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We formulate standard and multilevel Monte Carlo methods 
for the kth moment Mk

ε [ξ] of a Banach space valued random 
variable ξ : Ω → E, interpreted as an element of the k-
fold injective tensor product space ⊗k

εE. For the standard 
Monte Carlo estimator of Mk

ε [ξ], we prove the k-independent 
convergence rate 1 − 1

p
in the Lq(Ω; ⊗k

εE)-norm, provided that 
(i) ξ ∈ Lkq(Ω; E) and (ii) q ∈ [p, ∞), where p ∈ [1, 2] is the 
Rademacher type of E. By using the fact that Rademacher 
averages are dominated by Gaussian sums combined with 
a version of Slepian’s inequality for Gaussian processes due 
to Fernique, we moreover derive corresponding results for 
multilevel Monte Carlo methods, including a rigorous error 
estimate in the Lq(Ω; ⊗k

εE)-norm and the optimization of the 
computational cost for a given accuracy. Whenever the type 
of the Banach space E is p = 2, our findings coincide with 
known results for Hilbert space valued random variables.
We illustrate the abstract results by three model problems: 
second-order elliptic PDEs with random forcing or random 
coefficient, and stochastic evolution equations. In these cases, 
the solution processes naturally take values in non-Hilbertian 
Banach spaces. Further applications, where physical modeling 
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constraints impose a setting in Banach spaces of type p < 2, 
are indicated.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

1.1. Background and motivation

Many applications in uncertainty quantification require the estimation of statistical 
moments. The first statistical moment, that is to say the mean, is often itself the quan-
tity of interest, whereas higher-order moments are needed to infer certain characteristics 
about the probability distribution of the underlying real- or vector-valued random vari-
able. In the case that this distribution is Gaussian, it is fully determined by the first two 
statistical moments. Third-order and fourth-order moments, which define the skewness 
and kurtosis of the probability distribution, play for instance an important role for tests 
if the distribution is Gaussian, see e.g. [38,49].

In order to estimate statistical moments one resorts to sampling strategies, i.e., Monte 
Carlo methods. It is well-known that for estimating the mean the convergence rate 1/2 in 
the number of samples is achieved as long as the random variable ξ is square-integrable 
in Bochner sense with values in a Hilbert space H, i.e., ξ ∈ L2(Ω; H). Moreover, this 
result extends to statistical moments of an arbitrary order k ∈ N when interpreted as 
elements of the Hilbert tensor product space H(k), provided that the random variable 
exhibits sufficient integrability in L2k(Ω; H).

Vector-valued random variables occur, for instance, in the context of differential 
equations involving randomness. Here, numerical methods for generating samples of ap-
proximate solutions often allow for a hierarchical multilevel structure corresponding to 
different degrees of refinement of the discretization parameters. The idea of multilevel 
Monte Carlo (MLMC) methods is to reduce the computational cost for achieving a given 
target accuracy by optimizing the number of samples used on each level to compute the 
MLMC estimator. To the best of our knowledge this approach was first formulated 
by Giles [22] for stochastic ordinary differential equations (SDEs) after having previ-
ously been introduced by Heinrich [32] in the context of numerical integration. Since 
then MLMC methods have been used to approximate means of Hilbert space valued 
random variables for a variety of problems in uncertainty quantification, including but 
not limited to SDEs [13,21,23,25,58], partial differential equations (PDEs) with random 
coefficients [3,10,12,13,26,27,31,56], stochastic PDEs [2,24], and hyperbolic PDEs with 
random fluxes or uncertainties in the initial data [50–52].

With regard to higher-order moments, MLMC strategies have been applied to esti-
mate diagonals of central statistical moments in [5,6], and combined with sparse tensor 
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techniques to approximate (full) moments in [3,51,52]; the latter approach has been 
refined and generalized by the multi-index Monte Carlo method in [30].

All of the previously mentioned references have in common that the error analysis 
of the (multilevel) Monte Carlo estimators proceeds in Hilbert spaces. For the first sta-
tistical moment, it is known that estimating means of random variables taking values 
in a Banach space E via the standard Monte Carlo method does in general not con-
verge at the rate 1/2, even in the presence of high Bochner integrability. More specifically, 
the rate of convergence depends on geometric properties of the Banach space E: If E
has Rademacher type p ∈ [1, 2] and the random variable is an element of the Bochner 
space Lq(Ω; E), q ≥ 1, the standard Monte Carlo method will, in general, converge only 
at the rate 1 − 1

min{p,q} , see [47, Proposition 9.11]. This behavior necessitates tailoring 
of MLMC methods not only to the discretization of a particular problem, but also to 
the type of the Banach space. The only references known to the authors addressing this 
issue are [17] and [42], where conservation laws with random data are discretized by 
MLMC finite difference methods, and [14], where the authors perform a MLMC analysis 
in Hölder spaces for solutions to stochastic evolution equations.

Besides the aforementioned issue of type-dependent convergence rates, another dif-
ficulty occurs when considering higher-order moments of Banach space valued random 
variables: As opposed to the Hilbert space case, there is no canonical choice for the norm 
on the tensor product space E ⊗E. Two options which are widely used in the literature 
are the projective and injective tensor product norms, mostly caused by the fact that any 
reasonable cross norm is bounded from above, respectively from below, by these norms, 
see [54, Proposition 6.1(a)]. Janson and Kaijser [37] defined and analyzed statistical mo-
ments of order k ∈ N (in Bochner, Dunford or Pettis sense) as elements of projective 
and injective tensor product spaces. One of the findings [37, Theorem 3.8] shows that 
both the projective and injective kth moment of ξ : Ω → E exist in Bochner sense (and 
coincide) whenever ξ ∈ Lk(Ω; E).

Clearly, the choice of the tensor product norm will play a crucial role in the error anal-
ysis of (multilevel) Monte Carlo estimation of higher-order statistical moments. A simple 
argumentation (see Example 3.21) shows that, no matter how “good” the (Rademacher) 
type of the Banach space E is, Monte Carlo methods for the second moment will in 
general not converge in the projective tensor product of E.

While this work is devoted to the numerical analysis of Monte Carlo (sampling) meth-
ods to approximate higher-order moments of vector-valued random variables, we remark 
that certain linear (or linearized) stochastic equations allow for alternative approaches to 
deterministically compute approximations to k-point correlations of random solutions. In 
this context, we mention [11,40,41,43,46] and the references therein. This methodology 
does not raise the mathematical issue of the type of a Banach space and its impact on 
the convergence of numerical approximations. In the present paper, we shall not pursue 
this direction further.
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1.2. Contributions

We consider the injective kth moment Mk
ε [ξ] of a Banach space valued random vari-

able ξ ∈ Lk(Ω; E) and, for the first time, formulate standard and multilevel Monte Carlo 
methods for this higher-order moment in the Banach space setting. We prove that the 
standard Monte Carlo estimator for Mk

ε [ξ] converges in the Lq(Ω; ⊗k
εE)-norm at the 

rate 1 − 1
p provided that (i) ξ ∈ Lkq(Ω; E) and (ii) q ∈ [p, ∞), where p ∈ [1, 2] is the 

Rademacher type of E, see Theorem 3.16. Here, ⊗k
εE denotes the k-fold injective tensor 

product of E. Note, in particular, that this convergence rate is independent of the order k
of the statistical moment Mk

ε [ξ]. This result readily implies error estimates and conver-
gence rates for abstract single-level Monte Carlo methods for Mk

ε [ξ], see Corollary 3.20.
By means of replacing Rademacher sums by Gaussian averages and exploiting a 

version of Slepian’s inequality for Gaussian processes due to Fernique [18], we are fur-
thermore able to formulate corresponding abstract results for multilevel Monte Carlo
methods. This includes a rigorous error estimate in the Lq(Ω; ⊗k

εE)-norm, see Theo-
rem 3.24, and the optimization of the computational cost for a given accuracy (in the 
MLMC context also known as “αβγ theorem”), see Theorem 3.25.

We apply these abstract results to several classes of problems, where the stochastic 
solution processes naturally take values in (non-Hilbertian) Banach spaces: second-order 
elliptic PDEs (a) with random forcing taking values in Lp for some general p ∈ (1, ∞), or 
(b) with log-Gaussian diffusion coefficient and right-hand side in Lp; and (c) stochastic 
evolution equations, where we extend the MLMC analysis in Hölder norms, performed 
in [14, Section 5] for mean values of solution processes, to their kth moments, being kth 
order (spatio-)temporal correlation functions.

1.3. Layout

In Section 2 we introduce the necessary notation, see Subsection 2.1, as well as the 
analytical preliminaries on tensor products of a Banach space E, with particular emphasis 
on the full and symmetric k-fold injective tensor product of E, see Subsection 2.2. We 
close this section with the definition of the injective kth moment of a Banach space 
valued random variable ξ ∈ Lk(Ω; E) in Subsection 2.3. Section 3 is dedicated to the 
analysis of Monte Carlo methods for the injective kth moment. For this purpose, we 
first need to formulate several auxiliary results for Rademacher and Gaussian averages 
in Subsection 3.1. We then perform the error analysis for the standard (and single-level) 
Monte Carlo method in Subsection 3.2 and for the multilevel Monte Carlo method in 
Subsection 3.3. In Section 4 we discuss several applications of our convergence results. 
Section 5 gives an outlook on extensions and further applications, where due to essential 
restrictions in the physical modeling a (non-Hilbertian) Banach space setting cannot be 
avoided.
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2. Preliminaries

2.1. General notation and setting

Given parameter sets P, Q, and mappings F , G : P × Q → R, we use the no-
tation F (p, q) �q G (p, q) to indicate that for each q ∈ Q there exists a constant 
Cq ∈ (0,∞) such that F (p, q) ≤ Cq G (p, q) holds for every p ∈ P. Whenever both 
relations, F (p, q) �q G (p, q) and G (p, q) �q F (p, q), hold simultaneously, we write 
F (p, q) �q G (p, q).

For a Banach space (F, ‖ · ‖F ) over R, we write BF := {x ∈ F : ‖x‖F ≤ 1} for its 
closed unit ball, and B(F ) for the Borel σ-algebra on (F, ‖ · ‖F ), that is the σ-algebra 
generated by the open sets. The dual space of all continuous linear functionals g : F → R

is denoted by F ′. We write g(x) or 〈g, x〉 for the duality pairing between g ∈ F ′ and 
x ∈ F , and ‖g‖F ′ := supx∈BF

|g(x)| for the norm on F ′.
Throughout this article, we assume that (Ω, A, P ) is a complete probability space 

with expectation operator E, and we mark statements which hold P -almost surely with 
P -a.s. For a second complete probability space (Ω̃, Ã, P̃ ) with expectation operator Ẽ, 
(Ω × Ω̃, A ⊗ Ã, P ⊗ P̃ ) denotes the product probability space, i.e., Ω × Ω̃ is the set of all 
tuples (ω, ̃ω) with ω ∈ Ω, ω̃ ∈ Ω̃, A ⊗Ã is the product σ-algebra generated by all sets of 
the form A × Ã with A ∈ A, Ã ∈ Ã, and P ⊗ P̃ is the uniquely defined product measure 
satisfying (P ⊗ P̃ )(A × Ã) = P (A)P̃ (Ã) for all A ∈ A and Ã ∈ Ã. The expectation 
operator on (Ω × Ω̃, A ⊗ Ã, P ⊗ P̃ ) will be denoted by E ⊗ Ẽ.

In addition, we let (E, ‖ · ‖E) be a Banach space over R, the set N contains all 
(strictly) positive integers and, unless otherwise stated, k ∈ N is a fixed positive integer 
which indicates the order of (statistical) moments.

2.2. k-fold tensor products of Banach spaces

In this subsection we define (full and symmetric) k-fold tensor products of the Banach 
space (E, ‖ · ‖E), with the aim of obtaining a new Banach space satisfying the following:

(i) It contains the set of all kth moments (in Bochner sense) of Bochner integrable 
random variables ξ : Ω → E satisfying E

[
‖ξ‖kE

]
< ∞.

(ii) The topology on this space (prescribed by its norm) allows to quantify the conver-
gence of Monte Carlo estimation for statistical moments of order k.

For this purpose, symmetry of moments will be particularly important.
We start by defining the (full) k-fold algebraic tensor product of E,

⊗kE = E ⊗ · · · ⊗ E︸ ︷︷ ︸
k times

,

that is the vector space consisting of all finite sums of the form
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M∑
j=1

xj,1 ⊗ · · · ⊗ xj,k =
M∑
j=1

k⊗
n=1

xj,n, xj,n ∈ E, 1 ≤ j ≤ M, 1 ≤ n ≤ k,

equipped with the algebraic operations rendering the tensor product linear in each of 
its k components, see [19, Section 1.1]. The injective tensor norm ‖ · ‖ε for an element 
U ∈ ⊗kE with representation U =

∑M
j=1 xj,1 ⊗ · · · ⊗ xj,k is defined by

‖U‖ε := sup
{∣∣∣∣ M∑

j=1

k∏
n=1

fn(xj,n)
∣∣∣∣
∣∣∣∣∣ f1, . . . , fk ∈ BE′

}
, (2.1)

cf. [54, Section 3.1] and [37, Section 2.3.2]. Note that the value of the supremum in (2.1)
is independent of the choice of the representation of U ∈ ⊗kE, since∣∣∣∣ M∑

j=1

k∏
n=1

fn(xj,n)
∣∣∣∣ =

∣∣∣∣ M∑
j=1

〈(f1 ⊗ · · · ⊗ fk), (xj,1 ⊗ · · · ⊗ xj,k)〉
∣∣∣∣ = |〈(f1 ⊗ · · · ⊗ fk), U〉|.

For k = 1, the Hahn–Banach theorem shows that ‖ · ‖ε = ‖ · ‖E . We call the completion 
of the k-fold algebraic tensor product space ⊗kE with respect to ‖ · ‖ε in (2.1) the (full) 
k-fold injective tensor product of E and denote it by ⊗k

εE.
In the context of moments of E-valued random variables, we will be interested in 

subspaces of ⊗kE and ⊗k
εE containing only their symmetric elements. To this end, we 

first introduce for x1 ⊗ · · · ⊗ xk ∈ ⊗kE its symmetrization

s(x1 ⊗ · · · ⊗ xk) := 1
k!

∑
σ∈Sk

xσ(1) ⊗ · · · ⊗ xσ(k), (2.2)

where Sk is the group of permutations of the set {1, ..., k}. The k-fold symmetric algebraic 
tensor product of E, denoted by ⊗k,sE, is then defined as the linear span of the subset 
{s(x1 ⊗ · · · ⊗ xk) : x1, . . . , xk ∈ E} in ⊗kE, i.e.,

⊗k,sE :=
{

M∑
j=1

s(xj,1 ⊗ · · · ⊗ xj,k)

∣∣∣∣∣M ∈ N, xj,n ∈ E, 1 ≤ j ≤ M, 1 ≤ n ≤ k

}

=
{

M∑
j=1

λj ⊗kxj

∣∣∣∣∣M ∈ N, λj ∈ R, xj ∈ E, 1 ≤ j ≤ M

}

=
{

M∑
j=1

δj ⊗kxj

∣∣∣∣∣M ∈ N, δj ∈ E (k), xj ∈ E, 1 ≤ j ≤ M

}
,

see [19, Section 1.5] or [20, Section 1.1]. Here, we set

⊗kx := x⊗ · · · ⊗ x︸ ︷︷ ︸ ∀x ∈ E, and E (k) :=
{
{−1, 1} if k is even,
{1} if k is odd.
k times
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The symmetric injective tensor norm ‖ · ‖εs on the k-fold symmetric algebraic tensor 
product space ⊗k,sE is given by (see [19, Section 3.1])

‖U‖εs := sup
{∣∣∣∣ M∑

j=1
λjf(xj)k

∣∣∣∣
∣∣∣∣∣ f ∈ BE′

}
, (2.3)

if U =
∑M

j=1 λj ⊗kxj , where λj ∈ R, xj ∈ E for 1 ≤ j ≤ M . Note that, as for the injective 
tensor norm ‖ · ‖ε, this definition does not depend on the choice of the representation 
of U . The k-fold symmetric injective tensor product of E, denoted by ⊗k,s

εs E, is the 
completion of ⊗k,sE with respect to the norm ‖ · ‖εs in (2.3).

The symmetrization s in (2.2) extends linearly to a projection s : ⊗kE → ⊗k,sE and, 
since for U =

∑M
j=1 xj,1 ⊗ · · · ⊗ xj,k ∈ ⊗kE we moreover have that

‖s(U)‖εs ≤ ‖s(U)‖ε =
∥∥∥∥ M∑
j=1

1
k!

∑
σ∈Sk

xj,σ(1) ⊗ · · · ⊗ xj,σ(k)

∥∥∥∥
ε

≤ 1
k!

∑
σ∈Sk

∥∥∥∥ M∑
j=1

xj,σ(1) ⊗ · · · ⊗ xj,σ(k)

∥∥∥∥
ε

=
∥∥∥∥ M∑
j=1

xj,1 ⊗ · · · ⊗ xj,k

∥∥∥∥
ε

= ‖U‖ε,

(2.4)

it also has a unique continuous extension to a linear projection sε : ⊗k
εE → ⊗k,s

εs E. 
Furthermore, on ⊗k,s

εs E the injective tensor norm ‖ · ‖ε and the symmetric injective 
tensor norm ‖ · ‖εs are equivalent, with k-dependent equivalence constants,

‖U‖εs ≤ ‖U‖ε ≤
kk

k! ‖U‖εs ∀U ∈ ⊗k,s
εs E, (2.5)

see [20, Sections 2.3 and 2.7].

Remark 2.1. There are several meaningful options to define norms on the k-fold algebraic 
tensor product spaces ⊗kE and ⊗k,sE. Besides the injective tensor norm, a common 
choice is the projective tensor norm ‖ · ‖π, defined for U ∈ ⊗kE by

‖U‖π := inf
{

M∑
j=1

k∏
n=1

‖xj,n‖E

∣∣∣∣∣M ∈ N, U =
M∑
j=1

xj,1 ⊗ · · · ⊗ xj,k

}
. (2.6)

The symmetric projective tensor norm on ⊗k,sE is given by (see [19, Section 2.2])

‖U‖πs
:= inf

{
M∑
j=1

|λj | ‖xj‖kE

∣∣∣∣∣M ∈ N, U =
M∑
j=1

λj ⊗kxj

}
. (2.7)

Then, for every U ∈ ⊗kE, ‖U‖π ≥ ‖U‖ε and ‖s(U)‖πs
≥ max{‖s(U)‖εs , ‖s(U)‖π} hold. 

The closures of ⊗kE and of ⊗k,sE with respect to the norms ‖ · ‖π and ‖ · ‖πs
, respec-

tively, yield well-defined Banach spaces, the full and symmetric k-fold projective tensor 
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product of E, denoted by ⊗k
πE and ⊗k,s

πs
E. As shown in Example 3.21, the projective 

tensor norm is not suitable for the error analysis of Monte Carlo methods.

2.3. Moments of Banach space valued random variables

The purpose of this subsection is to generalize the notion of the kth moment, defined 
for a real-valued random variable X : Ω → R as

Mk[X] := E
[
Xk

]
=
∫
Ω

X(ω)k dP (ω),

to Banach space valued random variables ξ : Ω → E. To this end, we first specify the 
concept of vector-valued integration which we imply when taking expected values of 
E-valued random variables.

2.3.1. Vector-valued integration
An E-valued random variable ξ defined on the probability space (Ω, A, P ) is a mapping 

ξ : Ω → E which is measurable in a certain sense. Specifically, we consider the class of 
Bochner measurable random variables; these are all mappings ξ : Ω → E which are 
(i) measurable with respect to the Borel σ-algebra B(E) on E, and (ii) almost surely 
separably valued, i.e., ξ ∈ E0 P -a.s. for some separable subspace E0 ⊆ E. A Bochner 
measurable random variable ξ is often also called strongly measurable, emphasizing the 
contrast to the notion of weak measurability, which only requires the real-valued random 
variable 〈f, ξ〉 to be measurable for every f ∈ E′. Note that these notions are equivalent 
whenever ξ is almost surely separably valued (e.g., in the case of a separable Banach 
space E), see [37, Theorem 2.3].

Furthermore, it turns out that ξ : Ω → E is Bochner measurable if and only if there 
exists a sequence of Borel measurable simple functions ξn : Ω → E, n ∈ N, such that 
ξn → ξ, P -a.s. This characterization facilitates the definition of the Bochner integral∫

Ω

ξ(ω) dP (ω) =: E[ξ] ∈ E,

whenever ξ is Bochner measurable and E
[
‖ξ‖E

]
< ∞.

