layers (2D Con-
volutional layers) each containing 2 ResNet blocks in between them. This reduces the
spatial dimension of the input radar images to the following resolutions: 128 → 64 →
32 → 16 → 8. Furthermore, the last stage of the encoder includes an attention block used
to capture the relationships between features before the quantization step. The decoder
mirrors the structure of the encoder but consists of upsampling layers instead of down-
sampling layers to reconstruct the image from the discrete codes to its original spatial
resolution as 8 → 16 → 32 → 64 → 128.

Therefore, with the help of the VQ-VAE, each radar image is converted into a sequence
of 64 discrete codes. The codebook used for this conversion contains 1024 unique tokens,
meaning each token can be an integer ranging from 0 to 1023 (each token is an index in
the codebook). Additionally, the embedding dimension, denoted as nz in equation (4.3),
has the value 1024 as mentioned above. This setup allows for a detailed representation of
each image within a high-dimensional embedding space. Examples of the reconstructed
precipitation fields with respect to the ground truth images have been displayed in figures
A.1 and A.2 in Appendix A.
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4.1.2 Autoregressive Transformer

The transformer model uniquely utilizes a mechanism called attention to understand the
relationship between different parts of its input without considering the relative position
of each part with respect to the others [31]. Recent research by Esser et al. [29], Yan
et al. [32] has displayed that, although transformers were initially created for tasks
involving Natural Language Processing (NLP), they are indeed substantially effective
in computer vision tasks that involve the processing of image and video data. Bi et al. [6]
also implement an autoregressive transformer in their research for extreme precipitation
nowcasting purposes.

The architecture of a transformer mainly consists of two components: an encoder and
a decoder. These components are made up of attention layers as well as fully-connected
layers that incorporate the attention mechanism amongst the different parts of the input.
Additionally, this setup of stacked layers is complemented by position-wise feed-forward
networks, which process each part of the input sequence independently. Moreover, the
feed-forward network is also responsible for introducing non-linearity in the processing of
the input sequence (GELU has been utilized for the proposed model - World Model
(EVL)). This helps in learning more complex patterns which are typically not achievable
using linear transformations [31]. The below-mentioned figure 4.3 shows a structure of
the transformer implemented in World Model (EVL). As evident from the figure,
positional encoding is also added to the input provided to the auto-regressive transformer.
Positional Encoding is necessary since the attention mechanism of the transformer treats
each input token (the embedded input sequence) equally, irrespective of their positions or
the sequence in which they appear. Hence, to add crucial information about the sequence
order to the model’s input, positional encoding is incorporated.

Figure 4.3: Structure of the Autoregressive Transformer.

The self-attention mechanism within a transformer processes these input tokens (embed-
ded with positional encoding) through three position-wise linear layers, generating three
sets of representations namely: Queries (Q), Keys (K), and Values (V). The attention
weights are calculated using equation (4.4) where Q, K, and V can be calculated as
Q = XWQ, K = XWK , and V = XWV and dk is the dimensionality of Q, K and V . The
model learns the weight matrices WQ,WKand, WV through the backpropagation on the
transformer’s loss function. The incorporation of

√
dk as a scaling value is done since the

dot product of high-dimensional matrices would produce large values which could prove
to be problematic when applying the softmax function (as it is sensitive to large values).

Attn(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (4.4)
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Figure 4.4: Representation of Causal Attention mechanism.

The utilization of the Softmax function is to obtain a set of weights that accurately
evaluate each token in relation to the global context. The Softmax function helps in

the normalization of the attention scores (QKT
√
dk

) and ensures that the scores follow a

probability distribution with the weights of each token summing up to 1 as shown in
equation (4.5).

softmax

(
QiK

T

√
dk

)
=

e

(
QiK

T
√

dk

)

∑dk
j=1 e

(
QjK

T
√

dk

) , (4.5)

Moreover, the model uses a causal self-attention mechanism, as shown in Figure 4.4. This
approach involves using masking to ensure that the generation process is autoregressive,
meaning the model makes predictions based on previously seen and current tokens only.
This is achieved by blocking out (masking) the upper part of the attention weights matrix
(shown as white blocks in the figure 4.4) to prevent the transformer from being influenced
by tokens that appear later in the sequence. Then, the transformer applies a straightfor-
ward, element-by-element transformation to obtain logits, which help in predicting the
next element in the sequence, thereby preserving the natural sequence order of the tokens.

As shown in figure 4.3, the autoregressive transformer utilizes 24 layers of self-attention
(as the model has 24 such blocks). The input to the transformer is the discrete latent
representation generated by the VQ-VAE for the original radar images (also referred to
as, tokens). The transformer effectively learns the distribution of the tokens by utiliz-
ing a cross-entropy loss function. The training stage and the generation stage of the
autoregressive transformer have been described in the subsequent sections.

Training Stage

During the training stage, the original radar input images are transformed into quantized
codes through the vector quantization layer (as shown in figure 4.1). This representation
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is given by zq = q(E(x)) where E is the Encoder of the VQ-VAE. This step produces a
sequence of codes, within the range of 0 to |Z|− 1, representing the indices from the VQ-
VAE codebook, for every encoded input image. These indices or tokens are then passed
through an embedder that transforms the corresponding discrete tokens into continuous
vectors. As shown in figure 4.3, these Input sequence of tokens are then added with
positional embeddings which inject the sequence order information into the vector repre-
sentations of the respective tokens. The transformer processes these embedded-positional
encoded tokens through all the layers and outputs raw, unnormalized predictions for each
token known as logits. These logits are evaluated against the actual distribution of the
tokens using a cross-entropy loss function. The cross-entropy loss function when imple-
mented in the PyTorch framework, innately converts the logits into probabilities using a
softmax layer, hence, accepting probabilities as its inputs. The cross-entropy loss function
can be written as:

LTransformer = Ex∼p(x)[− log p(z)], (4.6)

where p(z) =
∏N

i=1 p (zi | z<i), indicates that, given the indices (tokens) z<i, the trans-
former is trained to predict the distribution of the next possible indices zi.

Generation Stage

In the generation stage, the transformer is given the conditional input tokens that serve
as the starting point for generating new tokens. A Key-Value (KV) cache is used here to
speed up the process at every step. KV cache is done by keeping the keys and values that
were determined during the self-attention phase, allowing the model to avoid redoing cal-
culations for these elements in future steps. This is especially beneficial in autoregressive
models, where the transformer predicts one token at a time. The KV cache enables each
newly produced token to depend on tokens that have already been generated without
having to recalculate the entire attention map, thereby greatly improving the efficiency
of the generation process. The decoder of the transformer carries out KV caching since it
is responsible for the generation of the new tokens (based on the conditional ones) [33].
KV caching requires more computational capacity to store the Keys and Values of the
previous tokens. However, it improves the overall efficiency of the generation phase as
mentioned above.

Furthermore, in the generation stage, the logits of the last token are sliced and concate-
nated with the previous tokens to form a new sequence. The autoregressive transformer
is designed to continue this production of logits for a total number of steps determined
by the number of prediction frames multiplied by the total number of tokens required
to encode the input radar image. Once, the logits for the entire sequence of prediction
frames have been generated, top-k and top-p sampling techniques are applied to narrow
down the sampling pool to the k most likely tokens or to a subset of tokens that together
add up to a specified probability p, enhancing the quality and coherence of the generated
tokens for the entire sequence.

For the final output, categorical sampling has been utilized that allows the selection of
certain a token from the predicted probability distribution by the model. Once, the entire
sequence of tokens has been predicted by the transformer. The tokens are fed back to the
decoder of the VQ-VAE, which decodes the discrete sequence of tokens into continuous
representations from the Codebook of the VQ-VAE, forming a predicted radar map.
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4.2 Addressing Extreme Events

As already mentioned in section 4.1.1, the VQ-VAE transforms the original radar input
images into discrete latent space representations by quantization. The discrete represen-
tations or tokens represent different precipitation areas on the input radar maps. Con-
sequently, these tokens correspond to different levels of rainfall namely: no rain, light
rain, extreme rain on the original radar input map. However, as mentioned in Chapter
3, instances of low and moderate rainfall outnumber the occurrence of heavy or extreme
rainfall. Therefore, it can be said that the number of extreme tokens would be less when
compared to the number of tokens that capture light or no rainfall. This observation
indicates that the autoregressive transformer is being trained on a significantly imbal-
anced dataset. Due to the lack of adequate samples of extreme precipitation patterns in
the training dataset, the autoregressive transformer’s output distribution is likely to skew
towards more frequently occurring tokens as well,i.e., those signifying no rainfall or light
rainfall. To address this problem, a binary classifier has been incorporated that classifies
the tokens into extreme or non-extreme, and then an additional loss function known as
EVL (equation (2.30)), has been incorporated inside the autoregressive transformer as a
regularizer. The Binary classifier and the incorporation of the EVL loss function have
been explained in detail in the subsequent sections.

