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imaging. As a relatively new field it faces many challenges from dif-
ferent character on the way to clinical applications. One of these
challenges, which deteriorates image quality and sharpness, is noise.
The usual answer to this undesired effect is averaging over multiple
measurements. This has its cost however, prompting the search for
other noise reduction methods. In this thesis, we assume our imaging
domain to be sparse and apply sparsity regularization accordingly. By
this, we attempt to reduce the noise artefacts and improve the over-
all signal-to-noise ratio. To accomplish this task, we first solve the
photoacoustic wave equation in linear form and discretize the result
to acquire a data model. Then, we construct an imaging procedure
based on the adjoint operator. Finally, we apply the sparsity reg-
ularization procedure to both synthetic and experimental data. We
report on improved signal-to-noise ratio and several interesting finds
among which are the dependence of the regularization parameter on
the noise power and a different optimality criterion for the parameter
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Abstract

The intertwine of the optical and acoustic domains by the photoa-
coustic effect has given rise to the novel technique of photoacoustic
imaging. As a relatively new field it faces many challenges from
different character on the way to clinical applications. One of these
challenges, which deteriorates image quality and sharpness, is noise.
The usual answer to this undesired effect is averaging over multiple
measurements. This has its cost however, prompting the search for
other noise reduction methods. In this thesis, we assume our imaging
domain to be sparse and apply sparsity regularization accordingly.
By this, we attempt to reduce the noise artefacts and improve the
overall signal-to-noise ratio. To accomplish this task, we first solve
the photoacoustic wave equation in linear form and discretize the
result to acquire a data model. Then, we construct an imaging pro-
cedure based on the adjoint operator. Finally, we apply the sparsity
regularization procedure to both synthetic and experimental data.
We report on improved signal-to-noise ratio and several interesting
finds among which are the dependence of the regularization param-
eter on the noise power and a different optimality criterion for the
parameter choice in photoacoustic imaging.
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Chapter 1
Introduction

The medical imaging field is constantly pushing the boundaries of our abili-
ties to diagnose and treat diseases and illnesses. By enriching this field with
newer technological developments and exploiting previously overlooked physical
effects we can enhance the image quality and produce as accurate a represen-
tation of the structures underlying the human body as possible. Currently,
the major imaging techniques encompass - magnetic resonance imaging (MRI),
X-ray computed tomography (CT), ultrasound (US) and nuclear imaging tech-
niques, such as positron emission tomography (PET) and single photon emission
computed tomography (SPECT). This abundance has evolved throughout the
years as a consequence of the fact that each method has its advantages and
drawbacks making it suitable for some, but not all applications. For example,
nuclear imaging techniques are well-suited for cancer detection, but offer a res-
olution of only 1-2 mm, besides being potentially harmful [1]. MRI can offer
excellent resolution, but tends to be very expensive compared to US, which in
turn suffers from weak contrast as it is based on the mechanical properties of
the tissue. Computed tomography offers high contrast for dense structures and
fast scanning times, but fails for imaging of soft tissues and can pose health
risks. These differences indicate the need for other imaging techniques that can
perform better for certain application or fill in the void amongst the existing
ones.

Photoacoustics, also known in literature as optoacoustics (OA), is one such field.
The peculiar photoacoustic process can be understood best by considering the
title of Alexander Graham Bell’s work published in the far 1880 - ”On the pro-
duction and reproduction of sound by light” by which he effectively introduced
the field to the world [2]. In the modern literature, the photoacoustic (PA)
effect is explained as the generation of acoustic waves upon the absorption of
pulsed electromagnetic (EM) energy. Depending on the used EM spectrum, we
can have thermoacoustic imaging (use of EM waves in the micrometer region)
and photoacoustic imaging (use of EM waves in the nanometer region) [3]. The
field has evolved since this late 19th century publication and especially in the
former two decades, thus bridging the gap between theoretical and experimental
work and clinical applications. Nowadays PA imaging is deemed to offer high
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2 CHAPTER 1. INTRODUCTION

contrast images of relatively large volumes of biological material, as well as high
resolution, making it suitable for imaging tumours and their adjacent vascula-
ture [4], blood oxygenation or for molecular imaging [5]. Last but not least,
the combination of US and PA images promises excellent structural representa-
tion in both 2D and 3D that can improve the understanding and treatment of
diseases [6].

1.1 Photoacoustic imaging for medical purposes

In photoacoustic imaging, acoustic waves are excited by irradiating a volume of
tissue with short pulses of EM energy. As the energy deposits, a local rise of
temperature at the illuminated spot occurs. This is rapidly followed by thermal
expansion of the medium which is then succeeded by the generation of a me-
chanical stress in the form of an acoustic wave. Thus the EM energy is being
consecutively transformed into heat and then into stress. This is referred to as
the thermo-optical mechanism of stress generation [7].

If the tissue irradiation time is shorter than the time it takes for the illuminated
medium to expand, we say that the stress is confined temporarily. This results in
the generation of a pressure wave with the highest possible amplitude which then
starts to propagate through the biological structure. Depending on the laser
beamwidth the photoacoustic process can excite the formation of two planar
waves with opposite directions of propagation [8] or a spherical wave propagating
in 4π. The temporal profile of the generated signal can then be recorded by
standard transducers (or hydrophones). An example of one recorded PA signal
is depicted in Figure 1.1.
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Figure 1.1: Acquired photoacosutic signal representing the response of a string
of hair to pulsed electromagnetic energy. The characteristic bi-polar signal was
recorded with a hydrophone.

By recording multiple traces (as the one from Figure 1.1) and applying relevant
signal processing, we can create an image which represents the initial pressure
distribution p0. Although p0 depends on the concentration of chromophores,
which are light absorbing molecules, it also depends on the laser energy as well
as on the thermodynamic properties of the tissue. Therefore, the image which
we will produce is not a direct indication of the chromphores concentration as
was once considered [9]. However, since optical absorption tends to dominate,
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we say that PA images are absorption based or that the source of contrast is the
optical absorption. This is also one of the major differences with US imaging
and the reason for the high differentiation between tissue types which can be
achieved.

Another distinguishing feature of PA, and again a major difference with US, is
the generated signal dependence on both the optical domain characteristics as
well as on the acoustic domain ones.

The optical domain is characterized by optical wavelengths that cover the near-
infrared (NIR) spectrum range between 700 nm and 1000 nm. This spectral
range offers the highest penetration depth, but is also excellent for imaging
oxygenated and deoxygenated blood, or in other words the vasculature in the
human or animal body. Other wavelengths are also applicable. For example,
lipids show a peak absorption around 1210 nm, making this wavelength a good
candidate for imaging lipid deposits found in atherosclerotic plaques [10]. A
comparative summary of many studies on absorption of different tissue types,
as function of wavelength, can be found in [10].

Penetration depth is also dependent on the optical domain properties. It
is deemed as the depth at which the light becomes diffuse and the number of
photons starts to decay exponentially. Therefore, it is directly related to the
scattering and absorption of the laser light and can vary from a few millimetres
to a couple of centimetres [11]. Extending the penetration depth is one of the
major challenges in photoacoustic imaging (PAI), since quite too often we are
interested in more than just the top few millimetres of the tissue.

Once the local thermal expansion excites a travelling pressure wave, the acoustic
domain takes turn in shaping the signal which we eventually receive. The way
this domain affects the generated wave can be described by three parameters.
These are the acoustic wave reflection and transmission T , diffraction D, and
attenuation A [12]. The overall effect can be expressed as the product of these
three and we will denote it here as ψ:

ψ = TDA

Each of these parameters plays an important role in the end signal we receive.
Both transmission and diffraction can alter the profile of the signal. Diffraction
is more prominent for low acoustic frequencies and small laser beam diameters,
besides diminishing the signal amplitude. The final parameter, the attenuation,
comprises both acoustic scattering and acoustic absorption. This parameter
is frequency dependent and strongly varies with tissue types. It also directly
affects the spatial resolution achievable in PAI. While the nanosecond laser
pulses excite broadband signals that can extend to tens of MHz, attenuation is
effectively limiting this band. Since attenuation is also depth dependent, the
shallower we look, the higher spatial resolution we can achieve. For example,
if we want to have centimetre penetration depth the spatial resolution we will
have to settle down for is sub-millimetre. However, if we only require hundreds
of micrometres of penetration depth we can achieve as low as a few micrometres
of spatial resolution [10].
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1.2 Biomedical Applications and Recent Devel-
opments

We saw that in the NIR region, blood can be a relatively strong absorber. This
is more the case for the spectrum range between 600 nm and 700 nm which al-
lows for high quality images of the vasculature that can help in studying diseases
or in determining their nature. One of the most promising clinical applications
is breast cancer detection and treatment aid. Since tumours exhibit a high
microvessel density (angiogenesis in medical terms), it is believed that the ma-
lignant area will show an increased level of absorption of laser light [13, 14].
Kruger et al. [11], as well as other groups, have developed clinical prototypes
proving the feasibility of this technique. As a supporting tool, PAI has been
suggested for aid in planning and monitoring of breast cancer treatment.

Other clinical applications center on the skin and brain vasculature. For
example, burn depths can be determined as a study by Zhang et al. [15] showed
or tumour volume and thickness can be estimated as Favazza et al. [16] inves-
tigated. From the pre-clinical side of applications, studies of the brain vessel
branching of small animals (photoacoustic microscopy) have been performed.
The obtained results can offer an insight into brain injuries and disease pro-
cesses such as epilepsy [17].

Recent years have seen applications comprising temperature measurements for
photothermal cancer therapy [18] or use of different nanoparticles for targeting
specific cell types [19]. The latter method falls in the group of molecular imag-
ing and can deliver a high contrast ratio between the marked cells and the other
major absorbers. This method compared to fluorescence imaging and diffusion
optical tomography can offer higher spatial resolution [3].