We close this subsection with introducing the corresponding Bochner Lq-spaces. For 
a real Banach space (F, ‖ · ‖F ) and q ∈ [1, ∞), Lq(Ω; F ) := Lq(Ω, A, P ; F ) is the space 
of all (equivalence classes of) F -valued Bochner measurable random variables η : Ω → F

such that E
[
‖η‖qF

]
< ∞, with norm given by

‖η‖Lq(Ω;F ) :=
(
E
[
‖η‖qF

])1/q =
(∫

‖η(ω)‖qF dP (ω)
)1/q

.

Ω
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2.3.2. Moments of order k
For an E-valued random variable ξ, its injective kth moment Mk

ε [ξ] is defined as the 
expectation (see e.g. [37, Section 3.1])

Mk
ε [ξ] := E

[
⊗kξ

]
=
∫
Ω

⊗kξ(ω) dP (ω) =
∫
Ω

ξ(ω) ⊗ · · · ⊗ ξ(ω)︸ ︷︷ ︸
k times

dP (ω), (2.8)

whenever this integral exists (in Bochner sense) in the k-fold injective tensor product 
space ⊗k

εE. In what follows, we will always assume that ξ ∈ Lq(Ω; E) holds for some 
q ∈ [k, ∞). This guarantees that Mk

ε [ξ] exists in Bochner sense: Firstly, Bochner measur-
ability of ξ implies that also ⊗kξ : Ω → ⊗k

εE is Bochner measurable since the non-linear 
mapping E 
 x �→ ⊗kx ∈ ⊗k

εE is continuous and, secondly,

E
[
‖⊗kξ‖ε

]
= E

[
‖ξ‖kE

]
≤ E

[
‖ξ‖qE

]
= ‖ξ‖qLq(Ω;E) < ∞.

Of particular relevance in the present context is that the injective kth moment is an 
element of the k-fold symmetric injective tensor product space ⊗k,s

εs E, since

sε
(
Mk

ε [ξ]
)

= sε
(
E
[
⊗kξ

])
= E

[
sε
(
⊗kξ

)]
= E

[
⊗kξ

]
= Mk

ε [ξ].

Here, we have used continuity of the symmetrization sε : ⊗k
εE → ⊗k,s

εs E, see (2.2) and 
(2.4), to exchange the order of sε( · ) and E[ · ].

Remark 2.2. The assumption ξ ∈ Lk(Ω; E) does not only guarantee the existence of 
the injective kth moment Mk

ε [ξ] but also that of the projective kth moment Mk
π[ξ], i.e., 

the integral in (2.8) converges in Bochner sense also in the stronger projective tensor 
norm defined in (2.6), see Remark 2.1. This observation follows from the chain of iden-
tities ‖⊗kξ‖π = ‖ξ‖kE = ‖⊗kξ‖ε showing that the above arguments may be translated 
verbatim, see also [37, Theorem 3.8].

3. Monte Carlo estimation of the kth moment

This section treats the analysis of abstract standard, single-level and multilevel Monte 
Carlo methods to estimate the injective kth moment Mk

ε [ξ] of a Banach space valued 
random variable ξ ∈ Lk(Ω; E). In Subsection 3.1 we first provide necessary definitions, 
including those of Rademacher and orthogaussian families as well as the type of a Banach 
space. Furthermore, we formulate auxiliary results based on comparison theorems for 
Rademacher and Gaussian averages. These observations facilitate the error analysis for 
standard and single-level Monte Carlo estimation in Subsection 3.2 and for the multilevel 
Monte Carlo method in Subsection 3.3.
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3.1. Auxiliary results on Rademacher and Gaussian averages

Definition 3.1 (Rademacher family). Let (Ω̃, Ã, P̃ ) be a complete probability space and 
rj : Ω̃ → {−1, 1}, j ∈ J ⊆ N, be a family of independent random variables such that 
P̃ (rj = −1) = P̃ (rj = 1) = 1

2 for all j ∈ J . Then, the collection of random variables 
(rj)j∈J is called a Rademacher family.

Definition 3.2 (Orthogaussian family). Let (Ω̃, Ã, P̃ ) be a complete probability space with 
expectation Ẽ. Suppose that gj : Ω̃ → R, j ∈ J ⊆ N, are independent standard Gaussian 
random variables, i.e., Ẽ[gj ] = 0, Ẽ

[
g2
j

]
= 1 for all j ∈ J , and Ẽ[gigj ] = 0 for i �= j. 

Then, the collection (gj)j∈J is called an orthogaussian family.

Assuming that (zj)Mj=1 is a Rademacher or orthogaussian family and (xj)Mj=1 are vec-
tors in the Banach space E, the E-norm of the finite random sum 

∑M
j=1 zjxj is the 

supremum of a real-valued (Rademacher or Gaussian) stochastic process. More specifi-
cally, the Hahn–Banach theorem allows us to rewrite the norm as follows,

∥∥∥∥ M∑
j=1

zjxj

∥∥∥∥
E

= sup
f∈BE′

∣∣∣∣ M∑
j=1

zjf(xj)
∣∣∣∣ = sup

(t1,...,tM )∈T

∣∣∣∣ M∑
j=1

zjtj

∣∣∣∣, (3.1)

where T is the compact subset of RM given by T := {(f(x1), . . . , f(xM )) : f ∈ BE′}.
The next lemma summarizes comparison theorems for Gaussian and Rademacher 

averages, see [47, Corollary 3.17 & Theorem 4.12]. It will facilitate generalizing the 
equality (3.1) to an upper bound for Lq-norms of random variables of the form

sup
f∈BE′

∣∣∣∣ M∑
j=1

rjf(xj)kj

∣∣∣∣ and sup
f∈BE′

∣∣∣∣ M∑
j=1

gjf(xj)kj

∣∣∣∣, kj ∈ N, 1 ≤ j ≤ M.

Lemma 3.3. Let M ∈ N, and let z := (zj)Mj=1 be a Rademacher or orthogaussian family 

on a complete probability space (Ω̃, Ã, P̃ ). Suppose that (ϕj)Mj=1 are functions on R such 
that, for every 1 ≤ j ≤ M ,

ϕj(0) = 0 and |ϕj(s) − ϕj(t)| ≤ |s− t| ∀s, t ∈ R. (3.2)

Assume further that G : [0, ∞) → [0, ∞) is convex and increasing. Then, we have for any 
bounded subset T ⊂ RM the relation

ẼG

(
1
2 sup

(t1,...,tM )∈T

∣∣∣∣ M∑
j=1

zjϕj(tj)
∣∣∣∣
)

≤ ẼG

(
Cz sup

(t1,...,tM )∈T

∣∣∣∣ M∑
j=1

zjtj

∣∣∣∣
)
, (3.3)

where Ẽ denotes the expectation operator on (Ω̃, Ã, P̃ ), and Cz is given by
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Cz :=
{

1 if z is a Rademacher family,
2 if z is an orthogaussian family.

(3.4)

Proposition 3.4. Let M ∈ N, x1, . . . , xM ∈ E, and (zj)Mj=1 be a Rademacher or or-
thogaussian family on a complete probability space (Ω̃, Ã, P̃ ) (with expectation Ẽ). In 
addition, assume that G : [0, ∞) → [0, ∞) is a convex and increasing function.

(i) For integers k1, . . . , kM ∈ N, we have the relation

ẼG

(
sup

f∈BE′

∣∣∣∣ M∑
j=1

zjf(xj)kj

∣∣∣∣
)

≤ ẼG

(
2Cz

∥∥∥∥ M∑
j=1

zjkj‖xj‖kj−1
E xj

∥∥∥∥
E

)
. (3.5)

(ii) For general exponents q1, . . . , qM ∈ [1, ∞), the following holds:

ẼG

(
sup

f∈BE′

∣∣∣∣ M∑
j=1

zj |f(xj)|qj
∣∣∣∣
)

≤ ẼG

(
2Cz

∥∥∥∥ M∑
j=1

zjqj‖xj‖qj−1
E xj

∥∥∥∥
E

)
. (3.6)

Here, the constant Cz ∈ {1, 2} is defined as in (3.4).

Remark 3.5. Part (i) of Proposition 3.4 is a generalization of the observation made 
by Ledoux and Talagrand in [47, Equation (4.19)]; there formulated for Rademacher 
averages, G(x) := x, and k1 = . . . = kM = 2. That is, we generalize to higher-order 
polynomials on one hand, and to Gaussian averages on the other hand.

Proof of Proposition 3.4. We will prove (i) and (ii) using Lemma 3.3. Without loss of 
generality we may assume that xj �= 0 for all 1 ≤ j ≤ M .

To derive (i), let M ∈ N and kj ∈ N, x̃j ∈ E \ {0} for all 1 ≤ j ≤ M . Furthermore, 
for 1 ≤ j ≤ M , define Ij :=

[
−‖x̃j‖E , ‖x̃j‖E

]
and

ϕ̃j : Ij → R, ϕ̃j(s) := k−1
j ‖x̃j‖1−kj

E skj , s ∈ Ij . (3.7)

The function ϕ̃j is continuously differentiable on the interior of Ij with |ϕ̃′
j(s)| ≤ 1. 

Let Pj : R → Ij denote the projection Pj(s) := max{−‖x̃j‖E , min{s, ‖x̃j‖E}} onto the 
interval Ij . Then, for every 1 ≤ j ≤ M , the function

ϕj : R → R, ϕj(s) := ϕ̃j(Pj(s)),

satisfies the assumptions (3.2) of Lemma 3.3. Therefore, letting the bounded set T ⊂ RM

be given by T := {(f(x̃1), . . . , f(x̃M )) : f ∈ BE′}, we may combine the observation (3.1)
with (3.3) and by also noting that T ⊆ I1 × . . . × IM we obtain that, for every convex 
and increasing function G : [0, ∞) → [0, ∞),
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ẼG

(
1
2 sup

f∈BE′

∣∣∣∣ M∑
j=1

zjk
−1
j ‖x̃j‖1−kj

E f(x̃j)kj

∣∣∣∣
)

= ẼG

(
1
2 sup

(t1,...,tM )∈T

∣∣∣∣ M∑
j=1

zjϕj(tj)
∣∣∣∣
)

≤ ẼG

(
Cz sup

(t1,...,tM )∈T

∣∣∣∣ M∑
j=1

zjtj

∣∣∣∣
)

= ẼG

(
Cz

∥∥∥∥ M∑
j=1

zj x̃j

∥∥∥∥
E

)
. (3.8)

Finally, for x1, . . . , xM ∈ E \ {0}, we choose x̃j := 2kj‖xj‖kj−1
E xj ∈ E \ {0} for all 

1 ≤ j ≤ M and (3.8) shows (3.5).
For (ii) we modify the above arguments by replacing kj and the interval Ij in the 

definition (3.7) of ϕ̃j with qj and Ij :=
[
0, ‖x̃j‖E

]
, respectively, and the projection 

Pj : R → Ij with Pj(s) := min{|s|, ‖x̃j‖E}. Then, the function ϕj(s) := ϕ̃j(Pj(s))
satisfies the assumptions (3.2) of Lemma 3.3, since ϕj(0) = 0, |ϕ̃′

j(s)| ≤ 1 holds for 
every s ∈ (0, ‖x̃j‖E), and by the mean value theorem combined with the reverse triangle 
inequality we thus have that

|ϕj(s) − ϕj(t)| = |ϕ̃j(Pj(s)) − ϕ̃j(Pj(t))| ≤ |Pj(s) − Pj(t)| ≤
∣∣|s| − |t|

∣∣ ≤ |s− t|.

Furthermore, for every f ∈ BE′ , we have that Pj(f(x̃j)) = |f(x̃j)| and we obtain the 
analogue of (3.8),

ẼG

(
1
2 sup

f∈BE′

∣∣∣∣ M∑
j=1

zjq
−1
j ‖x̃j‖1−qj

E |f(x̃j)|qj
∣∣∣∣
)

≤ ẼG

(
Cz

∥∥∥∥ M∑
j=1

zj x̃j

∥∥∥∥
E

)
.

The choice x̃j := 2qj‖xj‖qj−1
E xj , 1 ≤ j ≤ M , completes the proof of (3.6). �

The next lemma shows that we may symmetrize independent random variables with 
vanishing mean, when bounding Lq-norms of their sum. This result can be found, e.g., 
in [47, Lemma 6.3] or [14, Lemma 5.9].

Lemma 3.6 (Symmetrization). Let q ∈ [1, ∞), M ∈ N, (rj)Mj=1 be a Rademacher family 

on a complete probability space (Ω̃, Ã, P̃ ), and let η1, . . . , ηM ∈ Lq(Ω̃; F ) be centered 
random variables, i.e., Ẽ[ηj ] = 0 for 1 ≤ j ≤ M , taking values in a real Banach space 
(F, ‖ · ‖F ) such that η1, . . . , ηM , r1, . . . , rM are independent. Then,

∥∥∥∥ M∑
j=1

ηj

∥∥∥∥
Lq(Ω̃;F )

≤ 2
∥∥∥∥ M∑
j=1

rjηj

∥∥∥∥
Lq(Ω̃;F )

.

Definition 3.7 (Kahane–Khintchine constants). Assume that p, q ∈ [1, ∞). The (q, p)
Kahane–Khintchine constant Kq,p is the smallest constant K ∈ (0, ∞) such that for 
any Rademacher family (rj)j∈N on a complete probability space (Ω̃, Ã, P̃ ), for any real 
Banach space (F, ‖ · ‖F ), for all n ∈ N, and every x1, . . . , xn ∈ F , one has that
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∥∥∥∥ n∑
j=1

rjxj

∥∥∥∥
Lq(Ω̃;F )

≤ K

∥∥∥∥ n∑
j=1

rjxj

∥∥∥∥
Lp(Ω̃;F )

. (3.9)

Remark 3.8. For the case q ≤ p, Hölder’s inequality shows that Kq,p = 1. Finiteness of 
the constant Kq,p in the non-trivial case q > p was derived by Kahane [39]; it implies 
that, for Rademacher sums, all Lq-norms with q ∈ [1, ∞) are equivalent.

Remark 3.9. By invoking an argument based on the central limit theorem (see [47, 
p. 103]) the Kahane–Khintchine inequality for Rademacher sums (3.9) implies a cor-
responding result for Gaussian averages: For all p, q ∈ [1, ∞), for any orthogaussian 
family (gj)j∈N on a complete probability space (Ω̃, Ã, P̃ ), for any real Banach space 
(F, ‖ · ‖F ), for all n ∈ N, and every x1, . . . , xn ∈ F , we have that

∥∥∥∥ n∑
j=1

gjxj

∥∥∥∥
Lq(Ω̃;F )

≤ Kq,p

∥∥∥∥ n∑
j=1

gjxj

∥∥∥∥
Lp(Ω̃;F )

. (3.10)

Definition 3.10 (Type p constant). A real Banach space (F, ‖ · ‖F ) is said to be of 
(Rademacher) type p ∈ [1, 2] if there exists a constant τ ∈ (0, ∞) such that for any 
Rademacher family (rj)j∈N on a complete probability space (Ω̃, Ã, P̃ ) (with expectation 
operator Ẽ), for every n ∈ N, and all vectors x1, . . . , xn ∈ F ,

∥∥∥∥ n∑
j=1

rjxj

∥∥∥∥
Lp(Ω̃;F )

=
(
Ẽ

[∥∥∥∥ n∑
j=1

rjxj

∥∥∥∥p
F

])1/p

≤ τ

(
n∑

j=1
‖xj‖pF

)1/p

. (3.11)

In this case, the smallest constant τ ∈ (0, ∞) in (3.11) is called the type p constant of F
and will be denoted by τp(F ).

Remark 3.11. The definition of the type of a Banach space (F, ‖ · ‖F ) is often comple-
mented with the notion of its cotype: F has cotype q ∈ [2, ∞] if there exists a constant 
c ∈ (0, ∞) such that for any Rademacher family (rj)j∈N on a complete probability space 
(Ω̃, Ã, P̃ ), for every n ∈ N, and all vectors x1, . . . , xn ∈ F ,

(
n∑

j=1
‖xj‖qF

)1/q

≤ c

∥∥∥∥ n∑
j=1

rjxj

∥∥∥∥
Lq(Ω̃;F )

if q ∈ [2,∞),

sup
1≤j≤n

‖xj‖F ≤ c

∥∥∥∥ n∑
j=1

rjxj

∥∥∥∥
L1(Ω̃;F )

if q = ∞.

Remark 3.12. Every Banach space has type 1 and cotype ∞ by the triangle inequal-
ity and Lévy’s inequality (see e.g. [47, Proposition 2.3]), respectively. Conversely, by 
the (classical) Khintchine inequalities (see e.g. [47, Lemma 4.1]) there exist constants 
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Aq, Bq ∈ (0, ∞) depending only on q ∈ [1, ∞) such that, for any Rademacher family 
(rj)j∈N on (Ω̃, Ã, P̃ ) and any finite sequence (aj)nj=1 of real numbers,

Aq

(
n∑

j=1
a2
j

)1/2

≤
(
Ẽ

[∣∣∣∣ n∑
j=1

rjaj

∣∣∣∣q
])1/q

=
∥∥∥∥ n∑
j=1

rjaj

∥∥∥∥
Lq(Ω̃;R)

≤ Bq

(
n∑

j=1
a2
j

)1/2

(3.12)

which implies that the type cannot be larger than 2 and the cotype cannot be smaller 
than 2. Kwapień [45] showed that a Banach space has type 2 and cotype 2 if and only if 
it is isomorphic to a Hilbert space.

Example 3.13. Let (H, ( · , · )H) be a real separable Hilbert space. In this case, the Hilbert 
tensor product space ⊗2

w2
H (see Appendix A for the definition) is again a Hilbert space 

and, consequently, has type p = 2. However, none of the tensor product spaces ⊗2
πH, 

⊗2,s
πs

H, ⊗2
εH or ⊗2,s

εs H has a non-trivial type p > 1.
This can be seen by the following counterexample: Let (ej)j∈N be an orthonormal 

basis for H. Then, for all p ∈ [1, ∞) and every n ∈ N, we have

(
n∑

j=1
‖ej ⊗ ej‖pπ

)1/p

=
(

n∑
j=1

‖ej ⊗ ej‖pε

)1/p

=
(

n∑
j=1

‖ej‖2p
H

)1/p

= n
1/p.

Moreover, the calculations in Appendix A (see the identities (A.2) and (A.3) of 
Lemma A.1) imply that for any Rademacher family (rj)j∈N on a complete probabil-
ity space (Ω̃, Ã, P̃ ), for all p ∈ [1, ∞) and for every n ∈ N,

∥∥∥∥ n∑
j=1

rj ej ⊗ ej

∥∥∥∥
Lp(Ω̃;⊗2

πH)
= n and

∥∥∥∥ n∑
j=1

rj ej ⊗ ej

∥∥∥∥
Lp(Ω̃;⊗2

εH)
= 1,

and the same statements hold when replacing ⊗2
πH by the symmetric projective tensor 

product space ⊗2,s
πs

H and ⊗2
εH by the symmetric injective tensor product space ⊗2,s

εs H, 
respectively. This shows that (i) neither ⊗2

πH nor ⊗2,s
πs

H have a non-trivial type p > 1, 
and (ii) neither ⊗2

εH nor ⊗2,s
εs H have a non-trivial cotype q < ∞. Thus, ⊗2

εH and ⊗2,s
εs H

do not have a non-trivial type either, cf. [36, Theorem 7.1.14].

In the next subsections we will see that the type p ∈ [1, 2] of a Banach space E

determines the rate of convergence when approximating statistical moments of E-valued 
random variables by means of Monte Carlo methods and, moreover, that this convergence 
rate does not depend on the order k of the moment. However, as the above example 
illustrates, to derive this finding, it is not possible to argue by transferring the type of a 
Banach space to its k-fold tensor product.
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3.2. Standard and single-level Monte Carlo estimation

The next proposition is the key result for proving convergence of Monte Carlo meth-
ods for means, i.e., statistical moments of order k = 1. It can be found, e.g., in [47, 
Proposition 9.11] for the case q = p and in this generality in [14, Proposition 5.10].

Proposition 3.14. Assume that (E, ‖ · ‖E) is of Rademacher type p ∈ [1, 2]. Let q ∈ [p, ∞), 
M ∈ N and η1, . . . , ηM ∈ Lq(Ω; E) be independent E-valued random variables with 
vanishing mean, E[ηj ] = 0 for all 1 ≤ j ≤ M . Then,

∥∥∥∥ M∑
j=1

ηj

∥∥∥∥
Lq(Ω;E)

≤ 2Kq,pτp(E)
(

M∑
j=1

‖ηj‖pLq(Ω;E)

)1/p

.

Corollary 3.15. Assume that (E, ‖ · ‖E) is of Rademacher type p ∈ [1, 2], and let 
η ∈ L1(Ω;E). In addition, let q ∈ [p, ∞), M ∈ N and ξ1, . . . , ξM ∈ Lq(Ω; E) be in-
dependent and identically distributed E-valued random variables. Then,∥∥∥∥E[η] − 1

M

M∑
j=1

ξj

∥∥∥∥
Lq(Ω;E)

≤
∥∥E[η − ξ1]

∥∥
E

+ 2Kq,pτp(E)M−
(
1− 1

p

)∥∥ξ1 − E[ξ1]
∥∥
Lq(Ω;E).

