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Chapter 1

Document Introduction

This document consist of a thesis with a paper included. The paper is the primary graduation
deliverable and can be found in Part I. The other parts of this document elaborate more on
the different aspects presented in the paper. But also on the origin of the research topic.
Part II focuses on this origin. A clear literature study (part of the preliminary graduation)
is presented and more information on how the research question was chosen and what the
different investigated sub-questions were. In Part III the set-up of the simulations and the
different simulations modules will be discussed. This part will also compare the newly developed
methods with old methods to determine the success-rate of the new algorithms. Part IV will
discuss the performance of several modules that were tested in real flight experiments. Finally,
Part V will conclude the primary findings of this research and will be accompanied by several
recommendations which can improve the algorithm and aid in further research.

The Exploring DelFly C.R. Fonville
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Increasing Indoor Exploration Capabilities of the

DelFly Explorer Flapping Wing Micro Air Vehicle

C.R. Fonville∗, S. Tijmons, G.C.H.E. de Croon

Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

Small robots, such as Micro Aerial Vehicles, form an increasingly popular field of in-
terests in research, industry and the consumer market. The autonomous capabilities of
these systems keep evolving and one of the main research goals is to reach full auton-
omy. However, this is often achieved at the cost of growing hardware demands. In this
study a computationally light and efficient way to enhance autonomous on-board explo-
ration capabilities for the DelFly Explorer, a 20-gram flapping wing Micro Aerial Vehicle
(FWMAV), is presented. Both theory and new insights were combined to design an explo-
ration algorithm for the on-board stereo-vision system. The algorithm primarily consists
of a disparity map based decision tree, different exploration phases and computationally
light odometry. Computer simulations proved the effectiveness of the algorithm to enable
autonomous exploration capabilities for the FWMAV system. Initial flight tests also show
that the proposed algorithm increases its exploration capabilities and form a foundation
for future research.

Nomenclature

∆ Texture disparity [−]
A Area [m2]
d Baseline distance between the stereo camera

lenses [mm]
f Focal length of the camera [mm]
h Height of the camera image in pixels [−]
i Horizontal pixel location w.r.t. upper left im-

age corner [−]
j Vertical pixel location w.r.t. upper left image

corner [−]
t Time [s]
V Speed [ms ]
w Width of the camera image in pixels [−]
X ′ Cartesian coordinate of the texture with re-

spect to the camera lens, horizontal plane side-
ways [mm]

Y ′ Cartesian coordinate of the texture with re-
spect to the camera lens, vertical plane [mm]

Z ′ Cartesian coordinate of the texture with re-
spect to the camera lens, horizontal plane for-
ward [mm]

∗Graduate Student, Department Control & Operations,
Section Control & Simulation, Kluyverweg 1, 2629 HS, Delft,
NL

I. Introduction

The autonomous capabilities of small robots and
drones are increasing rapidly. Part of these au-

tonomous capabilities is the ability to explore and/or
map the surrounding environment. This research fo-
cuses on the exploration of buildings. The capabil-
ities developed can also be applied in tasks such as
search and rescue operations, building inspection or
entertainment.

The majority of research in autonomous explo-
ration tasks is based on the increasing computational
and memory capacities of current technology. Simul-
taneous localization and mapping (SLAM) is one of
the most advanced methods currently available.1,2,3,4,
5 However, SLAM is computationally very demand-
ing where the use of a 1.6GHz processor and 1GB
RAM used by Shen et al. is no exception, see Ref.
6. Decreasing the computational complexity of explo-
ration algorithms, instead of increasing it, is therefore
an interesting research branch. A method already
widely applied are the BUG-algorithms. BUG- algo-
rithms are a family of exploration strategy algorithms
which have very low computational demands.4,7 How-
ever these methods are often purely reactive, have no
(topological) map, and need a preset destination or
specific target the robot can search for.8,9

Extension of the standard BUG-algorithms is done
by Ref.4 in the Pursuit-Evasion BUG-algorithm (PE-
BUG). This method combines the simple features of
BUG-algorithms such as obstacle avoidance and wall-
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following in combination with a simple topological
map to clear a complex shaped environment from
intruders. This combination of wall-following algo-
rithms and topological maps forms a good starting
point for this research.

As the drone of interest is light weight and there-
fore has low computation power, low computational
demands are required. The used platform is the DelFly
Explorer, a flapping-wing micro air vehicle (FWMAVs)
shown in Figure 1.10,11 The field of FWMAVs is largely
uncharted, especially there where autonomous capa-
bilities are incorporated. The DelFly Explorer is a
tailed FWMAV. The presence of this tail ensures the
passive stability of the DelFly Explorer, in case of a
minimal forward velocity. Due to this forward ve-
locity the DelFly Explorer has a speed dependent
turn radius, whereas a tailless design such as the
Nano Hummingbird,12 which can rotate in-place, has
a higher manoeuvrability.

Figure 1: Photo of the DelFly Explorer, its wingspan is
28cm, the weight is 20 gram, the stereo-board is located
above the tail.13

In this article, an exploration algorithm is pre-
sented which will aid in increasing autonomous ex-
ploration capabilities. The developed algorithm is
specifically optimized and applied to the DelFly Ex-
plorer. The main aim in this research concerns the
design of a system with modular elements that have
added value into reaching the aforementioned goal.
This leads to the following research question:

How to increase the indoor explored area of the
DelFly Explorer by means of computationally

efficient routing decisions?

In Chapter II, the current configuration of the
DelFly Explorer will be discussed. This configuration
will form the basis on which the research of this article
is conducted. The method that will be applied and
how that method will be evaluated will be discussed
in Chapter III. In Chapter IV the different modules
used in the algorithm will be developed and tested

in simulation. The combined simulation result will
be analyzed at the end of the chapter. In Chapter V
different modules will be converted from simulation
to the actual platform and their performance will be
evaluated in real experiments. Finally, Chapter VI
will provide an overall conclusion of the project and
recommendations for future and successive research.

II. Current Configuration

A. The DelFly Explorer

The DelFly Explorer is equipped with a ATmega 328P
- MLF28 micro-controller (autopilot). And is capa-
ble of two-way communication with a ground-station.
The battery of the DelFly Explorer provides energy
for six minutes of flight time. 3-axis accelerome-
ter, magnetometers, gyrometers, and a barometer are
part of the sensors of the DelFly Explorer. The pri-
mary sensor used is a stereo-vision camera with two
640x480 pixels sensors on a baseline of 6 cm located
just above the tail, as visible in Figure 1. The used
resolution is equal to 128x96 pixels. The two data-
streams of the cameras are received by a complex pro-
grammable logic device (CPLD). The CPLD merges
the grey-scale components of the images into a sin-
gle stream. On a STM32F405 processor (168MHz,
192kB RAM) the video stream-data can be analysed
(stereo-board).14

With the stereo-vision cameras a disparity map
can be constructed.15 Such a map shows the relative
shift of the textures for each of the two frames of the
stereo camera. With this relative shift an estimate of
the distance to the texture is obtained. This disparity
map forms the basis of the primary algorithms used
in this research.

B. Droplet

A method to evade obstacles was already developed
for the DelFly Explorer by Tijmons et al., see Ref.16.
This method consist of a droplet shaped area in front
of the DelFly Explorer which is kept clear of obstacles
at all time. The droplet shaped area will be addressed
as the droplet. See Figure 2.

The strategy is to keep the area of the droplet, in
which the DelFly Explorer can still safely make a full
turn, clear of any obstacles. The area of the droplet
is within the field of view from the position of the
DelFly Explorer, visualized in Figure 2. This is why
the shape is droplet-shaped and is determined by the
turn radius (r), field of view (α), and safety mar-
gin (m). These constraints also determine the total
length (l) of the droplet, which is currently set to 3
meters. The droplet is designed for making clockwise
turns only, therefore the camera is also aimed under
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Figure 2: Graphical droplet representation with stereo-
camera under angle β.17

an angle (β).

III. Method

A. Exploration Factor

For determining the success of the exploration of the
DelFly Explorer and compare obtained results, a fig-
ure of merit is required, the exploration factor. A
number of factors are of importance in this formula.
First, and most important, is the total area that is
visited. Secondly, one of the sub-goals of this project
is to be able to access multiple rooms. Therefore the
ratio of rooms over the total rooms that could have
been explored will be incorporated in the exploration
factor. Lastly the speed and flying time of the DelFly
Explorer will be incorporated. Multiplication of those
parameters will result in the total distance travelled,
which again with the total explored area can give an
insight in the efficiency of the taken route. The ex-
ploration factor is then expressed as:

EF =
nRooms

nRoomtotal
· Aexplored

Atotal
· Aexplored

Vaverage · t
(1)

This equation directly shows some limitations of
the figure of merit. For example, if two runs are com-
pared where one of the runs has a much larger total
area, that run would have a lower exploration factor
due to the fact that it has explored a lower percentage
of the available area. The other way around however,
if it wouldn’t be a ratio, in the bigger room there
would be more exploration possible after a certain

time while in the smaller room exploration is finished
already. Therefore, it is recommended when compar-
ing results that equal or similar total areas should be
considered. Similar argumentation can be used for
the number of rooms. Furthermore, the total simula-
tion time (t), if it differs, compensates in the last term
the decreased explored area from the second factor.
However, this compensation is not adequate for the
number of rooms visited. Introducing a second rec-
ommendation to keep simulation time constant over
the different compared experiments.

