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Abstract 

In this contribution the Core Probability Framework (CPF) is introduced with the 

application of the Discrete-Element Core Probability Model (DE-CPM) as a new DNL 

for dynamic macroscopic modelling of stochastic traffic flow. The model is 

demonstrated for validation in a test case and for computational efficiency on two 

simple networks. The CPF extends a base model, such as the Cell Transmission Model 

(CTM), by considering each traffic variable as a discrete stochastic variable denoted 

as a probability distribution of values for each traffic variable in time and space. 

Traffic is propagated along a link using the base model and through a larger network 

with the application of probability merging algorithms at the nodes. Due to the 

incorporation of probability in the core of traffic propagation, the necessity for 

multiple acts as an internalisation of the Monte Carlo routine in the CPF for fast and 

efficient calculation of uncertainty. Initial tests cases show that the DE-CPM has the 

potential to reduce computation time multi-tenfold compared to regular Monte Carlo 

simulation. Such developments allow the application of stochastic dynamics traffic 

models to be more readily applied in practice. 
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1. INTRODUCTION 

Stochastic variations and uncertainty typify human life and equally the world around 

us, and are no less present in the world of traffic flow. Application of traffic flow analysis 

carried out using traffic flow models aims to represent the world of traffic flow in 

simulation. Traffic models are simplifications of reality and make assumptions to allow 

for a fast and efficient modelling of situations. These assumptions should however have 

minimal effect on the deviation of results to what would be expected in reality. In the 

case of stochastic variations and the inclusion of uncertainty, many assumptions are 

made that have a greater effect on model outcomes than may be desirable.  
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In many traffic models stochastic variation is ignored or assumed to be of limited 

importance to the outcome of simulations. In many cases reducing the input of variables 

in a traffic model to average or representative values can have detrimental effect of the 

simulation results, and may lead to biased outcomes in relation to what may be found 

from empirical data (Calvert et al. 2012; Mahmassani et al. 2012; van Lint et al. 2012). It 

is argued that the stochasticity in traffic cannot be reduced prior to traffic flow 

simulation and cannot be expected to give the same outcome as if the reduction had not 

taken place. Instability in traffic, including network effects in congestion, lead to a non-

linear propagation of stochastic variation, especially for the more extreme cases. In turn 

greater traffic flows and congestion will lead to higher values for travel times and delays 

than can be derived from averaged or representative input values (Calvert et al. 2012). It 

is therefore imperative to explicitly consider stochastic variation in traffic flow 

modelling, when this variation is present in the considered scenarios and networks.  

In this contribution a new stochastic macroscopic framework is introduced which, 

combined with the relevant dynamic network loading (DNL) models, tackles many 

challenges in macroscopic modelling and is developed with a view for easy and efficient 

application in practice.  

The Core Probability Framework (CPF) is a probabilistic framework for modelling 

multi-dimensional variations in capacity and traffic demand in dynamic macroscopic 

traffic flow. The CPF extends a base model, such as the Cell Transmission Model (CTM), 

by considering each traffic variable as a stochastic variable denoted as a probability 

distribution of the chance of values for each traffic variable. The CPF is accompanied by 

the Discrete-Element Core Probability Model (DE-CPM) as an example of a possible DNL 

model. The DE-CPM is introduced as an internalisation of the Monte Carlo routine in the 

core of the traffic model.  

In section 2  the   existing literature on this topic is reviewed, while in section 3 the 

main issues concerning stochastic macroscopic traffic flow modelling are described. This 

is followed in section 4 by a description of the conceptual framework of the CPF and the 

application of the DE-CPM DNL model. In section 5 an explanation is given how the 

model addresses the issues mentioned in section 3. Section 6 shows a demonstration 

case of the model in practice and the potential calculation time gains for two networks. 

Finally, section 7 describes the current developments of the model and conclusions of 

this paper. 

2. STOCHASTIC MACROSCOPIC TRAFFIC MODELLING  

Since the 1990’s there has been a gradual increase in effort towards improving traffic 

flow modelling through the explicit inclusion of stochastic variation. Initially a focus was 

placed on Monte Carlo simulation and later the focus shifted more towards internalised 

stochastics. In Monte Carlo simulation various input values for the traffic variables are 

sampled and applied in simulation for a N number of simulation to approach a 

distribution of possible outcomes. Although Monte Carlo simulation has been widely 

applied, mainly due to its relative simplicity and effectiveness, the method has its 

drawbacks. Main concerns in traffic modelling in the past have been the computational 

load of the method (Chang et al. 1994; Chen et al. 2002; Sumalee et al. 2011) and the 

presence of correlation between input variables. The incorporation of variance 

reduction methods, such as Importance sampling or Latin Hypercube sampling, have 

helped to reduce the computational effort of such models as well as the use of more 
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powerful computers    (Jonnalagadda et al. 2001; Hess et al. 2006; van Lint et al. 2012; 

Calvert et al. 2014). Furthermore, recent developments in marginal simulation 

approaches offer an alternative solution to a heavy computational load in Monte Carlo 

approaches (Corthout et al. 2011). In marginal simulation a significant overlap between 

traffic flow in successive simulation iterations is presumed. By only simulating the 

marginal difference in traffic flow, repetitive network loading with a full dynamic 

macroscopic model is not required. Therefore the marginal simulation method only 

requires a single full initial model simulation and thereafter simulates the marginal 

differences using Monte Carlo simulation with a first-order based kinematic model, 

leading to a gain in computational efficiency. Correlation between input variables may 

be considered prior to simulation at the sampling stage (Chen et al. 2002). Variables 

with dependencies may also have probabilities which rely on the values sampled from 

other variables. In this way correlation between two or more variables is included and 

allows for a realistic simulation. However calculating non-bias outcomes in situations in 

which correlations are more complex and, furthermore, have dependencies on variables 

in the model, becomes much more difficult (Chang et al. 1994). In many approaches the 

extent of bias is presumed to be limited and therefore little attention is spent on this 

difficulty. 

More recent developments in stochastic macroscopic modelling are found in 

stochastic extensions of existing mainstream traffic models. Boel and Mihaylova (2006) 

proposed an extension to the CTM with stochastic elements. Rather than reconstructing 

the CTM as piece-wise structure based on traffic states, they defined the sending and 

receiving functions from the CTM as random variables in which the dynamics of the 

average speed in each cell is stochastically varied. The purpose was to incorporate 

stochasticity in the heart of the model at link level, which may propagate through an 

entire network through cell interaction. However, as their approach only considers a 

single stochastic scenario at a time, repetitive simulations are required to compose a 

probability distribution of the outcomes. Similar approaches were proposed by Sun et al. 

