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Abstract

In the first phase of the detailed modelling of cross-shore sediment transport
under random waves a model is constructed which adopts a vertically integrated
transport description for sheetflow situations. The formulation of the trans—-
port as a function of the instantaneous velocity field is based on the ap-
proach of Bailard (1981). This approach assumes in essence simply that the in—
stantaneous transport is ﬁroportional with some power of the instantaneous
near-bottom velocity. Implementation of this transport description in a time-
dependent model requires a formulation of the time-mean and some low order
moments of the near-hottom velocity field. An ad-hoc formulation based on a
monochromatic, second order Stokes wave representation is presented. The
numerical research model CROSTRAN (acronym for cross-shore sediment transport)
is based on the above formulations. Here the model is described and limitedly
checked on its performance on the basis of available data. Some consequences

for further study are indicated.



1. Introduction

The particular role of a nearly two-dimensional wave motion in the movement of
sediment normal to the shore is poorly understood. It is generally assumed
that a number of interaction mechanisms between this wave motion and the sedi-
ment motion contribute to the formation of the beach profile, also in the
three-dimensional topographies that occur on a natural coast. Full account of
all mechanisms can be taken when a description of both the horizontal velocity
field, u(x,z,t), and the sediment concentration field, c(x,z,t), in space and
time is available, so that the net cross-shore sediment transport, <q (x)>,

may be calculated from
<q(x)> = <[ u(x,z,t).c(x,z,t) d2> (1)
d

where the integration is performed over the instantaneous depth d and the
brackets indicate time averaging. From the cross-shore variation of <q (x>

the bottom changes may be derived.

Visual and experimental observation of random waves on a two-dimensional beach
indicates that one of the more important mechanisms under active surf condi-
tions may be the transport of sediment by the time mean, seawards directed
flow near the bottom induced by the breaking of waves. It was shown (Stive and
Battjes, 1984) that this mechanism is so dominant that a vertically integrated
model incorporating this mechanism alone describes the bottom variations in
the surf zone to a satisfactory, first approximation. Extension of this model
with other transport mechanisms is a logical step towards a more complete
cross-shore sediment transport model. Here some first suggestions are made to

extend the model with transport due to the asymmetry of the wave motion.



2. Transport formulation

In principle the net cross-shore sediment transport may be calculated from
Equation (1). There are, however, two reasons persuading us to rely on a sim
plified, vertically integrated form of Equation (1). Firstly, our knowledge of
the velocity and concentration field in time and space is very limited.
Secondly, a simpler - but qualitative correct — formulation of the sediment
transport provides a better insight in the mechanisms. Since we are interested
in a transport formulation which takes also the effects of wave asymmetry into
account, it is essential to adopt a formulation describing the transport
instantaneously. A simple approach would be to assume that the instantaneous
sediment transport rate, q, is proportional to some power of the local
relative velocity between the bed and the fluid outside the boundary 1layer,

For example,
q(t) = A u(t) fu(t) [P (2)

where u(t) = Uy coswt with uw, the orbital velocity amplitude just outside the

boundary layer and w the angular frequency.

The latter approach has been elaborated consistently for surf zones on a plane
sloping beach by Bailard (1981), who extended the work of Bailard and Inman
(1981). Based on Bagnold's (1963) energetics concept these authors use as a
starting point a description of the instantaneous sediment transport basically
in the form of Equation (2), extended with the effect of a bottom slope.
Bailard (1981) distinguishes between bedload transport in a granular-fluid
shear layer of a thickness in the order of the wave boundary layer and
suspended transport in a layer of greater thickness, typically in the order of
several centimeters. For the bedload transport the power n as introduced by
equation (2) is given by Bailard (1981) as 2, while for the suspended
transport it is given as 3. Here his general two~dimensional horizontal
formulation is reduced for application in the cross-shore direction which
yields the instantaneous total load sediment transport equation (see also
Bailard, 1982):



€
Ue) = 1p(O+igt) = peg i [lu(e) 12 w(e) - L2828 ju(e)13)
°s °s
+ e =2 (013 u(t) = =2 tan 8 1u(e) 5] (3)

where 1 is the total cross-shore immersed weight sediment transport rate (com—
posed of the bedload transport rate, ip, and the suspended load transport ra-
te, is), p is the water density, cg is the drag coefficient for the bed,

tan B is the slope of the bed, ¢ is the internal angle of friction of the se-
diment, w is the sediment's fall velocity and € and €y are bedload and sus—
pended load efficiencies, respectively. The efficiency factors €a and €g de-
note those (constant) fractions of the total power produced by the fluid
motion which are expended in transporting. The immersed weight sediment

transport rate is linked to the volumetric transport rate by

i

I (4)
(ps—p)gN

q
where pS is the sediment density, g the gravitational acceleration and N the

local volume concentration of solids.

