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Abstract

Breast cancer is one of the most prevalent cancers affecting females in the world. In recent
years, many cancer researchers have been trying to determine molecular prognosis tools that
predict cancer patient treatment response and/or chance of survival. In particular, the deter-
mination of gene expression signatures obtained by feature selection methods applied to large
microarray datasets has shown potential. The main purpose of this study is to extend these
gene signatures and molecular prognostic classifiers by investigating features constructed from
a scale-space representation of the microarray data.

Here, we construct a scale space by first mapping all genes to a one-dimensional functional space
using protein family information. Next, we applied successive smoothing to the expression val-
ues resulting in one scale-space representation of the gene expression data from one sample. At
the lowest scale, the scale space contains the original gene expression values, whereas at higher
scales meta-features are formed, which are weighted sums of groups of genes.

To test whether a scale-space representation is useful we performed feature selection and clas-
sification on a publicly available breast cancer expression dataset. We found that, instead of
signatures consisting of single genes, meta-genes (i.e. groups of genes) that exist at higher scales
were preferentially selected. We furthermore determined cross-validation errors using seven dis-
tinct classifiers (NMC, LDC, QDC, FISHERC, PARZENC, 3NNC, and LOGLC) and found
that better performance is obtained using the scale-space representation than with the tradi-
tional representation of the gene expression data. As a result, we conclude that the scale-space
analysis constitutes a potent way of selecting molecular signatures and is useful for prognostic
classification.

Keywords: Breast cancer; Scale space; Classification; Feature selection.

1 Introduction

Breast cancer is one of the most diagnosed human cancers among females, and the chance being
diagnosed with breast cancer with increasing over time. However, the mortality rate of it has been
a progressive decrease every year. This is the result not only of the technology advances in the field
of medical care, but also of the proposition of several molecular biological classification schemes [1]
[2]. It also benefit from more accurate and robust classifier is obtained by analyzing multiple cancer
datasets [3].

Generally speaking, the information of biological data is numerous and complex. With the devel-
opment of computer technology, both the large number of molecular data and a variety of clinical
information can be explored and analyzed in depth. In this report, we focus on exploring prognos-
tic classification of breast cancer based on scale-space system [4]. Figure 1 shows different steps
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required by direct analysis and scale space based analysis of microarray data.

Figure 1: The whole flow-chart

Most of breast cancer classification schemes are based on a large numbers of DNA sequences. The
microarray that simultaneously measures the expression levels of a large number of genes is a well-
known method to provide these molecular data, and it is used in our study. The main principle of
microarray is hybridization between DNA and cDNA sequences. The microarray experience work-
flow is shown in Figure 2. As depicted by the image, probes made of thousands of oligonucleotide
are synthesized in the chip. Then, these probes hybridize with the target labeled by a radioactive
marker. The hybridization result can be obtained by scanning the radioactive maker. Processing and
analyzing the intensity and distribution of hybridization signals reveal the gene expression profiles
of target.

Figure 2: Concrete steps of the microarray experiment. Figure adapted from Wiki.

The idea of scale space is that we can catch different views in the different observing distances. It
means it is important to know the particular observing distance where the interesting objects will
be shown. Likewise, it is important to know the scale of processed signal for classification prob-
lem. The traditional classification is based on the signal of original scale, which includes only the
interesting information of original data. However, different information can be obtained by stepping
into different scales, and generally, we do not know which scale contains the information of interest.
Therefore, we need use information of multiple scales. The scale-space system [4] [5] [6] can be used
to reach this goal.

The scale-space system was firstly proposed by Witkin in [4] to apply in image domain. He per-
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Figure 3: One-dimensional
Gaussian function
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Figure 4: The scale-space tree
of one-dimensional signal that in-
cludes three pulses
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Figure 5: A series of Gaussian blurred results of one-dimensional signal that includes three pulses

formed a Gaussian scale-space framework, which uses the Gaussian function g(x; t) = 1√
2πt

e−(x
2)/2t

as a convolution kernel to smooth the original signal, as shown in Figure 3. With smoothing the
original signal, the trivial information that can be seen as noise will be removed. The parameter t,
called scale parameter, determines the width of the Gaussian kernel. By increasing the value of t
continuously, the blurred results at different scales can be obtained, as shown in Figure 5. Then,
the scale-space tree, also known as deep structure, can be extracted by tracking the local extrema
in all blurred signals, as shown in Figure 4. The deep structure reveals the significant changes
of signal when is blurred step by step. It gives a comprehensive view of interesting information in
multiple-scales signal.