(2003) focussing on the explicit defining of traffic states. A main reason for considering 

multiple traffic states is the avoidance of nonlinearity in the fundamental relation, which 

is difficult to quantify otherwise. Jabari and Liu (2012) argued that presuming non-

linearity, while being mathematically beneficial, may lead to inconsistency with the 

original deterministic dynamics. Therefore Jabari and Liu (2012) proposed to include 

stochasticity as a function of the uncertainty in the driver gap choice, represented by the 

random vehicle headway. In doing so, they argue that non-linearity is avoided in 

continuous time as all traffic dynamics may be derived to the longitudinal car following 

behaviour. (Sumalee et al. 2011) proposed a further extension of the CTM in which 

traffic states are explicitly defined as a stochastic bilinear system.  Their Stochastic CTM 

(S-CTM) avoids non-linearities in the original CTM and considers variation through 

propagation of the probability of traffic states and corresponding densities as the likely 

values and surrounding standard deviation. The S-CTM also demonstrated 

computational efficiency as a one shot model in which multiple iterations using a Monte 

Carlo routine are avoided. This greater efficiency is however also achieved through the 

simplification of the probability distributions to the aforementioned   

Gaussian characteristics, such as the median and standard deviation. Although a 

legitimate choice, this reduces the accuracy of the probabilistic estimation by presuming 

a set distribution, which in many not be the case. 

Analysis of stochastic variation due to randomness in driver behaviour has led to 

developments in stochastic modelling for both microscopic and macroscopic models. 
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Variations in traffic flow are easily viewed empirically from fundamental diagram plots. 

Therefore it is not surprising that stochasticity is also included in (macroscopic) traffic 

models by means of a stochastic fundamental diagram. Li et al. (2009) make a strong 

argument that a simple, but effective manner of probabilistic modelling is to make use of 

a stochastic fundamental diagram. Such a diagram is constructed through a flux function 

obtained from random elements observed from speed-density data. Kim and Zhang 

(2008) also previously described stochasticity in the fundamental diagram by defining 

the growth and delay of perturbations from random fluctuations in both the gap time 

and transitions between traffic states. In their work they closely examined fluctuations 

in car following to derive their defined gap time. Boel and Mihaylova (2006) also make 

use of similar fundamental diagrams in their stochastic switching traffic state model, 

previously mentioned. While these models address the incorporation of variation in the 

model, this is performed in a simplified fashion, such that traffic states are not all well 

defined (Sumalee et al. 2011), or fail to fully deal with other stochastic modelling 

challenges, such as spatiotemporal correlations. 

Other models involving stochastic variation relate to a wide number of analytical 

approaches that have been suggested, especially in relation to travel time reliability (Du 

and Nicholson 1997; Clark and Watling 2005), however these are not purely considered 

as stochastic traffic flow models and are therefore not considered here. Furthermore, 

efforts in stochastic modelling are also present for analytical approaches and focus on 

queuing models combined with traffic flow theory. This area of research, while in 

stochastic modelling, applies inherently different solutions, and therefore is not 

elaborated on in detail here. Some literature for the interested reader can be found in 

(Hall 1999; Van Woensel and Vandaele 2007; Osorio et al. 2011). 

Despite recent developments, challenges remain for the development of stochastic 

macroscopic traffic flow models and more so for their practical application. The 

important issues still facing stochastic macroscopic modelling, and yet not completely 

addressed in a single model, are discussed in the following section. 

3. IMPORTANT ISSUES 

In the theoretical development, but also for the practical application of dynamic 

stochastic macroscopic traffic flow models, there are a number of issues that have not 

been solved in full or in combination with each other. In some cases one issue may be 

addressed at the expense of another. In this section four important issues are discussed: 
1. Computational efficiency 

2. Spatiotemporal dependency 

3. Stochastic propagation of probability 

4. Generality of stochastic variation 

3.1 COMPUTATIONAL EFFICIENCY 

Originally the issue of computational efficiency arose with the application of Monte 

Carlo simulation in traffic models. Often performing hundreds of simulations was time 

consuming and acted as a deterrent to apply stochastic variation. Even through the 

application of variance reduction techniques and faster and more powerful computers, 

this remains an issue. A trend that counteracts such advancements originates from a 

desire to apply more complex traffic models on larger and more detailed networks. Also 
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an increasing number of (stochastic) variables demand a greater computational effort 

that somewhat undermines hardware and software advancement.  

The development of one shot models, which largely do away with the necessity for 

repetitive simulations have a great potential to allow for stochastic simulation at a lesser 

computational cost. Such models as the S-CTM (Sumalee et al. 2011) and that of Jabari 

and Liu (2012) are at the forefront of these developments. A danger however is that a 

simplification of the stochastic input or propagation may be required to allow one shot 

models to be effective. The opposite effect may be an over-complicated model without 

simplification, but at a cost computational efficiency and even possible application. 

Therefore the challenge is not just in reducing computational load, but doing so in a way 

that a model is not reduced in stochastic and modelling accuracy. This is a balance that is 

still in the process of being optimised for stochastic modelling and is especially relevant 

for the practical application of models. 

3.2 SPATIOTEMPORAL DEPENDENCY 

Incorporation of spatial and temporal dependant variation from different sources 

brings a further issue of correlation on a number of levels. On a temporal plane it is clear 

that a stochastic element will affect traffic during a certain time frame, possibly with 

differing severity. A basic example is that of an accident that reduces road capacity. At 

the time an accident occurs, the capacity is affected differently than during the aftermath 

and the clean-up, but nevertheless the capacity reduction is correlated in time, as a 

natural consequence of a chain of events. In the same way there is also a spatial 

correlation. The capacity reduction affects the location of the accident, but due to 

congestion propagation, also affects both upstream capacity and traffic flow. A further 

complexity in dependence comes from not only considering a single stochastic influence 

variable, such as the capacity, but also the traffic demand. In the case of an accident, 

drivers may reroute, shift departure time, etc. This does not only affect traffic flow in 

time, but also in space. Furthermore, correlation effects also exist between the traffic 

demand and road capacity in some instances. When considering a greater number of 

variables, the dependency relations explode.  

In many cases some of these dependencies are presumed non-existent for ease of 

modelling (Clark and Watling 2005; Sumalee et al. 2011). Especially for the 

interdependent correlations between variables this is readily the case, while 

spatiotemporal dependencies must be considered on some level to avoid disutility of a 

model. Even then, these correlations may be simplified by means of presumptions or 

transformations (Clark and Watling 2005; Jabari and Liu 2012). It should not 

immediately be presumed that a less than full consideration of dependency will have 

large detrimental effects on model outcomes, as there are cases in which this is clearly 

the case (Calvert et al. 2012), however the possibility thereof should always be 

considered.  