4.2.1 Binary Classifier

For the classification of the tokens into extreme or non-extreme, a transformer is incor-
porated along with the autoregressive transformer. The input to this transformer is the
sequence of tokens (for the corresponding encoded radar maps) that are generated from
the auto-regressive transformer during its training phase. The classifier is trained using
a standard binary cross entropy loss function given by:

BCE (ut, vt) =− vt log (ut)− (1− vt) log (1− ut) , (4.7)

where ut is the predicted probability and vt is the ground truth label. The ground truth
labels vt are calculated based on the averaged precipitation over a threshold of 5mm on
the input radar maps. This allows the classification of all the tokens corresponding to
an extreme/non-extreme event based on the ground truth labels. The classifier generates
logits for the two aforementioned classes which are then passed through a SoftMax layer
to generate the predicted probabilities ut.

Therefore, the predicted probabilities ut and the ground truth labels vt act as the input
to the EVL loss function that has been derived in section 2.2.3. The EVL loss function
is given as:

EVL (ut, vt) =− β1

[
1− ut

γ

]γ
vt log (ut)

− β0

[
1− 1− ut

γ

]γ
(1− vt) log (1− ut) .

(4.8)

where Pr(vt = 1) = β1 and Pr(vt = 0) = β0 are the proportions of the extreme events and
normal events. γ is the shape parameter as mentioned in section 2.2.3. However, several
researchers also term it as the Extreme Value Index [6], [7]. The EVL loss function is
incorporated with the loss function of the autoregressive transformer (equation (4.6)) as an
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additional regularizer. Therefore, the updated loss function on which the autoregressive
transformer is being trained on, can be written as:

LTransformer-EVL = LTransformer + λ[EVL(ut, vt)]. (4.9)

The values for β0 and β1 are taken as 0.95 and 0.05 respectively since top 5% of the events
are considered as extreme events. The value of γ for EVL was set to 1, as this setting
demonstrated optimal performance by Bi et al. [6]. The value of λ has been chosen as
1 based upon the analysis of results shown in Appendix C. Therefore, the model World
Model (EVL) consists of these three components i.e. the VQ-VAE, the autoregressive
transformer, and the Binary classifier whereas the baseline World Model consists of
only the VQ-VAE and the Autoregressive Transformer (without the implementation of
the EVL loss function).

Autoregressive Transformer

dec dec

encenc

dec

Kt Kt+k

Kt+1
Extreme tokens

classifier

Codebook

Figure 4.5: Representation of the entire model - World Mode (EVL).

In figure 4.5, the representation of the World Model (EVL) has been shown which
consists of the three main components described above sections. The components of the
VQ-VAE are shown as the enc, dec, and the codebook blocks whereas the Autoregressive
Transformer is self-explanatory. The input tokens for the encoded radar input images are
passed to the Extreme tokens classifier block which classifies the tokens as extreme/non-
extreme and gets simultaneously trained with the autoregressive transformer.

4.2.2 Post-processing Technique

Since the input radar maps (RT-dataset) do not comprise of high-intensity precipitation
pixels, Chen et al. [34] proposed a post-processing technique for a better emphasis on
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high-intensity precipitation pixels during nowcasting. The method is expressed using the
equation below:

TP [i][j] =

(
1 + a

(
RP [i][j]

max(RP )

)b
)

∗RP [i][j], (4.10)

where TP and RP are the post-processed and unprocessed predictions, respectively.
Moreover, (i, j) represents the location of the pixels in the prediction maps. The pa-
rameters a and b are determined to reach the maximum Gilbert Skills Score (GSS) on
the validation dataset (the 357 extreme events). Bi et al. [6] use the values a = 0.66 and
b = 0.81 and the same has been applied in the scope of this thesis work to be consistent
with the application of it.

The aforementioned post-processing technique enhances the detection rate of high-
intensity precipitation pixels. However, in doing so it also increases the number of False
Alarm cases so it is applied in tandem with the ensemble technique (as shown in section
5.1.2).

4.3 Experiment Configuration details

In this section, the details about the training configuration of the model World Model
(EVL) are described in detail. As mentioned above, the model consists of three main
components: VQ-VAE, an Autoregressive Transformer, and a Binary classifier for classi-
fying the extreme and non-extreme tokens. The following list contains the details of the
hyper-parameters controlling the architecture of the different components of the model as
well as their training procedures.

1. VQVAE model configuration:

• Total Number of down-sampling layers (2D Convolutional Layers): 5

• Size of codebook: 1024

• Embedding dimension of each token in the codebook: 1024

• Number of ResNet Blocks after every down-sampling layer: 2

2. VQVAE training configuration:

• Learning rate: 0.0001

• Batch size: 64

• Weight decay: 0.1

3. Auto-regressive Transformer model configuration:

• Embedding dimension: 1024

• Number of attention layers: 24

• Number of attention heads: 16

4. Auto-regressive Transformer training configuration:

• Learning rate: 0.0001
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• Batch size: 64

• Weight decay: 0.01

• Drop out rate (for both attention and fully connected layer): 0.1

5. Binary Classifier Transformer model configuration:

• Embedding dimension: 1024

• Number of attention layers: 6

• Number of attention heads: 8

6. Binary Classifier training configuration:

• Learning rate: 0.0001

• Batch size: 64

• Weight decay: 0.01

The main codebase for the model has been developed in the PyTorch framework. The
training as well as the different experiments (detailed in Chapter 5) are conducted on an
NVIDIA RTX A6000 GPU. For the training of all the components of the models, 16-bit
Automatic Mixed Precision (AMP) using a library called Fabric in the PyTorch framework
[35] has been implemented. Traditionally, the training of Deep neural networks (DNNs)
has relied upon IEEE single-precision format [36], however, this leads to an increment in
training time especially large architectures like the different components of the World
Model(EVL) model. However, AMP enables the model (weights of the different layers)
to be trained on lesser precision while maintaining the accuracy of the DNNs achieved
with single precision. AMP helps speed up the training process of the DNNs by reducing
memory requirements [36]. This helps in the overall improvement of the training time of
the model when compared with the other models as shown in Appendix B.

Moreover, to reduce the training time even further, the input radar images have been
converted into NumPy arrays and saved locally. This is mainly done to reduce the time
in calling the input images from the Radar folder path (as they are saved in .h5py format,
available on the KNMI website [25]). Since the training dataset consists of 30632 sequences
of radar images where each sequence comprises of 9 images, it can increase the training
time if every time the image path has to be called for training. This conversion of the
input radar images into NumPy array mainly helps in improving the training efficiency
of the VQ-VAE as it is trained on the images itself. The training time significantly
improved from approximately 30hrs/epoch to 3.5hrs/epoch in the case of the VQ-VAE.
As for the Autoregressive Transformer, since it is trained on tokens-level representations
of the encoded images, the training time is mainly improved because of the application
of the 16-bit AMP technique mentioned above.

4.4 Verification Metrics

In this section, the details about the different verification metrics used to evaluate the
predictions generated by the various models have been elaborated. The first two sub-
sections contain information on the metrics used to evaluate the nowcasting performance
for the entire region of the Netherlands. In contrast, the last sub-section contains details
regarding the metrics used for evaluating the extreme event detection performance in the
catchment areas.
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4.4.1 Continuous Verification metrics

Pearson’s Correlation Coefficient (PCC)

Pearson’s Correlation Coefficient (PCC) is utilized as an index to ascertain the correlation
between two disparate datasets. The coefficient, symbolized by ρ, is derived according to
the following equation:

ρ =
1

Nf

Nf∑
i=1

(
Fi − µF

σF

)(
Oi − µO

σO

)
, (4.11)

In this equation, Fi and Oi represent the amounts of rainfall in a specific cell of the
forecast and observation maps, respectively. The variables µF and µO denote the mean
rainfall values from the forecast and observation frames, respectively, while σF and σO
are their standard deviations. The term Nf signifies the total count of pixels within the
radar map for a specific forecast lead time.

A higher PCC is an indication of a stronger correlation between the two images, with a
PCC of 1 being the ideal, denoting perfect correlation. However, this is often unattain-
able in practical scenarios. Some research [2] has indicated that a PCC value below the
threshold of the reciprocal of e (approximately 0.37) is indicative of a forecast lacking
skill. Within the scope of this thesis, PCC will be evaluated for lead times of 30, 60, 90,
120, 150, and 180 minutes.

Mean Absolute Error (MAE)

For the evaluation of the predictions, Mean Absolute Error (MAE) has also been utilized
as one of the continuous metrics. MAE measures the absolute value (l1-norm) of the error
between the ground truth and the prediction frames and is given by:

MAE =

∑Nf

i=1 |Fi −Oi|
Nf

, (4.12)

where Fi and Oi represent the amount of rainfall in a certain cell in the prediction and
the ground truth maps, and Nf , represents the total number of pixels in the respective
map. Similar to PCC, the MAE metric is also calculated for all the lead times i.e. 30,
60, 90, 120, 150, and 180 minutes. A smaller Mean Absolute Error (MAE) between the
forecast and observation indicates a higher accuracy of the predicted frame.