In recent years, the scale-space system is gradually applied into molecular biological domain. The
application of scale-space system within modular biology domains brings several advantages, such as:
allowing deeper relationship between biological elements to be revealed. [7] [8] [9], or reducing the
data noise in molecular classification. Similar to distance between pixels under image processing con-
text, the distance between biological elements should be defined before establishing the scale-space
system. The distance between biological elements can be defined using their spatial relationship, se-

3



quence or functional similarity [10], or phylogenetic relationship [11]. In our study, we are interested
in the genes that are related with breast cancer. When an undefined gene has a closer functional
distance with the defined breast cancer gene, it is more likely that this undefined gene is related
to breast cancer. Therefore, we select functional similarity to describe the pair-wise distance be-
tween genes. The collection of gene distance from the biological data forms the gene distance matrix.

The gene distance matrix, or gene relationship matrix, is a dataset with high dimensionality, con-
taining redundant information, and it is difficult to be visualized. In addition, it is computationally
intensive to perform Gaussian smoothing on high-dimensional dataset, also large error can be ex-
pected from the end result. To tackle the aforementioned disadvantages, dimensionality reduction
to the gene relationship matrix is necessary. We will describe the dimensionality reduction scheme
in details in the next section.

The scale-space system can be created after performing dimensionality reduction to the gene rela-
tionship matrix. Then the breast cancer metastasis can be prognosed by classification. To increase
the accuracy of classification, the feature selection is usually performed to reduce the redundant fea-
tures in classification. It should be noted that a selection bias has to be corrected before estimating
the classification error [12]. In [12] two bias correction methods are proposed, involving either the
cross-validation or bootstrap estimation. In our study, we use the cross-validation to perform bias
correction.

2 Materials and Methods

In the cancer research, multiple clinical information of patients has to be taken into account together
with the molecular data. One of them is ’survival time’, which is the number of years patients have
survived post to the diagnosis of breast cancer. The survival time of every patient has large variation
between each other, ranging from 1 year, to more than 10 years. Therefore, we take 5 year, our first
clinical information, as a threshold to classify the patient samples.

On the other hand, there are other factors that affects the research. For instance, the death of
patient caused by reasons other than breast cancer, termination of research activities by the patient,
or mistakes made by patient in submission the result of research and so on. All the aforementioned
situations are considered as the second clinical information, called censoring, to help classify the
samples. For example, when the survival time is smaller than five years and not censoring, the
sample is labeled by ’poor’. On the other hand, if the survival time is larger than five years and
censoring, the patient sample is labeled by ’good’. Other samples are labeled as ’other’ any are
eliminated from later analysis, obtaining a two-class sample dataset.

The breast cancer sample dataset used is named as ’Miller’ [3], which is measured on the Affymetrix
platform. It consists of microarray data of 22268 human genes with Entrez gene ID and other
clinical information from 247 breast cancer patients. By classifying the sample set with the clinical
information described above, 37 samples are labeled by ’poor’, while 156 samples are labeled by
’good’.

2.1 Data preprocessing

Sample classes tend to have different size, this is know as class imbalance. When the size of sample
classes have significant difference, the classification result is likely to be unreasonable. Since an
unlabeled sample has a greater chance to be classified into the class with larger size during training,
resulting in a biased testing classification. In ’Miller’ dataset, the size of patient samples labeled as
’good’ is much more than samples labeled as ’poor’. Thus, before prognostic prediction, we have to
remove partial samples from the ’good’ class to balance the size difference between the ’good’ class
and the ’poor’ class.
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As mentioned in former section, the distances between elements should be established before using
scale-space system. In our study, we tried three types of element distance matrices: correlation
relationship between genes, functional distance between genes and functional distance between genes
and gene families. These matrices are constructed based on the protein-to-family functional distance
matrix[1]. Proteins are shown with Ensembl gene ID in [1]. The following are steps to connect the
breast cancer dataset ’Miller’ with dataset in [1].