The above sediment transport formulation uses vertically integrated equations.
As a consequence, the sediment transports are assumed to respond to the near
bottom water velocity in an instantaneous, quasi-steady manner. This
assumption is probably valid for bedload transport on a flat bed (except for a
phase lag which is neglected for simplicity) because the bedload layer has a
small thickness and it can respond quickly to the instantaneous shear stress.
The suspended sediment transport, however, is distributed over a layer
thickness of several centimeters. The characteristic time constant for this
layer is the ratio of its thickness and the sediment fall velocity which is
typically in the order of 1-2 seconds. For most natural beaches with
prevailing plane bed conditions and incident wave periods of 5-10 seconds, it

appears that the quasi-steady assumption is reasonable,

Another uncertainty in the transport formulation concerns the use of bedload
and suspended load efficiency factors. Although constant values have been
found adequate for certain types of flow (see Table 1), their variations with

the type of flow considered leaves at least some quantitative uncertainty.



efficiency steady stream longshore cross—shore
factor flow current flow current flow

(Bagnold, 1966) (Bailard, 1981) (Bailard, 1982)

€ 0.13 0.21 0.10
g 0.01 » 0.025 0.020

Table 1 Estimates of the efficiency factors

For our present purpose, however, it is sufficient that the processes under
consideration are described in a qualitative sense. A limited check on this is
made in appendix A where the bedload and the suspended load due to random
breaking waves as calculated with the present transport formulation is com
pared with the mean total load as measured in a laboratory flume. The results

confirm that at least qualitatively there is a satisfactory agreement.,



3. The cross—shore velocity field

Given the variation of the cross—shore velocity field the mean cross-shore
sediment transport rate may in principle be calculated from the time averaged
Equation (3):

€
- B 2 _ tan B 3
<> P cg Tan ¢ [<]ul u>~ Tan ¢ ful3] +
s s
P cf';r'[<|u13 w - —~ tan B lul®] - (5)

where the total velocity u is composed of a mean (overbar) and an oscillatory

(tilde) flow component,:
u=u+ u (6)

Thus, the problem to be evaluated here is how to predict the cross-shore

variation of the velocity moments appearing in Eq. (5).

Conceptual simplifications follow by assuming that the oscillatory velocity is

due to a single plane wave of frequency w and some small nonlinear harmonics:
u = upcos wt + wpcos 2wt + wpcos 3wt + .., D)
in which ypuy Pug >eee

Using Equations (6) and (7) in Equation (5) yields:

_ 3 B 3 _ kan B *
L =p “f Yn Tan $ [Wf* 2 6u tan ¢ (u3) ] +
€ u
g * %
pCg u;-a— [¢2+ Gu(uB) —-;2 €., tan B (u5) ] (8)

S

in which the relative current strength, Gu, is

8, = -1'1/um 9)

and the odd velocity moments, ¢1 and wz, are:



< /ud (10a)

v1

P2 = <lul3 D/u (10Db)

The even velocity moments (u3)* and (uS)* are defined as:

(ud)”

<lu|3>/u; (11a)

(u5)*

<lul5>/ur~‘;1 - (11b)

Retaining first order in the relative current strength and odd moments only

three velocity moments may be simplified further, i.e.

up Yo = 2w (Ul + <|TId > (12)

and ud(u3)” = |TI<ED> + <UD (13a)
* —

w(us) = |al<a® + <915 (13b)

Inspection of the above expressions indicates that the following low order

velocity moments are of importance:

~ the four lowest even moments <¥2>, <|%l3, <¥*>, <|ul® > , which are non
zero for symmetric velocities, ’

- the two lowest odd moments <G3>, <luld G>, which are zero for symmetric
velocities,