3.3 STOCHASTIC PROPAGATION OF PROBABILITY 

In traffic flow models it is commonplace for traffic to propagate through a link and 

network. However upon including stochastic probability in traffic flow modelling, the 

probabilities of traffic values also propagate in time and space with traffic (Lebacque et 

al. 2007; Hoogendoorn et al. 2008). For Monte Carlo simulation this is not an issue, as 

each simulation is a single probability value and therefore no probability value is 

required to be considered. For one shot models there is a challenge to propagate 
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probability information without compromising model accuracy or one of the other 

important issues, such as computational efficiency.   

In models which apply stochastic effects through the fundamental diagram, traffic 

flow is presumed to propagate in an identical fashion to that of a regular flow model. In a 

stochastic fundamental diagram, probabilities are stochastically applied in the shape of 

the diagram. In  the S-CTM, median and standard deviations of traffic variables are 

propagated through time and space, dependent on the relevant traffic state. It is not 

uncommon to only consider a median and standard deviation, as this requires the least 

computational effort and still gives a good estimation of variational spread. However 

more in-depth analysis is harder as the underlying distribution is not preserved. 

Furthermore, such an approach often presumes probability distributions to be 

symmetrical according to a presumed shape, which is not always the case. In such a case 

biases are allowed, which may not accurately represent the underlying distribution. It 

should however be noted that these biases may be small compared to the overall error 

level.  

3.4 GENERALITY OF STOCHASTIC VARIATION 

Inclusion of stochastic variation does not only demand solid and accurate modelling, 

but also realistic and correct model input. The level of stochastic input depends on 

which variables are considered stochastic. These may be the time headway (or gap time) 

between vehicles, capacity values, traffic demand values, or even ‘lower level’ variables, 

such as vehicle population or probability of accidents. Depending on how a model 

processes the stochastic variables, these may be offered to the model as a complete 

distribution, either of a specific form or empirical, or as a description of variations, such 

as median, standard deviation and possibly a shape parameter. The difficulty with this 

issue is that of generality. A set parametric shape of probable values for a set variable 

may not be valid for every location on a network or under certain other conditions. 

Furthermore, such variables may not pertain to a set distribution type. Often 

presumptions are made to how general distributions or variations are. In many 

instances white noise may be applied to known representative values to imitate 

variation (Helbing et al. 2001; Jabari and Liu 2012). The validity of such approaches is 

not often considered and is taken as a model assumption. However here there is also 

room for improvement, when applying stochastic variation to traffic flow models. In the 

case of stochastic fundamental diagrams, the difficulty of generality may also arise. In 

some cases allowing specific local data to influence the extent of stochastic variation can 

help solve this. 

3.5 SUMMARY OF ISSUES 

It is of course the case that each issue influences the others in some way. This is a 

main reason why individual solutions for each issue do not necessarily yield an overall 

solution for all the issues. Figure 1 gives a rough estimation of the dependencies 

between the issues. We derive that especially the manner of stochastic propagation of 

probability in traffic is a key issue. There is a strong influence from this issue to both the 

manner in which the spatiotemporal dependency is influenced and the extent to which 

stochastic variables can be dealt with generically. It may be that certain presumptions 

for dealing with uncertainty propagation may limit how stochastic variables are defined. 

Furthermore each issue affects the computation time of a model and in most cases 

contributes to a lower computational efficiency. There are situations possible that may 
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lead to shorter computational times, such when a process inherently or even implicitly 

allows for parallelisation. When setting out on tackling one of the issues, the effect on 

the others should not be ignored, moreover the effect should explicitly be considered for 

model usefulness.   

 

 
Figure 1 Interrelations between the main modelling issues (continuous and dashed lines 

indicates strong and weak relationships resp.) 

4. CORE PROBABILITY MODELLING 

In this section the framework for the Core Probability modelling and the underlying 

assumptions are explained. The Core Probability Framework (CPF) extends existing 

macroscopic traffic flow models to allow stochastic behaviour in traffic to be 

internalised in the traffic flow model which it extends. Internalisation here refers to the 

manner in which stochasticity is present in the model, where Monte Carlo simulation is a 

clear example of external stochastic influence. Initial application of the CPF makes use of 

the Cell Transmission Model (CTM) as base model. The basic premise entails replacing 

single traffic variables in time and space, such as the density, in a model with a 

distribution of that same traffic variable, also in space and time. The distribution, 

denoted as a vector, consists of predefined probabilities of various possible values of the 

considered traffic variable at a certain time and location, therefore transforming the 

traffic variables into stochastic variables. The general dynamics of the base model are 

kept the same as the deterministic version of the model. In such a way, traffic is 

propagated through a link (or network) considering possible valid values of each traffic 

variable with a set probability, using already validated traffic flow dynamics from the 

base model. The input distributions are empirically determined for specific locations 

and/or scenarios or from generic empirical analysis (Calvert et al. 2014; van Stralen et 

al. 2014). 

The framework allows different probabilistic models for propagation of the stochastic 

traffic flows to be developed and applied. In this contribution we further present the 

Discrete-Element Core Probability Model that makes use of the framework. A more 

detailed description of the framework and this model are given in the subsequent 

subsections. This begins with a short explanation of the applied base model (4.1). The 

concept of the CPF is given in 4.2 and is followed in section 4.3 by the description of the 

manner in which probability is included in the DE-CPM, how it is propagated, and how 

congestion and traffic states are dealt with. A simple numerical example is shown to 

conclude the section (4.4). 
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4.1 BASE MODEL   

The Core Probability Framework makes use of a base model, which dictates the 

manner in which traffic flow is propagated, and considers stochastic probabilities in the 

core of a macroscopic traffic model. The base model applied here is the first order Cell 

Transmission Model (CTM)  (Daganzo 1994; Daganzo 1995). The CTM describes traffic 

using a discretised form of the Lighthill-Whitham-Richards (LWR) model (Lighthill and 

Whitham 1955). The LWR model is governed by the law of conservation of vehicles 

(eq.(1)), and the fundamental relation (eq.(2)): 

 

 ��(�, �)�� + �	(�, �)�� = 0	 (1) 

   

 	(�, �) = �(�(�, �))	 (2) 

 

Here ��(�, �) denotes the change in density in time, t, and space, x. �	(�, �) denotes 

the same for the intensity, while �  is the fundamental relation between the density and 

flow, which is explained in more detail later on. 

In the CTM the traffic flow at the interfaces between two cells, q,  is determined by a 

sending and receiving function, denoted here as the demand, D, and supply, S, which 

closely represent the available capacity in a cell and the desired traffic flow into a cell: 

 

 	��→����(�(�, �)) = min	(��(�(�, �)), ����(�(�, �)))	 (3) 

 

The demand function D is calculated by the largest flow or capacity of cell � in 

relation to eq.(2), and the supply function S by the desired outflow from the previous 

cell  according to the fundamental traffic characteristics of the preceding cell.   The base 

model is applied in its discrete form for use in the Core Probability Framework and 

governs the main dynamics of traffic flow. 

