MONUMENT to the UNEDETERMINED

an architecture school for the past present and future
BERLIN
The past is not was
regression vs progression
regression vs progression
PROBLEM STATEMENT

In this time of scientific progression and groundbreaking, both architectural theory and practice find themselves in a self determined, ignorant position. In our present time, with its complex systems and highly dynamic progression, architecture is incompetent of adapting nowadays needs of creating spaces.

To engage in the question how to ‘spatialize’ the globalized world, it is important to ‘construct’ models as a way to understand the world. In this time of technological progression, computer models and artificial intelligence help us to ‘render’ the world and give us answers to practical questions. However, the same technology based models are unable to solve our irrational human needs such as emotion, memory, subjectivity and imagination. The missing ‘link’ is the ‘mapping’ of subjectivity, that ‘touches’ the realm of memory and identity, a link that connects past, present and future.

Visions on architecture and its objectives lose ground in contemporary society. Whereas buildings for reuse, without a clear program, seem to be timeless and capable of adapting different functions over time. Why can’t we build “new” monuments.

Research question: How to intervene in the built environment, to unite nowadays demands, together with the collective, subjective demands, creating a ‘modern’ monument.
MAPPING
research
UTOPIAN BERLIN
RHIZOME
Mapping the meta-stability of the context.
What is the movement and what are its vectors. What are the counter forces on this movement. What are the stable and what are the dynamic objects or fields. This can reveal the temporalities of the context.

Mapping the virtual context.
What are the hidden virtuality’s in time and space. How is it connected to other spaces and other times. A method of mapping this could be ‘drawing’ specific axes, and construct a web with connections in time and space, connecting to historical events and places.

Mapping the narrative.
To avoid being part of contemporary (architectural) styles, ideas or paradigms, how is the intervention, relating to the past and future, creating a sequence or narrative.

Mapping memory.
How is the memory constructed, and with ‘what’ and ‘where’ is it connected.

Mapping experience.
Closely related to psychogeography, what models can be constructed to map experience and what ‘can’ be changed or ‘should’ be changed.

Mapping the scenario.
What are the possible scenario’s, taken into account all the other propositions for mapping. This puts the designer in the position of creating the next scenario, or changing the direction by saying ‘what if?’ or ‘why not if?’
URBAN ACTORS
research
urban ‘actors’
PROGRAM
research
The Building
is more important
than the program
Form Follows Function
Function Follows Form
How to make a building which

Reflects Memory

and

Adapts with Time?
URBAN DESIGN
design
The design should be in a dialogue with the

Past Present and Future

by referring to its surrounds at all scales.
urban design
Connection
GEOMETRY

design
Schinkel and Geometry
lo·bot·o·my

/loˌbôtəˈmi/​

“The separation between exterior and interior architecture”

Allows for the Undetermined
ARCHITECTURAL ELEMENTS
design
Structure
Schinkel
Columns
Design
Beams
Schinkel
Beams
Design
Beams
Design
Walls
Schinkel
Creating a Space
Schinkel
Creating a Space

Design
SPACE AND EXPERIENCE

design
Space & Experience
Schinkel
Space & Experience
Schinkel
Inside : Outside : Courtyard
PLANS
design
Plan sketches
Plan
Ground Floor
Plan
Second Floor
Space & Experience
Design Routing
SECTION
design
Dialogue & Tension

not only in the urban scheme and the plan,

but also vertically, in the section.

Allow the for the

Unexpected

Of the inner space
Section
Schinkel Altas Museum
Section
Schinkel Altas Museum
Section
Schinkel Altas Museum
Inner Space
Design visualization
FACADES

design
Facade
References
Facade

References
Facade Sketch
Facade
Sketch
Facade Geometry
Schinkel
Facade Geometry
Design
Facade Geometry
Schinkel
Facade Geometry
Design
Facade Geometry
Schinkel
Facade Geometry
relation base to whole
+ 32.0m
+ 31.0m
+ 29.0m
+ 24.0m
+ 23.0m
+ 16.0m
+ 15.0m
+ 8.0m
+ 7.0m
+ 5.0m
+ 2.0m
0m
Facade Geometry