B. Algorithm layout

As discussed in the introduction the total simulation
will be build up out of different modules, each of these
modules will represent an exploration phase. Explo-
ration phase 1 will identify the general contour layout
of the room by means of wall-following. Exploration
phase 2 will, when the contour of the room is known,
explore the remainder. Exploration phase 3 consist
of an algorithm which will identify door candidates.
This exploration phase will provide the location of the
best candidate to the algorithm of exploration phase
4, which will head for the door. These last two phases
interchange quickly for better convergence. Finally
some overall modules will handle obstacles, room de-
tection, and a topological map. A finite state ma-
chine representation of this structure is provided in
Figure 3.

IV. Simulation

SmartUAV∗ is an in-house C++ software package
that can be adapted to simulate several unmanned
aerial vehicles (UAVs). SmartUAV, developed by the
MavLab, contains a library of these different UAVs
and their dynamics, layout, in-, and outputs. For the
DelFly Explorer this data is already available within
the SmartUAV environment. Moreover, SmartUAV
builds a graphic environment based on the layouts
provided.

There are three different environment layouts used
for the simulations, each layout represents a couple
of challenges and possible real world situations. Fur-
thermore the textures that are used in the environ-
ment represent typical wall, corridor, floor and roof
profiles. The three environments are visualized in
Figure 4.

In simulation several assumptions were made: con-
stant flying velocity, perfectly known dynamics, no
disturbances, static environment, and constant flying
altitude.

∗https://svn.lr.tudelft.nl/trac/ADIO-CS/SMARTUAV/
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Figure 3: Finite state machine representation of the ex-
ploration algorithm.

Figure 4: Layout of the three different environments
used in simulations.

A. Stereo-vision Altitude Estimate

A rather stand-alone subject is the flying altitude
of the DelFly Explorer. The main control loops in
this simulation focus on the horizontal plane. In a
large part of the simulations the flying altitude of the
DelFly Explorer was fixed. However in real world
scenario’s this is not feasible. In order to prevent
any collisions of the DelFly Explorer with ceilings or
floors a constant altitude would be preferable, this
also eases the process of matching visual cues. In
Chapter II it was mentioned that one of the sensors
on-board is a barometer. To determine the exact al-
titude, a pressure table is necessary which matches
a pressure to an altitude. However the correspond-
ing air-pressure for a certain altitude can even differ
per room in the environment. Therefore a calibration
method has to be designed to calibrate the barometer
for every room.

In Chapter II the working principle behind obtain-
ing a disparity map was explained in short. From the
disparity map a 3D-coordinate with respect to the
left-camera for each detected pixel can be calculated
via:

Z ′ =
d · f
∆

X ′ = (i− w

2
) · Z

′

f
Y ′ = (j− h

2
) · Z

′

f
(2)

Where Z ′ is the depth coordinate of the texture
and X ′, Y ′ are the horizontal and vertical coordinate
respectively. (∆) denotes the pixel disparity, b the
lateral distance between the lenses, and f the focal
length. Finally, h and w are the image height and
width respectively and (i, j) is the pixel position with
respect to the image centre.

The lowest value obtained for the vertical output
of the different pixels corresponds to the height of the
floor with respect to the DelFly Explorer (when the
floor is in visual range). This value can then be used
to calibrate the barometer. During simulation the
above described method was tested, with a constant
flying altitude of 1,5m. The raw height measurements
based on the disparity map are shown in Figure 5b.
The route flown through environment 1 for this spe-
cific data-set is shown in Figure 5a.

However using this varying altitude output to con-
stantly calibrate the barometer is due to all the noise
not very useful and will results in erratic flight be-
haviour. Therefore an addition to this algorithm would
be essential. The calibration method could be im-
proved by taking the lowest dominant value within
the last measurement period to calibrate the barom-
eter. The result of this addition can be seen in Fig-
ure 5c. The result is a significantly less erratic out-
put. One will still observe some peaks, these measure-
ments will be rejected When the height difference be-
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(a) Route flown during the stereo-height simulation.

(b) The measured floor/ceiling altitude by the stereo-
height calculations algorithm during simulation.

(c) The estimated floor/ceiling altitude estimated over a
period by the height calculations algorithm during simu-
lation. Rejected measurements due to a detected wall are
also shown.

Figure 5: Stereo-vision altitude estimate simulation re-
sults.

tween the floor and ceiling is less than 1.5 m. These
are denoted with a circle in the figure. Analysis of
the route showed that these rejected measurements
indeed correspond to moments when the DelFly Ex-
plorer was approaching an obstacle, and thus the floor
and ceiling were not within view.

B. Droplet Adjustments

Rooms and corridors are explored clockwise. Most
corridors have a relative narrow layout, due to this
fact it is possible the droplet is triggered by the cor-
ridor wall on the right side while the DelFly Ex-
plorer is following the left wall. A clockwise turn
would then result in flying back in the direction the
DelFly Explorer just came from. Therefore the possi-
bility should exists to make a counter-clockwise turn.
Changes to the droplet were made accordingly, aim-
ing the camera along the body axis. Based on the
disparity map and exploration phase the turning di-
rection of the droplet is decided. When the turn-
ing direction is known the DelFly Explorer makes a
course correction to steer in for the droplet turn.

C. Wall-Following

The wall-following algorithm is developed such that
rooms and corridors can easily be explored and to
aid in the determination of the roomsize. The wall-
following algorithm is programmed to explore rooms
and corridors clockwise. Therefore the algorithm tries
to keep the wall on the left side of the DelFly Ex-
plorer. The disparity map, which was explained in
Chapter I, and the droplet are used as the basis for
the algorithm to do this. The algorithm evaluates
the disparities of the left half of the disparity map
with respect to the droplet settings. If a minimum
amount of textures have a too low disparity value,
meaning textures are far away, the DelFly adjusts its
heading to the left. When disparities are too high,
textures are too close, the heading is adjusted to the
right. However, when the difference between the av-
erage disparities on the left and right half plane are
below a certain threshold and the detected textures
are almost nearby, a left turn is prevented. This turn
is prevented such that the DelFly Explorer does not
crash near corners.

The output of the wall-following algorithm will
be an actuator input, either for correctly following
the wall, or because the droplet was activated, or to
adjust for the corridor direction. Methods not based
on the disparity map, but for example on contour-
lines were not robust enough.

The difference of the wall-following method with
respect to solely the droplet is visible in Figures 6a -
6b. In these figures the black lines represent the
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walls, the blue line the path of the DelFly Explorer.
The background intensity resembles how long an area
has been insight. Note: the droplet is also part of
the wall-following algorithm to ensure a collision free
flight. The performance is determined by the average
distance from the wall. For the wall-following algo-
rithm this is 2.03m on average and for the droplet it
is 2.69m, obtained in environment 1. From this it can
be concluded that the wall-following algorithm works
successfully.

(a) Droplet-only behaviour.

(b) Wall-following behaviour.

Figure 6: Simulated flight behaviour of the DelFly Ex-
plorer for different settings with a 150 seconds simulation
time.

D. Room detection

Room detection is the method in which the size and
shape of the room is detected and is determined when
the room has been explored. The wall-following pro-
vides a good basis for room detection. As seen in

Figures 6a - 6b the wall-following algorithm is bet-
ter able to reach the outskirts of the room than the
droplet-only method. These outer points can be used
to define a polygon which approximates the room lay-
out. The corner points of this polygon are based on
the locations where the droplet was activated and the
heading change was above a preset threshold. These
points tend to correspond indeed with the major cor-
ners of the room. Simultaneously each newly created
point is compared to the already stored points based
on the heading before and after the turn, and their
estimated location. Only when a turn fulfills the next
two requirements it is regarded as such.

The first requirement is evaluated based on the
magnetometer, each time a turn is made the mag-
netometer reading (heading) is stored and linked to
this turn. A future turn can be matched to this turn
based on their magnetic fingerprint. In a square room
this method already rules out 75% of the locations in
the database. For more diverse shapes this value can
become ≥ 75%.

For the second requirement odometry is used. In
simulation the speed is fixed, flight time is known,
and the heading changes are recorded by the magne-
tometer. With this information the position of the
DelFly Explorer can be estimated. When a new turn
is detected within a 3 meter radius of a previous
point, the turns are matched. So according to the
odometer the DelFly Explorer has been here before.

Note that the assumptions of no magnetometer
disturbances and constant speed may have a big in-
fluence on this part of the algorithm when it would
be tested in real situations.

When three successful turn matches are made the
final room layout is defined by the polygon and as-
signed a room number. During the successive ex-
ploration phases an algorithm is constantly checking
whether the DelFly Explorer left the polygon (room)
and thus has successfully entered an new area of the
environment. When this is the case the exploration
phase moves back to 1 (wall-following), the old poly-
gon is saved for later reference, and the construction
of a new polygon is started.

E. Door Manoeuvring

The next explorations phase (phase 2) is initiated
when the final room layout is drafted. In this phase
the DelFly Explorer will move to the center of the
polygon and will attempt a full rotation, as can be
seen in Figure 7. This will provide an overview of the
room as a whole, including the less or even not ex-
plored areas. Simultaneously exploration phase 3 is
activated, responsible for identifying door candidates.
So that during the full rotation the total overview of
the room can be used to identify a good first door can-

6 of 12



didate. If this manoeuvre is not completed within 30
seconds it will be terminated. This threshold was set
because sometimes the polygon’s centre of gravity is
located near a wall and the droplet will be activated
constantly before the rotation is finished or started.

In Figure 7 it is clear that during the rotation the
door was detected and after the rotation the DelFly
Explorer is heading in the direction of this opening.
However this method is subject to some disadvan-
tages, due to the locations of the turn matches. These
locations influence the position of the rotation loca-
tion, often in the direction of the walls. This causes
an unclear or even no rotation at all. Furthermore,
the maximum time reserved for this phase ensures
not much time is used in trying to perform this ma-
noeuvre.