Another subfield in PAI is spectroscopy. In it, the tissue absorption dependence
on the wavelength can be utilized. The simplest application can be discrim-
ination between oxygenated and deoxygenated blood. However, the lipid ab-
sorption peak around 1210 nm can be equally interesting. Since lipids can form
vulnerable plaques in blood vessels that can rupture, their on time detection
is vital. In cardiology, PA imaging promises early detection of such plaques,
thus preventing strokes and death [20]. We are though not limited to the use
of a single wavelength. Acquiring data at multiple wavelengths, a spectroscopic
analysis can be achieved, effectively revealing the chromophore concentrations
in the illuminated volume [21].

Finally, PAI can be used in conjunction with intravascular ultrasound (IVUS) to
image the inner wall of blood vessels [22]. Using wavelengths at which lipid-rich
deposits manifest high absorption can help identify dangerous plaques, just as
in spectroscopy. Although IVPA is still in its research phase it promises car-
diologist throughout the world the prospects of treating patients with a higher
success rate.

Other applications have also been proposed and many more will probably follow
as the field expands. The interested reader is referred to existing review papers
on PAI, among which are a summary by Paul Beard [10], a more technical
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review by Xu and Wang [3] and a paper on quantitative spectorscopic PAI by
B.Cox et al. [23].

1.3 Challenges

As a relatively novel field, photoacoustics faces many problems. These vary from
technological aspects such as laser repetition rate, energy output and lack of
broadband transducers to problems from mathematical and engineering nature
such as solving the inverse problem in photoacoustics, applying more powerful
beamformers or reducing the noise artefacts. Here we will briefly summarize
some of the more prominent difficulties faced in certain applications or extend-
ing to the whole field.

In clinical breast cancer detection the major obstacle to overcome is penetra-
tion depth. We mentioned earlier that the maximum in-vivo penetration level
does not exceed 4 cm, although some studies suggest that higher depth can be
achieved (following the discussion in [10]). As photoacoustics is believed to bring
major progress in mammography, prototype systems have been developed. One
such system is the Twente Photoacoustic Mammoscope [24]. However, although
results look promising, extensive clinical studies have not been performed and
this leaves PAI on the outskirts of breast cancer detection, at least for now.

Recovering the initial pressure distribution p0 is a well studied problem and var-
ious techniques have been developed and used nowadays. However, since there
is a strong link between chromophore absorption and wavelength, recovering the
medium parameters is of particular interest. Unfortunately, this turns out to be
a difficult problem. The photoacoustic wave equation, for inversion purposes is
ill-posed, computationally expensive to solve and contains a source term with
many unknowns. Nevertheless, as one author said ”All hope is not lost” and
recent years have brought several papers targeting the topic [25, 9]. A very
recent study by Saratoon et al. [26] summarizes progress so far and proposes a
gradient-based method for inversion in photoacoustic tomography.

A final pillar we will pay attention to is image quality and data accuracy. Al-
though different imaging techniques exist, their starting point is the recorded
pressure data which, unfortunately, is always contaminated by noise. The latter
can produce artefacts in the form of false structures or can mask weak signals.
The consequences are decreased imaging depth and poor imaging results.

Suppressing noise and diminishing its effects is also what motivated this the-
sis. The usual approach of averaging over multiple measurements has a major
drawback for lasers with low pulse repetition rate per second. Moreover if the
noise statistics are non-Gaussian the averaging result will be of unsatisfactory
quality. To overcome these problems we first need to acquire experimental data
in order to investigate the noise statistics in PA and in our system. This will
allow us to understand how noise affects photoacoustic imaging. Then, we can
apply a reconstruction algorithm for the initial pressure distributions based on
a model for the acquired data. To achieve this, the PA wave equation has to be
solved and discritezed. Once this is done, we can derive an imaging procedure
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in the frequency domain and test the validity of our method. To achieve our
goal of noise reduction we investigate a sparsity regularization technique and
apply it to improve our images for both synthetic and experimental data.

1.4 Thesis Overview

Chapter 2 - We start by giving a theoretical formulation for the solution to the
photoacoustic wave equation in linear form. The PA wave equation is discussed
and solved, yielding a representation for the initial pressure distributions. The
equation is then discretized for computational purposes. However, this provides
us only with a forward modelling approach. To arrive at an image, we apply
the adjoint operator and present the final equation in the form of a data model.

Chapter 3 - In this chapter we describe and discuss modelled data and imaging
results based on our models. The chapter starts with modelled data, quickly
followed by experimental results. We provide several 2D in-vivo examples ac-
quired throughout the course of the thesis. Finally, we compare the results
from our imaging procedure with results from the conventional k-space method
to contrast any existing differences in the results.

Chapter 4 - The introductory chapter touched on the challenges brought on by
noisy data. To counter the noise artefacts, and hopefully recover any weaker
signals, we apply a regularization procedure. We assume our images to exhibit
a certain level of sparsity and under this consideration apply L1 regularization.
The chapter starts with a short study on the noise characteristics and elabo-
rates on the sparsity assumption. Next, we introduce the 1-norm and 2-norm
and continue with the Tikhonov class regularization problem. We show how
this problem is modified to arrive at a sparsity solution. We refer to available
algorithms for solving this class of problems and finish with the solution depen-
dence on the regularization parameter.

Chapter 5 - This chapter deals with results from the regularization procedure.
Synthetic examples in 1D are taken as a starting point. We then continue with
2D synthetic examples contaminated with correlated noise. As a following step
we consider experimental 1D data and apply sparsity regularization. These re-
sults are compared with standard processing applied in PAI. Finally we show
regularized results for in-vivo 2D data and discuss on the results.

Chapter 6 - We conclude this thesis by highlighting the major results and
achievements. We discuss future work and challenges yet to be met.



Chapter 2
Theoretical Formulation

Before applying any imaging, inversion or signal processing technique, we require
a solution to the photoacoustic wave equation. Finding a solution requires a
certain number of assumptions, as solving the exact form poses some serious
mathematical issues. The solution we give here is neatly represented in integral
form which allows us to apply a forward modelling approach by which we can
simulate synthetic data. This simulated data can then be used in the inversion
scheme - to minimize the difference between measured and synthetic data in
order to recover the medium parameters, in imaging and signal processing, to
derive a model and apply existing beamforming techniques.

2.1 Introduction

The photoacoustic and acoustic wave equations share the same structure, but
have a different source term. For the acoustic case the derivation of the linear
wave equation can be found in [27, 28]. The photoacoustic wave equation has
been derived in [29, 30] and has the following form for homogeneous media

∇2p(x, t)− 1

c2
∂2

∂t2
p(x, t) = − β

Cp

∂H(x, t)

∂t
. (2.1)

In this equation p is the acoustic pressure wave (in Pa) and c is the speed of
propagation. The source term (the right-hand side) contains two parameters
namely, the specific heat capacity Cp, and the volume thermal expansion β.
The function denoted as H(x, t) is the so-called heating function. It shows us
the heat deposited in the structure per unit volume per unit time. This function
can also be written as H(x, t) = µa(x)F (x, t), where F (x, t) is the fluence rate
at a point in the object and µa(x) is the absorption of the structure. The
heating function has a support over the illuminated volume DH by the laser.
This volume could be in the form of a line (rectangle in 3D) or in the form of a
spot. The complex source term tells us that the created acoustic wave depends
not just on the laser pulse but, to a very large degree, on the absorber type
(tissue, blood, etc.) as well.

7



8 CHAPTER 2. THEORETICAL FORMULATION

2.2 Integral representation for the pressure

To solve equation (2.1) we will follow a frequency domain procedure. First we
apply a Laplace Transform (LT) over the temporal component and then a 3-D
Fourier Transform (FT) over each of the spatial coordinates. The forward and
inverse LT are defined as

û(x, s) =

∫
t∈R

χτ (t)u(x, t)e−stdt (2.2)

χτ (t)u(x, t) =
1

2πj

s0+j∞∫
s0−j∞

û(x, s)estds. (2.3)

Here χτ is the Heaviside step function and the path of integration is along the
line s = s0 with Re(s0 ) > 0. The forward and inverse spatial Fourier Transforms
are defined as

ũ(k, s) =

∫
x∈R3

û(x, s)ejk·xdV (2.4)

û(x, s) =
1

(2π)3

∫
k∈R3

ũ(k, s)e−jk·xdV. (2.5)

Using the above definitions, we start by applying first the LT and then the three-
dimensional FT to equation (2.1). The result is the (k, s) domain expression
for the PA wave equation

[(−jk) · (−jk)]p̃(k, s)− 1

c2
s2p̃(k, s) = − β

Cp
sH̃(k, s). (2.6)

To find a solution, we would like to have the pressure on one side of the equation
and everything else on the other side. The following few steps lead us to this
case.

