
Efficient Pricing of Early–Exercise and Exotic

Options Based on Fourier Cosine Expansions

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties, in het openbaar te verdedigen

op woensdag 4 juli 2012 om 10.00 uur

door

BOWEN ZHANG
Master of Science in Applied Mathematics,

geboren te Beijing, China

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr.ir. C.W.Oosterlee

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof.dr.ir. C. W. Oosterlee, Technische Universiteit Delft, promotor
Prof.dr. K. In’t Hout, Universiteit Antwerpen, Belgium
Prof.dr. R. Seydel, Universität zu Köln, Germany
Prof.dr. M. Vanmaele, Universiteit Gent, Belgium
Prof.dr. R.J.A. Laeven, Universiteit van Amsterdam, the Netherlands
Prof.dr.ir. A. W. Heemink, Technische Universiteit Delft, the Netherlands
Prof.dr.ir. C. Vuik, Technische Universiteit Delft, the Netherlands

Efficient Pricing of Early–Exercise and Exotic Options Based on Fourier
Cosine Expansions.
Dissertation at Delft University of Technology.

ISBN 978–94–6203–073–2 Copyright © 2012 by Bowen Zhang, MSc

All right reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without the prior permission of the author.

Cover design by Bowen Zhang.
Thesis printed in the Netherlands by Wöhrmann Print Service.

Acknowledgements

This dissertation concludes my PhD research at Delft University of Tech-
nology, from September 2008 to March 2012. I would like to attribute the
success of this thesis to a number of people for their support and advice.

First of all, my greatest thanks goes to my supervisor Prof. Kees Oost-
erlee, for trusting me in this PhD position, as well as for his countless help
and patience with my research in the last four years.

Next, I would like to express my gratitude to Fang Fang, for her help
and encouragement throughout my PhD period, as a friend, colleague and
as the developer of the COS method.

My sincere gratitude goes to Dr. Hans van der Weide for his help for
the last six years, from the beginning of my MSc period, when I took the
course reliability analysis, taught by him and Prof. van Noortwijk, till the
end of my PhD project, when his advices and help contributes a lot to my
last paper on American-style Asian options.

I would like to express my appreciation of Prof. Piet Hemker, for fruitful
discussion about my first Asian option paper.

I am indebted to Lech Grzelak for his contribution to the paper with
commodity option pricing, as well as the proofreading of the revisions.

Special thanks goes to Kees Lemmens for introducing me into the won-
derful world of GPU computing.

I would like to thank all my friends and colleague from TU Delft, CWI
and back in China, in particular, Xinzheng Huang, Liangyue Ji, Corneliu
Cofaru, Hisham bin Zubair, and Fred Vermolen, for their friendship and
encouragement throughout my PhD period.

A special thanks goes to my boyfriend, Catalin, as without his love,
support, understanding, encouragement, and extreme patience, none of my
publications, nor this thesis would ever been finished.

I dedicate this PhD thesis to my parents for their endless love.

iii

Summary

Efficient pricing of early–exercise and exotic options
based on Fourier cosine expansions

Bowen Zhang

In the financial world, two tasks are of prime importance: model calibration
and portfolio hedging. For both tasks, efficient option pricing is necessary,
particularly for the calibration where many options with different strike
prices and different maturities need to be priced at the same time. Therefore,
a fast yet accurate pricing method is a necessity for banks and trading
companies.

Nowadays three groups of pricing methods are being used in the finan-
cial industry and academia, that is, Monte–Carlo methods, partial (integro-
)differential equation (PIDE) methods, and numerical integration methods,
where the option price is modeled as the discounted expected value of the
payoff at maturity. The latter type of methods is attractive from both prac-
tice and research point of view, as the fast computational speed, especially
for plain vanilla options, makes it useful for calibration at financial insti-
tutions. Usually numerical integration techniques are combined with the
Fast Fourier transform or Hilbert transform, and therefore, the numerical
integration methods are often referred to as the ‘transform methods’. Rep-
resentatives of transform methods are the Carr–Madan method [16], the
CONV method [50] and the Hilbert transform method [36].

A recent contribution to the transform method category is the COS
method proposed in [34, 35], that is, an option pricing method based on the
Fourier cosine expansions. It departs from a truncated risk–neutral formula,
in which the conditional density function is recovered in terms of its char-
acteristic function, by Fourier cosine expansions. This method can be used
for asset processes as long as the characteristic function of the conditional
density function is known, or can be approximated. For processes where the
density function and its derivatives are continuous functions with respect to

v

the underlying asset, the COS method exhibits an exponential convergence
rate.

Our research work is based on the COS method, which has been used
for vanilla European option pricing [34], vanilla early–exercise option pricing
and barrier option pricing [35]. The motivation of this thesis is to further
improve the robustness of the COS method, make it efficient for non–Lévy
models, and extend it to different types of exotic options.

The point of departure of this thesis is to improve the robustness of the
COS method for call option pricing with early-exercise features, as presented
in Chapter 1, where the call option prices are obtained from put option
prices, in combination with the put–call parity and put–call duality relations,
which are incorporated into our pricing algorithm at each early–exercise date
to recover the Fourier coefficients and to compute the continuation value.
The robustness of the pricing methods is demonstrated by error analysis, as
well as by a series of numerical examples.

In Chapter 2, the acceleration of option pricing by the COS method on
the Graphics Processing Unit (GPU) is presented. After a brief discussion of
the GPU and its potential for option pricing, we will study different ways of
GPU implementation, followed by three examples of GPU acceleration, the
so-called multiple strike option pricing, option pricing under hybrid models
where the characteristic function is derived from a Riccati ODE system, and
the example of Bermudan option pricing. Influence of data transfer between
host and device is also discussed in this chapter.

Extension of COS method to early–exercise option pricing with an Ornstein–
Uhlenbeck (OU) process is explained in Chapter 3. OU processes for com-
modity derivatives, either with or without seasonality functions, are non–
Lévy processes and more computationally expensive within the COS frame-
work, as compared to Lévy processes. First of all, an accurate pricing algo-
rithm is given, which can be used for all OU processes with different types
of seasonality functions. Then, based on a detailed error analysis, a more ef-
ficient pricing method is proposed, which reduces the computing time from
seconds to milliseconds. However, this new method is not advocated for
all parameter settings. The conditions under which the basis point accu-
racy can be ensured is derived by error analysis. In the numerical part,
the accuracy and efficiency of these two pricing methods are compared, and
the conditions we derived from error analysis are further verified by several
numerical experiments.

In Chapter 4, we present an efficient pricing method for American–style
swing options, based on Fourier cosine expansions. Here we assume that the
holder of the swing option has the right, but not the obligation, to buy or
sell a certain amount of commodity, such as gas and electricity, at any time
before the expiry of the option, and more than once. Moreover, a recovery
time is added between two consecutive exercises in which exercise is not
allowed. Our pricing method is based on the Bellman principle, leading to

vi

a backward recursion procedure in which the optimal exercise regions are
determined at each time step, after which the Fourier coefficients can be
recovered recursively. Our method performs well for different underlying
processes, different swing contracts and different types of recovery time.

The pricing methods for European and early–exercise Asian options (AS-
COS) are shown respectively in Chapters 5 and 6. In Chapter 5, we present
an efficient option pricing method for Asian options written on different
types of averaged asset prices, but without early–exercise features. In our
method, the characteristic function of the average asset is recursively recov-
ered, with the help of Fourier expansions and Clenshaw–Curtis quadrature.
Then it is used in the risk–neutral formula to get the Asian option price. Ex-
ponential convergence rate is observed for most Lévy processes, which is also
supported by a detailed error analysis. Advantages of our pricing algorithm
are that as the number of monitoring dates increases, the method stays ro-
bust and the computing time does not increase significantly, as shown in the
numerical results.

Our pricing method for early–exercise Asian options is presented in
Chapter 6. In this case, the Fourier cosine coefficients of the option price are
recursively recovered by Fourier transform and Clenshaw–Curtis quadrature.
Then these coefficients are inserted into the risk–neutral formula, which, in
the early–exercise Asian case, is a two–dimensional integration, to get the
option value. The chain rule from probability theory is also needed in our al-
gorithm to factorize the joint conditional density functions. An exponential
convergence rate in the option price, as derived in a detailed error analysis,
is observed from various numerical experiments. Factors of approximately
hundred of speedup are achieved on the GPU.

Conclusions and insight into future research are to be found in Chapter 7.
In this thesis, efficient pricing methods for different early–exercise and exotic
options, based on the Fourier cosine expansions, are presented, followed
by an error analysis and numerical results, from which we see that the
COS method is an efficient, robust and flexible method for pricing different
types of option products, for different asset models, and is suitable for GPU
acceleration. It is a promising tool for financial calibration and dynamic
hedging in practice.

vii

Samenvatting

Efficiënte waardering van opties met vervroegde uitoe-
feningsmogelijkheid en exotische opties gebaseerd
op Fourier cosinusexpansies

Bowen Zhang

In de financiële wereld zijn twee taken bij het waarderen van derivaten van
groot belang: model kalibratie en portefeuille hedgen. Voor beide taken zijn
efficiënte optiewaarderingstechnieken nodig, maar in het bijzonder voor het
kalibreren, waarin vele opties met verschillende uitoefenprijzen en looptij-
den tegelijkertijd geprijsd moeten worden. Een snelle en accurate waarder-
ingsmethode is daarom noodzakelijk voor banken en handelsbedrijven.

In het algemeen worden drie typen waarderingsmethoden gebruikt in de
financiële industrie en in de academische wereld: Monte–Carlo simulatietech-
nieken, partiële–(integro) differentiaalvergelijkingsmethoden, en numerieke
integratie, waarbij de optieprijs als de verdisconteerde verwachtingswaarde
van de uitbetaling op de uitoefendatum geschreven wordt.

Numerieke integratie is aantrekkelijk, zowel vanuit praktisch als ook
vanuit academisch oogpunt bekeken, vanwege de uiterst snelle rekentijd,
vooral voor plain vanilla opties. Meestal worden de numerieke integrati-
etechnieken gecombineerd met een transformatie naar het Fourierdomein,
of met de Hilberttransformatie, en daarom worden deze methoden vaak
‘transformatiemethoden’ genoemd. Vertegenwoordigers van deze klasse zijn
de Carr–Madan methode [16], de CONV methode [50] en de Hilbert Trans-
formatiemethode [36].

Een recente bijdrage aan de klasse van transformatiemethoden is de
COS methode, voorgesteld in [34, 35]. Dit is een optiewaarderingsmethode
gebaseerd op Fourier cosinusexpansies en op een versie van de risico–neutrale
waarderingsformule, waarin de kansdichtheidsfunctie benaderd wordt in ter-
men van zijn karakteristieke functie. Deze methode is bruikbaar voor aan-
deelprocessen waarvan de karakteristieke functie bekend of afleidbaar is.

ix

Voor processen waarvan de kansdichtheidsfunctie en zijn afgeleiden continue
functies zijn, heeft de COS methode een exponentiële convergentiesnelheid.

Het onderzoek in dit proefschrift is gebaseerd op de COS methode, die
reeds gebruikt werd voor Europese optiewaardering [34], en de waardering
van Bermuda opties met vervroegde uitoefeningsmogelijkheden en barrierop-
ties [35]. In dit proefschrift wordt de robuustheid van de COS methode
verder verbeterd, en de methode wordt efficiënter gemaakt voor ‘niet–Lévy’
modellen. Verder wordt de toepasheidheid veralgemeniseerd naar verschil-
lende exotische opties.

Het startpunt van dit proefschrift is het verbeteren van de robuustheid
van de COS methode voor de waardering van koopopties met vervroegde
uitoefeningsmogelijkheid, gepresenteerd in Hoofdstuk 1. De koopoptiepri-
jzen worden van de verkoopoptieprijzen afgeleid, in combinatie met put–call
pariteits- en put–call dualiteitsrelaties. De robuustheid van de waarder-
ingsmethode wordt aangetoond met een foutenanalyse, en met een aantal
numerieke voorbeelden.

In Hoofdstuk 2, wordt de versnelling van optiewaardering met de COS
methode op de grafische kaart (de GPU) gepresenteerd. Na een korte dis-
cussie over de GPU en zijn potentie voor optiewaardering, bestuderen we
verschillende manineren van GPU implementatie, en geven we drie voor-
beelden van GPU versnelling: de optiewaardering met meerdere uitoefen-
prijzen, optiewaardering onder hybride modellen waarbij de karakteristieke
functie vanuit een Riccati ODE systeem bepaald wordt, en Bermuda op-
tiewaardering. De invloed van communicatie tussen de CPU en de GPU
wordt ook in deze hoofdstuk besproken.

De COS methode wordt in Hoofdstuk 3 voor opties met vervroegde uitoe-
feningsmogelijkheid onder een Ornstein–Uhlenbeck (OU) proces efficiënter
gemaakt. OU processen worden vaak gekozen voor derivaten die op grond-
stoffen geschreven worden. Dit zijn geen Lévy processen en COS berekenin-
gen zijn in dat geval duurder, vergeleken met Lévy processen. Er wordt een
efficiënt en nauwkeurig algoritme gepresenteerd, dat ook bruikbaar is voor
processen met verschillende seizoensafhankelijke functies, zoals we die vaak
bij energiederivaten tegenkomen. De rekentijd wordt van seconden tot mil-
liseconden gereduceerd. De voorwaarden, waaraan de parameterwaarden
van het OU proces moeten voldoen om een basispuntprecisie te bereiken,
worden met behulp van foutenanalyse afgeleid.

In hoofdstuk 4 wordt een efficiënte waarderingsmethode voor Amerikaanse
swing opties gepresenteerd, gebaseerd op Fourier cosinusexpansies. Hier
nemen wij aan dat de koper van een swing optie het recht, maar niet de
verplichting heeft, tijdens de looptijd van de optie, hoeveelheden van de on-
derliggende, als gas of elektriciteit, extra te kopen of te verkopen tegen een
van tevoren vastgestelde prijs. De swing optie kan meer dan één keer uit-
geoefend worden. Daarnaast wordt een hersteltijd toegevoegd tussen opeen-
volgende uitoefendata, waarin geen uitoefening van de optie toegestaan is.

x

Het waarderingsalgoritme is op het Bellman principe gebaseerd, dat tot een
achterwaartse recursie leidt, waarin de optimale uitoefeningswaarden op elke
uitoefentijdstip bepaald worden met behulp van de Newton methode. De
nieuwe methode werkt goed voor verschillende onderliggende processen, ver-
schillende swingoptiecontracten, en voor verschillende typen hersteltijden.

Nieuwe waarderingsmethoden voor Aziatische opties (de ASCOS meth-
ode genaamd), met of zonder vervroegde uitoefeningsmogelijkheden, worden
in Hoofdstuk 5 en 6 gepresenteerd. In Hoofdstuk 5, presenteren we een ef-
ficiënte optiewaarderingsmethode voor Aziatische opties die op verschillende
typen gemiddelde aandeelprijzen geschreven worden, zonder de vervroegde
uitoefeningsmogelijkheid. In de methode wordt de karakteristieke functie
van de gemiddelde aandeelprijs recursief berekend met behulp van Fouri-
erexpansie en Clenshaw–Curtis kwadratuur. Vervolgens wordt de karakter-
istieke functie in de risico–neutrale waarderingsformule gesubstitueerd om de
prijs van de Aziatische optie te berekenen. Voor gladde kansdichtheidsfunc-
ties tonen wij aan via een foutenanalyse dat de convergentie exponentieel is.
Voordelen van onze waarderingsmethode, zoals in de numerieke resultaten
te zien is, zijn dat de methode robuust blijft en dat de rekentijd niet stijgt
als het aantal tijdstippen waarop het gemiddelde gebaseerd is, toeneemt.

De ASCOS waaderingsmethode voor Aziatische opties met vervroegde
uitoefeningsmogelijkheid wordt in Hoofdstuk 6 gepresenteerd. Ook in dit
geval worden de Fourier coëfficiënten van de optieprijzen recursief berek-
end, met behulp van Fouriertransformatie en Clenshaw–Curtis kwadratuur.
Vervolgens worden deze Fourier coëfficiënten in de risico–neutrale waarder-
ingsformule, die in dit geval door een tweedimensionale integraal beschreven
wordt, ingezet om de optieprijzen te verkrijgen. De kettingregel vanuit de
kansrekening is essentieel in ons algoritme. Exponentiële convergentie van
de optieprijs, bevestigd met een foutenanalyse, wordt met numerieke exper-
imenten bevestigd voor meerdere Lévy processen. Een rekenversnelling van
onze waarderingsmethode met een factor honderd wordt op de GPU bereikt.

De conclusies van de proefschrift en inzichten voor toekomstig onderzoek
worden in Hoofdstuk 7 samengevat. In dit proefschrift worden dus efficiënte
waarderingsmethoden voor verschillende exotische opties middels Fourier
cosinusexpansies gepresenteerd, gevolgd door foutenanalyse en numerieke
resultaten. We zien dat de COS methode een efficiënte, robuuste en flexibele
waarderingsmethode voor verschillende typen opties, en voor verschillende
aandeelmodellen is, geschikt voor implementatie op de GPU.

xi

CONTENTS

Acknowledgements iii

Summary v

Samenvatting ix

List of Symbols xvii

1 Introduction 1
1.1 Exponential Lévy Asset Dynamics 2

1.1.1 Examples of Lévy processes and characteristic functions 3
1.2 The Fourier Cosine Method (COS) 4

1.2.1 Truncation Range and Put–Call Relations 5
1.2.2 Pricing Early-Exercise Options 8

1.3 Error Analysis . 11
1.4 Pricing Bermudan Call Options Using Put-Call Relations . . 14

1.4.1 The Put–Call Parity 14
1.4.2 The Put–Call Duality 17
1.4.3 Error analysis with the put-call relations 21

1.5 Numerical Examples . 23
1.5.1 American Options . 26

1.6 Conclusions and Discussion 26

2 Acceleration of the COS Option Pricing Technique on Graph-
ics Processing Units 29
2.1 Introduction . 29
2.2 COS Pricing Method and Advantage of the GPU 31

2.2.1 Pricing of European Options with Multi–Strike Features 32

xiii

2.2.2 Underlying Asset Processes 33
2.2.3 Advantage of COS method on GPU 33

2.3 European Options . 34
2.3.1 Different Ways of GPU Implementation 35
2.3.2 Numerical Example 36

2.4 Multiple Strike Option Pricing 36
2.4.1 Convergence and Precision 37
2.4.2 Option Pricing with Short Maturity Times 40
2.4.3 Riccati ODEs and Characteristic Function 42

2.5 Bermudan Options . 43
2.6 Conclusions . 44

3 Efficient Pricing of Commodity Options with Early–Exercise
under the Ornstein–Uhlenbeck Process 47
3.1 Introduction . 47
3.2 Problem Definition . 48

3.2.1 The Ornstein-Uhlenbeck Process 48
3.2.2 Incorporation of Seasonality Component 49
3.2.3 Computational Complexity 51

3.3 An Approximate OU Model 51
3.4 Error analysis . 53

3.4.1 The first step in the backward recursion 53
3.4.2 Further steps in the backward recursion 58

3.5 Numerical Results . 63
3.5.1 CPU Time and Accuracy 66
3.5.2 Probability Density Function of ε1 68
3.5.3 Early-Exercise Points 68
3.5.4 Seasonality Experiment 70

3.6 Conclusion . 70

4 An Efficient Pricing Algorithm for Swing Options Based on
Fourier Cosine Expansions 73
4.1 Introduction . 73
4.2 Details of the Swing Option 75

4.2.1 Contract Details . 75
4.2.2 Pricing Details . 77
4.2.3 Commodity Processes 79

4.3 Fourier Cosine Algorithm for Swing Options 80
4.3.1 Algorithm for the Final Time Interval, t ∈ I1 80
4.3.2 Algorithm for Interval t ∈ Ins\I1 83
4.3.3 The Early-Exercise Points 85

4.4 Numerical Results . 91
4.4.1 Constant Recovery Time 91
4.4.2 State-Dependent Recovery Time 93

xiv

4.5 Conclusions . 96

5 Efficient Pricing of Asian Options under Lévy Processes
Based on Fourier Cosine Expansions
Part I: European–Style Products 99
5.1 Introduction . 99
5.2 ASCOS method for European-style geometric Asian options . 101
5.3 ASCOS method for arithmetic Asian options 103

5.3.1 Recovery of characteristic function 104
5.3.2 Integration range . 106
5.3.3 Clenshaw–Curtis quadrature 108
5.3.4 Extensions . 110

5.4 Error analysis for arithmetic Asian options 112
5.4.1 Error propagation in the characteristic functions . . . 113
5.4.2 Error in the option price 119

5.5 Numerical results . 121
5.5.1 Geometric Asian options 122
5.5.2 Arithmetic Asian options 123

5.6 Conclusions . 126

6 Efficient Pricing of Asian Options under Lévy Processes
Based on Fourier Cosine Expansions
Part II: Early–Exercise Features and GPU Implementation127
6.1 Introduction . 127
6.2 Early-exercise Asian options under Lévy processes 129
6.3 A first Asian pricing method (for M→∞) 129

6.3.1 Characteristic function of the first pricing method . . 133
6.4 The 2D ASCOS method for early-exercise Asian options . . . 137

6.4.1 Continuation value . 137
6.4.2 Fourier coefficients . 141
6.4.3 Computational complexity and Fast Fourier Transform 144
6.4.4 Integration range of Ym 147

6.5 Error analysis . 148
6.5.1 Initial error . 150
6.5.2 Error propagation . 152

6.6 Numerical results . 155
6.6.1 GPU implementation and acceleration 156
6.6.2 Arithmetic Asian options on the GPU 157

6.7 Conclusions . 159

7 Conclusions and Outlook 161
7.1 Conclusions . 161
7.2 Outlook . 162

xv

Curriculum vitae 171

List of publications 173

Proceedings and Presentations 175

xvi

xvii

List of Symbols

r Interest rate.
q Dividend rate.
σ Volatility of the underlying process.
Re(·) Taking the real part of the input argument.
Im(·) Taking the imaginary part of the input argument.
i

√
−1, the unit of the imaginary part of a complex

number.
T Maturity time of the option.
K Strike price of an options.
N The number of terms in the Fourier cosine expansions.
M For an early–exercise option M denotes the number

of early–exercise dates.
For an Asian option M denotes the number
of monitoring–dates.

nq The number of terms in the Clenshaw–Curtis quadrature.
f(y|x) The conditional density function of y given x.
ϕ(u;x, t) The conditional characteristic function, given state

variable x and time interval t.
φ(u; t) The Lévy component in the characteristic function.

Also used for unconditioned characteristic function.
ξn The nth cumulant of the underlying process.
St Stock price at time t.
S0 Stock price at initial time.
Sm The stock price at early–exercise date tm.

Only used for early–exercise options.
x, y State variables, usually denote the log–asset values

at consecutive time steps for an early–exercise option.
In chapter 1 and 2, x = log(Sm−1/K), y = log(Sm/K);
In chapter 3 and 4, x = log(Sm−1), y = log(Sm);

In chapter 6, x = log(Sm/Sm−1), y =
∑′m

j=0
Sj/S0.

x∗m Early–exercise point at the mth early–exercise date,
where the continuation value equals the payoff.

xviii

v(x, t) Option price with state value x at time t.
c(x, t) Continuation value with state value x

at time t.
g(x) Payoff function with state value x.

In chapter 4 and 6, where we study exotic options,
the payoff functions has more input arguments.

Vk The kth Fourier cosine coefficient of option
price at maturity for an European option.

Vk(tm) The kth Fourier cosine coefficient of the option price
at mth early–exercise date of an early–exercise option
over the whole asset domain.

Ck(x1, x2, tm) The kth Fourier cosine coefficient of the
continuation value at mth early–exercise date for an
early–exercise option, over the asset region [x1, x2].

Gk(x1, x2) The kth Fourier cosine coefficient of the
payoff function over the asset region [x1, x2].

xix

CHAPTER 1

Introduction

This chapter serves as an introduction for the thesis. It also contains essen-
tially the contents of paper [72].

Numerical integration methods are traditionally very efficient for the
valuation of single asset European options. They are also referred to as
“transform methods” as a transformation, often to the Fourier domain, is
combined with numerical integration [16, 34, 51]. The transform methods
can readily be used with asset price models for which the characteristic
function (i.e., the Fourier transform of the probability density function) is
available.

Next to Fourier-based transform methods, techniques based on the Gauss
or the Hilbert Transform have also been introduced [11, 12, 36, 66]. A contri-
bution of our research group to the development of the transform methods
is the COS method [34, 35], which is based on Fourier cosine expansions
and converges exponentially in the number of terms in the Fourier cosine
expansion.

Transform methods have also been generalized to pricing options with
early-exercise features. The key idea is to set up a time lattice on each
early-exercise date and view the option as “European style” between two
adjacent lattices. Pricing an early-exercisable option usually involves two
steps: recovery of the probability density function and computation of the
integral that appears in the risk-neutral valuation formula. Some of the
existing methods employ quadrature rules in both steps, see for example [50,
33, 29, 30, 44]. We will detail the generalization of the COS method to
pricing Bermudan options here.

When pricing call options with the COS method, the method’s accuracy
may exhibit sensitivity regarding the choice of the domain size in which
the series expansion is defined. A call payoff grows exponentially with the

1

log-stock price which may introduce significant cancellation errors for large
domain sizes. Put options do not suffer from this, as their payoff value is
bounded by the strike value. For pricing European calls, one can employ the
well-known put–call parity or put–call duality and price calls via puts. Here,
we generalize this concept, so that we can also apply the put-call parity or
put–call duality when pricing Bermudan call options.

The purpose of the present chapter is two-fold. First of all, we present the
COS method, focusing on options with early-exercise features, like Bermu-
dan and American options. Secondly, we present a novel component for
the robust pricing of call options, where we use the put–call parity and the
put–call duality relations for the valuation of Bermudan call options.

The outline of this chapter is as follows: we start with a brief introduction
of exponential Lévy asset dynamics, which will also be used in upcoming
chapters in this thesis, given in Section 1.1. Then we will introduce the COS
method for European options as well as early–exercise options in Section
1.2, and discuss the choice of computational domain. In Section 1.3 an error
analysis for the COS method is included for call options. The generalization
of the put–call parity and put–call duality is presented in Section 1.4. Section
1.5 then presents a variety of numerical results, confirming the robustness of
the introduced version of the COS valuation method for Bermudan options.

1.1 Exponential Lévy Asset Dynamics

An asset is modeled here by an exponential Lévy process (e.g. Geomet-
ric Brownian Motion, the Variance Gamma (VG) model [15], the CGMY
model [53], the Normal Inverse Gaussian model [3], . . .).

The asset price can be written as an exponential function of Lévy process,
Lt as follows:

St = S0 exp(Lt). (1.1)

For ease of exposure we assume that the asset pays a continuous stream of
dividends, measured by the dividend rate, q. In addition, we assume the
existence of a bank account, Bt, which evolves according to dBt = rBtdt,
with r being the (deterministic) risk-free rate. Recall that a process Lt on
(Ω,J , P), with L0 = 0, is a Lévy process if it has independent increments,
stationary increments, and it is stochastically continuous, i.e., for any t ≥ 0
and ε > 0 we have

lim
s→t

P(|Lt − Ls| > ε) = 0. (1.2)

A Lévy process can be characterized by a triplet (µ, σ, ν) with µ ∈ R, σ ≥ 0
and ν a measure satisfying ν(0) = 0 and∫

R
min (1, |x|2)ν(dx) <∞. (1.3)

2

In terms of this triplet the characteristic function of the Lévy process equals:

φ(u; t) = E[exp (iuLt)]

= exp (t(iµu− 1
2
σ2u2 +

∫
R
(eiux − 1− iux1[|x|<1]ν(dx))),(1.4)

the celebrated Lévy-Khinchine formula. As is common in most models nowa-
days we assume that Equation (1.1) is formulated directly under the risk-
neutral measure. To ensure that the reinvested relative price, eqtSt/Bt, is a
martingale under the risk-neutral measure, we need to ensure that

φ(−i, t) = E[exp (Lt)] = e(r−q)t, (1.5)

which is satisfied if the drift µ is chosen as:

µ = r − q − 1
2
σ2 −

∫
R
(ex − 1− x1[|x|<1])ν(dx). (1.6)

Based on Equation (1.1) we define:

log(St/K) = log(S0/K) + Lt := x+ Lt.

The characteristic function of log(St/K) is denoted by ϕ(u, x; t) and reads:

ϕ(u;x, t) := eiuxφ(u; t) = eiuxE(exp(iuLt)). (1.7)

Characteristic functions for several exponential Lévy processes are available
in [23, 57]. Here we give two examples of Lévy processes which we will
encounter in upcoming chapters, the CGMY model and NIG model.

1.1.1 Examples of Lévy processes and characteristic func-
tions

One problem with the Geometric Brownian Motion (GBM) model is that it
is not able to reproduce the volatility skew or smile present in most financial
markets. Over the past few years it has been shown that several exponential
Lévy models are, at least to some extent, able to reproduce the skew or
smile. One particular model is the CGMY model [14]. The underlying Lévy
process is characterized by the triple (µ, σ, νCGMY), where the Lévy density
is specified as:

νCGMY(x) =

C

exp (−G|x|)
|x|1+Y

if x < 0

C
exp (−M |x|)
|x|1+Y

if x > 0.
(1.8)

with parameters C,G,M and Y . Conveniently, the characteristic function
of the log-asset price can be found in closed-form as:

ϕ(u;x0, t) = exp
(
iu(x0 + µt)− 1

2
u2σ2t

)
φCGMY(u; t), (1.9)

3

with x0 = log(S0) and

φCGMY(u; t) = exp
(
tCΓ(−Y)

(
(M − iu)Y −MY + (G+ iu)Y −GY

))
,

where Γ(x) is the gamma function. When C = 0 the model reduces to the
GBM model.

The Normal Inverse Gaussian (NIG) process [3] is a variance-mean mix-
ture of a Gaussian distribution with an inverse Gaussian. The pure jump
characteristic function of the NIG model reads

φNIG(u; t) = exp
(
tδ

(√
α2 − β2 −

√
α2 − (β + iu)2

))
,

with α, δ > 0 and β ∈ (−α, α− 1). The α-parameter controls the steepness
of the density; β is a skewness parameter: β > 0 implies a density skew to
the right, β < 0 a density skew to the left, and β = 0 implies the density is
symmetric around 0. δ is a scale parameter in the sense that the re–scaled
parameters α → αδ and β → βδ are invariant under location-scale changes
of x.

1.2 The Fourier Cosine Method (COS)

The Fourier cosine pricing method, the COS method, is based on the risk-
neutral option valuation formula (discounted expected payoff approach):

v(x, t0) = e−r∆t

∫ ∞

−∞
v(y, T)f(y|x)dy, (1.10)

where v(x, t0) is the present option value, r the interest rate, ∆t = T − t0
and x, y can be any monotone function of the underlying asset at initial time
t0 and the expiration date T . Function v(y, T), which equals payoff func-
tion g(y), is known, but the transitional density function, f(y|x) in (1.10),
typically is not.

To employ the COS method, we first truncate the integration range to
[a, b]

v(x, t0) = e−r∆t

∫ b

a
v(y, T)f(y|x)dy. (1.11)

The size of the truncated domain can be determined with the help of the
cumulants [34] 1, discussed in Section 1.2.1.

Then we approximate the conditional density function on the truncated
domain, by a truncated Fourier cosine expansion, which recovers the condi-
tional density function from its characteristic function as follows:

f(y|x) ≈ 2
b− a

N−1∑′

k=0

Re

(
ϕ(

kπ

b− a
;x,∆t) exp (−i akπ

b− a
)
)

cos (kπ
y − a

b− a
),

(1.12)
1For example so that |

R
R f(y|x)dy −

R b

a
f(y|x)dy| < TOL.

4

with ϕ(u;x, t) the characteristic function of f(y|x), defined as

ϕ(u;x, t) = E(eiuY |X = x, T − t0 = t). (1.13)

Moreover, Re means taking the real part of the input argument and the
prime at the sum symbol indicates that the first term in the expansion is
multiplied by one-half. X,Y are the state variable (here the log–asset) at t0
and T , respectively.

Replacing f(y|x) by its approximation (1.12) in Equation (1.10) and
interchanging integration and summation gives the COS formula for com-
puting the values of European options:

v(x, t0) = e−r∆t

N−1∑′

k=0

Re(ϕ(
kπ

b− a
;x,∆t)e−ikπ a

b−a)Vk, (1.14)

where:

Vk =
2

b− a

∫ b

a
v(y, T) cos (kπ

y − a

b− a
)dy, (1.15)

are the Fourier cosine coefficients of v(y, T), that are available in closed form
for several payoff functions, like for plain vanilla puts and calls, but also for
example for discontinuous payoffs like for digital options.

It was found by a rigorous analysis in [34], that, with integration inter-
val [a, b] chosen sufficiently wide, the series truncation error dominates the
overall error. For conditional density functions f(y|x) ∈ C∞([a, b] ⊂ R), the
method converges exponentially; otherwise convergence is algebraically [35].

Formula (1.14) also forms the basis for the pricing of Bermudan op-
tions [35].

1.2.1 Truncation Range and Put–Call Relations

The choice of integration range, [a, b], is quite important. An interval which
is chosen too small or too wide will lead to significant integration-range
errors.

We use the definition of the integration (also called truncation) range as
given [34] and we center the domain at x0 := log(S0/K), i.e.

[a, b] :=
[
(ξ1 + x0)− L

√
ξ2 +

√
ξ4, (ξ1 + x0) + L

√
ξ2 +

√
ξ4

]
, (1.16)

with L ∈ [6, 12] depending on a user-defined tolerance level, TOL and
ξ1, . . . , ξ4 being the cumulants of the underlying stochastic process. The
error connected to the size of the domain decreases exponentially with L.

Given the characteristic function, the cumulants, as defined in [23], can
be computed via

ξn(X) =
1
in
∂n(tΨ(u))

∂un

∣∣∣∣
u=0

,

5

where tΨ(u) is the logarithm of the characteristic function of log(St/S0),
which is φ(u; t), i.e.

φ(u; t) = etΨ(u), t ≥ 0.

However, when pricing call options, the solution’s accuracy exhibits sensi-
tivity regarding the size of this truncated domain. This holds specifically for
call options under fat-tailed distributions, like under certain Lévy jump pro-
cesses, or for options with a very long time to maturity 2. A call payoff grows
exponentially in log–stock price which may introduce cancellation errors for
large domain sizes. A put option does not suffer from this (see [35]), as their
payoff value is bounded by the strike value. In [34], European call options
were therefore priced by means of European put option computations, in
combination with the put-call parity:

vcall(x, t) = vput(x, t) + Ste
−q(T−t) −Ke−r(T−t), (1.17)

where vcall(x, t) and vput(x, t) are the call and put option prices, respectively,
and q is again the dividend rate.

Alternatively, one can use the put–call duality relation (see also [55]):

vcall(S,K, r, q, t, ν) = vput(K,S, q, r, t, e−xν(−dx)), (1.18)

where 3 measure ν(dx) is the same as in (1.4) and (1.6). In the case that

ν(dx) = e−xν(−dx)

is satisfied (for Lévy processes without any jumps, for example), Eqn. (1.18)
simplifies:

vcall(S,K, r, q) = vput(K,S, q, r).

Figures 1.1 and 1.2 present European call option values under the infinite
activity Lévy CGMY jump model, see [53]. The option values obtained by
pricing call options directly by the COS method (solid lines) are compared to
the values calculated with the put–call parity and put–call duality relations
(dotted lines), for different values of parameter L, which determines the sizes
of the truncated domain in (1.16). Reference solutions are obtained on a
very fine grid.

The asset price parameters read S0 = 100,K = 110, r = 0.1, q = 0.05,
and the CGMY parameters are chosen as C = 1, G = 5,M = 5. For
Figure 1.1, with the remaining CGMY parameter Y = 1.5, and with T = 5,
the reference value for the European option is 66.474333 . . . and in Figure 1.2
we set Y = 1.98, and T = 0.1 for which the reference value is 86.826264

2This is mainly the case when we consider real options or insurance products with a
long life time.

3Here we have a long list of arguments, as they are important for the use of the put-call
duality.

6

(a) Put-Call Parity (b) Put-Call Duality

Figure 1.1: Comparison of European call option values, directly obtained
by the COS method, with those obtained by the put–call parity and the
put–call duality, CGMY model, Y = 1.5, T = 5, L ∈ [8, 10].

(a) Put-Call Parity (b) Put-Call Duality

Figure 1.2: Comparison of European call option values, directly obtained
by the COS method, with those obtained by the put–call parity or put–call
duality, CGMY model, Y = 1.98, T = 0.1, L ∈ [8, 10].

As shown in Figures 1.1 and 1.2, the errors appearing, when call prices
are directly computed with the COS method, increase for large Y - and
T -values, since then the probability density function of the underlying is
governed by fat tails. The errors grow drastically as L, i.e. the size of the
computational domain, increases. It seems that the choice L = 6 results in
accurate values in these tests, but this choice is heuristic.

The option prices obtained by the put–call parity or the put–call duality
do not deviate from the reference solutions in both test cases, for all inte-
gration ranges. The parity and duality lead to robust formulas for pricing
European call options by the COS method.

7

1.2.2 Pricing Early-Exercise Options

A Bermudan option can be exercised at pre-specified dates before maturity.
The holder receives the exercise payoff when she exercises the option. We
have again t0 as initial time and {t1, · · · , tM} the collection of exercise dates
with ∆t := (tm − tm−1), t0 < t1 < · · · < tM = T . The pricing formula for
a Bermudan option with M exercise dates then reads, for m = M,M−
1, . . . , 2: {

c(x, tm−1) = e−r∆t
∫

R v(y, tm)f(y|x)dy,

v(x, tm−1) = max (g(x), c(x, tm−1)) ,
(1.19)

followed by

v(x, t0) = e−r∆t

∫
R
v(y, t1)f(y|x)dy. (1.20)

Functions v(x, t), c(x, t) and g(x) are the option value, the continuation
value and the payoff at time t, respectively. For call and put options, g(x) ≡
v(x, T), with

v(x, T) = max [αK(ex − 1), 0], α =
{

1 for a call,
−1 for a put,

(1.21)

where x and y are state variables at consecutive early–exercise dates tm−1

and tm, defined as

x := log(Sm−1/K) and y := log(Sm/K).

Pricing Bermudan Options by the COS Method

The continuation value in (1.19) can be calculated by means of the COS
formula. For exponential Lévy processes it reads:

c(x, tm−1) = e−r∆t

N−1∑′

k=0

Re
{
φ

(
kπ

b− a
;∆t

)
eikπ x−a

b−a

}
Vk(tm), (1.22)

where φ(u; t) := ϕ(u; 0, t), as defined in (1.7).
The technique of pricing Bermudan options by the COS method is based

on the computation of the Fourier cosine coefficients of the option value at
t1, Vk(t1), which are then inserted into (1.20) to get the option value v(x, t0)
by means of the COS formula. The derivation of an induction formula for
Vk(t1), backwards in time, was the basis of the work in [35]. It is briefly
explained here.

First, the early-exercise point, x∗m, at time tm, which is the point where
the continuation value equals the payoff, i.e., c(x∗m, tm) = g(x∗m), is deter-
mined for example by Newton’s method.

8

Based on x∗m, we can split Vk(tm) in Eqn. (1.22) into two parts: One on
the interval [a, x∗m] and another on (x∗m, b], i.e.

Vk(tm) =

{
Ck(a, x∗m, tm) +Gk(x∗m, b), for a call,

Gk(a, x∗m) + Ck(x∗m, b, tm), for a put,
(1.23)

for m = M− 1,M− 2, · · · , 1, and at tM = T ,

Vk(tM) =

{
Gk(0, b), for a call,

Gk(a, 0), for a put.
(1.24)

Here Ck and Gk are the Fourier coefficients for the continuation value and
payoff function, respectively, which read,

Gk(x1, x2) :=
2

b− a

∫ x2

x1

g(x) cos
(
kπ
x− a

b− a

)
dx, (1.25)

and

Ck(x1, x2, tm) :=
2

b− a

∫ x2

x1

c(x, tm) cos
(
kπ
x− a

b− a

)
dx. (1.26)

For k = 0, 1, · · · , N − 1 and m = 1, 2, · · · ,M, the Gk(x1, x2) in (1.25)
admit analytic solutions, and the challenge is to compute the Ck-coefficients
efficiently.

We can generally write characteristic functions as:

ϕ(u;x, τ) = eiuxβφ(u; τ), (1.27)

with φ(u; τ) not depending on x.
By (1.27), we can distinguish basically two types of stochastic processes

in view of their characteristic functions. The first type, governed by β = 1,
which corresponds to a process with independent increments, includes the
exponential Lévy processes, for which the characteristic function can thus
be written in the form ϕ(u;x, τ) = eiuxφ(u; τ). Examples for these are
the log-versions of Geometric Brownian Motion, jump-diffusion processes of
Kou [47] and Merton [54], infinite activity Lévy processes [23], like Variance-
Gamma (VG) [15], Normal Inverse Gaussian (NIG) [3] or CGMY [53].

For the second type of processes, φ(u;x, t) cannot be written as the
product of eiux and a function independent of x. An example is the OU mean
reverting process, for which β = e−κτ in (1.27), with κ a mean reversion
parameter.

In the lemma to follow we will see that characteristic functions of the
first type (β = 1) are beneficial for pricing Bermudan options by the COS
method as the Fast Fourier Transform can be applied.

9

Lemma 1.2.1 (Efficient Computation). The terms Ck(x1, x2, tm) can be
computed in O(N log2N) operations, if the stochastic process for the under-
lying is governed by general characteristic function (1.27) with parameter
β = 1.

Proof. At times tm, m = M− 1, · · · , 1, from Equations (1.19) and (1.22),
we obtain an approximation for c(x, tm), the continuation value at tm, which
is inserted into (1.26). Interchanging summation and integration gives the
following coefficients, Ck(x1, x2, tm):

Ck(x1, x2, tm) := e−r∆t

N−1∑′

j=0

Re

(
φ

(
jπ

b− a
;∆t

)
Vj(tm+1) ·Hk,j(x1, x2)

)
,

(1.28)
where φ(u;∆t) comes from the general expression for the characteristic func-
tion (1.27). To get Ck(x1, x2, tm), the following integrals need to be com-
puted:

Hk,j(x1, x2) =
2

b− a

∫ x2

x1

eijπ
βx−a
b−a cos(kπ

x− a

b− a
)dx,

with β defined in (1.27).
By basic calculus, we can split Hk,j(x1, x2) into two parts as

Hk,j(x1, x2) = − i

π
(Hs

k,j(x1, x2) +Hc
k,j(x1, x2)),

where

Hc
k,j(x1, x2) =

(x2 − x1)πi
b− a

, if k = j = 0,

1

(jβ + k)

[
exp

(
((jβ + k)x2 − (j + k)a)πi

b− a

)
−

exp
(

((jβ + k)x1 − (j + k)a)πi
b− a

)]
, otherwise.

(1.29)
and

Hs
k,j(x1, x2) =

(x2 − x1)πi
b− a

, if k = j = 0,

1

(jβ − k)

[
exp

(
((jβ − k)x2 − (j − k)a)πi

b− a

)
−

exp
(

((jβ − k)x1 − (j − k)a)πi
b− a

)]
, otherwise.

(1.30)
Matrices Hs and Hc have a Toeplitz and Hankel structure, respectively, if
Hs

k,j(x1, x2) = Hs
k+1,j+1(x1, x2) and Hc

k,j(x1, x2) = Hc
k+1,j−1(x1, x2), which

is the case for β ≡ 1. In other words, pricing Bermudan options can be
done highly efficiently when exponential Lévy asset price models are em-
ployed. Then, the Fast Fourier Transform can be applied directly for matrix-
vector multiplication [35], and the resulting computational complexity of
Ck(x1, x2, tm) is O(N log2N).

10

We would obtain terms of the form jβ−k, jβ+k in the matrix elements
in (1.29) and (1.30), instead of terms with j − k, j + k if β 6= 1 in (1.27).
Terms with β not being an integer hamper an efficient computation of the
matrix-vector products, leading to computations with O(N2) complexity.

