
 
 

Delft University of Technology

Design of a Demand Responsive Transport service using Distributed Constraint
Optimization for airport access

Parmaksizoglou, I.A.; Bombelli, A.; Sharpanskykh, Alexei

DOI
10.1109/MT-ITS56129.2023.10241535
Publication date
2023
Document Version
Final published version
Published in
8th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS
2023)

Citation (APA)
Parmaksizoglou, I. A., Bombelli, A., & Sharpanskykh, A. (2023). Design of a Demand Responsive Transport
service using Distributed Constraint Optimization for airport access. In 8th International Conference on
Models and Technologies for Intelligent Transportation Systems (MT-ITS 2023) (2023 8th International
Conference on Models and Technologies for Intelligent Transportation Systems, MT-ITS 2023).
https://doi.org/10.1109/MT-ITS56129.2023.10241535
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MT-ITS56129.2023.10241535
https://doi.org/10.1109/MT-ITS56129.2023.10241535


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Design of a Demand Responsive Transport service
using Distributed Constraint Optimization for

airport access
Ilias Alexandros Parmaksizoglou

Air Transport & Operations
TU Delft

Delft, Netherlands
I.A.Parmaksizoglou@tudelft.nl

Alessandro Bombelli
Air Transport & Operations

TU Delft
Delft, Netherlands

A.Bombelli@tudelft.nl

Alexei Sharpanskykh
Air Transport & Operations

TU Delft
Delft, Netherlands

O.A.Sharpanskykh@tudelft.nl

Abstract—Accessibility is one of the key performance indica-
tors in the evaluation of a multimodal transport system and, as a
result, transport planning has become increasingly more oriented
towards it. Demand Responsive Transport (DRT) services have
been proposed as a measure for increasing accessibility of a
Public Transit (PT) network by servicing users in inaccessible
areas. Through multimodal planning and coordination, a DRT
service can be integrated within the extended PT network and
supply the network optimally. In the context of PT users headed
toward airports, an integrated DRT service is proposed for
those with extended first-mile connections. This service makes
use of taxis to transport users to transit points of a dedicated
train line supplying a major European airport. Ride-sharing is
considered, while optimal order of service and transit points
for modal change are determined. To capture the decentralized
nature of matching taxis to users, a multi-agent-based algorithm
based on Distributed Constraint Optimization Problems (DCOPs)
is developed. Real-time information about routes and fixed
schedules of the PT network are extracted via a dedicated routing
Application Programming Interface (API). Experiments validate
the applicability of the proposed solution by reporting a decrease
in users’ first-mile travel time that is approximately analogous
to the modal share the service captures.

Index Terms—Public Transit, Demand Responsive Transport,
Distributed Constraint Optimization, First-mile Service

I. INTRODUCTION

Strengthening mass transit is a strategic goal for many
metropolitan cities around the globe. A resilient Public Transit
(PT) network facilitates congestion mitigation, reduction of
emissions, and can pave the way for a future of seamlessly
integrated mobility. Achieving such future is contingent on
improving accessibility in the transport systems. Accessibility
has a direct impact on mode choice and the lack of it can
lead to increased preference for less sustainable modes and
under-utilization of the mass transit network.

Surface access to an airport is a specific type of urban
trip where accessibility is significantly important. There have
been few studies [1]–[4] researching surface access, but they
mostly focus on factors impacting mode choice. Sustainability

studies in aviation often overlook the impact of this type
of travel compared to other issues. Nonetheless, access to
and from the airport amounts to approximately 8% of the
total emissions spent for a complete door-to-door trip [5].
Data from a report of the German Aerospace Center and
the European Commission [6] show that utilization of PT
for airport access can vary from 40% (Amsterdam Schiphol)
to 20% (Barcelona International Airport El Prat). Further
increasing the current surface access PT utilization rate can
be facilitated by addressing accessibility issues, for example
through multimodal coordination.

Coordination across modes can be realized through Demand
Responsive Transport (DRT) systems. DRT services can target
users that are inclined to use private transport due to low
accessibility of their origin. In general, these are users that
will not use PT. In this study, a DRT service is proposed for
passengers with increased first-mile connections towards an
airport. The service is complementary to the main mass transit
network and makes use of fixed schedules of a dedicated train
line to supply the airport. Candidate users are determined
based on real-time traffic and PT information derived from
a routing Application Programming Interface (API). Users
are matched to taxis that support ride-sharing and optimal
sequencing of pick-ups is determined, as well as transfer points
for modal change.