(k · k)p̃(k, s) +
s2

c2
p̃(k, s) =

β

Cp
sH̃(k, s) (2.7)

(k2 +
s2

c2
)p̃(k, s) =

β

Cp
sH̃(k, s) (2.8)

p̃(k, s) =
1

(k2 + γ2)

β

Cp
sH̃(k, s) (2.9)

p̃(k, s) =
1

(k2 + γ2)

1

c2
c2β

Cp
sH̃(k, s) (2.10)

p̃(k, s) =
1

(k2 + γ2)

1

c2
ΓsH̃(k, s) (2.11)

Here γ = s
c , k2 = k · k and Γ = c2β

Cp
. The coefficient Γ is called the Grüneisen

coefficient, it is dimensionless and equals approximately 0.11 for water at room
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temperature. Equation (2.11) can be rewritten in terms of the spectral domain
Green’s function G̃(k, s) = 1

(k2+γ2) and the result is

p̃(k, s) =
Γ

c2
G̃(k, s)sH̃(k, s). (2.12)

It appears that we have found a solution to the PA wave equation in (k, s)
domain. However, what we would like is to find a solution in (x, s) domain. For
this purpose we apply the inverse three-dimensional Fourier Transform, defined
in equation (2.5) to equation (2.12) and arrive at

p̂(x, s) =
Γ

c2
s

∫
x′∈DH

Ĝ(x− x′, s)Ĥ(x′, s)dV. (2.13)

Clearly the Green’s function in (x, s) domain links the source position, denoted
by x′, with the receiver position, denoted by x. This result follows directly from
one of the properties of the three-dimensional Fourier Transform which says that
the product in (k, s) domain transforms into a convolution in (x, s) domain. To
find an explicit solution to the received pressure at position x, we need to find
the inverse Fourier transform of the spectral domain Green’s function G̃. For
this purpose we introduce spherical coordinates, carry out the integration and
use residual calculus for the integration over the radial distance [27]. After these
steps, we arrive at the Green’s function representation

Ĝ(x− x, s) =
e−γ|x−x|

4π | x− x |
. (2.14)

Now we can write the solution to the PA wave equation in (x, s) domain explic-
itly as

p̂(x, s) =
Γ

c2
s

∫
x′∈DH

e−γ|x−x
′|

4π | x− x′ |
Ĥ(x′, s)dV. (2.15)

We can follow two approaches from here. Move to frequency domain by taking
s = jω, or move to time domain by taking the inverse Laplace transform. If we
consider the latter case, the solution to the wave equation based on the Green’s
function for lossless, homogeneous background is given in [3, 31, 32], as

p(x, t) =
β

4πCp

∫∫∫
dx′

| x− x′ |
∂H(x′, t′)

∂t′

∣∣∣∣
t′=t− |x−x′|

c

, (2.16)

where x and x′ denote the positions of the receiver and source respectively. An
important assumption, which is valid for soft tissue, is that the light pulse is
short enough for thermal diffusion not to occur. This is referred to as thermal
confinement. With this assumption, the delivered energy can be modelled as the
product of a Dirac delta pulse and a spatially variable heating function. Then
equation (2.16) is rewritten into a more explicit form, highlighting the received
signal dependence on the initial pressure distribution, as

p(x, t) =
∂

∂t

[
t

4π

∫∫
|x−x′|=ct

p0(x′)dΩ

]
. (2.17)
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This result represents the signal we receive at our detectors. The question now
is how to invert this result, such as to obtain the initial pressure distributions
p0? There has been much research into the topic in the past decades. Initial
propositions were based on an approximation to the Radon transform used in
x-ray tomography. Solution for this case can be found in [31, 32]. A differ-
ent method (called a p-transform) proposed in [33] also produces an identical
result. Other time-domain solutions include deconvolution algorithms [34] as
well as back-projection and synthetic aperture algorithms borrowed from the
ultrasound field.

The alternative approach of frequency domain is also characterized by a whole
pleiad of methods. For example, Xu et al. [35, 36, 37], developed exact fre-
quency domain reconstruction algorithms for spherical, cylindrical and planar
geometry. A more recent paper suggests that constructing an algorithm which
includes the boundary conditions at the tissue-air interface might be a better
choice, since this boundary is significantly affecting the received pressure. The
suggested method uses a back-propagation algorithm to estimate the absorbers
[38]. Cox et al. [39] have proposed a fast method for calculating PA fields
in liquids by applying wavenumber integral techniques from the seismic world.
The resulting algorithms are very fast and allow for computation of the impact
of evanescent waves as well [39]. Another paper focused on the pure mathemat-
ical modelling of photoacustic signals in frequency domain can be found in [40]
presenting the mathematical background for imaging algorithms.

In this thesis we also follow the frequency domain approach. By taking s = jω
and applying it to equation (2.15) we arrive at

p̂(x, jω) =
Γ

c2
jω

∫
x′∈DH

e
−jω|x−x′|

c

4π | x− x′ |
Ĥ(x′, jω)dV. (2.18)

With this we have completed the derivation for the integral representation of
the PA wave equation in frequency domain. As one can see, the equation relates
each source point x′ to each detector x. Therefore, we will have the pressure
distribution at the receiver for all sources within our domain of interest.

2.3 Discretizing the integral representation

We have derived a way of describing the initial pressure distribution in our
domain of interest. However, equation (2.18) is in continuous form and we can
not solve it numerically on a computer, as this will require computation for an
infinite number of source points. Therefore, we need to discretize our equation to
arrive at a finite-dimensional approximation to the problem. This is not a trivial
task as in discretization we have a trade off between - problem size (how fine
the discretization is), discretization error and procedure complexity. To comply
with these goals, we consider the midpoint rule, which besides satisfying the
above requirements, is also the simplest discretization procedure.

We will first split our domain into a number of elementary cells - say N cells.
Let each cell occupy a domain Dn known as a voxel, where subscript n indicates
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a specific cell (n = 1 : N). Each integral will then act over the volume of a
single cell. Mathematically, this is written as

p̂(x, jω) =

N∑
n=1

Γ

c2
jω

∫
x′∈Dn

e
−jω|x−x′|

c

4π | x− x′ |
Ĥ(x′, jω)dV. (2.19)

Each of the integrals can now be approximated as∫
x′∈Dn

F(x′, jω)dV ≈ F(xn, jω)Vn,

where, Vn is the volume of the cell and xn is the geometrical center of mass of
the cell. This approximation is called the midpoint rule and is widely used in
computational electromagnetics and acoustics. Now we can write the discretized
version of equation (2.18) as

p̂(x, jω) =

N∑
n=1

Ĝ(x− xn, jω)Ĥ(xn, jω), (2.20)

where

Ĝ(x− xn, jω) =
Γ

c2
jωVn

e
−jω|x−xn|

c

4π | x− xn |
. (2.21)

2.4 Data Model

We now have the discretized version of the integral representation. The next
step would be to specify a model for the received pressure and expand it to
multiple receivers. Looking at equation (2.20) we can see that for the single
receiver located at x = xq /∈ DH , we have

p̂(xq, jω) =

N∑
n=1

Ĝ(xq − xn, jω)Ĥ(xn, jω). (2.22)

By introducing the 1×N row vector

ĝ(xq, jω) = [Ĝ(xq − x1, jω), Ĝ(xq − x2, jω).....Ĝ(xq − xN , jω)], (2.23)

and the N × 1 vector

ĥ(jω) = [Ĥ(x1, jω), Ĥ(x2, jω).....Ĥ(xN , jω)]T , (2.24)

we can rewrite equation (2.22) in matrix-vector notation as

p̂(xq, jω) = ĝ(xq, jω)ĥ(jω) (2.25)

If instead we measure the pressure field atQ ≥ 1 receiver locations x = xq /∈ DH ,
q = 1, 2, ..., Q, we will obviously have equation (2.25) for each receiver location q.
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Introducing the Q× 1 data vector

p̂(jω) = [p̂(x1, jω), p̂(x2, jω), ..., p̂(xQ, jω)]T , (2.26)

and the Q×N Green’s matrix Ĝ as

Ĝ(jω) =


ĝ(x1, jω)
ĝ(x2, jω)
ĝ(x3, jω)

...
ĝ(xQ, jω)

 (2.27)

we can summarize the complete set of measurements for Q locations as

p̂(jω) = Ĝ(jω)ĥ(jω). (2.28)

Equation (2.28) explicitly shows the dependence of the heating function ĥ on the
frequency. For imaging purposes however, we may simply ignore this dependence
since the sources radiate from the same location for all frequencies of interest.
In other words, our imaging procedure is based on the equation

p̂(jω) = Ĝ(jω)ĥ, (2.29)

where ĥ is the N × 1 vector of frequency-independent unknowns.

Finally, if we have data for the received pressure over multiple frequencies of
interest ωf , f = 1, 2, ..., F and stack this data in an FQ× 1 data vector

p̂ = [p̂T (jω1), p̂T (jω2), ..., p̂T (jωF )]T , (2.30)

then we can write the complete set of measurements for all frequencies and all
receivers as

p̂ = Ĝĥ, (2.31)

where Ĝ is the total Green’s matrix of order FQ×N given by

Ĝ =


Ĝ(jω1)

Ĝ(jω2)

Ĝ(jω3)
...

Ĝ(jωF )

 (2.32)

2.5 The Imaging Operator

The model from the last section describes the signals which we receive. Although
it assumes a homogeneous medium for sound propagation, it is often a good
enough approximation. What we would like to recover now are the locations of
the sources defined by ĥ in our data model.
To introduce our imaging operator, we start by introducing an inner product on
the receiver domain R = S×Ω, where S = {xq ∈ <3,xq /∈ DH , q = 1, 2, ...Q} and
Ω = {jωf ∈ I+, f = 1, 2, ..., F}. Specifically, given two field quantities p̂(xq, jωf )



2.5. THE IMAGING OPERATOR 13

and v̂(xq, jωf ) for q = 1, 2, ..., Q and f = 1, 2, ..., F , their inner product is defined
as

〈p̂(xq, jωf ), v̂(xq, jωf )〉R =

Q∑
q=1

F∑
f=1

p̂(xq, jωf )v̂∗(xq, jωf ), (2.33)

where the asterisk denotes complex conjugation.

Second, we define an inner product on the imaging domain DH . Given two
complex-valued functions ĥ(x) and û(x) defined on DH , their inner product is
defined as

〈ĥ(x), û(x)〉DH
=

∫
x∈DH

ĥ(x)û∗(x)dV. (2.34)

Now recall that the integral representation for the pressure at receiver location
xq and frequency ωf is given by (see equation (2.18))

p̂(xq, jωf ) =
Γ

c2
jωf

∫
x′∈DH

e
−jωf |x−x′|

c

4π | x− x′ |
Ĥ(x′)dV, (2.35)

for frequency-independent heating functions. This representation defines an
integral operator K that acts on a heating function Ĥ and produces pressure
values at the receiver location xq at frequency ωf . Explicitly, we have

p̂(xq, jωf ) = K{Ĥ}(xq, jωf ), (2.36)

for q = 1, 2, ..., Q and f = 1, 2, ..., F where

p̂(xq, jωf ) =
Γ

c2
jωf

∫
x′∈DH

e
−jωf |xq−x′|

c

4π | xq − x′ |
Ĥ(x′)dV. (2.37)

The imaging or adjoint operator is now defined as the operator K∗ for which

〈K{Ĥ}(xq, jωf ), v̂(xq, jωf )〉R = 〈Ĥ (x),K∗{v̂}(x)〉DH
(2.38)

for all heating functions Ĥ defined on DH and all v̂(xq, jωf ) defined on the
receiver domain R. Notice that, by definition, the imaging operator maps func-
tions defined on the receiver domain to a function (the image) defined on the
imaging domain.