American Options

For the valuation of American options by the COS method, there are ba-
sically two approaches. One is to approximate an American option by a
Bermudan option with many exercise opportunities, the other is to use
repeated Richardson extrapolation on a series of Bermudan options with
an increasing number of exercise opportunities. Here we will focus on the
extrapolation-based method, which has been described in detail in [20], al-
though the approach dates back to [38].

Let here v̂(M) be the price of a Bermudan option with M exercise dates
with a maturity of T years where the exercise dates are ∆t = T/M years
apart. It is assumed that v̂(M) can be expanded as:

v̂(M) = vAM +
∞∑
i=1

ai(∆t)γi , (1.31)

with 0 < γi < γi+1; vAM is the American option value. Classical extrap-
olation procedures assume that the exponents γi are known, which means
that we can use n + 1 Bermudan prices with varying ∆t to eliminate the
n leading order terms in (1.31). The prices of American options can be
obtained by applying repeated Richardson extrapolation on the values of a
few Bermudan options with small M. We use the following 4-point repeated
Richardson extrapolation scheme,

v̂AM (M) =
1
21

(64v̂(8M)− 56v̂(4M) + 14v̂(2M)− v̂(M)) , (1.32)

where v̂AM (M) denotes the approximated value of the American option 4.

1.3 Error Analysis

In this subsection we give error analysis for the COS pricing method, focusing
on Bermudan call options. First, we analyze the local error, i.e., the error in
the continuation values at each time step. A similar error analysis has been
performed in [34], where, however, the influence of the call payoff function
on the global error convergence was omitted. Here, we study the influence
of the payoff function and the integration range on the error convergence.

4Without any dividend payments, of course, the American call option value is equal to
the European call option value.

11

It has been shown, [34], that the error in the continuation value, calcu-
lated by the COS method, consists of three parts, denoted by ε1, ε2 and ε3,
respectively.

Error ε1 is the integration range error

|ε1(x, [a, b])| = e−r∆t

∫
R\[a,b]

v(y, T)f(y|x)dy,

which depends on the payoff function and the integration range.
Error ε2 is the series truncation error on [a, b], which depends on the

smoothness of the probability density function of the underlying processes:

ε2 (x;N, [a, b]) := e−r∆t
∞∑

k=N

Re
{
e−ikπ a

b−a

∫ b

a
ei

kπ
b−a

yf(y|x)dy
}
· Vk. (1.33)

For probability density functions f(y|x) ∈ C∞[a, b], we have

|ε2(x,N, [a, b])| < P exp(−(N − 1)ν),

where N is the number of terms in the Fourier cosine expansions, ν > 0 is a
constant and P is a term which varies less than exponentially with respect
to N . When the probability density function has a discontinuous derivative,
then the Fourier cosine expansions converge algebraically,

|ε2(x,N, [a, b])| <
P

(N − 1)β−1
,

where P is a constant and β ≥ 1 is the algebraic index of convergence.
Error ε3 is the error related to the approximation of the Fourier cosine

coefficients of the density function in terms of its characteristic function,
which reads

|ε3(x,N, [a, b])| = e−r∆t

N−1∑′

k=0

Re(
∫

R\[a,b]
eikπ y−a

b−a f(y|x)dy)Vk.

It can be shown that

|ε3(x,N, [a, b])| < e−r∆tQ1

∫
R\[a,b]

f(y|x)dy,

where Q1 is a positive constant.
We denote by

I1 =
∫

R\[a,b]
v(y, T)f(y|x)dy,

I2 =
∫

R\[a,b]
f(y|x)dy,

12

so that ε1 = e−r∆tI1, ε3 < e−r∆tQ1I2. Integral I1 then depends on the
payoff function and the integration range, whereas I2 depends only on the
integration range.

We start with a discussion about the influence of the payoff function on
the error convergence and then we analyze the influence of L in (1.16).

For an option with a bounded payoff function, such as a put option, we
have ∀y, v(y, T) ≤ Q2, so that it follows directly that

I1 ≤ Q2I2, (1.34)

and both ε1 and ε3 can be controlled by means of parameter L. This was
the basis for the detailed error analysis for Bermudan put options in [35].

However, in the case of an unbounded payoff, for instance, a call option,
we have:

I1 =
∫

R\[a,b]
v(y, T)f(y|x)dy ≥

∫ ∞

b
v(y, T)f(y|x)dy

=
∫ ∞

b
(Key −K)+f(y|x)dy ≥ K(eb − 1)

∫ ∞

b
f(y|x)dy (1.35)

Note that we assume that b ≥ 0, as otherwise for all y ∈ [a, b], v(y, T) = 0
and the option value is also zero.

Function
∫∞
b f(y|x)dy is bounded by 0 <

∫∞
b f(y|x)dy < 1.

Denoting by Q3 , K
∫∞
b f(y|x)dy then

I1 ≥ Q3(eb − 1).

Function eb − 1 will, however, not decrease to zero as N , the number
of terms in the Fourier cosine expansion, goes to infinity. Furthermore, the
larger the integration range, the larger the value eb − 1, i.e. the error in
the option price. Given the fact that ε1 = e−r∆tQ3(eb − 1), the global error
in the call option price may increase as the integration range [a, b] (or L)
increases. This implies that when we directly use the COS formula for a call
option, the value may diverge, depending on the decay rate of f(y|x). This
is not the case if a very small integration range (or a very small value of L)
is used, but by this error ε3 may increase. This is the next topic in the error
analysis.

To study the influence of truncation on the error convergence, we start
the analysis with the Black–Scholes model. From the cumulative density
function (which is known analytically) it follows that with L = 6, we find
I2 = 1.9732 × 10−9 and with L = 8, we have I2 = 1.3323 × 10−15, so that
with L ∈ [6, 8] the errors ε1 and ε3 can be controlled. Incorporating jumps in
a Lévy model gives rise to a slightly larger value of L. As shown in [35], an
integration range with L ∈ [8, 10] is sufficient for most of the Lévy processes
with T > 0.1 to bound I2 (but not always for I1).

13

In general, from Chebyshev’s inequality we know that for any random
variable, X, with expected value µ and finite variance σ and for any real
number k > 0, Pr(|X − µ| ≥ kσ) ≤ 1

k2 , which implies

I2(x0) =
∫

R\[a,b]
f(y|x0)dy = Pr(|XT − (ξ1 + x0)| ≥ L(ξ2 +

√
ξ4))

≤ Pr(|XT − (ξ1 + x0)| ≥ L(ξ2)) ≤
1
L2
.

Therefore for all processes and model parameters, I2 decays at least alge-
braically with algebraic index n ≥ 2.

1.4 Pricing Bermudan Call Options Using Put-
Call Relations

In this section, we present two techniques to deal efficiently with the inac-
curate pricing by the COS method for Bermudan call options. With our
improved method, the Fourier cosine coefficients of call options need not
to be calculated directly at each time step, which will eliminate the error
related to the unbounded payoff of call options. In Section 1.4.1 we discuss
the use of the put-call parity relation, and in Section 1.4.2 we explain the
use of the put-call duality relation. These techniques are accompanied by
error analysis in Section 1.4.3.

1.4.1 The Put–Call Parity

Here we give details of the use of the European put-call parity for the robust
pricing of Bermudan call options by means of the COS method.

At each time step we need to calculate the continuation value based on
the Fourier coefficients of the call option payoff. The continuation value is
then used to determine the early–exercise points, and to recover the Fourier
cosine coefficients for a next time step. In these steps, the influence of an
exponentially–increasing payoff can be significant, similar as for European
call options. Here, we modify the pricing algorithm for Bermudan call op-
tions employing put–call parity (1.17).

We denote the Fourier cosine coefficients for a put and a call option at
tM = T by V put

k (tM) and V call
k (tM), respectively. By (1.17) we then find

e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a) · V call
k (tM) (1.36)

= Ste
−q∆t −Ke−r∆t + e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a) · V put
k (tM).

14

We have V put
k (tM) = Gput

k (a, 0) and V call
k (tM) = Gcall

k (0, b), where Gput
k and

Gcall
k are the Fourier cosine coefficients for the respective payoffs. So, we can

write (1.36) as:

e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a)Gcall
k (0, b) = Se−q∆t −Ke−r∆t +

e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a)Gput
k (a, 0). (1.37)

Equation (1.37) will be used in the backward recursion.
At t = M− 1, we first determine the early–exercise point, x∗M−1, by

Newton’s method, for which the functions c, g, ∂c/∂x, ∂g/∂x are required.
The continuation value for the call option now reads, using (1.36):

c(x, tM−1) = e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a)V put
k (tM)

+ Kexe−q∆t −Ke−r∆t, (1.38)

with x = log(S/K), and similarly we find:

∂c

∂x
= e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a (
ikπ

b− a
))V put

k (tM)

+ Kexe−q∆t. (1.39)

With x ≥ 0, we have g(x) = Kex−K and ∂g/∂x = Kex, whereas for x < 0
both the payoff and its derivative are zero, for all time steps.

With the early-exercise point determined, we need to compute the values,

V call
k (tM−1) := Ccall

k (a, x∗M−1, tM−1) +Gcall
k (x∗M−1, b). (1.40)

Application of (1.38) gives us:

Ccall
k (a, x∗M−1, tM−1) =

2
b− a

∫ x∗M−1

a
c(x, tM−1) cos(kπ

x− a

b− a
)dx

=
e−r∆t

π
Im(Hc +Hs)u+

2
b− a

Ke−q∆tχ(a, x∗M−1)

− 2
b− a

Ke−r∆tψ(a, x∗M−1) (1.41)

where Im means taking the imaginary part of the input argument, vector u
consists of values:

uj = φ(
kπ

b− a
;∆t)V put

j (tM), j = 1, · · · , N − 1,

15

and u0 = 1
2φ(0;∆t)V put

0 (tM). Matrices Hc,Hs are as in Equations (1.29)
and (1.30), with β = 1. Moreover,

χ(x1, x2) =
∫ x2

x1

ex cos(
kπ(x− a)
b− a

)dx,

ψ(x1, x2) =
∫ x2

x1

cos(
kπ(x− a)
b− a

)dx, (1.42)

both of which have an analytic solution.
We further have Gcall

k (x∗M−1, b) = Gcall
k (0, b)−Gcall

k (0, x∗M−1), and ∀x ∈
(0, x∗M−1) the payoff of a call option is less than the continuation value.
Therefore, Gcall

k (0, x∗M−1) can be calculated directly and it will remain ac-
curate, independent of the choice of integration range. Quantity Gcall

k (0, b)
will be replaced by Gput

k (a, 0) via (1.37).
We now arrive at the following lemma:

Lemma 1.4.1. Quantities c(x, tm), x∗m, and Ccall
k (a, x∗m, tm) can be recov-

ered from Ccall
k (a, x∗m+1, tm+1) in an accurate way for m = M−2, . . . , 1, with

a computational complexity of O(N log2N) at each time step. Ccall
k (a, x∗1, t1)

is then finally also recovered in a robust way.

Proof. At the time steps tm, m = M − 2, · · · , 1, the continuation value
reads

c(x, tm) = e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a)V call
k (tm+1)

= e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a)(Ccall
k (a, x∗m+1, tm+1)

− Gcall
k (0, x∗m+1)) + e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a)Gcall
k (0, b)

= e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a)(Ccall
k (a, x∗m+1, tm+1)

+ Gput
k (a, 0)−Gcall

k (0, x∗m+1)) +Kexe−q∆t −Ke−r∆t, (1.43)

where the last step is from (1.37). Derivative ∂c/∂x can be obtained sim-
ilarly. Together with g(x) and ∂g/∂x, they are used to determine early–
exercise point x∗m at tm.

Furthermore,

Ccall
k (a, x∗m, tm) =

e−r∆t

π
Im(Hc +Hs)u+

2
b− a

Ke−q∆tχ(a, x∗m)

− 2
b− a

Ke−r∆tψ(a, x∗m),

16

whereHc,Hs are as defined earlier in Equations (1.29) and (1.30) with β = 1
and vector u consists of elements:

uj = φ(
kπ

b− a
;∆t)(Ccall

j (a, x∗m+1, tm+1)+G
put
j (a, 0)−Gcall

j (0, x∗m+1)), (1.44)

and

u0 =
1
2
φ(0;∆t)(Ccall

0 (a, x∗m+1, tm+1) +Gput
0 (a, 0)−Gcall

0 (0, x∗m+1)). (1.45)

Regarding the computational costs, at each time step Ccall
k (a, x∗m, tm)

needs to be calculated once. Therefore we have the same computational
complexity as the original COS method, which is O(M− 1)N log2N .

Finally, the two terms Gput
k (a, 0) and Gcall

k (0, x∗m) at tm admit analytic
solutions.

At t0 we have

v(x, t0) = e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a)Vk(t1)

= e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
;∆t)ei(x−a) kπ

b−a)(Ccall
k (a, x∗1, t1)

+ Gput
k (a, 0)−Gcall

k (0, x∗1)) +Kexe−q∆t −Ke−r∆t, (1.46)

where the last step follows from (1.37) and we complete the robust and
efficient pricing of Bermudan options via the put-call parity relation.

1.4.2 The Put–Call Duality

In this section, we discuss a second possibility to price a Bermudan call with
the help of the pricing formula for a put. It is based on the put-call duality
from [55].

In the COS pricing formula (1.14), r, q, ν(dx) are essential in the defini-
tion of the characteristic function φ, whereas S and K enter the formula for
the Fourier cosine coefficients, Vk. Therefore, we use in this section the no-
tation φ := φ(u, t, r, q, ν). Moreover, we use V call

k (tm, S,K), V put
k (tm, S,K),

Vk(tm) to denote the Fourier cosine coefficients of European call options
(with stock price S and strike price K), of European put options and the
Fourier cosine coefficients of a Bermudan option at tm, respectively. We also
denote e−xν(dx) by ν̃(dx).

We start at tM = T . From tM to tM−1 the direct application of (1.18)

17

gives us

c(x, tM−1) = e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, r, q, ν)ei(x−a) kπ

b−a)V call
k (tM, S,K)

= e−q∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, q, r, ν̃)ei(−x−a) kπ

b−a)V put
k (tM,K, S)

(1.47)

where V call
k (tM, S,K) = Gcall

k (0, b), and

V put
k (tM,K, S) =

2
b− a

∫
(S − Sey) cos(kπ

y − a

b− a
)dy

=
2K
b− a

ex
∫

(1− ey) cos(kπ
y − a

b− a
)dy = exGput

k (a, 0).

Note that for both S and K as state variables in the put–call duality
formulation, integration ranges need to be defined. We set a = min(aS , aK),
b = max(bS , bK). The use of ”−x” in the second equation in (1.47) appears
because the state variable log(K/S) = − log(S/K) = −x.

At tM−1 the continuation value and its derivative read:

c(x, tM−1) = e−q∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, q, r, ν̃)ei(−x−a) kπ

b−a)exGput
k (a, 0),

(1.48)

∂c(x, tM−1)
∂x

= e−q∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, q, r, ν̃)ei(−x−a) kπ

b−a (− ikπ

b− a
))

· exGput
k (a, 0) + c(x, tM−1),

which are used to calculate the early–exercise point x∗M−1 by Newton’s
method, so that

Vk(tM−1) = Ck(a, x∗M−1) +Gcall
k (x∗M−1, b)

= Ck(a, x∗M−1, tM−1)−Gcall
k (0, x∗M−1) +Gcall

k (0, b)(1.49)

Now, ∀x ∈ (0, x∗M−1) the payoff of the call option is less than the con-
tinuation value. Therefore, Gcall

k (0, x∗M−1) can be calculated directly and it
will be accurate with respect to the size of the integration range; Gcall

k (0, b)
can be replaced by Gput

k (a, 0), in a similar way as (1.47).
The computation of Ck represents again the main part of the algorithm.

First, we demonstrate how to compute Ck(x1, x2, tM−1) in (1.49) with the
help of the Fast Fourier Transform (FFT), then we will show that for all

18

m = M− 2, · · · , 1, Ck(x1, x2, tm) can be recovered from Ck(x1, x2, tm+1).
We denote D(x1, x2) := {Dk(x1, x2)}N−1

k=0 , with

Dk(x1, x2) = e−q∆tRe(
N−1∑′

j=0

φ(
jπ

b− a
,∆t, q, r, ν̃)Gput

j (a, 0)Jk,j(x1, x2)),

(1.50)
in which

Jk,j(x1, x2) :=
2

b− a

∫ x2

x1

eijπ
βx− a

b− a
cos(kπ

x− a

b− a
)dx.

where now β = −1 − i(b−a)
jπ , which is different from β = 1. However, this

β-value still results in a sum of a Toeplitz plus Hankel matrix.
Application of (1.26) and (1.48) gives Ck(x1, x2, tM−1) = Dk(x1, x2),

∀k = 0, · · · , N − 1.
First, we study the structure of Jk,j then we computeD(x1, x2). From (1.29)

and (1.30), we find that

Jk,j(x1, x2) = − i

π
(Jc

k,j(x1, x2) + Js
k,j(x1, x2)),

with

Js
k,j(x1, x2) =

(−1)
(j − k) + i

π (b− a)
(exp(x2) exp(−(j − k)x2πi

b− a
)

− exp(x1) exp(−(j − k)x1πi

b− a
)) exp(−(j + k)aπi

b− a
)

=
(−1)

(j − k) + i
π (b− a)

(exp(x2)
1

exp((j−k)x2πi
b−a)

− exp(x1)
1

exp((j−k)x1πi
b−a)

) exp(
(j − k)aπi
b− a

)
1

exp(2jaπi
b−a)

,

and

Jc
k,j(x1, x2) =

(−1)
(j + k) + i

π (b− a)
(exp(x2) exp(−(j + k)x2πi

b− a
)

− exp(x1) exp(−(j + k)x1πi

b− a
)) exp(−(j − k)aπi

b− a
)

=
(−1)

(j + k) + i
π (b− a)

(exp(x2)
1

exp((j+k)x2πi
b−a)

− exp(x1)
1

exp((j+k)x1πi
b−a)

) exp(
(j + k)aπi
b− a

)
1

exp(2jaπi
b−a)

.

19

We denote u := {uj}N−1
j=0 with

uj = φ(
jπ

b− a
,∆t, q, r, ν̃)Gput

j (a, 0)
1

exp(2ja
b−aπi)

,

u0 =
1
2
φ(0,∆t, q, r, ν̃)Gput

0 (a, 0),

and we have

D =
e−q∆t

π
Im{(Jc + Js)u},

where Js is a Toeplitz matrix and Jc is a Hankel matrix.
Matrix-vector multiplications can be performed highly efficiently then,

with the help of the FFT.
With the use of the Fast Fourier and Inverse Fast Fourier Transforms,

the computational complexity of Ck(a, x∗M−1, tM−1) is O(N log2N).
We then have the following lemma:

Lemma 1.4.2. For m = M−2, · · · , 1, c(x, tm), x∗m, Ck(a, x∗m, tm) can all be
recovered from Ck(a, x∗m+1, tm+1) with computational complexity O(N log2N)
at each time step. Ck(a, x∗1, t1) is recovered at the final step.

Proof. For any m = M− 2, · · · , 1, the continuation value reads:

c(x, tm) = e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, r, q, ν)ei(x−a) kπ

b−aVk(tm+1))

= e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, r, q, ν)ei(x−a) kπ

b−a) ·

(Ck(a, x∗m+1, tm+1)−Gcall
k (0, x∗m+1) +Gcall

k (0, b))

= e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, r, q, ν)ei(x−a) kπ

b−a)

· (Ck(a, x∗m+1, tm+1)−Gcall
k (0, x∗m+1)) (1.51)

+ e−q∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, q, r, ν̃)ei(−x−a) kπ

b−a)exGput
k (a, 0).

The last step is from (1.18) and (1.47) and the fact that V put
k (K,S) =

exGput
k (a, 0). Gcall

k (0, x∗m+1) and Gput
k (a, 0) can be calculated directly from

their analytic solutions.
By (1.51) the continuation value, c(x, tm), is recovered from Ck(a, x∗m+1, tm+1)

and ∂c(x, tm)/∂x is directly calculated with (1.51).
The continuation value and its derivative are then used in the Newton

method to find early–exercise point x∗m, which splits Vk(tm) as follows:

Vk(tm) = Ck(a, x∗m, tm)−Gcall
k (0, x∗m) +Gcall

k (0, b).

20

From (1.51) we have that

Ck(a, x∗m, tm) =
2

b− a

∫ x∗m

a
c(x, tm) cos(kπ

x− a

b− a
)dx

=
e−r∆t

π
Im((Hc(a, x∗m) +Hs(a, x∗m))u1) +

e−q∆t

π
Im((Jc(a, x∗m) + Js(a, x∗m))u2), (1.52)

where we have four matrix-vector multiplications, instead of the usual two.
Matrices Hc and Hs are defined in (1.29) and (1.30), respectively, with

β = 1. Moreover, we have in (1.52):

u1
0 =

1
2
φ(0,∆t, r, q, ν)(C0(a, x∗m+1, tm+1)−Gcall

0 (0, x∗m+1)),

u1
j = φ(

jπ

b− a
,∆t, r, q, ν)(Cj(a, x∗m+1, tm+1)−Gcall

j (0, x∗m+1)), j = 1, · · · , N − 1,

u2
0 =

1
2
φ(0,∆t, q, r, ν̃)Gput

0 (a, 0).

u2
j = φ(

jπ

b− a
,∆t, q, r, ν̃)Gput

j (a, 0)
1

exp(2ja
b−aπi)

, j = 1, · · · , N − 1,

Hc and Jc are Hankel matrices, Hs and Js are Toeplitz matrices. There-
fore, the Fast Fourier Transform can be employed to compute Ck(a, x∗m, tm),
m = M− 2, · · · , 1 and the computational complexity at each time step is
O(N log2N).

From (1.51) and (1.52), ∀m = M−2, · · · , 1, c(x, tm), x∗ and Ck(a, x∗, tm)
can be recovered from Ck(a, x∗m+1, tm+1) with the help of the Fast Fourier
Transform, which finishes the proof.

With Ck(a, x∗1, t1) known, the call option price then reads:

v(x0, t0) = e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, r, q, ν)ei(x0−a) kπ

b−a)Vk(t1)

= e−r∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, r, q, ν)ei(x0−a) kπ

b−a)

· (Ck(a, x∗1, t1)−Gcall
k (0, x∗1)) (1.53)

+ e−q∆t

N−1∑′

k=0

Re(φ(
kπ

b− a
,∆t, q, r, ν̃)ei(−x0−a) kπ

b−a)ex0Gput
k (a, 0).

1.4.3 Error analysis with the put-call relations

As shown in the previous sections, European put option values, combined
with the put–call parity or the put–call duality relations, are used to price

21

European call options with the COS method. We denote by vcall and vput

the exact European call and put option values, respectively, and by v̂put the
put option value obtained by the COS method. Then, from the put–call
parity, we have, ∀x, t,

εcall(x, t) = vcall(x, t)− v̂call(x, t)
= vput(x, t) +Kexe−q(T−t) −Ke−r(T−t)

− (v̂put(x, t) +Kexe−q(T−t) −Ke−r(T−t))
= vput(x, t)− v̂put(x, t) = εput(x, t),

whereas for the put–call duality, we find:

εcall = vcall(S,K, r, q, t, v)− v̂call(S,K, r, q, t, v)
= vput(K,S, q, r, e−xν(−dx))− v̂put(K,S, q, r, e−xν(−dx)) = εput.

So, by means of the put–call relations, the error of the European call option
equals that of a put option. As for put options the payoff is bounded, we
have from (1.34):

|ε1(x, [a, b])| = e−r∆tI1 ≤ e−r∆tQ2I2. (1.54)

The error can be controlled if the integration range is sufficiently large (which
is our next issue). The above error analysis also implies that the error in
the continuation value of an early–exercise call option, as calculated from
the put–call relation at each time step, equals the error in the continuation
value of the corresponding put option.

The integration range is defined as in (1.16) and can be controlled by
parameter L.

After discussing the influence of the payoff and integration range on the
error convergence separately in the previous section, we give a remark on
the interaction of them on the error convergence of ε1.

Remark 1.4.1 (Interaction of Payoff and Truncation Range on ε1). From (1.35)
we see that

ε1 = e−r∆tI1 ≥ e−r∆tK(eb − 1)
∫ ∞

b
f(y|x)dy.

For the Black–Scholes model and other underlying processes for which the
density function decays very fast both at left and right tails, the fast decay in∫∞
b f(y|x)dy can compensate the exponential increase in eb−1. On the other

hand, for underlying processes with fat tails, for instance, the CGMY model
with Y close to 2, or with a long maturity, the error decay rate with respect
to L is not so high and we require a larger integration range. In these cases
the increase in eb − 1 may give rise to divergence of the call value and the
put–call parity or the put–call duality should be used for robust and accurate
option values. This is further illustrated by numerical examples in Section
1.5.

22

1.5 Numerical Examples

In this section we will show the method’s accuracy, efficiency and robustness
by a series of numerical examples. The CPU used is an Intel(R) Core(TM)2
Duo CPU E6550 (2.33GHz Cache size 4MB) with an implementation in
Matlab 7.7.0.

We use as reference values the Bermudan option prices obtained by the
robust version of the COS method, with a very fine grid (with N = 214).

In the experiments, we will use the CGMY model, with test parame-
ters Y = 0.5, Y = 1.5 and Y = 1.98; the remaining CGMY parameters
are chosen as [C,M,G] = [1, 5, 5]. Other parameters include: r = 0.1, q =
0.02, S0 = 100,K = 110. We set M = 10 and maturity T = 1. Compu-
tational time and the absolute error in the option value are displayed in
Tables 1.1 to 1.3. From these tables we see that for Y = 0.5 N = 256 is
sufficient while for Y = 1.5 and Y = 1.98 it is N = 128. When Y > 1, which
implies that the process has infinite activity, the error in the option price
is of order 10−12. From the tables we see that the methods with both the
put–call parity and the put–call duality converge very well within millisec-
onds. The CPU time when using the put–call duality is approximately twice
the time with put–call parity, because with the put–call duality we need to
calculate two matrix-vector products with Hankel and Toeplitz matrices at
each time step.

N 64 128 256 512
Parity: abs.err 2.9497e-004 1.0586e-005 8.5622e-007 1.1607e-007

ms. 4.959 6.819 10.484 18.878
Duality: abs.err 3.7177e-002 8.5904e-005 5.8262e-005 6.4494e-006

ms. 8.000 12.105 19.778 35.554

Table 1.1: Absolute error and CPU time (in milliseconds) for the CGMY
model, Y = 0.5. COS pricing with the put-call relations.

N 32 64 128 256
Parity: abs.err 7.7799e-003 1.8691e-005 2.2737e-012 5.6843e-014

ms. 3.735 4.699 6.760 10.527
Duality: abs.err 2.8937e-002 1.3074e-002 5.8769e-007 7.9581e-013

ms. 5.839 8.009 12.078 20.016

Table 1.2: Absolute error and CPU time (in milliseconds) for the CGMY
model, Y = 1.5. COS pricing with the put-call relations.

23

N 32 64 128 256
Parity: abs.err 4.0414e-001 3.8936e-004 1.1369e-013 < 1e− 016

ms. 3.690 4.831 6.664 10.577
Duality: abs.err 1.5431e-001 3.4510e-006 1.4495e-011 6.9207e-012

ms. 7.927 12.034 19.643 35.400

Table 1.3: Absolute error and CPU time (in milliseconds) for the CGMY
model, Y = 1.98. COS pricing with the put-call relations.

Figure 1.3 compares Bermudan call option values under the GBM model,
with S0 = 100,K = 80, r = 0.1, σ = 0.2, obtained directly by the COS
method with the values obtained via the put–call parity or the put–call
duality, and with reference values. The dividend rate is q = 0.02, and the
reference value is 53.355758 For very large values, L > 20, the option
values obtained by the COS method (without the put-call relations) differ
dramatically from the reference values. Pricing is robust, with respect to
the size of the integration interval when the put–call parity and the put–call
duality are applied, as then accurate call prices are obtained for any value
of L, see Figure 1.3.

(a) Put–Call Parity (b) Put–Call Duality

Figure 1.3: Bermudan call option values with varying L-values, GBM model,
r = 0.1, q = 0.02, σ = 0.2, T = 10,M = 50, L ∈ [10, 30].

We again consider the CGMY model, for which Figure 1.4 shows Bermu-
dan pricing results for Y = 0.5 and r = 0.1, q = 0.02. The other pa-
rameter values are as in the previous experiments. The reference value is
23.574835 Compared to Figure 1.3, the error in Bermudan call option
values under this CGMY parameter set is significantly larger than under the
GBM model. However, combined with the put–call parity or the put–call
duality, the option prices converge in a robust way to the reference value,
for all L.

24

(a) Put–Call Parity (b) Put–Call Duality

Figure 1.4: Bermudan call option values with varying L-values, CGMY
model with q = 0.02, Y = 0.5,M = 24, L ∈ [8, 10].

With parameter Y close to 2 in CGMY, the Bermudan call prices, com-
puted directly by the COS method are subject to cancellation errors even
for small sizes of the computational domain and small maturity dates, as
shown in Figure 1.5. Here the reference value for the Bermudan call is
99.053582 With T and M increasing, the error also increases. The
COS method with the put–call parity or the put–call duality remains how-
ever robust also for these parameter values.

Comparing Figures 1.5 and 1.4, we see that as Y increases, which im-
plies a fatter tail in the probability density function of the underlying, the
error in the call price obtained by the COS method with respect to large
computational domain sizes increases drastically.

(a) Put–Call Parity (b) Put–Call Duality

Figure 1.5: Bermudan call option values with varying L-values, CGMY
model with q = 0.05, Y = 1.98,M = 10, L ∈ [8, 10].

25

1.5.1 American Options

Finally, we price an American call option by the 4-point Richardson extrap-
olation using (1.32) with Bermudan options. We use the CGMY model with
Y = 1.5 and 1.98, and q = 0.05, and compare American calls for which the
Bermudan calls in the extrapolation are priced directly by the COS method
with those computed using the put–call parity or the put–call duality. In
the COS method we used N = 1024 in the case with Y = 1.98,M = 32 (M
as in (1.32)); in all other cases, N = 512 is sufficient for convergence. The
number of Newton iterations is set to 5 (as in [35]).

The accuracy of the American prices depends on parameter M in the
extrapolation formula (1.32). The results obtained are in Tables 1.4 and 1.5
with CPU time in seconds. In these tables the American option prices are
accurate and robust when the put–call parity or the put–call duality was
used in the COS pricing procedure.

M
Put-Call Parity Put-Call Duality direct COS method

option value time (sec.) option value time (sec.) option value time (sec.)

8 44.0934 0.243 44.0934 0.501 58.3396 0.238

16 44.0933 0.489 44.0933 1.002 56.6221 0.428

32 44.0936 0.998 44.0934 2.014 -5.3915e+02 0.840

Table 1.4: American call option values and CPU time (in seconds) by
Richardson extrapolation, under the CGMY model with, Y = 1.5, q = 0.05,
M in Eq. (1.32).

M
Put-Call Parity Put-Call Duality direct COS method

option value time (sec.) option value time (sec.) option value time (sec.)

8 99.1739 0.244 99.1739 0.497 -2.2964e+48 0.221

16 99.1739 0.520 99.1739 0.987 5.0141e+46 0.460

32 99.1738 0.976 99.1738 3.761 2.1427e+53 0.820

Table 1.5: American call option values and CPU times (in seconds) by
Richardson extrapolation, under the CGMY model with Y = 1.98, q = 0.05,
M in Eq. (1.32).

1.6 Conclusions and Discussion

In this chapter, we have discussed the COS option pricing method, based
on Fourier cosine expansions, for European options and Bermudan options.

26

The method can be used whenever the characteristic function of the under-
lying price process is available. It is especially efficient for exponential Lévy
processes.

The COS formula for European options from [34] can be used for pricing
Bermudan options, if the series coefficients of the option values at the first
early-exercise date are known. These coefficients can be recursively recov-
ered from those of the payoff function. The computational complexity is
O((M− 1)N log2N), for Bermudan options under Lévy processes with M
exercise dates. The COS method exhibits an exponential convergence in
N for density functions in C∞[a, b] and an impressive computational speed.
With a limited number, N , of Fourier cosine coefficients, it produces highly
accurate results. We have also presented error analysis for this method,
showing that convergence for put options is easily obtained, whereas the
unbounded payoff function for calls may hamper the robust convergence.
The convergence of directly applying the COS method to call options de-
pends of the choice of the integration range. Robust pricing, insensitive of
the choice of the size of the integration range, is achieved for call options,
when the put-call parity or the put–call duality relation is applied. The use
of these relations for call options with early exercise features has been ex-
plained in detail. It results in a robust pricing technique for Bermudan and
American options, independent of the size of the computational domain.

Pricing American options can be done by a Richardson extrapolation
method on Bermudan options with a varying number of exercise dates.

27

CHAPTER 2

Acceleration of the COS Option
Pricing Technique on Graphics

Processing Units

This chapter contains essentially the content of paper [69].

2.1 Introduction

In this chapter we deal with the highly efficient pricing of options on stocks
or other assets. It is particularly necessary when the asset price models
are calibrated to real market data. Option values, with many different pa-
rameter values for the underlying asset price process, are then computed
thousands of times in order to fit the mathematical model. In this chap-
ter, we show that it may make sense to perform this task on a Graphics
Processing Unit-based computer.

Integration-based option pricing with the help of the Fast Fourier Trans-
form is common practice for calibration (see, for example [16], [21], [26], [43]).

The COS method, as presented in Subsection 1.2, is applicable if the
characteristic function of the stochastic asset price process (i.e. the Fourier
transform of the conditional density function) is available. This is certainly
the case for state-of-the-art asset price models, like the Lévy jump processes
and the Heston stochastic volatility process, which we use in the current
chapter. However, also more involved hybrid stochastic processes, for exam-
ple for equity and interest rates can be considered, as long as we can get to a
characteristic function. For such asset models with stochastic volatility and
stochastic interest rate, like the Heston-Hull-White or the Heston–Gaussian

29

two-factor model, the analytic characteristic function is typically not avail-
able. However, after some appropriate reformulations of the SDE system
(see, for example [39]) the coefficients of the characteristic function can be
found as the solution of a Riccati system of ordinary differential equations
(ODEs), as described in [31]. These ODE systems can be solved numerically
by means of an explicit Runge–Kutta method or by other ODE solvers. We
will show that this task can also be performed efficiently on a GPU using
CUDA [75].

In practice, the option values obtained from a mathematical model should
be consistent with market option prices. Usually, options with many differ-
ent strike prices are needed for calibration. In the COS method, European
option prices for a vector of strikes can be computed in one computation,
which accelerates the calibration procedure significantly.

To further accelerate the calibration procedure, two approaches directly
come into mind. The easiest is to purchase a faster CPU! As an example,
Table 2.1 compares error convergence and CPU times between the CPU
used in [34] (CPU 1: Intel(R) Pentium(R) 4 CPU, 2.80GHz with cache size
1MB) and a faster CPU (CPU 2: Intel(R) Core(TM)2 Duo CPU, E6550 @
2.33GHz Cache size 4MB) for European calls under a Geometric Brownian
Motion asset process. Time is in milliseconds1.

N 16 32 64
ms(cpu1) 0.337 0.388 0.506

ms(cpu2) 0.1032 0.1503 0.2270
max.abs.error 0.0059 9.1396e-08 1.4211e-14

Table 2.1: Comparison of cpu times between different CPUs.

The faster CPU gives a satisfactory acceleration, but one needs to wait
(sometimes up to two years) for an acceleration by a factor two.

Another possibility to accelerate the pricing engine is to run the program,
or parts of it, on the popular Graphics Processing Unit, which supports
parallel computation. Executing a code on a GPU is worthwhile if:

1. A program can be divided into several independent parts;

2. A program does not contain many sequential parts;

3. A program does not require much memory transfer from host to device
or vice versa.

We will study the suitability of the GPU for the important task of calibra-
tion, which is traditionally done with European options. In that respect, it

11 millisecond=10−3 second

30

is a challenge to accelerate the pricing of European options. A well-known
insight in Numerical Mathematics and Scientific Computing is that it is of-
ten easy to accelerate a sub-optimal solver on novel hardware, but that it is
hard to improve the computing times for optimal solvers.

In this chapter, we will demonstrate a significant performance improve-
ment on the GPU, due to parallelization, when pricing European options
for several options simultaneously, i.e. with multiple strikes.

Earlier work in the direction of GPU acceleration of an integration-based
option pricing method [61] achieved an impressive speed-up on the GPU for
options with early-exercise features. By a relatively large number of space
and time points the advantages of the GPU implementation were shown. As
the COS method exhibits an exponential rate of convergence, a very large
number of computations is not necessary to get accurate option values. We
will focus on a speed-up on the GPU with not-more-than-necessary terms
in the Fourier cosine expansion.

For certain modern option products it also makes sense to calibrate to
barrier options, or other, liquid financial products. The pricing of barrier
options with the COS method is closely connected to the example of pricing
Bermudan options in the present chapter, see [35].

The outline of the current chapter is as follows. In Section 2.2, after
a short introduction on option pricing with multiple strike prices and the
Heston model, we will explain why the COS method can be well implemented
on the GPU. For European options different ways of implementation are
described in Section 2.3. Section 2.4 presents the speed-up for multi-strike
European options on the GPU. The acceleration of an explicit Runge–Kutta
method for numerically solving systems of Riccati ODEs to approximate a
characteristic function (if it is not available in closed form) is presented in
Section 2.4.3. Section 2.5 gives pricing results for Bermudan options. Here
the influence of the number of terms in the Fourier cosine expansion as well
as the number of early exercise dates on the GPU speedup is discussed.

The GPU we work with is an NVIDIA GeForce 9800 GX2, which has
two graphics processing units (GPUs) and 1 GB of memory (512 MB for
each GPU); the CPU on the same computer, needed for data transfer, is
an AMD Athlon(tm)64 X2 Dual Core Processor 4600+ (cache size 512 KB,
2412.364MHz).

The results obtained are compared with timings on a CPU from an
Intel(R) Core(TM)2 Duo CPU E6550 (@ 2.33GHz Cache size 4MB).

2.2 COS Pricing Method and Advantage of the
GPU

In Subsection 1.2 an introduction of the COS pricing method for European
options and Bermudan options was presented. In this section we discuss the

31

COS method for options focusing on pricing multiple strikes simultaneously
and explain why a GPU is advantageous when pricing an option.

2.2.1 Pricing of European Options with Multi–Strike Fea-
tures

With Xt = log(St/K), the solution for Equation (1.15) can be written as

Vk = UkK, (2.1)

where

Uk =

2

b− a
(χk(0, b)− ψk(0, b)), for a call,

2
b− a

(ψ(a, 0)− χ(a, 0)), for a put,
(2.2)

with

χk(x1, x2) :=
∫ x2

x1

ex cos
(
kπ
x− a

b− a

)
dx, (2.3)

ψk(x1, x2) :=
∫ x2

x1

cos
(
kπ
x− a

b− a

)
dx. (2.4)

Now, the pricing formula (1.14) reads:

v(x, t0) = Ke−r∆tRe(
N−1∑′

k=0

ϕ(
kπ

b− a
;x,∆t) · e−ikπ a

b−aUk). (2.5)

Let’s assume that we deal with a vector of strikes, K = [K(1), · · · ,K(P)]T ,
where P is the number of strikes. In this setting, x and the integration
upper and lower bounds, a and b, are functions of K, which implies that
they are also vectors with length P . For a vectorised version of the COS
method, enabling an efficient computation of multi-strike options, we define
the following matrices:

� Φ is a (P ×N)-matrix with elements

Φ(j, k+1) = ϕ

(
kπ

b(j)− a(j)
;x(j),∆t

)
exp

(
−ikπ a(j)

b(j)− a(j)

)
Uk(a(j), b(j)),

j = 1, · · · , P, k = 0, · · · , N − 1.

� Λ is a (P × P) diagonal matrix with Λ(j, j) = K(j), j = 1, · · · , P .

With these matrices, the formula for pricing options with multi–strike fea-
tures reads:

v(x, t0) = e−r∆t Λ Re(Φ I), (2.6)

where I is a (N × 1)-vector with its first element equal to 0.5 and all the
other elements equal to 1. This way option values for many strikes can be
computed simultaneously.

32

2.2.2 Underlying Asset Processes

In this chapter we discuss two different underlying asset processes, the
CGMY process, a Lévy jump process, and the Heston stochastic volatil-
ity process. For efficient use of the COS method, the characteristic function
for these processes is required. A discussion on the CGMY can be found
in Subsection 1.1.1. In the Heston stochastic volatility model, the under-
lying and the volatility are modeled by the following stochastic differential
equations,

dxt = (r − 1
2
µt)dt+

√
µtdW1,t,

dµt = λ(µ̄− µt)dt+ η
√
µtdW2,t, (2.7)

where xt and µt denote the log–asset price process and the variance of the
asset price process, respectively. Parameters λ, µ̄, η represent the speed of
mean–reversion, the long–term mean value of variance and the volatility of
volatility parameters, respectively. Moreover, W1,t and W2,t are Brownian
motions, correlated with correlation coefficient ρ.

For the log-asset price in the Heston model an analytic characteristic
function can be found, which reads:

ϕ(u;µ0,∆t) = exp(iur∆t+
µ0

η2
(

1− e−D∆t

1−Ge−D∆t
)(λ− iρηu−D)) ·

exp(
λµ̄

η2
(∆t(λ− iρηu−D)− 2 log

(
1−Ge−D∆t

1−G

)
)),

with D =
√

(λ− iηρu)2 + (u2 + iu)η2 and G = λ−iηρu−D
λ−iηρu+D .

For the value of D, we take the square root whose real part is non-
negative.

2.2.3 Advantage of COS method on GPU

Different operations in the COS method are run in MATLAB and C on the
CPU, and also in CUDA on the GPU. From Tables 2.2 to 2.4 we see that the
GPU is significantly faster than the CPU (either Matlab or C), especially
for functions like sin(x), cos(x), exp(x). This is due to its parallel features,
where operations on each element of a vector can be done independently.

Note that in this chapter, when we mention GPU time, it is the “time of
a GPU round trip”, where the time for the memory transfer from the host
to the device and vice versa is included.

The comparison of CPU and GPU time for the Fourier and inverse
Fourier transform is shown in Table 6.

Table 2.5 shows that the GPU is significantly faster than the CPU when
dealing with Fourier and inverse Fourier transform in C, but, compared to

33

size of x CPU(Matlab) CPU(C) GPU
65536 0.004811 0.005558 0.000672
262144 0.019119 0.022127 0.002650
1048576 0.075415 0.088729 0.008016

Table 2.2: Comparison of CPU time and GPU time for exp(x).

size of x CPU(Matlab) CPU(C) GPU
65536 0.008033 0.003585 0.000739
262144 0.032880 0.014503 0.003250
1048576 0.132002 0.057822 0.008042

Table 2.3: Comparison of CPU time and GPU time for sin(x).

size of x CPU(Matlab) CPU(C) GPU
65536 0.008048 0.003636 0.000729
262144 0.032933 0.014597 0.003252
1048576 0.132410 0.059626 0.008036

Table 2.4: Comparison of CPU time and GPU time for cos(x).

size of x CPU(Matlab) CPU(C) GPU
1024 0.000087 0.000440 0.000182
4096 0.000311 0.000764 0.000412
16384 0.001253 0.002087 0.000744

Table 2.5: Comparison of CPU time and GPU time for ifft(fft(x)).

MATLAB, it is only faster when the size of the vector is large. Moreover,
due to an unscaled inverse Fourier transform on the GPU, the result of
ifft(fft(x)) is length(x) · x and we need an additional operation in CUDA
compared to MATLAB to scale the result of ifft(fft(x)) to x. However,
because the GPU is more advantageous than the CPU in most of the time
consuming parts, it is expected to outperform the CPU for the COS algo-
rithm.

2.3 European Options

A European option can be viewed as a special case of a Bermudan option
with only one possible exercise date (the expiry time). For European options,
the Fourier and inverse Fourier transform operations are not needed.