The problem of matching users to taxis can inherently
benefit from decentralization, as different taxis may have dif-
ferent criteria behind their decision-making and collaboration
is not necessarily assumed. Regardless of collaboration across
taxis, a system-wide assignment will benefit from scalability
under a reduced, decentralized, and localized view of the
system. To this avail, we apply a multi-agent perspective
modeling the problem as a Distributed Constraint Optimization
Problem (DCOP). Expected performance gains of introducing
a first-mile-focused DRT service are evaluated through a case
study for a major European airport. Overall, the effect of
coordination across modes in the system-wide decrease of
users’ travel time is quantified. Additionally, the applicability
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of DCOP as a modeling framework is verified and the effect
on the solution of different criteria in agents’ decision making
is assessed.

II. LITERATURE REVIEW

Even though the reported statistics vary from airport to
airport, private vehicles (self-driving or drop-off) and taxis
are a significant part of the modal share for ground access
to airports. Travelers to and from airports tend to have a
much higher willingness to pay compared to regular urban area
trips [1], as there is usually less room for delays. To account
for delays, travelers often use safety margins, i.e., an additional
buffer time passengers allow in their planning to compensate
for unexpected delays. As the trip time to the airport increases,
the safety margin increases proportionally [2]. Generally, the
out-of- and in-vehicle time of travel are also important factors
in travel mode selection, as well as the overall saved time by
mode choice and ease of use of the selected transport service.
This highlights that multimodality might not be desirable
for airport access, as it requires user coordination between
modes which generally deteriorates the ease of use. In practice,
trips to the airport that contain three or more modal changes
are generally avoided [3]. However, airport travelers are in
principle in favor of adopting new access modes, such as DRT,
especially when they include transit or rail [4].

DRT services can greatly increase accessibility of a PT
network. Demand-response transportation (DRT) is a ser-
vice for low-population-density areas, using passenger cars,
vans, or small buses dispatched in response to passenger
requests [7]. The adoption of DRT in urban areas has been
explored but not yet implemented [8]. Notwithstanding, the
findings suggest that DRT services can have a significant
impact in attracting many users compared to other taxi-focused
services, especially under a Mobility-as-a-Sevice (MaaS) [9]
ecosystem. Efforts have been made to explore integrated DRT
services that target both first-mile and last-mile connections,
as evidenced by previous studies [10], [11]. However, such
efforts have not yet been made specifically for airport access.
There is also interest in completely automating DRT services
through the integration of autonomous vehicles and public
transportation [12]. Resource allocation for DRT is crucial
and is primarily addressed through the incorporation of ride-
sharing techniques, as demonstrated in existing literature [13],
[14].

When considering an inherently distributed system such
as ride-sharing, different modeling choices on the level of
centralization are available. In our context, we want taxis to
be partially independent when selecting users, and to have
access only to information that is relevant to them, as complete
information about the system is often unnecessary for good-
quality planning. Therefore, utilizing a distributed formalism
such as DCOP can prove to be highly advantageous since it
serves as a theoretical framework for multiple agents which
must collaborate in making decisions regarding variable values
in order to minimize the total cost of constraints or maximize
the total utility values [15].

A DCOP consists of a set of agents, variables, domains,
and constraints. A variable is controlled by a single agent,
while constraints map the cost or utility of a specific variable
selection and are by definition soft. Control is distributed, as
agents can only assign values to variables they control, and
have knowledge only of constraints that are mapped to their
variables. However, variables may be constrained by variables
owned by other agents by so-called inter-agent constraints that
are satisfied through communication between agents. Some
crucial DCOP assumptions are that (i) agents communicate
only with their neighbors, (ii) each agent knows its variable
and domain along with its neighbors, and (iii) each agent
knows the cost function involving its own variables, not those
of other agents. We refer readers to reference [16] for a
thorough overview of the DCOP formalism. Given their broad
applicability spectrum, DCOPs have been applied to many
different fields such as disaster management and coordina-
tion [17], scheduling [18], vessel rotation planning [19], and
traffic flow control [20] problems.