 

4.2 CORE PROBABILITY FRAMEWORK 

The main premise of the Core Probability Framework (CPF) is the incorporation of 

uncertainty in the core of the model as probability distributions. While regular Monte 

Carlo simulation applies uncertainty through multiple simulation iterations, for the CPF 

these are internalised. This approach allows for a one shot simulation run and an 

increased efficiency in simulation. The uncertainty is applied in the form of (discrete) 

empirical probability distributions, which describe the variations in traffic variables in 

the model and are primarily applied as cumulative probability functions of the traffic 

demand at the origins  and the capacity of each cell. A graphical description of the Core 

Probability Framework is shown in Figure 2b, alongside the general framework of a 

Monte Carlo routine as a comparison over a similar macroscopic traffic model for a 

simple three cell road stretch (Figure 2a). 

The figure clearly shows the evasion of multiple simulations in the case of the CPF in 

comparison to a Monte Carlo routine over the same base model. The CPF is in its self not 

a DNL, but rather the framework which states that distributions are explicitly 

propagated through time and space in combination with the dynamics of the base 

model. The example of the Discrete-Element Core Probability Model (DE-CPM) is given 

in this contribution as a possible DNL model, that may be applied in the framework, 
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which describes how the distributions of the stochastic traffic variables are propagated 

through the network. In the rest of this section, the CPF is explained for the application 

of the DE-CPM. Other core probability models may also be applied to the CPF and are in 

development, but are not discussed any further in this paper. 

 

 
 Figure 2a-b Conceptual overview of the (a - above) Monte Carlo traffic simulation 

framework and (b - below) the Core Probability Framework 

4.3 DISCRETE-ELEMENT CORE PROBABILITY MODEL 

� Concept 

The Discrete-Element Core Probability Model (DE-CPM) is DNL model that makes use 

of the Core Probability Framework to propagate traffic through a                                       

link and network. The DE-CPM describes the traffic variables as a distribution, denoted 

as a vector, which consists of static probabilities of various possible values of the 

considered traffic variable at a certain time and location. For each variable at each time 

step identical static probability elements are used in the distribution. Each discrete 

element in the distribution is explicitly kept from interaction with other elements as the 

flow distributions are propagated through the network. This approach basically creates 

an internalisation of the Monte Carlo routine, in which each discrete element or 

‘scenario’ is kept separate. In such a way, traffic is propagated through a link (or 

network) considering possible valid values of each traffic variable with a set probability, 

using already validated traffic flow dynamics from the base model. 
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In the following paragraphs the Core Probability Framework is defined for 

application of the Discrete-Element CPM as network loading model. 

� Inclusion of probability 

In classical first order models, each variable is represented by a single value for each 

point in time, �, and space, �. In the core-probability approach a further variable is 

added, which represents the probability of the density occurring, and sequentially the 

traffic flow, �, and the speed, �. This further transforms the variables from a single value 

in time and space into a probability distribution in the same time and space, represented 

by their corresponding vector.  

Presuming static values for  the probability elements avoids the necessity to explicitly 

define the probabilities of the values corresponding to the probabilities for each cell (m) 

in each time step (n). 

Initially in the continuation of the description, for the reason of clarity, a further 

presumption is made that each value in the probability vector has identical probability. 

This assumptions also entails that the discrete probability values for each probability 

element are set for the entire simulation for all time steps (n), cells (m), and for each 

variable (k, q, v): 

 

 �:		!� = !" =	. . . = 	 !$			∀(�, 	, &) (4) 

 

We are currently in the process of developing a discretisation technique that 

presumes the individual probability elements not to be equal, but rather generically set 

to values that capture the extremities of the distribution to a better extent and in doing 

so, reduce the required number of elements in the discrete variable. 

 Now let the random variable '(�, �) denote the density on a cell [x, x+dx] and at time 

t. Let !$(�, �)  denote the accompanying probabilities. Such a relation is given as: 

 

 (('(�, �) = �) = !$(�, �)   (5) 

 

Note that the values of � are discrete and hence a discrete probability function can be 

used. However such a notation indicates a variable probability as a function of given 

densities. The CPM presumes set probability elements, and therefore the random 

density variable '(�, �) is defined as a function of set probabilities instead.   

So for example '(�, �),  now written as vector )(�, �	; �), denotes all possible values of 

the density for a moment in time and a location, given the probabilities of these 

densities. The density vector can also be written as: 

 

 )(�, �	; �) = +��(�, �)	,-�ℎ	!/0121-3-�4	!5.��"(�, �)	,-�ℎ	!/0121-3-�4	!5."…�$(�, �)	,-�ℎ	!/0121-3-�4	!5.$
7   

 

(6) 

 

This notation is much closer to that applied in Fuzzy Logic, in which a crisp number is 

denoted as having multiple possible values, each with their own probability  (Buckley 

2005). Here, the notation is borrowed from Fuzzy Logic Theory, while applying General 

Probability Theory, which states in this case that k is a stochastic variable, which has 

various values with predefined probabilities.  
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From now on we will only use the short form for the density vector, rather than the 

description on the right hand side of eq. (5). The addition of the vector p includes all 

possible values of the appropriate variable with identical probabilities of each value in 

time and space, so that: 

 

 � = 	 !� + !"+	. . . +	!$ = 1 (7) 

 

Here, - is further limited to a finite value, which is applied as an input parameter of 

the model. The equations for the conservation of vehicles (eq.1) and the fundamental 

relation (eq.(2)) now incorporate a further dimension for the probability in time and 

space, and become dependent on the probability of their value: 

 

 �)(�, �	; �)�� + ��(�, �	; �)�� = 0 
(8) 

   

 �(�, �	; �) = �()(�, �	; �)) (9) 

 

The conservation  of vehicles therefore remains intact by definition, as each 

considered element in the probability distribution vector acts as an individual case of 

the CTM for which conservation has been proven (Daganzo 1994). 

� Application of stochastic demand and traffic propagation 

External stochastic traffic demand is applied in the model at the peripherals of a 

network on the inflowing cells. From there on traffic may propagate applying eq (7) and 

(8) according to the dynamics of the base model. The initial traffic demand contains 95	times 9: number of elements in the probability vector �, where 95 	is the number of 

probability elements in the vector for the demand and 9: is the number of probability 

elements for the capacity, such that each probability vector � is constructed of all 

possible combinations of !;5  and !;5 . The initial flow at the network origins is therefore: 

 

 �(�<, ��	; �) 	= {	>�, 	>", … 	>(;5∙;:)}	 
 

(10) 

Where the probability vector � exists of 95 	times 9: elements. This multiplication is 

performed to accommodate a position in the probability distribution for the outcomes of 

each combination of traffic demand and capacity. 