34

2.3.1 Different Ways of GPU Implementation

In this section, we discuss different ways of implementation on a GPU.
Consider a simple case where we need to price one vanilla option.

From (1.14) the COS algorithm can be decomposed into two steps, i.e.,
computations on each element of a vector, i.e. Re(exp (−ikπ a

b−a)ϕ(kπ
b−a ;x, T−

t0)Vk), which can be parallelized; and the summation of vector elements.
We consider three ways of GPU implementation:

1. Directly run the whole code on the GPU, referred to as GPU1;

2. All operations related to each vector element are parallelized on the
GPU, whereas the summation is performed on the CPU. This hybrid
GPU/CPU way of implementation is referred to as GPU2;

3. When summing up the elements of a vector, we can split the vector in
two vectors, each of size N/2, and sum up these two on the GPU. The
procedure is repeated untilN = 1. The summation of pairs of elements
can be parallelized on the GPU this way. The number of operations
for the summation can be reduced from N to log2(N), referred to as
GPU3.

Figure 2.1: Comparison of different GPU implementations.

Figure 2.1 presents a comparison of the time consumed by the above men-
tioned three ways of GPU implementation and also the CPU time. Clearly,
GPU1 is faster than the CPU only when N , the number of terms in the
Fourier cosine expansion, is large, whereas the implementations GPU2 and
GPU3 are faster than either the CPU implementation or GPU1. Moreover,
as N increases, the speedup of GPU2 and GPU3 also increases. GPU3 is

35

slightly slower than GPU2 for small N , but when N is very large, GPU3
beats GPU2.

Unlike the CPU or GPU1, the time for GPU2 and GPU3 does not in-
crease much as N increases, until N ≈ 216.

For Bermudan options, implementation GPU3 is preferred, since the
complete code then runs on the GPU and data transfer can be reduced. With
GPU2, we would need to transfer data at each time step, which consumes
time.

In this chapter we will use implementation GPU3 for all numerical ex-
amples to follow.

2.3.2 Numerical Example

We take as an example the CGMY model with Y = 1.5. The other pa-
rameters are chosen as S0 = 100, r = 0.1,K = 80, C = 1,M = 5, G = 5.
Table 2.6 compares time and accuracy of the CPU and the GPU results,
with time measured in milliseconds. Table 2.6 shows that with N = 1024

N CPU(time) GPU(time) CPU(value) GPU(value)
256 0.193. . . 0.182 27.974744 27.974733
1024 0.691. . . 0.433 27.974744 27.974733

Table 2.6: Comparison of time and precision for CPU and GPU implemen-
tation of the COS method for a single European option.

the GPU implementation is 1.5 times faster than running the code on the
CPU. However, it is not necessary to take such a large value of N in the COS
method in practice, as with N = 256 the option values already differ less
than one basis point. Therefore, in the present setting (COS method, small
values of N , one option price) the use of a GPU is not really advantageous.
However, when dealing with multiple strikes, presented in Section 2.4, many
more computations are needed, so that the GPU performance will be more
profound.

2.4 Multiple Strike Option Pricing

In this section we focus on pricing European options, but now with multiple
strikes, on the GPU. The parameters used, next to S0 = 100, in the CGMY
process and for the Heston process are:

CGMY : r = 0.1, C = 1, G = 5,M = 5, Y = 1.5, T = 1;
Heston : r = 0.040, λ = 1.577, η = 0.575, µ0 = 0.018, ρ = −0.57, T = 10.

We price European call options with vectors of strikes, as shown in Table 2.7.

36

Number of strikes Strike values
3 strikes K = 80, 100, 120
5 strikes K = 80, 90, 100, 110, 120
9 strikes K = 80, 85, · · · , 115, 120
13 strikes K = 70, 75, · · · , 125, 130
17 strikes K = 60, 65, · · · , 135, 140
21 strikes K = 50, 55, · · · , 145, 150

Table 2.7: Number of strikes used in the numerical examples.

To efficiently implement (2.6) on a GPU, we first divide the P–axis and
the N–axis in different blocks and threads, as shown in Figure 2.2.

Figure 2.2: Blocks and threads.

Then, the elements of the (P ×N)-matrix can be calculated simultane-
ously, as illustrated in Figure 2.3.

When performing the summation on each row of the matrix, as the final
step in (2.6), we divide the (P ×N)-matrix into smaller sub-matrices. For
instance, with N = 128, and 21 strikes, the corresponding 21 × 128-matrix
can be subdivided into fifty–six matrices of size 3×16. The elements of these
smaller sub-matrices are copied to shared memory, as shown in Figure 2.4.

Here aBegin is the first location of As, i.e. the blocks with shared
memory, and tx, ty are the thread indices of As. Then, as we run the
program, data transfer only happens within the shared memory, and not in
the global memory, which saves us a lot of GPU time.

2.4.1 Convergence and Precision

Tables 2.8 and 2.9 present the convergence behaviour and the precision of
option values with 5 strikes and 21 strikes, respectively, for the two un-
derlying processes. Time is again measured in milliseconds. Option values
obtained with N = 216, and in double precision, are taken as the reference
values. We calculate the maximum absolute error, for varying values of N ,
over the strike vectors.

Both the GPU and CPU timing results are shown to be extremely fast,

37

Figure 2.3: Parallelization of the COS method for options with multiple
strike values.

Figure 2.4: Data transfer from global memory to shared memory.

as we need only N = 64 for the CGMY process and N = 128 for Heston’s
model to obtain converged option values on the GPU and the CPU. However,
the execution time on the GPU is significantly smaller than on the CPU. As
we are in the milliseconds range, one might question the relevance of this
gain in speed. However, within a calibration setting option prices have to
be computed very many times, which immediately turns a small gain into
a significant profit. The advantage of the use of the GPU becomes more
pronounced when the value of N and the number of strikes, K(P), increase,
since then more arithmetic operations are required. As shown in Tables 2.8
and 2.9, the acceleration on the GPU for Heston’s model increases for 5

38

strikes from 12 to 21, as N increases from 128 to 256. For 21 strikes, the
speedup on the GPU is a factor 37 for N = 128 and 47 for N = 256. Since
more computations are necessary to evaluate the characteristic function of
the Heston model, the speedup on the GPU for the Heston model is higher
than for the CGMY model. However, due to the fact that the GPUs used in
this test give computed values in single precision, round-off errors can build
up during the computation of the characteristic function on the GPU. A
larger maximum absolute error for the Heston model is therefore observed
in the tables.

CGMY model
N 32 64 128

MATLAB
ms 0.413230 0.745590 1.388770

max.abs.err 1.3409e-05 < 10−14 < 10−14

GPU
ms 0.141144 0.143051 0.152826

max.abs.err 0.000027 0.000034 0.000034
Heston model

N 64 128 256

MATLAB
ms 1.206600 1.958680 3.873950

max.abs.err 4.2839e-04 2.2218e-08 < 10−14

GPU
ms 0.154972 0.159979 0.182867

max.abs.err 0.000534 0.000104 0.000104

Table 2.8: Convergence and maximum absolute error when pricing a vector
of 5 strikes.

CGMY model
N 32 64 128

MATLAB
ms 1.335130 2.690250 5.340340

max.abs.err 1.3409e-05 < 10−14 < 10−14

GPU
ms 0.154018 0.169992 0.200987

max.abs.err 0.000053 0.000053 0.000053
Heston model

N 64 128 256

MATLAB
ms 3.850890 7.703350 15.556240

max.abs.err 6.0991e-04 2.7601e-08 < 10−14

GPU
ms 0.177860 0.209093 0.333786

max.abs.err 0.000534 0.000144 0.000144

Table 2.9: Convergence and maximum absolute error when pricing a vector
of 21 strikes.

Figure 2.5 presents the speed-up obtained on the GPU for different num-

39

bers of strikes, with N = 128, 512, 2048. It displays a speedup of 30 to 40
for 21 strikes on the GPU with N = 128 and a speedup of 60 to 70 for 13
and 17 strikes with N = 512. The GPU appears to be a very satisfactory
architecture for pricing options at multiple strikes.

Figure 2.5: GPU speed-up for Heston model with different numbers of
strikes, N = 128, 512, 2048.

Figure 2.5 also displays the influence of data transfer on the GPU time.
The data transfer time is the time to transfer the input (in this case the
value of the strikes) from the CPU to the GPU at the beginning plus the
time to transfer the output (the option values) back to the CPU after the
computations have finished.

GPU time is the sum of the data transfer and the computation time. For
larger input sizes the GPU is advantageous regarding the computations, but
the data transfer time increases. The influence of data transfer time is more
pronounced when the number of terms in the cosine expansion, N , reaches
1000.

For a closer look, we refer to Table 2.10, from which we see that due
to the parallelization the GPU computation time hardly changes when N
increases from 2048 to 8192. On the other hand, data transfer time is more
significant with increasing N , which gives a smaller acceleration for large N
and many strike values, as also shown in Figure 2.5.

2.4.2 Option Pricing with Short Maturity Times

In certain practical applications, profit opportunities may arise from the
calibration of Levy processes for European option contracts with a very
short time to maturity.

40

N 2048 4096 8192
Data transfer time excluded 0.086069 0.087023 0.084877
Data transfer time included 0.493050 1.350164 4.626989

Table 2.10: Influence of data transfer on the computational time on a GPU.

In this section, we report on the recent implementation of the COS
method on a different GPU architecture, a Tesla C1060, which also supports
double precision. The true advantages of this GPU for the COS method
implementation are for short maturity options, since we then need a larger
value of N (many terms in a cosine expansion) for convergence with the
COS method, thus more computations need to be performed.

In Table 2.11, the computational time in milliseconds is recorded on
this GPU and on the CPU for options under the CGMY model. A vector
of strikes, K = 90, 92, · · · , 110, is priced simultaneously. The maximum
absolute error 2 over all strikes for short maturities is also presented. The
model parameters used are C = 0.5, G = 10,M = 30, Y = 0.5 (Set 1) and
C = 0.25, G = 5,M = 50, Y = 1.5 (Set 2).

Set 1 with T = 0.1 (one month)
N 512 1024 2048

MATLAB
ms 5.9980 13.4580 27.9570

max.abs.err 2.4248e-04 4.0405e-06 1.1445e-07

GPU
ms 0.188828 0.279903 0.492811

max.abs.err 0.000255 0.000025 0.000025
Set 2 with T = 0.0001 (one hour)

N 1024 2048 4096

MATLAB
ms 9.4810 26.9409 60.3240

max.abs.err 1.6419e-04 7.5000e-08 4.8746e-16

GPU
ms 0.280857 0.494957 1.353979

max.abs.err 0.000019 0.000010 0.000010

Table 2.11: Convergence and maximum absolute error when pricing a vector
of 11 strikes.

For the experiments in Tables 2.8 and 2.9 we reached convergence with
N = 128 and we got speedups of 9 and 26 on the GPU for 5 and 21 strikes,
respectively. In Table 2.11, N = 1024 and N = 2048 were used in the two
experiments, respectively, for convergence at short maturities, and the Tesla
GPU then achieves speedups of 48 and 54.

2Reference values have been obtained with N = 220.

41

2.4.3 Riccati ODEs and Characteristic Function

In this subsection, we will implement an explicit Runge-Kutta ODE solver
to determine the characteristic function for Heston’s model. Riccati ODEs
arise in the determination of a characteristic function. Sometimes, as in the
case of the Heston model, the characteristic function is known analytically.
In the cases for which we cannot find an analytic expression, we may resort
to the numerical solution of the Riccati ODEs. A numerical procedure is
for example necessary for systems of stochastic differential equations, that
include stochastic interest rate and stochastic volatility. In the numerical
procedure operations like taking the square root of a complex number are
not needed, in contrast to the evaluation of the analytic solution. For the
numerical ODE solver the influence of single precision arithmetic is therefore
less pronounced, and we even obtain a higher accuracy than with the analytic
characteristic function.

From [31] we know that the characteristic function for the Heston model (2.7)
is of the following form:

ϕ(u;x0, µ0, t) = eA(u,t)+Bµ(u,t)µ0+Bx(u,t)x0 , (2.8)

with the coefficients A(u, t), Bx(u, t) and Bµ(u, t) given by the following
Riccati ODEs:

∂
∂tBx(u, t) = 0, Bx(u, 0) = iu,

∂
∂tBµ(u, t) = 0.5η2µ2

t − (λ− iρηu)µt − 0.5iu− 0.5u2, Bµ(u, 0) = 0,

∂
∂tA(u, t) = λµ̄µt + i(r − q)u, A(u, 0) = 0.

(2.9)
It is easy to see from (2.9) that Bx(u, t) = iu; A(u, t) and Bµ(u, t) are here
solved numerically by the explicit fourth order Runge–Kutta method (RK4),
and inserted in the general characteristic function (2.8), based on which we
then employ the COS method.

Tables 2.12 shows the corresponding timing results on the GPU and
the CPU for 5 and 21 strikes, respectively. Compared to the results in
Tables 2.8 and 2.9, a higher speed-up is achieved on the GPU. For 5 strikes,
with N = 128 and N = 256, the GPU timings are around 50 times faster
than the CPU results. For 21 strikes the acceleration on the GPU is a factor
of 100. Note that for 21 strikes, due to the increased data transfer, the
speedup reduces as N increases, but due to the exponential convergence
rate, N = 128 is sufficient for convergence.

Of course, option pricing with an analytic characteristic function is still
fastest, but the numerical solution of Riccati ODEs can be performed highly
efficiently on these units.

42

5 strikes
N 64 128 256

MATLAB
ms 37.9491 50.5196 81.1083

max.abs.err 4.2848e-04 8.4949e-08 1.0650e-07

GPU
ms 1.091957 1.121998 1.253843

max.abs.err 0.000443 0.000013 0.000013
21 strikes

MATLAB
ms 84.9870 145.0005 268.2299

max.abs.err 6.0979e-04 1.5607e-07 1.2847e-07

GPU
ms 1.228094 1.402855 2.689838

max.abs.err 0.000611 0.000037 0.000037

Table 2.12: Convergence and maximum absolute error for 5 and 21 strikes,
Heston model’s characteristic function obtained by RK4.

2.5 Bermudan Options

In this section we consider the pricing of Bermudan options with a discrete
number of early exercise points. Also here we do not focus on large values
of N or on many time points, M. With N = 160 in the COS method,
we obtain the price of a Bermudan option with an error smaller than 10−9.
Moreover, Bermudan options with up to 64 time points (M = 64) are typ-
ically sufficient to get a very satisfactory approximation of the value of an
American options (that can be exercised at any time before expiry) by a
repeated Richardson extrapolation, see [50].

We will show in this section that by exploiting the parallelism of a GPU
the COS algorithm is somewhat faster than on the CPU with a realistic
number of terms, N . The reduction of the total execution time is however
not as impressive as in the previous sections.

We use as a numerical example a Bermudan put option under the CGMY
process. The model parameters are S0 = 100,K = 80,M = 10, C = 1,M =
5, G = 5, Y = 1.5. Tables 2.13 and 2.14 compare time and accuracy on the
GPU and CPU.

With N relatively small, the Bermudan option price converges well and
the resulting error is small. However, as mentioned before, as N gets larger,
which is probably necessary for other types of options, the advantage of
using the GPU will become more pronounced.

We increase the number of exercise dates, M, to 20, 40 and 80 and
compare the GPU and CPU execution times. The model parameters are as
before. We use N = 512. The timing results are listed in Table 2.15.

With N = 512 the GPU is twice as fast as the CPU for different num-
bers of exercise dates. The number of exercise dates does not influence the

43

N CPU(time) GPU(time)
256 13.15. . . 11.02
512 24.69. . . 13.69
1024 46.65. . . 27.34

Table 2.13: Comparison between CPU and GPU execution times for the
CGMY model, for a Bermudan option; different numbers of terms in the
Fourier cosine expansion.

N CPU(value) GPU(value)
256 28.829781987399432 28.829739
512 28.829781987399425 28.829721
1024 28.829781987399404 28.829756

Table 2.14: Precision on the GPU, Bermudan put option, for different num-
bers of terms in the Fourier cosine expansion.

M CPU(time) GPU(time)
20 51.04. . . 26.09
40 104.00. . . 50.88
80 210.20. . . 100.54

Table 2.15: Comparison of CPU and GPU times for the CGMY model,
Bermudan option with a different numbers of exercise dates.

speedup of the GPU. This is because the algorithm can not be parallelized
in time, as we use values at tm+1 to calculate values at tm in the backward
recursion procedure. This results in a recursion of m = M− 1, · · · , 1 in the
CUDA implementation.

2.6 Conclusions

The COS method is a highly efficient pricing method for European and
early–exercise options. It is a challenge to implement an efficient method,
which requires a small number of terms in the Fourier cosine expansion and
a small number of exercise dates to approximate the value of an American
option, efficiently on a GPU.

We implemented the COS algorithm on the GPU using CUDA. The
GPU timings and option values were compared to those obtained on the
CPU. To exploit the advantages of a GPU, we split a vector (or matrix) and
perform summation in parallel, which enhanced the GPU performance.

44

A highly satisfactory performance on the GPU was observed, especially
in the case of multiple strike European option computations. Then, we
find GPU speedups ranging from 10 to 100, depending on the form of the
characteristic function and on the number of strikes that are computed si-
multaneously.

Although computation on a GPU to date still exhibits some disadvan-
tages, such as a somewhat time-consuming memory transfer, it is a highly
promising architecture for option pricing.

For involved SDE asset price models, the characteristic function must be
determined numerically by a Riccati ODE solver, as an analytic expression
is not available. Based on the results in this chapter, the numerical ODE
treatment by means of a fourth order Runge-Kutta method is also highly
efficient on a GPU.

A GPU-based architecture may serve very well as a calibration engine
in option pricing.

A comparison between a GPU and a single CPU may not be completely
fair. Instead we should have compared with a multi-core CPU machine (if
it would have been available to us). This would have improved the CPU
performance.

However, it should be noted that with a multi-core CPU, also the data
transfer time between the CPU and the GPU will improve. Since data
transfer time dominates the total execution time so far, we also expect an
increased speedup of the total GPU time compared to the times reported in
this chapter.

45

CHAPTER 3

Efficient Pricing of Commodity
Options with Early–Exercise under
the Ornstein–Uhlenbeck Process

This chapter contains essentially the contents of paper [71].

3.1 Introduction

Computational Finance is one of those mathematical areas in which stochas-
tic modeling and numerical mathematics are closely intertwined. Efficient
numerical pricing methods are for example required for financial derivatives,
on stocks, interest rates, credit or commodities, all governed by stochastic
differential equations. In this chapter we focus on a numerical pricing tech-
nique for commodity derivatives that can be exercised before the expiration
date of the contract.

Movements in the commodity markets expose participants to different
types of risks. An obvious way for market players to control their exposure
to price and volume fluctuations is by buying or selling derivatives written on
the underlying products. Bermudan options and also swing options, which
allow one to buy or sell extra quantities of a commodity, are commonly sold
derivatives with early-exercise features.

Significant contributions have been made in modeling commodity pro-
cesses by Schwartz and collaborators in [52, 58, 59, 60], where the authors
used a model of Ornstein-Uhlenbeck type [63], which accounts for the mean
reversion of prices, combined with a deterministic seasonality component.
Often these processes are combined with independent jump components

47

(this extension of the models studied here is straightforward). In this chap-
ter we deal with the COS method [34, 35] for pricing early-exercise op-
tions under the stochastic processes for commodities. In [35] it was shown
that the COS method can price the early-exercise and barrier options with
exponential convergence under various Lévy jump models. The computa-
tional complexity for pricing a Bermudan option with M exercise dates
was O((M− 1)N log2(N)), where N denotes the number of terms in the
Fourier-cosine expansion.

In the present chapter we show that this complexity cannot be easily
achieved in the case of mean reverting processes of Ornstein-Uhlenbeck (OU)
type. We therefore introduce an approximation of the original characteristic
function, so that the COS pricing algorithm remains highly efficient for early-
exercise commodity options under Ornstein-Uhlenbeck processes, but, at the
same time, the error in the option prices should be controlled by means of
error analysis.

This chapter is organized as follows. Details of the OU processes and
computational complexity are presented in Section 3.2. In Section 3.3 the
approximate OU model is introduced. It is followed by a detailed error anal-
ysis in Section 3.4; In Section 3.5 numerical results are presented. Finally
conclusions are summarized in Section 3.6.

3.2 Problem Definition

3.2.1 The Ornstein-Uhlenbeck Process

Stochastic processes for commodities are characterized by the properties of
mean reversion and seasonality. If for any reason the price of a certain com-
modity falls significantly due to overproduction, then market participants
expect the price to rise eventually as producers decrease their supply. More-
over, incorporation of seasonality in the model is necessary since energy
consumption (the use of electricity, for example) differs in different seasons
of the year.

We first look at the OU process without seasonality. The logarithm of
the commodity price, Xt = logSt, is modeled by an Ornstein-Uhlenbeck
mean reverting process. We define this process here under the so-called
equivalent martingale measure Q

dXt = κ(xQ −Xt)dt+ σdWQ
t ,with X0 = x0, (3.1)

with a Brownian motion, WQ
t , under measure Q, and the parameters κ and

σ represent the speed of mean reversion and volatility of the underlying
process, respectively. Under this measure, the parameter xQ := x− λ with
λ the market price of risk, and x the long-term mean value of the underlying
process. In the derivations to follow, we will just use x to denote xQ.

48

Xt is normally distributed, i.e.: Xt ∼ N (E(Xt),Var(Xt)), with:

E(Xt|F0) = x0e−κt + x
(
1− e−κt

)
,

Var(Xt|F0) =
σ2

2κ
(
1− e−2κt

)
.

Modeling energy prices by mean reversion is well supported by empirical
studies of the price behavior, as described in [7]. General diffusion models
that incorporate mean reversion go a long way in capturing the nature of
energy prices; notably their tendency to randomly oscillate away from, and
over time back towards, a price level determined by the cost of production.
These models have gained a more wide-spread acceptance among market
practitioners as progress is made in the techniques to estimate the mean
reversion level and the mean reversion rates.

We are interested in the characteristic function, E
(
eiuXT |Ft

)
, related

to model (3.1). Based on [31] the characteristic function is of the form
ϕ(u;x0, τ) = ex0B(u,τ)+A(u,τ) where τ := T − t; A(u, τ) and B(u, τ) satisfy
the following set of ODEs:{

B′(u, τ) = −κB, B(u, 0) = iu,
A′(u, τ) = κxB + 1

2σ
2B2, A(u, 0) = 0,

and the prime ′ denotes the derivative w.r.t. τ . For the solution we find:{
B(u, τ) = iue−κτ ,
A(u, τ) = 1

4κ
(
e−2κτ − e−κτ

) (
u2σ2 + ueκτ

(
uσ2 − 4iκx

))
.

(3.2)

Then the characteristic function of OU process reads:

ϕ(u;x0, τ) = eiux0e−κτ+A(u,τ). (3.3)

3.2.2 Incorporation of Seasonality Component

More realistic stochastic processes modeling commodity prices include a
seasonality component. As presented in [17, 52] we choose a commodity
price process, St, written as:

St = eζ(t)+Yt = Ξ(t)eYt , with S0 = Ξ(0), (3.4)

where Ξ(t) ≡ eζ(t) is a deterministic function which describes the seasonality
effect and Yt is a stochastic zero-level-mean reverting process given by:

dYt = −κYtdt+ σdW y
t , with Y0 ≡ y0 = 0,

with W y
t a Brownian motion, κ corresponds to the speed of mean reversion

and σ determines the volatility. By applying Itô’s lemma to Equation (3.4),

49

and adding and subtracting κζ(t), we obtain the dynamics for St of the
form:

dSt =
(

1
2
σ2 − κ(Yt + ζ(t)) + κζ(t) + ζ ′(t)

)
Stdt+ σStdW

y
t ,

ζ ′(t) being the derivative of ζ(t). This equals:

dSt =
(

1
2
σ2 − κ logSt + κζ(t) + ζ ′(t)

)
Stdt+ σStdW

y
t .

Setting θ(t) := ζ(t) +
(

1
2σ

2 + ζ ′(t)
)
/κ, we arrive at the following process:

dSt = κ(θ(t)− logSt)Stdt+ σStdW
y
t .

By taking the log-transform of the stock price, Xt = logSt, one recognizes
the model to be a mean reverting Hull-White model [41], i.e.:

dXt = κ
(
θ̃(t)−Xt

)
dt+ σdW y

t , with X0 ≡ x0 = logS0, (3.5)

where θ̃(t) = θ(t) − σ2/2κ. The choice θ̃(t) = x̄ gives the same process
as (3.1). This model is very similar to the model in [10] for electricity
prices. The OU process, Xt in (3.5), admits the solution:

Xt = x0e−κt + κ

∫ t

0
e−κ(t−s)θ̃(s)ds+ σ

∫ t

0
e−κ(t−s)dW y

t ,

and is thus normally distributed, i.e., Xt ∼ N (E(Xt),Var(Xt)), with:

E(Xt|F0) = x0e−κt + κ

∫ t

0
e−κ(t−s)θ̃(s)ds,

Var(Xt|F0) =
σ2

2κ
(
1− e−2κt

)
.

For process Xt = logSt, as given by Equation (3.5), we find the following
ODEs for the characteristic function:{

B′(u, τ) = −κB with B(u, 0) = iu,

A′(u, τ) = κθ̃(t)B(u, τ) + 1
2B

2(u, τ)σ2 with A(u, 0) = 0,

where τ = T − t for a European-style derivative, and τ = tm+1 − t, t ∈
[tm, tm+1], for a Bermudan option, between any consecutive exercise dates.
For the solution we find B(u, τ) = iue−κτ and A(u, τ) contains function θ̃(t),
which is given by:

θ̃(t) = θ(t)− 1
2
σ2

κ
=

1
κ
ζ ′(t) + ζ(t).

The ODE for A(u, τ) admits the following solution:

A(u, τ) =
∫ τ

0
A′(u, s)ds (3.6)

= iu

∫ τ

0
(ζ ′(T − s) + κζ(T − s))e−κsds+

1
4κ
u2σ2(e−2κτ − 1).

50

3.2.3 Computational Complexity

The conditional characteristic function between two time points s < t is
defined by

ϕ(u;x, t− s) := E(eiuXt |Xs)

=
∫

R
eiuyf(Xt = y|Xs = x, t− s)dy (3.7)

= eiux

∫
R
eiu(y−x)f(Xt = x+ (y − x)|Xs = x, t− s)dy.

We transform z := y − x, which gives

ϕ(u;x, t− s) = eiux

∫
R
eiuzf(Xt −Xs = z|Xs = x, t− s)dz. (3.8)

For underlying processes with independent and stationary increments, like
the exponential Lévy processes, the density f(Xt − Xs = z|Xs = x, t − s)
only depends on ∆t = t−s, and is independent of x. However, OU processes
are not defined by the property of independent and stationary increments
as the increment does not only depend on ∆t, but also on x. In other words,
its characteristic function is of the form (1.27) with β 6= 1.

From Lemma 1.2.1 we know that if β = 1 in the general characteristic
function form (1.27), efficient computation can be ensured for pricing early–
exercise options with the COS method, as the Fourier cosine coefficients of
the continuation value can be calculated by the FFT, and the computational
complexity at each exercise date is O(N log2N), where N is the number of
terms in the Fourier cosine expansions.

However, for the OU models, we have β = e−κ∆t , with and without
seasonality functions, and we obtain terms of the form jβ − k, jβ + k in
the matrix elements in (1.29) and (1.30), instead of terms with j − k, j + k,
for the Lévy jump processes. In particular, the term 1/(jβ ± k) cannot
be decomposed in terms j ± k, j and/or k, so that we cannot formulate
Hs,Hc in terms of Hankel and Toeplitz matrices. This hampers an efficient
computation of the matrix-vector products, leading to O(N2) computations
at each time step.

In the next section we will therefore introduce an approximate OU model
for which the efficient pricing technique with FFT can be applied.

3.3 An Approximate OU Model

In this section we introduce an approximation for the characteristic function
of the OU processes from Section 3.2, so that the performance of the COS
method for Bermudan options can be improved in terms of computational
complexity. The aim is to make use of the FFT algorithm as much as

51

possible with a modified characteristic function. Without loss of generality,
we will focus on Bermudan put options here.

The original characteristic functions of the OU processes with and with-
out seasonality can be written as:

ϕou(u;x,∆t) = eiuxeA(u,∆t)−iux(1−e−κ∆t) =: eiuxψ(u;x,∆t). (3.9)

Without seasonality we have:

A(u,∆t) =
1
4κ

(e−2κ∆t − e−κ∆t)(u2σ2 + ueκ∆t(uσ2 − 4iκx̄)),

and with seasonality:

A(u,∆t) = iu

∫ ∆t

0
(ζ ′(T − s) + κζ(T − s))e−κsds+

1
4κ
u2σ2(e−2κ∆t − 1).

The Fast Fourier Transform can be used in the computation of Fourier coef-
ficients Ck(x1, x2, tm), when ψ(u;x,∆t) in (3.9) is approximated by a func-
tion, which does not contain variable x. The (approximate) characteristic
function is then of the form (1.27) with β = 1. We denote by ϕapp(u;x,∆t)
this approximate characteristic function. The approximation suggested here
is as follows

ϕapp(u;x,∆t) := eiuxψ(u; E(x|F0),∆t). (3.10)

In other words, equation (3.8) is replaced by

ϕapp(u;x, t− s) := eiux

∫
R
eiuzf(Xt −Xs = z|Xs = E(Xs|F0), t− s)dz.

This approximation may not be accurate for all model parameters when
pricing Bermudan options. Comparison of the original characteristic func-
tion (3.9) with this approximation (3.10) gives us that

ϕapp(u;x,∆t) = ϕou(u;x,∆t)eiuε1 , (3.11)

where ε1 reads
ε1 = (x− E(x))(1− e−κ∆t). (3.12)

Based on (3.11) the approximation proposed may only be considered
accurate for sets of model parameters for which ε1 in (3.12) is less than a
prescribed tolerance level. This tolerance level is defined so that the Bermu-
dan option prices resulting from the approximate characteristic function at
each time step are accurate up to a basis point compared to the option prices
obtained by the original characteristic function of the OU process.

The tolerance level for ε1, as well as the requirements that model param-
eters should satisfy so that the approximate characteristic function (3.10)
is accurate and thus the Fast Fourier Transform can be used at each time
step, are determined by an error analysis in the next section.

52

3.4 Error analysis

Our aim is to keep the error, defined as the difference between Bermudan
option values calculated with the original characteristic function and those
obtained with Xs = x approximated by E(Xs) in ψ(u;x,∆t) in (3.9), less
than a basis point, which is 1/100-th of a percentage point. We here discuss
how the error in the option value can be controlled and the basis point
precision can be achieved.

We first introduce the following notation:

� εc(x, t) is the error in the continuation value c(x, t) at time t.

� εx(t) is the error in early–exercise point x∗t at time t.

� εV (t) is the error in Vk at time t, i.e. the error in the Fourier-cosine
coefficients of option value v(x, t).

We focus here on the error in Bermudan option values resulting from our
approximate characteristic function. For the basic convergence analysis of
the COS pricing method we refer the reader to [34] and [35].

3.4.1 The first step in the backward recursion

The first step in the backward recursion is from tM ≡ T to tM−1. The error
in the characteristic function, due to the approximation, gives an error in
the continuation value, c(x, tM−1), as well as a shift in the early-exercise
point, x∗tM−1

. These errors contribute to εV (tM−1), the error in Vk(tM−1).
The connection between the error in the continuation value and the error

in the characteristic function is presented in the following lemma.

Lemma 3.4.1. The error in continuation value reads

εc(x, tM−1) = c(x+ eκ∆tε1, tM−1)− c(x, tM−1), (3.13)

with ε1 defined in (3.12).

Proof. Applying (3.9) and (3.11) gives us:

ϕapp(u;x,∆t) = exp(iuxe−κ∆t +A(u,∆t) + iue−κ∆t(eκ∆tε1))
= exp(iu(x+ eκ∆tε1)e−κ∆t +A(u,∆t))
= ϕou(u;x+ eκ∆tε1,∆t). (3.14)

By substituting (3.14) in the COS pricing formula for continuation value (1.22),
we obtain:

ĉ(x, tM−1) = c(x+ eκ∆tε1, tM−1),

which results in:

εc(x, tM−1) = c(x+ eκ∆tε1, tM−1)− c(x, tM−1).

53

Then, we have the following corollary.

Corollary 3.4.1. For put options, if ε1 > 0, then εc(x, tM−1) < 0 ∀x, and
subsequently εx(tM−1) > 0, and vice versa if ε1 < 0.

Proof. The continuation value, c(x, t), is a decreasing function for put op-
tions. This implies that, for ε1 > 0,

εc(x, tM−1) := c(x+ eκ∆tε1, tM−1)− c(x, tM−1) < 0.

In this case, we have that at the early-exercise point related to the original
characteristic function, x∗tM−1

:

ĉ(x∗tM−1
, tM−1) < c(x∗tM−1

, tM−1) = g(x∗tM−1
, tM−1).

So, the continuation value is smaller than the payoff. Therefore, the ap-
proximate early–exercise point is larger than the original x∗tM−1

and thus
εx(tM−1) > 0.

For ε1 < 0,∀x, the proof that for εc(x, tM−1) > 0 ∀x, and that εx(tM−1) <
0 goes similarly.

The upper bounds of |εc(x, tM−1)| and |εx(tM−1)| are found in the next
lemma.

Lemma 3.4.2. For all x in the range of integration [a, b], we have that

|c(x+ eκ∆tε1, t)− c(x, t)| ≤ eaeκ∆t|ε1| =: ε̂c,∀t, (3.15)

which implies:
|εc(x, tM−1)| ≤ ε̂c, ∀x ∈ [a, b]. (3.16)

Error |εx(tM−1)| can furthermore be bounded in terms of ε̂c.

Proof. Application of Lagrange’s mean value theorem, gives∣∣∣c(x+ eκ∆tε1, t)− c(x, t)
∣∣∣ = eκ∆t

∣∣∣ε1∣∣∣∣∣∣∂c(x, t)
∂x

|x=δ0

∣∣∣, (3.17)

where δ0 ∈ (x, x + eκ∆tε1). The function ∂c(x, t)/∂x is a non–positive and
non–decreasing 1 function for x ≥ log(K) for Bermudan put options, which
goes to zero as x→∞. Therefore, when x ≥ log(K), we have

max
x∈[a,b]

∣∣∣∂c(x, t)
∂x

∣∣∣ =
∣∣∣∂c(x, t)

∂x
|x=a

∣∣∣. (3.18)

1It is non–decreasing is because the payoff of a put option is convex, which implies
that the gamma, ∂c2(x, t)/∂x2, is non–negative indicating a non-decreasing first derivative
∂c(x, t)/∂x (for a long position in the option).

54

We denote this derivative of the continuation value at a by c′(a, t), and thus,

|c(x+ eκ∆tε1, t)− c(x, t)| ≤ eκ∆t|ε1||c′(a, t)|. (3.19)

If a < log(K), then Eq. (3.18) is not valid and the upper bound is
|c′(K, t)|. However, it overestimates the error in the option value (that is, in
Eq. (3.45)). For example, if x is very small then for the complete integration
range [a, b] we will deal with the payoff (not the continuation value) and the
error is zero. Therefore we still use |c′(a, t)| for a < log(K), which works
well in all our numerical experiments.

Furthermore, at each time step we have |c′(x, t)| ≤ |g′(x, t)| for x <
log(K). So, if a < log(K) we have

|c′(a, t)| ≤ |g′(a, t)| = ea. (3.20)

For deep out-the-money (OTM) options, where a ≥ log(K), we find

|c′(a, t)| ≤ |c′(log(K)− 1, t)| ≤ |g′(log(K)− 1, t)| = elog(K)−1 ≤ ea. (3.21)

Summarizing, we find for all cases:

|c′(a, t)| ≤ ea. (3.22)

Substitution of (3.22) in (3.19) gives us that for ∀x ∈ [a, b] and for ∀t,

|c(x+ eκ∆tε1, t)− c(x, t)| ≤ eaeκ∆t|ε1| =: ε̂c,

which implies |εc(x, tM−1)| ≤ ε̂c. We now look at the error in the early–
exercise point at tM−1. Assume points x∗tM−1

and x∗tM−1
+ εx(tM−1) are

the early–exercise points obtained from the original and the approximate
characteristic functions, respectively. It follows that

c(x∗tM−1
, tM−1) = g(x∗tM−1

, tM−1),
ĉ(x∗tM−1

+ εx(tM−1), tM−1) = g(x∗tM−1
+ εx(tM−1), tM−1).

Therefore

g(x∗tM−1
+ εx(tM−1), tM−1)− c(x∗tM−1

+ εx(tM−1), tM−1)
= ĉ(x∗tM−1

+ εx(tM−1), tM−1)− c(x∗tM−1
+ εx(tM−1), tM−1)

=: εc(x∗tM−1
+ εx(tM−1), tM−1).

We introduce a new function h(x, t) := g(x, t)− c(x, t), so that we have

h(x∗tM−1
, tM−1) = 0,

h(x∗tM−1
+ εx(tM−1), tM−1) = εc(x∗tM−1

+ εx(tM−1), tM−1).

55

Application of (3.16) gives:

|h(x∗tM−1
+ εx(tM−1), tM−1)− h(x∗tM−1

, tM−1)|
= |εc(x∗tM−1

+ εx(tM−1), tM−1)| ≤ ε̂c. (3.23)

Using Lagrange’s mean value theorem for (3.23) gives us

|εx(tM−1)||h′(δ, tM−1)| ≤ ε̂c,

for some δ ∈ (x∗tM−1
, x∗tM−1

+ εx(tM−1)).
The fact that there is one early–exercise point for plain Bermudan put

options implies that

|h(x∗tM−1
+ εx(tM−1), tM−1)− h(x∗tM−1

, tM−1)| > 0.

If there is an error in the early–exercise point, i.e. if εx(tM−1) 6= 0, we have
that |h′(δ, tM−1)| > 0, so that

|εx(tM−1)| ≤
ε̂c

|h′(δ, tM−1)|
. (3.24)

Hence |εx(tM−1)| is bounded in terms of ε̂c. If ε̂c tends to zero, then
|εx(tM−1)| also tends to zero.

At the other time points, m = 0, . . . ,M− 2, the upper bound for the
shift in the early–exercise point can also be determined in terms of the error
in the continuation value. However, unlike time step tM−1, the error in
the continuation value is not only related to the approximate characteristic
function, but also to the error in Vk(t),

Vk(t) :=
∫ b

a
max(c(x, t), g(x, t)) cos(kπ

x− a

b− a
)dx.

We first have a look at the error in Vk(tM−1) from (1.23) in the following
lemma. We will need the results in the lemma to derive upper bounds in
the lemmas to follow.

Lemma 3.4.3. For εx(tM−1) > 0, two points, δ1 ∈ (x∗tM−1
+ εx(tM−1), b)

and δ2 ∈ (x∗tM−1
, x∗tM−1

+ εx(tM−1)) exist, so that

εV (tM−1) = εc(δ1, tM−1)Ik(x∗tM−1
+ εx(tM−1), b) + (3.25)

(g(δ2, tM−1)− c(δ2, tM−1))Ik(x∗tM−1
, x∗tM−1

+ εx(tM−1)).

where

Ik(x1, x2) =
2

b− a

∫ x2

x1

cos(kπ
x− a

b− a
)dx, (3.26)

56

can be viewed as the (analytically available) Fourier-cosine coefficient of an
option with value:

vI(x, x1, x2) =
{

1 if x ∈ [x1, x2],
0 otherwise.

(3.27)

Moreover, we have that |εc(δ1, tM−1)| ≤ ε̂c, and

|g(δ2, tM−1)− c(δ2, tM−1)| ≤ ε̂c. (3.28)

Proof. Here we assume that both early–exercise points, for the original and
approximate OU processes, lie in the integration range. If either x∗ or x∗+εx
lies outside range [a, b], it is set equal to the nearest boundary point. Vk can
thus be split as in (1.23) depending on the early–exercise point.

Let us first analyze the case of a positive error, εx(tM−1), in the early–
exercise point at tM−1. Between x∗tM−1

+εx(tM−1) and b, for the original and
the approximate OU processes, we use the continuation value. The error in
Vk(tM−1) in this interval originates from the error in the continuation value,
εc(x, tM−1). This error, which is denoted by εV1(tM−1), reads:

εV1(tM−1) =
2

b− a

∫ b

x∗tM−1
+εx(tM−1)

εc(x, tM−1) cos(kπ
x− a

b− a
)dx.

By application of the first mean value theorem for integration, there exists
a δ1 ∈ (x∗tM−1

+ εx(tM−1), b), so that

εV1(tM−1) =
2εc(δ1, tM−1)

b− a

∫ b

x∗tM−1
+εx(tM−1)

cos(kπ
x− a

b− a
)dx

= εc(δ1, tM−1)Ik(x∗tM−1
+ εx(tM−1), b), (3.29)

with Ik from (3.26). From (3.16) we have that |εc(δ1, tM−1)| ≤ ε̂c.
Between a and x∗tM−1

, for both the original and approximate OU pro-
cesses, we take the payoff function which for a put option reads g(x, t) =
max(K − ex, 0). There is no error in the payoff function, hence no error in
Vk(tM−1) along this part of the x–axis.

Between x∗tM−1
and x∗tM−1

+ εx(tM−1), with the original OU process
we use continuation value, c(x, tM−1). However, due to the shift in the
early–exercise point we have the payoff g(x, tM−1) instead, when using the
approximate OU process. This leads to an error in Vk(tM−1), denoted by
εV2(tM−1), which reads:

εV2(tM−1) =
2

b− a

∫ x∗tM−1
+εx(tM−1)

x∗tM−1

(g(x, tM−1)−c(x, tM−1)) cos(kπ
x− a

b− a
)dx.

57

By application of again the first mean value theorem for integration, there
exists a δ2 ∈ (x∗tM−1

, x∗tM−1
+ εx(tM−1)), so that

εV2(tM−1) = (g(δ2, tM−1)− c(δ2, tM−1))

· 2
b− a

∫ x∗tM−1
+εx(tM−1)

x∗tM−1

cos(kπ
x− a

b− a
)dx

= (g(δ2, tM−1)− c(δ2, tM−1))Ik(x∗tM−1
, x∗tM−1

+ εx(tM−1)).
(3.30)

For a put option, ∀t, ∀x > x∗t , c(x, t) − g(x, t) > 0, and function c(x, t) −
g(x, t) is non–decreasing 2 between x∗t and x∗t + εx(t). This implies:

|g(δ2, tM−1) − c(δ2, tM−1)| = c(δ2, tM−1)− g(δ2, tM−1)
≤ c(x∗tM−1

+ εx(tM−1), tM−1)− g(x∗tM−1
+ εx(tM−1), tM−1)

= |εc(x∗tM−1
+ εx(tM−1), tM−1)| ≤ ε̂c.

The last step is from (3.16).
Adding up (3.29) and (3.30) gives

εV (tM−1) = εV1(tM−1) + εV2(tM−1)
= εc(δ1, tM−1)Ik(x∗tM−1

+ εx(tM−1), b) +
(g(δ2, tM−1)− c(δ2, tM−1))Ik(x∗tM−1

, x∗tM−1
+ εx(tM−1)).

Remark 3.4.1. The case when εx(tM−1) < 0 goes similarly. It can then be
proved that points δ1 ∈ (x∗tM−1

, b) and δ2 ∈ (x∗tM−1
+ εx(tM−1), x∗tM−1

) exist,
so that

εV (tM−1) = εc(δ1, tM−1)Ik(x∗tM−1
, b) + (3.31)

(ĉ(δ2, tM−1)− g(δ2, tM−1))Ik(x∗tM−1
+ εx(tM−1), x∗tM−1

).

Moreover, |εc(δ1, tM−1)| ≤ ε̂c, and |ĉ(δ2, tM−1)− g(δ2, tM−1)| ≤ ε̂c.

3.4.2 Further steps in the backward recursion

We analyze the case t = tM−2 in the following lemma.