III. PROBLEM FORMULATION

A. DCOP Formalism

The problem of matching taxis to users bares parallels with
the Vehicle Routing Problem (VRP) [21], and more specif-
ically the multi-depot VRP [22], both well-known NP-hard
problems. In the proposed approach, taxis can be considered
as “mobile” depots servicing users as efficiently as possible.
In classic VRP formulations, the main goal of the planning is
the minimization of the overall traveled distance. Our objective
is different, as in this study the primary goal is to minimize
the traveling time of users while guaranteeing timely access
to target transit points. With transit point, we mean a specific
location of the transport network when modal change occurs.
In our context, this is a train station where taxi users are
dropped off to shift mode and continue their journey to the
airport.

We modeled the taxi-dispatching problem in a DCOP fash-
ion as follows. Firstly, we consider that users originate from a
set of total n origins O = {o1, o2, .., on}. Multiple users may
originate from a single origin to enable realistic planning for
cases of users traveling together (e.g., families, etc.). Users
have a desired arrival time at the airport, but the selection of
the best transit point is decided exclusively by the planner.
With regards to agents, we consider a finite number of m
taxi agents defined as set T = {t1, t2, t3.., tm}. Taxis have
a standard maximum capacity ct and an origin ot, indexed
by t ∈ T . The cost of a complete trip via taxi, shared or
not, is considered known and includes waiting time for pick-
up. Finally, a PT agent is defined, representing assignment
via mass transit as an alternative to taxis. Users originating
from o ∈ O who cannot be serviced by the DRT service are
assumed to use PT to reach a transit point with a first-mile
cost for origin o equal to FMo. In addition, agents are also
characterized by the following features that define user and
trips compatibility:
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1) view (Vt): the set of user origins visible to the taxi agent
(Vt ⊆ O). This is defined by assigning to each agent a
certain radius of service measured from its origin. For
the PT agent, we set the radius to ∞, hence VPT = O
as all users are visible;

2) first-mile bound: the minimum time FMo that a user
would experience if using PT to qualify for inclusion in
the DRT service for a specific agent. For the PT agent,
the bound is set to zero;

3) lead-time: the amount of time in advance that an agent
becomes aware of users requesting a trip, before the
departure of the earliest scheduled dedicated service
compatible with the user preferred arrival time. For the
PT agent, lead-time is set to ∞;

4) local view (LVt): the set of users LVt ⊆ Vt satisfying
all the aforementioned criteria for agent t.

We now formalize the DCOP as a tuple < A,X ,D, C > ,
where

1) A = {PT, a1, a2, ..., am} is the set of agents;
2) X = {xa,j ∀a ∈ A, j ∈ LVa} are variables owned by

an agent a and relate to an origin j in their local view;
3) D = {da,j =

[
dLa,j , d

U
a,j

]
∀a ∈ A, j ∈ LVa} is a set

of finite domains for the variables such that xa,j takes
values in da,j , with dLa,j and dUa,j being, respectively, the
lower and upper bound. In this problem, all variables
take binary values, hence all domains equal to da,j =
{0, 1};

4) C = {c1, ..., cz} is a set of z soft constraints, where each
constraint maps to utility functions cz : D → R≥0 that
define the cost for a specific choice of variables.

The following DCOP constraints must be satisfied:

1) each origin o must be assigned to exactly one taxi or the
PT agent. This is always an inter-agent constraint for
taxi agents, as any variable relating to a user origin that
they own is also visible to the PT agent. Hence, the PT
agent is a neighboring agent to all taxis that can see at
least a single origin. Communication might be needed
between more taxi agents to determine assignments. This
is a hard constraint that maps to an infinite cost if
violated ∑

a∈Ao

xa,o = 1 ∀o ∈ O

where Ao is the subset of agents that see origin o;
2) for each agent a, a combination of user origins within its

local view has an associated cost, which relates to total
travel time of users assigned to that agent, including
waiting times for drop-off and pick-up. In practice, not
all combinations are available and feasible, but only an
agent-specific set Za of the Nb best that are returned
through pre-processing via centralized planner. Hence,
for a valid selection of users we have

evaluate(xa,1, ..., xa,n) = ca,z ∀a ∈ A \ {PT}, z ∈ Za

where xa,i is unitary if user i is considered in the
evaluated combination z for agent a consistently with
the previous definition of set X ;

3) for scaling issues, the evaluate constraint is omitted for
the PT agent due to the potential number of combina-
tions. Instead, a more direct approach is followed

xPT,o = 1 =⇒ cPT,1 = FMo ∀o ∈ O

xPT,o = 0 =⇒ cPT,1 = 0 ∀o ∈ O

where parameter c can only take a single user combina-
tion (hence z = 1 is the only possible second index in
cPT,z).