To find an explicit expression for the imaging operator, we substitute the integral
operator K in equation (2.38). We obtain
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〈K{Ĥ}(xq, jωf ), v̂(xq, jωf )〉R = (2.39)

=

Q∑
q=1

F∑
f=1

Γ

c2
jωf

∫
x′∈DH

e
−jωf |xq−x′|

c

4π | xq − x′ |
Ĥ(x′)dV v̂∗(xq, jωf ) = (2.40)

=

∫
x′∈DH

Ĥ(x′)
Γ

c2

F∑
f=1

jωf

Q∑
q=1

e
−jωf |xq−x′|

c

4π | xq − x′ |
v̂∗(xq, jωf )dV = (2.41)

=

∫
x′∈DH

Ĥ(x′)

[
Γ

c2

F∑
f=1

(−jωf )

Q∑
q=1

e
jωf |xq−x′|

c

4π | xq − x′ |
v̂(xq, jωf )

]∗
dV = (2.42)

=

∫
x′∈DH

Ĥ(x′)K∗{v̂}(x′)dV (2.43)

from which the imaging operator can be found through inspection as

K∗{v̂}(x) =
Γ

c2

F∑
f=1

(−jωf )

Q∑
q=1

e
jωf |xq−x|

c

4π | xq − x |
v̂(xq, jωf ), (2.44)

with x ∈ DH .

Taking now x = xn where the xn are the midpoints of the discretization cells
used in the discretization of the integral operator, setting ĥxn

= K∗{v̂}(xn) for
n = 1, 2, ..., N , and introducing the N × 1 vector

him =
[
ĥ(x1), ĥ(x2), ..., ĥ(xN )

]T
,

we find from equation (2.44) and equation (2.31) that

him = ĜH p̂, (2.45)

where GH is the hermitian transpose of the total Green’s matrix Ĝ.

2.6 Conclusion

This rather mathematical chapter formulates the foundation for our imaging
procedure. We derived a solution to the PA wave equation and presented it in
continuous form. Then we discretized it to acquire a model for simulation and
computational purposes. Furthermore, we introduced the imaging operator in
continuous and discretized form. It delivers us with a computationally simple
and stable tool for forming images as it includes no matrix inverses. Finally, the
data model from equation (2.31) can be exploited in more complex algorithms,
once we have verified its correctness.



Chapter 3
Synthetic and Experimental
Results

In Chapter 2 we derived a forward modelling approach to simulate synthetic
data and an inverse approach to form images. However, although these for-
mulations are mathematically correct, a certain number of assumptions such
as a homogeneous medium were made and they can affect the imaging results.
Therefore, it is imperative to test these models before taking any further steps
in imaging and signal processing.

We will start by comparing a simulated signal in the time domain (TD)
with a recorded one. Then we move to a 2D synthetic example and afterwards
continue with experimental data. We compare images from the experimental
results with images from the k-space 2D linear FFT reconstruction [39] to con-
clude whether our method complies with conventional processing.

3.1 Time Domain Signals

We recorded a photoacoustic signal with a broadband hydrophone and averaged
it over 50 measurements. The object producing the acoustic response is a string
of human hair, approximately 50 µm, embedded in a tank of water. For com-
parison we used the forward model (Eq. (2.31)) and simulated a single object
(point source) embedded in a homogeneous medium. The simulated signal is
broadband, covering the same frequency band as the experimental one. The
two signals are compared in Figure 3.1.

Observe how the bipolar shape in both signals is very similar, but not iden-
tical. The observable differences are the result of physical effects neglected in
the derivation of the model. For example, diffraction and transmission are not
considered and we know that these can alter the signal profile (Chapter 1).
However, detector characteristics are even more important because transducers
(such as hydrophones) are typically sensitive in a certain frequency band only.
The smooth peaks in the experimental data compared to the sharp ones ob-
served in the model are a consequence of this fact. We can simulate this effect
in the model by applying a window over the frequency spectrum of the signal

15
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thus resembling the hydrophone sensitivity. The result of this step is visible in
Figure 3.1 and we can notice that the same smoothing effect was achieved.

Notwithstanding these differences, the two signals resemble each other to a
high degree and this is a clear indication of the correctness of the derived model.

2.335 2.345 2.355

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time, ns

R
e

c
o

r
d

e
d

 
A

m
p

li
t
u

d
e

 

 

2.335 2.345 2.355

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−4

Time, ns

R
e

c
o

r
d

e
d

 
A

m
p

li
t
u

d
e

2.335 2.345 2.355

−4

−3

−2

−1

0

1

2

3

4

x 10
−5

Time, ns

R
e

c
o

r
d

e
d

 
A

m
p

li
t
u

d
e

Figure 3.1: Time domain recorded and simulated signals. Left: Recorded signal
with a hydrophone averaged over 50 measurements. Middle: Simulated signal
in the time domain. Right: Synthetic signal with simulated detector response
effect.

3.2 Synthetic Example

For the synthetic example we consider an array of 128 elements and a single ob-
ject embedded in a homogeneous medium (Figure 3.2). We present four images
in Figure 3.3, where we have summed over a different number of frequencies.
The frequency band spans from 0.1 MHz to 3 MHz, with discrete steps of 0.01
MHz. As the frequency number grows the image quality increases. This can be
explained in the following way. While tissue types, blood, and other biological
structures have a different heating function with unique absorption coefficient
µa, in imaging we consider the heating function simply as a value, disregarding
the complex, multi-parameter dependence it exhibits.
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Figure 3.2: Single object (point source) embedded in a homogeneous domain.
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Then, although the biological absorbers will emit signals within certain band,
depending on their size and characteristics, for imaging purposes, they essen-
tially emit from the same place within the imaged domain. Therefore, the
larger number of frequencies covering the signal band we sum over, the better
image we can achieve. This stems directly from Chapter 2 and the frequency
independence of the heating function which we assumed there.
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Figure 3.3: Image of a single source in homogeneous medium. First Row (from
left to right): Images for a sum over a band of 0.1 MHz and 0.5 MHz. Second
Row: Images for a sum over a band of 1 MHz and 1.5 MHz. No noise is added.

3.3 Experimental Result at 650 nm

In this experiment we obtained in-vivo data from the lower arm of a healthy
volunteer. The arm was kept stable in a water tank with a temperature of 38 ◦C.
For photoacoustic signal generation we used an optical wavelength of 650 nm
and averaged over 16 measurements for the purpose of higher SNR. For light
generation with wavelength in the range 410− 2400 nm we used a tunable laser
(OPOTEK Vibrant B/355-II) generating 5 ns pulses at 10 Hz repetition rate.
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The laser was coupled to a one-to-two fiber bundle linear array that could be
interfaced with the linear array ultrasound transducer. For detection, we used a
128-element linear array (pitch: 245 µm, bandwidth: 4−9 MHz; Vermon, Tours,
France) connected to an open 128-channel US system (Lecoeur Electronique,
Chuelles, France), capable of digitizing signals with 80 MHz sampling at 12 bits.
A picture of the set-up is provided in Figure 3.4.

Figure 3.4: Experimental set-up for in-vivo imaging of the wrist vasculature.
The hand is submerged in a tank of water and irradiated by laser light coming
from two optical fibres. The focus in depth is finely adjustable by a stepper
motor.

We apply the imaging operator to the averaged signal and sum over different
number of frequencies (starting from 1 MHz with steps of 50 kHz) to obtain the
images from Figure 3.5. Notice how the reconstruction of the initial pressure
distributions moves from a blurred blob to a structured picture as we add more
information. The highest number of frequencies we sum over is determined by
the signal bandwidth and detector response. Summing beyond this frequency
spectrum is useless as we will start introducing high levels of noise.

Comparison
In-vivo data can provide more insight into the behaviour of the model. However,
this has the drawback of preventing us from comparing the obtained images with
the real, physical imaging domain characteristics. In order to confirm or dis-
regard our results we have to turn our attention to the abundance of imaging
algorithms in existence that were mentioned in Chapter 2. From them, a good
choice for comparison would be the k-Wave 2D linear FFT reconstruction fea-
tured in [39]. It is freely distributed in a MATLAB toolbox and is characterized
by fast computation of the acoustic fields. We apply a 6th order butterworth
bandpass filter to the data from Figure 3.5, compensate the introduced phase
shift and compare the result of the two algorithms in Figure 3.6.
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Figure 3.5: Image of the skin surface and underlying blood vessels for a different
frequency band. The continuous strong signal is the skin, while the smaller round
images are blood vessels. Notice the top and bottom walls that correspond to
these.

The two images are almost identical. Differences appear in the artefacts,
which for the k-Wave result are more concentrated (marked with B in the im-
ages). Another difference is in the amplitude of the small absorbers. While
for the k-space the small sources (marked with A in the images) are one idea
sharper, for the matched filter result they are less clear. Although our imaging
operator seems to provide a slightly less clearer image, it is difficult to indi-
cate which algorithm is better since we do not have a ground truth for the
images. It is worth mentioning that these dissimilarities can be the result of
computational round-off errors. Another possibility is the frequency content
we consider. Although we have applied a bandpass filter to both examples, in
the adjoint procedure we sum over a finite number of frequencies. This is in
contrast with the k-Wave, where we sum over all frequencies. It is possible then
that tiny contributions from out-of-the-band frequencies incur the observable
dissimilarities.
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Figure 3.6: Comparison between matched filtering (top image) and k-Wave
method (bottom image), dB scale.