Proof. By applying the triangle inequality on Lq(Ω; E) and Proposition 3.14 (noting 
that ξj − E[ξ1], 1 ≤ j ≤ M , are independent and centered), we find that

∥∥∥∥E[η] − 1
M

M∑
j=1

ξj

∥∥∥∥
Lq(Ω;E)

≤
∥∥E[η − ξ1]

∥∥
E

+ 1
M

∥∥∥∥ M∑
j=1

(
ξj − E[ξ1]

)∥∥∥∥
Lq(Ω;E)

≤
∥∥E[η − ξ1]

∥∥
E

+ 2Kq,pτp(E)M−1

(
M∑
j=1

∥∥ξj − E[ξ1]
∥∥p
Lq(Ω;E)

)1/p

,

and the claim follows by the identical distribution of ξ1, . . . , ξM . �
The remainder of this subsection is devoted to generalizing the approximation result 

of Monte Carlo estimation for the first statistical moment in Corollary 3.15 to (injective) 
statistical moments Mk

ε [η] of an arbitrary order k ∈ N. Example 3.13 shows that it is 
in general not possible to argue via the type of the tensor product space. We therefore 
prove the convergence rates of Monte Carlo methods directly by means of the auxiliary 
results derived in Subsection 3.1.

Theorem 3.16. Assume that (E, ‖ · ‖E) is of Rademacher type p ∈ [1, 2]. Let q ∈ [p, ∞), 
k, M ∈ N and ξ1, . . . , ξM ∈ Lkq(Ω; E) be independent and identically distributed E-valued 
random variables. Then,



16 K. Kirchner, C. Schwab / Journal of Functional Analysis 286 (2024) 110218
∥∥∥∥Mk
ε [ξ1] −

1
M

M∑
j=1

⊗kξj

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
≤ C SL

q,p,k M
−
(
1− 1

p

)
‖ξ1‖kLkq(Ω;E). (3.13)

Here, we recall the constant Bq ∈ (0, ∞) from the classical Khintchine inequalities (3.12), 
as well as the Kahane–Khintchine constant Kq,p and type p constant τp(E) from Defini-
tions 3.7 and 3.10, respectively, and set

C SL
q,p,k := 2(2kKq,pτp(E) + Bq). (3.14)

Proof. Assume that (rj)Mj=1 is a Rademacher family on a complete probability space 

(Ω̃, Ã, P̃ ) and, for j ∈ {1, . . . , M}, let ξj : Ω × Ω̃ → E and rj : Ω × Ω̃ → {−1, 1} denote 

the mappings that satisfy ξj(ω, ̃ω) = ξj(ω) and rj(ω, ̃ω) = rj(ω̃) for all (ω, ̃ω) ∈ Ω × Ω̃. 
Notice that on (Ω × Ω̃, A ⊗ Ã, P ⊗ P̃ ) the random variables (rj)Mj=1 form a Rademacher 
family and ξ1, . . . , ξM , r1, . . . , rM are independent. Moreover, ξj ∈ Lkq(Ω; E) implies 
that Mk

ε [ξ1] ∈ ⊗k,s
εs E and ⊗kξj ∈ Lq(Ω × Ω̃; ⊗k,s

εs E) are well-defined. We further note 
that by the identical distribution of ξ1, . . . , ξM ,

(E⊗ Ẽ)
[
⊗kξj −Mk

ε [ξ1]
]

= E
[
⊗kξj −Mk

ε [ξ1]
]

= E
[
⊗kξj

]
−Mk

ε [ξj ] = 0.

This shows that the independent random variables ⊗kξj − Mk
ε [ξ1] : Ω × Ω̃ → ⊗k,s

εs E, 
1 ≤ j ≤ M , are centered. Therefore, we can use Lemma 3.6 on the probability space 
(Ω × Ω̃, A ⊗ Ã, P ⊗ P̃ ) and for the Banach space ⊗k,s

εs E to deduce that

∥∥∥∥ M∑
j=1

(
⊗kξj −Mk

ε [ξ1]
)∥∥∥∥

Lq(Ω×Ω̃;⊗k,s
εs E)

≤ 2
∥∥∥∥ M∑
j=1

rj
(
⊗kξj −Mk

ε [ξ1]
)∥∥∥∥

Lq(Ω×Ω̃;⊗k,s
εs E)

.

By the triangle inequality on Lq(Ω × Ω̃; ⊗k,s
εs E) we then obtain that

∥∥∥∥ M∑
j=1

(
⊗kξj −Mk

ε [ξ1]
)∥∥∥∥

Lq(Ω;⊗k,s
εs E)

=
∥∥∥∥ M∑
j=1

(
⊗kξj −Mk

ε [ξ1]
)∥∥∥∥

Lq(Ω×Ω̃;⊗k,s
εs E)

≤ 2
∥∥∥∥ M∑
j=1

rj
(
⊗kξj −Mk

ε [ξ1]
)∥∥∥∥

Lq(Ω×Ω̃;⊗k,s
εs E)

≤ 2
∥∥∥∥ M∑
j=1

rj ⊗kξj

∥∥∥∥
Lq(Ω×Ω̃;⊗k,s

εs E)
+ 2

∥∥∥∥ M∑
j=1

rjM
k
ε [ξ1]

∥∥∥∥
Lq(Ω×Ω̃;⊗k,s

εs E)

=: 2(A) + 2(B).

(3.15)

To bound term (A) from above, we apply Fubini’s theorem and the Kahane–
Khintchine inequality (3.9) for the Banach space F := ⊗k,s

ε E and obtain that

s
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(A) =
(∫

Ω

∥∥∥∥ M∑
j=1

rj( · ) ⊗kξj(ω)
∥∥∥∥q
Lq(Ω̃;⊗k,s

εs E)
dP (ω)

)1/q

≤ Kq,p

(∫
Ω

∥∥∥∥ M∑
j=1

rj( · ) ⊗kξj(ω)
∥∥∥∥q
Lp(Ω̃;⊗k,s

εs E)
dP (ω)

)1/q

.

Upon inserting the definition (2.3) of the symmetric injective tensor norm, we use Propo-
sition 3.4(i) for the convex increasing function G(t) := tp, t ≥ 0, and the fact that the 
Banach space E has type p ∈ [1, 2] with type constant τp(E) ∈ (0, ∞), to conclude that

(A) ≤ Kq,p

(∫
Ω

(
Ẽ

[(
sup

f∈BE′

∣∣∣∣ M∑
j=1

rj( · )f
(
ξj(ω)

)k∣∣∣∣)p
])q/p

dP (ω)
)1/q

≤ 2kKq,p

(∫
Ω

(
Ẽ

[∥∥∥∥ M∑
j=1

rj( · )‖ξj(ω)‖k−1
E ξj(ω)

∥∥∥∥p
E

])q/p

dP (ω)
)1/q

≤ 2kKq,pτp(E)
(∫

Ω

(
M∑
j=1

‖ξj(ω)‖kpE

)q/p

dP (ω)
)1/q

= 2kKq,pτp(E)
∥∥∥∥ M∑
j=1

‖ξj‖kpE
∥∥∥∥1/p

Lq/p(Ω;R)
.

Since q ≥ p, we can use the triangle inequality on Lq/p(Ω; R), yielding

(A) ≤ 2kKq,pτp(E)
(

M∑
j=1

‖ξj‖kpLkq(Ω;E)

)1/p

= 2kKq,pτp(E)M 1/p‖ξ1‖kLkq(Ω;E), (3.16)

where we also used the identical distribution of ξ1, . . . , ξM .
For term (B) we use the estimate

∥∥Mk
ε [ξ1]

∥∥
εs

=
∥∥E[⊗kξ1

]∥∥
εs

≤ E
[
‖⊗kξ1‖εs

]
= E

[
‖ξ1‖kE

]
≤ ‖ξ1‖kLkq(Ω;E),

as well as the classical Khintchine inequalities (3.12) so that

∥∥∥∥ M∑
j=1

rj

∥∥∥∥
Lq(Ω̃;R)

≤ Bq M
1/2 ≤ Bq M

1/p,

and conclude that
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(B) =
∥∥∥∥Mk

ε [ξ1]
M∑
j=1

rj

∥∥∥∥
Lq(Ω×Ω̃;⊗k,s

εs E)
=
(∫

Ω̃

∥∥∥∥Mk
ε [ξ1]

M∑
j=1

rj(ω̃)
∥∥∥∥q
εs

dP̃ (ω̃)
)1/q

=
∥∥Mk

ε [ξ1]
∥∥
εs

(∫
Ω̃

∣∣∣∣ M∑
j=1

rj(ω̃)
∣∣∣∣q dP̃ (ω̃)

)1/q

≤ Bq M
1/p‖ξ1‖kLkq(Ω;E).

(3.17)

Finally, combining (3.15), (3.16) and (3.17) shows that

∥∥∥∥Mk
ε [ξ1] −

1
M

M∑
j=1

⊗kξj

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
= M−1

∥∥∥∥ M∑
j=1

(
⊗kξj −Mk

ε [ξ1]
)∥∥∥∥

Lq(Ω;⊗k,s
εs E)

≤ 2(2kKq,pτp(E) + Bq)M
−
(
1− 1

p

)
‖ξ1‖kLkq(Ω;E),

which along with the definition (3.14) of C SL
q,p,k completes the proof of (3.13). �

The estimate (3.16) of term (A) in the proof of Theorem 3.16 reveals the following 
analogue of Proposition 3.14 for independent (not necessarily identically distributed) 
random variables η1, . . . , ηM ∈ Lkq(Ω; E) with vanishing kth moment.

Corollary 3.17. Assume that (E, ‖ · ‖E) is of Rademacher type p ∈ [1, 2]. Let q ∈ [p, ∞), 
k, M ∈ N and η1, . . . , ηM ∈ Lkq(Ω; E) be independent E-valued random variables with 
vanishing kth moment, Mk

ε [ηj ] = 0 for all 1 ≤ j ≤ M . Then,

∥∥∥∥ M∑
j=1

⊗kηj

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
≤ 4kKq,pτp(E)

(
M∑
j=1

‖ηj‖kpLkq(Ω;E)

)1/p

. (3.18)

Remark 3.18. Optimality of the convergence rate 1 − 1
p in (3.13) is ultimately related 

to the question whether it is necessary that the Banach space E has Rademacher type 
p ∈ [1, 2] for (3.18) to hold for all finite sequences η1, . . . , ηM ∈ Lkq(Ω;E) of independent 
E-valued random variables with vanishing kth moment.

For the first moment, k = 1, it is evident that the choice ηj := rjxj in (3.18), 
where (rj)j∈N is a Rademacher family on (Ω, A, P ) and x1, x2, . . . ∈ E, implies that 
the Banach space E has Rademacher type p. However, for higher-order moments, this 
question is more complex due to the injective tensor norm on the left-hand side. For odd 
orders k ∈ N and the space E := 
1 of summable real-valued sequences (which only has 
Rademacher type p = 1), the choice ηj := rjej shows that (3.18) cannot hold for any 
p > 1. Here, (ej)j∈N denote the standard unit vectors in 
1. In addition, the classical 
Khintchine inequalities (3.12) imply that, for any Banach space E, the convergence rate 
in (3.13) cannot be better that 1/2 (one may take, e.g., ξj := gj x, where (gj)j∈N is an 
orthogaussian family on (Ω, A, P ) and x �= 0 is a non-zero vector in E). Sharpness of 
the rate 1 − 1

p in (3.13) and necessity of the Rademacher type p for (3.18) for the case 
p ∈ (1, 2) remains an open question.
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The next lemma complements Theorem 3.16 when deriving convergence rates of single-
level Monte Carlo methods for approximating injective kth moments.

Lemma 3.19. Let k ∈ N and suppose that η, ξ ∈ Lk(Ω; E). Then,

∥∥Mk
ε [η] −Mk

ε [ξ]
∥∥
εs

≤
∥∥Mk

ε [η] −Mk
ε [ξ]

∥∥
ε
≤ ‖η − ξ‖Lk(Ω;E)

k−1∑
i=0

[
‖η‖iLk(Ω;E)‖ξ‖k−i−1

Lk(Ω;E)

]
.

Proof. The first inequality of the assertion is trivial. We next note that also the remaining 
relation is evident in the case k = 1, since∥∥Mk

ε [η] −Mk
ε [ξ]

∥∥
ε

=
∥∥E[η − ξ]

∥∥
E
≤ E

[
‖η − ξ‖E

]
= ‖η − ξ‖Lk(Ω;E) if k = 1.

We now assume that k ≥ 2 and observe that

⊗kη −⊗kξ =
k−1∑
i=0

[(
⊗i+1η

)
⊗
(
⊗k−(i+1)ξ

)
−
(
⊗iη

)
⊗
(
⊗k−iξ

)]

=
k−1∑
i=0

[(
⊗iη

)
⊗ (η − ξ) ⊗

(
⊗k−(i+1)ξ

)]
.

Therefore, we may estimate as follows,∥∥Mk
ε [η] −Mk

ε [ξ]
∥∥
ε

=
∥∥E[⊗kη −⊗kξ

]∥∥
ε
≤ E

[∥∥⊗kη −⊗kξ
∥∥
ε

]
≤ E

[
k−1∑
i=0

∥∥(⊗iη
)
⊗ (η − ξ) ⊗

(
⊗k−i−1ξ

)∥∥
ε

]
=

k−1∑
i=0

E
[
‖η‖iE‖η − ξ‖E‖ξ‖k−i−1

E

]
.

Combined with the Hölder inequality this completes the proof, since

E
[
‖η − ξ‖E‖ξ‖k−1

E

]
≤
(
E
[
‖η − ξ‖kE

]) 1
k
(
E
[
‖ξ‖kE

]) k−1
k ,

E
[
‖η‖k−1

E ‖η − ξ‖E
]
≤
(
E
[
‖η − ξ‖kE

]) 1
k
(
E
[
‖η‖kE

]) k−1
k ,

and, whenever k ≥ 3, we obtain for all i ∈ {1, . . . , k − 2}

E
[
‖η‖iE‖η − ξ‖E‖ξ‖k−i−1

E

]
≤
(
E
[
‖η‖kE

]) i
k
(
E
[
‖η − ξ‖kE

]) 1
k
(
E
[
‖ξ‖kE

]) k−i−1
k

by a triple Hölder inequality with 
(
k
i

)−1 + k−1 +
(

k
k−i−1

)−1 = 1. �
We are now ready to state the main result of this subsection: an abstract convergence 

rate bound in Lq(Ω; ⊗k,s
εs E) for single-level Monte Carlo estimation of the injective kth 

moment Mk
ε [η], assuming at our disposal M independent samples of an approximation 

ξ1 ∈ Lkq(Ω; E) to η ∈ Lk(Ω; E).
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Corollary 3.20. Assume that (E, ‖ · ‖E) is of Rademacher type p ∈ [1, 2]. Let q ∈ [p, ∞), 
k, M ∈ N and ξ1, . . . , ξM ∈ Lkq(Ω; E) be independent and identically distributed E-valued 
random variables. Then, for every U ∈ ⊗k,s

εs E, we have

∥∥∥∥U − 1
M

M∑
j=1

⊗kξj

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
≤
∥∥U −Mk

ε [ξ1]
∥∥
εs

+ C SL
q,p,k M

−
(
1− 1

p

)
‖ξ1‖kLkq(Ω;E),

where the constant C SL
q,p,k is defined as in (3.14).

In particular, for all η ∈ Lk(Ω; E), we have

∥∥∥∥Mk
ε [η] −

1
M

M∑
j=1

⊗kξj

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
≤ ‖η − ξ1‖Lk(Ω;E)

k−1∑
i=0

[
‖η‖iLk(Ω;E)‖ξ1‖k−i−1

Lk(Ω;E)

]
+ C SL

q,p,k M
−
(
1− 1

p

)
‖ξ1‖kLkq(Ω;E).

Proof. By the triangle inequality on Lq(Ω; ⊗k,s
εs E) we obtain, for every U ∈ ⊗k,s

εs E,

∥∥∥∥U − 1
M

M∑
j=1

⊗kξj

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
≤
∥∥U −Mk

ε [ξ1]
∥∥
εs

+
∥∥∥∥Mk

ε [ξ1] −
1
M

M∑
j=1

⊗kξj

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
,

and the first claim follows by applying the estimate (3.13) of Theorem 3.16. Subsequently, 
we derive the second assertion by combining this result with Lemma 3.19 which we use 
to bound the difference of the kth moments 

∥∥Mk
ε [η] −Mk

ε [ξ1]
∥∥
εs

. �
We close this subsection with a counterexample which shows that the convergence 

results for the standard and single-level Monte Carlo estimators in Theorem 3.16 and 
Corollary 3.20 can, in general, not hold when measuring the error in the (symmetric or 
full) projective tensor norm. More specifically, we discuss this for second-order moments 
of Hilbert space valued random variables, i.e., the random variables take values in a 
Banach space of type p = 2.

Example 3.21. Let (H, ( · , · )H) be a real separable Hilbert space, and let (ej)j∈N be an 
orthonormal basis for H. For n ∈ N, consider the H-valued random variable ξn : Ω → H

on (Ω, A, P ), whose (discrete uniform) distribution is defined by

∀i ∈ {1, . . . , n} : P ({ω ∈ Ω : ξn(ω) = ei}) = n−1.

Then, for all n ∈ N, both the projective and injective second moments of ξn exist,



K. Kirchner, C. Schwab / Journal of Functional Analysis 286 (2024) 110218 21
M2
π[ξn] = M2

ε[ξn] = E
[
ξn ⊗ ξn

]
= 1

n

n∑
i=1

ei ⊗ ei,
∥∥M2

π[ξn]
∥∥
π

=
∥∥M2

π[ξn]
∥∥
πs

= 1,

see (A.2) in Lemma A.1 of Appendix A for the norm identities.
In addition, for all q ∈ [1, ∞) and every n ∈ N, we have that

‖ξn‖qLq(Ω;H) = E
[
‖ξn‖qH

]
= 1

n

n∑
i=1

‖ei‖qH = 1.

We let q ∈ [1, ∞), ξn,1, . . . , ξn,M be M ∈ N independent copies of ξn and estimate

err(n)
q,π :=

∥∥∥∥M2
π[ξn] − 1

M

M∑
j=1

⊗2ξn,j

∥∥∥∥q
Lq(Ω;⊗2

πH)
= E

[∥∥∥∥M2
π[ξn] − 1

M

M∑
j=1

⊗2ξn,j

∥∥∥∥q
π

]

=
n∑

ν1=1
· · ·

n∑
νM=1

1
nM

∥∥∥∥ 1
n

n∑
i=1

(ei ⊗ ei) −
1
M

M∑
j=1

(
eνj

⊗ eνj

)∥∥∥∥q
π

≥
∑

1≤ν1,...,νM≤n
pairwise distinct

1
nM

∥∥∥∥ 1
n

n∑
i=1

(ei ⊗ ei) −
1
M

M∑
j=1

(
eνj

⊗ eνj

)∥∥∥∥q
π

.

Thus, assuming that n ≥ M , again by (A.2) in Lemma A.1 we obtain that

err(n)
q,π ≥

∑
1≤ν1,...,νM≤n
pairwise distinct

n−M
[
M
( 1
M − 1

n

)
+ (n−M) 1

n

]q
= 2q

(
1 − M

n

)q
n−M [n · · · (n−M + 1)] ≥ 2q

(
1 − M

n

)q+M
.

Given q ∈ [1, ∞) and M ∈ N, we choose an integer n� = n�(q, M) ∈ N such that

n� ≥ M
(
1 − 2−q/(q+M)

)−1 =⇒
(
1 − M

n�

)q+M ≥ 2−q.

This proves that, for all q ∈ [1, ∞) and every M ∈ N, there exists n� = n�(q,M) ∈ N

such that

∥∥∥∥M2
π[ξn�

] − 1
M

M∑
j=1

⊗2ξn�,j

∥∥∥∥
Lq(Ω;⊗2,s

πs H)
≥
∥∥∥∥M2

π[ξn�
] − 1

M

M∑
j=1

⊗2ξn�,j

∥∥∥∥
Lq(Ω;⊗2

πH)
≥ 1.

Since ‖ξn�
‖Lq(Ω;H) = 1 is also true for all q ∈ [1, ∞) and since H has type p = 2, this 

shows that an analogue of (3.13) cannot hold with respect to the (full or symmetric) 
projective tensor norm.
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3.3. Multilevel Monte Carlo estimation

Assuming that (X�)L�=1 is a family of E-valued random variables corresponding to 
L ∈ N different refinement levels of underlying discretization parameters, translating 
the idea of multilevel Monte Carlo (MLMC) estimation, as formulated e.g. in [12, p. 5]
for means of Hilbert space valued random variables, to higher-order moments of Ba-
nach space valued random variables results in exploiting the following telescopic sum 
(here: X0 := 0 ∈ E)

E
[
⊗kXL

]
= Mk

ε [XL] =
L∑

�=1

(
Mk

ε [X�] −Mk
ε [X�−1]

)
=

L∑
�=1

E
[
⊗kX� −⊗kX�−1

]
,

and estimating E[⊗kX�−⊗kX�−1] for each 1 ≤ 
 ≤ L via Monte Carlo sampling instead 
of E[⊗kXL]. As we will see in Theorem 3.25 and Remark 3.27, this approach considerably 
reduces the computational cost.