Minimization of cost c for each agent a by selecting optimal
combinations z is the ultimate goal of the DCOP.

B. Centralized Planner

To compute the evaluate constraint, a centralized planner
creates combinations of users and determines the optimal pick-
up order, transit point selection, and the total cost for each
individual taxi. The cost is the aggregated travel time of all
users part of the trip. To facilitate modal change, all arrival
times to a transit point should be earlier than the sched-
uled train departure, considering a pre-defined transfer buffer.
Routing information is derived from a designated Application
Programming Interface (API) [23], providing historical and
real-time information for both PT schedules and routes. A
travel timetable is constructed from the API for the Origin-
Destination (O-D) matrix containing the agent origin locations,
origins of users in the local view of the agent, and all
possible transit points. The cost of each combination for all
agent is determined via a Mixed Integer Linear Programming
(MILP) model that maximizes occupancy of a taxi agent while
minimizing travel costs. A pool of the Nb best solutions
is sought, as selecting just the best agent-specific solution
does not necessarily yield system-wide optimality. In Table I,
the sets, parameters, and decision variables of the MILP are
provided.

TABLE I: Sets, parameters, and decision variables of the
centralized planner.

Sets

O Set of origins, indexed by i
Parameters

Ti,j Travel time cost from i ∈ O to j ∈ O
Gi Latest time to drop-off users at transit point i ∈ O. Greater

than zero only for i ∈ OTP

Ni Number of persons in i ∈ O. Greater than zero only for
i ∈ Vt

Pi Processing time of node i ∈ O
maxp Maximum allowed pick-ups
rwd Reward of selecting a trip
Cap Agent capacity

Decision Variables
zi,j Binary variable, equal to 1 if a trip originating from i

towards j is active
ti Continuous variable, defining arrival time at node i
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Inheriting notation from Sec. III-A, we define the set of
origins that can be visited by taxi t ∈ T as O = ot∪Vt∪OTP ,
where OTP is the set of transit point origins. A feasible routing
for taxi t starts in ot, visits a subset of users Vt, and ends in
one element of OTP . We solve the MILP specific to taxi t ∈ T
as follows

max
∑
i∈O

∑
j∈O

rwd ·Ni · zi,j − Ti,j · zi,j (1)

s.t.∑
j∈Vt

zot,j = 1 (2)∑
j∈Vt∪OTP

zj,ot = 0 (3)∑
i∈Vt

∑
j∈OTP

zi,j = 1 (4)∑
i∈OTP

∑
j∈O

zi,j = 0 (5)

tj ≥ ti + Pi + Ti,j − (1− zi,j)M ∀i ∈ O, j ∈ O (6)

ti ≤
∑
j∈Vt

zj,i ·Gi ∀i ∈ OTP (7)∑
i∈ot∪Vt\{j}

zi,j =
∑

i∈Vt∪OTP \{j}

zj,i ∀j ∈ Vt (8)

∑
j∈ot∪Vt\{i}

zj,i ≤ 1 ∀i ∈ Vt (9)

∑
j∈Vt

zot,j +
∑
i∈Vt

∑
j∈Vt\{i}

zj,i ≤ maxp (10)

∑
j∈Vt

Nj · zot,j +
∑
i∈Vt

∑
j∈Vt\{i}

Nj · zi,j ≤ Cap (11)

zi,j ∈ {0, 1} ∀i ∈ O, j ∈ O (12)

ti ∈ R≥0 ∀i ∈ O (13)

The objective function 1 is defined as the weighted number
of users part of the assignment minus the expected travel time
for servicing such users. A preference is given to solutions
that increase taxi ridership through the rwd parameter, but cost
minimization is also included to guarantee optimal sequencing
of users and transit point selection for drop-off. In general,
a rwd greater than the lead-time of the agent will always
prioritize occupancy maximization. Constraints 2-3 restrict the
routing to ensure that exactly one trip will originate from
the taxi start location and that there will never be a trip
towards it. Similarly, constraints 4-5 ensure that the routing
ends in a transit point and prevent trips from originating from
a transit point. In constraint set 6, time precedence constraints
are imposed. Pi is greater than zero only for i ∈ Vt and
represents boarding time. Without loss of generality, we set
tot equal to the earliest time a taxi can perform a trip and
Pot equal to zero. M is a big-M that can be set equal to
maxi∈OTP