floor thickness

+ 32.0m
+ 31.0m
+ 29.0m
+ 24.0m
+ 23.0m
+ 16.0m
+ 15.0m
+ 8.0m
+ 7.0m
+ 5.0m
+ 2.0m
0m
Facade Geometry
horizontal mullions
Facade Geometry

cornice + pediment
Facade

south
Facade
east
east elevation - 1 : 200
0 1 5 10 20m
+ 8.0m
+ 2.0m
0m
+ 16.0m
+ 24.0m
+ 32.0m
+ 31.0m
+ 29.0m
+ 23.0m
+ 7.0m
+ 15.0m
+ 5.0m
Space & Experience

approach
Space & Experience

approach
Profiles
Schinkel
Profiles
Design
Profiles
Design
Profiles
Design

Stucco 20 mm
Isolation 100 mm.

hoch profiel.

Scharnier
buter

Stabzeug...}

Scharnier profil
Facade Proportions
Design
SECTIONS

a journey between inside and outside
Section
4

+ 16.0m
+ 15.0m
+ 8.0m
+ 7.0m
+ 5.0m
+ 2.0m

building fragments - 1 : 75
vertical detail 1:10 #1

ground level
- outer perimeter

cement tiles 1000 x 1250

prefabricated drain with stainless steel top

cement slab (foundation)
brown brick 100mm
ground level
- inner perimeter

Concrete slab (foundation)
Brown brick 100mm
Concrete street element
Insulation
Concrete floor 200mm
Heightened floor
- Space for air supply and data underneath
- Insulation with acoustic features
- Tiles
Assembled steel structure for curtain wall
Detail

vertical detail 1:10 #3

floor ending
- inner perimeter

stucco with profile
sandwich panel
steel member for curtain wall
assembled steel structure for curtain wall
concrete floor 200mm
heightened floor
- space for air supply and data underneath
- insulation with acoustic features
- tiles
assembled steel beam
Detail

- floor cantilever
 - inner perimeter

- sandwich panel
- steel member for curtain wall
- assembled steel structure for curtain wall
- insulation
- concrete floor 200mm
- heightened floor
 - space for air supply and data underneath
 - insulation with acoustic features
 - tiles
- assembled steel beam
- lowered ceiling claded with lightweight ceramics
- inner wall
floor cantilever
- outer perimeter

stucco with profile
sandwich panel
steel member for curtain wall
assembled structure for curtain wall
insulation
concrete floor 200mm
heightened floor
- space for air supply and data underneath
- insulation with acoustic features
- tiles
lowered ceiling cladded with lightweight ceramics
outside floor
- outer perimeter

stucco with profile
sandwich panel
steel member for curtain wall
assembled steel structure for curtain wall
insulation
concrete floor 200mm
heightened floor
- insulation
- water proof membrane
- tiles
lowered ceiling claded with lightweight ceramics
outside floor
- inner perimeter

steel member for curtain wall
assembled steel structure for curtain wall
insulation
concrete floor 200mm
heightened floor
- insulation
- water proof membrane
- tiles
towerd ceiling claded with lightweight ceramics
assembled steel beam
balustrade at void
- inner perimeter

- concrete
- heightened floor
 - insulation
 - water proof membrane
 - tiles
- steel profiles
- hardened, layered glass
- rubber fitting
- assembled steel beam
vertical detail 1:10 #9

inner facade at courtyard - first floor level

- composed steel structure for curtain wall
- insulation
- concrete floor 200mm
- heightened floor
 - waterproof membrane
 - insulation
 - root proof membrane
 - stone for drainage
 - ground with small plants
- assembled steel beam
window - outer perimeter

- stucco with profile
- sandwich panel
- steel member for curtain wall
- composed steel structure for curtain wall
- concrete structure
window
- inner perimeter

stucco with profile
sandwich panel
composed steel structure for curtain wall
insulation
concrete structure
floor detail
- air supply

cement floor 200mm
heightened floor
- space for air supply and data underneath
- insulation with acoustic features
- tiles
horizontal air vent with tiles profile
assembled steel beam