4.4.2 Spatial Verification metric

Fractional Skills Score

The Fractional Skill Score (FSS) is a spatial metric utilized for evaluating the precision
of precipitation forecasts. By varying the length scale n, which impacts the extent of the
area considered, different FSS scores can be calculated giving us the analysis of predictions
with a more extensive area used in the calculation of the score. Generally, a larger n leads
to better FSS scores. The FSS value is confined between 0 and 1, where a higher FSS
indicates a more accurate forecast map. The FSS is defined as:
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FSS = 1− MSE(n)

MSEref(n)
, (4.13)

In this context, MSE(n) represents the mean square error across observations and fore-
casts at a specified length scale n, whereas MSEref(n) denotes the maximum MSE across
both observations and forecasts at the same length scale. The MSEref(n) is computed as
follows:

MSEref(n) =
1

NxNy

(
Nx∑
i=1

Ny∑
j=1

O2
i,j(n) +

Nx∑
i=1

Ny∑
j=1

F 2
i,j(n)

)
, (4.14)

Here, Nx and Ny denote the total number of columns and rows present in the ground
truth and forecast maps, respectively. F 2

i,j(n) and O2
i,j(n) are the squared fractions of

the forecast and observation greater than the defined rainfall threshold for grid cell (i, j),
considering adjacent points within a neighborhood up to n. These fractions are calculated
as:

O2
i,j(n) =

1

n2

n∑
k=1

n∑
l=1

Io

(
i+ k − 1− n− 1

2
, j + l − 1− n− 1

2

)
, (4.15)

where Io is a binary field indicating whether the rainfall at a certain map location surpasses
a given threshold. The sum of this field denotes the number of cells surpassing the rainfall
criterion within a specific grid cell, and this sum is normalized by the total number of
cells within the n × n area. Predictions are typically considered skillful forecasts when
the FSS exceeds 0.5+ fo

2
, where fo is the domain-averaged proportion of observed rainfall

[8].

4.4.3 Categorical Verification Metrics

In the assessment of categorical metrics, each pixel in the prediction and observation maps
is initially categorized as either positive (greater or equal to) or negative (below) a specific
threshold [37]. Subsequently, pixels are allocated into one of four distinct categories:

1. H: true positive, where both observation and prediction are positive.

2. M : false negative, where the observation is positive, but the prediction is negative.

3. F : false positive, where the observation is negative, but the prediction is positive.

4. R: true negative, where both observation and prediction are negative.

The Critical Success Index (CSI), prevalent within the nowcasting community, encap-
sulates the binary classification performance by enhancing precision and simultaneously
penalizing false alarms. An elevated CSI correlates to enhanced performance and is com-
puted as:
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Event observed Total
Event predicted

Positive Negative

Positive Hits (H) False alarms (F) Predicted positives

Negative Misses (M) Correct negatives (R) Predicted negatives

Total Observed positives Observed negatives Total

Table 4.1: Confusion Matrix for categorical metrics.

CSI =
H

H + F +M
. (4.16)

The False Alarm Ratio (FAR) is another pivotal metric for binary classification efficacy,
regularly utilized within weather forecasting. FAR evaluates the precision of predictive
alarms and is inversely related to performance i.e. a lower FAR indicates a superior
performance in classification task. FAR is calculated by:

FAR =
F

F +H
. (4.17)

These categorical metrics have been used to evaluate the accuracy of the predictions
generated by the different models, with respect to the ground truth maps in Chapter 5.

4.4.4 Catchment Verification Metric

To check how well a model can identify extreme weather in a catchment area, we use
certain methods. These extreme weather events are classified as either happening or
not, similar to other types of classification. Events are categorized as true positive (H),
false negative (M), false positive (F), and true negative (R), depending on whether they
exceed certain thresholds. The Critical Success Index (CSI) and the False Alarm Ratio
(FAR) are used to check if the classification is correct. Another method is the Receiver
Operating Characteristic (ROC) curve, which is created by using different thresholds for
extreme events. Since there is an imbalance in the observations between the two classes
(the number of extreme events is significantly lesser than the non-extreme events) another
analysis is performed using the Precision-Recall curve [38]. The Precision-Recall curve is
also created using different thresholds for extreme events. The choice of the thresholds
for both ROC and Precision-Recall curves has been explained in detail in section 5.2.2.

Receiver Operating Characteristic (ROC) Curve

The ROC curve is constructed by calculating two things: the Hit Rate (HR) and the False
Alarm rate (FA). They are given by:

HR =
H

H +M
. (4.18)

FA =
F

F +R
. (4.19)

By choosing different thresholds, we can get different values of HR and FA. We plot these
values on a graph with FA on the x-axis and HR on the y-axis. Connecting these points
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gives us the ROC curve. This curve is a useful tool to compare how well different models
can detect and classify events. The area under the ROC curve (AUC) is often used to
measure detection ability. A bigger AUC means the model is better at detecting events.

Precision-Recall Curve

The Precision-Recall curve is constructed using two metrics: Precision and Recall (also
known as the Hit Rate, as mentioned above). The formulae for both of these metrics are
given as:

Precision =
H

H + F
. (4.20)

Recall =
H

H +M
. (4.21)

The Precision-Recall Curve is also constructed in a similar way as the ROC curve i.e.
by choosing different thresholds, we calculate multiple precision and recall scores. The
precision scores are plotted on the y-axis whereas the recall scores are plotted on the
x-axis. A higher AUC for a certain model signifies a better performance of the model in
the detection of positive events with a lesser number of false negatives.

40



Experiments and Results 5
Based on the objectives of this thesis project, the evaluation of the model can be divided
into two categories i.e. Nowcasting performance of the different models on the whole region
of the Netherlands and Extreme Event detection performance on the catchment regions.
As mentioned in Chapter 3, Catchments are those regions where precipitation accumulates
over a period of time making them susceptible to floods (during heavy rainfall).

In the initial section of this chapter, the outputs of the model and its real-time fore-
casting capabilities for the entire area under investigation are assessed. The evaluation
is done by employing a range of continuous as well as categorical metrics such as PCC,
MAE, FSS, CSI, FAR which, are defined in the last section of the previous chapter.

The second section focuses on identifying severe weather events. Here, the average
precipitation accumulation over a 3-hour period in a specific catchment area is calculated
using data from the preceding forecasting outcomes. This calculation is then compared
with the established threshold for extreme events. Subsequently, each incident is catego-
rized into one of four scenarios (true positive, false positive, true negative, false negative)
based on this comparison. The study then utilizes various standard categorical metrics
for binary classification (HR, FA, CSI, FAR, AUC of ROC curve, and Precision-Recall
curve) to assess the model’s performance in detecting extreme weather events. For both
segments of the study, the performance of PySTEPs is used as a comparative standard.
The comprehensive setup of PySTEPs is described in section 2.1.1. Moreover, PySTEPS
is also provided with the same input as that used in the deep learning models which are
a part of this study.

5.1 Nowcasting performance in the whole region of Netherlands

5.1.1 Analysis of models without ensemble and post-processing technique

In this section, nowcasting performance of four models is compared as well as analyzed.
The first model is the benchmark Nuwa-Pytorch (VQGAN) model proposed by Bi et.
al [6], which consists of a Vector-Quantized Generative Adversarial Network (VQGAN)
along with an auto-regressive transformer which has the EVL loss function incorporated
in it. The second model is World Model (EVL) which is the main model of this thesis
project consisting of a VQVAE (Vector-Quantized Variational Autoencoder) along with
an auto-regressive Transformer (where the EVL loss function is also incorporated) and a
binary classifier (similar to a Vision Transformer) for consistent classification of extreme
and non-extreme tokens. The third model used in this comparative study, consists only
of a VQVAE and an auto-regressive Transformer, termed as World Model (also acts as
a baseline for World Model (EVL)). Lastly, PySTEPS also has been utilized in this
study, to understand the performance of state-of-the-art models with respect to Deep
generative models such as the ones mentioned above.
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In the below-mentioned figure 5.1, two continuous metrics are analyzed for the different
models with respect to different lead times. The first sub-figure 5.1a, shows the PCC
values for different models over different lead times whereas the second sub-figure 5.1b
shows the MAE metrics.