Gi. Constraint set 7 enforces that the visited transit
point i ∈ OTP is accessed no later than the time upper

bound Gi (related to train departure). Constraint 8 is a flow
conservation constraint for all user nodes, while constraint 9
enforces that a taxi can visit a user either from its starting
location ot or from a previously visited user. In constraints 10-
11 we respectively ensure that the selected trips to users are
fewer than the pre-defined number of allowed pick-ups and
impose that the capacity constraint of a taxi is not violated. A
number of maximum three pick-ups was considered realistic.
Finally, in constraint sets 12-13 the domain of the decision
variables is defined.

IV. CASE STUDY & RESULTS

A. Trip Generation

A case study is presented that focuses on Milano Malpensa
Airport (MXP). MXP currently features a PT share for ground
access to the airport, mainly through rail and various shuttle
services, that is compatible with other European airports.
Notwithstanding, MXP targets to increase such percentage by
2035 to reduce road congestion and increase environmental
sustainability. Approximately 50% of the airport’s traffic is
generated from the Milano metropolitan area. A dedicated
train line (Malpensa Express) and various shuttle services
(Malpensa Bus, Malpensa Shuttle) are the main PT providers
servicing the airport.

To simulate demand towards MXP, historical data were
utilized based on recorded outbound passengers for the month
of June 2022. 50% of recorded demand was considered, con-
sistently with the average percentage stemming from Milano.
We divided a day into 48, 30-minute time periods and users
were assigned to expected clusters of arrival to the airport.
We used a normal distribution with a mean of four clusters
(2 h) before the flight departure cluster and a variance of
two clusters. Modal choices were assigned randomly based
on reported modal splits for ground access to the airport.

To determine origins of passengers, demographic charac-
teristics of Milano were used. The city is clustered into 88
districts with unique social and cultural identity [24], also
called Nuclei di Identità Locale (NILs). Given this zonal
structure, population records [25] were used to determine the
likelihood of a user group to originate from a specific district.
In Fig. 1, the generated spatial distribution of origins, for a
specific arrival cluster of users, is presented.

After determining all trip characteristics, groups were split
into modes based on historical data for ground access to
MXP. An estimated 17% of arrivals are considered to use
the dedicated train line. Access to the train line was assumed
to occur via other PT modes (e.g., metro, tram, or bus). For
this subset of users the travel time spent on the first-mile,
the optimal mode of transport, and the optimal transit point
were computed via the designated API, based on their desired
arrival cluster at the airport.

B. Experiments

In total, 24 instances were generated for three distinct
clusters of arrivals M, N, and A, standing respectively for
Morning, Noon, and Afternoon peaks. Instances were based
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Fig. 1: Generated origins for PT arrivals in the [8:00-8:30]
interval and demographic characteristics for the 88 NILs

on global agent-imposed criteria, to test the performance of
the DRT service. For all instances, we experimented with
two different radii for the agents’ view (2 and 4 km). The
starting locations of the taxis were generated based on NIL
demographic characteristics and taxi cab stands, acquired
through OpenStreetMaps [26]. The first-mile bound was set to
either 30 or 40 minutes. It is noted that the average first-mile
is approximately 30 minutes. Finally, a 30-minute lead-time
was imposed and either 4 or 8 taxis were made available.
The peak day of the first week of June 2022 was selected
to simulate airport arrivals. Cluster M [8:30-9:00] relates to
the peak of passengers by train (131 passengers) for that day,
Cluster N [12:30-13:00] is close to the daily average per time
period (63 passengers), while Cluster A [15:30-16:00] defines
the afternoon peak (91 passengers). We unequivocally define
an instance by listing, in sequence, the radius view, the first-
mile bound, the number of taxis available, and the reference
cluster. For example, instance 2 30 4 A relates to a view of 2
km, a first-mile bound of 30 minutes, and 4 available taxis for
the time period [15:30-16:00]. In Fig. 2, the agent interaction
with the environment for the described instance is shown as
well as the optimal assignment after model execution.