Lemma 3.4.4. |εc(x, tM−2)| ≤ ε̂c(1 + e−r∆t), ∀x ∈ [a, b].

2For put options in log-scale when x ≤ 0, function c(x, t) − g(x, t) is non–decreasing
and for x ≥ 0, c(x, t) − g(x, t) is non–increasing. For a put option early–exercise points
are negative. Therefore, between the two early–exercise points, x∗t and x∗t +εx(t), c(x, t)−
g(x, t) is non–decreasing.

58

Proof. We have, at t = tM−2,

|εc(x, tM−2)| := |ĉ(x, tM−2)− c(x, tM−2)|

= |e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)

· (Vk(tM−1) + εV (tM−1)) (3.32)

− e−r∆t

N−1∑′

k=0

Re(ϕou(
kπ

b− a
;x,∆t)e−ikπ a

b−a)Vk(tM−1)|.

Application of (3.14) gives:

|εc(x, tM−2)| ≤ |e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)εV (tM−1)|

+ |e−r∆t

N−1∑′

k=0

Re(ϕou(
kπ

b− a
;x+ eκ∆tε1,∆t)e

−ikπ a
b−a)Vk(tM−1)

− e−r∆t

N−1∑′

k=0

Re(ϕou(
kπ

b− a
;x,∆t)e−ikπ a

b−a)Vk(tM−1)| (3.33)

≤ |e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)εV (tM−1)|+ ε̂c.

The last step is from (3.15).
By application of Lemma 3.4.3, Equation (3.28) we have, for εx(tM−1) >

0,

|e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)εV (tM−1)|

≤ |εc(δ1, tM−1)| · |e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)

· Ik(x∗tM−1
+ εx(tM−1), b)|+ |g(δ2, tM−1)− c(δ2, tM−1)| ·

|e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)Ik(x∗tM−1
, x∗tM−1

+ εx(tM−1))|

≤ ε̂ce
−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)(Ik(x∗tM−1
+ εx(tM−1), b) +

Ik(x∗tM−1
, x∗tM−1

+ εx(tM−1)))

= ε̂cvI(x+ eκ∆tε1, x
∗
tM−1

, b), (3.34)

59

where we have used the fact that option values, represented by the cosine
series with Ik(·, ·), are positive. From (3.27) we have

vI(x+ eκ∆tε1, x
∗
tM−1

, b) = e−r∆t

∫
R
f(y|x+ eκ∆tε1,∆t)I(y)dy (3.35)

≤ e−r∆t

∫
R
f(y|x+ eκ∆tε1,∆t)dy = e−r∆t.

Substitution of (3.35) in (3.34) gives us

|e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)εV (tM−1)| ≤ ε̂ce
−r∆t. (3.36)

By using (3.36) in (3.33), we obtain

|εc(x, tM−2)| ≤ ε̂c + ε̂ce
−r∆t = ε̂c(1 + e−r∆t).

When εx(tM−1) < 0, it follows similarly, from (3.33) and Remark 3.4.1, that

|εc(x, tM−2)| ≤ ε̂c + |e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)εV (tM−1)|

≤ ε̂c + |εc(δ1, tM−1)| · |vI(x+ eκ∆tε1, x
∗
tM−1

, b)|+
|ĉ(δ2, tM−1)− g(δ2, tM−1)|

· |vI(x+ eκ∆tε1, x
∗
tM−1

+ εx(tM−1), x∗tM−1
)|

≤ ε̂c(1 + e−r∆t). (3.37)

The relations in (3.16) and Lemma 3.4.4 serve as the first steps in a
mathematical induction proof to find an upper bound for εc(t0), the error
in the Bermudan option price at t0, as follows:

Theorem 3.4.1. If we assume, ∀x ∈ [a, b], j ∈ {1, . . . ,M− 1},

εc(x, tM−j) ≤ ε̂c

j∑
l=1

e−r(l−1)∆t, (3.38)

then, it follows that, ∀x,

εc(x, tM−(j+1)) ≤ ε̂c

j+1∑
l=1

e−r(l−1)∆t. (3.39)

60

Proof. At tM−(j+1), we have

|εc(x, tM−(j+1))| = |ĉ(x, tM−(j+1))− c(x, tM−(j+1))|

= |e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)(Vk(tM−j) + εV (tM−j))

− e−r∆t

N−1∑′

k=0

Re(ϕou(
kπ

b− a
;x,∆t)e−ikπ a

b−a)Vk(tM−j)|

≤ |e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)εV (tM−j)|+ ε̂c, (3.40)

where the last step follows from (3.15).
With arguments as in Lemma 3.4.3 and its proof, we have that for

εx(tM−j) > 0, values δ1 ∈ (x∗tM−j
+ εx(tM−j), b) and δ2 ∈ (x∗tM−j

, x∗tM−j
+

εx(tM−j)) exist, so that,

εV (tM−j) = εc(δ1, tM−j)Ik(x∗tM−j
+ εx(tM−j), b)

+ (g(δ2, tM−j)− c(δ2, tM−j))Ik(x∗tM−j
, x∗tM−j

+ εx(tM−j)).

With the induction assumptions:

|εc(δ1, tM−j)| ≤ ε̂c

j∑
l=1

e−r(l−1)∆t, (3.41)

and

|g(δ2, tM−j)− c(δ2, tM−j)| ≤ |εc(x∗tM−j
+ εx(tM−j), tM−j)| ≤ ε̂c

j∑
l=1

e−r(l−1)∆t,

(3.42)

and by similar arguments as in Lemma 3.4.4 and its proof, we have that for
positive errors in the early–exercise point at tM−j ,

|e−r∆t

N−1∑′

k=0

Re(ϕapp(
kπ

b− a
;x,∆t)e−ikπ a

b−a)εV (tM−j)|

≤ ε̂c

j∑
l=1

e−r(l−1)∆tvI(x+ eκ∆tε1,min(x∗tM−j
, x∗tM−j

+ εx(tM−j)), b)

≤ ε̂c

j∑
l=1

e−r(l−1)∆te−r∆t = ε̂c

j+1∑
l=2

e−r(l−1)∆t. (3.43)

61

Therefore, we find that, for ∀x ∈ [a, b]:

|εc(x, tM−(j+1))| ≤ ε̂c

j+1∑
l=2

e−r(l−1)∆t + ε̂c = ε̂c

j+1∑
l=1

e−r(l−1)∆t. (3.44)

Remark 3.4.2. When εx(tM−j) < 0, the proof goes similarly, and we can
find that δ1 ∈ (x∗tM−j

, b) and δ2 ∈ (x∗tM−j
+ εx(tM−j), x∗tM−j

) exist, so that

εV (tM−j) = εc(δ1, tM−j)Ik(x∗tM−j
, b)

+ (ĉ(δ2, tM−j)− g(δ2, tM−j))Ik(x∗tM−j
+ εx(tM−j), x∗tM−j

).

With the induction assumptions,

|εc(δ1, tM−j)| ≤ ε̂c

j∑
l=1

e−r(l−1)∆t,

and

|ĉ(δ2, tM−j)− g(δ2, tM−j)| ≤ |εc(x∗tM−j
, tM−j)| ≤ ε̂c

j∑
l=1

e−r(l−1)∆t,

we can then also prove the inequalities (3.43) and (3.44) to hold.

It follows directly from (3.16), Lemma 3.4.4 and Theorem 3.4.1 that at
t0, for any x, the error in the Bermudan option price satisfies:

|εc(x, t0)| ≤ ε̂c

M∑
l=1

e−r(l−1)∆t = ε̂c
1− e−rT

1− e−r∆t
= |ε1|eκ∆tea

1− e−rT

1− e−r∆t
.

To obtain accuracy up to one basis point3 for Bermudan options, with the
approximate OU process, we prescribe that for all x

|εc(x, t0)| < 4 · 10−5,

which is equivalent to

|ε1| < e−κ∆te−a 1− e−r∆t

1− e−rT
· 4 · 10−5.

Therefore, the approximate characteristic function (3.10) and thus the Fast
Fourier Transform can be applied for pricing Bermudan options, if

|ε1| := |x−E(x)|(1−e−κ∆t) < e−κ∆te−a 1− e−r∆t

1− e−rT
·4 ·10−5 =: TOL. (3.45)

3To ensure the basis point precision the error in the option price should be less than
10−4. We also consider the influence of rounding up errors, and set therefore 4 ·10−5 here.

62

Finally, we need an approximation for |ε1| in practice. Note that

0 ≤ (E|(x− E(x))|)2 ≤ E|x− E(x)|2 = Var(x) ≤ σ2

2κ
.

So,
E(|x− E(x)|) ≤ σ√

2κ
. (3.46)

In our implementation we use the upper bound of this expected value to
estimate |ε1| and apply the Fast Fourier Transform with the approximate
characteristic function if σ√

2κ
(1− e−κ∆t) is below the tolerance level defined

by (3.45).

3.5 Numerical Results

The FFT can be applied in the parameter range for which

ε̂1 :=
σ√
2κ

(1− e−κ∆t) < TOL,

with tolerance level TOL defined in (3.45). In the so-called “non–FFT
range”, where ε̂1 > TOL, we use the characteristic function of the original
OU process to ensure accurate Bermudan option prices.

MATLAB 7.7.0 has been used for all numerical experiments and the
CPU is an Intel(R) Core(TM)2 Duo CPU E6550 (@ 2.33GHz Cache size
4MB). CPU time is recorded in seconds.

Figure 3.1 compares the FFT ranges with a fixed ∆t, but with different
maturities, T . With ∆t fixed, ε̂1 remains the same for the same κ and σ for
all maturities. However, as T increases, the tolerance level (3.45) decreases
so that we find a tighter criterion regarding the use of the FFT.

As σ (y–axis in Figure 3.1) increases to certain values, we cannot employ
the approximate OU model anymore, as ε̂1 increases, resulting in a large
error in the Bermudan option price.

An increase in parameter κ (x–axis in Figure 3.1) also leads to a decrease
of the size of the FFT range, see Figure 3.1, due to an increase in the value
of ε̂1 and a reduction in the tolerance level (3.45), see Figure 3.2, where
ε̂1 − TOL is plotted as a function of κ.

Figure 3.3 then presents the FFT and non–FFT ranges, with M = 5
and M = 50 for T = 1.

As parameter M, the number of exercise dates, increases, the range in
which the FFT can be applied expands. However, the influence of M on
the error and the tolerance level (3.45) is different for small and large model
parameters. This is illustrated in Figure 3.4. For small κ and σ (example
in Figure 3.4a), ε̂1 − TOL is an increasing function of M, whereas for large
model parameters (see Figure 3.4b), ε̂1 − TOL decreases as M increases.

63

(a) T = 1,M = 10 (b) T = 2,M = 20

Figure 3.1: FFT and non–FFT parameter ranges for different maturities,
with ∆t = 0.1.

Figure 3.2: Value of ε̂1 − TOL over κ, with T = 1,M = 10, σ = 0.8.

This can be detailed by the derivative of ε̂1−TOL overM (in Figure 3.5).
In both cases, the quantity goes to zero as M increases, which implies that
function ε̂1 − TOL converges. For small parameters, ε̂1 − TOL converges
fast, so that these sets fall in the FFT range (see Figure 3.3). On the other
hand, as Figure 3.5b shows, with large model parameters, ε̂1 − TOL > 0
when M is small. For large parameter values, the approximate model can
thus be used for large values of M. This insight is particularly helpful for
parameter sets at boundary of the FFT and non–FFT ranges, as will be
illustrated in the next subsection.

In our next tests we randomly choose different model parameters and
check whether the numerical experiments are in accordance with our er-
ror analysis. The range of parameters is κ ∈ [0.5, 2.5], σ ∈ [0.2, 0.8],
M ∈ {5, , . . . , 20}, T ∈ [1, 2], and we use seasonality function Ξ(t) =

64

(a) M = 5 (b) M = 50

Figure 3.3: FFT and non–FFT parameter ranges for different numbers of
early–exercise dates, with T = 1.

(a) κ = 0.5, σ = 0.3 (b) κ = 2.5, σ = 0.75

Figure 3.4: Value of ε̂1− TOL over M, with (a) small value of κ and σ and
(b) large value of κ and σ.

a1 + a2 sin(a3t) with a1 = 3, 5, 10, a2 ∈ [0.5, 2] and a3 ∈ [0.5, 2]. Figure 3.6a
presents results for the OU process without seasonality, whereas Figure 3.6b
shows results for the approximate OU process with seasonality. The x–axes
in the figures represent the logarithms of the error in the Bermudan option
price.

In these numerical simulations we only consider the continuation values
for the Bermudan options, as there is no error in the payoff function g(x, t)
neither in its Fourier-cosine coefficients Gk. For all parameter sets consid-
ered, the error is of order 10−4 or less, which implies that our approximation
is accurate up to one basis point.

65

(a) κ = 0.5, σ = 0.3 (b) κ = 2.5, σ = 0.75

Figure 3.5: Derivative of ε̂1 − TOL with respective to M.

(a) Without Seasonality (b) With Seasonality

Figure 3.6: Simulation result for OU processes: (a) without seasonality and
(b) with seasonality.

3.5.1 CPU Time and Accuracy

We perform some more experiments checking the validity of the error anal-
ysis.

We first consider the OU process without seasonality and choose the
following four sets of model parameters for the numerical examples and set
T = 1 and M = 10, 20, 50:

1. κ = 0.301, σ = 0.334. This parameter set originates from commodity
price calibration in [25].

2. κ = 1, σ = 0.5. This parameter set lies “in the FFT range” for M =
10, 20, 50, as in Figure 3.3.

3. κ = 2, σ = 0.7. This parameter set is at the boundary of the FFT range

66

(but still inside the FFT range) for M = 10, 20, 50, see Figure 3.3.

4. κ = 2.5, σ = 1. This parameter set lies outside the FFT parameter
range for M = 10, 20, 50, see Figure 3.3.

For each parameter set, the CPU time, in seconds, as well as the error are
recorded. We set N = 512 for which we are sure that convergence is achieved
in space when M = 20 and M = 50.

The numerical results are listed in Table 3.1, where CPU time 1 and CPU
time 2 are the run-times of the Bermudan COS method with the original
and the approximate OU model, respectively 4. Moreover, the log10(error)
quantity in the table represents the logarithm of the absolute error in the
Bermudan option price from the approximate model.

Parameter Set 1 Set 2 Set 3 Set 4
M = 10 log10(error) -10.7784 -7.3434 -4.9392 -2.3424

CPU time 1 15.2889 15.2108 15.2691 16.9608
CPU time 2 0.0063 0.0064 0.0065 0.0064

M = 20 log10(error) -10.9893 -7.0835 -4.4139 -1.9757
CPU time 1 31.8807 32.2614 32.3253 35.6780
CPU time 2 0.0120 0.0122 0.0124 0.0124

M = 50 log10(error) -11.2600 -6.9289 -4.1043 -1.7612
CPU time 1 81.9564 82.8565 91.6191 91.6244
CPU time 2 0.0287 0.0296 0.0301 0.0300

Table 3.1: CPU time and error for the two OU processes and different model
parameters.

In Table 3.1 it is shown that for all parameter sets in the FFT range
(sets 1 to 3), we can confirm the basis point precision. Moreover, the CPU
time drops from seconds to milli–seconds if the FFT can be applied. As κ
and σ increase (from sets 1 to 4), the error increases and the size of the FFT
range reduces. This is in agreement with our analysis. For parameter set 4,
for instance, only the use of the original characteristic function ensures the
basis point precision.

Table 3.2 gives the results of the Delta value, the first derivative of
the Bermudan option value with respect of the underlying stock price at
t = 0. Here parameter sets 1–3 in the FFT range are used. From Table 3.2
we see that for these parameters, where according to our error analysis
the approximation can be used, also the Delta value is within basis point
precision.

4The FFT is used with the approximate OU model.

67

Parameter Set 1 Set 2 Set 3
M = 10 log10(error) -10.4071 -7.2635 -5.1049

CPU time 1 16.1995 15.5985 15.6600
CPU time 2 0.0065 0.0065 0.0066

M = 20 log10(error) -10.6045 -6.9894 -4.5673
CPU time 1 32.8128 33.1084 32.8150
CPU time 2 0.0122 0.0125 0.0126

M = 50 log10(error) -10.4156 -6.8262 -4.2511
CPU time 1 85.3691 84.5079 84.5922
CPU time 2 0.0291 0.0301 0.0306

Table 3.2: CPU time and error for the two OU processes and different model
parameters.

3.5.2 Probability Density Function of ε1

In this subsection we take a closer look at the error in the characteristic
function, ε1:

ϕapp(u;x,∆t) = ϕou(u;x,∆t)eiuε1 . (3.47)

We have already seen that ε1 := (x − E(x))(1 − e−κ∆t). It is a normally
distributed process, with E(ε1) = 0 and Var(ε1) = σ2

2κ (1−e−2κt)(1−e−κ∆t),
because the OU process is also normally distributed.

Larger values of parameter t will give rise to larger variance in ε1, with
fixed value for ∆t. Therefore we analyze here the error ε1 at time point
T −∆t, which gives us the largest variance in the backward recursion. The
probability density functions for ε1 with T = 1 and T = 2 are shown in
Figures 3.7 and 3.8, respectively. We have chosen the parameter sets used
earlier, i.e., parameter set 1 with κ = 0.301 and σ = 0.334 (well in the FFT
range) and set 3 with κ = 2 and σ = 0.7 (at the boundary of the FFT range)
with T = 1. For T = 2 we used σ = 0.4 in set 3, so that this set also falls in
the FFT range for this test.

For the OU processes with and without seasonality, when model param-
eters are fixed, the density function of ε1 is essentially the same (with the
same variance).

From these figures we see that with T fixed, larger values for M result
in smaller errors in ε1. Moreover, small values for κ and σ also bring smaller
errors in characteristic function, compared to the larger model parameters.

3.5.3 Early-Exercise Points

In this subsection we compare the early–exercise points obtained from the
original and approximate characteristic functions, ϕou(u;x,∆t) and ϕapp(u;x,∆t),

68

(a) κ = 0.301, σ = 0.334 (b) κ = 2, σ = 0.7

Figure 3.7: Probability density function of ε1 with T = 1.

(a) κ = 0.301, σ = 0.334 (b) κ = 2, σ = 0.4

Figure 3.8: Probability density function of ε1 with T = 2.

respectively. We present early–exercise point x∗t=∆t, i.e. the value at the last
time step of the backward recursion, with T = 1 and M = 10, 20, 50.

We use here parameter set 1 (κ = 0.301, σ = 0.334) and parameter set 3
(κ = 2, σ = 0.7, at the boundary of the FFT parameter range).

The results are shown in Table 3.3.

M M = 10 M = 20 M = 50
Set 1, ϕou(u;x,∆t) 3.1438 3.1489 3.1516
Set 1, ϕapp(u;x,∆t) 3.1277 3.0742 3.0836
Set 3, ϕou(u;x,∆t) 3.3039 3.2822 3.2684
Set 3, ϕapp(u;x,∆t) 2.8212 2.8271 2.8084

Table 3.3: Early–exercise points at t = ∆t for Bermudan put options; pa-
rameter sets 1 and 3, T = 1, different values for M (no seasonality).

69

In Table 3.3 we see an increasing error in the early–exercise point, espe-
cially for parameters near the boundary of the range of κ- and σ-values for
which the FFT can still be applied. With small parameter values for κ and
σ, the error is relatively small (0.08 in Table 3.3).

Obviously, the Bermudan option prices with the approximate process
are much more accurate than the values of the corresponding early-exercise
points. This can be understood from Equation (3.24) in our error analysis.
There the error in the continuation value is divided by a small number (as
f ′(x, t) is defined as the derivative of the difference of the continuation value
and the payoff), resulting in a bigger error in εx, which is the error in the
early-exercise points.

3.5.4 Seasonality Experiment

Now we end with some test cases with seasonality. Our aim is to show
that the approximation works well for different seasonality functions. Two
seasonality functions are used:

1. Seasonality Function 1: Ξ(t) = 5 + sin(t),

2. Seasonality Function 2: Ξ(t) = 3 + 4 cos(0.25t).

We check two parameter sets at the boundary of the FFT range, see
Figure 3.1 and Figure 3.3.

1. Parameter Set 1: κ = 1.5, σ = 0.8, T = 1.

2. Parameter Set 2: κ = 0.85, σ = 0.7, T = 2.

CPU time as well as the log–absolute error in the option price from
our approximate model for different M are presented in Table 3.4. For the
parameter sets at the boundary, we cannot achieve basis point precision for
small values of M. However, the error drops below the tolerance level as M
increases, which is in accordance with our analysis.

3.6 Conclusion

In this chapter, we derive a characteristic function for an approximation of
the well-known OU process. This approximation enables us to apply the Fast
Fourier Transform when pricing Bermudan options by means of the COS
method. The approximate process may be employed if the error generated
by the approximation is less than a prescribed tolerance level. We would like
to ensure that the Bermudan option prices are accurate up to a basis point.
This tolerance level is determined by a detailed error analysis. In various
numerical experiments it is demonstrated that the characteristic function for
the approximate process, in combination with the tolerance level, predicts

70

Sea.Fun. Parameter Set 1 Set 1 Set 2 Set 2
M = 10 M = 50 M = 20 M = 40

1 log10(error) -3.2217 -4.0466 -3.6035 -4.1734
CPU time 1 15.7927 84.6543 33.1099 69.5744
CPU time 2 0.0230 0.0769 0.0457 0.0702

2 log10(error) -3.5567 -4.4686 -3.4631 -4.1343
CPU time 1 15.5535 84.7788 34.7118 74.6010
CPU time 2 0.0232 0.0774 0.0454 0.0690

Table 3.4: CPU time and error with parameter set at boundary of FFT and
non–FFT ranges.

well for which model parameter ranges, numbers of early–exercise dates and
seasonality functions the FFT can be safely applied. Moreover also the value
of Delta is obtained with basis point precision in the FFT range. For the
model parameter sets for which the error is below the tolerance level and
our approximation can thus be applied, we have reduced the computational
time for pricing of Bermudan options under the OU process from seconds
to milliseconds.

71

CHAPTER 4

An Efficient Pricing Algorithm for
Swing Options Based on Fourier

Cosine Expansions

This chapter contains essentially the contents of paper [70].

4.1 Introduction

Swing options are often encountered derivatives in the world of commodities.
A swing option usually consists of two contract parts: a future part and a
swing part. The future contract guarantees that the option seller delivers
certain amounts of a commodity (base load) to the option buyer at certain
times, T0 < T1 ≤ T2 · · · ≤ TN ≤ T , with T the maturity time. The swing
part gives the option buyer the right to order extra or deliver back certain
amounts. Usually, the motivation behind the purchase of a swing option is
to hedge the uncertainty in the future demand of a commodity. The future
part of a swing option can be priced as the discounted expected price of the
underlying commodity at the delivery times, whereas the swing part, the
focus of the present chapter, can vary in contract complexity and is most
interesting from a numerical point-of-view.

In the literature the swing option is often modeled as a Bermudan-style
option with swing actions being allowed at the (fixed) delivery times of the
base load, combined with some constraints. Pflug and Broussev [56] model
the bid and ask prices as the least acceptable contract price and the maximal
expected profit over demand patterns, respectively, and those prices are
determined by stochastic programming. They present an algorithm to find
the equilibrium prices from a game theoretic point-of-view.

73

Jaillet, Ronn and Tompaidis [42] use a trinomial model where a so-called
usage level is discretized. Their model is a multiple layer tree which captures
the information of the number of exercise rights remaining, the total amount
exercised, and the price scenario. By a swing action one moves from one
tree to another. A discrete binomial methodology is also applied by Lari-
Lavassani, Simchi and Ware [48], where a transition probability matrix is
used to calculate the expected profit, to be maximized over different swing
actions at each time step.

Carmona and Touzi [13] view swing options as American-style contin-
gent claims with multiple exercise opportunities and address the problem
from the perspective of multiple optimal stopping problems, dealt with by
means of Monte Carlo methods and Malliavin calculus. They focus on the
Black-Scholes dynamics. Zeghal and Mnif [67] extend that method to Lévy
processes.

Unlike the models in which swing actions are only allowed at discrete
times, Dahlgren [25] proposed a continuous time model to price the commodity-
based swing options. Here the option buyer can exercise the swing option
any time before expiry, and more than once, with an upper bound for the
maximum amount of additional commodity that can be ordered or deliv-
ered back (specified in the contract). After a swing action, the option buyer
cannot exercise again unless a recovery time, τR(D), has elapsed, where D
represents the amount of commodity. This recovery time can be constant, or
dependent on the amount of the last swing action. Dahlgren [25] connected
the price of the swing option to a system of discrete variational inequalities
of Hamilton-Jacobi-Bellman-type, that is solved by means of finite elements
and a projected successive over-relaxation (PSOR) algorithm [24]. A com-
bination of dynamic programming and a finite difference approximation of
the resulting partial integro-differential equation (PIDE) under Lévy jump
processes has been presented in [46].

The purpose of the present chapter is to develop an efficient alterna-
tive solution method for the continuous time model in [25], which is at
least competitive with PIDE solvers or Monte Carlo methods in terms of
efficiency, accuracy and flexibility. Our solution method for the swing op-
tion is based on dynamic programming, backward recursion and Fourier co-
sine expansions. For the dynamics of the underlying prices, we employ the
Ornstein-Uhlenbeck mean reverting process, commonly used in commodity
derivatives, and the CGMY Lévy jump process [14]. The present work can
be seen as a generalization, in terms of the financial products, of the work
in [34, 35].

This chapter is organized as follows. Details of swing options are pre-
sented in Section 4.2. In Section 4.3, our contribution to pricing swing op-
tions is described in detail. We consider both constant and state-dependent
recovery times. Numerical results are presented in Section 4.4. We focus in
this chapter on the algorithmic description, which is somewhat technical at

74

places. An error analysis is not included here, but it is included in [34, 35]
for European and Bermudan options, which are the building blocks of the
present swing option algorithm.

4.2 Details of the Swing Option

In our discussion, we ignore the future part of the swing option and concen-
trate on the swing part. Whenever we mention the term ’swing option’, it
indicates the swing part of the option.

4.2.1 Contract Details

Our assumptions for the swing option are listed below.

� We adopt the concept of recovery time, denoted by τR(D), which
means that if the option buyer has already exercised the swing op-
tion with an amount D at time point t, she has to wait τR(D) time
before a next swing action can be conducted. Two different models of
recovery time will be considered:

– Constant recovery time: If D 6= 0, τR(D) ≡ C, where C is con-
stant.

– State-dependent recovery time: Here the recovery time is as-
sumed to be an increasing function of D, independent of time
t, i.e. τR(D) = f(D).

Moreover, τR(D) = 0 if and only if D = 0, and this holds for both
types of recovery time.

� A swing option can be exercised at any time after a recovery time delay
until the expiry date T . It implies that we deal with an American-style
continuous problem.

� With the constraint of recovery time, a swing option can be exercised
more than once before expiry.

� The amount of commodity at each swing action,D, is assumed to range
from −L, · · · ,−1, 0, 1, · · · , L, where a negative amount implies back
delivery and a positive amount means ordering. The upper bound, L,
is necessary as otherwise it may be optimal to order or deliver back an
infinite amount of commodity, and thus receive an unrealistic profit.

� The price the option holder has to pay for ordering extra units of the
commodity is given by:

S if S ≤ Ka

Ka if Ka ≤ S ≤ Smax

S − (Smax −Ka) if S ≥ Smax,

75

Here S := St is the price of the underlying commodity, based on an
SDE for St, and the values of the strikes Ka and Smax are specified in
the contract.

� The price the option holder will receive for delivering back units of the
commodity is

Kd − Smin + S if S ≤ Smin

Kd if Smin ≤ S ≤ Kd

S if S ≥ Kd,

where the values of the strikes Kd and Smin are also specified in the
contract.

Based on the last two assumptions, the payoff function of a swing option is
of the form:

g(S, T,D) = D · (max(S −Ka, 0)−max(S − Smax, 0)
+ max(Kd − S, 0)−max(Smin − S, 0)) , (4.1)

with S = ST . This implies that there can be no profit unless the price of
the underlying fluctuates below or above the thresholds Kd or Ka. The two
other thresholds, Smin and Smax, are defined to protect an option writer
against extreme fluctuations, see [25]. Figure 4.1 shows an example of the
payoff for varying S and D.

Figure 4.1: Example of a payoff of a swing option with Smin = 20,Kd =
35,Ka = 45, and Smax = 80, and S and D varying.

76

4.2.2 Pricing Details

Assume that the first possible time at which a swing action is allowed 1 is T0:
0 < T0 < T . Let

ns := min{n|n ∈ IN+, n ≥ (T − T0)/τR(1)}, (4.2)

where τR(1) is the recovery time when D = 1. Then ns represents the
maximum number of swing actions that can be performed in the interval
[T0, T].

We set t∗n := T −nτR(1), so that t∗n is the last point in time for which we
can have n+ 1 swing actions, n = 1, · · · , ns − 1. Moreover, let In = (t∗n, T]
and Ins = [T0, T] be defined as shown in Figure 4.2 2.

On I1, there is only one opportunity left for a swing action, which im-
plies that the recovery time has no further influence for the future. Hence,
if it is profitable to exercise the swing option during (t∗1, T] one should exer-
cise the maximum possible amount, L. In this time interval the only issue
which needs to be decided is the optimal exercise time. So, the problem
is equivalent to an American-style option pricing problem, and the swing
option value for any t ∈ (t∗1, T] is equal to the value of an American option,
starting from t and expiring at T , with payoff g(S, t′, L), t′ ∈ (t, T].

Tt∗k−1t∗kt∗k+1 tAtB

� -Ik−1� -Ik\Ik−1� -Ik+1\Ik

� -(k − 1)τR(1)� -τR(1)� -τR(1)

Interval

Length

tA: Option holder can exercise at maximum k times.

tB: Option holder can exercise at maximum k + 1 times.

Figure 4.2: Division of the time axis and the maximum remaining number
of swing rights.

At any time t ∈ In+1\In, where t 6= t∗n, n = 1, · · · , ns−1, see Figure 4.2,
1If T0 > T we deal with a futures contract, and with T0 = T the price of the swing

option is just the payoff, g(S, T, 0), if a swing action is not profitable, and g(S, T, L)
otherwise.

2A division of the time interval into portions In+1\In was first proposed by M. Dahlgren
in [25]. Our analysis is based on the appendix in [25].

77

the option holder basically has two options: Either exercise the swing option
at any time in [t, t∗n] or not exercise until t+n , the time point immediately
after t∗n.

Note here that the length of interval In+1\In equals τR(1), the recovery
time for D = 1. It is therefore not possible to exercise more than once
within In+1\In. In the case of exercise, the problem reduces to the decision
of the optimal exercise time within In+1\In. So, for each possible amount,
D, the problem is equivalent to an American-style option problem, starting
at t ∈ In+1\In and ending at t∗n, with payoff

g(S, t′, D) = g(S, t′, D) + φt′
D(S, t′), t′ ∈ [t, t∗n], t ∈ In+1\In, (4.3)

where
φt′

D(S, t′) = e−rτR(D)ES,t′(v(S, t′ + τR(D))), (4.4)

and ES,t′ represents the conditional expectation of v(S, t′ + τR(D)) given
S(t′).

For each possible value of D, i.e., D = −L, · · · , L, we compute the cor-
responding value of the swing option at t, assuming that D commodities are
bought/sold within In+1\In, by an American-style option pricing method.
After taking the maximum over all values of D, we obtain the swing option
value at t ∈ In+1\In with t 6= t∗n if exercise takes place before t+n . We denote
the corresponding option value by v1(S, t).

On the other hand, if the option holder decides not to exercise before t+k
she has an option worth the discounted expected value:

v2(S, t) = e−r(t+n−t)ES,t(v(S, t+n)), t ∈ In+1\In, (4.5)

where
v(S, t+n) = v(S, t∗n + δ), 0 < δ << 1.

The value v(S, t+n) with t+n ∈ In\In−1, has already been obtained at the latest
step in the backward recursion. After another, European-type, backward
recursion procedure (4.5), value v2(S, t) is obtained. From the view of a
profit maximizing agent, we find that

v(S, t) = max (v1(S, t), v2(S, t)), t ∈ In+1\In.

Moreover, at each t∗n, the last time point to perform n + 1 swing actions,
which is also in In+1\In, the option value is the maximum of the payoff
g(S, t∗n, D) from (4.3), over all values of D, and the value of v(S, t+n).

Finally, for t ∈ [0, T0), a time interval in which swing actions are not yet
allowed, we have

v(S, t) = e−r(T0−t)ES,t(v(S, T0)),

which is computed by one step of a European option pricing algorithm.

78

This concludes the global description of the algorithm for the swing
option pricing method.

Summarizing, we can distinguish two major parts in the pricing algo-
rithm:

� For t ∈ (t∗1, T], we are faced with an American option pricing problem
with payoff g(S, t,D), given by (4.1), which can take five different
forms in five different regions of the spot price of the underlying (see
Figure 4.1). As mentioned, if it is profitable to exercise the swing
option in this time interval, then Dopt = L. Hence the swing option
price is the maximum of g(S, t, L) and the continuation value.

� For the other time regions, t ∈ [T0, t
∗
1), we compute the following two

quantities and compare them within each time region In+1\In:

– The value of an American option, v1(S, t), with payoff ḡ(S, t,D) :=
g(S, t,D) + φt

D(S, t), as in (4.3), and φt
D as in (4.4).

– The discounted value v2(S, t) = ES,t(v(S, t+n)).

For the values v(S, t+n) we only have to calculate the value of v1(S, t+n).
This is due to the fact that the discounted value of ES,t(v(S, t+n−1))

equals φt+n
D=1(S, t

+
n), which is less than (or equal to) the payoff with

D = 1 (since g is non-negative), and thus less than (or equal to) the
corresponding American option value, v1(S, t+n).

4.2.3 Commodity Processes

The commodity underlying the swing option is modeled by a stochastic
differential equation for the log–asset process. State variables x and y are
defined as the logarithm of the asset price St at tm−1 and tm, respectively:

x := log(Sm−1) and y := log(Sm),

respectively. Consequently, (4.1) can be rewritten (keeping the same nota-
tion, g, for the function based on the log–asset) as

g(x, t,D) := D · (max(ex −Ka, 0)−max(ex − Smax, 0)
+ max(Kd − ex, 0)−max(Smin − ex, 0)) . (4.6)

Function g from Equation (4.3) can be generalized accordingly, also keeping
the same notation, ḡ, for the function based on the log–asset.

Two underlying processes are considered in this chapter, an exponential
Ornstein-Uhlenbeck (OU) mean reverting process and a CGMY Lévy jump
process. An introduction on the OU and CGMY processes as well as the
expression of the corresponding characteristic functions, have been given in
detail in Subsection 3.2 and Subsection 1.1.1, respectively. Summarizing,

79

we deal here with two characteristic functions of the form given in (1.27)
in which, for the OU process, β = exp (−κ∆t), whereas for general Lévy
processes, we find β = 1.

4.3 Fourier Cosine Algorithm for Swing Options

In Section 4.2, we argued that the price of a swing option can be obtained
by a series of Bermudan- and American-style option pricing procedures.
For pricing we will work with the COS algorithm, which can be applied to
processes for which the characteristic function is available. In the following
subsections we generalize the COS algorithm to pricing swing options.

Remark 4.3.1. Subscript n in t∗n, as well as in t+n , decreases, from ns − 1
to 1, if we move forward in time, with t from 0 to T , see Figure 4.2. In
contrast, subscript m, denoting the early-exercise dates, in tm (without ∗)
increases and goes from 1 to M, if we move forward in time. Further, there
are NR = τR(1)/∆t ≡ τR(1)M/T early-exercise dates in each time interval
In+1\In, i.e. between time points t∗n+1 and t∗n.

4.3.1 Algorithm for the Final Time Interval, t ∈ I1

We start the detailed description of our pricing algorithm for swing options
by considering the last time interval, defined as I1, see Figure 4.2.

As mentioned in Subsection 4.2.2, in I1, the swing option is equivalent
to an American option. We can thus generalize the algorithm based on the
Fourier cosine expansions for Bermudan options to the swing option payoff
and combine it with a 4-point repeated Richardson extrapolation to obtain
an approximation of an American option price.

Fourier Cosine Coefficients

At tM = T , we have for the Fourier cosine coefficients of the swing option
value:

Vk(tM) = Gk(a, log(Kd), D) +Gk(log(Ka), b,D), (4.7)

with D = L, and a, b as in (1.11). Here

Gk(x1, x2, D) =
2

b− a

∫ x2

x1

g(x, tM, D) cos(kπ
x− a

b− a
)dx (4.8)

80

is the Fourier cosine coefficient of the swing option payoff.
In detail, we find, with D = L:

Vk(tM) =
2L
b− a

((Kd − Smin)ψk(a, log(Smin))

+ Kdψk(log(Smin), log(Kd))− χk(log(Smin), log(Kd))
+ χk(log(Ka), log(Smax))−Kaψk(log(Ka), log(Smax))
+ (Smax −Ka)ψk(log(Smax), b)) , (4.9)

with

χk(x1, x2) =
1

1 + (kπ
b−a)2

(
cos(kπ

x2 − a

b− a
)ex2 − cos(kπ

x1 − a

b− a
)ex1

+
kπ

b− a

(
sin(kπ

x2 − a

b− a
)ex2 − sin(kπ

x1 − a

b− a
)ex1

))
,(4.10)

and

ψk(x1, x2) =
(

sin(kπ
x2 − a

b− a
)− sin(kπ

x1 − a

b− a
)
)
b− a

kπ
, (k 6= 0), (4.11)

and for k = 0, ψk(x1, x2) = x2 − x1.
At each time step, tm, m = M − 1, · · · , 2, as in the case of a regu-

lar Bermudan option, the log-asset values for which the payoff equals the
continuation value are determined by Newton’s method. Based on these
values we can determine in which asset region we should take the contin-
uation value as the option value, and in which region we should take the
payoff. In the case of the swing option, there are two early-exercise points
at each time step, as it is profitable to exercise the option when the under-
lying is less than Kd or larger than Ka. We denote the lower and upper
early-exercise points for time tm by xd

m and xa
m, respectively. To deter-

mine the two early-exercise points by Newton’s method, we need the values
of c(x, tm), g(x, tm, D), ∂c(x, tm)/∂x, and ∂g(x, tm, D)/∂x, with the help of
the following formulae:

c(x, tm) = e−r∆t

N−1∑′

k=0

Re
{
ϕ(

kπ

b− a
;x,∆t)e−ikπ a

b−a

}
Vk(tm+1), (4.12)

∂c(x, tm)
∂x

= e−r∆t

N−1∑′

k=0

Re
{
ϕ(

kπ

b− a
;x,∆t) · iβ kπ

b− a
· e−ikπ a

b−a

}
Vk(tm+1),

(4.13)
with conditional characteristic functions ϕ(ω;x,∆t) in (4.12) and (4.13)
defined in (1.13). Function g is defined in (4.6) and its derivative is given

81

by the following expression:

∂g(x, tm, D)
∂x

=

−Dex, if log(Smin) ≤ x ≤ log(Kd),
Dex, if log(Ka) ≤ x ≤ log(Smax),
0, otherwise.

(4.14)

Once xd
m and xa

m have been determined, we split the Fourier coefficients Vk

into three parts, for m = M− 1, · · · , 1:

Vk(tm) = Gk(a, xd
m, D) + Ck(xd

m, x
a
m, tm) +Gk(xa

m, b,D),

with the Fourier cosine coefficient of the continuation value given by:

Ck(x1, x2, tm) =
2

b− a

∫ x2

x1

c(x, tm) cos(kπ
x− a

b− a
)dx, (4.15)

and c(x, tm) defined in (4.12), so that the value of Vk(tm) is obtained from
Vk(tm+1).

From basic calculus we have that, if xd
m < log(Smin),

Gk(a, xd
m, D) = D · 2

b− a
(Kd − Smin)ψk(a, xd

m), (4.16)

and otherwise,

Gk(a, xd
m, D) = D · 2

b− a
((Kd − Smin)ψk(a, log(Smin))

+ Kdψk(log(Smin), xd
m)− χk(log(Smin), xd

m)). (4.17)

If xa
m > log(Smax), we have

Gk(xa
m, b,D) = D · 2

b− a
(Smax −Ka)ψ(xa

m, b), (4.18)

and otherwise,

Gk(xa
m, b,D) = D · 2

b− a
(χk(xa

m, log(Smax))−Kaψk(xa
m, log(Smax))

+ (Smax −Ka)ψk(log(Smax), b)), (4.19)

where χk and ψk are defined by (4.10) and (4.11), respectively.
Next we discuss the computation of Ck(xd

m, x
a
m, tm) in (4.15). From the

proof of Lemma 1.2.1, we know that the value of Ck(x1, x2, tm) is computed
as

Ck(x1, x2, tm) = − i

π
· e−r∆t

N−1∑′

l=0

Re{φ(
lπ

b− a
;∆t)Vl(tm+1) ·

(Hc
k,l(x1, x2) +Hs

k,l(x1, x2))}

=
e−r∆t

π
Im

{
(Hc

k,l +Hs
k,l)u

}
, (4.20)

82

with φ(u;∆t) defined in (1.27) and from (1.29) and (1.30) we see that the
matrix elements of Hc

k,l(x1, x2) and Hs
k,l(x1, x2) are given by

Hc
k,l(x1, x2) =

(x2 − x1)πi
b− a

, if k = l = 0,

1

(lβ + k)

[
exp

(
((lβ + k)x2 − (l + k)a)πi

b− a

)
−

exp
(

((lβ + k)x1 − (l + k)a)πi
b− a

)]
, otherwise.

(4.21)
and

Hs
k,l(x1, x2) =

(x2 − x1)πi
b− a

, if k = l = 0,

1

(lβ − k)

[
exp

(
((lβ − k)x2 − (l − k)a)πi

b− a

)
−

exp
(

((lβ − k)x1 − (l − k)a)πi
b− a

)]
, otherwise.

(4.22)
where β = 1 for Lévy processes and β = e−κτ for OU processes. Moreover,
Im {·} in (4.20) denotes taking the imaginary part of the input argument,
and the expression of vector u is as follows.

u := {ul}N−1
l=0 , ul := φ

(
lπ

b− a
;∆t

)
Vl(tm+1), u0 =

1
2
ϕ (0;∆t)V0(tm+1).

(4.23)
From Lemma 1.2.1, we know that for all Lévy processes we need O(N log2N)
computations to calculate the Fourier coefficients Ck(x1, x2, tm) and for OU
processes the computational complexity is O(N2). The computation of
Gk(x1, x2) is linear in N .

Although the algorithm above is only the first step towards solving the
pricing problem, it can also be viewed as the complete algorithm for swing
options if the option holder is only allowed to conduct a swing action once.

4.3.2 Algorithm for Interval t ∈ Ins\I1

Recall that ns represents the upper bound for the number of swing rights
that can be exercised, as defined in (4.2). In the time interval Ins\I1, the
option holder has more than one possibility to exercise the swing option.
Therefore, apart from the exercise time, the optimal amount of commodity
to be exercised, D, should also be determined, due to its influence on the
recovery time.

Remark 4.3.2. In our discussion we deal with the following three functions:

� c(x, tm), the continuation value, which is typically continuous and dif-
ferentiable. Moreover, its derivative is usually also continuous.

83

� g(x, tm, D), the payoff, which is continuous and piecewise differentiable
(see Figure 4.1).

� v(x, tm), the option value, which is piecewise continuous in time. v(x, t)
jumps at t∗n where the number of swing rights is decreased by 1.

Note that the equality v(t∗n) = v(t+n) may not hold, since the number of
possible exercise times is reduced by 1 from t∗n to t+n . The definition of t+n
simply implies that, numerically, we use t+n = t∗n. Therefore numerically
t∗n − t = t+n − t, and c(x, t∗n) = c(x, t+n), but v(x, t∗n) ≥ v(x, t+n).

Under these assumptions we have that

e−r(t∗n−t)Ex,t(v(x, t∗n)) ≥ e−r(t+n−t)Ex,t(v(x, t+n)).