Evidently, the corresponding error analysis requires a Monte Carlo convergence result 
for estimating differences of injective kth moments, i.e., for expected values of the form 
E[⊗kη−⊗kξ] = Mk

ε [η] −Mk
ε [ξ], via standard Monte Carlo methods. This auxiliary result 

is derived in Proposition 3.23 by means of the next lemma, Lemma 3.22, which acts as 
the analogue of the Rademacher type estimate (3.11) for Rademacher sums of differences 
⊗kxj −⊗kyj , 1 ≤ j ≤ M .

Lemma 3.22. Let (rj)Mj=1 be a Rademacher family on a complete probability space 

(Ω̃, Ã, P̃ ) with expectation Ẽ. Assume that (E, ‖ · ‖E) has Rademacher type p ∈ [1, 2], 
and let q ∈ [p,∞), k, M ∈ N and x1, . . . , xM , y1, . . . , yM ∈ E. Then,

∥∥∥∥ M∑
j=1

rj
(
⊗kxj −⊗kyj

)∥∥∥∥
Lq(Ω̃;⊗k,s

εs E)
≤ C diff

q,p,k

k∑
i=1

(
k

i

)[ M∑
j=1

‖xj − yj‖ipE ‖yj‖(k−i)p
E

]1/p

.

(3.19)
Here, 

(
k
i

)
:= k!

i!(k−i)! is the binomial coefficient and the constant C diff
q,p,k is given by

C diff
q,p,k := 16k

√
πKq,pτp(E)Kq,2, (3.20)

with the Kahane–Khintchine and type p constants from Definitions 3.7 and 3.10.

Proof. For the proof of (3.19), we assume that (gj)Mj=1, (g̃j)Mj=1 are two independent 
orthogaussian families on (Ω̃, Ã, P̃ ). We first note that by [47, Lemma 4.5 and (4.8)], 
applied for the convex function t �→ tq and the Banach space ⊗k,s

εs E, and by the defini-
tion (2.3) of the symmetric injective tensor norm we have that
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∥∥∥∥ M∑
j=1

rj
(
⊗kxj −⊗kyj

)∥∥∥∥
Lq(Ω̃;⊗k,s

εs E)
≤
√

π

2

∥∥∥∥ M∑
j=1

gj
(
⊗kxj −⊗kyj

)∥∥∥∥
Lq(Ω̃;⊗k,s

εs E)

=
√

π

2

∥∥∥∥∥ sup
f∈BE′

∣∣∣∣ M∑
j=1

gj
(
f(xj)k − f(yj)k

)∣∣∣∣
∥∥∥∥∥
Lq(Ω̃;R)

=
√

π

2

∥∥∥∥∥ sup
f∈BE′

∣∣∣∣ M∑
j=1

gj

k∑
i=1

(
k

i

)
f(xj − yj)if(yj)k−i

∣∣∣∣
∥∥∥∥∥
Lq(Ω̃;R)

≤
k∑

i=1

√
π

2

(
k

i

)∥∥∥∥∥ sup
f∈BE′

∣∣∣∣ M∑
j=1

gjf(xj − yj)if(yj)k−i

∣∣∣∣
∥∥∥∥∥
Lq(Ω̃;R)

.

(3.21)

Here, we also used the binomial expansion for f(xj)k = [f(xj − yj) + f(yj)]k and the 
triangle inequality on Lq(Ω̃; R). We now claim that, for every i ∈ {1, . . . , k − 1},∥∥∥∥∥ sup

f∈BE′

∣∣∣∣ M∑
j=1

gjf(xj − yj)if(yj)k−i

∣∣∣∣
∥∥∥∥∥
Lq(Ω̃;R)

≤ 2
√

2

∥∥∥∥∥ sup
f∈BE′

∣∣∣∣ M∑
j=1

(
gjf(xj − yj)i‖yj‖k−i

E + g̃j‖xj − yj‖iEf(yj)k−i
)∣∣∣∣
∥∥∥∥∥
Lq(Ω̃;R)

.

(3.22)

To establish (3.22), we set δj := xj − yj ∈ E for all 1 ≤ j ≤ M , and consider for 
a fixed i ∈ {1, . . . , k − 1} the following two real-valued centered Gaussian processes 
Gi,1, Gi,2 : BE′× Ω̃ → R, which are indexed by f ∈ BE′ ,

Gi,1(f) :=
M∑
j=1

gjf(δj)if(yj)k−i, (3.23)

Gi,2(f) :=
√

2
M∑
j=1

(
gjf(δj)i‖yj‖k−i

E + g̃j‖δj‖iEf(yj)k−i
)
. (3.24)

For all i ∈ {1, . . . , k − 1} and every f, h ∈ BE′ , we then obtain by independence of the 
standard Gaussian random variables g1, . . . , gM , ̃g1, . . . , ̃gM the following estimate,

Ẽ
[
|Gi,1(f) − Gi,1(h)|2

]
=

M∑
j=1

(
f(δj)if(yj)k−i − h(δj)ih(yj)k−i

)2
=

M∑
j=1

([
f(δj)i − h(δj)i

]
f(yj)k−i + h(δj)i

[
f(yj)k−i − h(yj)k−i

])2
≤ 2

M∑([
f(δj)i − h(δj)i

]2
f(yj)2(k−i) + h(δj)2i

[
f(yj)k−i − h(yj)k−i

]2)

j=1
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≤ 2
M∑
j=1

([
f(δj)i − h(δj)i

]2‖yj‖2(k−i)
E + ‖δj‖2i

E

[
f(yj)k−i − h(yj)k−i

]2)
= Ẽ

[
|Gi,2(f) − Gi,2(h)|2

]
.

Furthermore, for every i ∈ {1, . . . , k − 1}, we have

Gi,1(f) =
M∑
j=1

gjΨi

(
f(δj), f(yj)

)
, f ∈ BE′.

Here, the function (t1, t2) �→ Ψi(t1, t2) := ti1 t
k−i
2 is continuous on R2 and satisfies 

Ψi(0, 0) = 0 for every i ∈ {1, . . . , k − 1}.
We thus may apply the comparison result derived in Lemma B.2 (see Appendix B) 

for every i ∈ {1, . . . , k − 1}, which shows that, for all q ∈ [1, ∞),

Ẽ
[(

supf∈BE′ |Gi,1(f)|
)q] ≤ 2q Ẽ

[(
supf∈BE′ |Gi,2(f)|

)q]
.

Taking the qth root on both sides of this inequality and inserting the definitions of Gi,1
and Gi,2 from (3.23)–(3.24) completes the proof of (3.22).

Next, combining (3.21) with (3.22) and the triangle inequality on Lq(Ω̃; R) yields

∥∥∥∥ M∑
j=1

rj
(
⊗kxj −⊗kyj

)∥∥∥∥
Lq(Ω̃;⊗k,s

εs E)
≤

k−1∑
i=1

C̃k,i

∥∥∥∥∥ sup
f∈BE′

∣∣∣∣ M∑
j=1

gjf(δj)i‖yj‖k−i
E

∣∣∣∣
∥∥∥∥∥
Lq(Ω̃;R)

+
√

π

2

∥∥∥∥∥ sup
f∈BE′

∣∣∣∣ M∑
j=1

gjf(δj)k
∣∣∣∣
∥∥∥∥∥
Lq(Ω̃;R)

+
k−1∑
i=1

C̃k,i

∥∥∥∥∥ sup
f∈BE′

∣∣∣∣ M∑
j=1

g̃j‖δj‖iEf(yj)k−i

∣∣∣∣
∥∥∥∥∥
Lq(Ω̃;R)

,

where we set C̃k,i := 2
√
π
(
k
i

)
. By noting that 

√
π/

√
2 ≤ C̃k,k and estimating the 

Lq(Ω̃; R)-norms on the right-hand side for all i ∈ {1, . . . , k} using Proposition 3.4(i), 
with kj = i and the vectors ‖yj‖

k−i
i

E δj (respectively, for every i ∈ {1, . . . , k − 1} with 

kj = k − i and ‖δj‖
i

k−i

E yj) for all 1 ≤ j ≤ M , we find that

∥∥∥∥ M∑
j=1

rj
(
⊗kxj −⊗kyj

)∥∥∥∥
Lq(Ω̃;⊗k,s

εs E)
≤

k∑
i=1

C̃k,i 4i
∥∥∥∥ M∑
j=1

gj‖δj‖i−1
E ‖yj‖k−i

E δj

∥∥∥∥
Lq(Ω̃;E)

+
k−1∑
i=1

C̃k,i 4(k − i)
∥∥∥∥ M∑
j=1

g̃j‖δj‖iE‖yj‖k−i−1
E yj

∥∥∥∥
Lq(Ω̃;E)

.

Finally, since q ∈ [p, ∞) is assumed, we may use Proposition 3.14 for the independent, 
centered E-valued random variables

ηj := gj‖δj‖i−1
E ‖yj‖k−i

E δj resp. η̃j := g̃j‖δj‖iE‖yj‖k−i−1
E yj , 1 ≤ j ≤ M,
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to conclude that (recall the definitions C̃k,i = 2
√
π
(
k
i

)
and δj = xj − yj)

∥∥∥∥∥
M∑
j=1

rj
(
⊗kxj −⊗kyj

)∥∥∥∥
Lq(Ω̃;⊗k,s

εs E)

≤
k∑

i=1

⎡⎣C̃k,i4k 2Kq,pτp(E)
[

M∑
j=1

‖g1‖p
Lq(Ω̃;R)

‖xj − yj‖ipE ‖yj‖(k−i)p
E

]1/p
⎤⎦

= 16k
√
πKq,pτp(E) ‖g1‖Lq(Ω̃;R)

k∑
i=1

(
k

i

)[ M∑
j=1

‖xj − yj‖ipE ‖yj‖(k−i)p
E

]1/p

,

which completes the proof of (3.19), since ‖g1‖Lq(Ω̃;R) ≤ Kq,2‖g1‖L2(Ω̃;R) = Kq,2 follows 
from (3.10), and C diff

q,p,k = 16k
√
πKq,pτp(E)Kq,2 by (3.20). �

Proposition 3.23. Assume that (E, ‖ · ‖E) is of Rademacher type p ∈ [1, 2]. Let q ∈ [p, ∞), 
k, M ∈ N and η1, . . . , ηM , ξ1, . . . , ξM ∈ Lkq(Ω; E) be E-valued random variables such that 
the tuples (η1, ξ1), . . . , (ηM , ξM ) are independent and identically distributed. Then,

∥∥∥∥Mk
ε [η1] −Mk

ε [ξ1] −
1
M

M∑
j=1

(
⊗kηj −⊗kξj

)∥∥∥∥
Lq(Ω;⊗k,s

εs E)

≤ 2C diff
q,p,k M

−
(
1− 1

p

) k∑
i=1

[(
k
i

)
‖η1 − ξ1‖iLkq(Ω;E)‖ξ1‖k−i

Lkq(Ω;E)

]

+ 2Bq M
−1/2‖η1 − ξ1‖Lk(Ω;E)

k−1∑
i=0

[
‖η1‖iLk(Ω;E)‖ξ1‖k−i−1

Lk(Ω;E)

]
,

where Bq, C diff
q,p,k ∈ (0, ∞) are defined as in (3.12) and (3.20), respectively.

Proof. We proceed similarly as in the proof of Theorem 3.16. We pick a Rademacher 
family (rj)Mj=1 on a complete probability space (Ω̃, Ã, P̃ ), and define the following random 

variables on the product probability space (Ω ×Ω̃, A ⊗Ã, P⊗P̃ ): For every j ∈ {1, . . . , M}, 
we set

ηj(ω, ω̃) := ηj(ω), ξj(ω, ω̃) := ξj(ω), rj(ω, ω̃) := rj(ω̃) ∀(ω, ω̃) ∈ Ω × Ω̃,

where we note that (rj)Mj=1 is a Rademacher family on (Ω × Ω̃, A ⊗ Ã, P ⊗ P̃ ), and that 
(η1, ξ1), . . . , (ηM , ξM ), r1, . . . , rM are independent. Furthermore, the random variables 
⊗kηj − ⊗kξj −Mk

ε [η1] + Mk
ε [ξ1] are centered for all 1 ≤ j ≤ M so that by Lemma 3.6

and by the triangle inequality on Lq(Ω × Ω̃; ⊗k,s
ε E) we find that

s
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∥∥∥∥ M∑
j=1

(
⊗kηj −⊗kξj −Mk

ε [η1] + Mk
ε [ξ1]

)∥∥∥∥
Lq(Ω;⊗k,s

εs E)

=
∥∥∥∥ M∑
j=1

(
⊗kηj −⊗kξj −Mk

ε [η1] + Mk
ε [ξ1]

)∥∥∥∥
Lq(Ω×Ω̃;⊗k,s

εs E)

≤ 2
∥∥∥∥ M∑
j=1

rj
(
⊗kηj −⊗kξj

)∥∥∥∥
Lq(Ω×Ω̃;⊗k,s

εs E)

+ 2
∥∥∥∥ M∑
j=1

rj
(
Mk

ε [η1] −Mk
ε [ξ1]

)∥∥∥∥
Lq(Ω×Ω̃;⊗k,s

εs E)
=: 2(A) + 2(B).

(3.25)

For term (A) we use Fubini’s theorem as well as Lemma 3.22 to find that

(A) =
∥∥∥∥ M∑
j=1

rj
(
⊗kηj −⊗kξj

)∥∥∥∥
Lq(Ω×Ω̃;⊗k,s

εs E)

=
(∫

Ω

∥∥∥∥ M∑
j=1

rj( · )
(
⊗kηj(ω) −⊗kξj(ω)

)∥∥∥∥q
Lq(Ω̃;⊗k,s

εs E)
dP (ω)

)1/q

≤ C diff
q,p,k

(∫
Ω

∣∣∣∣∣
k∑

i=1

(
k

i

)[ M∑
j=1

‖ηj(ω) − ξj(ω)‖ipE ‖ξj(ω)‖(k−i)p
E

]1/p
∣∣∣∣∣
q

dP (ω)
)1/q

and, hence,

(A) ≤ C diff
q,p,k

∥∥∥∥∥
k∑

i=1

(
k

i

)[ M∑
j=1

‖ηj − ξj‖ipE ‖ξj‖(k−i)p
E

]1/p
∥∥∥∥∥
Lq(Ω;R)

.

Next, we use the triangle inequality on Lq(Ω; R) as well as the fact that q ∈ [p, ∞) so 
that also on Lq/p(Ω; R) we may apply the triangle inequality and conclude

(A) ≤ C diff
q,p,k

k∑
i=1

(
k

i

)∥∥∥∥ M∑
j=1

‖ηj − ξj‖ipE ‖ξj‖(k−i)p
E

∥∥∥∥1/p

Lq/p(Ω;R)

≤ C diff
q,p,k

k∑
i=1

(
k

i

)( M∑
j=1

∥∥∥‖ηj − ξj‖ipE ‖ξj‖(k−i)p
E

∥∥∥
Lq/p(Ω;R)

)1/p

= C diff
q,p,k M

1/p
k∑

i=1

(
k

i

)∥∥∥‖η1 − ξ1‖ipE ‖ξ1‖(k−i)p
E

∥∥∥1/p

Lq/p(Ω;R)
,

where the last step follows from the identical distribution of (η1, ξ1), . . . , (ηM , ξM ). In 
addition, we observe that, for every i ∈ {1, . . . , k − 1}, by Hölder’s inequality
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∥∥∥‖η1 − ξ1‖ipE ‖ξ1‖(k−i)p
E

∥∥∥1/p

Lq/p(Ω;R)
=
(
E
[
‖η1 − ξ1‖iqE‖ξ1‖(k−i)q

E

])1/q

≤
((

E
[
‖η1 − ξ1‖kqE

]) i
k
(
E
[
‖ξ1‖kqE

]) k−i
k

)1/q

= ‖η1 − ξ1‖iLkq(Ω;E)‖ξ1‖k−i
Lkq(Ω;E)

which completes the bound for term (A),

(A) ≤ C diff
q,p,k M

1/p
k∑

i=1

[(
k
i

)
‖η1 − ξ1‖iLkq(Ω;E)‖ξ1‖k−i

Lkq(Ω;E)

]
. (3.26)

For term (B) we obtain by the Khintchine inequalities (3.12) and by Lemma 3.19 the 
following estimate,

(B) =
∥∥∥∥ M∑
j=1

rj

∥∥∥∥
Lq(Ω̃;R)

∥∥Mk
ε [η1] −Mk

ε [ξ1]
∥∥
εs

≤ Bq M
1/2
∥∥Mk

ε [η1] −Mk
ε [ξ1]

∥∥
εs

≤ Bq M
1/2‖η1 − ξ1‖Lk(Ω;E)

k−1∑
i=0

[
‖η1‖iLk(Ω;E)‖ξ1‖k−i−1

Lk(Ω;E)

]
.

(3.27)

The claim now follows by combining (3.25) with the estimates (3.26), (3.27) for the 
terms (A) and (B), upon dividing the resulting inequality by M . �

We are now ready to formulate our convergence result for abstract multilevel Monte 
Carlo methods to estimate higher-order statistical moments of Banach space valued 
random variables.

Theorem 3.24. Let (E, ‖ · ‖E) be of Rademacher type p ∈ [1, 2], q ∈ [p,∞) and 
k, L ∈ N. Suppose further that, for every 
 ∈ {1, . . . , L}, X� ∈ Lkq(Ω;E), M� ∈ N, 
and ξ�,1, . . . , ξ�,M�

are independent copies of the ⊗k,s
εs E-valued random variable

ξ� := ⊗kX� −⊗kX�−1 ∈ Lq(Ω;⊗k,s
εs E), X0 := 0 ∈ E.

Then, for every U ∈ ⊗k,s
εs E,

∥∥∥∥U −
L∑

�=1

1
M�

M�∑
j=1

ξ�,j

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
≤
∥∥U −Mk

ε [XL]
∥∥
εs

+ C ML
q,p,k

L∑
�=1

[
M

−
(
1− 1

p

)
� ‖X� −X�−1‖Lkq(Ω;E)

·
k−1∑
i=0

[((
k

i+1
)
‖X� −X�−1‖iLkq(Ω;E) + ‖X�‖iLk(Ω;E)

)
‖X�−1‖k−i−1

Lkq(Ω;E)

]]
,
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where C ML
q,p,k := 2 max

{
C diff

q,p,k, Bq

}
and the constants Bq, C diff

q,p,k ∈ (0, ∞) are defined as 
in (3.12) and (3.20).

Proof. First note that, for every 
 ∈ {1, . . . , L} the random variables ξ�,1, . . . , ξ�,M�
are 

identically distributed and we have that

E

[
L∑

�=1

1
M�

M�∑
j=1

ξ�,j

]
=

L∑
�=1

E[ξ�] =
L∑

�=1

(
Mk

ε [X�] −Mk
ε [X�−1]

)
= Mk

ε [XL].

Thus, we find by the triangle inequality on Lq(Ω; ⊗k,s
εs E) that, for every U ∈ ⊗k,s

εs E,

∥∥∥∥U −
L∑

�=1

1
M�

M�∑
j=1

ξ�,j

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
≤
∥∥U −Mk

ε [XL]
∥∥
εs

+
L∑

�=1

err SL
q,εs(ξ�),

where, for 
 ∈ {1, . . . , L}, we define

err SL
q,εs(ξ�) :=

∥∥∥∥E[ξ�] −
1
M�

M�∑
j=1

ξ�,j

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
.

For every 
 ∈ {1, . . . , L}, we let the tuples (X�−1,1, X�,1), . . . , (X�−1,M�
, X�,M�

) be M�

independent copies of (X�−1, X�) and observe that

err SL
q,εs(ξ�) =

∥∥∥∥Mk
ε [X�] −Mk

ε [X�−1] −
1
M�

M�∑
j=1

(
⊗kX�,j −⊗kX�−1,j

)∥∥∥∥
Lq(Ω;⊗k,s

εs E)
.