The variation in the capacity of the network is applied for each cell corresponding to 

the probability of the capacity of that cell in a similar way to the traffic flow �. In a 

simplified case only bottleneck cells will have varied capacity values, with the other cells 

yielding identical capacity values for each element in �. The capacity contains 9: 

probability elements for the capacity in both time and space, although for most cells, 

variation in the capacity has little to no influence where flow is sub-critical:  

 

 

 �:A>(��, �B	; �) = CD
E	:A>.�(�, �)	,-�ℎ	!/0121-3-�4	!:.�	:A>."(�, �)	,-�ℎ	!/0121-3-�4	!:."…	:A>.$(�, �)	,-�ℎ	!/0121-3-�4	!:.$ FG

H
 

 

(11) 
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Once the stochastic traffic is on the network, the traffic propagates through the 

network dependent on the corresponding demand and following the dynamics  as 

previously shown in eq.(8) and eq.(9).  

Spatiotemporal dependence is applied as a conditional probability at the entrance of a 

network, between the initial demand (applied to connector links to get initial densities) 

and capacity variables. Propagation of this dependence entails that each element in the 

probability vector of the density corresponds to the same place in the probability vector 

of the density of the following time step. This is described as the chain-rule, as 

graphically shown in Figure 4 and is further described later in this paragraph and is 

given in Eq. 14. The chain-rule ensures an identical number of elements in the resulting 

probability vector for propagation through the network, and therefore avoids an 

explosion of marginal probability elements. Basically, this creates a set of values which 

can be seen as scenarios of unique traffic demand and capacity combinations.  

 

  

 

 

 

 

 

Figure 3 Traffic propagation in the DE-CPM 

 

 

 
 

 

 
 

 

 

 

 

 

Figure 4 Chain-rule for propagation of traffic variables as discrete elements of a 

distribution in the DE-CPM 

 

The process is explained as such: there is a traffic demand q(x�, t�) with a set of 

possible values, qL, corresponding to certain probabilities: 

 

 	(��, ��	; !) = {	>�, 	>", … 	>$}	 (12) 

 

Calculations in the model are performed using the density, therefore q is transformed 

using eq. (2) to: 

 

 �(��, ��	; !) = {�>�, �>", … �>$} (13) 

 

���→����()) �����→���M()) )(��, �N	; �)  
 

with capacity �OP�(��, �B	; �)  
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In the following time step there is a new 	 and � at location x�, in line with traffic flow 

in and out of the cell and in keeping with the conservation of vehicles (eq(1)) : 

 

 �(��, �"	; !) = {�>�, �>", … �>$}	 (14) 

 

However the position of each element in the (��, �"	; !)corresponds only to that of the 

element in the same position in the following time step in )(��, �"	; �),	so that for each 

element, -, applies: 

 

 	(��, �"	; !$) 	 →  	(��, ��	; !$)	  (15) 

 

This strict  ‘chain-rule’, that for each location in consecutive time steps the same 

probability must apply, protects the validity of the initial conditional dependence 

between the capacity and traffic demand in both time and space. 

Although the CTM base model, and therefore also CPF / DE-CPM, calculates traffic 

using the density, it is often required to translate this to the traffic flow �(�, �	; �), for 

determination of the flux for example. This is performed using the fundamental relation 

shown in eq.(2), in which each value of q is transformed using a deterministic 

fundamental diagram. The resulting values of �(�, �	; �) from )(�, �	; �)	maintain the 

same probabilities for each time step and cell in space. 

In the same way, the traffic flow on the subsequent cells is also calculated. The only 

difference is that the supply and demand refer to those of the following cells, �; . In such 

a way, one can speak of multiple scenarios in a single procedure, as each element of the 

marginal probabilities are considered individually for a single variable.  

� Determination of Congestion   

The sending and receiving functions, or rather demand and supply, d and s, are in 

part determined by the traffic state. Traffic states are in turn determined by the density 

of traffic in a cell at a specific  time. Under congestion, the demand function is equal to 

the capacity, and the supply function of the outgoing traffic flow: 

 

 Q(��, �B	; �) 	= �OP�(��R�, �B	; �) S(��, �B	; �) 		= �(��, �B	; �)		 (16) 

(17) 

 

For uncongested states, the demand function is the incoming traffic flow, and the 

supply function is the available capacity: 

 

 Q(��, �B	; �) 		 = �(��R�, �B	; �) S(��, �B	; �) 	= �OP�(�, �	; �) 

(18) 

(19) 

 

For the Core Probability Framework without capacity variation, congestion is 

determined by comparison between the probable density and the critical density of a 

cell: 

 

 TUVW(�, �	; �) = )(�, �	; �) ≥ �:Y$Z(�, �) (20) 

 

However, when capacity is also varied, the congestion equation states a distribution 

vector on either side of the operator: 
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 TUVW(�, �	; �) = )(�, �	; �) ≥ )O[\](�, �	; �)	 (21) 

 

� Network flow over nodes 

For modelling traffic in networks, it is imperative to consider traffic flow over the 

nodes. This is usually performed using a node model which deals with the manner in 

which traffic propagates at convergence and divergence point in a network, but also how 

other traffic waves, such as congestion may propagate in an upstream direction. This 

contribution does not aim at developing a stochastic node model, and therefore they will 

not be reviewed here. For an overview of the state-of-art of node models we refer to 

(Tampère et al. 2011). The inherent characteristics of the chain-rule, as used in the DE-

CPM for the propagation of distributions as an internalisation on the Monte Carlo 

routine, determine that just about any arbitrary node model that is applicable for the 

base model may be applied in the CPF.  

This is demonstrated for the merge model as described by Daganzo (Daganzo 1995) 

for an uncongested flow. The merge model describes the maximised flow, Q, from two 

incoming links, i = 1,2, into a single outgoing link 3. As seen already from the CTM, 

sending flows perpetuate from the upstream links (see eq. (3)). These flows are 

constrained by the maximum flows that may leave each link: S1, S2. Likewise, the 

receiving downstream link also has a maximum flow that it is capable of receiving: R2. 

Therefore we can easily see that traffic flow is constrained by either the traffic demand 

from the inflowing links or the supply of capacity from the receiving link according to: 

 

 	$ ≤ �$							∀-	 ∈ {1	, 2} 

 

 a 	$$b�," ≤ cd 

(22) 

 

(23) 

 

 

Considering the constraints and convergence of the flow from eq. (22) and (23), it 

becomes apparent that the flow into the receiving downstream link for uncongested 

circumstances is: 

 Q = min{ �� + �"	; cd} (24) 

 

Extension of the node model for use in the DE-CPM extends eq. (22) and (23) by 

considering each variable as a discrete stochastic variable in which the chain-rule is 

valid between the corresponding elements of the variables. Hence, equations (22-24) 

become: 

  �$(��	; �) ≤ f$(��	; �) 

 a �$(��	; �)$b�," ≤ g(��	; �) 

 h(��	; �) = min{ f�(��	; �) + f(Z�	;�)�	; g(��	; �)} 

 

(25) 

 

(26) 

 

 

(27) 

 

 

In eq. (25-27) � indicates the entire distribution vector for which is valid p for ∀	! ∈ � 

according to the previously defined chain-rule for an arbitrary variable, f: i(!$) 	 →  f(!$). 