The latter moments are the most difficult to estimate: they are nonzero only

for nonlinear waves that actually occur nearshore. The shoreward velocities

are typically stronger and of shorter duration than the offshore flows,

leading to nonzero values for the odd moments. Calculation of the odd moments

requires a nonlinear wave shoaling and decay model,

A theoretical evaluation of the even moments for both a monochromatic, linear
sea (sinusoidal model) and a random, linear sea (Gaussian model) is given by
Guza and Thornton (1985). The theoretical moments are compared to field
observations from the NSTS study. A summary of observations and theory for the
several cross—shore moments is given in Table 2 below. The moments are

normalized by the local variance.



observations theory
moment Nov. 17 Nov., 20 Gaussian  sinusoid

<luid/<u3/2 1,60 1.69 1.60 1.20
<A /<> 2 2,86 3,50 3.00 1.50
JulS>/<u>8/2 7,77 8.58 6.38 1.92
<udy/<uzys/2 0.55 0.50

<Jul3D /<2 ~1,20 ~1,20

<S> /<u2>5/2 4.95 5.39 0 0

Table 2 Observed and theoretical velocity moments (after Guza and Thornton,
1985)

The above results indicate that even moments do not critically depend on
cross—shore velocity asymmetry. This is due to the fact that also for
synmetric velocities these terms are nonzero., At the present stage we will
therefore rely on the Gaussian estimates for the even moments. The odd moments
are zero for a symmetric velocity field, but can be nonzero for asymmetric

(nonlinear) motions. Here we suggest the following ad-hoc formulation.

As indicated above calculation of the odd velocity moments requires a shoaling
and decay model which predicts certain nonlinear properties of the presently
considered random, breaking waves. A relevant nonlinear property is the
asymmetry of the wave surface about the horizontal axis. For nombreaking
waves this asymmetry may to a first apryoximation well be predicted on the
basis of a horizontal bottom, nonlinear wave theory, assuming that due to
gradual bottom variations the waves locally behave as on a horizontal bottom
(see Flick, et al., 1981). However, in the horizontal bottom, nonlinear wave
theories the phases of the harmonics are locked to zero and there is no
vertical wave profile asymmetry possible., This asymmetry about the vertical
plane is an essential property of the sawtooth shaped breaking waves in the
surf zone, These theories are deficient in this respect and thus particularly
unsuitable for calculations of odd velocity moments which depend critically on

phase. To illustrate this we calculate the two lowest order odd moments



assuming that the velocity fluctuation is described by a second order

approximation with a locked but nonzero phase between the two components:
U=y cos wt+ u, cos (2wt + ¢2) (14)

in which u, > uyn+ After some algebraic manipulation it may be show that to

lowest order the two odd velocity moments are given by:

a3 = %—uﬁ u, cos ?2 (15a)
~ g~ 12
Jul3w = 5 . ug w, ~cos ¢2 (15b)

An interesting perspective now arises when we combine these results with the
following observations. In the inner surf zone where the breaking waves are
quasi~steady the relative phase of the second harmonic increases smoothly

toward the asymptotic value (see Flick et al., 1981):
¢, > m/2 (16)

Thus, according to Eq. 15a, 15b, the odd velocity moents for breaking waves

vanish ultimately.

At this point we may formulate an ad-hoc wave decay model which predicts
linear and nonlinear properties necessary to derive the velocity moments. As a
starting point Battjes and Janssen's (1978) wave decay model is adopted to
predict the variance of the wave elevation in cross-shore direction. The
propagation properties of this model are linear; the dissipation process due
to breaking is based on a Gaussian wave description. Given the wave variance
variation linear theory may be applied to provide the variation of the near-
bottom velocity variance and thus the even velocity moments. In the random
wave model there is a gradual transition in the breaking fraction of the wave
field on a beach of monotoneously decreasing depth. Without the risk of
discontinuities we may therefore safely estimate the odd velocity moments from
the nonbreaking fraction of waves only and assume that the contribution of the
breaking waves is negligible in view of the above conclusions. To provide

results from this model we use the second order Stokes expansion with
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3 Y3
u = up cos wpt + T — sinh‘z(kph) cos 2wpt a7n
and choose Up = Yo from the consideration that the monochromatic

representation of the random wave field should have to same variance.