I Stage 1: converting EntrezIDs to EnsemblGeneIDs.

(a) step 1: removing genes in our dataset with ’NaN’ in original EntrezID list; (Number of
genes: 22268 − > 21177)

(b) step 2: using a web-tool convert EntrezIDs to EnsemblGeneIDs (Gene ID Conversion Tool:
http://david.abcc.ncifcrf.gov/conversion.jsp );

(c) step 3: building corresponding EnsemblGeneID list for retained genes obtained by step 1;

(d) step 4: removing genes in our dataset with ’unknown’ EntrezIDs or EntrezIDs converted
unsuccessfully to EnsemblGeneID in step 2. (Number of genes: 21177 − > 20322)

II Stage 2: by EnsemblGeneID list obtained in last step, getting the corresponding ProteinNumber
(defined in protein-to-protein similarity dataset) list.

(a) step 1: building corresponding ProteinNumber list for retained genes in last step;

(b) step 2: removing genes that have not corresponding proteins in protein-to-protein similarity
dataset. (Number of genes: 20322 − > 19844)

Comparing to gene-to-gene correlation (GGC) matrix, the gene-to-gene functional distance (GGD)
matrix and gene-to-family functional distance (GFD) matrix are established on functional rela-
tionship between biological elements, and hence are more biologically reasonable. Among GGD and
GFD, GFD matrix is chosen, because several disadvantages of GGD. For instance, the computational
complexity of GGD matrix is quite high, and the dimensional reduction result of GGD obtained by
t-Distributed Stochastic Neighbor Embedding method (tSNE) [13] is always a uniform distribution,
rendering it useless.

Because one gene can encode multiple types of protein, it is necessary to set criterion on how to
calculate the exact distance between two genes based on protein-to-family distance. The formula
used is gfd(i, j) = min(pfd(k1 : kt, j)). For the gfd(i, j), the minimum value of all protein-to-family
distances from family j and t proteins k1 to kt and related to gene i, is used as minimum estimation
of distance between gene i to family j. The specific steps are shown as following.

I Step 1: according to the ProteinNumber list ’protein retain’, which includes related proteinIDs
of every gene, produce an unique protein list ’uni protein’;

II Step 2: using ’uni protein’ and proteinID list in protein-to-protein similarity dataset, obtain
protein list ’p’ and protein-to-family e-value list ’evalue’ related to genes in our data;

III Step 3: using the e-value list ’evalue’, compute the gene-to-family functional distance matrix.

2.2 Dimensionality reduction

When elements are distributed in high-dimensional space, the computational cost is usually expen-
sive. In the mean time, the classification accuracy is low. To overcome this problem, dimensional
reduction methods are proposed to map the dataset from the high-dimensional space to a lower
dimension. Generally, the original data is mapped to the intrinsic-dimensional space.

One of the dimensional reduction methods is Multi-Dimensional Scaling (MDS), which starts with
a matrix of item-to-item similarity or dissimilarity, and then provides a location to each item in a
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Figure 7: Labeled genes by GO
term in mapped result of GFD
by tSNE

low-dimensional space such that distance between all items are preserved. Another method is tSNE
[13], which is improved version of Stochastic Neighbor Embedding (SNE) [14] method by adding
student-t distribution. tSNE is good at capturing much of local structure of the high-dimensional
data and revealing global structure.

In the DRToolbox of Matlab, functions ’mds’ and ’tsne’ can fulfilling two dimensional reduction
methods mentioned above. The function ’tsne’ firstly performs Principal Component Analysis (PCA)
to preprocess the original data, obtaining a initial-dimension dataset for tSNE. A Gaussian kernel
with fixed perplexity, which can be seen as the number of effective nearest neighbors, is used to
smooth. The normal range of perplexity is [5 50] and a larger or denser data normally need a
larger perplexity. We use a perplexity of 30. Comparing with MDS, the mapping result of tSNE
contains more obvious distribution characteristic in scatter plot, which can be seen in Figure 6. To
check whether the mapped result is biologically reasonable, genes with Gene Ontology (GO) term
’Transmembrane Transporter Activity’ are labeled in the mapped space with red point, as shown
in Figure 7. From the labeled result, we can see that genes with same GO term tend to cluster
together. Following are the steps to label genes in mapped space by GO term.