Graphically, it is very easy to observe how the propagation of traffic in the DE-CPM does 
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not require special attention for nodes beyond the introduced theory that is also 

applicable for stretches. Convergence and divergence of traffic flow at a node are again 

dealt with according to the dynamics of the base node modal, where each element from 

the stochastic variables is processed independently.  

 
Figure 5 Graphical representation of the DE-CPM for a node merge 

 

The same simple extension applies to other node models and the additional equations 

that describe the congested states in the node models for application in the DE-CPM. As 

the chain-rule explicitly keeps the individual elements of the discrete distribution 

separated for calculation, these act in the same fashion as the deterministic case for 

which the models are already developed.  

4.4 SIMPLE NUMERICAL EXAMPLE (BOTH CAPACITY AND DEMAND VARIED) 

To demonstrate the manner in which the DE-CPM works, a simple numerical example 

is given as demonstration. A more elaborate demonstration is given in section 6. The 

traffic demand at the network peripherals is given as an intensity with a set probability. 

In this example there is a 50% chance of two different inflow values, and there is 50% of 

two different capacity values. Therefore there are 4 elements in the demand vector, 

because the size of �(�, �	; �) is equal to 95	times 9: (see eq. (10)): 

 

� j��, ��, � = k0.250.250.250.25mn = k1900190022002200m  (28) 

 

The capacity values of the cell are also given in the,  95	times 9: number of elements, 

capacity flow vector: 

�OP� j��, ��, � = k0.250.250.250.25mn = +21002300210023007  (29) 

 

Note that the sequences for the values of the flow in the demand vector (Eq 28) are 

differently arranged over the 95	times 9: elements in comparison to the capacity flow 

vector (Eq 29). 
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This flow vector, �(�, �	; �), in eq. (28) is transformed to a density vector,	)(�, �	; �), 

using the fundamental relation 	 = �(�) in which the critical density is �:Y$Z = 25. This 

gives: 

) j��, ��, � = k0.250.250.250.25mn = +222026247  (30) 

 

The probability of congestion is calculated using Eq. (20): 

TUVW j��, ��, � = k0.250.250.250.25mn = )(�, �	; �) ≥ �:Y$Z(�, �) = s+222026247 	 ≥ 25t = k0010m (31) 

 

Therefore, based on eq.(16) through eq.(19), the demand D and supply S, can be 

calculated as: 

u j��, ��, � = k0.250.250.250.25mn = k1900190022002200m	    and    f j��, ��, � = k0.250.250.250.25mn = +21002300210023007 (32) 

 

The flux between two cells is defined and given as: 

��v→�v�� j��, ��, � = k0.250.250.250.25mn = minwu()), f$��())x = 	 k1900190021002200m  (33) 

 

The density therefore in the current and following cells in the following time step, t2, 

is given by the previous density adjusted by the flux into and out of that cell, during the 

size of the time step, h. Here we presume an identical inflow into cell x1 for t2 as in t1: 

 

) j��, �", � = k0.250.250.250.25mn = )(��, ��	; �) + (��y→�� − ���→�M) ∙ ℎ = +222026247 + jk1900190022002200m −
k1900190021002200mn ∙ ℎ  (34) 

 

Similarly, the flow into the yet unoccupied cell x1 is calculated: 

 

) j��, �", � = k0.250.250.250.25mn = )(��, ��	; �) + (��y→�� − ���→�M) ∙ ℎ = k0000m + jk1900190021002200m −
k0000mn ∙ ℎ  (35) 

 

This same process repeats itself for each cell in each time step and so on. 
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5. ADDRESSING THE MAIN ISSUES 

This section describes the manner in which the important issues from section 3 are 

addressed in the CPF and DE-CPM and improve on the current state-of-art.  

 

For computational efficiency, the main challenge is to reduce computational load 

and in doing so, do it in a way that the model is not reduced in stochastic and modelling 

accuracy. Compared to a Monte Carlo simulation, the CPF does not require multiple 

repetitive simulations before arriving at a distribution, as the distribution of the traffic 

variables is explicit to the methodology. Therefore the computational load will be lighter 

if a single (DE-)CPM simulation run is quicker than the sum of the required number of 

Monte Carlo simulations on the same base model. It is hypothesised that this is the case, 

as the DE-CPM has a single computational overhead for the entire distributions, while a 

Monte Carlo simulation has a computational overhead for each simulation iteration. 

Furthermore, a lower detail of discretisation is hypothesised to be required for the DE-

CPM as the model calculates using distributions throughout. In section 6.2 a 

demonstration is given of the potential computational gains. Monte Carlo simulation 

makes use of less efficient random process of sampling, which reduces the completeness 

of a distribution and therefore requires a greater number of simulations to reach the 

same level of accuracy, therefore increasing the computational load. On simple network 

or corridors, the efficiency effect will be limited, however for larger networks and for a 

greater spread of variation the gains should be greater. It should be noted that Monte 

Carlo simulation allows for parallelisation, which can significantly improve computation 

time.  

Other CPM-models in the CPF have the potential to be much more efficient, as the 

consideration of ‘scenarios’ as internal Monte Carlo draws can be relaxed and allow 

natural probabilities to be calculated. This cannot be verified however until these 

models are further developed and tested. 

 

Spatiotemporal dependency is catered for in the DE-CPM through the explicit 

consideration of correlations at the peripheral of the model and maintenance thereof in 

propagation through the chain-rule. For other DNL models in the CPF, the manner in 

which the dependency is dealt with may vary. Reduced to two dependant variables, the 

traffic demand and road capacity, correlations between possible values of both are 

explicitly considered in the distributions entering a network at the peripherals. Values in 

the initial distribution vector of the traffic demand entering the network correspond on 

an element-to-element bases to that of values of the capacity distribution vector at the 

same element location. This was explained in section 4. By explicitly maintaining this 

chain-rule throughout the traffic propagation, independency between traffic demand 

and capacity is maintained. Dependency in time for both the demand and capacity is also 

explicitly dealt with outside the model. Input values for certain elements in the 

distribution vectors follow those of the preceding time step and therefore already 

consider a logical and dependant propagation from the input vectors in time. Spatial 

dependency is dealt with in the same way as in the base model and therefore requires 

no further attention. Simplified, each element in a distribution vector may be seen as a 

single input value for a single Monte Carlo simulation, therefore it may also be 

considered as independent from other elements just as a single Monte Carlo iteration is 

from another Monte Carlo iteration. 
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Stochastic propagation of probability in traffic flow is performed as described in 

section 4.3 for the DE-CPM and is also touched upon in the previous paragraph on 

spatiotemporal dependency. Dealing of this issue is also DNL model dependent and not 

generic for the CPF. A complete distribution of possible values per traffic variable is 

present as a distribution in the form of a vector. This vector exists of more elements than 

is necessary, so to allow each possible value of that vector to correspond to the elements 

of other vectors and therefore to avoid correlation difficulties. As these distribution 

vectors are propagated in space and time, there is no need to reduce variables to a 

representation of the distribution using a set distribution type, median, standard 

deviation, shape parameter or such like. Although this may lead to a higher 

computational effort, it maintains a guaranteed accuracy of the propagation of the traffic 

variables and their probabilities, as the distributions remain intact in the process of 

propagation. Therefore a greater accuracy can be achieved in comparison to methods 

that do transform distributions to characteristics of the distribution, mostly to some 

parametric form.  