Figure 7: Flown track of wall-following algorithm (phase
1) followed by the center rotation (phase 2).

The door detector algorithm is based on the dis-
parity map. This can be visualized by dividing the
disparity map in N different vertical segments, a vi-
sualisation for 10 histograms is given in Figure 8. In
this figure one can see the higher disparities near the
edges of the door. For each of those vertical segments
(bins) the average disparity value and total number
of detected disparities is calculated. Additionally for
each bin the contrast with respect to a number of
adjacent bins is calculated. This to represent the
door feature of a far opening in a relatively nearby
plane. The bin with the lowest disparity (correspond-
ing with textures the furthest away) that is under the
minimum disparity threshold which also has a total
number of disparities above a certain threshold (this
to reduce the effect of false positives and noise) and
has a favorable contrast will be selected as target bin.
This method is used to recognize room exits.

When a target bin is selected, the final exploration
phase (phase 4) is initiated. The directional vector

Figure 8: Door detector vertical target bin for 10 his-
tograms, above the disparity map, below the simulator
view.

from the current location to the target bin is com-
puted, an S-shaped path is planned and executed ac-
cordingly. This S-shaped path always remains within
the confines of the droplet, therefore only small head-
ing changes are used.

While the S-shaped manoeuvre is carried out a
constant re-evaluation of the target and the path is
performed. If needed the current manoeuvre is stopped
and a new one is initiated to ensure optimal naviga-
tion towards and through the door. By using this
S-shape path and the target re-evaluation the DelFly
Explorer ends up in front of the door instead of at a
suboptimal angle.

In Figure 9a a typical successful path of this algo-
rithm is visualised in a simulation without prior wall-
following. Noticeable are the consecutive s-curves
taken towards the door opening, due to the constant
re-evaluation of the taken flight route.
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(a) Successful DelFly Explorer path when performing the
S-shaped door tracking and door manoeuvre algorithms
(no initial wall-following), with 20 histograms.

(b) Unsuccessful DelFly Explorer path when performing
the S-shaped door tracking and door manoeuvre algorithms
(no initial wall-following.)

Figure 9: Simulation door manoeuvring results

Figure 9b shows the worst case scenario of the al-
gorithm. Here the DelFly Explorer is constantly ap-
proaching the door opening but failing to go through
the door because the droplet is activated, thus a crash-
free attempt could not be guaranteed. Again the con-
secutive S-shaped turns are visible in the taken tra-
jectory. After a failed attempt the DelFly Explorer
flies to the other end of the room. An improvement to
this algorithm could be to let the DelFly Explorer do
several attempts on a door candidate, and thus stay
in the vicinity, before targeting a new candidate.

When comparing the ability of the door manoeu-
vring algorithm to pass through doors with respect
to the droplet-only method, the former had 2.7 times
more successful passages. Note that for two of the
three environments the number of successful passages
in the droplet-only case was zero. For the other en-
vironment (environment 3) the door manoeuvring al-
gorithm had twice as much successful passages (56
versus 28).

120 simulations where performed to identify the
effect of the camera’s field of view of the ability to
locate and manoeuvre trough the door. Field of view
angles of 40, 50, 60, 70, 80, and 90 degrees were
tested. To be able to perform these tests the droplet
properties and simulation settings should be adjusted
for each field of view angle. In Figure 10 the results
of these simulations are presented. For each of the
settings the total number of successful door manoeu-
vres was counted. The results were then normalized
with respect to the best performing setting. A clear
optimum is present at a field of view of 70 degrees.
Notably one can observe there is only a small per-
formance difference between a field of view of 50 and
60 degrees. A possible explanation for these results
is that a larger field of view has a larger view of the
room and therefore a dominant false positive will be
dominant in more situations. However, a too small
field of view will limit the cases in which the room
exit is in view and decreases the ability to make an
approach with a high success probability. Also the
optimal number of bins used for identification of the
door might differ per field of view setting, this could
be further investigated.

As the effectiveness for a field of view of 70 degrees
was highest, p-values with respect to the 60 and 80
degrees where computed. The bootstrap method is
used, because of the non-parametric nature of the
data and the relative limited population size.18 For
both yields p-value < 0.01.

F. Combined Behaviour

All above discussed modules combined result in the
complete exploration algorithm. Which, besides of
the different exploration phase modules, also exists of
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Figure 10: Normalized mean bootstrapped simulated
door manoeuvring effectiveness with respect to the field
of view of the stereo-vision camera.

overall modules such as the room detection. Figure 11
shows a successful track of a ten minute simulation
of the combined behaviour.

Figure 11: DelFly Explorer 600s simulated flight track
for the exploration algorithm.

Results of the exploration method consisting of
the combined modules is compared to the old droplet-
only method, for all three simulation environments.
Figure 12 shows the results. For all three environ-
ments the observed difference between the methods
had a p-value < 0.01.

Figure 12 shows that for all three environments
the performance of the exploration algorithm exceeds
the performance of the droplet-only method. Fur-
thermore, one can notice that the deviation in ob-
tained results for the exploration algorithm is higher.
This might be due to the fact that, for example in
door manoeuvres, a slightly other approach can be

Figure 12: Mean bootstrapped average exploration fac-
tor, for over 60 simulations, of the droplet-only and ex-
ploration method. Performed in three different simulation
environments.

the difference between failure (not passing through
the door) or success (passing through the door). In
case of a failure the approach should be tried again
and thus will result in a lower performance. From
Figure 12 it can also be seen that some environments,
such as environment 3 (Figure 4), have a good lay-
out for a random exploration approach such as the
droplet. This is because the droplet-only method eas-
ily achieved a relative high exploration factor.

V. Real Flight Experiments

During the real flight experiment the developed
modules will be tested on DelFly Explorer in con-
ditions similar as real flight application. The ba-
sis modules, stereo-vision altitude estimation, wall-
following, and room detection, were tested. The real
flight experiments are performed as proof of concept.
For future statistical significance of the algorithms
in real flight experiments more tests need to be per-
formed.

A. Stereo-vision Altitude Estimate

The first experiment concerned the algorithm which
uses the stereo-vision camera for determining the fly-
ing altitude of the DelFly Explorer. First tests showed
that the exact algorithm of the simulation resulted
in a large amount of noise and unreliable outcomes.
A solution in which for both the lower and upper
part of the image the estimated height of all textures
was sorted, was tested. This could then be used to
determine the actual altitude based on the 10% of
highest/lowest textures. However sorting these val-
ues was a relative large computational demand with
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respect to the obtained results, as a noisy frame is
more apparent than a large amount of consecutive
noisy frames. Therefore the method was changed
to evaluate the estimated altitude based on the last
40 computations. The resultant would now be the
moving average of the data. The computation algo-
rithm was running at 40 Hz on the stereo-board while
the stereo camera runs on 24 Hz. This means every
second a new independent estimation is given based
on 24 frames and some computations use the same
frame.

Static Test
The test setup consisted of a number of pre-measured
altitudes over which the DelFly Explorer was varied
by hand while being moved through the environment.
The view of the camera was not obstructed by walls
or obstacles. Both the estimated floor- and ceiling-
height were registered over time. One of these tests
is showed in Figure 13.

Time [s]

0 20 40 60 80 100 120 140

H
e
ig

h
t 
[m

m
]

-2000

-1000

0

1000

2000

3000

4000

5000

6000
Stereo vision used for height estimate

Estimated floorheight

Estimated ceilingheight

Actual height

Figure 13: Graph showing estimated and true altitude
of ceiling and floor with respect to the DelFly Explorer.

From this figure it is clear that the estimations
are, especially for the floor height, quite accurate for
the majority of the time. T It might be due to the
fact that the floor was closer to the drone and had
more textures due to objects standing on the floor.
The average root mean squared error over the per-
formed experiments is 116 mm for the floor, and 361
mm for the ceiling height.

Dynamic Test
Besides static tests, flying tests were also performed.
These flying tests give a better insight in how, for
example, vibrations affect the results. The results
are obtained under the same conditions in which the
algorithm would actually be deployed. The experi-

ment is performed in the Cyberzoo†, a fenced area of
approximately 10m x 10m, in which the 3D location
and attitude of the DelFly Explorer can be accurately
tracked. As the ceiling of the Cyberzoo is not within
the visual range of the camera, the algorithm will, in
the dynamic test, only consider the floor height. The
altitudes computed with the stereo-height algorithm
can then be compared to the accurately monitored
height from the static tracking system. Furhtermore
it could be tracked this way whether an obstacle was
present in the field of view of the DelFly Explorer. A
typical result is given in Figure 14.
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Figure 14: Graph showing estimated and true altitude
of the floor with respect to the DelFly Explorer.

The obtained average root mean squared error
over the performed experiments is 532mm. Which
is a factor 4.6 higher than during static tests. Due
to the extra vibrations and pitch angle changes while
flying. Further research could investigate hardware
design adjustments or algorithm changes to decrease
these effects and thus increase altitude reliability.

B. Wall-Following

The wall-following test is again performed in the Cy-
berzoo. Here the ability of the algorithm to follow
the walls and obstacles present in the area is eval-
uated. Also the droplet-only method is tested as a
null test to determine the performance increase of
the wall-following method. This algorithm was pro-
grammed on the stereo-board. For both methods the
paths were recorded, two 2D representations of these
paths are visible in Figure 15.

As visible in this figure the wall-following algo-
rithm is better capable of following the contours of
the cyberzoo. A more active steering behaviour is
visible, indeed ensuring better wall-following. The

†http://robotics.tudelft.nl/?q=news/cyber-zoo
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Figure 15: Experimental path results for the droplet-
only (left) and the wall-following algorithm (right).

performance is determined by the average distance
from the wall. For the wall-following algorithm this
is 1.96m on average and for the droplet it is 2.50m,
obtained over 3 tests per algorithm. From this it can
be concluded that the wall-following algorithm works
successfully.