A more detailed description of this wave height decay and partly nonlinear
kinematics model is given in Appendix C. Here we conclude with a comparison
between observations of the undertow, the velocity variance and the skewness
(i.e. the first odd velocity moment normalized by the variance, <ud>/<u2>3/2 )

and calculations with the present model (see Figure 1 and 2). The observations
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Fig. 1 Cross—shore velocity characteristics NSTS Torrey Pines measurements

November 20 (after Guza and Thornton, 1985) compared to present

theory
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are by Guza and Thornton (1985) and Elgar and Guza (1985) and concern rather
long wave conditions. The comparison shows that qualitatively the predictions
are reasonable; quantitavely there are discrepancies indicating that
improvements should be made. It is advised to extend the comparison with more
narrow banded, wind wave data, eg. those of Egmond and new laboratory
measurements. Appendix B describes which moments should be derived when field

measurements are considered,
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Fig. 2 Cross-shore velocity characteristics NSTS Santa Barbara measurements

June 3 (after Elgar and Guza, 1985) compared to present theory




~12-

4. The computation of transport and bottom changes

In CROSTRAN the local mean, volumetric cross-shore sediment transport rate,
<@, is calculated according to the following expressions, where use has been

made of expressions (4) and (8)...(12):

<@ = B,  <q,o + Bin Squn” — Bgy <ag7 (18a)
<qas = FB wl + FS wz (18b)
<q > =TF, 2 8 *
qur,l> =Fp 5 6u+ Fq 3 u (u3) (18¢)
_ tan B * :35 *
<qsl> = FB tan ¢ (u3) + Fg = €5 tan B (u5) (184d)
Cc_.u €
_ _frms B
Fg = 2gN tant (18e)
c_.u €
_ _frms”S
Fs =37 g Nw (18f)

Here cg 1s the drag coefficient equal to %fw with £ the friction factor as
defined in Stive and Battjes (1984) and B,gs Byp @nd Bgy are proportionality
constants which should be 0(1) if the description is right. The free
parameters in the above expressions are eB and ss which for ecross—-shore
transport are given by Bailard (1982) on the basis of field observations as

0.10 and 0.02 respectively, These values are in principle adopted here.

The cross-shore variation of the local, mean sediment transport may now be
calculated with the above expressions (18a...f) given the results of the wave
height decay and kinematics model. Through application of the mass balance for
the sediment (of which the properties are assumed constant) the bottom changes

may be calculated. This procedure may be repeated for the new beach profile.

In the numerical evaluation of the above procedure a second order Runge-~Kutta
algorithm is used in the wave decay model and a modified Lax scheme in the

bottom change calculations.

As a boundary condition on the waterline the present formulation yields <¢ =
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0. To simulate the smoothing effect of swash motion on the sediment tramsport
near the waterline <{q(x)> was damped starting from a depth of approximately

half the initial wave height in proportion to the mean water depth.



-14=-

5. Model verification

A laboratory measurement programme aimed at the verification of the present
model CROSTRAN has not yet been conducted. Therefore we rely for the moment on
otherwise available measurement results of which two cases are presented here.
Moreover we present a preliminary comparison of model calculations with
observed bar formation and deformation in an estuary region in the South of

the Netherlands, the socalled Voordelta.

The first laboratory case concerns a nearly 1:40 sloped profile of medium
sized sand in a large scale flume. The second case concerns a barred profile
of relatively fine sand in a small scale flume. In both cases the bed
deformations are relatively small, but do show an appreciable variation in
cross—shore direction (see Figures 3 and 4)., The bed deformations are
hindcasted for two transport formulations, i.e. one in which only the undertow
effect is taken into account and one in which in addition the effects of wave

asymmetry and bed slope are taken into account.

The results achieved for the case of transport due to undertow alone are as
described in Stive and Battjes (1984). It appears that with the exception of
the region near the waterline the results in general improve when all three
effects are included, The spatial phase shift of bottom changes in the large
scale case is attributed to the observed convexity of the beach profile which
was not accounted for since only the central cross-section was monitored. With
respect to the choice of the value of the proportionality constants Bass Bun
and Bg1 we note the following. If the model formulations are right and if
Bailard's estimates of the efficiency factors €ps €g are sufficiently valid in

Bun and

S
the considered ranges of conditions the proportionality constants B

as?
B;y should be very close to 1. In hindcasting observations we have sofar
accepted that deviations of a factor 2 are acceptable in the B values. Making
this allowance yields satisfactory results. The above results were obtained

with the following values for the proportionality constants.
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Bas Bun Bs1
large scale flume (fig. 3) 2,0 0.8 1.0
small scale flume (fig. 4) 2.0 0.9 1.0