 

For the CPF, the question of generality is one that is less relevant to the model itself, 

but rather to the quality of the data and distributions that it is fed with. As the CPF 

performs calculations using discrete distributions, a reduction of the input data may 

only happen in the case of rediscretisation for the sake of computational efficiency. 

Therefore the necessity to apply accurate input distributions for the traffic demand and 

road capacity is applicable for the local circumstances or from a general distribution if 

the local situation is not known. Construction of generic input distributions for this 

purpose, taken from wide spread empirical analysis, makes it easy to apply the CPF 

without requiring extensive data analysis for each application of the model (Calvert et al. 

2014; van Stralen et al. 2014). Nevertheless, this issue is one that is less explicit to the 

model, as the quality of input data is relevant and independent to all models. However 

the manner in which a model deals with accurate input is important. The CPF does not 

simplify input by moulding it to a parametric function, therefore maintaining  high level 

of accuracy and avoiding additional unnecessary biases, contrary to many other models. 

The CPF makes use of empirical distributions which maintain the characteristics of each 

distribution as it propagates through a network.  

6. TEST CASES DE-CPM 

6.1 TRAFFIC PROPAGATION ON A SINGLE ROAD SECTION  

Demonstration of the application and validity of the Discrete-Element Core 

Probability Model (DE-CPM) is given in a test case. The test case aims to show that traffic 

propagation along a road section in the DE-CPM can accurately resemble traffic flow 

found from empirical observations. As the case is carried out on a single stretch, there is 

not much that can be said about the computational efficiency. This is considered in the 

following sub-section. 

The test case is carried out for the A12 motorway in The Netherlands between 

Utrecht and The Hague (see Figure 6). On this motorway in 20091, a lane drop was 

                                                        
1 Since 2009, this location has been upgraded to four lanes along the entire stretch to eradicate the 

bottleneck.  
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present from four to three lanes, which acted as a structural bottleneck at location A. 

Daily congestion starting at this location near the town of Woerden would be present, 

especially during the evening peak period.  A section of 11 kilometres is considered, of 

which 10 km upstream and 1 km downstream of the bottleneck. The DE-CPM is fed with 

data from 63 afternoon peak period observations of the traffic flow between 2 PM and 9 

PM from 2009 as a representation of the probability of certain traffic flows appearing. 

The input for the model is taken exclusively from the most upstream location. Therefore 

the validation is that of the stochastic traffic propagation. Each observation is 

considered as an equal probability of a real traffic demand for this location and is 

therefore given a 100/63 = 1.6% probability for the input at the inflow of the corridor. 

These traffic flows are fed into the network at the most upstream location. 

 

 
Figure 6 Bottleneck location near Woerden at the considered road section on the A12 

used in the case study 

 

A comparison is made based on the ability of the model to accurately predict the 

propagation of the probabilities of traffic flow and corresponding traffic states between 

the outcome of the DE-CPM simulation and the empirical data. For this, the unfiltered 

traffic states in time and space are gathered on the entire corridor. The comparison 

focusses on the time of traffic breakdown, congestion duration, spill-back distance, and 

the specific speed values in time and space. This is shown for the median probability 

(most likely traffic situation) and a further demonstration of the results are given in the 

form of a 3D congestion probability plot. The results of the median probability are 

shown in the time-space Figure 6.   

 
Figure 7 Modelled speed diagram for the median probability in the A12 test case  
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Figure 8 Empirical speed data for the median observation in the A12 test case 2 

 

The initial results shown in Figure 7 show the simulated median (50%) results from 

the model, compared to the median from the empirical data shown in Figure 8. The 

speed values are shown as these give a good indication of where congestion is present, 

how extreme congestion is and how traffic flow changes the time. Initially the extent of 

congestion appears to be relatively well modelled. Nevertheless there are certain 

deviations in comparison to the empirical data. The onset of congestion occurs 

approximately 10 minutes earlier in the simulation, while congestion lasts for 158 

minutes compared to 190 minutes in the data. However, the spillback of congestion in 

both is of a similar magnitude and deviates no more than 200 meters over a distance of 

some 9 kilometres. The speed in the heavily congested area of traffic is lower in the 

empirical data compared to the model (ca. 30 kph versus 40 kph). This may also be a 

main reason why the duration of congestion differs, as traffic in the simulation may 

proceed at a slightly higher speed and therefore let congestion disperse earlier. Despite 

these minor deviations, this initial test case gives cause for optimism. A further fine-

tuning of the model parameters when applied in practice may easily compensate for the 

observed differences.  

The CPF allows a vast amount of data to be produced and presented as a probability 

distribution or in another forms as a direct consequence of the way the CPF works. As 

each traffic variable is considered as a distribution of possible values, each can therefore 

be calculated or shown as such at each time step and location. This is demonstrated in 

Figure 9 in which the congestion probability at each location and for every time step is 

given. Congestion is defined as such when the critical density is exceeded, while the 

probability thereof indicates the frequency that congestion is expected to occur for an 

arbitrary location and time along the corridor. It is possible to show more complex 

results in a greater number of dimensions, i.e. including the probability as a variable in a 

diagram, however this leads to difficulties in the interpretation of diagrams. 

Nevertheless, broad analyses are made much easier and more extensive with the results 

                                                        
2 The red horizontal line indicates a location at which a faulty detector is present. The speed at this 

location is returned as null. 
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from the CPF. Significant computational gains are not found on a single corridor, but 

rather are expected for networks and for greater variations in stochastic variables. This 

is further looked at in the following section. 

 

 
Figure 9 Modelled congestion probability in time and space for the A12 test case 

6.2 NETWORK COMPUTATIONAL PERFORMANCE 

Performance of the DE-CPM for computational efficiency is tested on two simple 

networks. In comparison to the previously considered road stretch, variation in traffic 

flow can interact much more as it propagates through a network and will also include 

network effects. The considered networks are shown in Figure 10 and 11. Network 1 is a 

7 link network with two origins and one destination, while network 2 is constructed 

from 17 bi-directional links with four origins and destinations. A comparison is made 

between the application of identical input distributions and capacity distributions in the 

DE-CPM against a CTM Monte Carlo simulation on the same networks in a MATLAB 

implementation. In both models the main CTM code is identical, naturally with the 

addition of the core probability components for the DE-CPM model. Furthermore, both 

models make use of exactly the same route model, which presumes static turning 

fractions and all other variables and parameters are kept identical in both cases.  