Model Analysis

By Q and Qn we denote (in this chapter) the continuous interval {(x, t)|x ≥
0, t ∈ [T0, t

∗
1]} and the discrete set {(x, t)|x ≥ 0, t ∈ [T0, t

∗
1], t ≡ t∗n :=

T − nτR(1), n = 1, · · · , ns − 1}, respectively.
The swing option value for (x, t) ∈ Q\Qn is then given by

v(x, t) = max(max
D

ṽAM (ḡ(x, t,D)), e−r(t+n−t)Ex,t(v(x, t+n))), (x, t) ∈ Q\Qn

(4.24)
where ṽAM (ḡ(x, t,D)) represents the value of an American-style option in
any interval In+1\In with payoff ḡ(x, t,D) = g(x, t,D) + φt

D(x, t).
The quantity e−r(t+n−t)Ex,t(v(x, t+n)) represents the value of a European

option, which cannot be larger than the American option. The term

e−r(t+n−t)Ex,t(v(x, t+n))

is therefore implicitly already included in the first term in (4.24), so that we
find, for (4.24),

v(x, t) = max
D

ṽAM (g(x, t,D) + φt
D(x, t))

= max
D

(max(g(x, t,D) + φt
D(x, t), c(x, t))) (4.25)

= max(max
D

g(x, t,D) + φt
D(x, t), c(x, t)), (x, t) ∈ Q\Qn,

where c(x, t) is the continuation value. Therefore, the price for (x, t) ∈ Q\Qn

is reduced to the maximum of American option values over D, i.e. v1(x, t)
as defined in Section 4.2.2.

On the other hand, for (x, t∗n) ∈ Qn, the value v(x, t∗n) is defined by

v(x, t∗n) = max(max
D

ḡ(x, t∗n, D), v(x, t+n)). (4.26)

84

After application of (4.25) to the right-hand side of (4.26), we can rewrite (4.26)
as

v(x, t∗n) = max(max
D

ḡ(x, t∗n, D),max
D

ḡ(x, t+n , D), c(x, t+n)), (4.27)

where we assume c(x, t+n) = c(x, t∗n), and ḡ is as in (4.3),(4.4).
If (x, t∗n + τR(D)) ∈ Q\Qn, with the number of exercise possibilities the

same for t∗n + τR(D) and t+n + τR(D), we have v(x, t∗n + τR(D)) = v(x, t+n +
τR(D)). If t∗n + τR(D) ∈ Qn, we have v(x, t∗n + τR(D)) ≥ v(x, t+n + τR(D)).

So, v(x, t∗n + τR(D)) ≥ v(x, t+n + τR(D)) for any x. Thus, from (4.4) we
have φt∗n

D (x, t∗n) ≥ φt+n
D (x, t+n). Equation (4.27) is now given by:

v(x, t∗n) = max(max
D

g(x, t∗n, D) + φ
t∗n
D (x, t∗n), c(x, t∗n)). (4.28)

As a result, from (4.25) and (4.28), we find that for all t ∈ [T0, t
∗
1]:

v(x, t) = max(max
D

g(x, t,D) + φt
D(x, t), c(x, t)). (4.29)

Equation (4.29) tells us that the swing option is an American-style option
with recovery time and multiple exercise opportunities. Its pricing algorithm
is therefore different from a standard American option. Instead of taking the
maximum of the payoff and the continuation value, we take the maximum of
the resulting payoff for all possible values of D, and the continuation value
from the previous time step. Another difference is that for any amount, D,
the payoff also includes the term φt

D(x, t) from an earlier time step.
It is easy to determine the value of g(x, t,D) for any x, t,D according

to (4.6). We therefore focus on the values φt
D(x, t) and c(x, t), which are

both obtained in the recursion of Fourier cosine coefficients Vk. To calculate
c(x, tm), one only needs the values of Vk(tm+1), like in the case of a Bermudan
option. However, to compute the value of φt

D(x, t) we need the coefficients
Vk(t+ τR(D)), which depend on the function for the recovery time.

Remark 4.3.3. In time interval t ∈ [0, T0] swing actions are not yet allowed.
Therefore, we have:

v(t, x) = e−r(T0−t)

N−1∑′

k=0

Re
{
ϕ(

kπ

b− a
;x,∆t)e−ikπ a

b−a

}
Vk(T0),

where Vk(T0) is obtained by a backward recursion procedure.

4.3.3 The Early-Exercise Points

In this section we consider the state-dependent recovery time, τR(D), which
is assumed to be an increasing function of D.

85

The option value is obtained by means of a backward recursion on
Vk(tm),m = M−1, · · · , 1. At each time step, as shown in Section 4.3.2, the
payoff, ḡ(x, tm, D), for all possible values of D and the continuation value,
c(x, tm), are compared. The largest value represents the swing option value
at tm. We therefore need to identify the following regions in our pricing
domain:

� AD, D = 1, · · · , L: the regions in which exercising the swing option
with D commodity units will result in the highest profit g(x, tm, D) +
φtm

D (x, tm).

� Ac: The region in which c(x, t) is the maximum. In other words, with
the commodity price in Ac, it is profitable not to exercise the swing
option.

With these regions determined, the Fourier cosine coefficients, Vk(tm), for
the swing option can be determined with a splitting, as follows,

Vk(tm) =
2

b− a

(∫
Ac

c(x, tm+1) cos(
kπ(x− a)
b− a

)dx

+
L∑

D=1

∫
AD

g(x, tm, D) cos(
kπ(x− a)
b− a

)dx

)
. (4.30)

We now describe the procedure to determine the different regions Ac and
AD, D = 1, · · · , L. As an example, let us first look at the payoff functions for
two valuesD = D1 andD = D2 whereD1 > D2, shown in Figure 4.3. Points

Figure 4.3: Payoff function g + φ for two different D.

xd(D1, D2) and xa(D1, D2) denote the “early-exercise points”, where the
strategy of exercising D1 or D2 units results in the same ḡ-values. Between
xd(D1, D2) and xa(D1, D2), the value for D2 is largest, in other words, it is
profitable to exercise a smaller amount of commodity. Beyond xd(D1, D2)
and xa(D1, D2), it is profitable to exercise the larger amount D1.

86

Remark 4.3.4. An explanation of the behavior of the two payoff functions
in Figure 4.3 is as follows. The payoff, g(x, t,D), is the sum of g(x, t,D)
and φt

D(x, t). For D increasing, the true payoff g(x, t,D) increases, but the
quantity φt

D(x, t) decreases because of the time penalty due to the longer
recovery.

For 0 < D2 < D1, we have

g(x, t,D1)− g(x, t,D2) = g(x, t,D1)− g(x, t,D2)
− (φt

D2
(x, t)− φt

D1
(x, t)). (4.31)

With the underlying between Kd and Ka, we have g(x, t,D1) = 0, g(x, t,D2) =
0 and φt

D2
(x, t) > φt

D1
(x, t). Therefore, g(x, t,D1) < g(x, t,D2) and it is

more profitable to exercise the smaller amount D2.
From (4.6) we find for the derivative:

∂g

∂D
= (max(ex −Ka, 0)−max(ex − Smax, 0)

+ max(Kd − ex, 0)−max(Smin − ex, 0)) ≡ g(x, t, 1),

which increases as S = ex decreases/increases beyond Kd or Ka, until payoff
g(x, t, 1) reaches its upper bound, see Figure 4.1. Therefore, if, before x

reaches log (Smin) or log (Smax), we have for some x, ∂g(x,t,D)
∂D >

∂φt
D(x,t)
∂D ,

this implies that the payoff function g(x, t,D) is more sensitive with respect
to variation in D than function φt

D(x, t), and it is thus more profitable to
exercise at the larger amount D1.

Based on the insight in Remark 4.3.4, let us look at a second example
with L = 4 and we will determine A2, i.e. the region where it is most
profitable to exercise two units. The example is detailed in Figure 4.4,
where the relation between the payoffs for any two different amounts of
commodity is graphically sketched. Figure 4.4 is a one-dimensional picture
with only the x–axis, which consists of different sections, where purchasing
two different amounts of commodity are compared on each horizontal line
in Figure 4.4.

In the figure, “0”, denotes the continuation value c(x, t). Point sets
xd(2, Dj) and xa(2, Dj), j = 0, 1, 3, 4, are the two sets of points for which
D = Dj gives the same payoff value as D = 2. In order to determine the
region A2, we need to find the sub-regions in which D = 2 gives the largest
payoff compared to the other D-values.

87

-

� -2 > 0 � -0 > 2 � -2 > 0
� -2 > 1 � -1 > 2 � -2 > 1

x

� -2 < 3 � -2 > 3 � -2 < 3
� -2 < 4 � -2 > 4 � -2 < 4

� -A2 � -A2

xd(2, 0) xa(2, 0) = W

xd(2, 1) = U xa(2, 1)
xd(2, 3) = P xa(2, 3)

xd(2, 4) xa(2, 4) = Q

t t t tt t t t

Figure 4.4: An example to illustrate the exercise region A2 with L = 4.

The value D = 2 returns a larger value than c(x, t), if x < xd(2, 0)
or x > xa(2, 0); Similarly, D = 2 returns a larger value than D = 1, if
x < xd(2, 1) or x > xa(2, 1). So, D = 2 returns larger values than both
c(x, t) and D = 1, if x is either smaller than both xd(2, 0) and xd(2, 1),
or larger than both xa(2, 0) and xa(2, 1). To determine these regions we
compute the following early-exercise points (see again Figure 4.4 for the
values of U and W for this example):

� U := min(xd(2, 0), xd(2, 1)) ≡ xd(2, 1),

� W := max(xa(2, 0), xa(2, 1)) ≡ xa(2, 0).

D = 2 now returns a larger value for x < U or x > W .
We proceed in the same spirit: To make sure that D = 2 returns larger

values than D = 3 and D = 4, x should be larger than both xd(2, 3) and
xd(2, 4), or smaller than both xa(2, 3) and xa(2, 4). This is again related to
the global behavior of the payoff functions with D1 > D2, as in Figure 4.3.
Therefore we calculate

� P := max(xd(2, 3), xd(2, 4)) ≡ xd(2, 3)

� Q := min(xa(2, 3), xa(2, 4)) ≡ xa(2, 4)

Now D = 2 returns a larger value than D = 3 and D = 4 for x > P or
x < Q.

So, D = 2 returns the largest value, if P < x < U or W < x < Q;
Therefore, A2 = [P,U] ∪ [W,Q], as shown in Figure 4.4.

More generally, for each D = 1, · · · , L, we determine:

PD = max
j>D

xd(D, j), QD = min
j>D

xa(D, j), UD = min
j<D

xd(D, j), WD = max
j<D

xa(D, j),

88

and set AD = [PD, UD]∪[WD, QD]. Here PD, QD represent the early-exercise
interval boundaries, within which exercising D units of commodity returns
a larger payoff than exercising more units. UD,WD are the left and right
boundary, respectively, beyond which exercising D units returns a larger
value than when fewer or no units are exercised. Similarly, we have

AL = [a,min
j<L

xd(L, j)] ∪ [max
j<L

xa(L, j), b],

Ac = [max
j>0

xd(0, j),min
j>0

xa(0, j)].

All early-exercise points, xd(D, j), xa(D, j), j = 0, . . . , L, are computed by
Newton’s method.

With the regions Ac and AD, D = 1, · · · , L, fixed, Equation (4.30) can
be rewritten as:

Vk(tm) = Ck(max
j=1,··· ,L

xd(0, j), min
j=1,··· ,L

xa(0, j), tm) +
L∑

D=1

Gk(PD, UD, D)

+
L∑

D=1

Gk(WD, QD, D) +Gk(a, min
j=0,··· ,L−1

xd(L, j), L)

+ Gk(max
j=0,··· ,L−1

xa(L, j), b, L). (4.32)

The computation of Ck(x1, x2, tm) in (4.32) is as in (4.20). The Gk differ
from the expressions (4.16) ,. . . , (4.19), which will be described in detail in
Subsection 4.3.3.

In the Newton procedure to find the points xd(Di, Dj) and xa(Di, Dj)
we need to find the values of c(x, tm), g(x, tm, D), ∂c/∂x and ∂g/∂x as in
Subsection 4.3.1. The values of φtm

D (x, tm) and ∂φtm
D /∂x are found by:

φtm
D (x, tm) = e−rτR(D)

N−1∑′

k=0

Re
{
ϕ(

kπ

b− a
;x, τR(D))e−ikπ a

b−a

}
· Vk(tm + τR(D)),

∂φtm
D

∂x
= e−rτR(D)

N−1∑′

k=0

Re
{
ϕ(

kπ

b− a
;x, τR(D)) · iβ kπ

b− a
e−ikπ a

b−a

}
·

Vk(tm + τR(D)).

Remark 4.3.5 (Computation of Vk(tm + τR(D))). To calculate Vk(tm +
τR(D)), we determine a time step, ∆t, so that T − t and τR(D) are both
time points. So, we set M = T − t/∆t,ND = τR(D)/∆t, D = 1, · · · , L.
For tm + τR(D) = tm +ND∆t ≤ T , the value Vk(tm + τR(D)) = Vk(tm+ND

).
The values Vk(tm+τR(D)) = 0 for all k if tm+ND∆t > T . In that case, φtm

D

and ∂φtm
D /∂x are zero, as they are linear combinations of Vk(tm + τR(D)).

In this setting, Vk(tm) and Vk(tm + τR(D)), D = 1, · · · , L can be determined
in one recursion, in which the intermediate values of Vk need to be stored
for later use.

89

Calculation of Gk(x1, x2, D)

The terms Gk in (4.30) are split into two parts, i.e.

Gk(x1, x2, D) = Gk,g(x1, x2, D) +Gk,c(x1, x2, D),

with Gk,g from an instantaneous profit g(x, tm, D), and Gk,c the part gener-
ated by φtm

D (x, tm), i.e., the continuation value from time point tm + τR(D),
as defined in (4.4).

Equations (4.16) and (4.17) can be used to compute the Fourier terms
Gk,g(a,minj<L x

d(L, j), L) and Gk,g(PD, UD, D), D = 1, · · · , L, unless PD >
log(Smin) where we use,

Gk,g(PD, UD, D) = D · 2
b− a

(Kdψk(PD, UD)− χk(PD, UD)).

Similarly, the quantities Gk(maxj<L x
a(L, j), b, L) and Gk(WD, QD, D), D =

1, · · · , L can be computed by (4.18) and (4.19), unless QD < log(Smax) for
which we have

Gk,g(WD, QD, D) = D · 2
b− a

(χk(WD, QD)−Kaψk(WD, QD)).

Finally, the quantity Gk,c(x1, x2, D) can be obtained by (4.20), replacing ∆t
and Vl(tm+1) by τR(D) and Vl(tm + τR(D)), respectively.

Remark 4.3.6 (Early-Exercise Points and Convergence). The accurate de-
termination of the early-exercise points, and the consistent pricing of Bermudan-
style swing options forms the basis for the valuation of the American-style
swing options by means of the Richardson extrapolation scheme. Only with
an accurate location of the early-exercise points we can benefit from extrap-
olation techniques which rely heavily on (consistent) asymptotic expansions.

The main components of the swing option pricing algorithm here are
those that have also been used for pricing Bermudan and barrier options
with Fourier cosine expansions in [35]. The convergence of the swing option
algorithm is therefore expected to be the same as that for Bermudan options,
which has been studied in detail in [35].

Remark 4.3.7 (Constant recovery time). If the recovery time does not
depend on D, we call the recovery time constant. This can be viewed as a
special case of the pricing method discussed above. As additional profit is
not related to an extra penalty, if it is profitable to exercise the swing option,
we have Dopt ≡ L from a profit maximizing point-of-view. Hence, at any
point in time, we have either D = 0, or D = L.

Newton’s method is now applied to determine two early-exercise points
xd

m and xa
m, so that

c(xd
m, tm) = g(xd

m, tm, L) + φtm
L (xd

m, tm),

90

and
c(xa

m, tm) = g(xa
m, tm, L) + φtm

L (xa
m, tm),

with D = L and τR(D) constant. Then, Vk(tm) is split into three parts,

Vk(tm) = Gk(a, xd
m, L) + Ck(xd

m, x
a
m, tm) +Gk(xa

m, b, L),

that can be calculated as in the case of state-dependent recovery time.

4.4 Numerical Results

In this section we demonstrate the performance of our pricing algorithm for
swing options with constant and dynamic recovery times. The CPU used
is an Intel (R) Core (TM) 2 Duo CPU E6550 2.33GHz, Cache size 4MB,
and the algorithm is programmed in MATLAB 7.5. The two sub-sections
to follow present results with two different types of recovery time:

� Constant recovery time is in Subsection 4.4.1: If D 6= 0, we set
τR(D) = 1

4 , as in [25]. In other words, the option holder needs to
wait 3 months between two consecutive swing actions, independent of
the time point of exercise or the size D.

� State-dependent recovery time is in Subsection 4.4.2: We assume τR(D) =
D/12 which implies that if the option holder exercises the swing op-
tion with D units, she has to wait D months before the option can be
exercised again.

Parameter sets used for numerical examples are (unless stated otherwise):

CGMY C = 1, G = 5,M = 5, Y = 1.5, r = 0.05, (4.33)
OU : κ = 0.301, x̄ = 3.150, σ = 0.334, r = 0.05, (4.34)

where for the OU process the value of x̄ is defined under the Q-measure. The
value set for the OU process is as in [25]. The values for CGMY, in particular
Y > 1 (infinite activity jump process) are known to be particularly difficult
for PIDE solvers. We will see here that these CGMY parameters do not
pose any problem for the swing option COS method.

In the numerical experiments we further choose Smin = 10,Kd = 20,Ka =
25, Smax = 50, T0 = 0. The choice T0 = 0 does not pose any restrictions on
the algorithm, as we can simply change it to any T0 > 0.

4.4.1 Constant Recovery Time

First of all, American-style swing option values under the CGMY and OU
processes, with L = 5, are presented in Figure 4.5, with as independent
variables S and t; v(S, t) is the swing option value. Jumps in the swing

91

option values are observed at t = 0.25, t = 0.5 and t = 0.75. This can
be explained by the fact that at these time points the maximum number
of times the holder can exercise, ns, is reduced by one. For instance, time
point t = 0.5 is the last time point at which an option holder can exercise
up to three times. For any t > T − 0.5, the holder cannot exercise more
than twice.

(a) OU (b) CGMY

Figure 4.5: American-style swing option values under the OU and CGMY
processes with constant recovery time, τR(D) = 0.25.

Due to the constant recovery time, we should exercise L = 5 units when-
ever it is profitable to exercise. Hence for S > 50, with Ka = 25, the profit
would be L · (50− 25) = 125. When T − t ∈ [0.75, 1), we have at maximum
four possibilities to exercise, which is the reason for option values as high as
500 in Figure 4.5.

Next, we discuss the convergence behavior of the option values over N ,
the number of terms in the Fourier cosine series. The CGMY and OU
processes are used with the parameters in (4.33), (4.34). The remaining
parameters are τR = 0.25, T = 1,M = 12 and S0 = 8.

In Table 4.1 it is shown that the swing option pricing algorithm for
the CGMY and OU processes, with the parameters chosen, take 0.024 and
0.19 seconds, respectively, to converge to one basis point accuracy. The
CPU time is higher for the OU process as its computational complexity is
of higher order than for the Lévy processes. The convergence behavior for
both processes is very similar, as shown in Table 4.1.

An American option can be viewed as a Bermudan option with M→∞.
In Table 4.2 the performance of two methods to approximate an American-
style swing option is compared. One method is the direct approximation
by means of Bermudan-style options by increasing M, whereas the second
method is based on the repeated Richardson 4-point extrapolation tech-
nique (1.32) on Bermudan-style swing options with four different numbers

92

N 64 96 128 160 192
CGMY option value 190.2045 229.0515 229.0515 229.0515 229.0515

CPU time (sec.) 0.0191 0.0234 0.0266 0.0304 0.0402

N 64 96 128 160 192
OU option value 225.9100 225.9100 225.9100 225.9100 225.9100
CPU time (sec.) 0.1891 0.3994 0.7147 1.1638 1.7590

Table 4.1: Swing option prices and CPU time under the CGMY and the
OU process, with parameter sets (4.33), (4.34).

of exercise opportunities. In Table 4.2, the column denoting “P (N/2)” gives
the computed values of the Bermudan-style options with M = N/2. For the
values obtained with the Richardson extrapolation we use M = 16 in (1.32)
(so, 2M = 32, 4M = 64, 8M = 128).

The CGMY model is used here with the parameters r, C,G,M, Y, from (4.33)
, and T = 0.5, S0 = 8, Smin = 10, Smax = 50,Kd = 20,Ka = 25. As illus-

n = log2N
P (N/2) Richardson

option value CPU time option value CPU time
7 137.423 0.27 137.395 0.59
8 137.408 0.53 137.390 0.99
9 137.399 2.00 137.390 1.79
10 137.394 8.39 137.390 3.40
11 137.392 39.55 137.390 6.68
12 137.391 203.27 137.390 13.21

Table 4.2: Convergence overM and comparison between two approximation
methods for American-style swing option.

trated in Table 4.2, to converge to an error of O(10−4), one would require
203 seconds with the direct approximation method, and approximately one
second with the extrapolation technique. The convergence observed here is
in accordance with the behavior observed in [35].

4.4.2 State-Dependent Recovery Time

We now consider the case where the recovery time, τR, depends on the
amount D. We first use the CGMY model with the parameters from (4.33).
Figure 4.6a compares the swing option prices with three upper bounds forD:
L = 8, 10, 12. A higher upper bound results in higher option values, because
a higher upper bound implies more possibilities for an option holder at each
exercise date.

Figure 4.6b illustrates the influence of the recovery time on the swing
option value. Here we compare τR(D) = 1

12D with τR(D) = 1
6D, which

93

(a) Varying amount L

(b) Varying recovery time τR(D)

Figure 4.6: CGMY process, T − t = 1; Figure (a): Different values for L,
and fixed τR(D, t) = 1

12D; Figure (b): Different Recovery time, and fixed
L = 5.

corresponds to one month (solid line) or two months (dashed line) penalty
time for each unit exercised. Figure 4.6b shows that longer recovery time
leads to lower option prices. In other words, if one can wait after exercising
one can pay less for the swing option 3.

Table 4.3 shows how the option value and optimal value of D (i.e., Dopt)
change over time. Here we take L = 8, and S0 = 8, a case where the
option is deep in-the-money. As expected, jumps in the optimal D-values
are observed at t∗n = T − nτR(1).

Recovery time τR(D) = 1
12D implies that if we exercise n or fewer units

at t∗n, we can exercise once more before expiry T , whereas if we exercise

3Similarly, smaller recovery times result in higher option prices with constant recovery
time.

94

more than n units, we cannot exercise again before T . In other words, at
t∗n, φt

D > 0 for D ≤ n and φt
D = 0, otherwise.

Note that at the time points t = T and t = T − 1/24, the optimal value
equals Dopt = L = 8. For t = T this is due to the arbitrage-free condition
and the profit maximization principle, whereas for T = t − 1/24 the time
left is so small that, in our present setting, there is only one opportunity left
for a swing action (φt

D = 0 for all D,n). One should then choose the largest
D-value allowed for an optimal profit.

T-t option value Dopt T-t option value Dopt

0 80 8 8/24 110.587 4
1/24 80 8 9/24 111.556 4
2/24 85.489 1 10/24 120.572 5
3/24 85.794 1 11/24 121.806 5
4/24 92.441 2 12/24 130.769 6
5/24 93.116 2 13/24 132.224 6
6/24 101.058 3 14/24 141.051 7
7/24 102.371 3 15/24 142.690 7

Table 4.3: Dopt over time L = 8, S0 = 8, τR(D) = D
12 .

Figure 4.7 shows how Dopt changes with respect to the underlying price,
with L = 8, t = 0, τR(D) = 1

12D. As S goes beyond Kd and Ka, Dopt tends
to increase, because in this region the payoff, g(x, t,D), dominates in the
term g(x, t,D) + φt

D(x, t). Between S = 20 and S = 25, Dopt = 0, since
g(x, t,D) = 0 for all D > 0 in this interval.

Figure 4.7: Dopt over underlying price, L = 8, t = 0, τR(D) = 1
12D

In a next experiment, the convergence of the swing option value with
respect to parameter N , with the corresponding CPU time, for the CGMY
and the OU processes, with S0 = 8, T = 1,M = 12 and different upper
bounds L, are presented in Tables 4.4 and 4.5, respectively. With N = 256

95

the swing option prices are accurate up-to a basis point for both stochastic
processes. Tables 4.4 and 4.5 also indicate that the algorithm is flexible with
respect to the variation in parameter L. Large L-values result in higher
CPU times, because a larger number of early-exercise points needs to be
determined, and many Ck- and Gk-terms have to be computed.

N 128 256 512

L=5 option price 153.6884 150.0041 150.0041
CPU time 0.3293 0.4569 0.7731

L=8 option price 177.2750 179.5152 179.5152
CPU time 0.6914 1.1369 1.9020

L=10 option price 199.4206 199.6870 199.6870
CPU time 1.0625 1.6609 2.9439

Table 4.4: Swing option values for CGMY process, dynamic recovery time,
S0 = 8, T = 1, t = 0.

N 96 128 160

L=5 option price 145.5943 153.1150 153.1150
CPU time 0.5256 0.7854 1.0180

L=8 option price 172.0567 172.0567 172.0567
CPU time 0.9182 1.2263 1.5297

L=10 option price 196.9790 196.9790 196.9790
CPU time 1.3039 1.6746 2.0252

Table 4.5: Swing option values for OU process, dynamic recovery time,
S0 = 8, T = 1, t = 0.

In the final experiment, we compare for American-style swing options
with the state-dependent recovery time, the approximation obtained by the
4–point Richardson extrapolation with the direct approximation, obtained
with Bermudan option values with increasing M-values. We use the CGMY
model with Y = 0.5 (other parameters as in (4.33)). Table 4.6 shows that
the 4–point Richardson extrapolation is much more efficient than the direct
approximation method, and that both methods converge to the same swing
option values. Larger values of M give the same extrapolation result.

4.5 Conclusions

We have presented an efficient, flexible and robust pricing algorithm for
swing options with early-exercise features, based on Fourier cosine series
expansions and backward recursion. The algorithm performs nicely for dif-
ferent types of swing contract with flexibility in the upper bounds for the
amount that can be exercised and recovery times. The pricing technique

96

Bermudan approximation Richardson approximation
M = N/2 M=6 in Equation (1.31)

N option value CPU time N option value CPU time
128 93.9501 5.7391 64 93.9710 1.6077
256 93.9710 20.1821 128 93.9707 2.3621
512 93.9707 77.0859 256 93.9707 3.9196

Table 4.6: Comparison between two approximation methods for American-
style swing options, CGMY model, S0 = 10, L = 5, Y = 0.5.

is valid under different stochastic commodity processes, such as the CGMY
process, other Lévy processes, as well as the OU process.

For the Lévy processes, the Fast Fourier Transform can be applied in
the backward recursion procedure. This gives Bermudan-style swing option
prices that are accurate up to a basis point in milli–seconds for constant
recovery times, and in a fraction of a second (L = 5) to 1.7 seconds (L = 10)
for the dynamic recovery time.

For OU processes, despite of the higher computational complexity (com-
pared to Lévy processes), swing option prices can be obtained with basis
point precision in less than 0.2 seconds for constant recovery times and
within 2 seconds for dynamic recovery times. This is due to the exponential
convergence rate of Fourier cosine series expansions.

The Richardson 4-point extrapolation technique has been used for pric-
ing the American-style swing options in an efficient way.

97

CHAPTER 5

Efficient Pricing of Asian Options
under Lévy Processes Based on

Fourier Cosine Expansions
Part I: European–Style Products

This chapter contains essentially the contents of paper [73].

5.1 Introduction

Asian options, introduced in 1987, belong to the class of path–dependent
options. Their payoff is typically based on a geometric or arithmetic av-
erage of underlying asset prices at monitoring dates before maturity. The
number of monitoring dates can be finite (discretely–monitored) or infinite
(continuously–monitored). Volatility inherent in an asset is reduced due to
the averaging feature, leading to cheaper options compared to plain vanilla
option equivalents.

For geometric Asian options a closed–form solution under the Black–
Scholes model has been presented in [45]. Other Lévy asset models have
been studied in [37], resulting in an efficient valuation method based on the
Fast Fourier Transform.

For arithmetic Asian options the prices have to be approximated numer-
ically. Monte Carlo methods have been applied for this task, for example
in [45]. An efficient PDE method for arithmetic Asian options which works
particularly well for short maturities has been presented in [64].

Advanced pricing methods for options on the arithmetic average are
based on a recursive integration procedure, in which the probability density

99

function of the log-return of the sum of asset prices is approximated, see [18,
4, 49, 37]. In [18, 4] an FFT and inverse FFT have been incorporated in the
procedure to approximate the governing densities. The study in [18] focused
on log–normally distributed underlying processes and required a fine grid to
approximate the probability density function. This method is extended to
more general densities in [4], where the size of the grid was reduced by
re–centering the probability densities at each monitoring step, resulting in
reduced CPU time. In [37] the FFT was used to approximate the density of
the increment between consecutive monitoring dates, in combination with
a series of recursive quadrature rules. The total computational complexity
in [37] was O(Mn2), where M is the number of monitoring dates and n
the number of points used in the quadrature. A recent contribution was
presented in [19], where discretely sampled Asian options were priced via
backward price convolutions.

Another pricing approach can be found in [27], where the governing den-
sities were computed by a special Laplace inversion, for guaranteed return
rate products, that can be seen as generalized discretely sampled Asian op-
tions. Alternatively, upper and lower bounds of the Asian option prices have
been determined, for example in [49], for Lévy asset processes.

In this chapter we propose a different pricing method for Asian options
and we name it the ASCOS method (Asian cosine method), as it is related
to the COS method from [34, 35], see also Chapter 1. The method is also
inspired by the work in [37], but there are some significant differences. In-
stead of recursively recovering the probability density of the logarithm of the
sum of asset prices, as in [37], we recover the corresponding characteristic
function by means of Fourier cosine expansions. The transitional density
function is then in turn approximated in terms of the conditional character-
istic function by a Fourier cosine expansion. The characteristic function for
a Lévy process is known analytically and a Fourier cosine expansion most
often exhibits exponential convergence.

Furthermore, the Clenshaw–Curtis quadrature rule is applied in the AS-
COS method to approximate certain integrals appearing. We will perform
an extensive error analysis to confirm the exponential convergence for Asian
options.

The ASCOS pricing method can thus be seen as an efficient alternative
to the FFT and convolution methods in [18, 37, 4, 49]. The method remains
robust as the number of monitoring dates, M, increases for arithmetic Asian
options. In Section 5.2, the ASCOS method to price geometric Asian options
under Lévy processes (discretely and continuously monitored) is presented.
The pricing algorithm for arithmetic Asian options is then detailed in Sec-
tion 5.3. A detailed error analysis is given in Section 5.4 and numerical
results are presented in Section 5.5. We compare our results to those pre-
sented in [37]. The ASCOS method is extended to pricing American–style
Asian options in the next chapter.

100

In this chapter, we focus on a fixed–strike Asian options. The extension
to floating–strike Asian options follows directly from the symmetry between
floating–strike and fixed–strike Asian options, as explained in [40] and [32].

5.2 ASCOS method for European-style geometric
Asian options

The ASCOS pricing technique for geometric and arithmetic Asian options is
described in Sections 5.2 and 5.3, respectively. In our method, the character-
istic function of the geometric or arithmetic mean value of the underlying is
recovered, which is then used to calculate the Asian option value by Fourier
cosine expansions. For geometric Asian options, the characteristic function
of the geometric mean can be calculated directly, as we will see below. The
payoff function of a geometric Asian option with M monitoring dates and
a fixed strike reads:

v(S, T) ≡ g(S) =

max((

M∏
j=0

Sj)
1

M+1 −K, 0), for a call,

max(K − (
M∏
j=0

Sj)
1

M+1 , 0). for a put.

Here S, K, g(S) denote the stock price, the strike price and the payoff
function, respectively.

For geometric Asian options, the characteristic function of the geometric
mean can be calculated directly. The underlying process is transformed to
the logarithm domain and we use the notation:

y := log((
M∏
j=0

Sj)
1

M+1) =
1

M+ 1

M∑
j=0

log(Sj) =:
1

M+ 1

M∑
j=0

xj . (5.1)

In order to use the Fourier cosine expansion, we need to determine the
conditional characteristic function of y given x0. From the definition of

101

characteristic function we have:

ϕ(u;x0,∆t) = E[exp (iuy)|F0] = E[exp (iu
1

M+ 1

M∑
j=0

xj)|F0]

= E[exp (iu(x0 +
1

M+ 1
(M(x1 − x0) + (M− 1)(x2 − x1)

+ · · · {(M− 2)(x3 − x2) + . . .

+ 2(xM−1 − xM−2) + (xM − xM−1))}|F0))]

= eiux0E
[
exp

(
i(u

M
M+ 1

)(x1 − x0)
)
|F0

]
· E

[
exp

(
i(u

M− 1
M+ 1

)(x2 − x1)
)
|F0

]
·

· · · · E
[
exp

(
i(u

1
M+ 1

)(xM − xM−1)
)
|F0

]
. (5.2)

The last step is due to the fact that Lévy processes have independent incre-
ments. A Lévy process also has stationary increments, which implies that
the increments x1−x0, x2−x1, · · · , xM−xM−1 are identically distributed,
and they are all independent of x0. Denoting the (identical) characteristic
functions of these increments by ϕ(u, t), and substitution of ϕ(u, t) into (5.2)
gives the characteristic function of y given x0:

ϕ(u;x0,∆t) = eiux0 ·
M∏
j=1

φ

(
u
M+ 1− j

M+ 1
;
T − t0
M

)
, (5.3)

where φ(u; t) is as defined in (1.27).
Substitution of characteristic function (5.3) into (1.14) results in the

ASCOS pricing formula for European-style geometric Asian options, with
the underlying asset modeled by a Lévy process:

v(x0, t0) = e−r∆t

N−1∑′

k=0

Re

(
ϕ(

kπ

b− a
;x0,∆t)e

−ikπ a
b−a

)
Vk, (5.4)

where

Vk =

2

b− a
(χk(log(K), b)−Kψk(log(K), b)), for a call,

2
b− a

(Kψk(a, log(K))− χk(a, log(K))), for a put,

with

χk(x1, x2) :=
∫ x2

x1

ey cos
(
kπ
y − a

b− a

)
dy,

ψk(x1, x2) :=
∫ x2

x1

cos
(
kπ
y − a

b− a

)
dy, (5.5)

102

which are known analytically.
The computational complexity to get the characteristic function for each

u = kπ/b− a, k = 0, · · · , N − 1 is linear in M, so that O(MN) computa-
tions are required. The complexity of the work in (5.4) is linear in N , so
that the total computational complexity of the method is O(MN).

For geometric Asian options there is no error in deriving the character-
istic function by (5.2) and (5.3). The only errors made are due to the COS
formula (5.4). Detailed error analysis of the COS method for European op-
tions can be found in [34]. The ASCOS pricing method for geometric Asian
options under Lévy processes is thus expected to have an exponential con-
vergence rate in the number of cosine terms, for all density functions that
satisfy f(y|x) ∈ C∞([a, b] ⊂ R).

5.3 ASCOS method for arithmetic Asian options

For arithmetic Asian options, the characteristic function of the arithmetic
mean will be derived recursively by Fourier cosine expansions and Clenshaw–
Curtis quadrature. The Fourier cosine expansion is used each time step
(i.e. at each monitoring date), whereas the Clenshaw–Curtis quadrature
rule is used once at the beginning of the computation. In Subsection 5.2
the characteristic function of the geometric average was recovered, which
was explicitly a function of x0 = log(S0), as x0 + ... + xT is a function of
x0, so that the characteristic function took the form ϕ(u;x0,∆t). In the
present section, we recover the characteristic function of the sum of Lévy
asset price increments, which is independent of x0. Therefore, we write the
characteristic function here in the form φ(u;∆t), like the Levy component
φ(u, t) defined in (1.27), rather than ϕ(u;x0,∆t).

The payoff function of an arithmetic Asian options reads:

v(S, T) ≡ g(S) =

max(1

M+ 1

M∑
j=0

Sj −K, 0), for a call,

max(K − 1
M+ 1

M∑
j=0

Sj , 0), for a put.

(5.6)

We denote by nq the number of terms in the Clenshaw–Curtis quadrature
(q stands for quadrature).

We first explain the recursion procedure to recover the characteristic
function of the arithmetic mean value of the underlying, where we denote
by:

Rj := log
(

Sj

Sj−1

)
, j = 1, · · · ,M. (5.7)

For Lévy processes, the increments Rj , j = 1, · · · ,M are identically and
independently distributed, so that Rj

d
=R. Then, ∀u, j, we have φRj (u;∆t) =

103

φR(u;∆t). Characteristic function φR(u;∆t) is known in closed form for
different Lévy processes.

A stochastic process, Yj , is introduced where Y1 = RM and for j =
2, · · · ,M, we have

Yj := RM+1−j + log(1 + exp(Yj−1)). (5.8)

We denote by Zj := log(1 + exp(Yj)),∀j, so that (5.8) is rewritten as

Yj := RM+1−j + Zj−1. (5.9)

In this setting Yj admits the form

Yj = log
(
SM−j+1

SM−j
+
SM−j+2

SM−j
+ · · ·+ SM

SM−j

)
, (5.10)

and we have that

1
M+ 1

M∑
j=0

Sj =
(1 + exp(YM))S0

M+ 1
. (5.11)

Convolution scheme (5.9) has already been used in [18, 4, 37], in combination
with other numerical methods, to recover the probability density function
of YM. Here, however, we will recover the characteristic function of YM
instead, by a forward recursion procedure, which is then used in turn to
recover the density of the European-style arithmetic mean of the underlying
process in the risk–neutral formula (5.12). The arithmetic Asian option
value is now defined as:

v(x0, t0) = e−r∆t

∫ ∞

−∞
v(y, T)fYM(y)dy. (5.12)

By (5.11), v(y, T) in (5.12) is of the following form:

v(y, T) =

(
S0(1 + exp (y))

M+ 1 −K

)+

, for a call,(
K − S0(1 + exp (y))

M+ 1

)+

, for a put.

5.3.1 Recovery of characteristic function

To recover the characteristic function of YM, i.e. φYM(u;∆t), we start with
Y1, for which the characteristic function reads:

φY1(u;∆t) = φR(u;∆t). (5.13)

Then, at time step tj , j = 2, · · · ,M, φYj (u;∆t) can be recovered in terms
of φYj−1(u;∆t). This is done by application of (5.9) and the fact that Lévy

104

processes have independent increments. This implies that ∀j, RM+1−j and
Zj−1 are independent, which gives us:

φYj (u;∆t) = φRM+1−j
(u;∆t)φZj−1(u;∆t) = φR(u;∆t)φZj−1(u;∆t). (5.14)

From the definition of characteristic function, we have

φZj−1(u;∆t) = E[eiu log(1+exp(Yj−1))] =
∫ ∞

−∞
(ex + 1)iufYj−1(x)dx. (5.15)

To apply the Fourier cosine series expansion to approximate the character-
istic function, we first truncate the integration range

φ̂Zj−1(u;∆t) =
∫ b

a
(ex + 1)iufYj−1(x)dx. (5.16)

If we define the following error

εT (X) :=
∫

R\[a,b]
fX(x)dx,

then, as ∀j, u ∈ R,

|(ex + 1)iu| = | cos(u log(1 + ex) + i sin(u log(1 + ex)))| = 1, (5.17)

the error in (5.16) can be bounded by:

|
∫

R\[a,b]
(ex + 1)iufYj−1(x)dx| ≤

∫
R\[a,b]

fYj−1(x)dx := εT (Yj−1). (5.18)

We apply the Fourier cosine expansion to approximate fYj−1(x), giving:

φ̂Zj−1(u;∆t) =
2

b− a

N−1∑′

l=0

Re

(
φ̂Yj−1(

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)

·
∫ b

a
(ex + 1)iu cos

(
(x− a)

lπ

b− a

)
dx, (5.19)

where φ̂Yj−1 is an approximation of φYj−1 .
In this way, φ̂Zj−1 is recovered in terms of φ̂Yj−1 . Application of (5.14)

gives us an approximation φ̂Yj (u;∆t) for any u. Equation (5.19) can be
written in matrix–vector form:

Φj−1 = HAj−1, (5.20)

105

using:

Φj−1 = (Φj−1(k))N−1
k=0 , Φj−1(k) = φ̂Zj−1(uk;∆t),

uk =
kπ

b− a
, k = 0, · · · , N − 1,

H = (H(k, l))N−1
k,l=0, H(k, l) =

∫ b

a
(ex + 1)iuk cos((x− a)ul)dx,

Aj =
2

b− a
(Aj(l))N−1

l=0 , Aj(l) = Re(φ̂Yj−1(ul;∆t) exp (−iaul)).

By the recursion procedure in (5.14) and (5.20), the characteristic func-
tion, φYM(u;∆t), can be approximated by φ̂YM(u;∆t) efficiently. Applica-
tion of (1.14) in (5.12) finally gives us the European-style arithmetic Asian
option value:

v̂(x, t0) = e−r∆t

N−1∑′

k=0

Re

(
φ̂YM(

kπ

b− a
;∆t)e−ikπ a

b−a

)
Vk, (5.21)

in which

Vk =

2

b− a

(
S0

M+ 1χk(x∗, b) + (S0
M+ 1 −K)ψk(x∗, b)

)
, for a call,

2
b− a

(
(K − S0

M+ 1)ψ(a, x∗)− S0
M+ 1χ(a, x∗)

)
, for a put.

(5.22)
Functions χk(x1, x2), ψk(x1, x2) are as in (5.5), and x∗ = log(K(M+1)

S0
− 1).

5.3.2 Integration range

Here we explain how to determine integration range [a, b], so that the er-
ror εT (Yj−1), j = 2, · · · ,M in (5.18) as well as truncation error εT (YM)
in (5.21) can be controlled. In [34, 35], the integration range for each
Yj , j = 1, · · · ,M, was determined by means of the cumulants, as:

[ξ1(Yj)− L

√
ξ2(Yj) +

√
ξ4(Yj), ξ1(Yj) + L

√
ξ2(Yj) +

√
ξ4(Yj)], (5.23)

where ξ1(Yj), ξ2(Yj), ξ4(Yj) are the first, second and fourth cumulant of
Yj , respectively. It is rather expensive to determine these cumulants, and
therefore we propose a different integration range, which is very similar
to (5.23). For a Lévy process, the cumulants of the increments, log(Sl/Sk)
∀l > k, are linearly increasing functions of t := (l − k)∆t. Therefore, for

106

Yj , j = 1, · · · ,M, as defined in (5.10), we have

ξ1(log(j
SM−j+1

SM−j
)) ≤ ξ1(Yj) ≤ ξ1(log(j

SM
SM−j

)),

0 ≤ ξ2(Yj) ≤ ξ2(log(j
SM
SM−j

)),

0 ≤ ξ4(Yj) ≤ ξ4(log(j
SM
SM−j

)).

Denoting

aj := ξ1(log(j
SM−j+1

SM−j
))− L

√√√√ξ2(log(j
SM
SM−j

)) +

√
ξ4(log(j

SM
SM−j

)),

bj := ξ1(log(j
SM
SM−j

)) + L

√√√√ξ2(log(j
SM
SM−j

)) +

√
ξ4(log(j

SM
SM−j

)),

(5.24)

we can define a suitable interval [aj , bj]. Note that the cumulants of log(j SM−j+1

SM−j
)

and log(j SM
SM−j

) in (5.24) are known in closed form for Lévy processes, that
is, for n = 1

ξ1(log(j
SM−j+1

SM−j
)) = log(j) + ξ1(R),

ξ1(log(j
SM
SM−j

)) = log(j) + jξ1(R),

and ∀n ≥ 2,

ξn(log(j
SM−j+1

SM−j
)) = ξn(R),

ξn(log(j
SM
SM−j

)) = jξn(R),

with R the logarithm of the increment of a Lévy process.
In order to compute the integration in (5.19) only once, we adopt the

following integration range:

[a, b] := [min
j=1,··· ,M

aj , max
j=1,··· ,M

bj], (5.25)

for all time steps, so that the truncation error εT (Yj),∀j can be controlled
easily.