C. Room Detection

When wall-following is correctly implemented the route
can form the basis for detecting the contour of the
room. By means of this contour a room size estima-
tion can be calculated. Moreover, reoccurring loca-
tions help identify when a room has been explored.
As explained in Section D for this method a dead-
reckoning system and magnetic field properties are
used. This algorithm was programmed on the au-
topilot. In the experiment the DelFly Explorer was
flown alongside the boundaries of the Cyberzoo for
three rounds. The first round consist primarily of
identifying points, based on turning, used for match-
ing consecutive points. During the experiment the pi-
lot aimed to keep speed and pitch constant, as these
parameters are assumed to be constant by the algo-
rithm. During flight turns could be matched based
on the odometry position estimate and/or the magne-
tometer orientation. These matches were then saved.
The position of the DelFly Explorer, recorded via op-
titrack, was then matched to these points. In Fig-
ure 16 the results are visualized. Only the green
points, where both the odometer and the magnetome-
ter had a match, would have made it through both
matching filters.

Analysis of this single test showed that in 62.5%
the magnetometer matches also had a odometer match.
For odometry this percentage was 50% with respect
to the magnetometer. Looking at the locations of
these matches is that they are all located near the
boundaries of the Cyberzoo, which also corresponds
to the flown route. Furthermore no clear unbalance
in matched locations is visible from the tests.
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Figure 16: Results for correct odometry, magnetome-
ter, and combined match locations during clockwise flight
in the Cyberzoo. Numbers indicate in which round the
points were generated.

VI. Conclusions and
Recommendations

In this paper a new computationally efficient ex-
ploration method for the stereo-vision equipped DelFly
Explorer is presented. In order to make the DelFly
Explorer autonomous.

The droplet based wall-following method proved
to be an adequate method to follow the contours of
a room in a simulated environment. Moreover, the
door-manoeuvring algorithm increased the ability to
pass through doors with a factor of 2.7 with respect
to the previous method. These methods performed
well in simulation and resulted in a large increase
in the exploration factor for indoor environments up
to a factor 10 with respect to the previous droplet-
only method. It can be concluded that the indoor ex-
ploration capabilities indeed increased with this new
method.

The static stereo-vision altitude tests have shown
to be able to estimate the flying altitude of the DelFly
Explorer with a root mean squared error of 116mm
with respect to the floor. Performance decreased in
the dynamic test to 532mm. At this moment the al-
gorithm could only be used with a moving average
filter to calibrate the barometer after certain obser-
vation times, but not instantaneously as preferred.
The wall-following algorithm performed better than
the previous droplet-only method. With decreasing
the average distance to the wall from 2.50m to 1.96m.
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This however is at the cost of more controller inputs
and thus a decrease in flight time.

Concerning the software development, improve-
ments could be made regarding the door-manoeuvring
algorithm. When analysing all the simulation runs,
this is the part that often took the longest time.
A possible addition could be to loiter in front of a
possible door candidate to do several attempts be-
fore selecting a new candidate. Also solutions in
which the flight speed will be adjusted to decrease the
droplet size could be investigated to potentially in-
crease the success-rate of the algorithm. When hard-
ware changes to the DelFly Explorer platform are
possible, the optimum field of view could be achieved
by changing the lens and the number of disparity-
map bins should then be optimized for this setting.
Furthermore, the algorithm could be more robust for
real flight applications, for example with live speed
estimation instead of assumed speed. Then this al-
gorithm in combination with wall-following can be
more thoroughly tested. For the altitude estimation
research in hardware design adjustments or algorithm
changes could be performed to decrease noise effects
and thus increase altitude reliability. Finally the door
manoeuvring should be added to the real flight exper-
iments to test the algorithm in real flight as a whole.
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Chapter 2

Introduction

The DelFly Explorer is an autonomous flying, dragonfly-like, micro aerial vehicle (MAV). It is
the first flapping wing MAV (FWMAV) which is able to perform autonomous flight, while it
is just equipped with very basic sensors and technology, and only weighs 20 grams [de Wagter
et al., 2014]. The DelFly is developed by TUDelft’s MAVLab 1 with the aim to autonomously
explore unknown areas and be able to evade any obstacles. It can then be used for various
applications, such as search and rescue in collapsed buildings but also as friendly fairy in an
amusement park [MAVlab, 2015]. As one can imagine the different possibilities for such a
light weight FWMAV are almost unlimited. However the current state of technology is not yet
sufficient to fulfill these tasks, as can be read in Chapter 2-1.

The project discussed in this document aims to aid the development of technology to reach
a point where the DelFly Explorer could be used for such tasks. As the name of the DelFly
Explorer clearly states; its task is to explore. The objective of this project is to increase
the ’explored’ area of the DelFly by means of keeping track of the explored and the to be
explored areas, based on which routing decisions will be made. With routing the author means
a algorithm to (based on obtained information and/or pre-programmed behaviour) decide in
which direction the DelFly Explorer will fly. Furthermore this also includes the ability of the
DelFly to determine when an entire room has been observed. Pathways, such as doors and
windows, to proceed to another room or hallway are exploited by a manoeuvring algorithm.
This manoeuvring algorithm will provide a manner to use the room exits. How this is done will
be determined during the project.

In the first part of this thesis the goal of the project, the related research, and the final research
questions will be discussed. This will form the basis of the second part, the simulations. The
simulations part will discuss how the simulation was designed and which modules play key roles
in the final algorithm. Each of these modules and also the final result will be evaluated. Part
of this evaluation will be comparison with the situation beforehand and how well the research
objective is met. In part four the working concept of several modules will be tested in real
situations. Modules such as the stereo height, wall following and odometry a brought to the
real platform. The results of these experiments are primarily preliminary. In the last part the
final conclusion will be presented. This conclusion will be followed by recommendations that
should be considered when continuing this research.

1http://mavlab.lr.tudelft.nl/
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2-1 Related Research

For the research objective introduced several different research areas are of interest. As the
target of the project is to develop new software for the DelFly Explorer, it is very useful to
investigate the background and hardware of the DelFly family, as done in Section 2-1-1. As one
of the primary sensors of the DelFly Explorer is its stereo vision camera, there is need for visual
footage analysis, as discussed in Section 2-1-2. The goal of the project is to introduce routing
capabilities (a logical approach to cover and explore area, based on obtained information and/or
pre-programmed behaviour, and decision making for the general flying direction of the DelFly
Explorer), therefore also routing algorithms need to be investigated, as done in Section 2-1-3.
When by means of the routing and vision algorithm an opening to another room is found, a
manoeuvre has to be planned to go through this opening. Manoeuvring algorithms are discussed
in Section 2-1-4.

2-1-1 DelFly

As said the project has as final goal to create new, useful, software to increase the exploration
capabilities of the DelFly Explorer. The DelFly Explorer is one of the latest designs of the
whole DelFly family [de Croon et al., 2009] [Verboom et al., 2015]. The MAVLab, who is the
creator of the DelFly, says that ”One of the goals of research on micro air vehicles (MAVs) is
to arrive at insect-sized MAVs that can fly autonomously in complex environments” [de Croon
et al., 2009].

The DelFly is a MAV of ornithopter design, using propulsion by means of flapping wings. The
DelFly is very comparable with a dragonfly, as can be seen in Figure 2-1. Verboom et al.
[2015] describes the DelFly’s use of flapping wings as propulsion. This propulsion method is
very versatile. It provides a good basis for forward flight, hovering and gliding when necessary.
This in contrast to the current conventional designs (such as fixed wing aircraft and heli/multi-
copters). The main materials used for the the wings of the DelFly was a Mylar foil with a
thickness of 6 µm. For the DelFLy I and II the same material was used for the tail. The
presence of a tail ensures the passive stability of the DelFly, in case of a minimal forward
velocity. This needed forward velocity creates the effect of a turn radius, whereas a tailless
designs such as the Nano Hummingbird [Keennon et al., 2012], which can rotate in-place, has
a higher manoeuvrability. For the fuselage of the DelFly’s use is made of a carbon tube. The
DelFly I,II, and Micro all had a rudder on the tail, the DelFly Explorer has ailerons instead.
These ailerons are mounted on the fuselage directly behind the wings, as can be seen in Figure 2-
1.

Still a lot of research is performed in the aerodynamics, morphology and kinematics of flapping
wings [de Margerie et al., 2007]. de Margerie et al. [2007] provided in their research a thorough
analysis on how to increase efficiency of the flapping wing micro aerial vehicles (FWMAVs)
by using artificial evolution on bird-like parametrized morphology. The artificial evolution
algorithm tested combinations of wing size, shape, and movement with a general aerodynamic
analysis, due to which design could easily be disregarded or improved. Multiple solutions
provided by the artificial evolution algorithm were tested in simulation. They were able to
achieve an average forward speed of 10-12 m

s with a mechanical cost of 15-20 W
Kg , which is

comparable to real birds and much better than current performance of FWMAVs.
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Figure 2-1: Photo of the DelFly Explorer, its wingspan is 28cm, the weight is 20 gram, the stereo-
board is located above the tail.[MAVlab, 2015]

Besides the MAVLab, also other institutes are researching the possibilities FWMAVs. DARPA2,
part of the U.S. Department of Defense, is one of these institutes. In 2011, in cooperation with
AeroVironment, they unveiled the Nano Hummingbird [Keennon et al., 2012]. This Nano
Hummingbird was designed to take the actual appearance of a hummingbird. Furthermore the
size, weight and speeds are comparable to that of the DelFly Explorer, this makes it a suitable
benchmark to compare performance. The major difference between these two platforms is that
the Nano Hummingbird had, besides active stability, no autonomous capabilities. Due to the
active stability system the Nano Hummingbird is easy to stabilize despite lack of a tail, which
would be needed for passive stability.