 

 

 

 

 

 

Figure 10 Test network 1 
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Figure 11 Test network 2 

 

Input for the models are the network definition, which includes network 

characteristics and geometry, stochastic dynamic demand matrices, and stochastic 

capacity values. The demand and capacity distributions are kept to a limited number of 

discrete elements, which also act as the input for the DE-CPM and as each combination 

for the Monte Carlo routine. The input distributions therefore do not require further 

discretisation. Besides tests on two different networks, various ‘total number of time 

steps’ and various ‘number of discrete elements in the input distributions’ are applied, 

as shown in Table 1. 

For each scenario, at least five simulations3 are performed of which the average 

computation times are given in the last two columns of Table 1. Five  

 

Table 1 Computational speed tests for the DE-CPM 
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Netw 1 7 2 1 2 6 400 10 4 40 51 2.3 

Netw 1 7 2 1 2 6 200 5 4 20 13 1.0 

Netw 1 7 2 1 2 6 800 10 4 40 101 4.3 

Netw 1 7 2 1 2 6 800 5 4 20 51 3.9 

Netw 1 7 2 1 2 6 200 5 2 10 7.0 1.0 

Netw 1 7 2 1 2 6 400 5 2 10 13 2.0 

Netw 1 7 2 1 2 6 400 5 4 20 25 2.1 

Netw 1 7 2 1 2 6 800 5 2 10 26 3.8 

Netw 2 17 4 4 3 6 200 10 4 40 66 2.7 

Netw 2 17 4 4 3 6 400 10 4 40 131 5.5 

Netw 2 17 4 4 3 6 800 10 4 40 261 11 

Netw 2 17 4 4 3 6 200 5 4 20 33 2.6 

Netw 2 17 4 4 3 6 200 5 2 10 16 2.5 

                                                        
3 The reason for multiple simulations is to be sure that there are no or limited variations cased by the 

computer. Although five simulations are performed for each scenario and model, the differences in 

calculation time for the five simulations in all cases on the same machine consequentially varied 

minimally, generally below 2%. 
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The results of the computation time tests as a function of the number of time steps 

and discrete elements from the distributions, show some interesting trends. A graphical 

representation of the results are shown in Figures 12 and 13 for the CTM Monte Carlo 

and DE-CPM respectively for network 1. The relationship between the number of time 

steps and the calculation time is approximately linear for both models and has its origin 

near to a time of zero. The relationship between the number of discrete elements and 

the calculation time is also approximately linear in both cases. However there is a 

significant difference between the CTM Monte Carlo and DE-CPM for the incremental 

increase in relation to the number of discrete elements from the distributions. As may be 

expected, the CTM Monte Carlo model increases linearly with an origin near to time 

zero. This is expected as each Monte Carlo simulation makes exactly the same 

calculations for each combination of inputs, with each calculation taking approximately 

the same amount of time. The DE-CPM, however, requires a relatively shorter additional 

time to calculate additional number of discrete elements from the input (and here in the 

propagation). This is found for both networks and can be clearly observed in Figures 12 

and 13. Also it appears that the linear increase with the number of elements does not 

originate at zero seconds, which indicates some sort of small start-up time. Comparison 

between the two networks would indicate that the start-up time is dependent on the 

size of the network.  

 
Figure 12 Calculation time CTM Monte Carlo for network 1 

 
Figure 13 Calculation time DE-CPM for network 1 
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The consequence of this low coefficient for increasing number of discrete elements is 

that the DE-CPM is far more capable of efficiently dealing with traffic flows with large 

amounts of stochasticity in comparison to the compared Monte Carlo routine. This 

allows simulations to be carried out in which a greater detail of uncertainty may be 

incorporated at a marginal cost to the computational time.  

In absolute terms, the calculation times for the DE-CPM outperform those for the CTM 

Monte Carlo by a factor 5-20 depending on the size of the network and number of 

stochastic elements. The results from Table 1 show that for larger networks and for a 

greater number of discrete elements that the DE-CPM outperforms the Monte Carlo 

routine to a greater extent. This is in line with the expectations that this model shows its 

effectiveness best for larger networks and under greater levels of uncertainty. The 

extent of the calculation time decreases came as a surprise, and was not expected to be 

so large. However further checks have reconfirmed the results. The possibility of 

parallelisation for Monte Carlo routines can reduce the computation time, however even 

compared to parallelisation such gains of 20 times or more for larger networks with the 

DE-CPM may even be competitive in comparison.  

7. CONCLUSIONS AND CURRENT DEVELOPMENTS 

In this contribution the Core Probability Framework (CPF) has been introduced with 

the application of the Discrete-Element Core Probability Model (DE-CPM) as a new DNL 

for dynamic macroscopic modelling of stochastic traffic flow. An initial validation case 

has been also been shown as well as an indication of the computational performance on 

networks. The CPF extends current deterministic traffic flow models by redefining 

traffic variables in the core of the model as distribution vectors of probable values for 

each traffic variable. In such a way stochastic variation in traffic is internalised in the 

model and does away with the necessity of repetitive Monte Carlo simulation. 

Furthermore a greater degree of flexibility in analysis is obtained, as each individual 

traffic variable in time and space may be given as a function of their probability. 

Moreover, the underlying distribution of each traffic variable in space and time is 

preserved such that the introduction of distribution fitting errors is limited to a 

minimum. Important issues facing stochastic traffic flow modelling are given in the 

contribution, and are identified as computational efficiency, spatiotemporal dependency, 

stochastic propagation of probability, and stochastic generality. The  DE-CPM addresses 

each of these issues through element based calculation using the chain-rule and in doing 

so demonstrates the ability to advance developments in the area of stochastic traffic 

modelling. In particular the CPF aims to further the possibilities for reliable, accurate, 

efficient, and most of all, practically applicable stochastic macroscopic traffic flow 

modelling. The outcome of the calculation time tests on simple networks compared to a 

CTM Monte Carlo model showed that the DE-CPM has great significant potential to 

reduce computation times, especially for larger networks and for greater stochasticity. 

This is mainly due to the small marginal computational costs incurred when increasing 

the level of uncertainty in the discrete model. With the DE-CPM DNL model, a first step 

within the framework is taken. Further expansions in the form of more advanced model 

developments within the framework are ongoing and focus on the propagation of the 

stochastic variables as distributions without the application of the chain-rule. These 

developments have the potential to deal with stochastics to a more efficient extent.  
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