We are thus in the position to apply Proposition 3.23 on every level 
 ∈ {1, . . . , L},

err SL
q,εs(ξ�) ≤ 2C diff

q,p,k M
−
(
1− 1

p

)
�

k∑
i=1

[(
k
i

)
‖X� −X�−1‖iLkq(Ω;E)‖X�−1‖k−i

Lkq(Ω;E)

]

+ 2Bq M
−1/2
� ‖X� −X�−1‖Lk(Ω;E)

k−1∑
i=0

[
‖X�‖iLk(Ω;E)‖X�−1‖k−i−1

Lk(Ω;E)

]
,

which after recalling that p ∈ [1, 2] and q ≥ p ≥ 1 as well as combining the two sums 
completes the proof of the assertion. �

The error estimate of Theorem 3.24 facilitates optimizing the number of levels L as 
well as the number of samples on each level, M1, . . . , ML, to reduce the computational 
cost for achieving a target accuracy ε > 0 of the MLMC estimator in the Lq(Ω; ⊗k,s

εs E)-
norm. This optimization is subject of the following “αβγ theorem”.
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Theorem 3.25. Assume that (E, ‖ · ‖E) is of Rademacher type p ∈ (1, 2]. Let q ∈ [p, ∞), 
k ∈ N, X ∈ Lk(Ω; E), (X�)�∈N ⊂ Lkq(Ω; E) be a sequence of E-valued random variables 
and, for every 
 ∈ N, define

ξ� := ⊗kX� −⊗kX�−1 ∈ Lq(Ω;⊗k,s
εs E), X0 := 0 ∈ E. (3.28)

For 
 ∈ N, let C� denote the cost (number of floating point operations) to generate 
one sample of the random variable ξ� in (3.28), and suppose that there exist a sequence 
(N�)�∈N of positive integers and constants α, β, γ, Cα, Cβ , Cγ , Cstab ∈ (0,∞), A ∈ (1, ∞)
such that N� � A� for all 
 ∈ N and, moreover,

∀
 ∈ N :
∥∥Mk

ε [X] −Mk
ε [X�]

∥∥
εs

≤ CαN
−α
� , (α)

∀
 ∈ N : ‖X� −X�−1‖Lkq(Ω;E) ≤ CβN
−β
� , (β)

∀
 ∈ N : C� ≤ CγN
γ
� , (γ)

∀
 ∈ N : max
{
‖X‖Lk(Ω;E), ‖X�‖Lkq(Ω;E)

}
≤ Cstab. (stab)

For each 
 ∈ N, let (ξ�,j)j∈N ⊂ Lq(Ω; ⊗k,s
εs E) be a sequence of independent copies of the 

⊗k,s
εs E-valued random variable ξ� in (3.28).
Then, for every ε ∈ (0, 1/2], there exist integers L ∈ N and M1, . . . , ML ∈ N such that 

the Lq-accuracy ε of the multilevel Monte Carlo estimator for Mk
ε [X],

errk,ML
q,εs (X) :=

∥∥∥∥Mk
ε [X] −

L∑
�=1

1
M�

M�∑
j=1

ξ�,j

∥∥∥∥
Lq(Ω;⊗k,s

εs E)
< ε, (ε)

can be achieved at computational costs of the order

Ck,ML
q,εs (X) �(α,β,γ,A,p,q)

⎧⎪⎪⎨⎪⎪⎩
ε−

γ
α + ε−p′ if βp′ > γ,

ε−
γ
α + ε−p′ | logA ε|p′+1 if βp′ = γ,

ε−
γ
α + ε−p′− γ−βp′

α if βp′ < γ,

(C)

where p′ ∈ [2, ∞) is such that 1
p + 1

p′ = 1. The constant implied in � may also depend 
on the constants Cα, Cβ , Cγ and Cstab from the assumptions above.

Proof. We will show by explicit construction that, for every ε ∈ (0, 1/2], assumptions 
(α), (β), (γ) and (stab) allow to choose the algorithmic steering parameters L ∈ N and 
M1, . . . , ML ∈ N so that (ε) holds with cost (C).

By Theorem 3.24 and by assumptions (α), (β), (stab) we obtain the following error 
estimate,
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errk,ML
q,εs (X) ≤

∥∥Mk
ε [X] −Mk

ε [XL]
∥∥
εs

+ C ML
q,p,k

L∑
�=1

[
M

−
(
1− 1

p

)
� ‖X� −X�−1‖Lkq(Ω;E) . . .

·
k−1∑
i=0

[((
k

i+1
)
‖X� −X�−1‖iLkq(Ω;E) + ‖X�‖iLk(Ω;E)

)
‖X�−1‖k−i−1

Lkq(Ω;E)

]]

≤ CαN
−α
L + C ML

q,p,kCβ

L∑
�=1

[
M

−
(
1− 1

p

)
� N−β

�

k−1∑
i=0

[((
k

i+1
)
Ci

β + Ci
stab

)
Ck−i−1

stab

]]

≤ CαN
−α
L + C�

L∑
�=1

[
M

−1/p′

� N−β
�

]
,

where C ML
q,p,k ∈ (0, ∞) is as in Theorem 3.24, and C� = C�(k, p, q, Cβ , Cstab) ∈ (0, ∞) is 

defined by

C� := C ML
q,p,kCβ

(
k Ck−1

stab + 2k max
{
Ck−1

β , Ck−1
stab

})
,

since

k−1∑
i=0

[((
k

i+1
)
Ci

β + Ci
stab

)
Ck−i−1

stab

]
≤ k Ck−1

stab + max
{
Ck−1

β , Ck−1
stab

} k−1∑
i=0

(
k

i+1
)

≤ k Ck−1
stab + 2k max

{
Ck−1

β , Ck−1
stab

}
.

Choose L ∈ N as the smallest integer such that N−α
L < min{C−1

α , 1} ε2 holds and, for 
every 
 ∈ {1, . . . , L}, let M� ∈ N be defined as the smallest integer satisfying

M� ≥ Cp′

� Nαp′

L Sp′

L N
− (β+γ)p′

p′+1
� , where SL :=

L∑
�=1

N
γ−βp′
p′+1

� .

Note that the magnitude of SL behaves asymptotically (for L large) as

SL =
L∑

�=1

N
γ−βp′
p′+1

� �(β,γ,A,p)

⎧⎪⎪⎨⎪⎪⎩
1 if βp′ > γ,

L if βp′ = γ,

N
γ−βp′
p′+1

L if βp′ < γ.

(3.29)

For this choice of L and M1, . . . , ML, we can bound the error as follows,

errk,ML
q,εs (X) < CαC

−1
α

ε

2 + C�

L∑
�=1

[
C−1

� N−α
L S−1

L N
β+γ
p′+1
� N−β

�

]

= ε

2 + N−α
L S−1

L

L∑
�=1

N
γ−βp′
p′+1

� = ε

2 + N−α
L < ε.
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For the total cost, we first compute

Ck,ML
q,εs (X) �

L∑
�=1

C�M� ≤ Cγ

L∑
�=1

Nγ
�

(
1 + Cp′

� Nαp′

L Sp′

L N
− (β+γ)p′

p′+1
�

)

≤ Cγ

L∑
�=1

Nγ
� + CγC

p′

� Nαp′

L Sp′

L

L∑
�=1

N
γ−βp′
p′+1

� = Cγ

L∑
�=1

Nγ
� + CγC

p′

� Nαp′

L Sp′+1
L .

By the choice of L we have AL
� NL � ε−1/α and, since ε ∈ (0, 1/2], we find that 

L �α | logA ε|. Thus, using (3.29) we conclude that the computational cost,

Ck,ML
q,εs (X) �(β,γ,A,p,q)

⎧⎪⎪⎨⎪⎪⎩
Nγ

L + Nαp′

L if βp′ > γ,

Nγ
L + Nαp′

L Lp′+1 if βp′ = γ,

Nγ
L + Nαp′+γ−βp′

L if βp′ < γ,

in terms of the accuracy ε behaves as follows,

Ck,ML
q,εs (X) �(α,β,γ,A,p,q)

⎧⎪⎪⎨⎪⎪⎩
ε−

γ
α + ε−p′ if βp′ > γ,

ε−
γ
α + ε−p′ | logA ε|p′+1 if βp′ = γ,

ε−
γ
α + ε−p′− γ−βp′

α if βp′ < γ,

which completes the proof of the assertion. �
Remark 3.26 (Strong convergence implies (α)). Lemma 3.19 shows that under the sta-
bility condition (stab), assumption (α) is satisfied whenever there exists a constant 
C̃α ∈ (0, ∞) such that ‖X −X�‖Lk(Ω;E) ≤ C̃αN

−α
� holds for all 
 ∈ N.

Remark 3.27 (Comparison with single-level Monte Carlo). Under the assumptions (α), 
(γ), (stab) the single-level Monte Carlo approach of Corollary 3.20 requires to choose the 
level L and the number of samples ML such that NL � ε−1/α and ML � ε−p′, in order 
to achieve a target accuracy errk,SL

q,εs (X) = ε ∈ (0, ∞). Thus, the single-level Monte Carlo 
method to estimate Mk

ε [X] causes computational cost of the order

Ck,SL
q,εs (X) � CLML � Nγ

LML � ε−
γ
α−p′

.

Remark 3.28 (Comparison with MLMC in Hilbert spaces). In the case that E is a Hilbert 
space, we have that p = p′ = 2 and the computational costs in (C) coincide e.g. with those 
of [12, Theorem 1] for the two cases when βp′ �= γ. In the critical case βp′ = 2β = γ, we 
obtain an additional log-factor | logA ε|. This is due to the fact that we do not assume 
independence across the levels 
 ∈ {1, . . . , L}. Note that this independence can be ex-
ploited only if (i) E is a Hilbert space, and (ii) the error is measured in the L2-norm 
with respect to (Ω, A, P ).
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Remark 3.29 (Full injective tensor norm). On the symmetric injective tensor product 
space ⊗k,s

εs E, the full and symmetric injective tensor norms, ‖ · ‖ε and ‖ · ‖εs , are 
equivalent, see (2.5). Therefore, the results of Subsections 3.2 and 3.3 on convergence 
of Monte Carlo methods of standard (Theorem 3.16), single-level (Corollary 3.20) and 
multilevel type (Theorems 3.24 and 3.25) hold also with respect to the stronger norm on 
Lq(Ω; ⊗k

εE), with the additional constant k
k

k! .

4. Applications

In this section we illustrate the preceding, abstract theory by several examples of 
stochastic equations, where the need for the presently developed modifications of the 
standard Monte Carlo theory is entailed either by problem-specific constraints on the 
choices of non-Hilbertian function spaces for well-posedness or by the interest in error 
estimates in norms on Banach spaces (such as Hölder norms).

Specifically, Subsections 4.1 and 4.2 are concerned with the kth moment MLMC finite 
element convergence analysis for explicit, linear, second-order elliptic PDEs with random 
forcing (in dimensions d ∈ {2, 3}) or random diffusion coefficient (for d = 1), respectively. 
Here, the right-hand side is assumed to be an element of (or taking values in) Lp(D)
for some p ∈ (1, ∞), where D ⊂ Rd denotes the spatial domain. To obtain well-posed 
problems, the case p ∈ (1, 2) necessitates variational formulations on Banach spaces, 
whereas for p ∈ (2, ∞) such formulations may be advantageous to derive error estimates 
in Hölder norms via Sobolev embeddings.

In Subsection 4.3 we discuss the MLMC approximation of higher-order moments for 
vector-valued stochastic processes X : [0, T ] × Ω → E in tensor norms of Hölder spaces 
Cδ([0, T ]; E) for problem-specific Hölder exponents δ ∈ [0, 1). These results are applicable 
to many semi-discrete or fully discrete numerical schemes for SDEs and stochastic PDEs 
and we give some explicit examples.

4.1. Linear elliptic PDEs with random forcing

Let D ⊂ Rd with d ∈ {2, 3} be an open, bounded, polytopal Lipschitz domain (with 
closure D) and, for p ∈ [1, ∞] and m ∈ N, let Lp(D) and Wm

p (D) denote the standard 
Lebesgue and Sobolev spaces of real-valued functions on D.

We write W̊ 1
p (D) for the closure of C∞

c (D) (the space of smooth functions with com-
pact support inside D) with respect to the norm on W 1

p (D), and W−1
p (D) for the dual 

space of W̊ 1
p′(D), where 1

p + 1
p′ = 1.

4.1.1. Deterministic model problem
We assume given deterministic, continuous diffusion coefficients aij ∈ C0(D), with 

aij = aji, 1 ≤ i, j ≤ d, which are uniformly positive definite. Thus, there exist constants 
0 < a ≤ a < ∞ such that, for all x ∈ D,
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∀φ, ψ ∈ Rd :
d∑

i,j=1
aij(x)φiφj ≥ a ‖φ‖2

Rd ,

d∑
i,j=1

aij(x)φiψj ≤ a ‖φ‖Rd‖ψ‖Rd , (4.1)

where ‖ · ‖Rd denotes the Euclidean norm on Rd.
For p ∈ (1, ∞) and a given source term f in Lp(D) (which in the sequel shall be gener-

alized to be random), we consider the following variational formulation of a homogeneous 
Dirichlet boundary value problem: Find

u ∈ W̊ 1
p (D) : B(u, v) = 〈f, v〉 ∀v ∈ W̊ 1

p′(D). (4.2)

Here, 〈 · , · 〉 denotes the W−1
p (D) × W̊ 1

p′(D) duality pairing, and the bilinear form B is 
given by

B : W̊ 1
p (D) × W̊ 1

p′(D) → R, B(w, v) :=
∫
D

d∑
i,j=1

aij(x) ∂
∂xi

w(x) ∂
∂xj

v(x) dx.

Evidently, the boundedness condition in (4.1) and Hölder’s inequality imply continuity 
of B on W̊ 1

p (D) × W̊ 1
p′(D). However, as opposed to the Hilbert space case p = p′ = 2, 

the uniform strong ellipticity assumption in (4.1) is in general not sufficient to guarantee 
that the mapping W̊ 1

p (D) 
 u �→ B(u, · ) ∈ W−1
p (D) is an isomorphism. For the case 

of the Laplace operator (i.e., aij(x) = δij) and every p ∈ (1, ∞), an inf-sup condition 
and hence well-posedness of (4.2) have been shown in [55, Theorem 6.1], see also [8, 
Equation (8.6.5)]. Following the arguments used in [8, Section 8.6] this can be generalized 
to diffusion coefficients (aij)di,j=1 satisfying (4.1), provided that p is sufficiently close to 2. 
In what follows, we will require for an appropriate range of integrability indices p ∈ (1, ∞)
that (4.2) has a unique solution and, moreover, that this solution is W 2

p (D)-regular. This 
is summarized in the next assumption.

Assumption 4.1. There exists p0 ∈ (d, ∞) such that, for each p ∈ (1, p0) and every 
f ∈ Lp(D), the variational problem (4.2) admits a unique solution u ∈ W̊ 1

p (D), and

∀p ∈ (1, p0) ∃Cp ∈ (0,∞) ∀f ∈ Lp(D) : ‖u‖W 2
p (D) ≤ Cp‖f‖Lp(D). (4.3)

Sufficient conditions for the W 2
p (D)-regularity (4.3) to hold for the Laplace problem 

in polygons (i.e., d = 2) can, for instance, be found in [28, Theorem 4.3.2.4].
Since p0 > d and d ∈ {2, 3} are assumed, for a given q ∈ [p0, ∞), we may choose 

p = qd
d+q ∈ (1,min{d, q}) in (4.3) and conclude by continuity of the Sobolev embed-

ding W 2
p (D) ⊆ W 1

q (D) and Hölder’s inequality that ‖u‖W 1
q (D) �(q,D) ‖u‖W 2

p (D) �p

‖f‖Lp(D) �(q,D) ‖f‖Lq(D). For q ∈ (1, p0) this estimate trivially holds by (4.3) so that we 
obtain the following stability estimate for all p ∈ (1, ∞):

∀p ∈ (1,∞) : ‖u‖W 1(D) �(p,D) ‖f‖Lp(D). (4.4)

p
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4.1.2. Finite element approximation
For the numerical approximation, we use a conforming finite element method (FEM) 

for (4.2) based on continuous, piecewise first-order Langrangean basis functions on D: 
on a regular, simplicial triangulation Th of D with mesh size h ∈ (0, ∞), we consider the 
finite-dimensional space

S1
0(D; Th) :=

{
v ∈ C0(D) : v|∂D = 0, v|T ∈ P1 ∀T ∈ Th

}
,

where P1 denotes the space of polynomials of degree at most one. The corresponding 
Galerkin discretization of (4.2) reads: Find

uh ∈ S1
0(D; Th) : B(uh, vh) = 〈f, vh〉 ∀vh ∈ S1

0(D; Th). (4.5)

Evidently, this finite-dimensional problem is equivalent to a linear system of equations, 
with matrix that is symmetric and, by (4.1), positive definite, so that there exists a 
unique solution uh ∈ S1

0(D; Th) of (4.5).
Under Assumption 4.1 and the additional condition that

∀i, j ∈ {1, . . . , d} : aij ∈ W 1
q (D) for some

{
q > 2 if d = 2,
q ≥ 12

5 if d = 3,
(4.6)

it is shown in [8, Theorem 8.5.3] that, for all p ∈ (1, ∞), the Galerkin projection uh in 
(4.5) is bounded in W̊ 1

p (D): There exists a mesh size h0 ∈ (0, ∞) such that

∀h ∈ (0, h0) : ‖uh‖W 1
p (D) �(p,D) ‖u‖W 1

p (D). (4.7)

Combining (4.4) and (4.7) implies stability of both the exact solution u and its approx-
imation uh: For all p ∈ (1, ∞), there exist a mesh width h0 ∈ (0, ∞) and a constant 
C̃stab ∈ (0, ∞) such that

∀h ∈ (0, h0) : max
{
‖u‖W 1

p (D), ‖uh‖W 1
p (D)

}
≤ C̃stab‖f‖Lp(D). (4.8)

Moreover, by [8, Equation (8.5.4)] uh is quasi-optimal in W̊ 1
p (D) for all p ∈ (1, ∞): There 

exist h0, Copt ∈ (0, ∞) (which may depend on D and p) such that

∀h ∈ (0, h0) : ‖u− uh‖W 1
p (D) ≤ Copt inf

vh∈S1
0(D;Th)

‖u− vh‖W 1
p (D).

Therefore, under Assumption 4.1 and (4.6), for every quasi-uniform family of triangu-
lations (Th)h∈H, standard approximation properties of the corresponding finite element 
spaces S1

0(D; Th), h ∈ H ⊆ (0, ∞), show that, for all p ∈ (0, p0),

∀h ∈ H ∩ (0, h0) : ‖u− uh‖W 1
p (D) �(p,D) h ‖u‖W 2

p (D) �(p,D) h ‖f‖Lp(D), (4.9)

where we also used the assumed regularity (4.3).
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4.1.3. Random forcing and MLMC-FEM
Suppose the setting of the previous subsections. In particular, the coefficients (aij)di,j=1

satisfy (4.1) and (4.6), and Assumption 4.1 holds for some p0 ∈ (d, ∞). In this subsec-
tion we fix p ∈ (1, p0), which determines the spatial integrability of a given random 
forcing. Random forcing in (4.2) amounts to assuming that the right-hand side f is an 
element of Lr(Ω; Lp(D)) for some suitable integrability index r ∈ [1,∞) with respect to 
the probability space (Ω, A, P ), i.e., we seek a W̊ 1

p (D)-valued random variable u such 
that

B(u(ω), v) = 〈f(ω), v〉 ∀v ∈ W̊ 1
p′(D), for almost all ω ∈ Ω. (4.10)

Under the above mentioned regularity requirements, see Assumption 4.1, we may 
argue for almost all ω ∈ Ω to establish the existence and uniqueness of a (stochastic) 
solution u ∈ Lr(Ω; W̊ 1

p (D)) satisfying (4.10), with

u ∈ Lr(Ω;W 2
p (D)), ‖u‖Lr(Ω;W 2

p (D)) �(p,D) ‖f‖Lr(Ω;Lp(D)).

Multilevel finite element discretizations of (4.10) will be based on the discrete vari-
ational problem (4.5), considered P -a.s. To this end, we denote by {T�}�∈N a nested 
sequence of regular, simplicial triangulations T� of D, with corresponding sequence of 
mesh sizes {h�}�∈N . We assume that T�+1 is obtained from T� via uniform red refinement. 
Then, h�+1 � h�/2 and, without loss of generality, we may assume that h1 < h0, with 
h0 as in (4.7)–(4.9). The corresponding sequence of Galerkin solutions uh�

∈ S1
0(D; T�)

shall be denoted by u� (with slight abuse of notation).
In the next corollary we verify that all assumptions of the “αβγ theorem”, see Theo-

rem 3.25, are satisfied to bound the computational costs of the MLMC-FEM estimator 
for Mk

ε [u] for a given accuracy and provide an upper bound for these costs.