The FWMAV developed by Baek et al. [2011] is more advanced in the development of au-
tonomous capabilities. The FWMAV is capable of detecting an infra-red source by means of
its integrated infra-red camera. The system constantly evaluates the pitch and heading angle
of the source by means of sensor data and dead-reckoning. This information is then used to
create a desired attitude change for the FWMAV, which is used by the controller to adjust
its flying direction. When the source (target location) is ’out of view’, the system is capable
of determining the angle under which the source will be (note: the system does not include
obstacle avoidance). To do this only the dead-reckoning system is used. A prediction for the
heading and pitch angle is created and the path is updated accordingly. Figure 2-2 represents
the results of tests performed with this platform, and as can be seen, the UAV is very successful
in autonomously reaching the target source. This system was purely designed for one single
task and can not complete it autonomously in not ideal situations (when there are obstacles).
However, tasks such as these can be part of an autonomous system.

2http://www.darpa.mil/
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Figure 2-2: A set of trajectories of ornithopter flights toward the target. The dot on the upper
right corner represents the target. [Baek et al., 2011]

This short overview of different FWMAVs gives more insight in the current development state.
The major trend in the DelFly family is to stretch the boundaries of what is possible in multiple
directions. Reduce the size, like the DelFly Micro, or increasing autonomous capabilities, such
as in the DelFly Explorer. As the DelFly Explorer is the target platform for the current project,
it is essential that the hardware limitations are known. The DelFly Explorer is equipped with a
ATmega328P - MLF28 micro-controller. 3-axis accelerometer, magnetometers, gyrometers, and
a barometer are part of sensors of the DelFly Explorer. The DelFly Explorer is capable of two-
way communication with a ground-station. The battery of the DelFly Explorer provides energy
for ten minutes of flight time. The primary sensor on the DelFly Explorer is a stereo-vision
camera with a usable resolution of 128x96 pixels on a baseline of 6 cm located just above the
tail, as visible in Figure 2-1. The two data-streams of the cameras are received by a complex
programmable logic device (CPLD), the CPLD merges the grey-scale components of the images
into a single stream. On a STM32F405 processor (168MHz, 192kB RAM) the video stream-data
can be analysed [de Wagter et al., 2014]. In the following sections it will become clear that,
for now commonly used vision and routing algorithms, more computational power is required
than the DelFly Explorer can deliver. Finding a solution within the current DelFly Explorer
hardware bounds is therefore a challenging project.

2-1-2 Vision Algorithms

As was learned from the previous section, the DelFly Explorer is equipped with a stereo vision
camera as primary sensor. This will induce the need for vision algorithms to analyse the obtained
data. Vision algorithms come in a wide variety. Several of these vision algorithms that might
prove interesting for this project are discussed in this section.
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One of the main vision algorithms is optic flow [Longuet-Higgins and Prazdny, 1980]. Optic
flow is the apparent flow of objects in the visual scene of the camera view due to relative motion
of the camera and the object, the algorithm uses consecutive images and determines the motion
of different points between the time instances. To do this optic flow is depended upon texture,
therefore large planes with the same colour can be hard to detect. This is a disadvantage for
optic flow, but the same disadvantage is present for also other methods that depend on the
detection of texture, some of these will be addressed in this section as well. Besides the needed
texture in the environment the camera should also move with respect to the environment.
This is needed to create the apparent flow. When using optic flow in a yaw movement, the
information obtained is subject to a lot of noise. Schauwecker and Zell [2014] used a downward
camera besides the normal front facing camera. When in a yawing movement the front facing
camera gives a lot of noise. However, the downward facing camera can use optic flow to give
a good estimation of the yaw rate and improve its state estimation. de Croon et al. [2012b]
found a way to combine optic flow with appearance variation to increase the detectability of
obstacles. The appearance variation cue works on the principle of a lower entropy of textures
when an obstacle is nearby. The algorithm selects from a set of small patches (called textons)
and compares them to a pre-set database. Based on this database the textons are placed in
certain bins in a histogram. Calculation the entropy of this histogram gives the appearance
variation of the image. A low entropy corresponds most times with an object in close range
and therefore a possible collision danger.

Above mentioned methods are mainly applied to monocular cameras, whereas the DelFly
Explorer is equipped with a stereo-vision camera. Stereo-vision cameras have two cameras
with a certain offset placed on a baseline (for the DelFly Explorer just above the tail, see
Figure 2-1). With stereo-vision cameras a so called disparity map can be constructed [Lucas
and Kanade, 1981]. Such a map shows the relative shift of the pixels for each of the two
frames of the stereo camera, and via that way an estimate of the distance is obtained. There
are several methods to create such a disparity map such as Block Matching [Koschan et al.,
1996], Dynamic Programming [Ohta and Kanade, 1985] [Birchfield and Tomasi, 1999], and
Semi-Global Matching [Hirschmüller, 2008]. These methods are already tested and compared
for the DelFly II by [Tijmons et al., 2014]. It should be noted that this method was performed
off-board and is therefore not yet fully suited, as the goal is to make the DelFly Explorer fully
autonomous in exploring multiple rooms and corridors.

Besides the construction of disparity maps stereo-vision can be applied to estimate the
3D-coordinates of objects and points in view [Lucas and Kanade, 1981]. These locations in 3D
space could then be used to construct maps, which will be further explained in Section 2-1-3.
Maps is not the only application, planning of a path to exit a room via door or window can be
used. This topic is further discussed in Section 2-1-4.
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In the previous paragraphs the methods of optic flow and stereo-vision were discussed. Hrabar
et al. [2005] managed to combine these two methods. It was found in research that also insects
combine these two sources of information for evading obstacles and for navigation [Weber et al.,
1996]. Therefore this was an interesting combination to conduct further research in, as nature
often already provides solutions. The results that Hrabar et al. [2005] achieved are visible in
Figure 2-3. The method used is as follows. Both the optic flow and stereo-vision algorithm
are running simultaneously on the robot. Each of the algorithms provides a turn-rate for the
robot. By default, the turn-rate of the optic flow algorithm is used. Whenever within a certain
threshold an obstacle is detected, the stereo-vision turn-rate is preferred. As seen in Figure 2-3,
this method greatly improves manoeuvre capabilities.

Figure 2-3: Trajectory paths for navigating L- and T-junctions based on different (combinations)
of methods. [Hrabar et al., 2005]
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Bills et al. [2011] noted that navigating through a environment, by creating a complete model of
that environment, is very computationally expensive. This is due to the fact that the algorithm
should process a lot of input and put it all within the right perspective, which is constantly
checked by and used to update the model of the environment. Instead of this computationally
heavy approach a simpler approach was constructed. They identified the main components
of an office building (corridors, staircases, and rooms) and constructed classifiers for these.
The classifiers are used to easily recognize the building components, these components can be
used to create a topological map. A similar method to these classifiers is the so called ’texton
method’, which was already mentioned before. This method evaluates portions of the images
with a database of small texture samples [Varma and Zisserman, 2003] [de Croon et al., 2012b],
which makes the method computationally efficient. The textons can, besides appearance varia-
tion, be used to identify certain objects or building components, as was done in Bills et al. [2011].

The vision algorithms above still need some computational effort. Decreasing this computa-
tional effort can be done by setting regions of interest within the image, or by sub-sampling
the images. Sub-sampling makes algorithms more suitable for small platforms [de Croon
et al., 2012a]. Sub-sampling works by means of taking only parts of the original image
to be analysed. With only these parts the to-be analysed data is decreased. The algo-
rithm still might be able to identify an object, although it has less information. As one would
understand, there is a trade-off between computational efficiency and accuracy of the algorithm.

In this section several vision algorithms have been discussed. These methods can be applied
to different aspects of the research problem. One method might prove useful as input for the
routing algorithm, while the other can easily be used to recognize earlier visited parts. As the
DelFly Explorer is equipped with a stereo-vision camera, a good course of action would be to
make use of this functionality. Possibly in combination with optic flow methods which yielded
results when making turns [Hrabar et al., 2005]. With a stereo-vision camera a disparity map
can be constructed and such software is already available for the DelFly Explorer. Recognition
of earlier visited locations by means of visual cues is most likely necessary in this project to
create good exploration capabilities. Textons may be a method worth investigating for this
purpose.

2-1-3 Routing Algorithms

A logical approach for the DelFly Explorer is necessary to explore area, based on obtained
information and/or pre-programmed behaviour, and to make decisions for the general flying
direction. Such an algorithm will be called a routing algorithm. The hardware limitations
of the DelFly Explorer have been discussed, also several vision algorithms have briefly been
discussed. The vision algorithms form the basis of many routing and mapping algorithms. The
mapping algorithm tries to make a map (all sorts of accuracy levels are possible) of the area.
With this map an algorithm can determine a path to a location/object of interest. First these
algorithms are discussed which base their routing on the construction of a map. Succeeded by
the Mapless algorithms.

Map Based Methods

The most advanced mapping algorithm currently available is SLAM (simultaneous localization
and mapping) [Gamini-Dissanayake et al., 2001]. SLAM works by creating a map of the envi-
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ronment by means of on-board sensors. Simultaneously it determines the location of the robot
within that map. The SLAM problem can be formulated by means of Eqs. 2-1 to 2-3. Where
mt represents the map of the environment at a certain time, ot the observation, and xt the
position of the robot in the environment. Application of Bayes’ rule results in Eq. 2-2, where
Λ is Bayes’ factor.