In accordance with [34, 35], we will use L = 10 ∼ 12 in (5.24), in our
numerical experiments.

107

5.3.3 Clenshaw–Curtis quadrature

We discuss the efficient computation of matrix H in (5.20). An impor-
tant feature is that matrix H remains constant for all time steps tj , j =
1, · · · ,M− 1, so that we need to calculate it only once. Its elements are
given by:

H(k, l) =
∫ b

a
(ex + 1)iuk cos((x− a)ul)dx, k, l = 0, · · ·N − 1, (5.26)

which can be rewritten in terms of incomplete Beta functions, as follows∫ b

a
(ex + 1)i kπ

b−a cos((x− a)
lπ

b− a
)dx

=
1
2
e−

l(ia+π)
d (e

2ial
d (−β(−ea,− il

d
, 1 +

ik

d
) + β(−eb,− il

d
, 1 +

ik

d
))

+ e
2lπ
d (−β(−ea, il

d
, 1 +

ik

d
) + β(−eb, il

d
, 1 +

ik

d
))), (5.27)

where i =
√
−1, d = b−a

π and β(x, y, z) is the incomplete Beta function

β(x, y, z) =
∫ x

0
ty−1(1− t)z−1dt.

The computation of the incomplete Beta functions in (5.27) is involved with
these complex-valued arguments. Here, Eq. (5.26) is approximated numer-
ically by the Clenshaw–Curtis quadrature rule, which is based on an ex-
pansion of the integrand in terms of Chebyshev polynomials (as proposed
in [22]; more information can be found in [9]).

Although both the Clenshaw–Curtis and the Gaussian quadrature rules
exhibit an exponential convergence for the integrand in (5.26), the Clenshaw–
Curtis quadrature is preferred here since it is computationally cheaper. The
weights and nodes of the Clenshaw-Curtis quadrature are easy to determine.
Moreover, Clenshaw–Curtis quadrature is a nested integration rule, where
the nodes for a small value of N are also nodes for larger N -values.

To use the Clenshaw–Curtis rule for (5.26), we first change the integra-
tion interval from [a, b] to [−1, 1]∫ b

a
(ex + 1)iuk cos ((x− a)ul)dx =∫ 1

−1

b− a

2

(
exp (

b− a

2
x+

a+ b

2
) + 1

)iuk

cos
(

(
b− a

2
x+

a+ b

2
− a)ul

)
dx.

The integral can then be approximated as follows∫ b

a
(ex + 1)iuk cos((x− a)ul)dx ≈ (DTd)T y =: wT y, (5.28)

108

where D is an (nq/2 + 1)× (nq/2 + 1) matrix, whose elements read

D(k, n) =
2
nq

cos
(

(n− 1)(k − 1)π
nq/2

)
·

{
1/2, if n = {1, nq/2 + 1},

1, otherwise.
(5.29)

The vector d and the elements yn in y = {yn}
nq/2
n=0 are defined as:

d :=
(

1,
2

(1− 4)
,

2
(1− 16)

, · · · , 2
(1− (nq − 2)2)

,
1

(1− n2
q)

)T

,

yn := f(cos (
nπ

nq
)) + f(− cos (

nπ

nq
)), (5.30)

where in our case

f(x) =
b− a

2

(
exp (

b− a

2
x+

a+ b

2
) + 1

)iuk

cos
(

(
b− a

2
x+

a+ b

2
− a)ul

)
.

For all (k, l), the vector w = DTd remains the same, so that it needs
to be computed only once, for all (k, l). Because DTd is a type I discrete
cosine transform, the computational complexity is O(nq log2 nq). Elements
yn must be calculated for each pair (k, l), with complexity O(nq) and the
computational complexity, for all (k, l), is therefore O(nqN

2). When using
the Clenshaw–Curtis quadrature rule to compute matrix H (only once, used
for all time steps), the total computational complexity is thus O(nq log2 nq)+
O(nqN

2).
Furthermore, at each time step tj , we need O(N2) computations for the

matrix–vector multiplication (5.20) and O(N) computations to obtain φ̂Yj

by equation (5.13) or (5.14). The computational complexity for this task is
thus O(MN2).

The overall computational complexity of our method for arithmetic Asian
options is then O(nq log2 nq) +O(nqN

2) +O(MN2). The number N2 is in
practice much larger than log2 nq. The overall complexity is then of order
O((nq +M)N2).

We will show in the section on error analysis for arithmetic Asian options
that for most of the Lévy processes, the Fourier cosine expansion exhibits an
exponential convergence rate with respect to N . For the integrand in (5.26)
the Clenshaw–Curtis quadrature converges exponentially with respect to
nq. Therefore, the ASCOS pricing method is an efficient alternative to the
method proposed in [37], which requires O(MN̄2) computations (N̄ being
the number of points used in the quadrature in [37]), with N̄ > nq, and
N̄ > N , for the same level of accuracy. Our pricing method is especially
advantageous when the number of monitoring dates, M, increases. The
method is summarized below.

ASCOS Algorithm: Pricing European-style arithmetic Asian options.

109

Initialization

� Use Clenshaw–Curtis quadrature (5.28) to compute
H = (H(k, l)), k, l = 0, · · · , N − 1, with H in (5.20), (5.26).

� Compute φR(uk;∆t), k = 0, · · · , N − 1.

� Set φY1(uk;∆t) = φR(uk;∆t).

Main Loop to Recover φ̂YM : For j = 2 to M,

� Compute the vector Φj−1 with elements φ̂Zj−1(uk;∆t),
k = 0, · · · , N − 1 using (5.20).

� Recover φ̂Yj (uk;∆t), k = 0, · · · , N − 1 using (5.14).

Final step:

� Compute v̂(x0, t0) by inserting φ̂YM(uk;∆t), k = 0, · · · , N − 1
into (5.21).

5.3.4 Extensions

In a series of remarks, we now discuss some other generalizations of the
ASCOS method.

Remark 5.3.1 (Continuously–monitored Asian options). The option values
of continuously–monitored arithmetic Asian options, with payoff

v(S, T) = g(S) =

(

1
T

∫ T

0
S(t)dt−K

)+

, for a call,(
K − 1

T

∫ T

0
S(t)dt

)+

, for a put,

can be obtained from discretely–monitored arithmetic Asian option prices by
a four-point Richardson extrapolation.

Let v̂(M) denote the computed value of a discretely–monitored Asian
option with M monitoring dates. The continuously–monitored Asian option
value, denoted by v̂∞, is approximated by a four-point Richardson extrapo-
lation scheme, as follows:

v̂∞(d) =
1
21

(64v̂(2d+3)− 56v̂(2d+2) + 14v̂(2d+1)− v̂(2d)). (5.31)

The same technique can be applied for continuously monitored geometric
Asian options.

Remark 5.3.2 (Asian options on the harmonic average). Asian options
with a payoff based on the harmonic average, i.e. on M/(

∑M
j=1 1/Sj), can be

110

priced in a similar fashion as explained above by the ASCOS method. First,
we recover the characteristic function of a variable y = log(

∑m
j=1 S0/Sj)

recursively; then we insert the approximation into the COS pricing formula.
We define R̄j = log(Sj−1/Sj). Starting with Y1 = log(R̄M), we find, ∀j, u:

φR̄j
(u;∆t) = E[e

iu log(
Sj−1

Sj
)
] = E[e

i(−u) log(
Sj

Sj−1
)
] = φRj (−u;∆t), (5.32)

with φRj available in closed form for Lévy processes. For this reason, φY1(u;∆t)
is also known analytically.

For j = 2, · · · ,M we then define Yj := R̄M+1−j + Zj−1, where Zj :=
log(1 + exp (Yj)). In this setting we have YM ≡ log(

∑m
j=1 S0/Sj).

Again, R̄M+1−j and Zj−1 are independent at each time step, due to the
properties of Lévy processes. Therefore

φYj (u;∆t) = φR̄M+1−j
(u;∆t)φZj−1(u;∆t), ∀u,

where φR̄M+1−j
(u;∆t) is known analytically from (5.32) and φZj−1(u;∆t)

can be recovered, as φ̂Zj−1(u;∆t) from φ̂Yj−1(u;∆t) by Fourier cosine expan-
sions and Clenshaw–Curtis quadrature, as in (5.19). We thus approximate
the characteristic function of YM and the fixed strike Asian option value is
given by:

v̂(x, t0) = e−r∆t

N−1∑′

k=0

Re

(
φ̂YM(

kπ

b− a
;∆t)e−ikπ a

b−a

)
Vk,

in which

Vk =

2

b− a
(MS0χ̄k(x∗, b)−Kψk(x∗, b)), for a call,

2
b− a

(Kψ(a, x∗)−MS0χ̄(a, x∗)), for a put,

where x∗ = log(MS0/K), χ̄(x1, x2) :=
∫ x2

x1
e−y cos(kπ y−a

b−a)dy, and ψk(x1, x2)
is defined in (5.5).

Finally, the symmetry between floating and fixed–strike Asian options
also holds for Asian options on the harmonic average, so that floating strike
options can be valued as well.

Remark 5.3.3 (A special case: the forward contract). A forward contract,
as often encountered in commodity markets, may be defined by the payoff:

g(S) =
1

M+ 1

M∑
j=0

Sj −K. (5.33)

111

The contract value then reads

v(x0, t0) = e−r∆tE

 1
M+ 1

M∑
j=0

Sj −K

= e−r∆t

(
S0

M+ 1
E[eYM] + (

S0

M+ 1
−K)

)
, (5.34)

where the last step follows from (5.11). The expected value of exp (YM) can
be obtained by a forward recursion procedure. At each monitoring date, tj,
we have from (5.9) that

E[eYj] = E[eRM+1−j (1 + eYj−1)]. (5.35)

For Lévy processes RM+1−j and (1+exp(Yj−1)) are independent and Rj
d
=R,

∀j, so that equation (5.35) reads:

E[eYj] = E[eR](1 + E[eYj−1)], ∀j, (5.36)

with E[eY1] ≡ E[eR]. The value of E[eR] reads

E[eR] =
∫ ∞

−∞
eyfR(y)dy =

N−1∑′

k=0

Re

(
φR(

kπ

b− a
;∆t)e−ikπ a

b−a

)
χk(a, b),

where function χk(x1, x2) is defined in (5.5) and φR is the characteristic
function of R, which is available for various Lévy processes.

The E[eR]-term needs to be calculated only once, with O(N) complexity.
In the recursion procedure to get the forward value, we use (5.36) M− 1
times and (5.34) once. Therefore, the total computational complexity is
O(N) +O(M), and exponential convergence is expected for probability den-
sity functions belonging to C∞[a, b].

5.4 Error analysis for arithmetic Asian options

Here we give an error analysis of the ASCOS method for arithmetic Asian
options. We first discuss, in general terms, three types of error occurring,
i.e., the truncation error, εT , the error of the Fourier cosine expansion, εF ,
and the error from the use of the Clenshaw–Curtis quadrature, εQ.

The truncation error was defined as

εT (Yj) :=
∫

R\[a,b]
fYj (y)dy, j = 1, · · · ,M, (5.37)

and it decreases as interval [a, b] increases. In other words, for a sufficiently
large integration range [a, b], this part of the error won’t dominate the overall
error of the arithmetic Asian option price.

112

Regarding the error of the Fourier cosine expansions, we know from [34]
that for f(y|x) ∈ C∞[a, b], it can be bounded by

|εF (N, [a, b])| ≤ P ∗(N) exp(−(N − 1)ν),

with ν > 0 a constant and a term P ∗(N), which varies less than exponen-
tially with respect to N .

When the probability density function has a discontinuous derivative,
the error can be bounded by

|εF (N, [a, b])| ≤ P̄ ∗(N)
(N − 1)β−1

,

where P̄ ∗(N) is a constant and β ≥ 1.
Error εF decays thus either exponentially with respect to N , if the den-

sity function f(y|x) ∈ C∞[a, b], or algebraically.
Let us now have a look at the error from the Clenshaw–Curtis quadra-

ture, which we use to approximate

I :=
∫ b

a
(ex + 1)iuk cos((x− a)ul)dx, (5.38)

by Î := wT y in (5.28). In other words, εq = I − Î.
According to [62, 65], the Clenshaw–Curtis quadrature rule exhibits an

error which can be bounded by O((2nq)−k/k), for a k–times differentiable
integrand. When k is bounded, we have algebraic convergence; otherwise the
error converges exponentially with respect to nq, see also [8]. The integrand
in (5.38) belongs to C∞[a, b], as all derivatives are continuous on any interval
[a, b], confirming that, for the integrand in (5.38), we will have exponential
convergence with respect to nq.

5.4.1 Error propagation in the characteristic functions

The following lemma is used in the error analysis.

Lemma 5.4.1. For any random variable, X, and any u ∈ R, the charac-
teristic function can be bounded by |φX(u;∆t)| ≤ 1.

Proof. For any X and u, the characteristic function φX(u;∆t) is defined by:

φX(u;∆t) = E[eiuX] =
∫ ∞

−∞
eiuxf(x)dx.

We have
|φX(u;∆t)| ≤

∫ ∞

−∞
|eiux|f(x)dx,

and thus:
|φX(u;∆t)| ≤

∫ ∞

−∞
f(x)dx = 1.

113

Now we start with the error analysis, and denote by ε(φ̂Ym(u;∆t)) and
ε(φ̂Zm(u;∆t)), m = 1, · · · ,M, the errors in φ̂Ym(u;∆t) and φ̂Zm(u;∆t),
respectively. From (5.21) the error in the arithmetic Asian option price,
denoted by ε, is given by

ε = e−r∆t

∫ ∞

−∞
v(y, T)fYM(y)dy − e−r∆t

N−1∑′

k=0

Re

(
φ̂YM(

kπ

b− a
;∆t)e−ikπ a

b−a

)
Vk

= e−r∆t

∫ ∞

−∞
v(y, T)fYM(y)dy − e−r∆t

N−1∑′

k=0

Re

(
φYM(

kπ

b− a
;∆t)e−ikπ a

b−a

)
Vk

+ e−r∆t

N−1∑′

k=0

Re

(
(φYM(

kπ

b− a
;∆t)− φ̂YM(

kπ

b− a
;∆t))e−ikπ a

b−a

)
Vk

= εcos + e−r∆t

N−1∑′

k=0

Re

(
ε(φ̂YM(

kπ

b− a
;∆t))e−ikπ a

b−a

)
Vk,

where Vk is known analytically and εcos is the error resulting from the use
of the COS pricing method. From [34] we know that for a sufficiently large
truncation range [a, b], we have εcos = O(εF) and thus

ε = O(εF) + e−r∆t

N−1∑′

k=0

Re

(
ε(φ̂YM(

kπ

b− a
;∆t))e−ikπ a

b−a

)
Vk. (5.39)

The remaining part of the error (5.39), which we need to estimate, is ε(φ̂YM(u;∆t)).
This is done by mathematical induction. We first estimate the error in
φ̂Y1(u;∆t) and φ̂Y2(u;∆t) and then use an induction step to bound the er-
ror in φ̂YM(u;∆t).

Characteristic function φY1(u;∆t) is known analytically from (5.13), so
that ε(φ̂Y1(u;∆t)) = 0, ∀u.

The error in φ̂Z1(u;∆t) consists of three parts. The first part is the error
due to the truncation of the integration range as in (5.16). The second part is
due to the approximation of fY1(x) by the Fourier cosine expansion in (5.19).
The third part is due to the use of the Clenshaw–Curtis quadrature rule to

114

approximate the integral in (5.19). Summing up, we have:

ε(φ̂Z1(u;∆t)) =
∫ ∞

−∞
(ex + 1)iufY1(x)dx−

∫ b

a
(ex + 1)iufY1(x)dx

+
∫ b

a
(ex + 1)iufY1(x)dx−

2
b− a

N−1∑′

l=0

Re

(
φY1(

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)
I

+
2

b− a

N−1∑′

l=0

Re

(
φY1(

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)

(I − Î) (5.40)

=
∫

R\[a,b]
(ex + 1)iufY1(x)dx+ εF

+
2

b− a

N−1∑′

l=0

Re

(
φY1(

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)
εq.

The lemma below gives an upper bound for the local error.

Lemma 5.4.2. We define by

ej : =
∫

R\[a,b]
(ex + 1)iufYj (x)dx+ εF

+
2

b− a

N−1∑′

l=0

Re

(
φYj (

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)
εq, (5.41)

then, with integration range [a, b] sufficiently wide, we have

|ej | ≤ P̄ (N,nq)(|εF |+
2

b− a
N |εq|), ∀j,

where P̄ (N,nq) > 0 varies less than εF and εq, with respect to N,nq.

Proof. Application of (5.18) gives us that, ∀j, u ∈ R,

|
∫

R\[a,b]
(ex + 1)iufYj (x)dx| ≤ εT (Yj), (5.42)

with εT (Yj) defined in (5.37). Substitution into (5.41), results in

|ej | ≤ |εT (Yj)|+ |εF |+
2

b− a

N−1∑′

l=0

|Re
(
φYj (

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)
||εq|.

From Lemma 5.4.1, it follows that, ∀j, l, |φYj (lπ/b− a)| ≤ 1, and

| exp(−ia lπ

b− a
)| = | cos

(
−a lπ

b− a

)
+ i sin

(
−a lπ

b− a

)
| = 1, ∀l,

115

so that |Re
(
φYj (lπ/(b− a)) exp (−ialπ/(b− a))

)
| ≤ 1, ∀j, l.

For [a, b] sufficiently wide, εF dominates the expression εF + εT , so that
we find, ∀j:

|ej | ≤ P̄ (N,nq)

|εF |+ 2
b− a

N−1∑′

l=0

|εq|

 = P̄ (N,nq)
(
|εF |+

2
b− a

N |εq|
)
,

(5.43)

where P̄ (N,nq) > 0 varies less than εF and εq with respect to N,nq.

Using the notation:

εL := |εF |+
2

b− a
N |εq|, (5.44)

we can write |ej | ≤ P̄ (N,nq)εL, ∀j. Application of Lemma 5.4.2 and (5.44)
to (5.40) gives

|ε(φ̂Z1(u;∆t))| = |e1| ≤ P̄ (N,nq)εL.

We continue with the error in φ̂Y2(u;∆t). From (5.14) we have that

ε(φ̂Y2(u;∆t)) = ε(φ̂Z1(u;∆t))φR(u;∆t)
= e1φR(u;∆t) = e1φY1(u;∆t), ∀u. (5.45)

Applying Lemma 5.4.1 and Lemma 5.4.2 to (5.45) results in

|ε(φ̂Y2(u;∆t))| = |e1||φY1(u;∆t)| ≤ |e1| ≤ P̄ (N,nq)εL. (5.46)

Next, we arrive at the induction step, described in the lemma below.
We use the common notation ε = O(ḡ(a1, · · · , an)) to indicate that a

Q > 0 exists, so that |ε| = Q|ḡ(a1, · · · , aN)|, with Q constant or varying less
than function ḡ(·) with respect to parameters a1, · · · , aN .

Lemma 5.4.3. For m = 3, · · · ,M, assuming that

ε(φ̂Ym−1(u;∆t)) = P̄ (N,nq)
(m−1)−1∑

j=1

φYj (u;∆t)e(m−1)−j , ∀u, (5.47)

where P̄ (N,nq) is a term which varies less than exponentially with respect
to N and nq, we have

ε(φ̂Ym(u;∆t)) = O(
m−1∑
j=1

φYj (u;∆t)em−j), ∀u, (5.48)

and thus
|ε(φ̂Ym(u;∆t))| = O(m− 1)εL. (5.49)

116

Proof. We find that for m = 3, · · · ,M, and ∀u:

ε(φ̂Zm−1(u;∆t))

=
∫ ∞

−∞
(ex + 1)iufYm−1(x)dx−

2
b− a

N−1∑′

l=0

Re

(
φ̂Ym−1(

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)
Î

=
∫ ∞

−∞
(ex + 1)iufYm−1(x)dx−

∫ b

a
(ex + 1)iufYm−1(x)dx

+
∫ b

a
(ex + 1)iufYm−1(x)dx−

2
b− a

N−1∑′

l=0

Re

(
φYm−1(

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)
I

+
2

b− a

N−1∑′

l=0

Re

(
φYm−1(

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)

(I − Î)

+
2

b− a

N−1∑′

l=0

Re

(
(φYm−1(

lπ

b− a
;∆t)− φ̂Ym−1(

lπ

b− a
;∆t)) exp(−ia lπ

b− a
)
)
Î

=
∫

R\[a,b]
(ex + 1)iufYm−1(x)dx+ εF

+
2

b− a

N−1∑′

l=0

Re

(
φYm−1(

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)
εq

+
2

b− a

N−1∑′

l=0

Re

(
ε(φYm−1(

lπ

b− a
;∆t)) exp(−ia lπ

b− a
)
)
Î

= em−1 +
2

b− a

N−1∑′

l=0

Re

(
ε(φYm−1(

lπ

b− a
;∆t)) exp(−ia lπ

b− a
)
)
Î . (5.50)

Substitution of (5.47) into (5.50) gives

ε(φ̂Zm−1(u;∆t))

= em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

2
b− a

N−1∑′

l=0

Re

(
φYj (

lπ

b− a
;∆t)e(m−1)−j exp(−ia lπ

b− a
)
)
Î

= em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

e(m−1)−j(
2

b− a

N−1∑′

l=0

Re

(
φYj (

lπ

b− a
;∆t) exp(−ia lπ

b− a
)
)
Î)

= em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

e(m−1)−jφ̂Zj (u;∆t).

117

The error in φ̂Ym(u;∆t), ∀u, is found to be

ε(φ̂Ym(u;∆t)) = φR(u;∆t)ε(φ̂Zm−1(u;∆t))

= φR(u;∆t)em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

e(m−1)−jφR(u;∆t)φ̂Zj (u;∆t)

= φR(u;∆t)em−1 + P̄ (N,nq)
(m−1)−1∑

j=1

e(m−1)−jφ̂Yj+1(u;∆t)

= φY1(u;∆t)em−1 + P̄ (N,nq)
m−1∑
j=2

em−jφ̂Yj (u;∆t)

= O(
m−1∑
j=1

φYj (u;∆t)em−j) +O(ekel), k, l ∈ 1, · · · ,m− 1.

From Lemma 5.4.2 we see that |ej | = O(|εF | + |εq|), ∀j, if N and nq

increase simultaneously. Error εF decays exponentially with respect to N ,
and εq decays exponentially with respect to nq, so that ej decays exponen-
tially and the quadratic term, ekel, converges to zero faster than ej . We
thus have that

ε(φ̂Ym(u;∆t)) = O(
m−1∑
j=1

φYj (u;∆t)em−j),

and application of Lemmas 5.4.1 and 5.4.2 gives, ∀u ∈ R,

|
m−1∑
j=1

φYj (u;∆t)em−j | ≤
m−1∑
j=1

|φYj (u;∆t)||em−j | ≤ P̄ (N,nq)(m− 1)εL,

where P̄ (N,nq) varies less than εF and εq with respect to N,nq, respectively.
So,

|ε(φ̂Ym(u;∆t))| = O((m− 1)εL), (5.51)

which concludes the proof.

As a result of the lemma above, we have, ∀u,

ε(φ̂YM(u;∆t)) = O(
M−1∑
j=1

φYj (u;∆t)em−j), (5.52)

and
|ε(φ̂YM(u;∆t))| = O((M− 1)εL). (5.53)

118

Remark 5.4.1 (Error of φ̂YM). Application of (5.53) and (5.44) results in

|ε(φ̂YM(u;∆t))| = O((M− 1)(|εF |+
2

b− a
N |εq|)), ∀u.

When the number of monitoring dates, M, increases, larger values of N and
nq are necessary to reach a specified level of accuracy.

Moreover, when a large value of N is necessary for accuracy, we should
also increase nq to control the error. When N and nq both increase, the
expression |Nεq| converges exponentially to zero1, and we have that

|ε(φ̂YM(u;∆t))| = O((M− 1)(|εF |+ |εq|)), ∀u.

5.4.2 Error in the option price

We now focus on the error in the arithmetic Asian option price. After
application of (5.52) in (5.39) the error reads

ε = O(εF) +O(
M−1∑
j=1

em−j exp(−r∆t)
N−1∑′

k=0

Re(φYj (
kπ

b− a
;∆t)e−ikπ a

b−a)Vk).

(5.54)
When replacing e−r∆tVk (Vk as defined in (5.22)) by the following term:

e−r∆tjW j
k := e−r∆tj

2

b− a
(S0
j + 1χk(x∗, b) + (

S0

j + 1
−K)ψk(x∗, b)), for a call,

2
b− a

((K − S0
j + 1)ψ(a, x∗)− S0

j + 1
χ(a, x∗)), for a put,

(5.55)
with ∆tj := j∆t/M, the expression

M−1∑
j=1

em−j exp(−r∆t)
N−1∑′

k=0

Re(φYj (
kπ

b− a
;∆t)e−ikπ a

b−a)Vk, ∀j, k,

remains of the same order, regarding N and nq.
The error in (5.54) therefore satisfies

ε = O(εF) +O(
M−1∑
j=1

em−je
−r∆tj

N−1∑′

k=0

Re(φYj (
kπ

b− a
;∆t)e−ikπ a

b−a)W j
k).

We now can write for the overall error:

ε = O(εF) +O(
M−1∑
j=1

em−jA(S0,∆tj)),

1Note that N varies linearly, but εq decays exponentially, so that N |εq| also decays
exponentially.

119

where A(S0, τ) stands for the Asian option value with initial underlying
price S0 and time to maturity τ . Then

|ε| = O(|εF |) +O(
M−1∑
j=1

|em−j |A(S0,∆tj)).

By Lemma 5.4.2 we find

|ε| = O(|εF |) +O((|εF |+
2

b− a
N |εq|)

M−1∑
j=1

A(S0,∆tj)). (5.56)

Volatility inherent in an Asian option is smaller than that of an equiva-
lent vanilla European option, due to the averaging feature. This makes Asian
options cheaper than their plain vanilla equivalents. In other words, with
the same maturity, the value of an Asian option, A(S0, τ), is less or equal
to that of the corresponding vanilla European option, denoted by E(S0, τ),
written on the same underlying asset. The European option value will be
used as upper bound for the corresponding arithmetic Asian option value
in (5.56) and we have:

|ε| = O(|εF |) +O((|εF |+
2

b− a
N |εq|)

M−1∑
j=1

E(S0,∆tj)). (5.57)

We assume that

max
j=1,··· ,M−1

E(S0, j∆tj) = E(S0,∆tj∗),

so that the error in the Asian option price satisfies

|ε| = O(|εF |) +O((|εF |+
2

b− a
N |εq|)(M− 1)E(S0,∆tj∗)). (5.58)

What remains is an upper bound for the plain vanilla European option
value, E(S0, (M− 1)∆tj∗), which is given as follows.

Result 5.4.1. The value of a plain vanilla European call option can be
bounded by

vC(S0, τ) ≤ S0e
−qτ ,

with S0, τ, q the initial underlying price, the time to maturity and the divi-
dend rate, respectively.

The value of a vanilla European put option can be bounded by

vP (S0, τ) ≤ Ke−rτ ,

with K, r the strike price and the interest rate, respectively.

120

Summarizing, the error in the arithmetic Asian option with M monitor-
ing dates can be approximated by:

|ε| ∼

 O((|εF |+ 2
b− a

N |εq|)(M− 1)S0e
−q∆tj∗), for a call,

O((|εF |+ 2
b− a

N |εq|)(M− 1)Ke−r∆tj∗), for a put.
(5.59)

For f(y|x) ∈ C∞[a, b], εF and εq converge exponentially with respect to
N and nq, respectively. Therefore, as N and nq both increase, the error in
the Asian option price decreases exponentially:

|ε| ≤ P̄ (N,nq)(exp(−(N − 1)νF) + exp(−(nq − 1)νq)),

where P̄ (N,nq) is a term which varies less than exponentially with respect
to N and nq, and νF > 0, νq > 0.

When the probability density function has a discontinuous derivative,
the error in the Asian option price converges algebraically.

5.5 Numerical results

In this section numerical results for Asian options under the Black-Scholes
(BS), CGMY [14] and Normal Inverse Gaussian (NIG) [3] models are pre-
sented. We use the same parameter sets as in [37], based on three test
cases:

� BS case: r = 0.0367, σ = 0.17801.

� CGMY case: r = 0.0367, C = 0.0244, G = 0.0765,M = 7.5515,
Y = 1.2945.

� NIG case: r = 0.0367, α = 6.1882, β = −3.8941, δ = 0.1622.

These parameters have been obtained by calibration (see [37]). The charac-
teristic functions for these processes were presented in Subsection 1.1.1. In
all numerical examples we set time to maturity T − t0 = 1, and S0 = 100.
Strike price, K, and the number of monitoring dates, M, vary among the
different experiments.

MATLAB 7.7.0 is used and the CPU is an Intel(R) Core(TM)2 Duo CPU
E6550 (@ 2.33GHz Cache size 4MB). CPU time is recorded in seconds.

The absolute error that we report below is defined as the absolute value of
the difference between the approximate solution at t0 and S0, and a reference
value which is computed by the ASCOS method with a large number of terms
in the Fourier cosine expansions. The values have also been compared to
reference values in the literature. With our own reference values however
we can compare up to a higher accuracy.

121

5.5.1 Geometric Asian options

First of all, we confirm the exponential convergence of the ASCOS method
for geometric Asian options under the Black–Scholes model, for which an
analytic result is available, in Figure 5.1. For increasing N -values the error
decreases exponentially.

Figure 5.1: Convergence of geometric Asian options under the BS model
with M = 250, S0 = 100,K = 90.

The performance of the ASCOS pricing method for the NIG and CGMY
test cases is presented in Table 5.1. Geometric Asian call option prices with
12, 50 and 250 monitoring dates are shown. Reference values are taken from
ASCOS computations with N = 4096. In all examples our method also
gives the same option prices, up to a basis point, as those presented in [37].

From Table 5.1 we see that the option prices have converged up to basis
point precision with N = 128 and N = 512, respectively, for the NIG
and CGMY test cases. Exponential convergence is observed for these Lévy
processes and, as a result, geometric Asian options can be priced within
milliseconds by the ASCOS method. In a comparison with the results in [37],
we found that our timing results are approximately 100 times faster for the
NIG test case and 20 times for the CGMY case.

Table 5.2 presents the convergence behavior when continuously–monitored
geometric Asian options (M = ∞) are approximated by discretely–monitored
geometric Asian options combined with the 4–point Richardson extrapola-
tion (5.31). Here d is as defined in (5.31), that is, discretely–monitored Asian
options with 2d, 2d+1, 2d+2, 2d+3 monitoring dates are used to approximate
the continuously–monitored Asian option. The reference values have been
obtained by employing the ASCOS method with N = 4096,M = 512.

The discretely–monitored Asian prices with 4, 8, 16 and 32 monitor-

122

NIG model
M N = 64 N = 128 N = 192

12
abs.error 1.42e-04 2.81e-05 1.33e-08
CPU time 4.9e-04 7.7e-04 8.3e-04

50
abs.error 1.23e-04 3.07e-05 1.24e-08
CPU time 9.3e-04 1.4e-03 2.1e-03

250
abs.error 1.13e-04 3.13e-05 2.11e-08
CPU time 3.1e-03 5.8e-03 8.2e-03

CGMY model

M N = 256 N = 512 N = 1024

12
abs.error 2.1e-03 9.87e-06 6.27e-11
CPU time 2.7e-03 4.1e-03 9.9e-03

50
abs.error 1.20e-02 1.24e-05 6.71e-11
CPU time 1.2e-02 1.7e-02 4.3e-02

250
abs.error 1.16e-02 3.65e-05 3.84e-11
CPU time 0.050 0.10 0.22

Table 5.1: Convergence of geometric Asian options for the NIG and CGMY
test cases with S0 = 100,K = 110.

NIG CGMY
d abs.error CPU time abs.error CPU time
1 3.78e-04 0.0018 2.06e-04 0.0120
2 5.92e-05 0.0023 1.21e-04 0.0247
3 3.31e-05 0.0052 5.71e-05 0.0499

Table 5.2: Convergence of geometric Asian options for the NIG and CGMY
cases with S0 = 100,K = 110. For the NIG model we use N = 128, for the
CGMY model N = 512.

ing dates, i.e., d = 2 have converged to the continuously–monitored Asian
price in Table 5.2. We need approximately 2 and 25 milliseconds to get the
continuously–monitored Asian option prices for the NIG and CGMY test
cases, respectively. As compared to [37], we achieve a speedup of 20 for the
NIG test and the CPU time for the CGMY case is approximately one–third
of that in [37].

5.5.2 Arithmetic Asian options

First, the error in an arithmetic Asian option under the Black–Scholes model
with 50 monitoring dates is presented in Figure 5.1, where at the y–axis we
have the logarithm (basis 10) of the absolute error in the Asian option price

123

and at the x–axis the value of index d, where N = 64d and nq = 100d.
The reference value is obtained by the ASCOS method with N = 4096 (the
resulting values are as in [37]). Exponential convergence in the arithmetic
Asian price with respect to N and nq, increasing simultaneously, is observed
in Figure 5.2.

Figure 5.2: Convergence of arithmetic Asian options for the BS test case
with M = 50, S0 = 100,K = 90.

Table 5.3 then presents the convergence and the CPU time of an arith-
metic Asian option for the NIG test case withM = 12 andM = 50 (monthly
and weekly-monitored, respectively). Reference values are again obtained
by setting N = 4096. Exponential convergence can be seen in Table 5.3,
as the error decreases exponentially, when nq and N increase linearly. The
Asian options forM = 50 converge up to basis point precision with N = 128
and nq = 200, where the CPU time is approximately 2.5 seconds. Higher
order accuracy can be achieved as N and nq increase, but the CPU time
grows with respect to nqN

2.
The speed of convergence is not influenced significantly by an increase

in the number of monitoring dates, M, neither is the CPU time.

M time and error
N = 128 N = 256 N = 384
nq = 200 nq = 400 nq = 600

12
abs.error 2.0e-3 1.71e-4 5.16e-6
CPU time 2.41 15.13 46.09

50
abs.error 2.26e-4 6.94e-5 2.17e-6
CPU time 2.43 15.16 46.22

Table 5.3: Convergence of arithmetic Asian options for the NIG test case
with S0 = 100,K = 110.

124

Furthermore, the convergence remains robust when the number of mon-
itoring dates increases, which gave rise to convergence difficulties for other
pricing methods. A larger number of Fourier cosine terms is required (thus
resulting in a larger CPU time) as compared to monthly or weekly-monitored
examples. This can be seen in Table 5.4, where arithmetic Asian options for
the NIG and CGMY test cases, with 250 monitoring dates (daily-monitored),
are presented. With N = 256, nq = 400 and N = 320, nq = 500, we find
converged option prices (up to basis point precision) for the NIG and CGMY
cases, respectively.

Due to the exponential convergence rate of the Clenshaw–Curtis quadra-
ture and the Fourier cosine expansion, the number of terms needed remains
limited, which influences the CPU time positively. In [37] an accuracy of
O(10−3) was reached in approximately 210 seconds for the same CGMY
test case with M = 250. The ASCOS method reaches O(10−4) accuracy in
approximately 27 seconds.

A comparison of the CPU times in Tables 5.3 and 5.4 shows that the
ASCOS CPU time does not increase from M = 12 to M = 250, because the
quadrature rule, which dominates the CPU time, is used only once. This is
especially beneficial for pricing continuously-monitored Asian options.

NIG
time and error

N = 128 N = 256 N = 512
nq = 200 nq = 400 nq = 800

abs.error 7.8e-3 9.33e-5 6.94e-7
CPU time 2.42 15.23 104.28

CGMY
time and error

N = 256 N = 320 N = 384
nq = 400 nq = 500 nq = 600

abs.error 1.6e-3 4.69e-4 8.96e-5
CPU time 14.92 26.61 44.41

Table 5.4: Convergence of arithmetic Asian options for the NIG and CGMY
test cases with S0 = 100,K = 110,M = 250.

In Table 5.5 we finally compute continuously–monitored arithmetic Asian
call options under the NIG model with S0 = 100 and different strikes,
by the repeated Richardson extrapolation, based on discretely–monitored
arithmetic Asian call options (5.31). The option prices converge somewhat
slower with respect to parameter d, as compared to the geometric Asian
case. However, the CPU time of the ASCOS method does not increase
when d increases, so that we can use a larger value for d, for instance d = 6
(M = 64, 128, 256, 512) and obtain accurate results.

125

d
K = 90 K = 100

Option value CPU time Option value CPU time
4 12.6748 60.05 5.1191 60.01
5 12.6744 60.13 5.1186 59.94
6 12.6743 60.35 5.1185 60.17

Table 5.5: Convergence of arithmetic Asian options under the NIG model
with S0 = 100, N = 256, nq = 400.

5.6 Conclusions

In this chapter, we proposed an efficient pricing method for European-style
Asian options, the ASCOS method, based on Fourier cosine expansions and
Clenshaw–Curtis quadrature. The method performs well for different Lévy
processes, different parameter values and different numbers of Asian option
monitoring dates. The method is accompanied by a detailed error analy-
sis, giving evidence for an exponential convergence rate for geometric and
arithmetic Asian options. Due to the exponential convergence, our pricing
method is highly efficient and significant speedup has been achieved com-
pared to competitor pricing methods.

The ASCOS method performs in a robust manner when the number of
monitoring dates increases, and, interestingly, the CPU time does not in-
crease significantly. This makes the pricing method especially advantageous
for weekly- and even daily-monitored arithmetic Asian options, as well as
for continuously–monitored Asian options whose value is approximated by
discretely–monitored Asian options in combination with Richardson extrap-
olation.

126

CHAPTER 6

Efficient Pricing of Asian Options
under Lévy Processes Based on

Fourier Cosine Expansions
Part II: Early–Exercise Features

and GPU Implementation

This chapter contains essentially the contents of paper [74].

6.1 Introduction

An Asian option is a special type of exotic option, introduced in Japan, in
1987. Because the contract description (i.e. the pay-off function) is based
on geometric or arithmetic averages of the underlying stock price at moni-
toring dates, rather than just on the present asset price, this exotic option
is also called path-dependent. The number of monitoring dates can be fi-
nite (so-called discretely–monitored Asian options) or infinite (continuously–
monitored Asian options). Asian options are popular, because averages typ-
ically move in a more stable way than individual asset prices, and the volatil-
ity, inherent in asset prices, is reduced due to the averaging feature, so that
Asian option holders may pay lower prices for these contracts, compared to
plain European options.

There is not much information on early-exercise Asian option products in
the present markets. We may encounter them in the commodity market, and
variants in the equity market are so-called American options with an Asian

127

tail (meaning that the final part of the contract time is based on averaged as-
set prices rather than on plain assets). In the academic literature, important
contributions [28, 5] have been presented, when pricing these Asian options
by partial differential and partial integro-differential equations (PDEs and
PIDEs, respectively). In [28], for example, a semi–Lagrangian time-stepping
method was used to solve the P(I)DE in a time-stepping procedure. The
method worked particularly well for American-style Asian options under a
jump–diffusion model.

In [73], European-style Asian options were priced by means of Fourier
cosine expansions (as in the COS method [34]) and Clenshaw–Curtis quadra-
ture. The method was named the Asian cosine method (ASCOS). This
new pricing method can be seen as an efficient alternative to Fast Fourier
Transform (FFT) and convolution methods, as in [18, 37, 4, 49], for pricing
European–style Asian options under Lévy processes.

In this chapter, which is the continuation work of chapter 5, we pro-
pose an efficient version of the ASCOS pricing method for early–exercise
Asian options, again based on Fourier expansions, Fast Fourier Transform
(FFT) and Clenshaw–Curtis quadrature. In the 2D ASCOS method the
option price is calculated based on two dimensions of uncertainty, i.e. the
uncertainty in the asset process, as well as in the averaged asset process
over time. The risk–neutral formula then becomes a two–dimensional in-
tegration, based on which the continuation value is approximated at each
time step. By application of the chain rule from probability theory, the
joint conditional density function in the risk–neutral formula can be factor-
ized into two marginal conditional density functions that are approximated
by Fourier cosine expansions. To calculate the option price, we need to
recursively recover the Fourier coefficients with the help of Fourier cosine
expansions and Clenshaw–Curtis quadrature. The FFT is used to acceler-
ate the algorithm. The computational complexity of our pricing method for
Asian options, with M early–exercise dates, is O((M− 1)nqN1N2 log2N2),
with N1, N2 the number of Fourier cosine terms in the expansions for the
density functions of the asset and the averaged asset price, respectively, and
nq the number of terms in the Clenshaw-Curtis quadrature.

Exponential convergence in the option price, with respect to nq, N1, N2,
is obtained for most Lévy processes, for which we give an error analysis,
combined with numerical examples. The 2D method is presented in Sec-
tion 6.4, followed by an error analysis in Section 6.5. Numerical results
are given in Section 6.6, where the efficiency and accuracy of the pricing
methods are presented. Implementation has taken place on the Graphics
Processing Unit (GPU). It may be interesting to see that this computer
architecture improves the pricing speed drastically when pricing arithmetic
Asian options with early-exercise features.

We start, however, in Section 6.3, with another, alternative Asian pricing
method, which is only accurate in the case of a large number of early–exercise

128

dates. It has a reduced computational cost of O((M−1)nqN
2), with N the

number of terms in a 1D Fourier cosine expansion. The approximation error
appearing from the approximations in this alternative method converges to
zero only when the number of early–exercise dates tends to infinity.

6.2 Early-exercise Asian options under Lévy pro-
cesses

In this chapter the underlying asset, St, is assumed to be an exponential
function of a Lévy process, Lt, i.e. St = S0 exp(Lt). Lévy process, Lt, with
initial condition L0 = 0, has independent and stationary increments and is
stochastically continuous. For any s < t, and ∀ε > 0, we have

lim
s→t

P(|Lt − Ls| > ε) = 0.

The (conditional) probability density function is not known for many rele-
vant Lévy asset processes. However, its Fourier transform, the (conditional)
characteristic function, φYm|Ym−1

(·), is often available, for example, by the
Lévy-Khinchine theorem for underlying Lévy processes. Our pricing algo-
rithm is based on this Fourier transform.

In this chapter, we deal with early–exercise options in which the con-
tract function at each exercise date is a function of the averaged under-
lying asset price, up to that date. Early-exercise implies that the option
may be exercised prior to the expiration date. Let t0 denote the initial
time and T = {t1, · · · , tM} be the collection of all exercise dates with
∆t := (tm − tm−1), t0 < t1 < · · · < tM = T , and assume that the early–
exercise dates and the monitoring dates of the Asian options are the same.

We focus on arithmetic averaging, as it is mathematically more chal-
lenging, and on fixed–strike Asian options, with payoff functions defined by

g(S, tm) =

max(1

m+ 1

m∑
j=0

Sj −K, 0), for a call,

max(K − 1
m+ 1

m∑
j=0

Sj , 0), for a put,

These payoff functions change from time step to time step, due to the aver-
aging feature.

6.3 A first Asian pricing method (for M→∞)

We present here a first pricing algorithm for early–exercise arithmetic Asian
options, which is only accurate for a large number of early-exercise dates, as
we will proof in the subsection to follow.

129

The pricing formula for an early–exercise Asian option with M exercise
dates then reads, for m = M,M− 1, . . . , 2: c(ym−1, tm−1) = e−r∆t

∫
R
v(ym, tm)f(ym|ym−1)dym,

v(ym−1, tm−1) = max (g(ym−1, tm−1), c(ym−1, tm−1)) ,
(6.1)

followed by

v(y0, t0) = e−r∆t

∫
R
v(y1, t1)f(y1|y0)dy1. (6.2)

Here, ym is the state variable at time step tm, and v(x, t), c(x, t) and g(x, t)
are the option value, the continuation value and the payoff at time t, re-
spectively. v(S, tM) = g(S, tM) is the payoff function at final time, tM = T .
Function f(ym|ym−1) is the conditional density of ym given ym−1. Interest
rate r is assumed to be constant here.