I Step 1: using DAVID Functional Annotation Tool, input our EntrezID list of gene set, and get
the functional annotation summary.

II Step 2: select related annotation categories in the summary. We choose three categories
(’GOTERM-CC-FAT’, ’GOTERM-BP-FAT’ and ’GOTERM-MF-FAT’), and obtain 1914 GO
term records. 1630 genes in our gene set are missed in all records.

III Step 3: by these records, find out the corresponding EntrezID list of GO-term records, which
we interest in.

IV Step 4: using these EntrezID lists, label genes with GO term ’Transmembrane Transporter
Activity’ in the mapped result to visualize it.

2.3 Scale space construction

To reduce the computational time of scale space construction, the difference of expression values of
each gene between all patient samples are calculated. Then the difference values are sorted, and
the genes corresponding to top 2000 difference values are chosen to build the scale space. As shown
in Figure 8, chosen genes spread out in two dimensional mapped space of tSNE, which suggests
chosen genes have global representative of all genes.
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Figure 8: 2000 most variable genes labeled in 2D mapped space obtained by tSNE

Based on mapped result obtained by tSNE and 2000 chosen genes, the Gaussian scale space can be
then constructed. The specific steps and mathematics used are shown as following.

I Step 1: combine the reduced distance matrix (d-dimension) with measurement value of all

elements, which can be formulated as G(x) =
∑N
n=1 gnδ

d(x − pn), where gn represents the
measurement value of element n, and pn represents the position of element n. in our case,
the measurement value is gene-expression value. All elements are decided positions by mapped
matrix, and values by corresponding measurement value.

II Step 2: obtain the scale space representation of all elements in scale-level h by convoluting G(x)

with the Gaussian kernel K(h) of width h: Ĝ(x;h) = G(x)∗K(h) =
∑N
n=1 gn exp(− 1

2 ||
x−pn
h ||

2).
By varying the width of Gaussian kernel, the scale space representation of different scale-level
can be obtained.

III Step 3: build the critical curve by linking the local extrema in all convolution results. The set
of all critical curves is the scale-space tree.

Based on the position data and expression value data of chosen genes, the scale-space tree with
72 scale levels is obtained for 74 patient samples. In first scale-level, the tree-matrix contains the
original position of all genes. Because most of local extrema changes happen in low scales during
scale-level increasing, a logarithmic scale of kernel width is used. The scale-space tree for one patient
sample is shown in Figure 9.

2.4 Feature selection

Before prognosing the breast cancer metastasis, several feature selection methods are applied to
reduce the feature dimension and to reduce the classification error. First, Principal Component
Analysis (PCA) method is experimented. It can map a high feature-dimension to lower one and
preserves the main component. Then, the performance of ’individual’ feature selection is also eval-
uated. It simply chooses d individual best features from all features. However, the top d individual
best features does not necessarily form the best feature subset available from the whole feature set.
There, another feature selection method, known as ’forward’ is explored, which starts with an empty
feature subset, and then, one at a time, keeps adding feature that gives best performance considering
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Figure 9: The scale-space tree for first patient with 72 scale-levels

entire chosen feature set.

As aforementioned, when the feature selection and classification is directly applied to original dataset,
the classification error estimation is biased and unreasonable. To avoid the selection bias, the
function ’crossval featsel’ was constructed. Firstly, the function divides the whole dataset into n
parts. In each loop, the n − 1 parts are used for feature selection and classification training, while
the remaining part is used for classification testing with same mapped feature space as training set.
The final result is mean error of all classification errors obtained in each loop.

3 Experimental results and discussion

3.1 Explore the prognostic gene of breast cancer based on scale space

To explore the prognostic genes of breast cancer, the scale-space tree of samples in two patient
classes are compared and analyzed with density estimation and t-test statistics.