P (mt, xt|o1:t) (2-1)

P (xt|o1:t,mt) =
∑
mt−1

P (ot|xt,mt)
∑
xt−1

(xt|xt−1)P (xt−1|)mt, o1:t−1/Λ (2-2)

P (mt|xt, o1:t) =
∑
xt

∑
mt

P (mt|xt,mt−1, ot)P (mt−1, xt|o1:t−1,mt−1) (2-3)

Many SLAM algorithms make use of detecting a landmark within the environment. This
landmark can be used to determine the relative change in location of the robot together with
other sensory information. This relative change with the previous location and the state
observed from the new location can be used to update the map even further [Davison and
Murray, 2002]. If one would only use an inertial measurement unit (IMU), the error would
integrate over time and become exponentially larger. The landmark method decreases this
error that integrates over time and can be used to ’reset’ the IMU.

Another implementation of SLAM is topological SLAM. In contrast to metric mapping
as happens in metrical SLAM, a topological map creates nodes for discrete locations (or
landmarks) and connects them with neighbouring relations [Angeli et al., 2008]. The edges
of the nodes link them according to their similarity or distance. Unexplored edges of the
topological map represent areas that still can be explored. This is information is necessary for
an exploration algorithm. Also for topological SLAM it is necessary for the system to detect
whether the current location is an already visited location. If so, the system should combine
the current node with the earlier established node, so called ’loop-closure’. A diagram used by
Angeli et al. [2008] for this process is provided in Figure 2-4. Topological SLAM is due to its
nature less computationally heavy than metrical SLAM.

A major disadvantage of SLAM is that it is relatively computationally heavy. For example,
the required hardware for the study of Shen et al. [2011] was a 1.6GHz processor and 1GB
RAM. They used it for a quadcopter mapping an indoor office environment. Furthermore the
majority of SLAM algorithms are dependent on sensors other than a camera (such as laser
range finders) which are not equipped on the DelFly Explorer [Gamini-Dissanayake et al.,
2001] [Shen et al., 2011] [Blanco et al., 2008]. Sensors such as laser range finders are still
to heavy to be equipped on the DelFly Explorer. As comparison the laser range finder used
by Shen et al. [2011] weighs 370 grams (UTM-30LX) 3 compared to the 20 gram DelFly Explorer.

3https://www.hokuyo-aut.jp/02sensor/07scanner/utm 30lx.html
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Figure 2-4: Overall SLAM process of the used topological SLAM algorithm used by Angeli et al.
[2008].

When only using the camera, visual odometry is mostly used. Visual odometry works by
matching features between subsequent camera images to determine the movement of the UAV
[Howard, 2008]. The output of a visual odometry algorithm is thus the change of position of
the UAV with respect to the location at which the previous image was obtained. However using
solely a (monocular) camera, perceptual aliasing increases the difficulty of matching different
images. Perceptual aliasing is that sequential images are too similar to obtain any useful
information from them. For example, when flying within a corridor the walls tend to all look
the same along the corridor, therefore the visual odometry algorithm might conclude there is
no movement at all.

Visual odometry is often used in combination with SLAM, as done by Angeli et al. [2008].
During their experiment they were able to map the environment and ”close the loop” with 202
nodes within a computational time of 2m58s, whereas the flight time was 5m10s. This proves
the method can be easily run real-time, but still a good processor is demanded. A computer
with a 2.33GHz processor was necessary. Howard [2008] performed a similar experiment where
the computational load required a computer with 2.4GHz of processing power, supporting
results obtained by Angeli et al. [2008]. Nister et al. [2004] conducted visual odometry tests,
already on stereo-vision cameras. Which are present on the DelFly Explorer. They were also
able to achieve good loop-closures, thus proving the method can be suitable for stereo-vision
camera platforms.

In a way similar to topological SLAM, Fraundorfer et al. [2012] applied a frontier-based explo-
ration algorithm on a quad-copter. This algorithm builds an occupancy grid (see Figure 2-5)
and determines the unexplored frontier. This occupancy grid clearly indicates the boundary of
the already discovered area, similar to the edges of the nodes in a topological SLAM map. For
the construction of this occupancy grid visual odometry was used, already explained earlier in
this section.
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Figure 2-5: 2D slice of initial occupancy map. Unknown cells are colored as grey, occupied cells
are black, and free cells are white. The blue frontier behind the MAV is designated as the home
frontier. [Fraundorfer et al., 2012]

Mapless Methods

Fraundorfer et al. [2012] also applied a wall-following exploration strategy. This is an exploration
strategy part of the family of BUG-algorithms, based on insect behaviour. Insects are a major
source of inspiration. Several BUG-algorithms have been developed for finding the most optimal
route from a source to a target. A BUG-algorithm does not have a global model of the world.
From the source it travels a straight path towards the target. When an obstacle is met it
follows the contours of the obstacle. When the path is clear again, it will continue to travel
in the direction of the target location Zohaib et al. [2013]. A lot of different BUG-algorithms
have been developed. How some of these BUG-algorithms handle an object is represented in
Figure 2-6.

Figure 2-6: Trajectories of (a) Bug-1 algorithm (b) Bug-2 algorithm (c) Dist-Bug algorithm (d)
IBA. [Zohaib et al., 2013]
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BUG-algorithms can also be intensity based. This means that the robot senses an intensity
of a signal, such as an odor-source [de Croon et al., 2013] or radio signal [Taylor and LaValle,
2009]. Within such problems the target location can be determined during the process based on
the sensor input. When the direction of the target is determined objects can again be evaded
by the several methods, including the ones shown in Figure 2-6. Within the current project a
target or the direction towards a target is not always known. The DelFly Explorer may not yet
be aware of such targets as they may still be unexplored.

The Pursuit-Evasion BUG-algorithm is a method that could prove applicable for this research
as it tries to explore as much area as possible [Rajko and LaValle, 2001] [Tovar et al., 2003]. The
main benefits are that there is no predefined target or map needed for the algorithm, only the
ability to follow a wall and detect interruptions in the wall (indicating a corridor or a non-visible
area). This also means that the sensing requirements of the robot are easily achieved. The task
of this algorithm is to clear the environment from moving evaders. This means that when the
robot cleared an area it should ensure it doesn’t get contaminated again. Figure 2-7 represents
a situation with this algorithm. The robot is located in the middle of a cave like area. The
white parts indicate the visible area, from which a discontinuity map can than be constructed
indicating the directions of unidentified areas, called gaps. As the DelFly Explorer is not capa-
ble of detecting all directions and depths at once, a derivation of this method would be necessary.

Figure 2-7: Discontinuities in depth measurements partition the set of viewing directions. [Rajko
and LaValle, 2001]

The Pursuit-Evasion BUG-algorithm assumes that the robot has the ability to detect the head-
ing of those gaps with respect to it’s own attitude. Gaps can merge, meaning that the robot
moves is such a way that the entry of two area’s become one. If one of those areas was not
cleared yet, both areas are contaminated again. Also gaps can split, meaning that the robot is
going towards those gaps. The Pursuit-Evasion BUG-algorithm uses this fact to keep track of
which gaps originated from a initial gap. Similar to the Gap Navigation Tree as used by Tovar
et al. [2007]. The Gap Navigation Tree keeps track of which area followed from which gap and
can therefore create a map of the environment by connecting zones. The map would be in the
form of a tree-diagram connecting which room or area (originating from a gap) is connected to
preceding or following room or area.

At first the robot is exploring the area. Until the envisioning process determines that based
on the current environment knowledge the task can be solved (to explore all areas without
re-contamination). When exploring a part of the environment the robot moves from the left
wall to the right wall while moving forwards. When the part is completed it follows the wall to
minimize the number of wasted motions until a new, unexplored part is reached.
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Another on insects inspired technique is described by Baddeley et al. [2011]. They use simple
Haar-feature detection to give either a positive or negative feedback on a certain view, based on
a single episode learned ’waypoints’ on the route from the source to the target. Haar-features
compare the sum of pixels of different rectangle regions within the image. To increase the
efficiency of this procedure use is made of integral images, which can easily sum regions of
images [Viola and Jones, 2001].

The recognition of the path by Baddeley et al. [2011] can furthermore be based on the moti-
vational context of the robot. For ants that can depend whether they are looking for the food
source or for the nest. Based on that motivation they can recognize parts of the paths to their
motivated goal [Baddeley et al., 2012]. And they will not recognize the paths that are within
their memory, but do not fit the motivational context. To ensure that the needed memory does
not increase as the route becomes larger, a neural network was used. This neural network was
presented with the images along the training path to create familiarity discrimination using an
InfoMax learning rule. ”InfoMax learning means that the next control action is chosen according
to Bayesian estimation given what we have learnt until now, given the actual state that we
have at this moment.” [Jeni et al., 2003]. A similar approach as used by Baddeley et al. [2012]
could be applied for the DelFly when it is either exploring the room or looking for the room exit.

Scheper et al. [2015] used the stereo-vision camera on the DelFly Explorer to develop, via an
evolutionary robotics approach, a behaviour tree framework. A behaviour tree consist of a finite
number of preprogrammed behaviours that are executed when certain threshold conditions
are met (multiple behaviours can be running simultaneously). The goal of this behaviour tree
was to let the DelFly Explorer autonomously search for and fly through a window. Flying
through a room exit will also be one of the requirements in this project. A first approach
on the behaviour tree was user designed and consisted of four main sub-behaviours: window
tracking, straight flight when disparity is low, wall avoidance when disparity is high, and action
hold (so the wall is not evaded when an evasion is already occurring). For this user designed
behaviour tree a success-rate of 82% was obtained in simulation. Now a behaviour tree was
constructed by means of an evolutionary algorithm. The fitness function was chosen such that
the score would increase when coming closer to the window, with a maximum score when
the vehicle was able to fly through the window. In simulations performed, the success rate of
the optimized behaviour for flying through a window was 88%. The simulation results of the
evolutionary algorithm were thus higher than of the user designed behaviour tree. Applying
the same optimized behaviour tree in real-world experiments resulted in a success rate of 54%.
This number should be increased to obtain satisfactory implementation in a final exploration
algorithm [Scheper et al., 2015].