Generally, a prediction is deemed effective if the PCC is greater than 1
e
. This helps

in figuring out the longest time a model can predict accurately before the correlation
fades, also known as the maximum skillful lead time. The PCC plot indicates that most
models can predict accurately for less than 30 minutes, mainly because the area studied is
quite small. World Model-EVL shows the highest PCC average metric when compared
with other models and, also has a skillful prediction for the first lead time (30 minutes).
The baseline - World Model also shows better performance than PySTEPS and Nuwa-
PyTorch (VQGAN). The PCC values show a decreasing trend over the whole horizon
(all the lead times) since the predictions become less accurate with an increment in lead
time (leading to a lesser correlation with respect to the ground-truth frames). Moreover,
the World Model-EVL model also shows a significant improvement in PCC across all
the lead times when compared with the Nuwa-PyTorch (VQGAN) model (an overall
45 percent increment in the average PCC value).

(a) (b)

Figure 5.1: 3-hour nowcasting performance verification: continuous metrics (sub-figure (a) for
PCC and sub-figure (b) for MAE). Relationship between lead time (mins) and metric scores,
with 3-hour averaged scores shown in the legend.

Regarding MAE, a high MAE often occurs when the model is not able to predict the
overall map correctly, when compared with the ground truth frames or when the prediction
frames do not capture the correct precipitation intensity of a certain pixel in a respective
frame. A lower MAE value typically indicates a better prediction performance since it
signifies a smaller deviation from the ground-truth frames. All the models show a similar
upward trend of MAE across the whole horizon. This is because of the increment in
uncertainty associated with predictions further out into the future. The World Model-
EVL outperforms all others with the lowest starting MAE of approximately 0.52, and
while it follows the common trend of an increasing MAE over time, it maintains the lowest
error across all time points. It peaks at around 120 minutes with an MAE of around 0.75
and then slightly decreases, remaining relatively flat until 180 minutes. The average
MAE of 0.694 indicates that this model is the most accurate among the other models in
this experiment. Moreover, the World Model model (baseline) also shows a significant
improvement in the average MAE, when compared with PySTEPS (approximately, a 22%
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decrement) and Nuwa-PyTorch (VQGAN) (approximately, a 27% decrement).

(a) (b)

(c) (d)

Figure 5.2: 3-hour Nowcasting performance verification on the whole Netherlands region:
Categorical Scores - CSI and FAR for a, b) 1mm and c, d) 2mm. Relation between lead time
and metric scores, with 3-hour averaged scores shown in the legend.

In the above-mentioned figure 5.2, the Critical Success Index (CSI) and the False
Alarm Ratio (FAR) have been plotted for the four models with the thresholds of 1mm,
2mm to analyze the performance of the models. The application of the different thresholds
is to assess the performance of the respective models in predicting accurate precipitation
intensities with regard to light rainfall (1mm & 2mm). In the field of meteorology, the
Critical Success Index (CSI) is a widely recognized metric that summarizes the accuracy of
predicting whether certain events, such as rainfall, will surpass a specific threshold or not.
Besides CSI, FAR has also been used to assess the detection ability of the corresponding
models.

From sub-figure 5.2a and 5.2c, it can be observed that World model-EVL) has the
highest CSI (1mm) and CSI (2mm) average compared to all the other models. However, it
can also be observed thatNuwa-PyTorch (VQGAN) shows almost similar performance
with respect to World Model-EVL. This highlights the significance of the incorporation
of the EVL loss function in the auto-regressive transformers of the respective models.
Moreover, the baseline World Model also displays similar performance when compared
with PySTEPS.

From sub-figure 5.2b and 5.2d, it can be observed that in both the figures, Nuwa-
PyTorch (VQGAN) has the highest average FAR metric when compared with the other
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models suggesting, that the model predicts more false alarms with respect to others. Also,
PySTEPS has the lowest FAR average for both the thresholds (1mm & 2mm). However,
the average FAR metric for PySTEPS is comparable to the average values of both World
Model and World Model-EVL - (especially for the 2mm threshold CSI and FAR).

(a) (b)

Figure 5.3: 3-hour Nowcasting performance verification on the whole Netherlands region:
Categorical Scores - CSI and FAR for a, b) 8mm. Relation between lead time and metric scores,
with 3-hour averaged scores shown in the legend.

Figure 5.3 shows the CSI and FAR metrics for heavy rainfall in the entire Netherlands
region. Sub-figure 5.3a shows the CSI metrics for the four models with 8mm as the
threshold. It can be observed that PySTEPS has the highest CSI average when compared
with the other models. However, it can also be seen that World Model-EVL has an
overall consistent behavior over the whole horizon when compared with PySTEPS.World
Model-EVL and Nuwa-PyTorch (VQGAN) have almost similar CSI average metrics
over the whole horizon. However, based on the trend of the graphs of the two models, it
can be observed that World Model-EVL displays better performance with increment
in lead time over Nuwa-PyTorch (VQGAN).

From sub-figure 5.3b, it can be observed thatWorld Model-EVL has the lowest FAR
average when compared with all the other models. This shows that World Model-EVL
is more accurate in predicting heavier precipitation events. This is also in alliance with
the fact that World Model-EVL has been made more sensitive to predicting heavier
rainfall events (flood detection) with the incorporation of the EVL (Extreme Value Loss)
function in the auto-regressive transformer part of the model.

Therefore, from the two above-mentioned figures: 5.2 and 5.3, it can be concluded that
World Model-EVL shows comparable performance with the state-of-the-art benchmark
PySTEPS in predicting lighter as well as heavier rainfall events in the whole Netherlands
region. However, these plots have been calculated on the whole Netherlands region which
has some additional noise in the prediction maps when compared with the ground-truth
maps, and to have a better understanding of the performance of the models in detect-
ing extreme events, catchment-level analysis has been performed and analyzed in the
subsequent sections of this chapter.
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(a) (b)

(c) (d)

Figure 5.4: 3-hour Nowcasting performance verification on the whole Netherlands region: FSS
Scores for a) 30km, b) 20km, c) 10km, d) 1km. Relation between lead time and metric scores,
with 3-hour averaged scores shown in the legend.

In the above-mentioned figure, FSS scores have been plotted for different length scales
(1km, 10km, 20km, 30km) of the four models, respectively. Ideally, a larger length scale
results in a larger FSS score which is evident from sub-figure 5.4a. Intuitively, it means
that when we upscale the predictions to a coarser resolution, there would be less error in
predicting precipitation field location. From figure 5.4, it can be concluded that World
Model-EVL shows the best performance when compared with the other models on all
the length scales. The FSS metrics for different length scales can also be used to provide
intuitions on catchment-level analysis since, the length scales (1km, 10km, 20km, 30km)
can be used to approximate different catchment areas. For instance, one of the catchments
has roughly an area of 30km × 30km. Therefore, if a model has a higher FSS metric at
30 km length scale then the model must have a more accurate catchment-level prediction
for a catchment that is roughly 30km× 30km.

Conclusion

From the above figures, it can be concluded that World Model-EVL shows comparable
performance with respect to the other benchmark models presented in this analysis. With
regards to continuous metrics such as PCC, MAE, FSS the model displays an overall better
performance. In the context of categorical metrics such as CSI, FAR the model shows
comparable performance with respect to PySTEPS and Nuwa-PyTorch (VQGAN).

In figure 5.2, it can be observed that World Model-EVL has a higher CSI average
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metric for light rainfall (thresholds 1mm, 2mm) when compared with Nuwa-PyTorch
(VQGAN) but shows comparable performance on the detection of heavy rainfall (thresh-
old 8mm). Moreover, World Model-EVL shows an overall lower FAR average for
both light and heavy rainfall detection in comparison to Nuwa-PyTorch (VQGAN).
This shows the significance of the implementation of the EVL loss function in the auto-
regressive transformers of both the models. However, the World Model-EVL has an
additional transformer (similar structure to a Vision Transformer) to classify the tokens
as extreme or non-extreme on-the-fly while, training the auto-regressive transformer with
the EVL loss function.

The baseline - World Model does not have any additional deep neural network for
the classification of extreme/non-extreme tokens or the implementation of the EVL loss
function which is evident from the lower CSI average values for all the thresholds (1mm,
2mm, 8mm) when compared with PySTEPS andNuwa-PyTorch (VQGAN). However,
the model also has a lower FAR for all the thresholds when compared to Nuwa-PyTorch
(VQGAN) suggesting that the VQVAE responsible for capturing the precipitation in-
tensities into tokens is more powerful than the VQVAE of Nuwa-PyTorch (VQGAN).

5.1.2 Effect of ensemble and post-processing technique

In this section, the continuous as well as the categorical metrics are calculated on the
prediction frames for an ensemble of 5 for the deep generative models (Nuwa-PyTorch
(VQGAN), World Model-EVL and, World Model and an ensemble of 20 for PyS-
TEPS since it is a Numerical Weather Prediction (NWP) model. The number 5 has
been chosen as an ensemble number because the authors of [6] the Nuwa-PyTorch
(VQGAN) model use this as the ensemble number. Hence, to be consistent in the com-
parison of metrics this number has been chosen. Also, more ensembles mean more amount
of generation time so to maintain the trade-off between generation time and the ensemble
number, Bi et al. [6] chose an ensemble of 5 predictions.