Corollary 4.2. Let (4.1) and (4.6) be satisfied and suppose that Assumption 4.1 holds 
for some p0 ∈ (d, ∞). Assume that p ∈ (1, p0), q ∈ [min{p, 2}, ∞), and k ∈ N. For 
f ∈ Lkq(Ω; Lp(D)), let u ∈ Lkq(Ω; W̊ 1

p (D)) be the solution to (4.10). Furthermore, let the 
FEM approximations (u�)�∈N be constructed as described above. Then, for E := W 1

p (D)
and N� := dim

(
S1

0(D; T�)
)

� h−d
� � A�, with A := 2d, all conditions of Theorem 3.25

are fulfilled,

(α) ∀
 ∈ N :
∥∥Mk

ε [u] −Mk
ε [u�]

∥∥
εs

�(k,p,D,f) N
−1/d
� , i.e., α = d−1,

(β) ∀
 ∈ N : ‖u� − u�−1‖Lkq(Ω;W 1
p (D)) �(k,p,q,D,f) N

−1/d
� , i.e., β = d−1,

(γ) ∀
 ∈ N : C� � Nk
� , i.e., γ = k,

(stab) ∀
 ∈ N : max
{
‖u‖Lk(Ω;W 1

p (D)), ‖u�‖Lkq(Ω;W 1
p (D))

}
≤ Cstab,

for some constant Cstab ∈ (0, ∞) depending only on p, D and ‖f‖Lkq(Ω;Lp(D)).
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Furthermore, the Lq-accuracy errk,ML
q,εs (u) < ε ∈ (0, 1/2] of the multilevel Monte Carlo 

estimator for Mk
ε [u] can be achieved at computational costs of the order

Ck,ML
q,εs (u) �(k,p,q,D,f)

⎧⎪⎪⎨⎪⎪⎩
ε−p̄′ if p̄′ > kd,

ε−kd | log2 ε|kd+1 if p̄′ = kd,

ε−kd if p̄′ < kd,

(4.11)

where p̄′ ∈ [2, ∞) is such that 1
min{p,2} + 1

p̄′ = 1.

Proof. First note that we may apply the deterministic stability estimate (4.8) for almost 
all ω ∈ Ω, showing that, for all 
 ∈ N,

max
{
‖u‖Lk(Ω;W 1

p (D)), ‖u�‖Lkq(Ω;W 1
p (D))

}
≤ C̃stab‖f‖Lkq(Ω;Lp(D)) =: Cstab.

The integrability of f ∈ Lkq(Ω; Lp(D)) combined with the deterministic FEM conver-
gence result (4.9) implies strong convergence,

∀
 ∈ N : ‖u− u�‖Lkq(Ω;W 1
p (D)) �(p,D) h� ‖f‖Lkq(Ω;Lp(D)).

Since h� � N
−1/d
� , we conclude that the conditions (α) and (β) of Theorem 3.25 are 

satisfied with α = β = d−1, where we also have used Remark 3.26 for (α) and the 
triangle inequality for (β).

Assuming a linear complexity solver (as, e.g., multigrid), the cost C�,1 for computing 
one sample of u� in (4.5) is bounded by C�,1 ≤ Cγ,1N� with some constant Cγ,1 ∈ (0, ∞)
independent of 
. Since the computation of the kth Kronecker product of a vector of 
length N� causes computational cost of the magnitude Nk

� , the total cost C� for computing 
one sample of the random variable ξ� = ⊗ku� − ⊗ku�−1 is of the order Nk

� . Therefore, 
the condition (γ) holds for γ = k.

Thus, the assumptions (α), (β), (γ) and (stab) of Theorem 3.25 are satisfied, and the 
upper bound for the computational costs in (4.11) follows upon applying Theorem 3.25, 
since the Banach space E = W 1

p (D) has type min{p, 2}. �
Remark 4.3. In the Hilbert space case, it is in general not optimal to obtain a convergence 
rate bound for (α) by combining strong convergence with stability (stab), as outlined in 
Remark 3.26. For instance, the error analysis of Galerkin approximations for generalized 
Whittle–Matérn fields in [15, Proposition 4] reveals that the corresponding approxima-
tions of the covariance function converge more than twice as fast in the L2(D×D)-norm 
as the corresponding Gaussian random field approximations in the strong Lq(Ω; L2(D))-
sense. However, it is not obvious if and how this behavior generalizes to random variables 
with values in Banach spaces.
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4.2. Linear elliptic PDEs with log-Gaussian coefficient

We next consider a linear, second-order elliptic PDE with mixed Dirichlet–Neumann 
boundary conditions and right-hand side in Lp(D). As opposed to Subsection 4.1, we now 
assume that the diffusion coefficient a is random. More specifically, as e.g. in [9,10,56], 
we suppose that a is log-Gaussian, i.e., a(x) = exp(g(x)) for almost all x ∈ D, P -a.s., 
for some Gaussian random field g : D × Ω → R. The spatial domain is assumed to 
be a bounded interval D = I = (0, b) of length b ∈ (0, ∞). The restriction of the 
spatial dimension to d = 1 facilitates an explicit expression of the inf-sup constant of 
the bilinear form, appearing in the corresponding variational formulation, depending on 
a := ess infx∈I a(x). In this setting, a is a random variable satisfying a ∈ Lq(Ω; R) for 
all q ∈ [1, ∞). Similarly as in [9], this, in turn, yields well-posedness of the variational 
problem and strong convergence of finite element approximations.

4.2.1. Deterministic model problem
For p ∈ [1, ∞], m ∈ N, we recall the Lebesgue and Sobolev spaces Lp(I) and Wm

p (I)
from Subsection 4.1. We furthermore note that, since d = 1, for every p ∈ [1, ∞], elements 
v in W 1

p (I) coincide (upon a modification on a subset of I of zero Lebesgue measure) 
with a unique function which is continuous on I = [0, b], denoted by ṽ ∈ C0(I), and we 
define the subspace

W̊ 1
p,{0}(I) :=

{
v ∈ W 1

p (I) : ṽ(0) = 0
}
.

In virtue of the Poincaré inequality, on this subspace the map v �→ |v|W 1
p (I), with 

|v|W 1
p (I) := ‖v′‖Lp(I), defines a norm, where v′ denotes the weak derivative of v. In ad-

dition, we write p′ ∈ [1, ∞] for the Hölder conjugate of p ∈ [1, ∞], and we let W−1
p,{0}(I)

be the dual space of W̊ 1
p′,{0}(I), equipped with the norm

‖f‖W−1
p,{0}(I) := sup

0�=v∈W̊ 1
p′,{0}(I)

〈f, v〉
|v|W 1

p′ (I)
.

We assume given a finite partition P = {Ji}nP
i=1 of pairwise disjoint, open subintervals 

Ji of I such that J1 ∪ . . . ∪ JnP = I = [0, b]. Furthermore, we suppose that the scalar 
diffusion coefficient satisfies

a ∈ W 1
∞(I;P), where W 1

∞(I;P) :=
{
a ∈ L∞(I) | ∀J ∈ P : a|J ∈ W 1

∞(J)
}
,

and it is positive in the sense that there exist constants a, a such that

0 < a ≤ a(x) ≤ a < ∞ for almost all x ∈ I.

For p ∈ (1, ∞) and f ∈ Lp(I) we then consider the following boundary value problem, 
with mixed (Dirichlet–Neumann) boundary conditions: One wishes to find
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u : I → R : −(a(x)u′(x))′ = f(x), a.a. x ∈ I, u(0) = a(b)u′(b) = 0. (4.12)

The weak formulation of (4.12) reads: Find

u ∈ W̊ 1
p,{0}(I) : Ba(u, v) = 〈f, v〉 ∀v ∈ W̊ 1

p′,{0}(I), (4.13)

where the bilinear form Ba is defined by Ba(w, v) :=
∫ b

0 a(x)w′(x)v′(x) dx, for every 
w ∈ W̊ 1

p,{0}(I) and all v ∈ W̊ 1
p′,{0}(I). For every p ∈ (1, ∞), existence and uniqueness of 

a solution u to (4.13) follow from continuity of Ba,

∀w ∈ W̊ 1
p,{0}(I) ∀v ∈ W̊ 1

p′,{0}(I) : |Ba(w, v)| ≤ a |w|W 1
p (I)|v|W 1

p′ (I)
, (4.14)

and the following inf-sup condition:

inf
0�=w∈W̊ 1

p,{0}(I)
sup

0�=v∈W̊ 1
p′,{0}(I)

Ba(w, v)
|w|W 1

p (I)|v|W 1
p′ (I)

≥ a. (4.15)

For the homogeneous Dirichlet boundary value problem (u(0) = u(b) = 0), a construc-
tive proof for the inf-sup condition on W̊ 1

p (I) × W̊ 1
p′(I) has been given in [1, Proof of 

Theorem 3.1]. We adjust the argument from [1], to derive (4.15) for the problem (4.12)
with mixed boundary conditions. To this end, let w ∈ W̊ 1

p,{0}(I) \ {0} be arbitrary but 
fixed, and define

vw(x) :=
x∫

0

sign(w′(t))|w′(t)|p−1 dt, x ∈ I = [0, b]. (4.16)

This function satisfies vw(0) = 0, and it is weakly differentiable with weak derivative

v′w(x) = sign(w′(x))|w′(x)|p−1 for almost all x ∈ I.

We furthermore obtain that, for almost all x ∈ I, |v′w(x)| = |w′(x)|p−1 = |w′(x)|p/p′ , and 
conclude that vw ∈ W̊ 1

p′,{0}(I), with

|vw|W 1
p′ (I)

= ‖v′w‖Lp′ (I) = ‖w′‖p/p
′

Lp(I) = |w|p/p
′

W 1
p (I) = |w|p−1

W 1
p (I).

The continuity (4.14) of Ba implies that Ba(w, vw) is finite, and we find that

Ba(w, vw) =
b∫

0

a(x)|w′(x)|p dx ≥ a |w|pW 1
p (I) = a |w|W 1

p (I)|vw|W 1
p′ (I)

.

Since w ∈ W̊ 1 (I) \ {0} was arbitrary, (4.15) follows.
p,{0}
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The inf-sup condition (4.15) (together with its symmetric counterpart which can be 
shown in the same fashion) implies that, for every f ∈ W−1

p,{0}(I), the variational problem 

(4.13) admits a unique solution u ∈ W̊ 1
p,{0}(I). Furthermore, the linear data-to-solution 

mapping W−1
p,{0}(I) 
 f �→ u ∈ W̊ 1

p,{0}(I) is an isomorphism with

‖u′‖Lp(I) = |u|W 1
p (I) ≤ a−1‖f‖W−1

p,{0}(I). (4.17)

In the case that f ∈ Lp(I), this solution is more regular: Considering the differential 
equation (4.12) in weak sense on J ∈ P implies, for a ∈ W 1

∞(I; P) and f ∈ Lp(I), that 
the second weak derivative of u|J restricted to J ⊆ I exists and

−u|′′J (x) = a(x)−1 [f(x) + a|′J(x)u′(x)] for almost all x ∈ J.

Taking here the Lp(J)-norm yields with elementary estimates that, for every J ∈ P,

‖u|′′J‖Lp(J) ≤ ‖a−1‖L∞(J)
[
‖f‖Lp(J) + ‖a|′J‖L∞(J)‖u′‖Lp(J)

]
≤ a−1

[
‖f‖Lp(I) + a−1‖a|′J‖L∞(J)‖f‖W−1

p,{0}(I)

]
≤ C reg

a,p ‖f‖Lp(I),

where the constant C reg
a,p ∈ (0, ∞) is given by

C reg
a,p := a−1

[
1 + a−1 max

J∈P
‖a|′J‖L∞(J) CLp→W−1

p,{0}

]
,

and CLp→W−1
p,{0}

:= supf∈BLp(I)
‖f‖W−1

p,{0}(I) denotes the norm of the continuous embed-
ding Lp(I) ⊂ W−1

p,{0}(I).
Hence, for every f ∈ Lp(I), the unique weak solution to (4.13) satisfies

u ∈ W 2
p (I;P) ∩ W̊ 1

p,{0}(I), max
J∈P

‖u|′′J‖Lp(J) ≤ C reg
a,p ‖f‖Lp(I), (4.18)

where W 2
p (I; P) :=

{
v ∈ W 1

p (I) | ∀J ∈ P : v|J ∈ W 2
p (J)

}
is the space of functions in 

W 1
p (I) which are piecewise in W 2

p on the partition P of I.

4.2.2. Finite element approximation
For the numerical approximation of the solution u ∈ W̊ 1

p,{0}(I) to (4.13) we use 
a similar conforming finite element discretization as in Subsection 4.1.2. That is, we 
use continuous, piecewise affine-linear functions on a partition Th of I with mesh size 
h ∈ (0, ∞),

S1
0,{0}(I; Th) :=

{
v ∈ C0(I) : v(0) = 0, v|T ∈ P1 ∀T ∈ Th

}
.

Evidently, S1
0,{0}(I; Th) ⊂ W̊ 1

p,{0}(I) ∩ W̊ 1
p′,{0}(I) and dim

(
S1

0,{0}(I; Th)
)

= #(Th). For 
given f ∈ Lp(I), the Galerkin discretization of (4.13) reads: One wishes to find
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uh ∈ S1
0,{0}(I; Th) : Ba(uh, vh) = 〈f, vh〉 ∀vh ∈ S1

0,{0}(I; Th). (4.19)

Unique solvability of (4.19) follows from the (h-uniform) discrete inf-sup condition:

inf
0�=wh∈S1

0,{0}(I;Th)
sup

0�=vh∈S1
0,{0}(I;Th)

Ba(wh, vh)
|wh|W 1

p (I)|vh|W 1
p′ (I)

≥ a. (4.20)

To verify (4.20), note that the proof of (4.15) carries over to the discrete case: Given a 
function wh ∈ S1

0,{0}(I; Th), one checks that the expression (4.16) yields an element vh
in S1

0,{0}(I; Th), and that all steps in the proof of (4.15) may be repeated verbatim.
The discrete inf-sup condition (4.20) and the continuity (4.14) imply that (4.19) ad-

mits a unique solution uh ∈ S1
0,{0}(I; Th) with

‖u′
h‖Lp(I) = |uh|W 1

p (I) ≤ a−1‖f‖W−1
p,{0}(I), (4.21)

which is, furthermore, quasi-optimal:

|u− uh|W 1
p (I) ≤

(
1 + a

a

)
inf

vh∈S1
0,{0}(I;Th)

|u− vh|W 1
p (I). (4.22)

Therefore, for every quasi-uniform family of grids (Th)h∈H on I which is such that, for 
every h ∈ H, the grid Th is compatible with the partition P, the quasi-optimality (4.22)
and the regularity (4.18) imply the error bound

|u− uh|W 1
p (I) ≤

(
1 + a

a

)
|u− Ihu|W 1

p (I) =
(
1 + a

a

)[ ∑
J∈P

|u− Ihu|pW 1
p (J)

]1/p

≤ Cb,p

(
1 + a

a

)
h

[ ∑
J∈P

‖u|′′J‖
p
Lp(J)

]1/p

≤ Cb,p n
1/p
P

(
1 + a

a

)
C reg

a,p h ‖f‖Lp(I), (4.23)

upon choosing vh in (4.22) as the nodal interpolant Ihu of u in S1
0,{0}(I; Th). Here, the 

constant Cb,p ∈ (0, ∞) is independent of a, h and u.

4.2.3. Log-Gaussian random coefficient and MLMC-FEM
The a-priori stability and discretization error bounds (4.17), (4.21) and (4.23) are 

explicit in the dependence on the coefficient a. They allow to consider (4.12) with de-
terministic source term f ∈ Lp(I) for some p ∈ (1, ∞), and with random coefficient 
a : I × Ω → R whose logarithm g : I × Ω → R is a Gaussian random field.

More specifically, we assume that the mapping Ω 
 ω �→ g( · , ω) is a vector-valued 
random variable taking values in W 1

∞(I; P), where we note that W 1
∞(I; P), equipped 

with the norm

‖v‖W 1
∞(I;P) := ‖v‖L∞(I) + max ‖v|′J‖L∞(J) = ess sup |v(x)| + max ess sup |v|′J (x)|,
J∈P x∈I J∈P x∈J
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is a Banach space. Furthermore, g is assumed to be centered Gaussian, i.e., for 
any finite collection (f1, . . . , fn) in the dual space [W 1

∞(I; P)]′ the distribution of 
(〈f1, g〉, . . . , 〈fn, g〉) is multivariate Gaussian with zero mean. In other words, the law 
μ of g, defined for every set B in the Borel σ-algebra B(W 1

∞(I; P)) by

μ(B) = P ({ω ∈ Ω : g( · , ω) ∈ B}),

satisfies that μ ◦ f−1 is a centered Gaussian measure on R for any f ∈ [W 1
∞(I; P)]′, see 

e.g. [7, Definition 2.2.1].
Under these assumptions we have, for almost all ω ∈ Ω,

a( · , ω) = exp(g( · , ω)), with g( · , ω) ∈ W 1
∞(I;P), (4.24)

and the trajectories of g and a are P -a.s. continuous on each subinterval J1, . . . , JnP ⊆ I

of the partition P (upon modifications on subsets of I of zero Lebesgue measure, which 
we again denote by g and a). We thus may define, for almost all ω ∈ Ω,

a(ω) := minJ∈P infx∈J a(x, ω) = minJ∈P exp
(
infx∈J g(x, ω)

)
,

a(ω) := maxJ∈P supx∈J a(x, ω) = maxJ∈P exp
(
supx∈J g(x, ω)

)
,

(4.25)

so that we obtain, for almost all ω ∈ Ω,

0 < exp(−‖g( · , ω)‖L∞(I)) ≤ a(ω) ≤ a(ω) ≤ exp(‖g( · , ω)‖L∞(I)) < ∞.

For stability and strong convergence of finite element approximations of the solution u

to (4.13) with the log-Gaussian coefficient a = exp(g), integrability of a−1, a and of 
maxJ∈P ‖a|′J‖L∞(J) with respect to the probability space (Ω, A, P ) will be crucial. This 
is summarized in the next lemma.

Lemma 4.4. The in (4.25) P -a.s. defined mappings ω �→ a(ω) and ω �→ a(ω) yield random 
variables satisfying a−1, a ∈ Lr(Ω; R) for all r ∈ [1, ∞).

In addition, the mapping a′ : ω �→ maxJ∈P ‖a|′J( · , ω)‖L∞(J) is P -a.s. well-defined and 
a′ ∈ Lr(Ω; R) for all r ∈ [1, ∞).

Proof. The centered Gaussian random field g takes values in the Banach space W 1
∞(I; P). 

Thus, for every J ∈ P and almost all ω ∈ Ω, g admits a representative which is continuous 
on J , and the proof of [9, Proposition 2.3] using Fernique’s theorem is applicable on each 
J ∈ P, showing that a−1, a ∈ Lr(Ω; R) for all r ∈ [1,∞).

We now consider a′. To this end, we first note that by (4.24) a ∈ W 1
∞(I; P), P -a.s., 

since exp( · ) is smooth and g ∈ W 1
∞(I; P), P -a.s. In particular, a = exp(g) is also a 

W 1
∞(I; P)-valued random variable. Therefore, for almost all ω ∈ Ω and every J ∈ P, 

‖a|′J( · , ω)‖L∞(J) < ∞. It follows that a′ is P -a.s. well-defined and measurable, since the 



42 K. Kirchner, C. Schwab / Journal of Functional Analysis 286 (2024) 110218
mapping W 1
∞(I;P) 
 v �→ maxJ∈P ‖v|′J‖L∞(J) ∈ R is continuous. To prove the integra-

bility of a′, we observe that, for almost all ω ∈ Ω and every J ∈ P, the weak derivative 
of a|J is given by a|′J( · , ω) = g|′J ( · , ω) exp(g|J ( · , ω)). Thus, we obtain that

maxJ∈P ‖a|′J( · , ω)‖L∞(J) ≤ maxJ∈P ‖g|′J( · , ω)‖L∞(J) exp
(
‖g( · , ω)‖L∞(I)

)
.

We have E
[
maxJ∈P ‖g|′J‖

q
L∞(J)

]
< ∞ for all q ∈ (0, ∞), since the distribution of g is 

Gaussian, with values in W 1
∞(I; P). For every r ∈ [1, ∞), a′ ∈ Lr(Ω;R) can then be 

derived along the lines of the proof of [9, Proposition 2.3], using Fernique’s theorem 
which shows that also E

[
exp

(
q ‖g‖L∞(I)

)]
< ∞ holds for all q ∈ (0,∞). �

We now consider the model problem introduced in Subsection 4.2.1 with a log-
Gaussian coefficient a as in (4.24). That is, given a deterministic source f ∈ Lp(I)
for some p ∈ (1, ∞), we seek u : I × Ω → R such that, for almost all ω ∈ Ω,

u( · , ω) ∈ W̊ 1
p,{0}(I) : Ba( · ,ω)(u( · , ω), v) = 〈f, v〉 ∀v ∈ W̊ 1

p′,{0}(I), (4.26)

where the bilinear form is as in (4.13). The following proposition addresses well-posedness 
of (4.26) and regularity of its solution in Lr(Ω)-sense.