3.4 Experimental Result at 800 nm

We acquired data for this experiment with exactly the same set-up as before,
but changed the wavelength to 800nm. Light in this spectral range penetrates
deeper in tissue and can allow for imaging of other than the near surface vascu-
lature. A drawback is the lower amount of energy contained in each laser pulse.
Figures 3.7 and 3.8 present the imaging results for this data set and contrast it
with the k-space result.

An interesting observation can be made from Figure 3.5 and Figure 3.7. It
concerns the wiggles which appear in these images. These are artefacts of the
applied algorithm and can be explained in the following way. The Green’s func-
tion introduced in Chapter 2 consists of distances and a frequency dependent
term (Equation 2.14). These Green’s functions will then differ only slightly from
each other. When we start to sum over frequencies, the Green’s functions start
to cancel each other with the exception of the places where absorbers exist. The
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Figure 3.7: Image of the wrist vasculature for a wavelength of 800 nm. Clearly
visible are two blood vessels, the skin, and several other unknown biological ab-
sorbers. Although this wavelength offers higher penetration depth we fail to see
any other blood vessels than the top ones.

more data we add (more frequencies), the better this cancellation is. Therefore,
when we cover the entire frequency band, we are left with the true sources only
and the algorithm artefacts disappear almost completely. This process is also
visible for the noise free case presented in Figure 3.3.

Figure 3.8 presents the comparison results. As in the previous experiment, we
observe that the two methods achieve essentially the same result. It should be
noted that in this case the k-space result is more focused, but exhibits stronger
artefacts than its adjoint counterpart. Notwithstanding these tiny differences,
we can conclude that both algorithms yield good, almost identical results and
as a whole perform very well.
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Figure 3.8: Comparison between matched filtering (top image) and k-Wave
method (bottom image).

3.5 Conclusion

In this chapter we tested the derived imaging operator. We observed how adding
more frequencies from the signal frequency spectrum increases the sharpness of
the images for both synthetic and experimental data. The performance of the
imaging operator was compared to the k-space 2D linear FFT reconstruction
method to reveal any existing differences. These were found to be insignificant
and centered mainly on artefacts and sharpness.



Chapter 4
Regularization

Regularization is a necessary step in every discrete, ill-posed, linear inverse prob-
lem1. It is the procedure of making a solution more stable, or less noise suscepti-
ble. If this step is omitted, the instability of the imaging or inversion procedure
will produce an inaccurate map of the parameters under reconstruction. The
problem can be severe in complex imaging algorithms that rely on the sample
covariance matrix and require matrix inversion, because the latter process will
present us with a badly conditioned or close to singular inverse. The essence
of regularization is the change of the unstable inverse operator with one that
is well-conditioned and well-posed. Then, we can expect the solution to be in
the range of the original one [41]. Before embarking on regularizing the adjoint
solution we must first consider the noise present in PAI. Through knowledge of
its characteristics we can understand why standard processing procedures such
as averaging may fail to yield a good result.

4.1 Noise

Equation (2.31) presented us with an approximate forward model for the re-
ceived pressure. However, we do not know this pressure exactly since it is
contaminated with additive noise e. In this case the model must be rewritten
as

p̂ = Ĝh + e

Having some notion of the noise characteristics can be advantageous since we
know that noise is the cause of instability in inverse solutions. If the imaging
algorithm is robust, as the adjoint we use here, this instability is mild. Never-
theless, if we inspect Figures 3.5 and 3.7, we will notice that apart from several
strong signals, most of the image space is occupied by weaker signals and noise,
or no signals at all. It is these noisy samples that pose a problem of discrim-
ination since we do not know if they belong to real sources or are an artefact
produced by correlated noise. The question then is, what are the characteristics
of the noise in PAI ?

1In literature the algebraic problem is usually presented as Ax = b, hence x = A−1b

23
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We will approach this problem by first considering the noise statistics. Usually,
one assumes to have normally distributed noise, but this is not the case for
photoacoustic imaging. If we take each A-line of an RF image, compute the
noise statistics and compare them with the Gaussian one we will find a large
range of noise distributions. This is known in literature as kurtosis test2 [42]
and Figure 4.1 depicts the result for one such test, corresponding to the image
from Figure 3.5, noise only.
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Figure 4.1: Kurtosis test for Figure 3.5. A value of zero will correspond to
normal distribution. We see that for each element, the value differs and as a
whole is far away from the Gaussian case. The red line represents the mean for
all traces.

We can conclude from this test that averaging (which is often employed in PAI)
will not suppress the noise to such a degree as in the case when the noise is
normally distributed. The problem goes one step further though, because our
noise is not just non-Gaussian, but also correlated. This can be deducted by
examining Figure 4.2 where we show a recorded signal in the time domain for
a linear array of 128 elements.

In the upper half of the data there is no signal present and we can see spa-
tially correlated noise. This noise is probably hardware related as it exhibits
a regular pattern and becomes stronger for less averaging. It will contaminate
our images and if we go back to Figure 3.5 we can notice many ”structures,”
characterized by small amplitudes, that tend to concentrate at certain places
and not at others.

This effect of correlation can be examined for the synthetic case as well.
Consider the example of Figure 3.3 from the previous section. We can add cor-
related noise to our synthetic example with the same covariance and mean as the
one observed in the experiments. Mimicking the distribution from Figure 4.1
for each receiver will be an arduous task and we consider normal distributions
instead. This is a fair approximation for our purpose as will be demonstrated
shortly. Using the forward model to produce frequency domain data and sub-
sequently applying the matched filter we arrive at Figure 4.3.

2The kurtosis test is defined as γ =
E(w4(n))

E2(w2(n))
−3 where γ is the kurtosis result and w(n)

are the noise samples
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Figure 4.2: Recorded time domain signal for a linear array of 128 elements. The
domain is empty with the exception of a single source. We can clearly observe
correlated noise exhibiting a very regular pattern.
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Figure 4.3: Synthetic example corrupted with correlated Gaussian noise. Single
source in homogeneous medium. We can observe how correlated noise shows up
as structured formations in the image throughout the domain. The amplitude is
normalized to 1 and the scale is in dB.

Notice that the same kind of ”structures,” as the ones observed for the in-
vivo data, appear throughout the entire image, focusing more at some points
than at others. It is clear then that spatially correlated noise, when beamformed,
produces unwanted artefacts in the imaging domain.

These results show us that if we have weak absorbers, they will not show up
distinctively in the images. However, it should also be noted that noise statistics
vary from system to system and while for this case we have very well visible
non-Gaussian correlated noise, but this may not be the case for other systems.
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Finally, it is worth mentioning that we will try to clear up this noise as much
as possible by applying a regularization procedure. For this purpose we will
examine two of the most popular norms used in inverse problems.

4.2 The residual norm

The norm of the residual provides a measure of how big the misfit between the
left and right side of linear inverse problems such as the one from Eq. (2.31) is.
Generally, we would like to minimize this norm such that our approximation is
as close as possible to the true result. For our problem, the residual p-norm is
given as

r = ‖Ĝh− p̂‖p =

( N∑
q=1

∣∣(Ĝh)q − p̂q
∣∣p) 1

p

. (4.1)

However, p can take on many values and the question is which norm to choose
in the minimization. If p = 2 we have the 2-norm (Least-Squares solution) and
the misfit measure will be squared [43]. This is the most commonly used norm,
because from a statistical point of view it gives best results if the errors are
normally distributed [44]. The adjoint, which we derived in Chapter 2, also
falls in this class. On the other hand, if p = 1 the misfit will not be squared
and we end up with the 1-norm solution. Other choices for p are also possible.
However, each of these norms produces very different results and preferences,
for one norm or the other, depend on the specific problem.

Figure 4.4: L1 and L2 solutions for a data set with a single outlier at t=4 s.
Taken from R.Aster et al. [45]

In our case we are particularly interested in the L1 and L2 norms since they
are widely applied for regularizing inverse problems. To illustrate the difference
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between these two norms, for sparse data, we will consider a simple example.
Assume that we have received some data and a single erratic data point called
an outlier. One such case is presented in Figure 4.4, depicting the ballistic
trajectory of a cannon shot. Different measurements in time were taken giving
a time-elevation curve.

We can observe that the measurements are consistent in their values with the
exception of a single sample taken at t = 4 s. As one can see, it is introducing a
fair amount of error to the L2 fit, but affects L1 only slightly. This can give us
a feeling of how multiple outliers will impact the fit above. Clearly, if we want
to minimize the residual using L2, we will end up with a poor quality result.
The reason for this is that L2 uses the mean and we will explicitly show the
importance of this fact.

Consider the residual equation (4.1) again (for p = 2) and let Ĝ be a vector

of ones and ĥ be a single parameter - ĥ. We want to minimize this residual and
for this purpose we take the first derivative with respect to ĥ and set it to zero

0 =

N∑
q=1

(
ĥ− p̂q

)
(4.2)

By rewrite the result with respect to Ĥ, we arrive at

ĥ =
1

N

N∑
q=1

p̂q (4.3)

Equation (4.3) explicitly shows that ĥ is equal to the standard definition of
arithmetic mean. Then a random error with large value will have a very strong
influence over the L2 fit since it will affect the averaging significantly, exactly
as in Figure 4.4.

The 1-norm on the other hand uses the median rather than the arithmetic
mean as described in [46]. If we consider the p-norm equation for p = 1 and set

the partial derivative with respect to ĥ to zero, we have

0 =

N∑
q=1

sgn
(
ĥ− p̂q

)
The signum function is -1 if the argument is negative, 1 if the argument is posi-
tive and 0 if the argument is zero. This defines ĥ as the median. Then, as in the
case above, a single outlier with very high amplitude will not affect the result
much, as all other data points will be consistent in their values. Therefore, for
a larger number of data points as in Figure 4.4, L1 will try to stay on track
with the samples that have a steady change in their values and L2 will try to
incorporate all noisy spikes (outliers) as well.