Table 3 Choice of proportionality constants

The field comparison concerns the profile development that occurred after
closure of one of the Southern Dutch estuaries. The profile deformation in
cross—shore direction is appreciable (see Figure 5). The comparison between
the hindcast results and the measurements is satisfactory, despite the fact
that the wave climate and hydraulic conditions were schematized to one value
for the incident wave characteristics and a fixed waterlevel. The

proportionality constants B

ags» Bynand Bgq were set at 1.0.

Finally, some characteristic parameters of the three cases are collected in
Table 4 below.

case profile grain H £

rms,incident P
diameter
( um) (m) (H2)
large scale flume plane 225 1.00 0,19
small scale flume barred 100 0.21 0.39
field  Dbarred 225 1.50 0.17

Table 4 Characteristic parameters hindcast cases
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6. Discussion and conclusion

In this report a first suggestion is made to extend the earlier formulated
model for offshore sediment transport due to undertow (Stive and Battjes,
1984) with the effects due to horizontal asymmetry in the wave motion. It

appears that improvements in hindcasting the bottom changes may be obtained.

To arrive at these results it was necessary to model some low order odd
moments of the near-bottom velocity field. An ad-hoc formulation based on a
monochromatic, second order Stokes wave representation is shown to give a
reasonable, first approximation to the odd velocity moments, but obviously the

formulation needs improvement.

The odd velocity moments were readily used in the transport formulation after
Bailard (1981). This concerns a vertically integrated description of the
sediment transport in sheetflow conditions, which assumes that the
instantaneous transport is proportional with some power of the instantaneous
near-bottom velocity. The validity of this approach for natural surf zones
needs further investigation. This requires study of the temporal and spatial
variations of sediment load and/or sediment concentrations due to spatially

varying waves in general and random waves breaking on a beach in particular,
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Appendix A: Total mean sediment load

The purpose of the present appendix is to check Bailard's (1981) transport mo-
del with respect to the total mean sediment load in a qualitative sense
through comparison with laboratory measurments of Bosman (1982). Bosman shows
that sediment concentration distributions in random, breaking waves may be sa—
tisfactorily described by a "double layer" or "double first order" model for a
rather wide variety of laboratory situations, such as horizontal and sloping
bottom, no and net currents, non-breaking and breaking random waves. Based on
a diffusion type description for each layer the model leads to an exponential

concentration distribution as follows:

Coe_Z/'Q'1 for z € A
c(z) = (a.l)
c(a) & (FA/ <, A =D s

where A is the bottom layer thickness. Fach layer has a constant turbulent
viscosity, €, and a fall velocity, w, for the sediment in that layer such
that 21 = el/w1 and lz = ez/w2 (based on diffusion). Bosman's measurements
show that the upward exponential decay of the concentration is so strong that
the total sediment load, <s>, is mainly confined to and determined by the
bottom layer as follows:

s> = C, - ll (a.2)
where C, is the bottom concentration and Iil is the relative concentration
gradient in the bottom layer. It is this bottom layer of thickness A
(approximately 5-8 centimeter in Bosman's experiments) that is described by
Bailard's model, distinguishing within this bottom layer a bedload layer of
thickness smaller than 1 centimeter and a suspended load layer of a few

centimeter thickness.

The mean sediment load in the bottom layer according to Bailard's model may be
determined as follows. Confining ourselves to situations with a horizontal
bottom the instantaneous volumetric sediment flux may be written as:

1 b cg €y

£
S

= = 244+ — |uld (a.3)
q (ps-p)gN (ps—p)gN [tan ¢ lul®u W lul*u]




~-A. 2—

Equation (a.3) expresses the sediment flux as the sediment load, s, times the

instantaneous velocity, u. So the volumetric sediment load is given by

P ce [ °B
tan ¢

- (p-p)gN

€3
lal2 + =S |4)9] (a.4)