Metrics/Models PySTEPs Nuwa-PyTorch World Model(EVL) World Model

PCC (↑) 0.219 0.210 0.253 0.241
MAE (↓) 0.798 0.926 0.714 0.752
CSI (1mm) (↑) 0.250 0.262 0.267 0.254
CSI (8mm) (↑) 0.008 0.006 0.009 0.006
FAR (1mm) (↓) 0.617 0.618 0.587 0.579
FAR (8mm) (↓) 0.592 0.399 0.502 0.513
FSS (1km) (↑) 0.375 0.394 0.432 0.414
FSS (10km) (↑) 0.467 0.456 0.493 0.463
FSS (20km) (↑) 0.522 0.498 0.534 0.508

Table 5.1: Summary of the averaged precipitation scores over all the lead times for different
models

In the table mentioned above 5.1, the average metrics over the whole horizon (all the
lead times) have been shown for the four models, respectively. For the categorical metrics
(CSI & FAR), 1mm threshold and 8mm threshold metrics have been shown since light and
heavy rainfall detection can be categorized by these two thresholds. As for the continuous
metrics, MAE, PCC, and FSS (for different length scales) have been shown. The highest
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value for each metric has been highlighted in Bold while the second-highest value for
each metric has been underlined.

Averaging (Ensemble) assists in lowering the FAR metrics (averaged over all the lead
times) of the prediction frames since the number of false positives reduces when predic-
tions are averaged. However, it also reduces CSI, especially for the 2mm and the 8mm
thresholds. This decrease could probably be explained by the lighter overall rainfall in-
tensity in the averaging results. The continuous metrics such as MAE, PCC, and FSS
(for all length scales) show improvement as well.

To tackle this, a post-processing technique (4.2.2) is introduced which helps in the
increment of CSI metrics. This behavior is observed since, the post-processing helps in
up-scaling the precipitation intensities of the pixels, thus, improving the detection of true
positives for heavy rainfall (8mm threshold). However, it also worsens the other metrics
such as FAR, MAE, and PCC but since these two techniques are applied together, an
overall increment in all the metrics is observed for all the models in this experiment.

Conclusion

From table 5.1, it can be concluded that World Model-EVL has the overall best per-
formance when compared with all the other models. The model displays better metrics
in terms of both continuous (PCC, MAE, FSS) as well as categorical (CSI, FAR) metrics.
The model displays better performance than PySTEPS thus, validating the usefulness
of the ensemble as well as the post-processing technique in nowcasting tasks. In terms
of CSI metric of 1mm threshold, Nuwa-PyTorch (VQGAN) shows comparable per-
formance with regard to World Model-EVL, highlighting the significance of the incor-
poration of the EVL loss function in its auto-regressive transformer. Moreover, World
Model-EVL also showcases a lower FAR metric for 1mm threshold, when compared with
Nuwa-PyTorch (VQGAN). Therefore, based on this trade-off, it can be concluded that
the overall performance in detecting light rainfall (1mm threshold) is better for World
Model-EVL.

Similarly, in the detection of heavy rainfall (8mm threshold) in the whole region of
Netherlands, World Model-EVL displays the best CSI metric when compared with all
the other models especially when compared with Nuwa-PyTorch (VQGAN) (there is
a 50% increment in the CSI 8mm metric). However, Nuwa-PyTorch (VQGAN) also
shows the lowest FAR metric for the 8mm threshold, followed by World Model-EVL.
The comparison suggests that while both models — Nuwa-PyTorch (VQGAN) and
World Model-EVL — show nearly equivalent effectiveness in identifying heavy rainfall
throughout the whole region of Netherlands, World Model-EVL model stands out. It
demonstrates a notably higher increase in the CSI (while maintaining a reasonable FAR
value), indicating a better ability to detect heavy rainfall events. Moreover, PySTEPS
also displays comparable performance in the detection of heavy rainfall (8mm) but at the
trade-off of a comparatively high FAR metric.

It can also be observed that the baseline model World Model shows comparable
performance with respect to PySTEPS andNuwa-PyTorch (VQGAN) in the detection
of both heavy (8mm) and light (1mm) rainfall events. Moreover, the model also shows
better performance with respect to continuous metrics such as MAE, and PCC when
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compared with PySTEPS and Nuwa-PyTorch (VQGAN). This proves that even the
baseline model (without the application of the EVL loss function and the binary classifier)
is suitable for precipitation nowcasting tasks.

5.2 Extreme event detection in catchment regions

In this section, the identification of extreme weather events within specific catchments in
the entire Netherlands region is assessed and analyzed. To do this, the relevant sections
of the predicted precipitation maps, generated by various models, are isolated to examine
just the catchment areas in question. An ’extreme event’ in this context, is characterized
by the average amount of rainfall collected over a 3-hour period within that specific
catchment. The thresholds are the top 1% highest average precipitation accumulation
(based on the KNMI-RT dataset) as well as the top 5% highest average precipitation
accumulation over the respective catchments. Based on this, the thresholds for each
catchment are then calculated.

The detection ability of the models has been assessed in two ways:

• Firstly, each catchment area is assigned a specific extreme rainfall threshold that
has been previously calculated. The extreme rainfall thresholds are first calculated
for the top 1% and the top 5% of the events. Then, the models’ performance at
this threshold is measured using four key categorical metrics: Hit Rate (HR), False
Alarms (FA), False Alarm Ratio (FAR), and Critical Success Index (CSI) whose
formulae have been described in the respective tables below.

• Secondly, to get a broader view of the models’ abilities to detect extreme events,
a range of different extreme rainfall thresholds is applied uniformly across all the
predictions of the catchment areas, while keeping the threshold on the ground truth
constant. The models’ performance are then compared using a Receiver Operating
Characteristic (ROC) curve and a Precision-Recall curve, which visually represents
their ability to detect extreme events under these varied thresholds. In this analysis,
it is assumed that every catchment area is subject to the same threshold for what
constitutes extreme rainfall.

The equations involved in calculating the 3-hour averaged precipitation accumulation for
the ground truth catchment areas as well as the predicted catchment areas are as given
below:

Xpre =
(
XT+30

pre +XT+60
pre + . . .+XT+180

pre

)
∗ 1

6
∗ 3

Xobs =
(
XT+30

obs +XT+60
obs + . . .+XT+180

obs

)
∗ 1

6
∗ 3

(5.1)

In the above equation 5.1, Xpre represents the precipitation accumulation estimated from
the prediction, whereas Xobs represents the ground-truth precipitation accumulation from
the KNMI - Real Time (RT) dataset. The unit for both, Xpre and Xobs is mm/3hr. The
experiment uses 357 events across the entire Netherlands region and 3,927 events at the
catchment level, occurring between 2019 and 2021. Every nationwide event includes one
or more extreme events at the catchment level.
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5.2.1 Fixed Threshold Evaluation

For the fixed threshold evaluation, the top 1% highest average precipitation levels, based
on all rainfall events within each of the twelve catchment areas from 2008 to 2014, have
been established as the extreme rainfall thresholds for these catchments. The magnitude
of this threshold is approximately 5mm/3hr. The performance of the models has been
assessed using four categorical metrics: Hit Rate (HR), False Alarm rate (FA), False
Alarm Ratio (FAR) and, Critical Success Index (CSI). The results obtained for the four
models have been displayed below in the table 5.2 with the formulae for each metrics
used for this analysis (where, H: True Positive, M: False Negative, F: False Positive, R:
True Negative). The best values are highlighted in Bold while, the second best values
are underlined.

From the below-mentioned 5.2 table, it can be observed that World Model and
World Model-EVLmodels show overall better performance than PySTEPS andNuwa-
PyTorch (VQGAN). World Model-EVL model has a higher HR as well as, a low
FAR when compared with Nuwa-PyTorch (VQGAN). This shows that the World
Model-EVL displays better performance in detecting heavy rainfall events (since, only
top 1% largest catchment average precipitation has been chosen as the threshold for
this evaluation) when compared with Nuwa-PyTorch (VQGAN). Also, the baseline
model World Model, shows a similar CSI metric when compared with Nuwa-PyTorch
(VQGAN) which shows that the model also has a promising ability in the detection of
heavy rainfall events in catchment areas.

Models/Metrics HR = H/(H+M)↑ FA = F/(R+F)↓ FAR = F/(H+F)↓ CSI = H/(H+M+F)↑

PySTEPS 0.3838 0.0965 0.4812 0.2830
Nuwa-PyTorch 0.3959 0.1205 0.5288 0.2941
World Model 0.4006 0.0806 0.4156 0.2998
Weather Model-EVL 0.4209 0.0733 0.3903 0.3109

Table 5.2: Summary of the 1% extreme event detection performance of different models
(Catchment-level evaluation, RT dataset) 5mm/3h.