This discussion shows that the two norms are very different from one another and
produce different results. We can try to improve our images by either approach,
but which one to pursue? To answer this question we must first consider the
experimental results from Chapter 3. We saw that there are usually a few
strong absorbers in the human body - such as blood, skin top layer or nerve
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bundles. Signals from other structures are weaker as absorption is smaller.
Due to wave propagation phenomena, noise and tissue properties these will
not be detectable at the receiver side. We can then assume that we will only
see contributions from the strong absorbers in our image and the rest will be
buried in the noise or not present at all. This implies that we can treat our
images as sparse and take advantage of this3. This advantage comes in the
form of regularization procedures utilising the p-norm. Here we restrict our
attention to 1-norm regularization terms, since then sparsity is promoted and
fairly standard iterative solution procedures can be applied [41, 45, 47].

4.3 Regularization Methods

4.3.1 Tikhonov Regularization

Tikhonov regularization techniques [48] are widely applied for stabilizing the
solution to ill-posed problems. The problem can be cast in several ways. For
example, Ivanov [49] considered first the problem of min‖r‖22 such that ‖ĥ‖22 ≤
E2, where E2 is an upper bound on the energy of the unknown parameter.
However, if an estimate for the noise power ‖ε‖22 is available, the smoothest
approximate solution can be found (Phillips [50]) and the problem to be solved
is min‖ĥ‖22 such that ‖r‖22 ≤ ‖ε‖22. Obviously, in both4 cases we require some
a-priori knowledge of the problem - be this the noise power or the upper bound
on the solution norm. This is a key element in the theory of regularization.

For Tikhonov class problems we usually consider regularization by imposing
additional quadratic constraints. To solve the first problem of min‖r‖22 such
that ‖ĥ‖22 = E2 the method of Lagrange Multipliers is applied [51]. Then the
functional to be minimized is

f(ĥ) = ‖Ĝĥ− p̂‖22 + α‖ĥ‖22 (4.4)

These types of problems are referred to as damped least-squares, because
of the second term that is α dependent. The latter is called the regularization
parameter and its choice determines the quality of our solution.

Minimizing f(h) can be shown to be equivalent to the ordinary least squares
problem

min

∥∥∥∥∥
[

Ĝ√
αI

]
ĥ−

[
p̂
0

] ∥∥∥∥∥
2

2

, (4.5)

and its solution is given by the system of normal equations [52] as

(ĜHĜ + αI)Ĥ = GH p̂. (4.6)

The αI block is the simplest kind of smoothness criterion. To see how the reg-
ularization works we must consider the solution in terms of the SVD. Matrix
Ĝ can have some very small singular values and they tend to amplify the noise
in the standard least-squares solution thus introducing numerical instabilities.

3The human body is very complex and as you can imagine it is not sparse at all. We only
consider sparsity of the images, but not of the body itself.

4 Both methods were later unified by Tikhonov in the form of a regularization procedure.
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Regularization is actually diminishing the importance of these singular values
and as consequence the solution becomes more stable.

Other smoothness criteria exist as well and they can also be solved by means
of the system of normal equations. If we change the identity matrix with a first
order derivative matrix (finite-differences), or second order derivative one, we
will end up with higher-order Tikhonov regularization. What criterion to use
will depend on our particular requirements and on the problem at hand.

4.3.2 Sparsity Regularization

The problem posed by (4.5) is an L2 minimization problem. However, we ob-
served that the 1-norm can be a very robust method for dealing with data
outliers and is applicable to Tikhonov regularization problems when sparsity
of the problem exists. To put L1 in the context of the above methods we will
have to reshape equation (4.4) by taking the 1-norm of the solution ĥ. In other
words, we are after a vector ĥ that minimizes the function

f(ĥ) = ‖Ĝĥ− p̂‖22 + α‖Lĥ‖1. (4.7)

This type of regularization with non-quadratic constrains works very well for
sparse problems because the 1-norm promotes sparsity. Basically, as p becomes
smaller than 2 the regularization term is forcing the smaller coefficients of ĥ
towards zero while pushing the larger coefficients to higher amplitudes. In this
sense, the smaller p is, the more sparse we consider our domain of interest to be
[41]. Ideally, we would like to minimize ‖Ĥ‖05, but these problems pose some se-
rious computational problems [45] making the approach impractical. However,
it has been proven that for p = 1 the solution converges to an approximation of
the solution to the above problem[47].

Solving this L1 problem can be rather complicated. One method developed dur-
ing the 70s is the IRLS (Iteratively Reweighted Least Squares). As the name
of the method suggests we are iteratively solving least squares problems, and
change the weighting at each iteration. In the end, the algorithm converges
to the L1 solution within some tolerance specified by the user. A summary of
the method can be found in [45], while a more in-depth presentation for sparse
problems is given in [53]. Here we will only give an outline of the method since
it is not the subject of this thesis.

Taking the gradient of the objective function f as given by equation (4.7) and
setting this gradient to zero, we obtain

(2ĜHĜ + αLHWL)ĥ = 2GH p̂, (4.8)

where W is a diagonal weighing matrix with diagonal elements that depend on
the solution ĥ. Specifically, we have

W = diag

(
1

|(Lĥ)1|
,

1

|(Lĥ)2|
, ...,

1

|(Lĥ)N |

)
,

5The 0-norm does not comply with the standard definition of a p norm. The 0-Norm of a
vector is equal to the number of non-zero entries in this vector.
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where 1
|(Lĥ)i|

is the i-th element of the inverse of vector Lĥ.

Solving ĥ from equation (4.8) is clearly a non-linear problem. In IRLS, equa-
tion (4.8) is therefore solved iteratively, where the elements of the previous
least-squares solution serve as weights in matrix W. In particular, for L = I,
the IRLS algorithm is as follows:

Zero-Order Tikohonov IRLS Image Improvement

1. Compute the initial image ĥ([0]) = ĜH p̂

2. Set

W[i] = diag

(
1

|(ĥ)
[0]
1 |
,

1

|(ĥ)
[0]
2 |
, ...,

1

|(ĥ)
[0]
N |

)
3. Select a value for the regularization parameter α

4. For i = 1, 2..., N

a. Solve

(ĜHĜ +
α

2
W[i−1])ĥ[i] = ĜH p̂ (4.9)

b. Set

W[0] = diag

(
1

|(ĥ)
[i]
1 |
,

1

|(ĥ)
[i]
2 |
, ...,

1

|(ĥ)
[i]
N |

)

This is the algorithm that we will use. We mention that in our implementation,
equation (4.9) is solved using the LSQR iterative solver [45, 54]. The advantage
of this approach is that in this algorithm only the action of matrix ĜHĜ on a
vector is required. There is no need to form this matrix explicitly.

4.4 Parameter Choice

Finding a good α for the regularization process is crucial, but also hard and
time consuming. The difficulty arises from the fact that in order to see the
effect of our choice, we must perform the regularization and analyse the results.
Therefore, if we fail to make a good guess, we have to regularize for another
α and iterate in this manner until we are satisfied with the result. The diffi-
culty is reinforced by the problem dependence of the parameter. If α = 2 works
perfectly for one situation, it is not guaranteed that it will also work in other
situations. Therefore, an effective strategy for choosing α needs to be imple-
mented usually. Such a strategy is based on computing the regularization for a
family of parameters and analysis of the results. In this way a good parameter
choice can be achieved or the region of good parameters can be identified.
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4.4.1 L-curve

A convenient way of displaying the results from the regularization is by means
of the so-called L-curve (originally introduced by Lawson and Hanson in [55]).
If we plot the 2-norms of the residual and the estimated sources ĥ as function
of the regularization parameter α we will get an L-curve as the one shown in
Figure 4.5. The L-curve idea is based on the observation that for small α the
norm of the residual is essentially minimized, while for large α the regularization
term is minimized. Placing the individual norms along the x- and y-axes, we
may then trace out and L-curve by varying the regularization parameter. This
is illustrated for standard zero-order Tikhonov regularization in Figure 4.5. The
corner of the L-curve can be considered optimal, since with the corresponding
regularization parameter we strike a balance between excessive and insufficient
regularization.

Figure 4.5: An example of an L-curve for standard zero-order Tikhonov regu-
larization. Taken from R.Aster et al. [45]

Several strategies for finding α are reported in [56] with the simplest one con-
sisting of choosing discrete values for α and plotting the L-curve with the hope
that the right interval was chosen. The plots are usually in log-log scale as the
corner is more pronounced in this case. This method performs well for some
synthetic examples and experimental data sets (Chapter 5), but it is as likely
to fail in yielding a good result. Actually, [57] showed that an L-curve may
not even exist for some problems, while in many cases the corner is not well
pronounced. The latter situation can be dealt with sometimes, by applying the
GCV (Generalized Cross Validation) [45]. However, this introduces some fur-
ther computations and slows the overall process.

Another method for choosing the regularization parameter is the classical
Morozov discrepancy principle [58]. The idea behind it is that the regulariza-
tion parameter depends on the level of noise ‖ε‖2. Then, if we consider the
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problem of min‖ĥ‖22 such that ‖r‖22 ≤ ‖ε‖22, we must choose the largest α for
which the above constraint on the residual norm holds. This method can be
used in conjunction with the L-curve, since we are anyway solving a number of
problems for different regularization parameters.



Chapter 5
Regularization Results

In Chapter 4 we introduced sparsity regularization and methods for the choice
of the regularization parameter. Here, we apply this procedure to modelled data
in one-dimension and consequently move to two-dimensions. Then, we continue
with ex-vivo 1D and 2D data, discuss on the results and on the acquired L-
curves. Finally, for completeness, we take the wrist example from Chapter 3
and regularize to see how the procedure performs in an in-vivo case.