Proposition 4.5. The variational problem (4.26) admits a solution that is P -a.s. unique, 
and belongs to Lr

(
Ω; W̊ 1

p,{0}(I)
)
∩ Lr

(
Ω; W 2

p (I; P)
)

for all r ∈ [1, ∞), with

(
E
[
|u|rW 1

p (I)
])1/r ≤ ∥∥a−1∥∥

Lr(Ω;R)‖f‖W−1
p,{0}(I), (4.27)(

E
[(

max
J∈P

‖u|′′J‖Lp(J)
)r])1/r

≤ C reg
a,p,r‖f‖Lp(I), (4.28)

where C reg
a,p,r := ‖a−1‖Lr(Ω;R) + ‖a−1‖2

L4r(Ω;R)‖a′‖L2r(Ω;R)CLp→W−1
p,{0}

∈ (0, ∞).

Proof. Since f ∈ Lp(I) is deterministic and a ∈ W 1
∞(I; P) holds P -a.s., existence of 

a solution to (4.26), which is P -a.s. unique, follows by arguing via the well-posedness 
in the deterministic case (see Subsection 4.2.1) for almost all ω ∈ Ω. Furthermore, for 
every r ∈ [1, ∞), the deterministic stability bound (4.17) combined with the integrability 
a−1 ∈ Lr(Ω; R), see Lemma 4.4, imply (4.27).

We now show the regularity estimate (4.28). Recalling again the random variables 
a, a, a′ from Lemma 4.4, by (4.18) we find that, for almost all ω ∈ Ω:

max
J∈P

‖u|′′J( · , ω)‖Lp(J) ≤
[
a(ω)−1 + a(ω)−2 a′(ω)CLp→W−1

p,{0}

]
‖f‖Lp(I).

Taking the Lr(Ω; R)-norm, and using the Minkowski and Hölder inequalities completes 
the proof of (4.28), and the constant C reg

a,p,r > 0 is finite by Lemma 4.4. �
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We are now ready to formulate the “αβγ” theorem for multilevel approximations of 
moments of the random solution to (4.26). To this end, let {u�}�∈N be a sequence of 
Galerkin approximations u� := uh�

, see (4.19), on partitions T� of I corresponding to 
mesh sizes h� � 2−�. For example, T� may be obtained by 
-fold bisection of the initial 
partition T1 := P. Note that then N� = dim

(
S1

0,{0}(I; T�)
)

� h−1
� � 2�.

Corollary 4.6. Let p ∈ (1, ∞), q ∈ [min{p, 2}, ∞), and k ∈ N. For f ∈ Lp(I), let 
u ∈ Lkq

(
Ω; W̊ 1

p,{0}(I)
)

be the solution to (4.26). Assume further that the Galerkin ap-
proximations (u�)�∈N to (4.26) are constructed as described above. Then, for the Banach 
space (E, ‖ · ‖E) :=

(
W̊ 1

p,{0}(I), | · |W 1
p (I)

)
and with N� � 2�, all conditions of Theo-

rem 3.25 are fulfilled,

(α) ∀
 ∈ N :
∥∥Mk

ε [u] −Mk
ε [u�]

∥∥
εs

�(k,b,p,P,a,f) N
−1
� , i.e., α = 1,

(β) ∀
 ∈ N : ‖u� − u�−1‖Lkq(Ω;W̊ 1
p,{0}(I)) �(k,b,p,q,P,a,f) N

−1
� , i.e., β = 1,

(γ) ∀
 ∈ N : C� � Nk
� , i.e., γ = k,

(stab) ∀
 ∈ N : max
{
‖u‖Lk(Ω;W̊ 1

p,{0}(I)), ‖u�‖Lkq(Ω;W̊ 1
p,{0}(I))

}
≤ Cstab,

for some constant Cstab ∈ (0, ∞) depending only on ‖a−1‖Lkq(Ω;R) and ‖f‖W−1
p,{0}(I).

The Lq-accuracy errk,ML
q,εs (u) < ε ∈ (0, 1/2] of the multilevel Monte Carlo estimator for 

Mk
ε [u] can be achieved at computational costs of the order (4.11) with d = 1.

Proof. We first note that (4.27) combined with the deterministic discrete stability esti-
mate (4.21) and the fact that a−1 ∈ Lkq(Ω; R) imply (stab):

∀
 ∈ N : max
{(

E
[
|u|kW 1

p (I)
])1/k

,
(
E
[
|u�|kqW 1

p (I)
])1/kq

}
≤ ‖a−1‖Lkq(Ω;R)‖f‖W−1

p,{0}(I).

Next, we observe strong convergence of the finite element approximations (u�)�∈N : 
For all r ∈ [1, ∞), we obtain by exploiting the deterministic error estimate (4.23) for 
almost all ω ∈ Ω that(

E
[
|u− u�|rW 1

p (I)
])1/r �(b,p,P) h�

∥∥∥(1 + a
a

)
max
J∈P

‖u|′′J‖Lp(J)

∥∥∥
Lr(Ω;R)

≤ h�

(
1 + ‖a‖L4r(Ω;R)‖a−1‖L4r(Ω;R)

)∥∥∥max
J∈P

‖u|′′J‖Lp(J)

∥∥∥
L2r(Ω;R)

≤ h�

(
1 + ‖a‖L4r(Ω;R)‖a−1‖L4r(Ω;R)

)
C reg

a,p,2r ‖f‖Lp(I),

where we also used (4.28) of Proposition 4.5. Thus, the conditions (α) and (β) are 
satisfied with α = β = 1 by Remark 3.26 and the triangle inequality, respectively.

Finally, the complexity of computing the Galerkin approximation u� in (4.19) per 
one realization of the Gaussian random field g( · , ω) = log(a( · , ω)) (assumed given) at 
discretization level 
 ∈ N scales linearly with N� = dim

(
S1 (I; T�)

)
: Observe that 
0,{0}
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the linear system of N� equations for the N� unknowns corresponding to (4.19) for 
each sample of a( · , ω) is tridiagonal and symmetric, positive definite when the standard 
Courant (“hat functions”) basis is adopted in (4.19). The formation of the kth order 
(full, algebraic) tensor product ⊗ku� then entails the cost bound C� � CγNk

� for one 
sample of the random variable ξ� = ⊗ku� −⊗ku�−1. �
4.3. Approximation of stochastic processes in Hölder spaces

In this subsection we let T ∈ (0, ∞) be a time horizon and consider approximating 
higher-order moments of vector-valued stochastic processes X : [0, T ] × Ω → E by means 
of multilevel Monte Carlo methods. In particular, we derive explicit convergence rates 
for the error of the corresponding approximation in injective tensor norms of Hölder 
spaces Cδ([0, T ]; E). We furthermore detail the implications of this general result for 
the Euler–Maruyama method for stochastic ordinary differential equations, and give an 
overview of further possible applications including approximations of stochastic partial 
differential equations.

In order to properly define the relevant Hölder spaces, we introduce for a Banach 
space (F, ‖ · ‖F ) and δ ∈ (0, 1) the mappings

| · |Cδ([0,T ];F ), ‖ · ‖Cδ([0,T ];F ) : C([0, T ];F ) → [0,∞]

on the Banach space

(
C([0, T ];F ), ‖ · ‖C([0,T ];F )

)
, ‖f‖C([0,T ];F ) := sup

t∈[0,T ]
‖f(t)‖F ,

of continuous functions from [0, T ] to (F, ‖ · ‖F ) via

|f |Cδ([0,T ];F ) := sup
s,t∈[0,T ]

s �=t

‖f(s) − f(t)‖F
|s− t|δ ,

‖f‖Cδ([0,T ];F ) := sup
t∈[0,T ]

‖f(t)‖F + |f |Cδ([0,T ];F ).

We note that the norm ‖ · ‖Cδ([0,T ];F ) renders the subspace

Cδ([0, T ];F ) =
{
f ∈ C([0, T ];F ) : ‖f‖Cδ([0,T ];F ) < ∞

}
⊂ C([0, T ];F )

of F -valued, δ-Hölder continuous functions a Banach space. For brevity, we also use the 
notation C0([0, T ]; F ) := C([0, T ]; F ) to include the case δ = 0.

We now consider the setting of [14, Section 5], that is, we are given a stochastic process 
X : [0, T ] × Ω → E with continuous sample paths satisfying the following regularity 
assumption: There exists a constant β̄ ∈ (0, 1] such that
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∀β ∈ [0, β̄) ∀q ∈ [1,∞) : X ∈ Cβ([0, T ];Lq(Ω;E)). (4.29)

Recall from Subsection 2.1 that (E, ‖ · ‖E) is assumed to be a real Banach space. Ad-
ditionally, we let (Y N )N∈N be a sequence of approximations Y N: [0, T ] × Ω → E to the 
process X with continuous sample paths, which is known to converge at the nodes of the 
temporal partitions

ΘN :=
{
tN0 , tN1 , . . . , tN#(ΘN )−1

}
, #(ΘN ) < ∞, N ∈ N,

0 =: tN0 < tN1 < . . . < tN#(ΘN )−2 < tN#(ΘN )−1 := T,

in the strong sense essentially at the rate β̄ ∈ (0, 1], i.e.,

∀β ∈ [0, β̄) ∀q ∈ [1,∞) : sup
t∈ΘN

∥∥X(t) − Y N(t)
∥∥
Lq(Ω;E) �(β̄,q,T )

∣∣�tNmax
∣∣β, (4.30)

where �tNmax := maxj∈{0,...,#(ΘN )−2} |tNj+1−tNj |. These partitions do not necessarily have 
to be equidistant or nested. We only require the following quasi-uniformity:

sup
N∈N

�tNmax
�tNmin

< ∞, and lim
N→∞

�tNmax = 0, (4.31)

where �tNmin is defined as �tNmax with the maximum replaced by the minimum. Further-
more, we assume that, for every N ∈ N, the approximation Y N is linearly interpolated 
on the partition ΘN , i.e., for all j ∈ {0, . . . , #(ΘN ) − 2},

Y N(s) =
(
tNj+1 − s

)
Y N

(
tNj
)

tNj+1 − tNj
+
(
s− tNj

)
Y N

(
tNj+1

)
tNj+1 − tNj

, s ∈
[
tNj , tNj+1

]
. (4.32)

This general setting facilitates combining the abstract multilevel Monte Carlo results 
of Subsection 3.3 with [14, Corollary 2.11] and, thus, quantifying the convergence of the 
MLMC estimator for Mk

ε [X] based on approximations Y N1 , . . . , Y NL in the norm on 
Lq(Ω; ⊗k,s

εs Cδ([0, T ]; E)) for q ∈ [p, ∞) and δ ∈ [0, β̄), where p ∈ [1, 2] is the Rademacher 
type of E, see Theorem 4.8 below. To this end, the following proposition which readily 
follows from [14, Corollary 2.11] will be crucial.

Proposition 4.7. Let (ΘN )N∈N ⊂ [0, T ] be a sequence of partitions fulfilling (4.31). 
Assume that X,Y N: [0, T ] × Ω → E, N ∈ N, are stochastic processes with continu-
ous sample paths, such that, for all N ∈ N and t ∈ [0, T ], the random variables 
X(t), Y N(t) : Ω → E are Bochner measurable and there exists β̄ ∈ (0, 1] such that (4.29)
and (4.30) hold. In addition, for every N ∈ N, let Y N be linearly interpolated on the 
partition ΘN , see (4.32).
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Then, we have for every q ∈ [1, ∞), δ ∈ [0, β̄), and all ε ∈ (0, ∞),

‖X‖Lq(Ω;Cδ([0,T ];E)) + sup
N∈N

∥∥Y N
∥∥
Lq(Ω;Cδ([0,T ];E)) < ∞,

∥∥X − Y N
∥∥
Lq(Ω;Cδ([0,T ];E)) �(β̄,δ,ε,q,T )

∣∣�tNmax
∣∣β̄−δ−ε

.

Theorem 4.8. Suppose that all assumptions of Proposition 4.7 are fulfilled. In addition, 
let (E, ‖ · ‖E) be of Rademacher type p ∈ [1, 2], k, L ∈ N and {N�}�∈N ⊆ N be a strictly 
increasing sequence of integers. Assume further that, for all 
 ∈ {1, . . . , L}, M� ∈ N and 
ξ�,1, . . . , ξ�,M�

are independent copies of the random variable

⊗kY N� −⊗kY N�−1 : Ω → ⊗k,s
εs C([0, T ];E), Y N0 := 0 ∈ C([0, T ];E).

Then, for every q ∈ [p,∞), δ ∈ [0, β̄), and all ε ∈ (0, ∞), we have that

errk,ML
q,εs (X; δ) :=

∥∥∥∥Mk
ε [X] −

L∑
�=1

1
M�

M�∑
j=1

ξ�,j

∥∥∥∥
Lq(Ω;⊗k,s

εs Cδ([0,T ];E))

�(β̄,δ,ε,k,p,q,T )
∣∣�tNL

max
∣∣β̄−δ−ε +

L∑
�=1

M
−
(
1− 1

p

)
�

∣∣�tN�−1
max

∣∣β̄−δ−ε
.

Proof. We fix q ∈ [p,∞), δ ∈ [0, β̄), ε ∈ (0, ∞), and first observe that by the triangle 
inequality on Lq(Ω; ⊗k,s

εs Cδ([0, T ]; E)),

errk,ML
q,εs (X; δ) ≤

∥∥Mk
ε [X] −Mk

ε

[
Y NL

]∥∥
⊗k,s

εs Cδ([0,T ];E)

+
∥∥∥∥Mk

ε

[
Y NL

]
−

L∑
�=1

1
M�

M�∑
j=1

ξ�,j

∥∥∥∥
Lq(Ω;⊗k,s

εs Cδ([0,T ];E))
=: (A) + (B).

Term (A) can be bounded by combining Lemma 3.19 with the stability and conver-
gence results of Proposition 4.7, showing that

(A) ≤
∥∥X − Y NL

∥∥
Lk(Ω;Cδ([0,T ];E))

k−1∑
i=0

[
‖X‖iLk(Ω;Cδ([0,T ];E))

∥∥Y NL
∥∥k−i−1
Lk(Ω;Cδ([0,T ];E))

]
�(β̄,δ,ε,k,T )

∣∣�tNL
max

∣∣β̄−δ−ε
.

To bound term (B), we may without loss of generality assume that ε < β̄ − δ and 
define β := δ + ε

2 ∈ (δ, β̄). We then exploit continuous embeddings, similarly as in the 
proof of [14, Corollary 5.15]: There are constants C1, C2 ∈ (0, ∞), depending only on 
β, δ, T , such that

‖f‖Cδ([0,T ];E) ≤ C1‖f‖W s̄((0,T );E) ≤ C2‖f‖Cβ([0,T ];E) ∀f ∈ Cβ([0, T ];E),

p̄
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where s̄ := β+δ
2 ∈ (δ, β) ⊂ (0, 1) and p̄ := 4

β−δ ∈ (4, ∞). Here, for s ∈ (0, 1) and 
q ∈ [1, ∞), the space W s

q ((0, T ); E) denotes the vector-valued fractional Sobolev space, 
see e.g. [35, Definition 2.5.16]. Continuous embeddings are preserved under (full or sym-
metric) injective tensor products and, thus, we also have that

‖u‖⊗k,s
εs Cδ([0,T ];E) �(β,δ,k,T ) ‖u‖⊗k,s

εs W s̄
p̄ ((0,T );E) ∀u ∈ ⊗k,s

εs W s̄
p̄ ((0, T );E).

In addition, we note that Ē := W s̄
p̄ ((0, T ); E) has type min{p, p̄} = p: This observation 

follows from the fact that both Lp̄((0, T ); E) and W 1
p̄ ((0, T ); E) have type min{p, p̄} (see 

[36, Proposition 7.1.4]) combined with the property that

Ē = W s̄
p̄ ((0, T );E) =

(
Lp̄((0, T );E),W 1

p̄ ((0, T );E)
)
s̄,p̄

is the real interpolation space between Lp̄((0, T ); E) and W 1
p̄ ((0, T ); E) (cf. [35, The-

orem 2.5.17]) and the specification of the type of interpolation spaces [36, Proposi-
tion 7.1.3]. Thus, we may conclude with Theorem 3.24 and Proposition 4.7 that

(B) �(β,δ,k,T )

∥∥∥∥Mk
ε

[
Y NL

]
−

L∑
�=1

1
M�

M�∑
j=1

ξ�,j

∥∥∥∥
Lq(Ω;⊗k,s

εs Ē)

�(k,p,q)

L∑
�=1

[
M

−
(
1− 1

p

)
�

∥∥Y N� − Y N�−1
∥∥
Lkq(Ω;Ē) max

1≤�≤L

∥∥Y N�
∥∥k−1
Lkq(Ω;Ē)

]

�(β,δ,k,T ) sup
N∈N

∥∥Y N
∥∥k−1
Lkq(Ω;Cβ([0,T ];E))

L∑
�=1

[
M

−
(
1− 1

p

)
�

∥∥X − Y N�−1
∥∥
Lkq(Ω;Cβ([0,T ];E))

]

�(β̄,δ,ε,ε̃,k,q,T )

L∑
�=1

M
−
(
1− 1

p

)
�

∣∣�tN�−1
max

∣∣β̄−β−ε̃ =
L∑

�=1

M
−
(
1− 1

p

)
�

∣∣�tN�−1
max

∣∣β̄−δ− ε
2−ε̃

holds for all ε̃ ∈ (0, ∞), and the claim follows for the choice ε̃ := ε
2 . �

Example 4.9 (Euler–Maruyama method for SDEs). Let (Ft)t∈[0,T ] be a normal filtration 
on (Ω, A, P ) and let B : [0, T ] ×Ω → Rm be an m-dimensional (Ft)t∈[0,T ]-Brownian mo-
tion (with continuous sample paths). For Lipschitz continuous functions μ : Rd → Rd and 
σ : Rd → Rd×m, consider the (Ft)t∈[0,T ]-adapted stochastic process X : [0, T ] × Ω → Rd

with continuous sample paths that satisfies

X(t) = X(0) +
t∫

0

μ(X(s)) ds +
t∫

0

σ(X(s)) dB(s), P -a.s.,

as well as the linearly interpolated Euler–Maruyama approximations (Y N )N∈N to X, 
defined with respect to equidistant partitions of size �tNmax = �tNmin = T/N as follows: 
Y N(0) := X(0), and for j ∈ {0, . . . , N − 1} and s ∈

(
jT , (j+1)T ],
N N
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Y N(s) := Y N
(
jT
N

)
+
(
s− jT

N

)
μ
(
Y N

(
jT
N

))
+
(
sN
T − j

)
σ
(
Y N

(
jT
N

))(
B
( (j+1)T

N

)
−B

(
jT
N

))
.

Then, using the notation of Theorem 4.8 with E := Rd, we conclude that for every 
q ∈ [2, ∞), δ ∈ [0, 1/2) and all ε ∈ (0, ∞),

errk,ML
q,εs (X; δ) �(δ,ε,k,q,T ) N

−
( 1
2−δ−ε

)
L +

L∑
�=1

M
− 1

2
� N

−
( 1
2−δ−ε

)
�−1 .

For the choice N� := 2� and M� := 2L−�, this yields the error bound

errk,ML
q,εs (X; δ) �(δ,ε,k,q,T ) 2−L

( 1
2−δ−ε

)
+

L∑
�=1

2−
L−�

2 2−�
( 1
2−δ−ε

)
� 2−L

( 1
2−δ−ε

)
.

Since ⊗k
εC([0, T ]; R) = C([0, T ]k; R), see [54, Section 3.2, p. 50], this error estimate holds 

in particular also on C([0, T ]k; R).

Remark 4.10. We note that Theorem 4.8 is applicable to a variety of numerical schemes 
developed for stochastic evolution problems (such as SDEs and stochastic PDEs), for 
which the regularity (4.29) of the solution process is known, and strong convergence 
rates are available at the nodes of the temporal partitions in Lq(Ω; E)-sense for any 
q ∈ [1, ∞). This list includes for instance:

(a) SDEs with coefficients that are not globally Lipschitz continuous, see e.g. [29, The-
orem 3.1], [34, Theorem 1.1] and [53, Theorem 4.5];

(b) fully discrete (in space and time) approximations for linear or semilinear parabolic 
stochastic PDEs, see e.g. [44, Theorem 3.14];

(c) fully discrete approximations for non-linear stochastic PDEs, such as the stochastic 
Allen–Cahn equation, see e.g. [4, Theorem 1.1].

5. Conclusions

We have analyzed the convergence of Monte Carlo sampling for higher-order moments 
of Banach space valued random variables. Specifically, for every k ∈ N, we have derived 
explicit, k-independent strong convergence rates in the injective tensor norm for approx-
imating the kth moment Mk

ε [X] of a random variable X : Ω → E, taking values in a 
Banach space E, by means of

I. standard Monte Carlo sampling, involving no further numerical approximation, see 
Theorem 3.16;

II. the single-level Monte Carlo method, combining Monte Carlo sampling with an ap-
proximation X1 : Ω → E1 of X to generate samples in a (usually finite-dimensional) 
subspace E1 ⊆ E, see Corollary 3.20;
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III. the multilevel Monte Carlo method, combining Monte Carlo sampling with a hi-
erarchy of approximations X� : Ω → E�, 
 ∈ {1, . . . , L}, in (usually nested, finite-
dimensional) subspaces E� ⊆ E, see Theorems 3.24 and 3.25.