Conclusion

From the above table 5.2, it can be concluded that the proposed model World Model-
EVL exhibits better performance in the detection of heavy rainfall (5mm/3hr) when
compared with PySTEPS and Nuwa-PyTorch (VQGAN). The increment in CSI met-
ric proves the model’s effectiveness in detecting extreme events using a highly imbalanced
dataset (the number of extreme events is significantly less than the number of normal
events) such as the one used in this experiment.

In comparison to Nuwa-PyTorch (VQGAN), World Model-EVL shows better
performance with regard to all the metrics. This proves that the implementation of
the Binary classifier (for the classification of extreme and non-extreme tokens) along
with the EVL loss function in the autoregressive transformer part of the model is more
effective than just assuming the total number of extreme tokens in the discrete latent
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space, generated by the VQVAE part of the model (the main approach of the Nuwa-
PyTorch (VQGAN) model).

The model World Model-EVL also achieves better metrics for the detection of
heavy rainfall in the catchment regions in comparison to World Model. This proves
the effectiveness of the application of the EVL loss function to bias the model towards
predicting extreme tokens while generation. Also, another advantage of using the EVL
loss function is that it utilizes Extreme Value Theory (EVT) to estimate the weights in
the EVL loss function (as shown in equation (2.30)), working under the assumption that
the extreme values in the dataset follow a heavy-tailed distribution, specifically a Type
II GEV distribution. This allows the World Model-EVL to better account for and
represent the extreme values in the data.

5.2.2 Evaluation of overall extreme event detection ability

To gain a clearer insight into the capability of the respective models to identify extreme
weather events at various levels, an additional experiment is performed. Instead of using
a fixed threshold for the predictions of each catchment, a series of varying thresholds are
applied to all the catchment predictions. For the ground truth data, the same threshold
is maintained (the extreme threshold for each catchment is set to the top 1% highest
average precipitation levels i.e. 5mm/3hr). For this analysis, a common set of descending
thresholds are established for the predictive data at 10, 9.5, 9, 8.5, 8, 7.5, 7, 6.5, 6, 5.5,
5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1 and, 0.5 mm/3hr (20 data points). The results of this
experiment are illustrated through a Receiver Operating Characteristic (ROC) curve and
a Precision-Recall curve in the below-mentioned figures 5.5 and 5.6.

(a) (b)

Figure 5.5: (a) The complete ROC curve for 3-hour extreme event detection, the points on
the curve (from left to right) represent thresholds from 10mm to 0.5mm. (b) Cropping of the
ROC curve by limiting the hit rate to be higher than 0.4 and false alarm rate lower than 0.4.

By comparing the Area under Curve (AUC) in the below-mentioned sub-figure 5.5a,
it can be observed that the model World Model-EVL outperforms all the other models
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that are part of this experiment. Moreover, the baseline World Model displays a similar
performance when compared with Nuwa-PyTorch (VQGAN). This shows that even
though World Model model does not have the additional implementation of the EVL
loss function, the overall choice of the VQVAE as well as, the auto-regressive transformer
makes it powerful enough to have a comparable extreme event detection performance with
respect to Nuwa-PyTorch (VQGAN).

In terms of the complete curve, it is difficult to assess the detection performance of the
different models so the HR has been limited from 0.4 - 1 and the FAR from 0.1 - 0.4 for a
better analysis and is shown in sub-figure 5.5b. From this figure, it can be observed that
World Model-EVL has a higher HR metric when compared with all the other models.
Also, within this limited range of FAR, the World Model-EVL has Hit rate (HR) values
above 0.6 for all the data points (5 data points so for 5 thresholds out of the 20 thresholds
mentioned above) in the plot when compared with all the other models.

(a) (b)

Figure 5.6: (a) The complete Precision-Recall curve for 3-hour extreme event detection, the
points on the curve (from left to right) represent thresholds from 10mm to 0.5mm. (b) Cropping
of the Precision-Recall curve by limiting both precision as well as recall to be higher than 0.4.

In the above analysis with the ROC curves, the False Alarm Rate (FAR) metric gets
normalized by the number of True Negatives (R) which is a huge number. Therefore, for
a more meaningful analysis of the extreme event detection performance of the models,
Precision-Recall Curve has also been plotted and shown in the below-mentioned figure
5.6. For this analysis as well, a common set of descending thresholds are established for
the predictions at 10, 9.5, 9, 8.5, 8, 7.5, 7, 6.5, 6, 5.5, 5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1 and,
0.5 mm/3hr (20 data points) while the threshold for the ground-truth data has been set
to 5mm/3hr (top 1%).

From the above sub-figure 5.6a, it can be observed that World Model-EVL has the
highest AUC when compared with all the other models. To have a better understanding
of the performance of the models, the recall (Hit Rate) has been limited to the range
0.4 - 0.8 while, precision scores in the range 0.4 - 1, as shown in sub-figure 5.6b. It
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can be observed that with the increment in the recall scores (approximately, around 0.65
and higher) World Model-EVL and Nuwa-PyTorch (VQGAN) have almost similar
Precision scores. However, on the basis of the overall AUC value for all the models, it
can be concluded that World Model-EVL has the best performance amongst all the
models in this analysis.

5.2.3 Evaluation of overall moderate rainfall detection ability

The performance of the different models has also been analyzed on the top 5% highest
average precipitation levels i.e. 2mm/3hr. However, this threshold cannot be considered
as an extreme threshold and thus, shows the performance of the models in the detection
of moderate rainfall. For this analysis as well, a common set of descending thresholds are
established for the predictions, similar to the ones mentioned in the above sub-section
5.2.2. The analysis is done using an ROC curve (figure 5.7) as well as a Precision-Recall
curve as depicted below in the subsequent parts of this section.

(a) (b)

Figure 5.7: (a) The complete ROC curve for 3-hour moderate rainfall event detection, the
points on the curve (from left to right) represent thresholds from 10mm to 0.5mm. (b) Cropping
of the ROC curve by limiting the hit rate to be higher than 0.4 and false alarm rate lower than
0.4.

From the below-mentioned sub-figure 5.7a, it can be observed that all the models have
almost similar performance in the detection of moderate rainfall. Based on the magnitude
of the AUC of the different models, World Model-EVL displays the best performance.
Since the plots of each model overlap significantly, sub-figure 5.7b shows the performance
of the models in a limited range of Hit Rate of 0.4-1 and False Alarm Rate of 0.1-0.4. From
this figure, it can be observed that PySTEPS and World Model display almost similar
performance in their detection abilities in this range. Therefore, it can be concluded
that even though PySTEPS shows comparatively lower performance in the detection of
extreme events, it displays promising performance in the detection of moderate rainfall
events.

52



From sub-figure 5.7b it can also be observed that Nuwa-PyTorch (VQGAN) has com-
paratively lower performance in the detection of moderate rainfall events when compared
with the World Model-EVL. This shows the robustness of the additional implementa-
tion of the Binary Classifier for the classification of the extreme and non-extreme tokens
along with the incorporation of the EVL loss function in the Auto-regressive Transformer
of the World Model-EVL.

In the below-mentioned figure 5.8, precision-recall curves have been plotted for the
different models in a similar fashion as described in sub-section 5.2.2 but with the threshold
of 2mm/3hr for the ground-truth data. It can be observed from sub-figure 5.8a that AUC
for World Model-EVL is the highest amongst all the other models in comparison.
However, to have a better understanding of the performance of the different models the
precision scores have been limited to 0.65-0.9 while the recall scores to 0.4-0.8 as shown
in sub-figure 5.8b. It can be observed that with the increment in Recall scores (0.65 and
above), the precision of World Model-EVL reduces when compared withWorld Model
and PySTEPS. This shows that both World Model and PySTEPS have comparable
performance in the detection of moderate rainfall events when compared with World
Model-EVL.

(a) (b)

Figure 5.8: (a) The complete Precision-Recall curve for 3-hour moderate rainfall event detec-
tion, the points on the curve (from left to right) represent thresholds from 10mm to 0.5mm. (b)
Cropping of the Precision-Recall curve by limiting both precision to be higher than 0.65 and
recall to be higher than 0.40.
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5.2.4 Evaluation of extreme events in specific catchments

In this section, the ROC and Precision-Recall Curves for two specific catchments have
been shown and analyzed for the different models, part of this thesis. The ROC and the
Precision-Recall curves have been constructed in the same way as mentioned above in the
above-section 5.2.2 i.e. to have the same threshold for the ground-truth data (threshold
of 5mm/3hr) while having a common set of descending thresholds (10, 9.5, 9, 8.5, 8, 7.5,
7, 6.5, 6, 5.5, 5, 4.5, 4, 3.5, 3, 2.5, 2, 1.5, 1 and, 0.5 mm/3hr) for the predictive data.