5.1 Synthetic Example in 1D: Single object

One-dimensional problems are easy to solve from a computational point of view
and can serve as an example of the effectiveness of the proposed method. This
first synthetic example depicts an empty domain with the exception of an object
at some depth (Figure 5.1, top image). We corrupt the data by applying 5%
white Gaussian noise. The imaging operator is then applied and the first several
samples are discarded to remove an introduced artefact. The result is presented
in Figure 5.1, middle image, and we can notice that where the discontinuities in
the domain appear, a strong signal is present. However, the noise level is high
as well. By applying regularization (Figure 5.1, bottom image) we can improve
on the above situation. The SNR is improved from 4dB in the first case to
16dB for the regularization solution. This is a significant improvement which
manifests the capabilities of sparsity regularization.

For this example we used the L-curve method to choose the regularization
parameter. The curve is depicted in Figure 5.2 and we can notice that the
corner is not as sharp as in the ideal example from Chapter 4. The reason
can lie with the noise statistics, the problem itself, or with how fine we choose
our α interval. Nevertheless, the corner is well pronounced and the results are
satisfactory since the regularized solution is characterized by an improved SNR.
An important conclusion from this example is that due to the finite range of α
we choose, we may skip the ”exact” regularization parameter that sits in the
corner of the L-curve. Therefore, it is often better to choose an α that sits in the
range of the corner if, of course, it produces good regularization results. This is
also a strategy we will follow in the next examples.

One-dimensional data sets are of particular interest since they are available in

33
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IVPA ([22]) and photoacoustic microscopy, where a single element transducer is
scanning an area to produce a two-dimensional image. This is why investigating
the regularization behaviour for one-dimensional scenarios is interesting, but
also practically important.
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Figure 5.1: One-dimensional example and results after applying the adjoint op-
erator (second image) and sparsity regularization (third image). Notice that the
object (source) is represented by a dimensionless value for imaging purposes.
Observe how the regularization procedure is boosting the SNR level by weighing
more the real signal and discarding the noisy samples.
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Figure 5.2: L-curve for the synthetic model of Figure 5.1.

5.2 Synthetic Example in 2D: Single object

We saw a good improvement over the matched filter result for the one-dimensional
problem. From a mathematical point of view, extending the dimensions does
not changes anything. Therefore, we can expect similar results as in the 1D
synthetic case. In this example, we consider a single object embedded in a ho-
mogeneous background (Figure 5.3). We assume 10% correlated Gaussian noise
generated by taking the noise covariance matrix from the example in Figure 3.5.
We take higher noise percentage due to the linear array of 64 elements which
introduces a gain factor increasing the overall SNR. As before, the object is
characterized by a dimensionless value.
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Figure 5.3: Single object embedded in an empty domain.

To arrive at the regularized solution, we computed over a range of alphas. The
corresponding L-curve is depicted in Figure 5.4, bottom image. Observe that it
lacks a well pronounced corner. However, choosing a value for the regulariza-
tion parameter around the ”bending-point” produces good regularization results
(Figure 5.4, second image).
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Figure 5.4: Two-dimensional results and an L-curve for imaging the object from
Figure 5.3. We see a significant improvement over the matched filter result by
applying the regularization procedure. Notice how most of the noise from the
first few pixels is suppressed.
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To evaluate the improvement we choose a part of the image (indicated by a
black box in Figure 5.4) and take the mean of the noise. Then we do the same
for the source and compare the two. The results are an SNR of 18dB for the
matched filter and an SNR of 30dB for the regularized solution, which clearly
indicates the good performance of the proposed method.

5.3 Synthetic Example in 2D: Five objects

The third and final synthetic example we consider in this chapter consists of an
empty domain with five absorbers with different absorption coefficients (Figure
5.5). The objects trace out a ”Z” figure with the top left one having the highest
absorption, while the absorption strength of each next is 20% less. As in the
previous example, we add 10% correlated Gaussian noise and apply first the
adjoint operator and then sparsity regularization (Figure 5.6).
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Figure 5.5: Five objects with different absorption embedded in a homogeneous
domain.

This example is showing less improvement compared to the previous one. We
can recognise four of the five objects for the adjoint image (Figure 5.6). The
regularized solution on the other hand offers less noise and helps to outline better
the fourth absorber (Figure 5.6, second image). Unfortunately we fail to recover
the last object due to its small absorption and because it is ”shielded” by the
other absorbers. To illustrate the differences between the regularized solution
and the matched filter solution, we considered a single line at certain depth (as
depicted in Figure 5.6, red line) and plotted it separately in Figure 5.7. Observe
how the signals are being amplified while the noise is being suppressed. This
effect is even more prominent for larger α. The L-curve is showing only mild
bending again and we can notice some degradation in the recovered magnitude
for the objects.
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Figure 5.6: Two-dimensional results and an L-curve for imaging the five objects
from Figure 5.5. The matched filter (top image) and the regularized solution
(middle image) have been normalized to the 98% percentile and plotted in dB
scale. The red line in both images is taken for comparison purposes as depicted
in Figure 5.7
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Figure 5.7: Single trace taken from Figure 5.6 depicting the SNR improvement
achieved through regularization. Notice the 8 dB change for the strongest signal
and the suppressed noisy samples.

5.4 Ex-vivo example in 1D: String of human hair

Synthetic examples are a necessary step, but they only approximate reality.
Therefore, the next step is to test the method for ex-vivo data sets. We will
first investigate the effects of regularization on single element data. The photoa-
coustic signal source is a string of dark brown hair embedded in a tank of water,
the wavelength is 650 nm and the transducer is focused on the object of interest.
This is still a very controlled example and to make it more challenging we have
introduced white Gaussian noise, sweeping the frequency band from several kHz
to tens of MHz effectively filling the signal spectrum with additional noise. We
recorded sixteen measurements.
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Figure 5.8: Recorded time domain signal after averaging over sixteen measure-
ments. The signal arrives from a depth of approximately 0.075m.
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Figure 5.8 holds the digitized time-domain signal as recorded by the transducer.
Notice that although averaged, the trace is heavily contaminated by noise. To
focus on the band of interest (the transducer is peak sensitive at 3 MHz) and
reduce the noise, we filtered the averaged signal by a 6th order butterworth
bandpass filter with cut-off frequencies at 0.5 MHz and 4 MHz. We then applied
the matched filter and sparsity regularization. For completeness, we applied also
the standard 1D processing of envelope detection which consists first of taking
the Hilbert transform of the filtered time series and then of the absolute value
of the transform result. The three results are presented in Figure 5.9.

Comparing the standard processing result with the matched filter one, we notice
that the latter is producing a less favourable ”image,” as the SNR in the first
case is 17.8 dB compared to 12 dB for the matched filter result (the noise was
estimated for certain areas of the 1D images as indicated by the red boxes in
Figure 5.9). This poor performance of the adjoint is due to insufficient data
in order for beamforming to happen. However, by applying regularization we
can achieve a slight improvement over the envelope detection case and push the
SNR to 20 dB.

For this example we have a very interesting L-curve. In Figure 5.10 we have
plotted the L-curve and two zoomed sections of it. The first one is depicting
how the norms change for small values of the parameter. Notice the step-like
behaviour of the curve for this range of α-values. This pattern suggests a variety
of possible ”good” choices for α. However, choosing any one of these does not
yield an optimum result. Actually, the place where the norms balance each-
other happens at the beginning of the steep part of the curve (Figure 5.10,
bottom image). To support this fact we normalized the regularization results
for three choices of α and plotted them in Figure 5.11.

The first image is the result for an α from the first region. The second is the
optimum one, while the third one is for a very high value of the regularization
parameter. Notice that the first one has lower SNR than the second, while in
the third case the overall amplitude starts to decrease. The latter case shows
that forcing α towards excessively higher values results in the attenuation of
both signal and noise.

We can draw several conclusions from this example. First, we can get more than
one corner, but the result from each of these can be unsatisfactory. Second, a
”good” regularization parameter may not belong to a corner as long as it satisfies
our needs. This latter point will be reinforced in the following examples.
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Figure 5.9: Standard processing, matched filter and regularization results for the
experimental data from Figure 5.8.
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Figure 5.11: Regularization results for three cases: Top image - for the flat part
of the L-curve. Middle image - for the optimum at the beginning of the steep
part. Bottom image - for a high value of α.
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5.5 Ex-vivo example in 2D: String of human hair

Data for this example was acquired with the same experimental set-up and sys-
tem as depicted in Chapter 3. For simplicity, we again choose to place a string
of human hair in water, but this time we scanned it with a linear array of 128
elements. Unlike the previous example, here we have high levels of correlated
non-Gaussian system noise which can affects the solution. The big transducer
array is unfortunately introducing a large problem which can be time consum-
ing from a computational point of view. This is why we decided to reduce the
problem size by taking only that part of the domain which we are interested in.
Then, we applied the adjoint operator and the regularization procedure for two
cases. In the first one, the data has been amplified by 37 dB before recording
and in the second by 27 dB. We averaged over 32 measurements, summed over
the same frequency band spanning from 1 MHz to 10 MHz and used the same
range of regularization parameters. The two results are presented in Figure 5.12.

Careful inspection of Figure 5.12 shows that the regularized solution does not
offer a significantly improved result over the matched filter when the α param-
eter is taken from the corner of the L-curve. More precisely, if we compare the
top and bottom leftmost images, we notice that the source is somewhat sharper
than in the initial case and the noise is reduced to a certain degree. However,
if we continue down the slope of the L-curve (last few images from the figure),
we are constantly seeing improvement. To be precise, we will compare the SNR
for these two cases. For the top image of Figure 5.12 we have SNR of 15 dB, 22
dB and 30 dB, respectively for the matched filter, the corner solution and the
final (rightmost) solution. Similarly, for the bottom image of Figure 5.14 we
have SNR of 9.5 dB, 16.5 dB and 22 dB. This clearly indicates the improvement
sparsity regularization offers.