For modelling convenience we now use a monochromatic representation for the
random nearbottom velocity field and we moreover assume that the motion is

primary harmonic only, i.e,
u= u(t) = u e coswpt (a.5)

where U, ng 1s the rms nearbottom horizontal velocity amplitude and wP = 27 fp

is the relative peak frequency. For Uy We apply the linear theoretical
relation

Hrmsw
= - E (a.6)
rms 2 sinh (kph)

u

where Hrms is the rms wave height and kp is the wave-number. Furthermore we

assume the Rayleigh properties

u = v2u and H = ¥2H (a.7)
s rms s rms

It is noted that u.; . is the rms horizontal velocity amplitude which is re-

lated to the total variance of the fluctuating velocity with zero-mean, m, ,

by

u e = (2mo )% = y2u'
u

ms (a.8)
where m, = T Su(f) df with S, (f) the variance density spectrum of u
)

and u;ms the standard deviation of the fluctuating velocity with zero—mean.

Having defined the wave motion by (a.5) we may now calculate the time mean se-

diment load by taking the time mean of (a.4), i.e.

pc € €

- .9)
(ps—p)gN L t " (a

<{s>

u
tan ¢ rms w 3w rms
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For convenience we make the mean sediment load dimensionless with the median
grain diameter, D, so

c € be e u
<s> _ ¥ £fB + v £fS rms (2.10)
D 2tan ¢ N 37N w *

where ¥ = puims/(ps—p)gD is the so-called sediment mobility parameter. A
comparison between the mean sediment load as measured by Bosman (1982) on a
horizontal bottom in random breaking waves and as calculated by the above
expresion (a.10) is given in Figure (a.2). For the various parameters in

(a.10) we have applied the values as indicated by Bailard (1982), i.e.

€ = 0.10
€q = 0,02
cg = % fW = 0,005
tan ¢ = 0,63
N = 0,6

It appears that with these parameter values there is quantitatively an order
of magnitude underestimation, but qualitatively there is a satisfactory

agreement,

The reason for the underestimation is here not further investigated but it is

a point which remains to be resolved,
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Fig. a.l

Comparison between theoretical predicted (Bailard, 1981) mean

sediment load and Bosman's (1982) measurements




_B.l_

Appendix B: Moments for nearshore sediment transport

The purpose of this appendix is to indicate which low order velocity moments
derivable from field data are expected to be of potential importance for a
sediment transport formulation. It is suggested that these moments are derived

from the field data set of Egmond '82-'83 for further analysis.

As a starting point we consider the unsimplified form of Bailard's equations

for the average cross and longshore sediment transport rates (<ix>, <iy>
respectively):

N
- 0 N
v Ty
Y t N
y
- N
j eyl
i U 0]
a
B R
/
Vd
/
N
N ~ " ~ n N
ue = (u+ Wi+ (v+ 7) j §
el =[R2+ 32+ W2+ 92+ 20+ ¥ W)t
€B »> ~ = tan B _, >
{ig> = p °f Tan § [<lugl?2 (F+ w)> - tan s <lupl3] +
€ — €
oo =2 [<IBel? (B4 D> - =2 tan 8 <IUI5] (b.1a)
€p +> - €g > - -
Iy =P f wamg [<lugl?2 (¥ + 9)>] + p cf == [<lupl® ¥+ 9] (b.1b)

The moments appearing in these equations depend on both mean and oscillatory
currents. Splitting the velocity field into steady and unsteady components
results in some terms that depend only on the oscillatory flow. Also, in the
absence of mean cross-shore and longshore flows, several low order moments

appear in the cross-shore transport rate, in which case the equations simplify
to

3y - 3 — 3 - =2 tan B <|¥I%>]
tan [<u®> Tan s <Juld>] + p c¢ - [<ul® © -

(b.2)
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Obviously the following low order moments of the cross-shore velocity are of

potential importance for a sediment transport formulation, i.e.

- the four lowest even moments <u?>, <|%U[3>, <¥*>, <|%|5>, which are nonzero
for symmetric velocities,

- the three odd moments <¥3>, <|%|3 W, <¥S>, which are zero for symmetric

velocities,

For the longshore velocity ¥ identical moments are of potential importance.