Table 2-1 gives in a concise manner a summary of the discussed routing algorithms and the
main pros and cons that are the most influential on this project. As testing, used hardware,
and experimental set-ups differs a lot between the method it was chosen to represent it without
measurable statements.
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Table 2-1: Overview of the reviewed routing algorithm strategies with main pros and cons.

Method Description Pros Cons

Map based

SLAM Simultaneous construc-
tion of a metric map
and location determina-
tion

Detailed map High computational
loads, large memory
demand

Topological
SLAM

Symbolic represented
map with connected
nodes for locations,
more abstract than
SLAM

Relative small memory
demand, detailed map

High computational
loads

Visual Odome-
try

Matching features of
consecutive images to
determine the motion of
the UAV

Only camera needed,
also determines ego-
motion

High computational
loads

Mapless

BUG - Algo-
rithm

Insect inspired path fol-
lowing from source to
target location with ob-
stacle avoidance

Easy to implement, low
computation cost, small
memory demand

Often target location
needed

Baddeley {et
al.}

Path recognition based
on Haar-features

Low computation cost,
relative small memory
demand, use of motiva-
tional context

Route should be known

Behaviour
trees

A finite tree with
preprogrammed be-
haviours that are
executed when certain
conditions are met

Low computation cost,
small memory demand,
can be trained

Relative lower success
rate

2-1-4 Manoeuvring Algorithms

As said in the introduction of this chapter the routing and vision algorithms will provide the
location of an opening to another room, and the moment when flying trough this opening
should be attempted. To attempt such an action a manoeuvring algorithm method might
be necessary to increase the chances of success. With manoeuvring algorithm is meant the
procedure used to go from the location before the opening, door or window, safely to a location
on the other-side to continue exploration from that point on. For this manoeuvring planning
several methods were studied in more detail: motion primitives, behaviour trees, random
forest, and Zufferey’s et al. optic flow based method.

The Exploring DelFly C.R. Fonville



Motion primitives work on the principle of describing a limited number of basic movements.
These basic movements can be subdivided into two main categories namely a trim state and a
transition state (transition between two trim states) [Bottasso et al., 2008]. During flight the
drone can use, based on the required action, any of these ’preprogrammed’ basic movements.
All these movements are collected in a motion library. The main advantage of such a library
is that the movements can be optimized in training flights or simulations with respect to
a certain cost function [Cohen et al., 2010]. This cost function can then be optimized for
whatever the user determines most valuable, for example: time, energy consumption, distance
travelled, etc. or a trade-off between such parameters. This method can be very useful for the
DelFly Explorer when it has to perform a certain manoeuvre through an opening. As noted
by Bottasso et al. [2008] the success of motion primitives depends on the quality of the UAV
simulation model to create a good motion library. Furthermore a challenge with this method is
being able to detect disturbances in the environment that cause divergence from the planned
path. Different methods can be used, such as the already discussed vision algorithms or inertial
measurement units.

Another technique is the use of behaviour trees. The working principle of behaviour trees was
discussed in Section 2-1-3. Behaviour trees can be trained to increase the success-rate. This
method was already applied to the DelFly for flying through a window by Scheper et al. [2015].
As recap: in simulations performed, the success rate of the optimized behaviour for flying
through a windows was 88%, while the user designed behaviour tree had a success rate of 82%.
The simulation results of the evolutionary algorithm were thus higher than of the user designed
behaviour tree. Applying the same optimized behaviour tree in real-world experiments resulted
in a success rate of 54%, this number should be increased to obtain satisfactory implementation
in a final exploration algorithm [Scheper et al., 2015].

Ferguson et al. [2006] discusses the possibility of using Rapidly-exploring Random Trees (RRTs)
for manoeuvring planning. The algorithm has a certain target location (other side of the room
exit) to which a manoeuvre has to be found. From the start position random branches are
created, at the end of these branches new branches are created until the target is reached, an
obstacle is encountered or when a certain threshold is passed to ensure unsuccessful paths are
discontinued. Li and Shie [2004] used a random forest approach, consisting of multiple RRTs
originating from different locations, creating a forest. The algorithm is able to connect those
different trees to increase the probability of a successful manoeuvre. When new obstacles are
detected only the affected trees have to be disregarded instead of the entire forest. The random
forest approach can be used by the DelFly Explorer to evaluate different trajectories through
the room exit.
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Zufferey et al. [2007] developed a method to estimate altitude and pitch for a micro aerial vehicle
with data provided by an inertial measurement unit, airspeed sensors, and simple vision sensors.
They managed to obtain collision free flight with a 10 gram microflyer. The vision system was
based on optic flow, already discussed in Section 2-1-2. In this optic flow method, the optic flow
difference between the image halves determines the needed movement [Zufferey and Floreano,
2006]. When the optic flow is highest at the right side of the image, then there is probably an
obstacle on the right side and the microflyer should turn left. They combined this method with
’saccades’. Saccades are fast turns based on insect movements. During these movements camera
images are disregarded. When using optic flow in a yaw movement, the information obtained
is subject to a lot of noise. A gyroscope or a downward facing camera can be used to still be
able to determine the turn rate. The visual steering used by Zufferey and Floreano [2006] can
be applied for the manoeuvring algorithm to fly trough the room exits. This algorithm would
run in a constant loop during which the optic flow determines the direction of the room exit
and the UAV’s heading is adjusted towards it. This optic flow method can maybe be combined
with the stereo vision functionalities of the DelFly Explorer. Also a possible combination with
behaviour trees can increase the success-rate of this method. For example, different saccades can
be pre-programmed that are triggered according to the behaviour tree. This way the algorithm
could be able to successfully cope with different situations.
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2-2 Research Question

As already introduced in Chapter 2 the main goal of the project is to increase the ’explored’
area of the DelFly Explorer by means of keeping track of the explored and the to be explored
areas, based on which routing decisions will be made. This to increase the DelFly Explorer’s
usability in a wide range of scenarios.
Currently the flapping wing micro aerial vehicles (FWMAVs) is a rather new field of research
in which still a lot of progress is to gain. As could be read in Chapter 2-1 there is still quite
a knowledge gap between the random routing (currently applied in the DelFly Explorer) and
advanced navigation methods such as SLAM. At this moment it seems that the project will
occur exactly within that gap due to the limited hardware capabilities of the DelFly Explorer.
When this project is successful the knowledge gap will decrease, aiding further research in
similar topics.

However, due to the fact that there is a large knowledge gap there where this research is
conducted it is more difficult to draw conclusion about the feasibility of this research. From
the literature study in Section 2-1-3 it became clear that there are already some algorithms
that can, may it be in reduced form, implemented in the DelFly which, as these researches
describe, can increase the efficiency of the exploration with regard to the current, random, case.
With this knowledge in mind there is a large possibility that indeed this project will succeed in
increasing the DelFly Explorer’s exploring capabilities.

With the topic goals introduced and the short literature review conducted the following research
question could be obtained:

How to increase the indoor explored area of the DelFly Explorer by means of computationally
efficient routing decisions?

Accompanied with this research question several sub-question for the project can already be
formulated.

1. How to structure the exploration process?

2. How do routing decisions affect the path of the DelFly?

3. How to effectively recognize earlier visited locations?

4. Which algorithms are needed to recognize room exits?

5. How is successful manoeuvring through room exits obtained?
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Chapter 3

Design Choices

As became clear from the research question and the accompanying sub questions several different
tasks will be performed by the algorithm. These combined tasks will results in the overall
behaviour of the algorithm. These tasks will be executed by different modules. This is done
to ensure optimal programming and performance efficiency. Furthermore the tasks that the
DelFly Explorer needs to perform can be subdivided in different stages, or so called exploration
phases. Exploration Phase 1 will identify the general contour layout of the room by means of
wall-following. Exploration Phase 2 will, when the contour of the room is known, explore the
remainder. Exploration Phase 3 consist of an algorithm which will identify door candidates.
This exploration phase will provide the location of the best candidate to the algorithm of
Exploration Phase 4, which will head for the door. These last two phases interchange quickly
for better convergence. Finally some overall modules will handle obstacles, odometry, and a
topological map. Which modules are active per exploration phase will be discussed in more
detail in Chapter 4-2.

Each of the different exploration phases will have, as described, its own set of subtasks. This
subtasks can be fulfilled by means of different algorithms. These algorithm will be chosen based
on literature, personal insights, operational and platform constraints, and performance. Some
of the considered design concepts will be discussed in the coming chapters.
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Part III

Simulations
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Chapter 4

Simulator

From theory several ideas and methods were derived. To give an indication if a method might
be successful in real world situations simulations are an ideal method. In simulations the
real world is mimicked with certain assumptions and simplified models. Also simulators can
easily perform multiple runs with the same or different settings. This data can be used to
determine statistical significance and the sensitivity of the models. Based on literature, hardware
constraints, and personal insight a modular system was developed in which each of the modules
has a specific task. Within the various modules different approaches to tackle the module’s task
were tested and evaluated. Later on these modules where then further optimized to improve
overall performance. At first the simulation software will be explained in Section 4-1, this
software will form the foundation of the simulation and aides in incorporating already performed
research. In Section 4-2 will be discussed, here the different modules, their primary task, and
how they are connected and with which variables will be showed.
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4-1 Simulation Software

SmartUAV1 is an in-house software package that can be adapted to simulate several unmanned
aerial vehicles (UAVs). SmartUAV, developed by the MavLab, contains a library of these
different UAVs and their dynamics, layout, in-, and outputs. For the DelFly Explorer this data
is already available within the SmartUAV environment. Also SmartUAV builds an graphic
environment based on the layouts provided, the used layouts will be further discussed in
Chapter 5. By means of the generated graphic environment also camera images for the UAV
can be generated.