These findings extend the numerical analysis of Monte Carlo based algorithms in com-
putational uncertainty quantification to a broad range of mathematical models beyond 
the classical theory in Hilbert spaces, which relies on assumed square-integrability and 
bias-variance decompositions. Several examples have illustrated the wide scope of the 
presently developed theory: linear, second-order elliptic PDEs with data affording well-
posedness in W 1

p , and stochastic evolution equations with almost sure path regularity in 
Hölder spaces.

The results of Subsections 3.2 and 3.3 are essential for the error analysis of Monte Carlo 
approximations of k-point correlations for every operator equation with random input 
data which, due to modeling or physical constraints, does not admit a well-posed formula-
tion in Hilbert spaces. We indicate some further applications, where this is of relevance: 
In [42] Monte Carlo finite difference discretizations for scalar, degenerate convection-
diffusion equations with random initial data were considered. In that case, the particular 
structure of the degeneracy in the diffusion coefficient, imposed from physical proper-
ties of the underlying model, mandated a mathematical formulation in Banach spaces 
of type p < 2. Assuming random initial data, the corresponding Monte Carlo error 
analysis for mean values of the solution therefore required a setting in Banach spaces 
as in Corollary 3.15. With the abstract MLMC results of Theorems 3.24 and 3.25, the 
MLMC finite difference convergence analysis for first-order moments of [42] generalizes 
to spatiotemporal k-point correlations with k ≥ 2.

Another application is related to fluid flows: For the compressible Navier–Stokes 
equations with spatially periodic solutions, the (isentropic) equation of state relates 
the pressure P to the fluid density � via P (�) = a�γ , where a > 0 and γ > 1 are 
physical constants. In well-posed variational formulations [48], the density �(t, · ) and 
the corresponding momentum m(t, · ) at time t ∈ [0, T ] take values in Lγ

(
Td
)

and 
L 2γ

γ+1

(
Td; Rd

)
, respectively, where d ∈ {2, 3} and Td denotes the d-dimensional torus. 

With random data, this entails a Banach space setting of type p = min{γ, 2} for the 
density and p = 2γ

γ+1 ∈ (1, 2) for the momentum. The convergence of single-level Monte 
Carlo finite volume approximations for higher-order moments of �(t, · ) and m(t, · ) has 
been discussed in the recent work [17], using the isomorphic identification

⊗k
γLγ

(
Td
) ∼= Lγ

(
Tkd

)
(5.1)

(and similarly for the d components of the momentum). Here, ⊗k
γ indicates the appropri-

ate Chevet–Saphar tensor product space, see e.g. [54, Chapter 6]. The present, abstract 
MLMC results apply directly to the setting of [17], implying corresponding convergence 
results for multilevel Monte Carlo approximations.
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An interesting topic for future research is to investigate whether the Monte Carlo 
convergence results, derived for injective tensor product spaces in this work, hold also 
with respect to stronger cross norms. In particular, the identification of tensor prod-
ucts of Lp-spaces as in (5.1) raises the question if it is possible to use one of the pth 
Chevet–Saphar tensor norms dp or gp (see [54, p. 135]) if the Banach space E has type p. 
The Chevet–Saphar norms and the Hilbert tensor norm w2 are unified by the tensor 
norms {αp,q}1≤p,q≤∞ due to Lapresté: gp = αp,1, dp = α1,p, and w2 = α2,2, see [16, 
Sections 12.5–12.8] and the references there. However, in this generality, there do not 
seem to be symmetric versions of these tensor norms available in the literature. A cor-
responding (ML)MC convergence analysis would thus have to be based on considerably 
different arguments.

Furthermore, this work may be extended to sparse tensor approximations as consid-
ered in the Hilbert space setting in [3]. Specifically, we analyzed the MLMC approach for 
approximating the kth moment Mk

ε [X] using samples of the (exact, full) tensor product 
⊗kX� on levels 
 ∈ {1, . . . , L}. The formation of this k-fold tensor product ⊗kX� on level 

 typically entails costs in work and memory of the order C� � Nγ

� with γ = max{γ1, k}, 
assuming that γ1 is the exponent in the asymptotic cost bound for computing one sam-
ple of X�, and that one computed sample of X� requires storage of order N�. As it is 
well-known in the Hilbert space case, various consistent sparse tensor product approxi-
mations allow to reduce this complexity considerably. For example, for the applications 
discussed in Subsections 4.1 and 4.2, the sparse tensor product approach for the MLMC 
approximation of kth moments proposed in [3] for Hilbert spaces can be leveraged to 
reduce the parameter γ in Theorem 3.25 from max{γ1, k} to γ1 + δ for some (arbitrarily 
small) δ > 0. Yet, in this setting the error analysis of Theorem 3.24 and, consequently, 
also of Theorem 3.25 does not readily apply.

Beyond the MLMC estimation of kth moments Mk
ε [ξ] = E[⊗kξ], one may consider 

anisotropic k-fold correlations of the form E[ξ1⊗· · ·⊗ξk]. Here, the vector-valued random 
variables ξ1, . . . , ξk entering the anisotropic, injective tensor product formation may take 
values in Banach spaces E1, . . . , Ek of (possibly different) types p1, . . . , pk ∈ [1, 2]. This 
rather general setting has numerous applications, and can be analyzed with the tech-
niques in the present paper, in conjunction with the multi-index Monte Carlo approach 
from [30]. Details shall be reported elsewhere.
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Appendix A. Tensor norms of symmetric elements of Hilbert spaces

In this section we consider a real separable Hilbert space (H, ( · , · )H) and explicitly 
compute the projective and injective tensor norms of Subsection 2.2 for symmetric ele-
ments in ⊗2,sH of the form 

∑n
j=1 λj ej ⊗ ej , where e1, . . . , en are orthonormal in H, and 

λ1, . . . , λn ∈ R.
For this purpose, we need the notion of the k-fold Hilbert tensor product space ⊗k

w2
H, 

which is defined as the closure of the (full) k-fold algebraic tensor product space ⊗kH

with respect to the norm which is induced by the inner product

( n∑
j=1

k⊗
ν=1

xj,ν ,
ñ∑

i=1

k⊗
ν′=1

yi,ν′

)
w2

:=
n∑

j=1

ñ∑
i=1

k∏
ν=1

(xj,ν , yi,ν)H . (A.1)

In particular, the tensor product space (⊗k
w2

H, ( · , · )w2) is again a Hilbert space.

Lemma A.1. Assume that (H, ( · , · )H) is a real separable Hilbert space and (ej)j∈N is an 
orthonormal basis for H. Let the injective and projective tensor norms, ‖ · ‖ε and ‖ · ‖π, 
be defined on ⊗2H as in (2.1) and (2.6), and let the symmetric injective and projective 
tensor norms, ‖ · ‖εs and ‖ · ‖πs

, be defined on ⊗2,sH as in (2.3) and (2.7), respectively. 
Let n ∈ N and λ1, . . . , λn ∈ R. Then,∥∥∥∥ n∑

j=1
λj ej ⊗ ej

∥∥∥∥
π

=
∥∥∥∥ n∑
j=1

λj ej ⊗ ej

∥∥∥∥
πs

=
n∑

j=1
|λj |, (A.2)

∥∥∥∥ n∑
λj ej ⊗ ej

∥∥∥∥
ε

=
∥∥∥∥ n∑

λj ej ⊗ ej

∥∥∥∥
ε

= max
1≤j≤n

|λj |. (A.3)

j=1 j=1 s
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Proof. We set Un :=
∑n

j=1 λj ej ⊗ ej ∈ ⊗2,sH. Then, by the definitions of the projective 
norms in (2.6) and (2.7), see Remark 2.1, it follows that

‖Un‖π ≤ ‖Un‖πs
≤

n∑
j=1

|λj | ‖ej‖2
H =

n∑
j=1

|λj |.

Furthermore, for any representation Un =
∑ñ

i=1 xi ⊗ yi ∈ ⊗2H of Un we find that

n∑
j=1

|λj | =
∑
j∈N

|(Un, ej ⊗ ej)w2 | =
∑
j∈N

∣∣∣∣∣
( ñ∑

i=1
xi ⊗ yi, ej ⊗ ej

)
w2

∣∣∣∣∣ ,
where ( · , · )w2 is the inner product on the Hilbert tensor product space ⊗2

w2
H, defined 

as in (A.1) for k = 2. Thus, by the triangle and Cauchy–Schwarz inequalities,

n∑
j=1

|λj | ≤
ñ∑

i=1

∑
j∈N

∣∣(xi ⊗ yi, ej ⊗ ej)w2

∣∣ =
ñ∑

i=1

∑
j∈N

∣∣(xi, ej)H
∣∣∣∣(yi, ej)H ∣∣

≤
ñ∑

i=1

(∑
j∈N

(xi, ej)2H

)1/2(∑
j∈N

(yi, ej)2H

)1/2

=
ñ∑

i=1
‖xi‖H‖yi‖H .

By taking the infimum over all representations of Un ∈ ⊗2H we obtain the reverse 
inequality ‖Un‖π ≥

∑n
j=1 |λj | and, since also ‖Un‖πs

≥ ‖Un‖π, this proves (A.2).
To show (A.3), let j� ∈ {1, . . . , n} be an index such that |λj� | = max1≤j≤n |λj |, and 

recall the definitions of the injective norms from (2.1) and (2.3). Then, we find

‖Un‖ε ≥ ‖Un‖εs = sup
f∈BH′

∣∣∣∣ n∑
j=1

λj〈f, ej〉2
∣∣∣∣ ≥ ∣∣∣∣ n∑

j=1
λj(ej� , ej)2H

∣∣∣∣ = |λj� | = max
1≤j≤n

|λj |.

The reverse estimates follow again by the Cauchy–Schwarz inequality combined with the 
Riesz representation theorem,

‖Un‖ε = sup
f1,f2∈BH′

∣∣∣∣ n∑
j=1

λj〈f1, ej〉〈f2, ej〉
∣∣∣∣ ≤ |λj� | sup

f1,f2∈BH′

n∑
j=1

|〈f1, ej〉| |〈f2, ej〉|

= max
1≤j≤n

|λj | sup
v1,v2∈BH

n∑
j=1

|(v1, ej)H | |(v2, ej)H | ≤ max
1≤j≤n

|λj |.

Thus, ‖Un‖εs ≤ ‖Un‖ε ≤ max1≤j≤n |λj | completing the proof of (A.3). �
Remark A.2 (Relation of ⊗2,sH to self-adjoint finite-rank linear operators). In the setting 
of Lemma A.1, we may associate a self-adjoint linear operator on the Hilbert space H
with the element Un :=

∑n
j=1 λj ej ⊗ ej in the symmetric algebraic tensor product 
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space ⊗2,sH. More specifically, we can define the self-adjoint finite-rank linear operator 
TUn

: H → H associated with Un by TUn
x :=

∑n
j=1 λj(x, ej)H ej , for every x ∈ H. Using 

this definition, the norm identities in (A.2) and (A.3) can be reformulated in terms 
of the trace-class (or nuclear) norm, ‖TUn

‖L1(H) := tr(|TUn
|), and the operator norm, 

‖TUn
‖L(H) := supx∈BH

‖TUn
x‖H , of TUn

as follows:

‖Un‖π = ‖Un‖πs
=

n∑
j=1

|λj | = ‖TUn
‖L1(H),

‖Un‖ε = ‖Un‖εs = max
1≤j≤n

|λj | = ‖TUn
‖L(H),

see e.g. [57, Theorem 14.15.(1) and Theorem 8.11] for the operator norm identities.
More generally, to every element U ∈ ⊗2,sH, we can associate a self-adjoint linear 

operator TU : H → H, whose action on x ∈ H is defined by

(TUx, y)H = (U, x⊗ y)w2 ∀y ∈ H.

Here, the Riesz representation theorem ensures that the linear operator TU is well-
defined. The implied linear mapping I : U �→ TU extends continuously to an isometric 
isomorphism between the symmetric projective tensor product space ⊗2,s

πs
H and the 

space of self-adjoint trace-class linear operators on H (respectively, between the sym-
metric injective tensor product space ⊗2,s

εs H and the space of self-adjoint compact linear 
operators on H).

Appendix B. A consequence of Slepian’s inequality

In this section we restate the version of Slepian’s inequality for finite-dimensional 
Gaussian processes as formulated by Fernique [18]. We subsequently use it to derive 
a comparison result for real-valued Gaussian processes indexed by the closed unit ball 
BE′ of the dual of a real Banach space E, see Lemma B.2. This result is needed in 
Subsection 3.3 to prove convergence of multilevel Monte Carlo methods.

The following theorem is taken from [18, Theorem 2.1.2]. We note that a more general 
version of Slepian’s inequality, which includes Fernique’s formulation as a special case, 
can be found in [33, Theorem 2.8].

Theorem B.1. Let N ∈ N and X = (X1, . . . , XN )	, Y = (Y1, . . . , YN )	 be two centered 
Gaussian random vectors in RN , defined on a complete probability space (Ω̃, Ã, P̃ ) with 
expectation Ẽ. Assume further that

∀i, j ∈ {1, . . . , N} : Ẽ
[
|Xi −Xj |2

]
≤ Ẽ

[
|Yi − Yj |2

]
,

and let G : [0, ∞) → [0, ∞) be convex and increasing. Then,

ẼG
(

max |Xi −Xj |
)
≤ ẼG

(
max |Yi − Yj |

)
.

1≤i,j≤N 1≤i,j≤N
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Lemma B.2. Let M ∈ N and assume that (gj)Mj=1 is an orthogaussian family on a 

complete probability space (Ω̃, Ã, P̃ ) (with expectation Ẽ), and that Ψ: R2 → R is a 
continuous function such that Ψ(0, 0) = 0. Let (xj)Mj=1, (yj)Mj=1 ⊂ E, and define the 

centered Gaussian process G1 : BE′× Ω̃ → R on (Ω̃, Ã, P̃ ) indexed by the closed unit ball 
BE′ in the dual space E′ by

G1(f) :=
M∑
j=1

gjΨ
(
f(xj), f(yj)

)
, f ∈ BE′. (B.1)

Let G2 : BE′× Ω̃ → R be a second centered Gaussian process on (Ω̃, Ã, P̃ ) such that

∀f, h ∈ BE′ : Ẽ
[
|G1(f) − G1(h)|2

]
≤ Ẽ

[
|G2(f) − G2(h)|2

]
. (B.2)

Then, for all q ∈ [1, ∞) we have that

Ẽ
[(

supf∈BE′ |G1(f)|
)q] ≤ 2q Ẽ

[(
supf∈BE′ |G2(f)|

)q]
. (B.3)

Proof. Set N0 := 0 and f0 := 0 ∈ E′. Given M ∈ N and (xj)Mj=1, (yj)Mj=1 ⊂ E, for 
f ∈ E′ and δ ∈ (0, ∞), define the subset

Uδ(f) :=
{
h ∈ E′ : max

1≤j≤M
|f(xj) − h(xj)| < δ, max

1≤j≤M
|f(yj) − h(yj)| < δ

}
⊆ E′.

Then, for every f ∈ E′ and all δ ∈ (0, ∞), the set Uδ(f) is open (more precisely, an 
open neighborhood of f) in E′ with respect to the weak∗-topology on the dual space E′. 
By the Banach–Alaoglu theorem the closed unit ball BE′ is weak∗-compact. Hence, for 
every n ∈ N, the open cover ⋃

f∈BE′

U 1
n
(f) ⊇ BE′

contains a finite subcover. Iteratively, for every n ∈ N, one can find an integer Nn ∈ N, 
satisfying Nn > Nn−1, and elements fNn−1+1, . . . , fNn

∈ BE′ such that

BE′ ⊆
Nn⋃
ν=1

U 1
n
(fν).

Note, in particular, that this definition of f1, . . . , fNn
, n ∈ N, implies nestedness, 

(f1, . . . , fNn
) ⊆ (f1, . . . , fNm

) for n < m.
Next, we define for every non-negative integer ν ∈ N0 the real-valued centered Gaus-

sian random variables Xν := G1(fν) and Yν := G2(fν). By assumption (B.2) we then 
have for all n ∈ N and every ν, ν′ ∈ {0, . . . , Nn},
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Ẽ
[
|Xν −Xν′ |2

]
= Ẽ

[
|G1(fν) − G1(fν′)|2

]
≤ Ẽ

[
|G2(fν) − G2(fν′)|2

]
= Ẽ

[
|Yν − Yν′ |2

]
.

By Fernique’s version of Slepian’s inequality, see Theorem B.1, applied for the convex 
increasing function G(t) := tq, t ≥ 0, and by using the fact that f0 = 0 ∈ E′ implies that 
G1(f0) = 0 holds P̃ -a.s., we find that, for all n ∈ N, q ∈ [1, ∞),

Ẽ
[(

max0≤ν≤Nn
|G1(fν)|

)q] ≤ Ẽ
[(

max0≤ν,ν′≤Nn
|G1(fν) − G1(fν′)|

)q]
= Ẽ

[(
max0≤ν,ν′≤Nn

|Xν −Xν′ |
)q] ≤ Ẽ

[(
max0≤ν,ν′≤Nn

|Yν − Yν′ |
)q]

≤ 2q Ẽ
[(

max0≤ν≤Nn
|Yν |

)q] ≤ 2q Ẽ
[(

supf∈BE′ |G2(f)|
)q]

.

To derive (B.3), it remains to prove that limn→∞ ‖Sn‖Lq(Ω̃;R) = ‖S∗‖Lq(Ω̃;R), where

Sn := max
0≤ν≤Nn

|Xν | = max
0≤ν≤Nn

|G1(fν)| and S∗ := sup
f∈BE′

|G1(f)|.

By the assumptions on the process G1 in (B.1), there exists a set Ω̃0 ∈ Ã with P̃ (Ω̃0) = 0
such that g(ω̃) := 1 + max1≤j≤M |gj(ω̃)| < ∞ for all ω̃ ∈ Ω̃ \ Ω̃0. Fix ω̃ ∈ Ω̃ \ Ω̃0 and 
ε ∈ (0, 1). Then, there exists f ε = f ε(ω̃) ∈ BE′ such that

sup
f∈BE′

|G1(f)(ω̃)| ≤ |G1(f ε)(ω̃)| + ε

2 .

In addition, there exists δε(ω̃) ∈ (0, ∞), such that the implication

h ∈ Uδε(ω̃)(f ε) =⇒ |G1(f ε)(ω̃) − G1(h)(ω̃)| < ε

2 (B.4)

holds. Indeed, by continuity of Ψ: R2 → R we may choose δε(ω̃) ∈ (0, ∞) such that

max
1≤j≤M

{
max{|f ε(xj) − h(xj)|, |f ε(yj) − h(yj)|}

}
< δε(ω̃)

=⇒ max
1≤j≤M

∣∣Ψ(f ε(xj), f ε(yj)
)
− Ψ

(
h(xj), h(yj)

)∣∣ < ε

2 M−1g(ω̃)−1.

Furthermore, by definition of the sequences (Nn)n∈N ⊂ N and (fν)ν∈N ⊆ BE′ , there 
exist integers nε = nε(ω̃) ∈ N and ν� = ν�(ω̃) ∈ {1, . . . , Nnε

} such that

f ε ∈ Uδε(ω̃)(fν�
).

By combining this observation with (B.4) we conclude that∣∣|G1(f ε)(ω̃)| − |G1(fν�
)(ω̃)|

∣∣ ≤ |G1(f ε)(ω̃) − G1(fν�
)(ω̃)| < ε

,
2
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and

S∗(ω̃) − Snε
(ω̃) = sup

f∈BE′
|G1(f)(ω̃)| − max

0≤ν≤Nnε

|G1(fν)(ω̃)|

≤ sup
f∈BE′

|G1(f)(ω̃)| − |G1(fν�
)(ω̃)| ≤ |G1(f ε)(ω̃)| − |G1(fν�

)(ω̃)| + ε

2 < ε

follows. This shows that, for almost all ω̃ ∈ Ω̃,

S∗(ω̃) = sup
f∈BE′

|G1(f)(ω̃)| = sup
n∈N

max
0≤ν≤Nn

|G1(fν)(ω̃)| = lim
n→∞

Sn(ω̃).

Since the non-negative random variables (Sn)n∈N are non-decreasing in n ∈ N, P̃ -a.s., 
the Lq(Ω̃; R)-convergence lim

n→∞
‖Sn‖Lq(Ω̃;R) = ‖S∗‖Lq(Ω̃;R) follows from the monotone 

convergence theorem. �
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