More specifically we identify the terms which appear in the generalized
(random, directional) form of Bailard's idealized (monochromatic,

unidirectional) equations (see Guza and Thornton, 1985):

€
i = 3 — 3 2 2
i> =pc uw | Tan [wlcos ap + 8%+ 8 (4 + cos a, + Gu) + § sin a;cosa,
tan B % Ym kU 9 *
T Tane (B) ]+ 7 eg [Wycos ag + 8 (ud)7] - o tan B (us)"} (b.3a)
£
= 3 B i 3 2 2
<iy> pocg ul {tan ¢[w131n a) + 63+ 8, (3 + sin a, + Gu)
o * b.3b
+ 8 sin a,cos a3] + = g [wzsin ag + 8 (u3) 1} (b.3b)

It is noted that for monochromatic, unidirectional plane waves all the o, are

equal. The relative steady current strengths are defined as

§ = uT/um
5u = ujcos e/um (b.4)
6V = u, sin G/um

where ;T is the total mean current and © its local angle. The monochromatic

amplitude, u,, is related to the oscillatory variance
w2 = 2[(u?) + (v2)] (b.5)
and the velocity moments ¢1’ wz (Eqs. 16a-b) by

Wy = {<uCu? + ¥2)>2 + <w(u? + w22} (b.6a)
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> ~ ~ ~ ~ ~ . L
with ]ut| = [u2 + v2 + w2 + v2 + 2(uu + w71 .

Averages must be over the entire recond length so

3.% _ 12 3
uu, <|ut| > (b.7a)
wSut = <|u 15> (b.7b)
mS5 t ¢

Some remaining angles are defined as

<v3 + u2v> (b.82)
<ad + uvd> )

tan a

(<§2>)%
<u?>

tan o (b.8b)

sin a (b.8c)

<18, 13 N
5 .. (b.8d)
<|utl3 w

tan a
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Appendix C: The wave decay and kinematics model

The principal process in the coastal zone is the dissipation of the energy of
incident windwaves and swell, due to wave breaking. Because of the randomness
of wind-generated waves the occurrence of breaking at a fixed location is
itself a random process. Realistic models for the prediction of the onshore
variation of wave energy and radiation stress should take this randomness into

account.

Battjes and Janssen (1978), hereafter referred to as BJ, presented an approach
in which the mean local rate of energy dissipation is modelled, based on that
occurring in a bore and on the local probability of wave breaking. The result
is used as a sink in the energy balance, which is subsequently integrated to
obtain the wave energy as a function of onshore distance. A few laboratory
experiments performed by BJ, including cases with a bar-trough profile,

indicated a very promising degree of agreement.

The essence of BJ's model is the estimation of the time-—averaged rate of
dissipation of wave energy per unit area due to breaking (D). Two aspects are
distinguished: the rate of energy dissipation in periodic breaking waves, and
the probability of occurrence of breaking waves of given height in a random

wave field.

The energy dissipation in breaking waves is modelled after that in a bore of
the same height. For periodic waves with frequency f and breaking waveheight
Hy in water of mean depth h, BJ arrive at the following order-of-magnitude

estimate for the mean dissipation rate per unit area:
D~} fog HZ (c.1)

For application to random waves, the expected value of D (written as D) must
be estimated, taking into account the randomness of the waves and the fact
that not all the waves passing the point considered are breaking. In this
estimate, BJ have used characteristic values for the frequency and the
breaking waveheights, and they have derived a prognostic equation for the

local fraction of breaking waves,
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The characteristic frequency used is fp, the frequency at the peak of the

energy spectrum of the incident waves.

The mean square of Hy, is equated by BJ to the square of the nominal, depth-
limited height of periodic waves (Hm) in water of the local mean depth. BJ use
a Miche-type expression for H,, adapted through the inclusion of a

parameter Yy to account for influences of bottom slope and mean wave steepness:
= ~1 .
H, = 0.88 kp tanh (y kph/0.88) (ce2)

in which kp = 21T/LP is the wave number calculated on the basis of the linear

theory dispersion equation for gravity waves with frequency fp.

To determine the local fraction of breaking waves (Q), BJ assume that the
cumulative probability distribution of all waveheights (breaking or non-—

breaking) is of the Rayleigh-type, cut off discontinously at H = Hy. This was

shownhif imply the following relation between Q and Hrms/Hm’ in which H,. . is
the runs of all waveheights:
H
l—Q_ Irmsy o
- 1nQ ( H ) (c.3)

Substituting the approximations mentioned above in the averaged equation
(cel), and writing the order-of-magnitude relation in the form of an equation,

gives
D=1%}0Q fp pg Hi (ced)

in which o is a coefficient which is expected to be of order 1. It is pointed

out that D varies with Hon¢ through Q.