The catchments chosen for this evaluation are Regge and Delfland. Regge is the
largest catchment in the Netherlands region spanning a region of 957km2. Hence, it is
necessary to analyze the detection ability of the different models in this region. The
second catchment that was chosen for this analysis is Delfland which is the third largest
catchment (out of the 12 catchments), spanning a region of approximately 379km2.

Catchment: Regge

In this section, the ROC and the Precision-Recall curve for the catchment have been
shown in figures 5.9 and 5.10, respectively. From sub-figure 5.9a, it can be observed
that World Model(EVL) has the highest AUC amongst all the models. However, the
analysis with a limited range of Hit Rate and False Alarm rate in sub-figure 5.9b shows
that the baseline World Model has almost similar performance with respect to World
Model-EVL (the models display similar performance till the Hit Rate of 0.77).

From the below-mentioned figure 5.9, it can be concluded that all the models show
similar performance in the detection of extreme rainfall events in Regge especially when
analyzed in the limited Hit Rate and False Alarm rate range.

(a) (b)

Figure 5.9: (a) The complete ROC curve for 3-hour extreme rainfall event detection for catch-
ment Regge, the points on the curve (from left to right) represent thresholds from 10mm to
0.5mm. (b) Cropping of the ROC curve by limiting the hit rate to be higher than 0.5 and false
alarm rate lower than 0.4.
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Based on the Precision-Recall Curve shown in figure 5.10, it can be observed that
World Model-EVL shows an overall better performance when compared with the other
models. The baseline World Model also shows a comparable performance with respect
to Nuwa-PyTorch (VQGAN) and PySTEPS.

(a) (b)

Figure 5.10: (a) The complete Precision-Recall curve for 3-hour extreme rainfall event detec-
tion, the points on the curve (from left to right) represent thresholds from 10mm to 0.5mm. (b)
Cropping of the Precision-Recall curve by limiting both precision as well as recall to be higher
than 0.4.

However, it can also be observed from figure 5.10b that with the increment in Recall
(0.7 onwards), the performance of World Model decreases whereas Nuwa-PyTorch
(VQGAN) and World Model-EVL display almost similar behavior.

Catchment: Delfland

In this section, the ROC curve and the Precision-Recall Curve have been shown for the
catchment Delfland in figures 5.11 and 5.12 for the top 1% of extreme events. From figure
5.11 it can be observed that World Model-EVL shows the overall best performance
when compared with the other models based on AUC. Moreover, it can also be concluded
that the deep learning models part of this thesis display almost similar performance based
on figure 5.11b.

In the below-mentioned figure 5.12, the precision-recall curve has been plotted for
the four respective models for the top 1% of extreme events. Based on the AUC, it
can be observed that World Model-EVL displays an overall better performance when
compared with the other models. However, based on figure 5.12b, it can be observed that
within the limited Recall range World Model-EVL has a higher precision but with the
increment in recall scores, the performance of the model decreases.
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(a) (b)

Figure 5.11: (a) The complete ROC curve for 3-hour extreme rainfall event detection for
catchment Delfland, the points on the curve (from left to right) represent thresholds from 10mm
to 0.5mm. (b) Cropping of the ROC curve by limiting the hit rate to be higher than 0.4 and
false alarm rate lower than 0.4.

(a) (b)

Figure 5.12: (a) The complete Precision-Recall curve for 3-hour extreme rainfall event detec-
tion, the points on the curve (from left to right) represent thresholds from 10mm to 0.5mm. (b)
Cropping of the Precision-Recall curve by limiting both precision as well as recall to be higher
than 0.4.

Therefore, based on the analysis shown by the above figures, it can be concluded that
World Model-EVL displays an overall higher performance in the detection of extreme
events when compared with the other models. However, Nuwa-PyTorch (VQGAN)
and the baseline World Model also show comparable performance in the detection of
extreme events in the catchment areas when compared with World Model-EVL.
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Conclusion and Future Scope 6
6.1 Conclusion

This section concludes the main contributions of this thesis project and the answer to
the research objective mentioned in Chapter 1. In this thesis work, a transformer-based
deep generative model has been proposed for extreme precipitation nowcasting. Based
on the literature research, transformer-based generative models have better performance
in capturing long-term dependencies between features when compared to existing deep
neural networks based on ConvLSTM. However, the dataset utilized in this thesis consists
of high-resolution images which can raise computational constraints if the transformer
itself is trained on it (the attention mechanism in transformers has quadratic complexity,
thus making it computationally infeasible). Therefore, a VQ-VAE is incorporated as well,
inspired by the research of Esser et. al [29], Bi et. al [6] which constructs a low-dimensional
discrete representation of the inputs. The transformer gets trained on these discrete-level
representations of the images in an autoregressive fashion which are then decoded back
to the original spatial resolutions of the radar precipitation maps with the help of the
decoder of the VQ-VAE.

Furthermore, the goal of this thesis work is to also develop a model that shows compa-
rable nowcasting performance in the entire region of the Netherlands as well as extreme
precipitation detection in the corresponding catchment regions, detailed in Chapter 3.
However, based on the analysis of the KNMI RT-radar dataset (table 3.5 and table 3.8)
it can be observed that the distribution of the data is highly imbalanced with regard to
extreme precipitation data. The occurrence of light rainfall intensities (X ≤ 0.1mm/h)
comprises of approximately 90% of the precipitation intensities when analyzed for the
whole Netherlands region. However, an analysis on the entire Netherlands region is
not enough since a single pixel displaying extreme precipitation at a single time point
might not represent an extreme precipitation event in a real-world scenario. Therefore, a
catchment-averaged rainfall accumulation analysis has been performed to define extreme
events. This analysis helps in covering both the spatial as well as temporal aspects of the
occurrence of an extreme event.

The dataset’s significant imbalance leads to an uneven distribution of discrete tokens
in the latent space of the VQ-VAE part of the model, which also affects the input data for
the autoregressive Transformer. Essentially, training the Transformer involves tackling
a multi-class classification challenge by employing a cross-entropy loss to categorize the
current tokens into one of the 1024 tokens in the codebook of the VQ-VAE. This kind
of imbalance may result in underfitting, adversely affecting the model’s performance in
precipitation nowcasting and extreme event detection. Therefore, to mitigate this issue,
the EVL loss function has been implemented in the autoregressive transformer along with
a Binary classifier that helps in the classification of the tokens as extreme or non-extreme
based on area-averaged precipitation of 5mm over the ground-truth radar map. This
helps the autoregressive transformer to handle the uneven distribution of the discrete
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tokens in the latent space and generate tokens that encode extreme rainfall over an area
of 16km × 16km (since the input radar map has a spatial resolution of 128km × 128km
and every map is encoded to 8× 8 discrete tokens by the VQ-VAE).

Based on the experiments and results shown in Chapter 5, it can be concluded that the
proposed model World Model-EVL displays comparatively better overall nowcasting
performance on the entire Netherlands region with respect to other models. The model
shows significant improvement in the extreme event detection as well, when compared with
benchmark models such as PySTEPS andNuwa-PyTorch (VQGAN). Moreover, it also
shows the application of the EVL loss function in a more robust way when compared with
Nuwa-PyTorch (VQGAN) in which the author assumes a fixed empirical distribution
of the discrete latent representation of extreme precipitation (i.e. the distribution of the
extreme tokens).

6.2 Future Scope

One of the main difficulties faced in this project is the scarcity of extreme precipitation
maps. This hinders the training of the VQ-VAE part of the model as it is unable to
learn an adequate amount of discrete latent representations (tokens) of radar images
that display extreme precipitation. Consequently, during prediction, the autoregressive
transformer faces difficulty in generating tokens that capture extreme rainfall. Even
though the incorporation of the additional binary classifier and the EVL loss function
helps in better prediction of precipitation maps that encompass extreme precipitation, it
would be beneficial to perform data augmentation to increase the number of input radar
images that showcase heavy or extreme rainfall. However, data augmentation should
be only implemented for radar images that display extreme rainfall intensities since the
number of such images is quite low. This would help the VQ-VAE to learn a better
representation of the extreme precipitation images in the discrete latent space which in
turn would help the autoregressive transformer to predict more extreme tokens (since this
would increase the latent distribution of extreme tokens).

Moreover, research by Bi et. al [6], Esser et. al [29], Yan et. al [32] [39] show that
incorporating a spatial discriminator with the VQ-VAE helps in learning a better discrete
latent representation of high-resolution images (such as the images in our dataset). This
occurs because of the additional adversarial loss incorporation with the VQ-VAE loss
shown in equation (4.2). The adversarial training process (typically, a minmax problem)
provides a dynamic feedback mechanism to the VQ-VAE. The VQ-VAE is continually
adjusted based on the discriminator’s assessments, leading to iterative improvements in
the generated outputs over the course of training.