In the risk–neutral formula (6.1) the continuation value is computed at
each time step as the discounted expected value of the option price at a next
time step. Moreover, to avoid arbitrage opportunities, the option value at
each time step cannot be less than the payoff of the option, which is the
second equation in (6.1).

In [34, 35] the COS method was developed for the computation of con-
tinuation value c(ym−1, tm−1) and option price v(y0, t0), for vanilla (i.e. non-
path dependent) Bermudan options, under the assumption that the charac-
teristic function of the underlying Lévy asset price process is known.

The pricing algorithm for early–exercise arithmetic Asian options in this
section can be seen as a generalization of the COS method for Bermudan
options (a general 2D pricing algorithm will be presented in Section 6.4).

Here, we define

Ym := log(
S1

S0
+
S2

S0
+ · · ·+ Sm

S0
), m = M,M− 1, · · · , 1. (6.3)

Based on this variable, the payoff function is given by

g(ym, tm) =

(
S0(1 + eym)
m+ 1

−K)+, for a call,

(K − S0(1 + eym)
m+ 1

)+, for a put,
(6.4)

After truncation of the integration range in (6.1) and (6.2), from R to [a, b],
we approximate the conditional density function in terms of its character-
istic function, via a Fourier cosine expansion. For m = M− 1, · · · , 1 the
continuation value is approximated by Fourier cosine expansions, as

ĉ(ym−1, tm−1) = e−r∆t

N−1∑′

k=0

Re

(
ϕ̂Ym|Ym−1

(
kπ

b− a
; ym−1,∆t)e

−ikπ a
b−a

)
V̂k(tm),

(6.5)

130

where ĉ, V̂ , φ̂ indicate that these are numerical approximations. The prime
at the sum symbol indicates that the first term in the summation is weighted
by one-half. Conditional characteristic function ϕ̂Ym|Ym−1

(u; ym−1,∆t), in (6.5),
will be derived in Subsection 6.3.1. The Fourier cosine coefficients of the op-
tion price at tm in (6.5) are defined by

V̂k(tm) =
∫ b

a
v̂(ym, tm) cos(kπ

ym − a

b− a
)dym, (6.6)

The target option price is obtained by computing

v̂(y0, t0) = e−r∆t

N−1∑′

k=0

Re

(
φY1|Y0

(
kπ

b− a
; y0,∆t)e

−ikπ a
b−a

)
V̂k(t1), (6.7)

where for arithmetic Asian options under Lévy processes, φY1|Y0
is known

analytically.
Based on the conditional characteristic function for Ym in (6.3), the

early–exercise arithmetic Asian option value can be calculated by a backward
recursion on the Fourier coefficients, V̂k(tm), as defined in (6.6). Then, the
option price is obtained by inserting the value of V̂k(t1) into (6.7).

At maturity time, tM, the option value equals the payoff, and Fourier
coefficients, Vk(tM), read:

Vk(tM) =

2

b− a
(S0
M+ 1χk(y∗M, b) + (S0

M+ 1 −K)ψk(y∗M, b)), for a call,

2
b− a

((K − S0
M+ 1)ψk(a, y∗M)− S0

M+ 1χk(a, y∗M)), for a put,
(6.8)

with y∗M = log(K(M+1)
S0

− 1), the value for which the payoff is nonzero, and

ψj(yl, yu) :=
∫ yu

yl

cos
(
jπ

y − δn
b2 − δn

)
dy, (6.9)

and

χj(yl, yu) :=
∫ yu

yl

ey cos
(
jπ

y − δn
b2 − δn

)
dy. (6.10)

At recursion step tm,m = M− 1, · · · , 1, as a first step in the algorithm,
the so-called early–exercise point, y∗m, for which c(y∗m, tm) = g(y∗m, tm), is
determined by Newton’s method, as the derivatives of the continuation value
and the payoff function, with respect to ym, can be easily derived. Based
on this, we can split Vk(tm), as follows

Vk(tm) =

{
Ck(a, y∗m, tm) +Gk(y∗m, b, tm), for a call,

Gk(a, y∗m, tm) + Ck(y∗m, b, tm), for a put,

131

where Ck, Gk are Fourier cosine coefficients of the continuation value and
payoff at tm, respectively. Coefficients Gk are of the form

Gk(tm, yl, yu) =
2

b− a

∫ yu

yl

g(y, tm) cos(kπ
y − a

b− a
)dy, (6.11)

where for a call, [yl, yu] = [y∗m, b], and for a put, [yl, yu] = [a, y∗m]. Insert-
ing (6.4) into (6.11) gives us

Gk(tm) =
2

b− a

S0

m+ 1
χk(y∗m, b) + (

S0

m+ 1
−K)ψk(y∗m, b), for a call,(

K − S0
m+ 1

)
ψk(a, y∗m)− S0

m+ 1χk(a, y∗m), for a put.

Coefficients Ck, approximated by Ĉk, defined as

Ĉk(yl, yu, tm) =
2

b− a

∫ yu

yl

ĉ(y, tm) cos(kπ
y − a

b− a
)dy, (6.12)

are computed numerically. In the subsection to follow, we will show that,
∀u ∈ R, the conditional characteristic function ϕYm|Ym−1

(u; ym−1,∆t) can
be approximated by

ϕ̂Ym|Ym−1
(u; ym−1,∆t) ≈ (1 + eYm−1)iuφZ(u;∆t), (6.13)

and that the error from approximation (6.13) converges to zero only when
M goes to infinity. The distribution of Z is identical to that of the logarithm
of increment between (any) two consecutive time steps of a Lévy process.

Applying (6.5) and (6.13) in (6.12), gives us

Ĉk(yl, yu, tm) =
∫ yu

yl

ĉ(ym, tm) cos(kπ
ym − a

b− a
)dym (6.14)

= e−r∆tRe

N−1∑′

j=0

φZ(
jπ

b− a
;∆t)e−ijπ a

b−a V̂j(tm+1)Hk,j(yl, yu)

 ,

where function Hk,j(yl, yu) is given by

Hk,j(yl, yu) =
2

b− a

∫ yu

yl

(1 + ey)i jπ
b−a cos(kπ

y − a

b− a
)dy. (6.15)

With Ĉ(yl, yu, tm) := {Ĉk(yl, yu, tm)}N−1
k=0 , Equation (6.14) can be writ-

ten in matrix–vector multiplication form, as

Ĉ(yl, yu, tm) = e−r∆tRe(H · u), (6.16)

with H := {Hk,j}N−1
k,j=0, u := {uj}N−1

j=0 , and

u0 =
1
2
φZ(0;∆t)V̂0(tm+1),

uj = φZ(
jπ

b− a
;∆t)e−ijπ a

b−a V̂j(tm+1), (j 6= 0). (6.17)

132

Integral Hk,j(yl, yu) in (6.15) can be rewritten in terms of Beta functions,
however, the calculation of these Beta functions, with complex-valued ar-
guments for all k, j, is computationally expensive. Therefore, as in [73],
we will use the Clenshaw–Curtis quadrature rule to calculate the integrals
Hk,j(yl, yu) in (6.15).

By recursion, we get the V̂k(t1)-coefficients, and the value of an early–
exercise arithmetic Asian option is given by

v̂(y0, t0) = e−r∆t

N−1∑′

k=0

Re(φ
log(

S1
S0

)
(
kπ

b− a
;∆t)e−ikπ a

b−a)V̂k(t1),

where y0 = log(S0) and φ
log(

S1
S0

)
(u; t), ∀u, t, is known analytically for most

Lévy processes.
At each time step the computational complexity is O(nqN

2) and O(N)
to compute the Ĉk- and Ĝk-terms, respectively, where nq denotes the num-
ber of terms in the discrete cosine expansion of the Clenshaw–Curtis quadra-
ture. In total, O((M−1)nqN

2) computations are required for early-exercise
arithmetic Asian options under Lévy processes.

Remark 6.3.1 (Error Analysis). With the conditional characteristic func-
tion well approximated, the error in the option price propagates basically in
the same way as for a plain vanilla Bermudan option, for which we refer
to [35], where a detailed error analysis was given.

6.3.1 Characteristic function of the first pricing method

The fact that the pricing method explained is only highly accurate for
M→ ∞ will be presented in this section, where we derive the conditional
characteristic function.

First, we give two lemmas which will be used later in our analysis.

Lemma 6.3.1. A conditional characteristic function, ϕY |X(u;x, t), satis-
fies, ∀X,Y with X and Y −X independent, and ∀u ∈ R,

ϕY |X(u;x, t) = eiuXφZ(u; t),

where Z and Y −X are identically distributed, that is, Zd
=Y −X.

Proof. From the definition, we have

ϕY |X(u;x, t) = E(eiuY |X) = eiuXE(eiu(Y−X)|X).

With the notion of independence of X and Y −X, it follows that:

eiuXE(eiu(Y−X)|X) = eiuXE(eiu(Y−X)) = eiuXφY−X(u; t) = eiuXφZ(u; t),

which proves the lemma.

133

Lemma 6.3.2. For random variables X,Y , with a bijective and bi-measurable
function h : R → R, we have that, ∀u ∈ R,

ϕY |X(u;x, t) = ϕY |h(X)(u;h(x), t). (6.18)

Proof. The proof is straightforward as the σ-fields generated by X and h(X)
coincide.

As a consequence of the Lemmas 6.3.2 and 6.3.1, we find that, for random
variables X,Y and bijective function h : R → R, with h(X) and Y − h(X)
independent,

ϕY |X(u;x, t) = eiuh(X)φZ(u; t), ∀u ∈ R (6.19)

where Zd
=Y − h(X).

The basis for the efficient 1D Asian pricing algorithm is in the following
lemma, which describes a relation between the characteristic functions of the
state variables at consecutive time steps tm and tm−1, for Lévy processes.

Lemma 6.3.3. If we define

Ym := log(
S1

S0
+
S2

S0
+ · · ·+ Sm

S0
), m = M,M− 1, · · · , 1,

then, at time step tm, m = M, · · · , 2, we have, ∀u ∈ R, in the case of a
Lévy process, St, that

φYm(u; t) = φlog(1+eYm−1)(u; t)φZm(u; t), (6.20)

where
Zm := log(

Sm

Sm−1
). (6.21)

Proof. For all u ∈ R, we have

Ym = log(1 + eWm−1) + Z1,

with
Wm−1 := log(

S2

S1
+
S3

S1
+ · · ·+ Sm

S1
).

Note that Wm−1 and Z1 are independent, as Lévy processes are defined
by the property of independent increments. Therefore, ∀u ∈ R,

φYm(u; t) = φlog(1+eWm−1)(u; t)φZ1(u; t).

Moreover, a Lévy process has stationary increments, which implies that,
∀u,m, φZ1(u; t) = φZm(u; t), so that we find

φYm(u; t) = φlog(1+eWm−1)(u; t)φZm(u; t).

134

Now, we only need to prove that, ∀u ∈ R,

φlog(1+eYm−1)(u; t) = φlog(1+eWm−1)(u; t). (6.22)

Here, eYm−1 and eWm−1 can be rewritten as follows

eYm−1 = eZ1 + eZ1+Z2 + · · ·+ eZ1+···+Zm−1 ,

eWm−1 = eZ2 + eZ2+Z3 + · · ·+ eZ2+···+Zm ,

where Zm is defined in (6.21). For a Lévy process all Zj , j = 1, · · · ,M, are
identically and independently distributed, so that eYm−1

d
=e

Wm−1 , and ∀u,
φeYm−1 (u; t) = φeWm−1 (u; t).

Equation (6.22) can be proved by the fact that for any two random
variables, X,Y , if we have φX(u; t) = φY (u; t), ∀u ∈ R, then, for any
bijective and bi–measurable function h : R → R, we have

φh(X)(u; t) = φh(Y)(u; t). (6.23)

This concludes the proof.

From (6.20) and since Ym−1 and Zm are independent variables, as we
work with Lévy processes, we have

φYm(u; t) = φlog(1+eYm−1)+Zm
(u; t),∀u, t,

which implies that Ym and log(1 + eYm−1) + Zm are identically distributed,
i.e. Ym

d
= log(1 + eYm−1) + Zm.

Let
Ȳm := log(1 + eYm−1) + Zm,

so that Ym
d
= Ȳm. Conditional characteristic function ϕȲm|Ym−1

(u; ym−1,∆t)
is known in closed form, that is, we set h(Ym−1) := log(1 + eYm−1), and,
from (6.19), ∀ym−1, u ∈ R, we find

ϕȲm|Ym−1
(u; ym−1,∆t) = ϕȲm|h(Ym−1)(u;h(ym−1),∆t)

= eiuh(Ym−1)φȲm−h(Ym−1)(u;∆t)

= (1 + eYm−1)iuφZm(u;∆t). (6.24)

Our aim is to approximate the conditional characteristic function of Ym,
given Ym−1, in terms of the conditional characteristic function in (6.24).
Both Ym and Ȳm can be decomposed in terms of the increments between
consecutive time steps, as follows

Ym = log(
m∑

j=1

(Πj
l=1

Sl

Sl−1
)),

Ȳm = log(
m−1∑
j=1

(Πj
l=1

Sl

Sl−1
) + 1) + log(

Sm

Sm−1
).

135

These increments are identically and independently distributed, depending
only on the model parameters and ∆t. Therefore, Ym and Ȳm are both
functions of ∆t. In the following lemma we will show that as M→∞, that
is, as ∆t goes to zero, we have Ym → Ȳm, ∀m = 1, · · · , and we can use
ϕȲm|Ym−1

(u; ym−1,∆t) to approximate ϕYm|Ym−1
(u; ym−1,∆t) at each time

step.

Lemma 6.3.4. As ∆t → 0, that is, as tk − tk−1 → 0, ∀k = 1, · · · ,M, we
have that, ∀m = 1, · · · ,M,

log(
m∑

j=1

(Πj
l=1

Sl

Sl−1
)) → log(

m−1∑
j=1

(Πj
l=1

Sl

Sl−1
) + 1) + log(

Sm

Sm−1
).

In other words, as M→∞, then, Ym → Ȳm, ∀m = 1, · · · ,M.

Proof.

exp(Ym)− exp(Ȳm) = (
S1

S0
− Sm

Sm−1
) + (

S2

S1
− Sm

Sm−1
)
S1

S0

+ (
S3

S2
− Sm

Sm−1
)
S2

S0
+ · · ·+ (

Sm−1

Sm−2
− Sm

Sm−1
)
Sm−2

S0

=
m−1∑
j=1

(
Sj

Sj−1
− Sm

Sm−1
)
Sj−1

S0
. (6.25)

The mean and variance of log(Sj/Sj−1), j = 1, · · · ,M, under a Lévy
process, are of the form Jµ∆t and Jσ∆t, where Jµ, Jσ are constants, inde-
pendent of ∆t. Therefore, as M → ∞, ∆t → 0, the mean and variance of
log(Sj/Sj−1) will tend to zero, so that log(Sj/Sj−1) → 0.

Function exp(x), x ∈ R, is a continuous function with respect to x, there-
fore, we have Sj/Sj−1 → 1, ∀j = 1, · · · ,M, and thus

Sj

Sj−1
− Sm

Sm−1
→ 0,∀j. (6.26)

Moreover, the term Sj−1

S0
is independent of the term Sj

Sj−1
− Sm

Sm−1
, so that,

from (6.25), we find
exp(Ym)− exp(Ȳm) → 0,

or, in other words, exp(Ym) → exp(Ȳm) as M → ∞, and we can conclude
that Ym → Ȳm, because log(x) is a continuous function in x > 0.

This concludes the proof.

As an approximation, we can thus use

ϕ̂Ym|Ym−1
(u; ym−1,∆t) ≈ ϕȲm|Ym−1

(u; ym−1,∆t)

= (1 + eYm−1)iuφZm(u;∆t). (6.27)

136

For Lévy processes all Zm-terms are identically distributed. Thus

φZm(u; t) =: φZ(u; t),

and we replace φZm(u; t) by φZ(u; t) in (6.27).
This concludes our discussion of the first pricing method. Numerical

experiments, comparing the performance of this method with that of the
2D method presented in the section to follow, for a small and large num-
ber of early-exercise dates, will be presented in the section with numerical
experiments.

6.4 The 2D ASCOS method for early-exercise Asian
options

In this section we present a 2D pricing algorithm for early–exercise Asian
options, which can be used for all Lévy processes with any number of early–
exercise dates. Calculations of the continuation value and the Fourier co-
efficients at each time step are discussed, respectively, in Subsections 6.4.1
and 6.4.2. The method appears to be more robust than the method from
the previous section, but also somewhat more expensive.

6.4.1 Continuation value

At each time step m = M, · · · , 1, we use in this case the variables

ym :=
S1

S0
+ · · ·+ Sm

S0
, xm := log(

Sm

S0
),

and we have
ym = ym−1 + exm . (6.28)

From the risk–neutral evaluation formula, where the continuation value is
derived as the discounted expected option price at the next time step, we
now use a 2D version, as follows, for m = M, · · · , 1,

c(ym−1, xm−1, tm−1) = e−r∆tE(v(ym, xm, tm)|ym−1, xm−1) (6.29)

= e−r∆t

∫
R

∫ +∞

exp(xm)
v(ym, xm, tm)f(ym, xm|ym−1, xm−1)dymdxm.

where the integration range of ym comes from (6.28) and that ym−1 ≥ 0.
Truncating the integration range, gives us

ĉ(ym−1, xm−1, tm−1) = e−r∆t

∫ b1

a1

∫ b2

exp(xm)
v(ym, xm, tm)f(ym, xm|ym−1, xm−1)dymdxm,

(6.30)

137

where [a1, b1] and [exp(xm), b2] are the integration ranges for xm and ym, re-
spectively. Integration range [a1, b1] is calculated the same way as presented
in [35], and the calculation of b2 will be explained in Subsection 6.4.4. By
applying the chain rule to the joint conditional density function in (6.30),
we find

f(ym, xm|ym−1, xm−1) = f(ym|xm, ym−1, xm−1) · f(xm|ym−1, xm−1)
= f(ym|xm, ym−1) · f(xm|xm−1). (6.31)

By inserting (6.31) into (6.30), the risk–neutral formula becomes

ĉ(ym−1, xm−1, tm−1) =

e−r∆t

∫ b1

a1

∫ b2

exp(xm)
v(ym, xm, tm)f(ym|xm, ym−1) · f(xm|xm−1)dymdxm.(6.32)

Although the conditional density function is not known analytically for many
Lévy processes, the corresponding characteristic function is. Based on this,
we approximate the conditional density function by a truncated Fourier
cosine expansion based on the characteristic function, as follows,

f̂(xm|xm−1) =
2

b1 − a1

N1−1∑′

k=0

Re

(
φxm−xm−1(

kπ

b1 − a1
;∆t)·

exp (ikπ
xm−1 − a1

b1 − a1
)
)

cos(kπ
xm − a1

b1 − a1
), (6.33)

and

f̂(ym|xm, ym−1) =
N2−1∑′

j=0

2
b2 − exp(xm)

Re

(
exp (i

jπ

b2 − exp(xm)
ym−1)

)
cos(jπ

ym − exp(xm)
b2 − exp(xm)

). (6.34)

where (6.34) is based on Equation (6.28). Note that for Lévy processes,
defined by independent and identical increments, the (unconditional) charac-
teristic functions of all increments of consecutive time steps, i.e. φxm−xm−1(u;∆t),
are the same, for all time steps, and are known analytically 1. Therefore,
we use the notation φ(u;∆t) := φxm−xm−1(u;∆t) for all time steps.

By replacing the two density functions in (6.32) by their approximations
in (6.33) and (6.34), and then interchanging the order of summation and

1Compared to the previous section and the 1D pricing method, we have reduced the
number of arguments for φ(·) from three to two. So, for the conditional characteristic
function we have used φ(u; x, t), whereas for the unconditional characteristic function, or
if we deal with independent increments, as in the present section, we use φ(u; t).

138

integration, we obtain,

ĉ(ym−1, xm−1, tm−1) = e−r∆t 2
b1 − a1

N1−1∑′

k=0

N2−1∑′

j=0

∫ b1

a1

∫ b2

exp(δn)
v̂(ym, xm, tm) ·

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm−1 − a1

b1 − a1
)
)

cos(kπ
xm − a1

b1 − a1
) ·

2
b2 − exp(xm)

Re

(
exp (i

jπ

b2 − exp(δn)
ym−1)

)
cos(jπ

ym − exp(xm)
b2 − exp(xm)

)dymdxm

= e−r∆t 2
b1 − a1

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm−1 − a1

b1 − a1
)
)
·

Re

(∫ b1

a1

2
b2 − exp(xm)

exp (i
jπ

b2 − exp(xm)
ym−1) cos(kπ

xm − a1

b1 − a1
)·∫ b2

exp(δn)
v̂(ym, xm, tm) cos(jπ

ym − exp(xm)
b2 − exp(xm)

)dymdxm

)
. (6.35)

For the integration over xm in (6.35) numerical approximation is re-
quired, for which Clenshaw–Curtis quadrature is employed here. Function

2
b2 − exp(xm)

exp (i
jπ

b2 − exp(xm)
ym−1) cos(kπ

xm − a1

b1 − a1
) cos(jπ

ym − exp(xm)
b2 − exp(xm)

)

is smoothly varying2 in xm and the same is true for the option value,
v̂(ym, xm, tm), for all m <M. At tM = T , v(yM, xM, tM) is only a function
of yM, i.e. v(yM, xM, tM) ≡ g(yM, tM). Because of these properties, we
expect an exponential convergence for this quadrature.

Note that both the Clenshaw–Curtis and Gaussian quadrature rules ex-
hibit exponential convergence for the integral under consideration, however,
the Clenshaw–Curtis quadrature appears to be computationally somewhat
cheaper. The weights and nodes of the Clenshaw-Curtis quadrature are easy
to calculate and they form a nested sequence. We refer the reader to [22]
and [9] for more information about Clenshaw–Curtis quadrature.

2That is, the function is countinuous in xm and so its derivatives with resepct to xm.

139

In detail, for the approximation by Clenshaw–Curtis quadrature, we have∫ b1

a1

2
b2 − exp(xm)

exp (i
jπ

b2 − exp(xm)
ym−1) cos(kπ

xm − a1

b1 − a1
)∫ b2

exp(δn)
v̂(ym, xm, tm) cos(jπ

ym − exp(xm)
b2 − exp(xm)

)dymdxm

≈ b1 − a1

2

nq+2∑
n=1

wn
2

b2 − exp(δn)
exp (i

jπ

b2 − exp(δn)
ym−1) cos(kπ

δn − a1

b1 − a1
)

·
∫ b2

exp(δn)
v̂(ym, δn, tm) cos(jπ

ym − exp(δn)
b2 − exp(δn)

)dym,

where

δn =

b1 − a1

2
cos(

nπ

nq
) +

b1 + a1

2
, n = {0, · · · , nq/2},

a1 − b1
2

cos
(

(n− (nq/2 + 1))π
nq

)
+
b1 + a1

2
, n = {nq/2 + 1, · · · , nq + 1}

(6.36)
and w is an (nq + 2)-vector, defined as w := {wn}

nq+2
n=1 = [DTd;DTd], with

D an (nq

2 + 1)× (nq

2 + 1)-matrix, with elements

D(n1, n2) =
2
nq

cos
(

(n1 − 1)(n2 − 1)π
nq/2

)
·

{
1/2, n2 = {1, nq/2 + 1},

1, otherwise,

and vector d reads

d = (1,
2

1− 4
,

2
1− 16

, · · · , 2
1− (nq − 2)2

,
1

1− n2
q

)T .

Note that, ∀k, j,m, the values of δn, wn are the same, in other words, they
only need to be calculated once and can be used for all k, j and for all time
steps.

Inserting (6.36) in (6.35) gives us the formula for the continuation value
at each time step, as follows

ĉ(ym−1, xm−1, tm−1) = e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm−1 − a1

b1 − a1
)
)

· Re

nq+2∑
n=1

2
b2 − exp(δn)

wn exp (i
jπ

b2 − exp(δn)
ym−1) cos(kπ

δn − a1

b1 − a1
)

·
∫ b2

exp(δn)
v̂(ym, δn, tm) cos(jπ

ym − exp(δn)
b2 − exp(δn)

)dym

)
.

140

By denoting

V̂n,j(tm) :=
∫ b2

δn

v̂(ym, δn, tm) cos(jπ
ym − exp(δn)
b2 − exp(δn)

)dym, (6.37)

with δn as in (6.36), we have

ĉ(ym−1, xm−1, tm−1) = e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm−1 − a1

b1 − a1
)
)
·

Re

nq+2∑
n=1

2
b2 − exp(δn)

wn exp (i
jπ

b2 − exp(δn)
ym−1) cos(kπ

δn − a1

b1 − a1
)V̂n,j(tm)

 .

(6.38)

From (6.37) we see that the computational complexity to compute the con-
tinuation value at each time step is O(N1N2nq).

The 2D pricing algorithm is based on backward recursion of the Fourier
coefficients V̂n,j(tm), defined in (6.37). The early–exercise Asian option
price, v̂(x0, t0) = ĉ(y0, x0, t0) is obtained by taking m = 1 and inserting
V̂n,j(t1) in (6.38). In the next subsection we will show that the Vn,j(tM) are
known analytically. For m = M− 1, · · · , 1, V̂n,j(tm) can be recovered from
V̂n,j(tm+1).

6.4.2 Fourier coefficients

At maturity time, tM = T , the option value equals the payoff, so that ∀n, j,

Vn,j(tM) :=
∫ b2

exp(δn)
g(yM, tM) cos(jπ

yM − exp(δn)
b2 − exp(δn)

)dyM,

where, ∀m = 1, · · · ,M,

g(ym, tm) =

(
S0(1 + ym)
m+ 1

−K)+, for a call,

(K − S0(1 + ym)
m+ 1

)+, for a put.
(6.39)

Thus, the Fourier coefficients at maturity read

Vn,j(tM) =

S0

M+ 1 ςj(y
∗
M,n, b2) + (S0

M+ 1 −K)ψj(y∗M,n, b2), for a call,

(K − S0
M+ 1)ψj(exp(δn), y∗M,n)− S0

M+ 1 ςj(exp(δn), y∗M,n), for a put,
,

(6.40)
where y∗M,n ≡

K(M+1)
S0

− 1, ψj(yl, yu) is as in (6.9), and

ςj(yl, yu) =
∫ yu

yl

y cos
(
jπ

y − exp(δn)
b2 − exp(δn)

)
dy. (6.41)

141

Both ψj(yl, yu) and ςj(yl, yu) are known analytically, and so is Vn,j(tM). The
recursive step is presented in the following result.

Result 6.4.1. For tm,m = M−1. · · · , 1, the continuation value, c(ym, xm, tm),
and the Fourier cosine coefficients, Vn,j(tm), can be obtained from Vn,j(tm+1).
By this approach, the Fourier coefficients Vn,j(t1) are recovered recursively.

Proof. For m = M−1. · · · , 1, first of all, the early–exercise points, y∗m,n, for
which c(y∗m,n, δn, tm) = g(y∗m,n, tm), δn as in (6.36), need to be determined by
means of Newton’s method. Here, the payoff function is calculated in (6.39),
and the continuation value is derived via

ĉ(ym, δn, tm) = (6.42)

e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

δn − a1

b1 − a1
)
)
·

Re

nq+2∑
p=1

2
b2 − exp(δp)

wp exp (i
jπ

b2 − exp(δp)
ym) cos(kπ

δp − a1

b1 − a1
)V̂p,j(tm+1)

 .

which is directly obtained from (6.38). Furthermore, the derivative of the
continuation value and that of the payoff function with respect to ym can
be easily computed by (6.42) and (6.39). From [35] we know that typically
after approximately five Newton iterations, the error in y∗m,n is O(10−10).

As a next step, V̂n,j(tm) is split by means of these early–exercise points,
as follows

V̂n,j(tm) =

{
Ĉn,j(exp(δn), y∗m,n, tm) +Gn,j(y∗m,n, b2, tm), for a call,

Gn,j(exp(δn), y∗m,n, tm) + Ĉn,j(y∗m,n, b2, tm), for a put,
(6.43)

where Ĉn,j , Gn,j are Fourier cosine coefficients of the continuation value and
payoff at tm, respectively. Coefficient Gn,j is of the form,

Gn,j(tm) =

S0

m+ 1 ςj(y
∗
m,n, b2) + (S0

m+ 1 −K)ψj(y∗m,n, b2), for a call,

(K − S0
m+ 1)ψj(exp(δn), y∗m,n)− S0

m+ 1 ςj(exp(δn), y∗m,n)), for a put,
(6.44)

and coefficient Ĉk, defined by

Ĉn,j(yl, yu, tm) =
∫ yu

yl

ĉ(ym, δn, tm) cos(jπ
ym − exp(δn)
b2 − exp(δn)

)dym, (6.45)

with integration range [yl, yu] ∈ [δn, b2], is computed numerically.

142

By substituting for ĉ(ym, δn, tm) in (6.45) its expression in (6.42) and
interchanging integration and summation, we obtain

Ĉn,j(yl, yu, tm) =

e−r∆t

N1−1∑′

k=0

N2−1∑′

l=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

δn − a1

b1 − a1
)
)

· Re

nq+2∑
p=1

Λ(k, l, p)
∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

 ,

(6.46)

where

Λ(k, l, p) :=
2

b2 − exp(δp)
wp cos(kπ

δp − a1

b1 − a1
)V̂p,l(tm+1). (6.47)

The integral in (6.46) is known analytically. We have, ∀yl, yu, l, j, j, l =
0, · · · , N2 − 1, j 6= l,∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

=
1

j2 − l2
d− c

π
(exp (

ilπ

b2 − exp(δp)
yu) sin(jπ

yu − exp(δp)
b2 − exp(δp)

)

− exp (
ilπ

b2 − exp(δp)
yl) sin(jπ

yl − exp(δp)
b2 − exp(δp)

)

+ il(exp (
ilπ

b2 − exp(δp)
yu) cos(jπ

yu − exp(δp)
b2 − exp(δp)

)− exp (
ilπ

b2 − exp(δp)
yl)

· cos(jπ
yl − exp(δp)
b2 − exp(δp)

))),

and, if j = l, j 6= 0, l 6= 0,∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

=
exp (ilπ exp(δp)

b2−exp(δp))

2
(yu − yl) + (− i

π
)
b2 − exp(δp)

2
exp (ilπ

exp(δp)
b2 − exp(δp)

) ·

exp(i(j + l)yu−exp(δp)
b2−exp(δp)π)− exp(i(j + l)yl−exp(δn)

b2−exp(δp)π)

j + l
,

and, finally, for l = j = 0,∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym = yu − yl.

143

Therefore, Fourier coefficients Ĉn,j(yl, yu, tm) can be calculated directly from (6.46)
without additional numerical techniques.

From (6.42) and (6.46) we can observe that the continuation value as well
as the Fourier coefficients at tm,m = M− 1, · · · , 1, can be recovered from
the Fourier coefficients at tm+1. This concludes the proof and the Vn,j(t1),
∀n, j are recovered at the end of backward recursion.

The value of the Asian option with early-exercise features is then ob-
tained by inserting Vn,j(t1) into (6.38).

6.4.3 Computational complexity and Fast Fourier Transform

Newton’s method is applied to determine the y∗m,n-values with n = 1, · · · , nq+
2. For this purpose the continuation value ĉ(ym, δn, tm) must be computed
by (6.42). Term

Re

nq+2∑
p=1

2
b2 − exp(δp)

wp exp (i
jπ

b2 − exp(δp)
ym) cos(kπ

δp − a1

b1 − a1
)V̂p,j(tm+1)

 .

in (6.42) is calculated once and can be reused in all iteration steps and for all
δn. Therefore, we perform O(N1N2nq) computations to determine y∗m,1, and
to compute y∗m,n, n = 2, · · · , nq +2, only O(N1N2) computations are needed.
We end up with O(N1N2nq) compuations to determine all the early–exercise
points.

Furthermore, to compute Ĉn,j(yl, yu, tm) each time step we performO(N1N2nq)
computations, as the integration in (6.46) has an analytically known solu-
tion. We need to calculate Ĉn,j(yl, yu, tm) for each value of n and j. Term

Re

nq+2∑
p=1

Λ(k, l, p)
∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

(6.48)

in (6.46) need not be re–computed for different n, and we have O(N1N2nq)
computations in total for all values of n, with n = 1, · · · , nq+2. To determine
all Fourier coefficients, Ĉn,j(yl, yu, tm), with j = 0, · · · , N2 − 1, we require
in total O(N1N

2
2nq) computations, at each time step.

We need to repeat all the computations for time steps, m = M−1, · · · , 1,
so that the overall computational complexity for the pricing technique is
O((M− 1)N1N

2
2nq).

The Fast Fourier Transform (FFT) can however be employed to reduce

144

this computational complexity. Equation (6.46) can be rewritten, ∀k, p, as

Ĉk,p
n,j = e−r∆t

N2−1∑′

l=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

δn − a1

b1 − a1
)
)

· Re

(
Λ(k, l, p)

∫ yu

yl

exp (i
lπ

b2 − exp(δp)
ym) cos(jπ

ym − exp(δp)
b2 − exp(δp)

)dym

)
,

(6.49)

If we denote vector Ĉk,p
n := {Ĉk,p

n,j}
N2−1
j=0 , then it is well-known, that,

Ĉk,p
n =

e−r∆t

π
Re(φ(

kπ

b1 − a1
;∆t) exp (ikπ

exp(δn)− a1

b1 − a1
))

Im((Hc(yl, yu) +Hs(yl, yu))u), (6.50)

where Im(·) denotes taking the imaginary part of the input argument, and

u = Λ(k, l, p) exp (
ilπ exp(δp)
b2 − exp(δp)

).

Moreover, Hc and Hs have a Hankel and Toeplitz structure, respectively,
with elements as follows,

Hc
j,l(x1, x2) =

(x2 − x1)πi
b2 − exp(δp)

, if j = l = 0,

1

(l + j)

[
exp

(
((l + j)x2 − (l + j) exp(δp))πi

b2 − exp(δp)

)
−

exp
(

((l + j)x1 − (l + j) exp(δp))πi
b2 − exp(δp)

)]
, otherwise,

(6.51)
and

Hs
j,l(x1, x2) =

(x2 − x1)πi
b2 − exp(δp)

, if j = l = 0,

1

(l − j)

[
exp

(
((l − j)x2 − (l − j) exp(δp))πi

b2 − exp(δp)

)
−

exp
(

((l − j)x1 − (l − j) exp(δp))πi
b2 − exp(δp)

)]
, otherwise.

(6.52)
From [35] we know that the FFT can be used to calculate matrix–vector
multiplications in (6.50).

To compute vector Ĉk,p
n for each pair of (k, p), with k = 0, · · · , N1 − 1,

p = 1, · · · , nq + 2, O(N2 log2N2) computations are performed. Therefore
in total we need O(N1N2 log2N2nq) computations to compute Ĉk,p

n for all
k, p. Furthermore, term Im((Hc + Hs)u) can be reused for all n, with
n = 1, nq + 2, and in total, O(N2 log2N2) computations are needed for all
Fourier coefficients.

145

At the final stage of the algorithm, we need to add up all k×p elements,
that is

Ĉn,j(yl, yu, tm) =
N1−1∑′

k=0

nq+2∑
p=1

Ĉk,q
n,j (yl, yu, tm), (6.53)

with Ĉk,q
n,j (yl, yu, tm) defined in (6.49) and computed by (6.50).

Define from (6.50) that

A1(k, n) :=
e−r∆t

π
Re(φ(

kπ

b1 − a1
;∆t) exp (ikπ

exp(δn)− a1

b1 − a1
))

A2(k, p) := Im((Hc(yl, yu) +Hs(yl, yu))u)

and (6.53) can be computed in an efficient way as summarized below.

Algorithm: Efficient computation of (6.53)

For j = 0, · · · , N2 − 1, compute

� Step 1: Compute

A2(k) :=
nq+2∑
p=1

A2(k, p)

.

� Step 2: For n = 1, · · · , nq + 2, compute

Ĉn,j :=
N1−1∑′

k=0

A1(k, n) ∗A2(k)

.

For each j, with j = 0, · · · , N2−1, we have O(nq) computations for step
1, and O(N1nq) computations for step 2. Therefore in total, O(N1N2nq)
computations are needed for summation (6.53). By the use of the FFT, the
computational complexity at each time step is then reduced toO(N1N2 log2N2nq).

The overall 2D ASCOS pricing algorithm is summarized below.

ASCOS Algorithm: Pricing early–exercise arithmetic Asian options.

146

Initialization

� For n = 1, · · · , nq + 2, j = 0, · · · , N2 − 1, compute Vn,j(tM)
from (6.40).

Main Loop to Recover V̂n,j(tm): For m = M− 1 to 1,

� Determine the early–exercise points, y∗m,n, for n = 1, · · · , nq + 2,
with ĉ(y∗m,n, δn, tm) = g(y∗m,n, tm), by Newton’s method. Contin-
uation value and payoff function are given by (6.42) and (6.39) ,
respectively.

� Compute the Fourier coefficients V̂n,j(tm).

– For k = 0, · · · , N1−1, compute each column of matrix Ĉk
n :=

{Ĉk
n,j}

N2
j=0 by (6.50) with the help of Fast Fourier Transform.

– Compute Ĉn,j(tm), ∀n, j, from (6.53).

– Compute Gn,j(tm), ∀n, j, from (6.44).

– Calculate the Fourier coefficients V̂n,j(tm) by inserting
Ĉn,j(tm) and Gn,j(tm) into (6.43).

Final step:

� Compute the early–exercise Asian option value, v̂(x0, t0), by in-
serting V̂n,j(t1) in (6.38).

6.4.4 Integration range of Ym

Here we explain how to determine the upper bound b2, so that the truncation
error in Ym, with integration range [exp(xm), b2] can be controlled. First of
all, we derive the integration range for log(Ym) and after that the range for
Ym. From [34, 35], we know that a suitable integration range for log(Ym)
can be determined by means of the cumulants, as follows

[`, υ] ≈
[
(ξ1(log(Ym))− L

√
ξ2(log(Ym)) +

√
ξ4(log(Ym)) ,

ξ1(log(Ym)) + L

√
ξ2(log(Ym)) +

√
ξ4(log(Ym)))

]
, (6.54)

and the integration range of Ym at tm can then be set to [exm , eυ]. By ξn(X),
we denote the nth cumulant of X, computed via

ξn(X) :=
1
in
∂n(tΦ(u))

∂un
|u = 0,

where tΦ(u) is the exponent of the characteristic function, φ(u; t), i.e.

φ(u; t) = etΦ(u).

147

For arithmetic Asian options, it is however expensive to calculate these cu-
mulants, and therefore we propose another integration range for the arith-
metic case, which is very similar to that in (6.54). For a Lévy process,
the cumulants of any increment, log(Sl/Sk), ∀l > k, are linearly increasing
functions of (l − k)∆t, so that, for all Ym, m = 1, · · · ,M, we have

ξ1(log(m
S1

S0
)) ≤ ξ1(log(Ym)) ≤ ξ1(log(m

Sm

S0
)),

0 ≤ ξ2(log(Ym)) ≤ ξ2(log(m
Sm

S0
)), 0 ≤ ξ4(log(Ym)) ≤ ξ4(log(m

Sm

S0
)).

and we will use the integration boundaries

` := ξ1(log(m
S1

S0
))− L

√
ξ2(log(m

Sm

S0
)) +

√
ξ4(log(m

Sm

S0
)),

υ := ξ1(log(m
Sm

S0
)) + L

√
ξ2(log(m

Sm

S0
)) +

√
ξ4(log(m

Sm

S0
)).(6.55)

Interval [`, υ] from (6.55) will be the integration range for log(Ym).
Note that the cumulants of log(mS1

S0
) and log(mSm

S0
) in (6.55) are known

in closed form for Lévy processes, as for n = 1, we have ξ1(log(mS1
S0

)) =
log(m)+ξ1(R), ξ1(log(mSm

S0
)) = log(m)+mξ1(R), and for n ≥ 2, ξn(log(mS1

S0
)) =

ξn(R), ξn(log(mSm
S0

)) = mξn(R). Here, parameter R denotes the logarithm
of the increment between any two consecutive time steps of a Lévy process.

From [34, 35] we know that with L ≈ 10, the integration range ensures
highly accurate option prices for most Lévy processes. With a wider inte-
gration range [`, υ], the error will be smaller, but an increasing number of
Fourier cosine terms may need to be used (which makes it more costly).
Adaptation of parameter L for very short term, or very long term options
is easily possible.

Integration range of Ym at tm is then taken as [exm , eυ].

6.5 Error analysis

Here, we give a detailed error analysis of the 2D ASCOS method for early–
exercise arithmetic Asian options from Section 6.4. We identify three differ-
ent types of errors, for which we first introduce some notation.

The truncation error, εT , for any random variable, Z, with integration
range [a, b], is defined as

εT (Z; [a, b]) :=
∫
R\[a,b]

fZ(z)dz, (6.56)

148

and it decreases as the integration range [a, b] increases. In other words,
for a sufficiently large integration range, this error won’t dominate the total
error in the arithmetic Asian option price.

For Ym we truncate one side of the integration range, and the truncation
error reads

εT (Ym; b2) :=
∫ +∞

b2

fYm(y)dy, (6.57)

The error due to the number of terms used in the Fourier cosine expan-
sion is denoted by εF . We know, from [34], that for fZ(z) ∈ C∞[a, b], this
error can be bounded by

|εF (Z;N)| ≤ P ∗(N) exp(−(N − 1)νF), (6.58)

with νF > 0 a constant and a term P ∗(N), which varies less than expo-
nentially with respect to N . Note that, although the upper bound of εF is
not a function of the underlying state variable Z, the state variable still ap-
pears as an input argument, because the smoothness of the density function
influences the convergence behavior.

When the probability density function has a discontinuous derivative,
the error can be bounded by

|εF (Z;N)| ≤ P̄ ∗(N)
(N − 1)β−1

,

where P̄ ∗(N) is a constant and β ≥ 1.
Error εF thus decays either exponentially with respect to N , if the den-

sity function f(z) ∈ C∞[a, b], or otherwise algebraically.
We denote the error from the Clenshaw–Curtis quadrature (6.36) by εq.

From [73] we know that for integrands belonging to C∞[a, b], which is the
case here, error εq decays exponentially, i.e.,

|εq(nq)| ≤ P (nq) exp(−(nq − 1)νq), (6.59)

with νq > 0 a constant and a term P (nq), which varies less than exponen-
tially with respect to nq.

Note that the value of the averaged underlying price, ym, ∀tm, does not
influence the smoothness of the density function of the underlying process.
In fact, it can be recursively proved that if f(xj), j = 1, · · · ,M is smooth
then f(yj), j = 1, · · · ,M, with yj =

∑j
i=1 exp (xi) is also smooth, so that it

does not influence the convergence speed negatively.
We further denote by ε(ĉ(ym, xm, tm)), ε(Vn,j(tm)) and ε∗m,n, the errors in

the continuation value, in the Fourier coefficients and in the early–exercise
points, y∗m,n, at time step tm, respectively.

Our error analysis is based on backward recursion, i.e. first of all we
analyze the error in the continuation value, ĉ(yM−1, xM−1, tM−1), in Sub-
section 6.5.1, after which the error propagation throughout the time steps
tm,m = M− 2, · · · , 1 is discussed in Subsection 6.5.2.

149

6.5.1 Initial error

In this subsection, the error from (6.29) to (6.35) is discussed. At tM−1,
Eqns. (6.29) and (6.35) can be rewritten, respectively, as

c(yM−1, xM−1, tM−1) = (6.60)

e−r∆t

∫
R

∫ +∞

exp(xM)
v(yM, xM, tM)f(yM|xM, yM−1)f(xM|xM−1)dyMdxM,

and

ĉ(yM−1, xM−1, tM−1) = e−r∆t

∫ b1

a1

∫ b2

exp(xM)
v(yM, xM, tM)f̂(yM|xM, yM−1)

· f̂(xM|xM−1)dyMdxM, (6.61)

where f̂(xM|xM−1) and f̂(yM|xM, yM−1) are defined in (6.33) and (6.34),
respectively.