To close the model,‘ﬁ is used as a sink in the wave energy balance, which in
its most reduced form (statistically steady, uniform alongshore, no other

sources or sinks than D) can be written as

P
X

9x

+D=0 (c.5)

PX is the onshore energy flux per unit width, approximated as , in which
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E =4%-ng§ms and Co is the group velocity according to the linear theory for

f = £ . The energy balance (c.5) is integrated simultaneously with the balance

pl
of onshore momentum (not reproduced here), resulting in the simultaneous
determination of the onshore wvariation of Heope @nd of the set-up of the mean

water level (7).

In a follow up to Battjes and Janssen, Battjes and Stive (1985) have described
a calibration of the theoretical model for the wave energy dissipation and
resulting wave emergy variation., It is shown that the theoretical model has
effectively one adjustable parameter. Optimal values of this coefficient have
been determined. These vary slightly in a physically realistic range with the
incident wave steepness. A parameterization of this dependence is presented so
that the model can be used for prediction. Using this parameterization, the
overall performance of the model has been evaluated. The coefficient of
correlation between predicted and observed H, . -values is 0.98; the model bias

is not significantly different from zero, and the rms relative error is 0.06.

The near-bed wave kinematics are derived from the wave energy variation

through local application of a horizontal bottom wave theory. So, it is

assumed that locally the waves behave as if they were on a horizontal bottom.

The prediction of the sediment transport requires the following estimates of

. near-bed kinematics in the random breaking wave field:

a) the undertow, i.e. the total velocity time-averaged over at least one wave
group

b) the even oscillatory velocity moments <U2>, <|¥|3>, <>

c) the odd oscillatory velocity moments <U3>, <|%¥|3 ®.

item a: the undertow

It is assumed that in a random wave field breaking on a beach the majority of
the breaking waves has a quasi-steady depth-similar flow field as described by
Stive and Wind (1982) for breaking, periodic waves. Based on the dimensionless
flow field presented there and adopting the observation that the flow profile
is rather uniform over the lower depths the return flow in a periodic,

breaking wave field is simply modelled as:

= 1/10 (/) B, (c.6)

ubr,periodic
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where g is the acceleration of gravity, d the water depth and Hy the breaking

wave height.

In random waves on a beach the fraction of waves breaking at a point (Q)
varies with position. Battjes and Janssen (1978) have presented an implicit
expression (Eq. c.3) for Q as a function of the ratio of the rms wave height
(Hrms) to a local breaking height, which in turn is primarily depth-
controlled. Qualitatively this expression is in accordance with laboratory

observations; quantitatively the following adjustment is suggested:

Q=6 Q for Q < 0.8 (c.7)

Q = 0.8 + 0.35 [(Hypg/Hpax)? - 0.43] for 0.8 < g < 1

The return flow velocity in a random, breaking wave field is simply modelled

here as

~

;br,random = abr,periodic- Q (c.8)

item b: the even velocity moments

It 1s known from surf zone observations (see eg. Van Heteren and Stive, 1984)
that linear Gaussian theory provides a reasonable estimate (i.e. 10%-20%
conservative) of the lowest even moment <%2>. Table 2 of Chapter 3 indicates
that also for the higher even moments these linear, Gaussian estimates are
reasonable. For a first approximation we therefore rely on the linear,

Gaussian model.

item c: the odd velocity moments

As described in Chapter 3 the linear, Gaussian model predicts zero magnitude
for the odd velocity moments. For a first approximation the described ad-hoc,
nonlinear model is adopted which assumes (1) that only the nonbreaking wave
fraction (1 - Q) contributes to the odd velocity moments and (2) that this
contribution may be derived from Eq. 15a,b using a monochromatic second order

Stokes representation (Eq. 17). The resulting expressions are:
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4
~ 9 u - ~
A = —== sinhi"2(kph) (1 - Q) A3
5
u ~e
<P D = 2 S o 2(n) (1 - Q) A

where Aq and A, are constant scaling factors which incorporate yet
unquantified effects due to adopting a monochromatic, unidirectional
representation for the random wave fields considered, directional in the fiels
cases and unidirectional in the laboratory cases. Based on the velocity data

described by Bailard (1982) A3 and A, are set at 0.5,
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