For completeness, we applied the regularization to a third data set, where the
signals where amplified by 79 dB. We first considered the frequency band of 1
MHz - 1.5 MHz (Figure 5.13) and then the frequency band of 1MHz to 4 MHz
(not depicted here). As before, we averaged over 32 measurements and regular-
ized for the same range of the regularization parameter. The two L-curves for
this case are plotted and presented in Figure 5.14, bottom image.

To understand how sparsity regularization works for the example at hand, we
have to analyse the behaviour of the residual and solution norms. When we
regularize with a parameter following the corner, we enforce more sparsity and as
a result we highlight the major sources and suppress the noisy pixels. Generally,
this has the negative effect of suppressing the weaker signals as well, but this is
not the case here. Observing Figure 5.14 we can notice that the residual norm
is stuck as it is not changing much. We can conclude then, that the solution in
each case will not affect the weaker signals much, because essentially our model
offers the same match to the recorded data for each α. On the other hand, we
can notice small change for the solution norm following the corner and before
entering the steep part of the L-curve. This means that both norms are stable
for a large range of regularization parameters.
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Figure 5.12: Sequence of images for 39 dB amplification (top image) and 29 dB
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leftmost), corner result (bottom leftmost) and regularized solutions arranged in
increasing order for the value of α (from left to right). All images are normalized
to 1 and presented in dB scale.
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Then, for as long as this holds, we can enforce more sparsity on our solu-
tions without the fear of ”killing” the weak signals. This situation changes once
we start introducing very large values for the regularization parameter where
the solution norms starts to change significantly. Obviously, the best choice for
the regularization parameter will then be the area before the steep fall-off of
the curve, which is depicted by the last images in Figure 5.12. This analysis is
reinforced by results from the previous example as well. There, the case is even
more prominent with the solution norm not changing at all. This is also why
we observed insignificant changes in the regularized solutions.

To finish our analysis for this example, consider the four L-curves plotted in
Figure 5.14. We can notice several interesting things, the first of which is how
as the SNR of the recorded data increases, the bending of the curve becomes
more pronounced. While for the first L-curve in Figure 5.14 the bending is
hardly visible, it is well outlined for the other two cases. The signal-to-noise
ratio plays a role in the norm values as well. Observe how the norms change
more with higher SNR. This means that for a noise free example we will have
a well outlined corner and large changes in both norms. This indicates a direct
link between signal, noise, and corner existence. Actually, this is also one of
the characterizations of the L-curve given in [56]. The other two include a rea-
sonable covariance matrix for the solution (this is directly related to the noise
statistics) and the existence of a regularized solution, which is the case when
the discrete Picard condition is satisfied [59]. Depending on how good these
three characterizations are met the L-curve will either have a good corner or no
corner at all. This is exactly what we saw in our example.

Another, final, observation we can make follows from Figure 5.14, bottom im-
age. Notice the perfect overlap between the two L-curves. This tells us that
the frequency content we sum over has little effect on the L-curve. Therefore,
we can expect the corner to appear at relatively the same spot and range of
regularization parameters. The latter is actually valid for all examples, since we
used exactly the same range for the regularization parameter.

5.6 In-vivo example

As a final step, we consider the in-vivo wrist data from Figure 3.5. For con-
venience, we again take that part of the domain which we are interested in,
frequency range 1 MHz - 7.5 MHz, and perform sparsity regularization for the
same range of parameter α choices as in the previous example. The results are
presented in Figure 5.15 and the L-curve is plotted in Figure 5.16.

As before, we see mild improvement for the corner solution, but a significant
improvement is observed for larger values of the regularization parameter. These
results reinforce our conclusion that choosing an after-the-corner α is a good
strategy for noise reduction.
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From the L-curve of Figure 5.16 and considering the L-curves from the previous
example, we can conclude that the α choice depends on the noise statistics,
because all L-curves behave in generally the same way and were produced with
the same range of regularization parameters. Indeed, there is deviation between
the norm values as well at the location where the bending happens, but it is
generally insignificant. This means that we can choose our α interval for a
certain system in an a-priori manner. The result is reduction in the number of
α parameters we have to compute over thus reducing the overall computational
time.



Chapter 6
Conclusions and Discussion

In this thesis we followed a sparsity regularization procedure for improving image
quality and sharpness in photoacoustic imaging. We solved the photoacoustic
wave equation in linear form and arrived at a representation for the initial pres-
sure distribution in a homogeneous medium. Then we investigated the noise
characteristics in PAI and introduced Tikhonov and sparsity regularization. Fi-
nally, we applied the regularization procedure to modelled and experimental
data to show the feasibility of the method.

Throughout the thesis, several assumptions were made. The foremost is ho-
mogeneity of the imaged domain. This assumption implies constant speed of
sound for the propagating acoustic wave and we know that this is not the case.
The imaging quality therefore suffers in sharpness and focus. Solutions to this
problem have been reported in the literature [60, 61], but they tend to be compu-
tationally expensive and as of now, not applicable to clinical systems. However,
if the speed of sound does not change much, which is the case for soft tissues,
choosing a ”mean” value yields good results.

Another assumption we made concerns the losses. The propagation coef-

ficient γ for lossless media is imaginary and given by γ = j
ω

c
, where c is the

constant acoustic wave speed of the homogeneous medium. For simple lossy
models following an acoustic equivalent of Ohm’s law, the propagation coef-
ficient becomes complex and has a positive real part. The resulting Green’s
function then shows an exponential decay with distance and the corresponding
acoustic signal will obviously decay as well. Essentially, the same imaging pro-
cedure as presented in this thesis may be applied in the lossy case. The loss
parameter is not known, however. We do not even know if a simple Ohmic loss
profile captures all the acoustic loss mechanisms. Therefore we decided to leave
it for future work and not include it in the model.

In Chapter 2 we derived an imaging procedure to PAI based on the adjoint
operator. The latter acts on the received data and produces a map of the initial
pressure distributions. This imaging procedure is well suited for variations in
noise because it shows good stability. It is also computationally simple and
relatively fast. However, if we strive for better results, such as discrimination

51
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between closely spaced sources, we must consider more complex imaging al-
gorithms [62]. The downside is that these algorithms can be computationally
very expensive and the solutions are often unstable and require regularization
because of the ill-conditioning of the underlying matrices.

Sparsity regularization is a novel approach to photoacoustic imaging and shows
promising results for both synthetic and experimental data. The 1D case is of
less practical interest since standard processing offers similar results. For linear
array data though, the gain can be significant. It is important to note that this
procedure will work well only if the domain is sparse and if we enforce more
sparsity on the solution. Using more sophisticated beamforming techniques in
conjunction with this type of regularization has the potential to truly improve
PAI results and must be pursued as a future goal. Another path worth exploring
is the result dependence on the imposed constraint. Here we considered only
zero order regularization, but it may be the case that higher orders are better
suited for PAI. We did not spend time on these, since the regularization process
can be computationally expensive and time consuming for large problems.

The major hardship with regularization lies with the choice of the regularization
parameter. We saw that the L-curve method can fail to outline a clear corner.
We also saw that even if there is a good corner, choosing the corresponding α
may yield an unsatisfactory result. It is our belief that this is the result of our
attempts to match the frequency independent heating function assumed here to
its’ physical, frequency dependent, counterpart. Therefore in the minimization
procedure, for the corner parameter, we fail to achieve a good solution. Never-
theless, if we enforce more sparsity on the solution, the noise is suppressed and
the regularization artefacts disappear. However, this is not joined by signal loss,
since the residual norm and the solution norm are hardly changing. Therefore,
for PAI by means of sparsity regularization, we say that the best solution is not
the corner one, but one that follows it, and particularly, one that sits before
the steepest part of the L-curve. This is why, sparsity regularization is a good
procedure for image improvement.

Another interesting fact is the dependence of the regularization parameter value
on the noise power. Each of the L-curves we produced for the experimental 2D
data was based on the same set of regularization parameters. Indeed, the corner
is shifted a bit, but this is expected as the SNR changes slightly for each experi-
ment. This dependence allows for fast regularization, because we know a-priori
the relative position of the corner, and hence the regularization parameter range.

On several occasion we mentioned that the procedure is computationally expen-
sive and time consuming for the systems we used. Putting the method in a time
frame is hard as we have used MATLAB, which is not optimized to handle prob-
lems fast. However, we can indicate which parts of the procedure affect mostly
the computational time. Obviously, problem size is the major contributor. The
smaller the problem size is, the faster the method is performed. The LSQR
algorithm which we used is iteratively solving the problem until it reaches a
user set tolerance or runs out of the user set iteration number. Setting the first
to a larger value and the second to a smaller one can change the computational
time significantly. In the previous paragraph we mentioned that if the noise
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statistics hold (which is true for a certain system) then we know the range of
regularization parameters we have to compute over to find the corner and the
steep part of the curve. Then we have some a-priori knowledge and can cut on
the computational time again. This has another plus, because for these values
LSQR converges to the set tolerance and it usually converges fast. This may
not be the case for parameter choices out of this region.
These are some of the major contributors to the computational time. Observe
that as a whole, we can decrease this time in many ways. Whether this will
make the method applicable to real time systems is another topic that requires
much research.

Finally, there are other methods for finding α and we mentioned some of them
in Chapter 4, namely, the classical Morozov discrepancy principle and GCV.
Another interesting alternative has been reported recently, emerging from the
field of sparse tomography, where instead of an L-curve an S-type curve is used
for the choice of the regularization parameter. The S-curve requires a-priori
knowledge on the level of sparsity of the domain of interest and can outperform
both the L-curve and Morozov’s method [63]. Whether some of these methods
will pinpoint a better α is unknown, but should be pursued as a future work.
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