First, using density estimation, we can obtain a general comparison between two sample classes. The
whole scale-space tree dataset is split to two subset according to the labels. Then, the probability
density estimation of trees for two sample classes can be measured in some specific scale-levels, as
shown in Figure 10. From the estimation results, we can see that in lower scale levels, the differ-
ences between trees in two classes are very small, while there are more obvious differences with an
increased scale level. Generally speaking, gene features in higher scale-level tree are more significant
for classification than in lower scale level.

Another prognostic analysis is the t-test statistics, which can give more explicit comparison between
two sample classes. Firstly, one gene in one scale level can be seen as a feature, thus there are
144000 (2000*72), features in the whole scale space. Comparisons between two patient classes based
on these 144000 features are calculated respectively, and the results are 144000 p-values. The gene
feature with smaller p-value can be seen as a significant feature. To find out significant features
from scale-space tree, a threshold was set to chose genes in single scale level with small p-value, as
shown in Figure 11. To explore the suitable threshold value, different significant gene sets obtained
by different thresholds, where log(p-value) was set to 0.001, 0.005, 0.01, 0.02, 0.05, 0.1, were seen
as classification feature set to perform cross-validation, respectively. The best classification error
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Figure 10: Probability density estimation of scale-space tree in two sample classes

estimation, 0.3515, is given by the threshold of 0.02, which is selected for further research.
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Figure 11: Significant features selected by t-test in mean scale-space tree

As shown in Figure 11, hundreds of features with log(p-value) smaller than 0.02 are marked with
red color. The gene features, which are marked in a continuous series of scale-levels, are particularly
interesting. It should be noted that a marked feature in high scale level represents more than one
gene. After removing duplicated genes, 146 genes are marked as significant prognostic genes for
breast cancer. To evaluate the prognostic genes chosen by feature selection based on scale space,
different feature selection algorithms are performed on original microarray data. The ’Individual’,
’Forward’ and ’Backward’ selection algorithm have been tried. We carried out cross-validation on
each gene subset obtained by different algorithm. The subset with highest classification accuracy,
0.3862, selected by ’Forward’ selection algorithm based on 200 best features obtained by ’Individual’
algorithm is consisted by 62 genes. The gene selection result is shown in Table 1. We can see
that the prognostic gene selection accuracy of t-test on scale space gene data is slightly higher than
’Forward’ feature selection with original gene expression data.
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Gene selection Number of Number of Effective rate
selected genes breast cancer genes of selection

t-test 146 6 4.1%
’Forward’ feature selection 62 2 3.2%

Table 1: The gene selection accuracy of different methods

3.2 Classification results

To evaluate the scale space method used for breast cancer classification analysis, the classification
error estimation by cross-validation for different classifiers carried on original gene data and scale
space gene data, respectively, are shown in following tables and compared.

3.2.1 Classification based on feature representation of data

In image processing domain, the classification can be utilized for three representations: feature, dis-
similarity and pixel. Feature representation uses the feature to represent the dataset. This feature is
collected from the dataset through measurement of the digit image. While the pixel representation
uses the pixel value as the feature to represent the digit. In dissimilarity representation, the distance
between images is used instead of the feature. In biological field, feature and dissimilarity both can
be used as representation for classifying.

The error estimation for seven classifiers (NMC, LDC, QDC, FISHERC, PARZENC, 3NNC, and
LOGLC) using feature representation of 2000 chosen gene expression data and scale space built by
2000 chosen gene are shown in Table 2. For each classifier, the smallest error is boldface in the
table. We can see that all classifiers obtained higher accuracies for scale space gene data except
for Parzen Classifier (PARZENC). The smallest classification error is 0.3706, obtained by 3-Nearest
Neighbor Classifier (3NNC) carried on scale space gene expression data. In next section, we tried
increasing the accuracy by reducing the number of features.