Then, the error, which we denote by ε̃, consists of two parts, that is,
ε̃ := εI + εII , with

εI := e−r∆t

∫
R

∫ +∞

exp(xM)
v(yM, xM, tM)f(yM|xM, yM−1)dyMf(xM|xM−1)dxM

− e−r∆t

∫
R

∫ b2

exp(xM)
v(yM, xM, tM)f̂(yM|xM, yM−1)dyMf(xM|xM−1)dxM,

(6.62)

and

εII := e−r∆t

∫ b2

exp(xM)

∫
R
v(yM, xM, tM)f̂(yM|xM, yM−1)f(xM|xM−1)dxMdyM

− e−r∆t

∫ b2

exp(xM)

∫ b1

a1

v(yM, xM, tM)f̂(yM|xM, yM−1)f̂(xM|xM−1)dxMdyM.

(6.63)

We use the notation εcos to denote the error of one step of the COS
method [34],

εcos(XM) :=
∫

R
v(yM, xM, tM)f(xM|xM−1)dxM

−
∫ b1

a1

v(yM, xM, tM)f̂(xM|xM−1)dxM,

and

εcos(YM) :=
∫ +∞

exp(xM)
v(yM, xM, tM)f(yM|xM, yM−1)dyM

−
∫ b2

exp(xM)
v(yM, xM, tM)f̂(yM|xM, yM−1)dyM.

150

The first part of the error (6.62) then reads

εI = e−r∆tεcos(YM)
∫

R
f(xM|xM−1)dxM = e−r∆tεcos(YM). (6.64)

To compute the second part of the error, in (6.63), first of all, from (6.34)
we have that ∀yM ∈ [exp(xM), b2],

|f̂(yM|xM, yM−1)| ≤
2

b2 − exp(xM)
N2 ≤

2
b2 − exp(a1)

N2.

Then, εII , in (6.63), can be written as

|εII | ≤ e−r∆t 2N2

b2 − exp(a1)
|
∫ b2

exp(xM)
(
∫

R
v(yM, xM, tM)f(xM|xM−1)dxM

−
∫ b1

a1

v(yM, xM, tM)f̂(xM|xM−1)dxM)dyM|

≤ e−r∆t2N2|εcos(XM)| (6.65)

We will now use the common notation ε(x) = O(ς), ∀x ∈ R, if Q > 0 exists,
so that |ε(x)| ≤ Q|ς|.

We then have εII = O(N2εcos(XM)).
From [34] we know that ∀Z, a, b,N , εcos(Z) = O(εT (Z; [a, b]))+εF (Z;N),

and a similar analysis can be performed for a one–side truncated variable
YM, then, from (6.64) and (6.65), we obtain

ε̃ = εI + εII = O(N2(εT (XM; [a1, b1]) + εF (XM;N1)) +
εT (YM; b2) + εF (YM;N2)),

(6.66)

which is the error made up to Eq. (6.35).
At tM−1, the Fourier coefficients of the option value, Vn,j(tM) are known

analytically. Therefore, the error from Eq. (6.35) to Eq. (6.38) is only
due to approximation (6.36), where the Clenshaw–Curtis quadrature was
used. For each j, k the error in the approximated integration is O(εq(nq)),
with εq defined in (6.59). Thus, the error in (6.38) is found to be ε̃ +
O(N1N2εq(nq)), with ε̃ in (6.66). Summarizing, the error in the continua-
tion value, ĉ(yM−1, xM−1, tM−1), is found to be

ε(ĉ(yM−1 , xM−1, tM−1)) = O(N2(εT (XM; [a1, b1]) + εF (XM;N1))
+ εT (YM; b2) + εF (YM;N2) +N1N2εq(nq)). (6.67)

With integration ranges [a1, b1] and b2 carefully chosen, truncation er-
rors εT (XM; [a1, b1]) and εT (YM; b2) will not be the dominant parts of er-
ror (6.67). For a smooth density function of XM (f(XM) ∈ C∞), it can

151

be proved that the density function of YM is also smooth, and that the er-
ror in the continuation value decays to zero exponentially, with respect to
N1, N2, nq. In detail, inserting (6.58) and (6.59) into (6.67) gives us

|ε(ĉ(yM−1 , xM−1, tM−1))| ≤ P ∗(N1, N2, nq)(exp(−(N1 − 1)ν1)
+ exp(−(N2 − 1)ν2) + exp(−(nq − 1)νq)), (6.68)

where P ∗(N1, N2, nq) is a term which varies less than exponentially with
respect to N1, N2, nq.

If the density of XM is not smooth, then the error converges exponen-
tially to zero with respect to nq and algebraically with respect to N1 and
N2.

6.5.2 Error propagation

Regarding the propagation of the error through time, we state the following
lemma:

Lemma 6.5.1 (Error propagation). For m = M− 2, · · · , 0, assuming that
at time step tm+1, ∀ym+1, xm+1,

|ε(ĉ(ym+1, xm+1, tm+1))| ≤ P (N1, N2, nq)(exp(−(N1 − 1)ν1) (6.69)
+ exp(−(N2 − 1)ν2) + exp(−(nq − 1)νq)),

where P (N1, N2, nq) is a term which varies less than exponentially with re-
spect to N1, N2, nq, then, at time step tm, we can show that, ∀ym, xm,

|ε(ĉ(ym, xm, tm))| ≤ P̄ (N1, N2, nq)(exp(−(N1 − 1)ν1) (6.70)
+ exp(−(N2 − 1)ν2) + exp(−(nq − 1)νq)),

where P̄ (N1, N2, nq) is a term which varies less than exponentially with re-
spect to N1, N2, nq.

Proof. This is a proof based on mathematical induction.
First, we compute the error in the Fourier coefficients, V̂n,j(tm+1), after

which we analyze the error in ĉ(ym, xm, tm).
Error ε(V̂n,j(tm+1)) consists of two parts, the error in the Fourier cosine

coefficients of the continuation value, and the error due to an incorrect value
of the early–exercise point. Without loss of generality, we consider a call
option with a positive-valued error in the early–exercise points. The analysis
of the error propagation for other cases (negatively-valued error, put option)

152

goes similarly. For a call option, with ε∗m+1,n > 0, we have

ε(V̂n,j(tm+1)) = (Cn,j(exp(δn), y∗m+1,n, tm+1)− Ĉn,j(exp(δn), y∗m+1,n, tm+1))

+ (Gn,j(y∗m+1,n, y
∗
m+1,n + ε∗m+1,n, tm+1)− Ĉn,j(y∗m+1,n, y

∗
m+1,n + ε∗m+1,n, tm+1))

=
∫ y∗m+1,n

exp(δn)
ε(ĉ(ym+1, δn, tm+1)) cos

(
jπ
ym+1 − exp(δn)
b2 − exp(δn)

)
dym+1

+
∫ y∗m+1,n+ε∗m+1,n

y∗m+1,n

(g(ym+1, tm+1)− ĉ(ym+1, δn, tm+1)) cos
(
jπ
ym+1 − exp(δn)
b2 − exp(δn)

)
dym+1,

(6.71)

with g(ym+1, tm+1) defined in (6.39).

The error in continuation value ĉ(ym, xm, tm) is composed of two parts,
ε(ĉ(ym, xm, tm)) := eI +eII , where error eI is the part in which ε(V̂n,j(tm+1))
has not yet been considered. It is derived similarly as the error at tM−1 (in
Subsection 6.5.1). We find

eI := O(N2(εT (Xm+1; [a1, b1]) + εF (Xm+1;N1)) (6.72)
+ εT (Ym+1; b2) + εF (Ym+1;N2) +N1N2εq(nq)).

Error eII is the additional error with ε(V̂n,j(tm+1)) taken into consideration,

eII := e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm − a1

b1 − a1
)
)
·

Re

nq+2∑
n=1

2
b2 − exp(δn)

wn exp (i
jπ

b2 − exp(δn)
ym) cos(kπ

δn − a1

b1 − a1
)

ε(V̂n,j(tm+1))
)
.

To analyze these errors, we define a European option, vα, from tm to
tm+1, with payoff function

vα(ym+1, xm+1, tm+1, L1, L2) :=

{
1, if ym+1 ∈ [L1, L2],

0, otherwise,

so that the option value at tm, ∀L1, L2 ∈ [exp(xm+1),+∞], can be writ-

153

ten as

vα(ym, xm, tm, L1, L2) = e−r∆t

∫
R

∫ +∞

exp(xm+1)
v(ym+1, xm+1, tm+1, L1, L2)

· f(ym+1, xm+1, tm+1|ym, xm)dym+1dxm+1

= e−r∆t

∫
R

∫ L2

L1

f(ym+1, xm+1, tm+1|ym, xm)dym+1dxm+1

≤ e−r∆t

∫
R

∫
R
f(ym+1, xm+1, tm+1|ym, xm)dym+1dxm+1

= e−r∆t

and its approximation, by using (6.38), reads

v̂α(ym, xm, tm, L1, L2)

= e−r∆t

N1−1∑′

k=0

N2−1∑′

j=0

Re

(
φ(

kπ

b1 − a1
;∆t) exp (ikπ

xm − a1

b1 − a1
)
)
·

Re

nq+2∑
n=1

2
b2 − exp(δn)

wn exp (i
jπ

b2 − exp(δn)
ym) cos(kπ

δn − a1

b1 − a1
)

∫ L2

L1

cos(jπ
ym+1 − exp(δn)
b2 − exp(δn)

)
)
.,

from which it follows that, ∀L1 ≤ L2 ≤ L3,

v̂α(ym, xm, tm, L1, L2) + v̂α(ym, xm, tm, L2, L3) = v̂α(ym, xm, tm, L1, L3).
(6.73)

The value of v̂α can bounded, as

v̂α(ym, xm, tm, L1, L2) ≤ vα(ym, xm, tm, L1, L2) + |ε(vα(ym, xm, tm, L1, L2))|
= e−r∆t +O(|eI |), (6.74)

where the last step is because the error from approximation (6.38) at tm is
of the same order as eI .

Inserting (6.71) into (6.73), then using (6.69) and (6.73), gives us

|ε(ĉ(ym, xm, tm))| ≤ |eI |+ P (N1, N2, nq)(exp(−(N1 − 1)ν1) + exp(−(N2 − 1)ν2)
+ exp(−(nq − 1)νq))v̂α(ym, xm, tm, exp(δn), y∗m+1,n)
+ max

n
|g(ζn, tm+1)− ĉ(ζn, δn, tm+1)|

· v̂α(ym, xm, tm, y
∗
m+1,n, y

∗
m+1,n + ε∗m+1,n), (6.75)

based on Lagrange’s mean value theorem, with ζn ∈ (y∗m+1,n, y
∗
m+1,n +

ε∗m+1,n).

154

For a call option, with ζn ∈ (y∗m+1,n, y
∗
m+1,n + ε∗m+1,n), we then have ∀n,

|g(ζn, tm+1)− ĉ(ζn, δn, tm+1)| = ĉ(ζn, δn, tm+1)− g(ζn, tm+1)
≤ ĉ(y∗m+1,n, δn, tm+1)− g(y∗m+1,n, tm+1)
= ĉ(y∗m+1,n, δn, tm+1)− c(y∗m+1,n, δn, tm+1)
= ε(ĉ(y∗m+1,n, δn, tm+1)). (6.76)

Inserting (6.76) in (6.75), and using (6.69) and (6.73), gives us

|ε(ĉ(ym, xm, tm))| ≤ |eI |+ P (N1, N2, nq)(exp(−(N1 − 1)ν1) + exp(−(N2 − 1)ν2)
+ exp(−(nq − 1)νq))v̂α(ym, xm, tm, exp(δn), y∗m+1,n + ε∗m+1,n).

(6.77)

Finally, by using (6.74) and (6.72) in (6.77), and then inserting (6.58)
and (6.59), we reach the conclusion that if [a1, b1], b2 are carefully chosen,
then the truncation errors εT (Xm+1; [a1, b1]) and εT (Ym+1; b2) will not be
the dominant parts of error (6.72), and we obtain

|ε(ĉ(ym, xm, tm))| ≤ P̄ (N1, N2, nq)(exp(−(N1 − 1)ν1)
+ exp(−(N2 − 1)ν2) + exp(−(nq − 1)νq)),

where P̄ (N1, N2, nq) is a term which varies less than exponentially with
respect to N1, N2, nq. This concludes the proof.

In the case of put options or negative-valued errors in the early–exercise
points, a similar error expression as in (6.77) can be derived, by a very
similar analysis.

6.6 Numerical results

In this section we perform experiments with two different Lévy processes,
the Black-Scholes (BS) and the Normal Inverse Gaussian (NIG) processes.
We will present numerical results for the two methods presented. Reference
values are derived by our 2D version of the ASCOS method, with N1 =
N2 = (nq/2)+1 = 4096. When increasing the values of M, N1, N2, nq in the
numerical experiments, the 2D ASCOS method gives the same American
Asian option values for the BS model as the values in [28] (in the accuracy
given in the reference, which is 10−4).

The same model parameters, as used in [37] for pricing European-style
Asian options, are also used here:

� BS: r = 0.0367, σ = 0.178;

� NIG: r = 0.0367, σ = 0.178, α = 6.188, β = −3.894, δ = 0.1622.

155

Two types of processors, a CPU (Central Processing Unit), and a GPU
(Graphics Processing Unit) with double precision are used and compared to
obtain the numerical ASCOS results. On the CPU, an Intel(R) Core(TM)2
Duo CPU E6550 (@ 2.33GHz Cache size 4MB), the algorithm is imple-
mented in MATLAB 7.7.0. On the GPU, a Tesla C2070 GPU with 6GB
memory, we coded in Compute Unified Device Architecture (CUDA) [76].
Computing time is recorded in seconds.

In this section, the notation ‘first method’ and ‘2D method’ refer to the
pricing methods proposed in Section 6.3 and Section 6.4, respectively.

Remark 6.6.1 (Data transfer). Data transfer between the GPU and the
CPU is the bottleneck for most GPU implementations. However, in our
GPU implementation, we code in such a way that, no matter the size of the
problem, only one number needs to be transferred between the CPU and the
GPU, which is the option price and we transfer it back to the CPU at the
end of the computations. As the size of the problem increases, there will be
no extra burden of data transfer.

6.6.1 GPU implementation and acceleration

A GPU is an SIMT (Single Instruction, Multiple Threads) machine. In
other words, the same command can be executed simultaneously for each
data element on each thread on the GPU. Therefore, GPU processing is
advantageous for problems that can be expressed in the form of data–parallel
computations.

In both early-exercise ASCOS algorithms we proceed from time step to
time step sequentially, however, there are certain parts of the algorithms
for which parallelization is possible. For instance, in the first method, the
integrals (6.15), for all k, l, can be computed independently of each other,
and in the 2D method, the early–exercise points, y∗m,n, can also be calculated
independently for each na− value. The Fourier coefficients, that represent
a vector in the first method and a matrix in the 2D method, are computed
simultaneously on the GPU at each time step.

In both methods we need to perform matrix–vector multiplications, that
result in O(N2) computations for the first method, and result in O(nqN2)
computations with the 2D method. In these operations, the summation in
each row must be done sequentially. Two techniques can however be used to
accelerate the GPU computation of a summation. First of all, we can sum
up each row in a pairwise fashion, that is, we split the vector into two parts
and add up the two sub–vectors simultaneously on the GPU. This process
is repeated until we reach vector sizes of one element, being the sum of all
elements of the original vector. A second way to accelerate the process is to
use the shared–memory within each block, which significantly reduces the
data–communication time on the GPU.

156

As an example, Table 6.1 presents the error and the GPU speedup, com-
pared to the CPU implementation, when pricing an early–exercise arithmetic
Asian option with M = 2 using the 2D method. A speedup factor between
30 and 300 is achieved on the GPU. When the problem size increases, an
even higher GPU speedup is expected, since then option pricing will be com-
putationally more intensive and the advantages of parallelization are more
profound. When the number of early–exercise dates increases, the GPU as
well as the CPU times will increase linearly.

All further numerical experiments will be performed on the GPU.

N1 = N2 = (nq/2) + 1 128 256 512
abs.error 1.2134e-01 4.6379e-06 1.3043e-08

GPU speedup 30.4 139.6 341.0

Table 6.1: GPU speedup for Bermudan Asian options, BS model, M =
2, S0 = 100,K = 100.

6.6.2 Arithmetic Asian options on the GPU

Error convergence of early–exercise arithmetic Asian options under the NIG
model, with 10 and 50 early–exercise dates, using the 2D ASCOS method,
are presented in Figure 6.1. The horizontal axis presents index d, where in
Figure 6.1(a), N1 = N2 = 32d, (nq/2)+1 = 256, and in Figure 6.1(b), we use
N1 = N2 = 64d, (nq/2) + 1 = 512. The vertical axis shows the logarithm
of the absolute error. For M = 10 as well as M = 50 an exponential
convergence is observed: When N1 and N2 increase linearly, the logarithm
of the error in the option price decreases accordingly.

When comparing the two plots in Figure 6.1, we see that with an in-
creasing number of early–exercise dates we require larger values for N1, N2

and nq to reach the same level of accuracy. With smaller time steps, ∆t,
the conditional density function between consecutive time steps tends to be
peaked, and an accurate approximation by means of cosine expansions then
requires an increasing number of terms. The need for a larger value of nq

comes from the fact that the error of the Clenshaw–Curtis quadrature is
observed in each term of (6.38) and there are N1N2-terms in total. There-
fore, larger values for N1 and N2 give rise to a larger nq-value to ensure the
accuracy.

Tables 6.2 and 6.3 present the convergence behavior and computing time
for the NIG model with M = 10, 50, respectively, with the performance of
both pricing methods presented. From Table 6.2 we see that when M = 10,
due to the error of the first method with a small number of exercise dates, the
option price does not converge to the reference value with the first method.
On the other hand, the first method is significantly faster than the 2D

157

(a) M = 10 (b) M = 50

Figure 6.1: 2D ASCOS error convergence for early–exercise arithmetic Asian
options with different numbers of early–exercise dates, NIG model, S0 =
100,K = 110.

method. The first method exhibits a reduced computation complexity, by a
factor O(log2N2), and the GPU speedup is higher when implementing the
first method, as with the 2D method, there is an N1 by M loop in the
CUDA code.

First method
N1 = N2 = (nq/2) + 1 128 192 256

abs.error 3.3236e-01 3.1511e-01 3.1641e-01
GPU time 0.28 0.53 0.87

2D method
N1 = N2 = (nq/2) + 1 256 384 512

abs.error 1.4213e-04 3.1444e-07 2.2129e-09
GPU time 4.76 9.05 31.25

Table 6.2: Convergence and computation time of early-exercise arithmetic
Asian put options, under the NIG model, with M = 10, S0 = 100 (time in
seconds).

As M increases, as shown in Table 6.3, the error in the first method gets
much smaller, and the option prices gradually converges to the reference
value. This is consistent with our analysis.

158

First method
N1, N2 = 256 N1, N2 = 512 N1, N2 = 768

(nq/2) + 1 = 256 (nq/2) + 1 = 512
abs.error 1.7165e-02 1.4364e-03 4.4992e-05
GPU time 1.52 9.40 9.64

2D method
N1, N2 = 256 N1, N2 = 512 N1, N2 = 768

(nq/2) + 1 = 256 (nq/2) + 1 = 512
abs.error 3.8746e-03 1.0809e-04 4.8980e-07
GPU time 20.0 160.7 399.5

Table 6.3: Convergence and computation time of early-exercise arithmetic
Asian put options, under the NIG model with M = 50, S0 = 100 (time in
seconds).

6.7 Conclusions

In this chapter, we have developed an efficient pricing method for Asian
options with early–exercise features for arithmetic averages, based on a two-
dimensional risk–neutral formula. As an alternative, especially for a large
number of exercise dates, a 1D pricing method based on the approxima-
tion of the conditional characteristic functions, is proposed, which can be
used for very frequently exercised Asian options at a reduced amount of
computations. Both methods are based on Fourier cosine expansions and
Clenshaw–Curtis quadrature, and, depending on the smoothness of the den-
sity function, may give rise to exponential error convergence. The conver-
gence behavior of the 2D ASCOS method is supported by a detailed error
analysis, as well as by various numerical experiments. The flexibility and
robustness of the 2D pricing method for different Lévy models and different
numbers of early–exercise dates is shown in the numerical experiments. In
particular, the Graphics Processing Unit, which supports parallel comput-
ing, turns out to be very efficient for the computation of arithmetic Asian
option values. The speedup on the GPU is high as there are many ”parallel”
computations and not much data transfer.

159

CHAPTER 7

Conclusions and Outlook

7.1 Conclusions

In this thesis we have presented efficient pricing methods for early–exercise
options and exotic options, using Fourier cosine expansions, in combinations
with other numerical methods. Our work is based on the COS method,
proposed in [34, 35]. First of all, robust pricing is achieved for both European
and Bermudan-style call options, with and without dividend rate, by the use
of put–call relations to recover the Fourier coefficients at each time step. The
improved methods are particularly advantageous when pricing call options
with a long maturity and in the case of fat tail distribution in the underlying
process.

A pricing algorithm for early–exercise options under the Ornstein-Uhlenbeck
(OU) model has been developed which can also be used for seasonality func-
tions. A more efficient pricing algorithm is proposed, based on an approx-
imation of the OU conditional characteristic function, so that the Fourier
coefficients can be calculated by the FFT and the computing time can be
reduced from seconds to milliseconds. However, this fast algorithm can only
be used for certain model parameter ranges. By a detailed error analysis,
we derived the conditions that model parameters need to satisfy for the
new pricing method to ensure basis point precision. Furthermore, we have
developed efficient and robust pricing algorithms for swing options with
early–exercise features. The algorithm works efficiently for different types
of swing contracts with different flexible contract choices.

The Asian option has been studied in detail and pricing methods for both
European- and American-style Asian options, written on different types of
averages, are developed, as presented in the last two chapters. For the
European-style Asian options, our pricing method is based on the recovery

161

of the characteristic function of the average asset. Fourier expansions and
Clenshaw–Curtis quadrature are used and exponential convergence is illus-
trated by detailed error analysis and numerical experiments. An important
feature of our pricing method is that the computational time does not in-
crease significantly as the number of monitor dates increases, which makes
our method especially advantageous when pricing continuously–monitored
Asian options.

Our pricing method for Asian options with early–exercise features, in
Chapter 6, is based on a two–dimensional integration and the backward
recovery of the Fourier coefficients, where FFT has been used. Our method
is flexible and robust for Lévy processes and the error in the option price
decays exponentially, as shown by both the error analysis and numerical
examples.

Another contribution in this thesis is that we have achieved a fine speedup
for the task of pricing options on the Graphics Processing Unit (GPU). The
GPU tends to be advantageous when intensive computation is performed,
such as in option pricing under hybrid stochastic models, option pricing with
multiple strike prices and the pricing for early–exercise Asian options.

The option pricing methods presented in this thesis can be applied to
underlying processes for which the characteristic function is known or can
be approximated.

7.2 Outlook

The pricing algorithms for underlying processes under the OU model for
commodity derivatives can be made more realistic by including a stochastic
process to model spikes in prices and more realistic types of seasonality func-
tions. It is generally expected that a research focus on energy derivatives,
where we may encounter illiquid markets and significant spreads, may bring
substantial advances to this area.

The pricing methods for Asian options, as proposed in Chapters 5 and
6, and the different backward pricing procedures respectively for European
and early–exercise style products also gave insight into pricing of other –
related– exotic options, like lookback and Australian options. Furthermore,
the method for pricing of American Asian options, based on two-dimensional
integration, can also form the basis for the pricing of early–exercise options
under hybrid models, with stochastic volatility and stochastic interest rate,
for example.

The option pricing algorithms based on Fourier cosine expansions of the
conditional density function can be used for more complex models, such as
inflation models where domestic and foreign interest rate are both assumed
stochastic with mean reversion feature and stochastic volatility. Hybrid
models may also be used for the quantification of Credit Value Adjustment

162

(CVA) of portfolios of exotic options, which is of importance for the banks.
A GPU implementation is expected to be highly beneficial, when dealing
with hybrid models. Another extension is to incorporate the GPU imple-
mentation and acceleration into the calibration and hedging procedures, in
combination with a CPU based optimization kernel.

163

BIBLIOGRAPHY

[1] A. Almendral and C. W. Oosterlee. On American options under
the Variance Gamma process. Appl. Math. Finance, 14:131–152, 2007.

[2] J. Andreasen and M. Dahlgren At the flick of a switch. Energy
risk, 71–75, February, 2006.

[3] O. E. Barndorff-Nielsen, Normal inverse Gaussian distributions
and stochastic volatility. Scand. J. Statist., 24:1–13, 1997.

[4] E. Benhamou, Fast Fourier Transform for Discrete Asian Options. J.
Computational Finance. 6, 49–68, 2002.

[5] A. Bermúdez, M.R. Nogueiras, and C. Vázquez, Numerical so-
lution of variational inequalities for pricing Asian options by high order
Lagrange-Galerkin methods. Applied Num. Math. 56: 1256-1270, 2006.

[6] T. BJÖRK, Arbitrage theory in continuous time. Oxford Univ. Press,
1998.

[7] C. Blanco and D. Soronow , Mean reverting processes – Energy
price processes used for derivatives pricing and risk management, Com-
modities Now, Energy Pricing, 2001.

[8] J. P. Boyd, Exponentially convergent Fourier-Chebyshev quadrature
schemes on bounded and infinite intervals. J. Scient. Comput. 2(2):
99-109, 1987.

[9] J. P. Boyd, Chebychev and Fourier Spectral Methods, 2nd ed., Dover,
New York, 2001.

[10] N. Branger, O. Reichmann, and M. Wobben, Pricing electricity
derivatives, Working Paper, 2009.

165

[11] M. Broadie and Y. Yamamoto, Application of the fast Gauss trans-
form to option pricing. Management Sci., 49:1071–1088, 2003.

[12] M. Broadie and Y. Yamamoto, A double–exponential fast Gauss
transform for pricing discrete path–dependent options. Operations Re-
search, 53, 2005.

[13] R. Carmona and N. Touzi Optimal multiple stopping and valuation
of swing options, Mathematical Finance 18, 2, pp. 239-268. , April,
2008.

[14] P. P. Carr, H. Geman, D. B. Madan, and M. Yor. The fine
structure of asset returns: An empirical investigation. J. Business,
75:305–332, 2002.

[15] P. R. Carr, D. B. Madan, and E. C. Chang, The Variance Gamma
process and option pricing, European Finance Review, 2 (1998) 79–105,
1998.

[16] P.P. Carr and D.B.Madan. Option valuation using Fast Fourier
Transformation. J. Comp.Finance, 2: 61-73,1999.

[17] U. Cartea and M.G. Figueroa, Pricing in electricity markets: A
mean reverting jump diffusion model with seasonality, Applied Mathe-
matical Finance, 12(4) (2005) 313–335.

[18] A. Carverhill and L. Clewlow , Flexible Convolution, From Black
Scholes to Black Holes, 165–171, 1992.

[19] A. Cerny and I. Kyriakou, An Improved Convolution Algorithm for
Discretely Sampled Asian Options. Quantitative Finance, 11(3), 381–
389, 2011.

[20] S-L Chung, C-C Chang, and R. C. Stapleton, Richardson ex-
trapolation technique for pricing American-style options. J. Futures
Markets,27(8): 791-817, 2007.

[21] K. Chourdakis, Option pricing using the fractional FFT. J.
Comp.Finance, 8(2):1–18, 2004.

[22] C. W. Clenshaw and A. R. Curtis , A method for numerical in-
tegration on an automatic computer, Numer. Mathematik 2: 197–205.
1960.

[23] R. Cont and P. Tankov, Financial Modelling with Jump Processes.
Chapman and Hall, Boca Raton, FL, 2004.

[24] C. Cryer, The solution of a quadratic programming problem using
systematic overrelaxation. SIAM J. Control, 9, 385–392, 1971.

166

[25] M.Dahlgren, A continuous time model to price commodity-based
swing option., Review of derivatives research, 8,27–47, 2005.

[26] M. A. H. Dempster and S. S. G. Hong, Spread option valuation
and the Fast Fourier Transform. Techn. Rep. WP 26\2000, the Judge
Inst. Manag. Studies, Univ. Cambridge, 2000.

[27] P. den Iseger and E. Oldenkamp, Pricing Guaranteed Return Rate
Products and Discretely Sampled Asian Options. J. Computational Fi-
nance, Vol.9 - No.3, 2006.

[28] Y. D’Halluin, P. A. Forsyth, and G. Labahn, A semi–Lagrangian
approach for American Asian options under jump diffusion. SIAM J.
Sci. Comput. 27, 315–345, 2005.

[29] P. W. Duck, A. D. Andricopoulos, M. Widdicks and D. P.
Newton, Universal option valuation using quadrature methods. J.
Fin. Economics, 67:447–471, 2003.

[30] P. W. Duck, A. D. Andricopoulos, M. Widdicks, and D. P.
Newton, Extending quadrature methods to value multi-asset and
complex path dependent options. J. Fin. Economics, 83:471–500, 2007.

[31] Duffie D., Pan J., Singleton K., Transform analysis and asset pricing
for affine jump-diffusions, Econometrica, 68 (2000) 1343–1376.

[32] E. Eberlein and A. Papapantoleon, Equivalence of floating and
fixed strike Asian and lookback options, Stochastic Processes and their
Applications, 115, 31–40, 2005.

[33] A. Eydeland, A fast algorithm for computing integrals in function
spaces: financial applications. Computational Economics, 7, 1994.

[34] F. Fang and C. W. Oosterlee, A novel option pricing method
based on Fourier-cosine series. SIAM J. Sci. Comput., 31, 2008.

[35] F. Fang and C. W. Oosterlee, Pricing early-exercise and discrete
barrier options by Fourier-cosine series expansions. Numerische Math-
ematik, 114, 2009.

[36] L. Feng and V. Linetsky, Pricing discretely monitored barrier op-
tions and defaultable bonds in Lévy process models: a fast Heston
transform approach. Math. Finance, 18, 2008.

[37] G. Fusai and A. Meucci, Pricing discretely monitored Asian options
under Lévy processes. J. Banking and Finance. 32, 2076–2088, 2008.

[38] R. Geske and H. Johnson, The American put valued analytically.
J. of Finance, 39, 1984.

167

[39] L. A. Grzelak and C. W. Oosterlee, On the Heston model with
stochastic interest rates SIAM J. Financial Math. 2: 255-286, 2011.

[40] V. Henderson and R. Wojakowski, on the equivalence of floating
and fixed–strike Asian options, J, Appl, Prob., 39 (2), 391–394, 2002.

[41] J. Hull and A. White , Pricing interest-rate derivative securities,
Rev. Fin. Studies, 3 (1990) 573–592.

[42] P. Jaillet, E.I. Ronn, and S. Tompaidis Valuation of commodity-
based swing option. Management science, December, 2003.

[43] K. Jackson, S. Jaimungal, and V. Surkov Option pricing with
regime switching Lévy processes using Fourier space time–stepping.
Proc. 4th IASTED Intern. Conf. Financial Engin. Applic., pages 92–97,
2007.

[44] S. Jaimungal, K. Jackson, and V. Surkov, Option pricing with
regime switching Lévy processes using Fourier space time-stepping.
Proc. 4th IASTED Intern. Conf. Financial Engin. Applic., 2007.

[45] A. G. Z. Kemna and A. C. F. Vorst, A pricing method for options
based on average asset values, J. Banking and Finance, 14(1), 113–129,
1990.

[46] M. Kjaer Pricing of swing options in a mean–reverting model with
jumps. Quantitative analytics, Barclays capital, January, 2007.

[47] S. G. Kou, A jump diffusion model for option pricing, Management
Science, 48(8) (2002) 1086–1101.

[48] A. Lari–Lavassani, M. Simchi and A. Ware A discrete valuation
of swing options. Canadian applied mathematics quarterly, Volume 9,
Number 1, Spring 2001.

[49] D. Lemmens, L. Liang, J. Tempere, and A. De Schepper, Pric-
ing bounds for discrete arithmetic Asian options under Lévy models.
Physica A: Statistical Mechanics and its Applications. Vol. 389, Issue
22: 5193–5207, 2010.

[50] R. Lord, F. Fang, F. Bervoetsand C. W. Oosterlee, A fast and
accurate FFT-based method for pricing early-exercise options under
Lévy processes. SIAM J. Sci. Comput., 30, 2008.

[51] R. Lord and C. Kahl, Optimal Fourier inversion in semi-analytical
option pricing. J. Comp. Finance, 10, 2007.

168

[52] J. J. Lucia and E. S. Schwartz, Electricity prices and power deriva-
tives, Evidence from the nordic power exchange, Review of Derivatives
Research, 5 (2002) 5–50.

[53] D. B. Madan, P. P. Carr, H. Geman, and M. Yor, The fine
structure of asset returns: An empirical investigation. J. Business., 75,
2002.

[54] R. Merton, Option pricing when underlying stock returns are discon-
tinuous, J. Financial Economics, 3 (1976) 125–144.

[55] E. Mordecki and J. Fajardo, Symmetry and duality in leacutevy
markets. Quantitative Finance, 6, 2006.

[56] G.V. Pflug and N. Broussev Electricity swing option: Behavioral
models and pricing. European journal of operational research, 2008.

[57] W. Schoutens, Lévy processes in finance: Pricing financial deriva-
tives, Wiley, ISBN: 0-470-85156-2. 2003.

[58] E. S. Schwartz, The stochastic behavior of commodity prices: Im-
plications for valuation and hedging, Journal of Finance, 54(3) (1997)
923–973.

[59] E. S. Schwartz, Valuing long-term commodity assets, Financial Man-
agement, 27 (1998) 57–66.

[60] E. S. Schwartz and J. E. Smith, Short-term variations and long-
term dynamics in commodity prices, Management Science, 46 (2000)
893-911.

[61] V. Surkov, Parallel option pricing with Fourier space time–stepping
method on graphics processing units. Parallel Computing, 36(7): 372-
380, 2010.

[62] L. N. Trefethen, ‘Is Gauss quadrature better than Clenshaw-
Curtis?’, SIAM Review, 50 (1), 67–87, 2008.

[63] G.E.Uhlenbeck and L.S.Ornstein, On the theory of Brownian mo-
tion. Phys Rev, 36:823–41, 1930.

[64] J. Vecer, A new PDE approach for pricing arithmetic average Asian
options. J. Computational Finance, 4(4), 105–113, 2001.

[65] J.A.C. Weideman and L. N. Trefethen, The kink phenomenon in
Fejér and Clenshaw–Curtis quadrature, Numer. Mathematik, 107 Issue
4, 2007.

169

[66] Y. Yamamoto, Double-exponential fast Gauss transform algorithms
for pricing discrete lookback options. Publ. Res. Inst. Math. Sci.,
41:989–1006, 2005.

[67] A. B. Zeghal and M. Mnif Optimal multiple stopping and valuation
of swing options in Lévy models. International Journal of Theoretical
and Applied Finance, 1267–1297, 2006.

[68] B. Zhang and C. W. Oosterlee, Option pricing with COS method
on Graphics Processing Unit, Proceedings of the 23rd IEEE Interna-
tional Parallel & Distributed Processing Symposium, 25–29, May, 2009.

[69] B. Zhang and C. W. Oosterlee, Acceleration of Option Pricing
Technique on Graphics Processing Units, Concurrency and Computa-
tion: Practice and Experience, Wiley–Blackwell, online version avail-
able in February 2012, journal version to appear in 2012.

[70] B. Zhang and C. W. Oosterlee, An efficient pricing algorithm for
swing options based on fourier cosine expansions. Journal of Compu-
tational Finance, to appear in 2012.

[71] B. Zhang, L. A. Grzelak and C. W. Oosterlee, Efficient pric-
ing of commodity options with early–exercise under the Ornstein–
Uhlenbeck process, Applied Numerical Mathematics, Volume 62 and
Issue 2, 2012.

[72] B. Zhang and C. W. Oosterlee, Fourier cosine expansions and put
call relations for Bermudan options. Numerical Methods in Finance, pp
325–352, 2011.

[73] B. Zhang and C. W. Oosterlee, Efficient Pricing of Asian Op-
tions under Lévy Processes based on Fourier Cosine Expansions Part I:
European-Style Products, submitted in 2011, and available as TU Delft
DIAM report 11–11.

[74] B. Zhang and C. W. Oosterlee, Efficient Pricing of Asian Options
under Lévy Processes based on Fourier Cosine Expansions II: Early–
Exercise Features and GPU Implementation, submitted in 2012.

[75] NVIDIA Cuda Compute Unified Device Architecture, Programming
Guide, Version 1.0, 2007.

[76] NVIDIA CUDA Programming Guide, Version 4.0, 2011.

170

Curriculum vitae

Bowen Zhang was born in 1983 in Beijing, China. In 2001 she started
her Bachelor’s study at Beijing University of Technology, with specializa-
tion Applied Mathematics. She received her Bachelor of Science degree in
2005, together with a minor diploma in Economics. During the period of
her Bachelor studies, she won the first prize in the China National Con-
test of Mathematical Modelling in the autumn of 2004. From 2005 to 2006
she worked as a computer engineer at the China International Intellec–Tech
Corporation. In September 2006, she came to the Netherlands for her Mas-
ters study at Delft University of Technology (TU Delft), in the research
group ‘Risk and Environmental Modeling’, under the supervision of Prof.
R. Cooke. After receiving her Master of Science degree in August 2008,
she continued with her PhD research at TU Delft, starting September 2008,
under the supervision of Prof. C. W. Oosterlee. Her PhD project focuses
on the efficient pricing of early–exercise options and exotic options based on
the Fourier cosine expansions, in combination with parallel computing on
the Graphics Processing Unit. In 2010, she has also worked in Paris, imple-
menting the COS method in Premia, a French financial software package for
option pricing, hedging and financial model calibration. After her PhD, she
will work as Quantitative Analyst at The Royal Bank of Scotland (RBS),
Amsterdam.

She has a diploma for Staatsexamen Nederlands als Tweede Taal (NT2).

171

List of publications

� Journal papers:

1. B. Zhang, C.W. Oosterlee, An Efficient Pricing Method for
Asian Options under Levy processes. Part II: Early-Exercise Fea-
tures and GPU implementation, submitted in 2012.

2. B. Zhang, C.W. Oosterlee, Efficient Pricing of Asian Options
under Levy Processes based on Fourier Cosine Expansions. Part
I: European-Style Products, submitted in 2011.

3. B. Zhang, C.W. Oosterlee, An Efficient Pricing Algorithm
For Swing Options Based On Fourier Cosine Expansions, Journal
Of Computational Finance, to appear.

4. B. Zhang, C.W. Oosterlee, Acceleration of Option Pricing
Technique on Graphics Processing Units, Concurrency and Com-
putation: Practice and Experience, Wiley–Blackwell, online ver-
sion available on 6 February 2012, journal version to appear in
2012.

5. B. Zhang, L.A. Grzelak, and C.W. Oosterlee, Efficient
Pricing of Commodity Options with Early-Exercise under the
Ornstein-Uhlenbeck Process, Applied Numerical Mathematics, pp.
91–111, Volume 62, Issue 2, 2012.

� Book Chapters:

1. B. Zhang and C.W. Oosterlee, Fourier Cosine Expansions
and the Put-Call Relations for Bermudan Options, Numerical
Methods in Finance, pp. 323–350, Springer Proceedings in Math-
ematics, Volume 12, 2012.

173

Proceedings and Presentations

� Presentations

1. Speaker at SIAM conference on Financial Mathematics & Engi-
neering, Minneapolis, Minnesota, United States, July 9–11, 2012,

2. Speaker at 11th Winter school on Mathematical Finance, Luteren,
the Netherlands, January 23–25, 2012.

3. Speaker at Quantitative Methods in Finance Conference, Sydney,
Australia, December 14-17, 2011.

4. Speaker at Reunion de livraison de Premia 13, Inria, Paris, France,
March 17, 2011.

5. Speaker at 6th World Congress of the Bachelier Finance Society,
Toronto, Canada, June 22–26, 2010.

6. Speaker at the 23rd IEEE International Parallel & Distributed
Processing Symposium, 25-29, May, 2009, Rome, Italy.

� Proceedings

1. Anthony Thornton, Bowen Zhang et.al Modeling and op-
timization of Algae Growth. In proceedings of the 72nd European
Study Group Mathematics with Industry, January 25–29, 2010,
Centrum Wiskunde & Informatica (CWI), Amsterdam.

2. Bowen Zhang and Cornelis W. Oosterlee, Option pricing
with COS method on Graphics Processing Unit, In proceedings
of the 23rd IEEE International Parallel & Distributed Processing
Symposium, 25-29, May, 2009, ISBN: 978-1-4244-3750-4 ISSN
1530-2075.

175

	Acknowledgements
	Summary
	Samenvatting
	List of Symbols
	Introduction
	Exponential Lévy Asset Dynamics
	Examples of Lévy processes and characteristic functions

	The Fourier Cosine Method (COS)
	Truncation Range and Put--Call Relations
	Pricing Early-Exercise Options

	Error Analysis
	Pricing Bermudan Call Options Using Put-Call Relations
	The Put--Call Parity
	The Put--Call Duality
	Error analysis with the put-call relations

	Numerical Examples
	American Options

	Conclusions and Discussion

	Acceleration of the COS Option Pricing Technique on Graphics Processing Units
	Introduction
	COS Pricing Method and Advantage of the GPU
	Pricing of European Options with Multi--Strike Features
	Underlying Asset Processes
	Advantage of COS method on GPU

	European Options
	Different Ways of GPU Implementation
	Numerical Example

	Multiple Strike Option Pricing
	Convergence and Precision
	Option Pricing with Short Maturity Times
	Riccati ODEs and Characteristic Function

	Bermudan Options
	Conclusions

	Efficient Pricing of Commodity Options with Early--Exercise under the Ornstein--Uhlenbeck Process
	Introduction
	Problem Definition
	The Ornstein-Uhlenbeck Process
	Incorporation of Seasonality Component
	Computational Complexity

	An Approximate OU Model
	Error analysis
	The first step in the backward recursion
	Further steps in the backward recursion

	Numerical Results
	CPU Time and Accuracy
	Probability Density Function of 1
	Early-Exercise Points
	Seasonality Experiment

	Conclusion

	An Efficient Pricing Algorithm for Swing Options Based on Fourier Cosine Expansions
	Introduction
	Details of the Swing Option
	Contract Details
	Pricing Details
	Commodity Processes

	Fourier Cosine Algorithm for Swing Options
	Algorithm for the Final Time Interval, tI1
	Algorithm for Interval tIns"026E30F I1
	The Early-Exercise Points

	Numerical Results
	Constant Recovery Time
	State-Dependent Recovery Time

	Conclusions

	Efficient Pricing of Asian Options under Lévy Processes Based on Fourier Cosine Expansions Part I: European--Style Products
	Introduction
	ASCOS method for European-style geometric Asian options
	ASCOS method for arithmetic Asian options
	Recovery of characteristic function
	Integration range
	Clenshaw--Curtis quadrature
	Extensions

	Error analysis for arithmetic Asian options
	Error propagation in the characteristic functions
	Error in the option price

	Numerical results
	Geometric Asian options
	Arithmetic Asian options

	Conclusions

	Efficient Pricing of Asian Options under Lévy Processes Based on Fourier Cosine Expansions Part II: Early--Exercise Features and GPU Implementation
	Introduction
	Early-exercise Asian options under Lévy processes
	A first Asian pricing method (for M)
	Characteristic function of the first pricing method

	The 2D ASCOS method for early-exercise Asian options
	Continuation value
	Fourier coefficients
	Computational complexity and Fast Fourier Transform
	Integration range of Ym

	Error analysis
	Initial error
	Error propagation

	Numerical results
	GPU implementation and acceleration
	Arithmetic Asian options on the GPU

	Conclusions

	Conclusions and Outlook
	Conclusions
	Outlook

	Curriculum vitae
	List of publications
	Proceedings and Presentations