The numerical results were obtained using a personal laptop
running Windows with a 4-core Intel i7-1185G7 and 16 GB
of RAM. Frodo 2.18.1 [27] was used to model the DCOP and
solve it with the DPOP [28] algorithm. Solution time across
all instances was below 15 seconds. The centralized planner
was implemented in Python and solved with Gurobi [29]. A
maximum pool of ten Nb best solutions per agent was used
for constraint generation. Generating constraints for all agents
with the centralized planner was more time-consuming, but it
never exceeded 8 minutes for a single instance. Parallelization
of this process would cut the running time to less than two
minutes. In Table II, a summary of the reported results by the
generated instances is presented.

Overall, the application of the DRT service reduces the

Fig. 2: Taxi assignment for Instance 2 30 4 A

TABLE II: Cumulative Table of generated Instances

Instance Travel
Time (min) Reduction Sol.

Time (s) Taxis Modal
Share

Avg.
Pickup Cost

2 30 4 M 3,919 7.9% 4 4 10.7% 5
2 30 4 N 1,745 9.5% 1 4 13.6% 8
2 30 4 A 2,511 8.6% 1 3 12.2% 4
2 30 8 M 3,720 12.6% 9 7 19.1% 5
2 30 8 N 1,661 13.8% 2 5 20.3% 6
2 30 8 A 2,285 16.9% 4 6 22.2% 4
2 40 4 M 4,079 4.1% 1 3 4.6% 6
2 40 4 N 1,900 1.5% <1 1 1.7% 9
2 40 4 A 2,714 1.2% <1 1 1.1% 5
2 40 8 M 4,047 4.9% 1 4 5.3% 6
2 40 8 N 1,877 2.6% <1 2 3.4% 6
2 40 8 A 2,515 8.5% <1 3 8.9% 6
4 30 4 M 3,813 10.4% 5 4 13.7% 8
4 30 4 N 1,646 14.6% 2 4 23.7% 9
4 30 4 A 2,511 8.6% 2 3 13.3% 4
4 30 8 M 3,554 16.5% 11 7 22.1% 8
4 30 8 N 1,448 24.9% 4 7 39.0% 9
4 30 8 A 2,187 20.4% 4 6 26.7% 8
4 40 4 M 3,926 7.7% 1 4 9.2% 8
4 40 4 N 1,726 10.5% 1 4 13.6% 11
4 40 4 A 2,689 2.1% <1 2 2.2% 16
4 40 8 M 3,722 12.5% 2 7 15.3% 8
4 40 8 N 1,678 13.0% 1 6 15.3% 11
4 40 8 A 2,491 9.4% <1 3 8.9% 9

total first-mile travel time experienced by all users, almost
proportionally to the modal share. With modal share, we
define the percentile ratio between serviced users by the DRT
system and all users in the cluster. This reported reduction is
significant, but expected since users that are most likely to
be serviced are usually the most affected. The pick-up cost
of the taxi, i.e., the traveling time between ot and the first
serviced user, increases with the view radius, but still remains
approximately around 10 minutes, consistently with current
ride-hailing practices. Increasing the taxi view can lead to a
further travel time reduction up to 11% (instances 2 30 8 A
and 4 30 8 A), but can even lead to no decrease (instances
2 30 4 N and 4 30 8 N). Increasing the first-mile bound
is generally detrimental to system optimality, leading to an
increase in travel time between 2 and 12%. However, it can
lead to a more equitable assignment that truly targets the most
affected users.
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V. CONCLUSIONS

The present study focuses on developing a new mobility
service to support ground access to the airport. A Demand
Responsive Transport (DRT) service was conceptualized that
makes use of taxi-dispatching and ride-sharing to target users
with long first-mile trips to a set of transit points. These
transit points represent stations served by a dedicated train
line connecting users to their final destination, i.e., the airport.
Distributed constraint optimization was utilized in modeling
the proposed service. Experiments show that utilization of the
DRT service can lead to a decrease of the system’s travel
time that is roughly proportional to the increase of the modal
share. On average, a 10% reduction of the users’ travel time
was reported across instances, with an average utilization of
only 4 taxis.

Although the study focused on airport-bound trips, the ser-
vice can be extended to include last-mile connections from the
airport. An iterative procedure can be used to optimize pick-
ups and deliveries simultaneously and improve taxi allocation.
Allocation strategies for taxi positioning based on demand
can also be considered. Additionally, the fully cooperative
nature of the service can be removed, allowing for different
decision-making criteria per agent when selecting users. This
would enable the service to be integrated into the competitive
environment of existing taxi and ride-sharing services.
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