Classifier NMC LDC QDC FISHERC PARZENC 3NNC LOGLC
Classification error

(Original gene
expression data) 0.4120 0.4220 0.3997 0.4649 0.3880 0.4514 0.4668

Classification error
(Scale space

position data) 0.4068 0.4072 0.3818 0.3920 0.5000 0.3766 0.3939
Classification error

(Scale space
expression data) 0.4080 0.3909 0.3826 0.4090 0.5000 0.3706 0.4060

Table 2: Classification error based on feature representation of original gene expression data and
scale space data

3.2.2 Classification based on feature representation after feature extraction

As mentioned in Section Materials and Methods, we know that an increase in the number of fea-
tures is not equivalent to the improvement of classification accuracy. To avoid high error caused
by large amount of features, one feature extraction method was used before classification: principal
component analysis (PCA). The error estimation for seven classifiers after PCA for original gene
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expression data and scale space gene data are shown in Table 3.

From this table, we can see that most of classification accuracies are slightly increased after feature
extraction comparing to Table 3. Furthermore, all classifiers get smallest classification error on
scale space data except Nearest Mean Classifier (NMC), and the highest classification accuracy,
0.3594, was obtained by 3NNC on scale space gene position data.

Classifier NMC LDC QDC FISHERC PARZENC 3NNC LOGLC
Classification error

(Original gene
expression data) 0.4006 0.3930 0.3981 0. 4031 0.4350 0.4019 0.3906

Classification error
(Scale space

position data) 0.4075 0.3894 0.3688 0.3894 0.5000 0.3594 0.3875
Classification error

(Scale space
expression data) 0.4022 0.3825 0.3875 0.3825 0.4037 0.3787 0.4050

Table 3: Classification error based on original gene expression data after PCA and scale space gene
data after PCA

3.2.3 Classification based on dissimilarity representation of data

Another exploration of classification is that the feature replaced by dissimilarity as the represen-
tation elements in classification. In our study, we used the CityBlock distance as measurements
between different elements. The error estimation for seven classifiers (NMC, LDC, QDC, FISH-
ERC, PARZENC, 3NNC, and LOGLC) using dissimilarity representation based on 2000 chosen
gene expression data and scale space built by these genes are shown in Table 4. Comparing with
the classification errors shown in Table 3, there is no obvious improvement between classification
based on dissimilarity representation and feature representation.

Classifier NMC LDC QDC FISHERC PARZENC 3NNC LOGLC
Classification error

(Original gene
expression data) 0.4140 0.4057 0.3810 0.4057 0.4123 0.3810 0.4157

Classification error
(Scale space

position data) 0.4040 0.3957 0.3850 0.3957 0.4023 0.3831 0.4088
Classification error

(Scale space
expression data) 0.4190 0.3993 0.4003 0.4010 0.3920 0.3887 0.3973

Table 4: Classification error based on dissimilarity representation of 2000 chosen original data and
scale space data built by 2000 chosen genes

4 Conclusion

Technology advance based on microarray gene expression shows significant improvement for investi-
gating breast cancer. In this report, we research on the scale-space system applied on prognostic gene
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selection and classification method. Comparing to the traditional feature selection on original gene
data, the t-test based on scale space built by microarray data and gene-to-protein family functional
similarity has slightly better performance. In classification problem, the scale space method, as
important multi-scale analysis method of information processing has obvious advantages, comparing
to the traditional single-scale method. We can see the improvement through the classification errors
in Table 3 and Table4. Moreover, we found that comparing to other classifiers, the 3-Nearest
Neighbor Classifier (3NNC) gives the better classification accuracy in our project. To improve the
accuracy, principal component analysis is useful method that can be performed before classification.
However, in our study, the feature replaced by dissimilarity representation is an acceptable but not
necessary method for improving the classification.

At present, the scale space theory and its applications are mainly confronted by the following is-
sues. Firstly, The differential of scale space has a large amount of computation. So the computing
time is always too long. This disadvantage limits the application of scale space method in real-time
processing, motion detection and other fields. How to design the fast and stable algorithm for scale
space is an important problem. Secondly, it is a core issue in application of scale space that how to
combine with the background of problem to determine the optimal scale.

Supplementary Information

The supplemental document contains additional methods experimented, figures obtained during the
study but not included in this report and Matlab codes.
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