Furthermore, VideoGPT proposed by Yan et. al [32] is also a VQVAE+autoregressive
transformer-based deep learning model that works on videos rather than images. There-
fore, the VQ-VAE in the case of VideoGPT has 3D convolutions in the VQ-VAE encoder,
which helps extract temporal/depth features along with 2D spatial features. This can
prove to be beneficial in learning better discrete latent representations of the images
since, the input radar maps can inherently be treated as a sequence of images (i.e., a
video sequence).

58



References

[1] R. Prudden, S. Adams, D. Kangin, et al., “A review of radar-based nowcasting of
precipitation and applicable machine learning techniques,” 2020.

[2] R. O. Imhoff, C. C. Brauer, A. Overeem, A. H. Weerts, and R. Uijlenhoet, “Spatial
and temporal evaluation of radar rainfall nowcasting techniques on 1,533 events,”
en, Water Resour. Res., vol. 56, no. 8, Aug. 2020.

[3] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-C. Woo, “Convolu-
tional LSTM network: A machine learning approach for precipitation nowcasting,”
2015.

[4] V. Lebedev, V. Ivashkin, I. Rudenko, et al., “Precipitation nowcasting with satellite
imagery,” in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, Anchorage AK USA: ACM, Jul. 2019.

[5] S. Ravuri, K. Lenc, M. Willson, et al., “Skillful precipitation nowcasting using deep
generative models of radar,” 2021.

[6] H. Bi, M. Kyryliuk, Z. Wang, et al., “Nowcasting of extreme precipitation using
deep generative models,” in ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece: IEEE,
Jun. 2023.

[7] D. Ding, M. Zhang, X. Pan, M. Yang, and X. He, “Modeling extreme events in
time series prediction,” in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, Anchorage AK USA: ACM,
Jul. 2019.

[8] U. Germann and I. Zawadzki, “Scale-dependence of the predictability of precipi-
tation from continental radar images. part i: Description of the methodology,” en,
Mon. Weather Rev., vol. 130, no. 12, pp. 2859–2873, Dec. 2002.

[9] A. W. Seed, C. E. Pierce, and K. Norman, “Formulation and evaluation of a scale
decomposition-based stochastic precipitation nowcast scheme,” en, Water Resour.
Res., vol. 49, no. 10, pp. 6624–6641, Oct. 2013.

[10] J. Liu, L. Xu, and N. Chen, “A spatiotemporal deep learning model ST-LSTM-
SA for hourly rainfall forecasting using radar echo images,” en, J. Hydrol. (Amst.),
vol. 609, no. 127748, p. 127 748, Jun. 2022.

[11] K. Trebing, T. Stanczyk, and S. Mehrkanoon, “SmaAt-UNet: Precipitation now-
casting using a small Attention-UNet architecture,” 2020.

[12] A. Bojesomo, H. Al Marzouqi, and P. Liatsis, “Spatiotemporal swin-transformer
network for short time weather forecasting,” Sep. 2021.

[13] L. Xiang, J. Guan, J. Xiang, L. Zhang, and F. Zhang, “Spatiotemporal model based
on transformer for bias correction and temporal downscaling of forecasts,” Front.
Environ. Sci., vol. 10, Nov. 2022.

[14] T. Nguyen, J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover, “ClimaX: A
foundation model for weather and climate,” 2023.

[15] P. Asadi, S. Engelke, and A. C. Davison, “Optimal regionalization of extreme value
distributions for flood estimation,” en, J. Hydrol. (Amst.), vol. 556, pp. 182–193,
Jan. 2018.

[16] Y. Boulaguiem, J. Zscheischler, E. Vignotto, K. van der Wiel, and S. Engelke, “Mod-
eling and simulating spatial extremes by combining extreme value theory with gen-
erative adversarial networks,” en, Environ. Data Science, vol. 1, no. e5, 2022.

59



[17] S. Coles, An introduction to statistical modeling of extreme values (Springer Series
in Statistics). Springer-Verlag, 2001, isbn: 1-85233-459-2.

[18] L. De Haan and A. Ferreira, Extreme Value Theory (Springer Series in Operations
Research and Financial Engineering), en. Springer Science+Business Media, Jan.
2006.

[19] D. Levine, “Modeling tail behavior with extreme value theory,” Risk Management,
vol. 17, pp. 14–18, 2009.

[20] C. O. Omari, P. N. Mwita, and A. G. Waititu, “Using conditional extreme value
theory to estimate value-at-risk for daily currency exchange rates,” J. Math. Fin.,
vol. 07, no. 04, pp. 846–870, 2017.

[21] S. Chen, N. Kalanat, S. Topp, et al., “Meta-transfer-learning for time series data
with extreme events: An application to water temperature prediction,” in Proceed-
ings of the 32nd ACM International Conference on Information and Knowledge
Management, Birmingham United Kingdom: ACM, Oct. 2023.
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Appendix A
A.1 Representation of the Reconstructed frames

In this section, the Reconstructed images from the VQ-VAE of theWorld Model (EVL)
have been displayed in figure A.1 as well as A.2 for two random batches of images from
the testing dataset.

Figure A.1: Example of reconstruction of Precipitation fields by the VQ-VAE (Upper row:
Original Radar Input image, Lower row: Reconstructed precipitation fields.

Figure A.2: Example of reconstruction of Precipitation fields by the VQ-VAE (Upper row:
Original Radar Input image, Lower row: Reconstructed precipitation fields.
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Appendix B
B.1 Analysis of different weights of the EVL loss function

In this section, three different weights of the EVL loss function have been implemented and
their corresponding nowcasting performance on the whole Netherlands region have been
compared and assessed. As mentioned in section 4.2.1, the autoregressive transformer of
the World Model (EVL) has been incorporated with the EVL loss function using the
below-mentioned loss function:

LTransformer-EVL = LTransformer + λ[EVL(ut, vt)]. (B.1)

The weighting parameter λ of the EVL loss function in the above equation B.1 has been
analysed using three different values - 0.5, 0.75, and 1. The graphs below show the
respective model’s performance with these three different weighting parameters.

Based on the below-mentioned graphs, λ = 1 has been chosen as the default setting for
the World Model (EVL) since it shows an overall better performance when compared
with the other weighting parameter configurations.

(a) (b)

Figure B.1: 3-hour nowcasting performance verification: continuous metrics (sub-figure (a) for
PCC and sub-figure (b) for MAE). Relationship between lead time (mins) and metric scores,
with 3-hour averaged scores shown in the legend.
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(a) (b)

(c) (d)

Figure B.2: 3-hour Nowcasting performance verification on the whole Netherlands region:
Categorical Scores - CSI and FAR for a, b) 1mm and c, d) 2mm. Relation between lead time
and metric scores, with 3-hour averaged scores shown in the legend.

(a) (b)

Figure B.3: 3-hour Nowcasting performance verification on the whole Netherlands region:
Categorical Scores - CSI and FAR for a, b) 8mm. Relation between lead time and metric scores,
with 3-hour averaged scores shown in the legend.
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(a) (b)

(c) (d)

Figure B.4: 3-hour Nowcasting performance verification on the whole Netherlands region: FSS
Scores for a) 30km, b) 20km, c) 10km, d) 1km. Relation between lead time and metric scores,
with 3-hour averaged scores shown in the legend.
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Appendix C
C.1 Comparison of Training and Generation time of the differ-

ent models

In this section, the training time, generation time and the number of parameters of the
different models are compared for nowcasting purposes.

Nuwa-PyTorch (VQGAN) World Model PySTEPS World Model (EVL)

Number of parameters 772,832 M 402,735 M - 520,374 M
Training time 672 h 240 h - 264 h
Generation time 322.86 s 38.90 s 9.34 s 43.10 s

Table C.1: Comparison of training time, generation time, and the number of parameters for
different models.

In the above-mentioned table, it can be observed that the generation time of PySTEPS
is the fastest time followed by World Model. This is one of the reasons for PySTEPS
being chosen as a nowcasting benchmark apart from its promising predictions. Moreover,
with respect to deep learning models, it can also be observed that the generation time
of Nuwa-PyTorch (VQGAN) is quite high compared to others. One of the main
reasons for this is the application of the KV-caching (section 4.1.2) in the case of World
Model and World Model-EVL. This helps in the faster generation of tokens from the
autoregressive transformer thus, improving the overall generation time for the prediction
frames.

Furthermore, for efficient training of the deep learning models - World Model and
World Model (EVL), 16-bit AMP as well as the conversion of the input radar maps
into NumPy Arrays (for all the datasets) have also been implemented. The improvement
in the training time of these two models compared to Nuwa-PyTorch (VQGAN) can
be observed in the above table.
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Appendix D
D.1 Examples of Nowcasting Predictions by different models

Figure D.1: Comparison of nowcasting results over the entire Netherlands region by different
models (t = 05:45 2019/11/28).
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Figure D.2: Comparison of nowcasting results over the entire Netherlands region by different
models (t = 03:00 2019/03/07).
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Figure D.3: Comparison of nowcasting results over the entire Netherlands region by different
models (t = 16:30 2019/05/19).
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