The programming language used for SmartUAV is C++. Each of the modules that will be
constructed will be programmed in this language. Furthermore inputs from and outputs to
existing modules are communicated. How these modules are connected in SmartUAV is visible
in Figure 4-1. As one can see in this figure a module can generate certain outputs which can
then be connected to the input of the subsequent module.

Figure 4-1: Layout of how the modules are connected within the SmartUAV simulation software.

How all these modules are connected is specified in a .xml file. This file is specific to a cer-
tain experiment/simulation setting and also contains information about the model, the used
environment, the location of the log-file, and other settings. As said the simulation produces
log-file, besides the standard SmartUAV log-file the user can also create a simulation specific
log-file. In this log-file the value of different variables of interest can be logged. This process is
done by the value-logger module, which is also visible in Figure 4-1.

In Matlab a script was developed to plot the route and determine the performance of the
simulation. More information on how this performance is determined can be found in Chapter 6.
Furthermore several scripts in Matlab will be developed to analyse certain parameters or the
performance of sub-modules.

1https://svn.lr.tudelft.nl/trac/ADIO-CS/SMARTUAV/
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4-2 Simulation Layout

As became clear from the research question and the accompanying sub-questions the algorithm
should be able to cope with different aspects. Such as identifying earlier visited locations,
being able to have a effective path through the room, and be able to manoeuvre through a
room exit. Therefore it was decided to subdivide the algorithm in different exploration phases,
each of these phases deals with the primary task at that moment within the entire algorithm.
Exploration Phase 1 will identify the general contour layout of the room by means of wall-
following. Exploration Phase 2 will, when the contour of the room is known, explorer the
remainder. Exploration Phase 3 consist of an algorithm which will identify door candidates.
This exploration phase will provide the location of the best candidate to the algorithm of
Exploration Phase 4, which will head for the door. These last two phases interchange quickly
for better convergence. Finally some overall modules will handle obstacles, odometry, and a
topological map.

Each of these exploration phases consist of a couple of functions executed during that phase.
Which functions are used and how these are interconnected is shown in Figures 4-2 - 4-5.

Figure 4-2: Flow diagram of the exploration phase 1.

Figure 4-3: Flow diagram of the exploration phase 2.
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Figure 4-4: Flow diagram of the exploration phase 3.

Figure 4-5: Flow diagram of the exploration phase 4.

These different phases, modules, and task combined can also be represented in a finite state
machine. A graphical representation of the finite state machine is given in Figure 4-6. The
algorithm starts with wall-following, while this procedure is carried out obstacles are being
evaded when encountered. This last behaviour is applicable for all phases of the algorithm.
After matching three corners by means of odometry the second phase is initiated. In the second
phase the DelFly Explorer will, based on the obtained odometry data, guided more towards the
centre of the room to make a turn and head towards a possible door candidate. Now phase 3
and 4 are constantly interchanging until a door passage has been achieved. Phase 3 evaluates
possible door candidates while phase 4 adjusts the heading to make an optimal approach. When
finally a new area is reached, the state will return to wall-following to start the whole procedure
again.
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Figure 4-6: Finite state machine representation of the exploration algorithm.
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Chapter 5

Simulation Environment

The environment of the simulation is a file containing the layout information of the 3D environ-
ment the DelFly Explorer simulation will be performed. This environment is necessary to mimic
real world situations and provide the same visual cues as would be obtained during experiment.
In simulation it is also possible to test a larger set of differing environments. Further more the
behaviour of the DelFly Explorer within the environment can be analysed and based on this
the performance of different methods can be analysed.

SmartUAV uses a .ac file type as an input for the environment. The .ac file is used to create
a 3D model of the environment and contains 3D resources such as meshes, texture paths, and
material definitions.

In the .ac file the different faces (such as walls, floors, and ceilings) are specified by means of
their corner coordinates. A connection of several of these faces can be a room or a corridor. On
these faces textures are placed, often multiple next to each other (depending on the size of the
face). Examples of such textures can be found in Figure 5-1. Each sort of face has a typical
sort of texture, for the walls of the rooms different textures are used but all of the same nature
as can be seen in Figure 5-1c. The textures are important as a major part of the algorithms
that are developed are based on the stereo-vision camera and the disparity map.

(a) Floor textur.e (b) Corridor wall texture. (c) Typical room wall texture.

Figure 5-1: Examples of textures that are used for the different environment.
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5-1 Environment 1

The first environment is representation by its layout in Figure 5-2. It consists of a U-shaped
corridor with which four different sized rooms are connected. The U-shaped corridor ensures
that the corridor has (when flying to the end and back) both counter- and clockwise turns.
Furthermore there is a dead end where the DelFly Explorer could get stuck.
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Figure 5-2: Layout of environment 1, the walls are represented by the red lines.
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5-2 Environment 2

The second environment is representation by its layout in Figure 5-3. It consists of a large room
with a small hallway directly attached to it giving access to three differently shaped rooms.
Each of these room has a door on a different part of the general shape.
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Figure 5-3: Layout of environment 2, the walls are represented by the red lines.
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5-3 Environment 3

The third environment is representation by its layout in Figure 5-4. It consists of several offices
attached to long corridor with in the middle a coffee corner. This introduces a large central
obstacle within the same area of the environment.

x [m]
-10 -8 -6 -4 -2 0 2 4 6 8 10

y 
[m

]

-6

-4

-2

0

2

4

6

Environment 3 Layout

Figure 5-4: Layout of environment 3, the walls are represented by the red lines.
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Chapter 6

Exploration Factor

During the simulation phase several different methods and environments will be tested. During
development most of the times it is clearly visible whether a methods works or not. But when
different methods both work, or when one would like to find the increase of performance with
respect to the initial case, a figure of merit is needed. As the main focus of this project is to
increase the exploration capabilities of the DelFly Explorer (see Chapter 2) the main figure of
merit will also focus on this aspect. Therefore it is called the exploration factor (EF).

For determining the success of the exploration of the DelFly Explorer a number of factors are
of importance. First and most important is the total area that is visited. Secondly, one of the
sub-goals of this project is to be able to visit multiple rooms. Therefore the ratio of rooms over
the total rooms that could have been visited will be incorporated in the EF. Lastly the speed
and flying time of the DelFly Explorer will be incorporated. Multiplication of those parameters
will result in the total distance travelled, which again with the total explored area can give
an insight in the efficiency of the taken route. The final result of the EF can be found in
Equation 6-1.

EF =
nRooms

nRoomtotal
·
mexplored

mtotal
·
mexplored

Vaverage · t
(6-1)

From this equation directly some limitations of the figure of merit are visible. For example if
two runs are compared where one of the runs has a much larger total area, that run would
have a lower exploration factor due to the fact that it has explored a lower percentage. They
other way around however, if it wouldn’t be ratio, in the bigger room there would be more
exploration possible while in the smaller room exploration is finished already. Therefore it is
recommended, that when comparing results, equal or similar total areas should be considered.
Similar argumentation can be used for the number of rooms. Furthermore, the total simulation
time (t) is, when it differs, compensates in the last term the decreased explored area from the
second factor. However, this compensation is not adequate for the number of rooms visited.
Therefore it is recommended to keep simulation time constant over the different compared
experiments.
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6-1 Matlab

From every simulation performed SmartUAV saves a log-file. In this log-file different sorts of
data can be logged, also depending on what is considered as useful information for analysis. In
MATLAB 1 a script was developed to analyse these log-files. The needed information for the
EF was computed or obtained from the log-file. The MATLAB-script has a plan of the different
environments. Based on this plan and the DelFly Explorer location in the simulation obtained
from the log-file it can be determined which rooms were visited. When besides the location
also the heading is obtained from the log-file, the script can computed the explored area. The
explored area is the area that is ’seen’ by the DelFly Explorer. For this one should still specify
the exact visual range and angle of the camera, which is depended on the task of the DelFly
Explorer whether one wants to be able to just recognize the environment or really wants to be
able to identify people. The final result of this script will be the EF of the simulation run and
a figure which visualizes the visited area, as can be seen in Figure 6-1.

Figure 6-1: Here the typical output of the exploration factor script, showing the route, seen area,
environment boundaries, and exploration factor.

Figure 6-1 represents the output of the exploration factor script. The axis of the plot represent
the location of the DelFly Explorer. The blue line indicates the taken path during the simulation.
The red lines on the figure are the (internal-)boundaries of the environment. As one can see in
the figure the different internal rooms & corridors are connected to each other via gaps (doors).
Lastly on the background a grid is visible which represents how good certain areas are seen.
Blue is the standard color of the grid and represents unseen areas of the environment. A higher
local brightness of the grid represents the fact that the specific area means the camera of the
DelFly Explorer exposed that area for a longer time.

1https://www.mathworks.com/products/matlab/
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Chapter 7

Droplet

The environment in which the DelFly Explorer will fly, whether that is in simulation or in real
world cases, obstacles will be part of such an environment. Which can be the walls of the room
or cabinets and tables. A method should be used to be able to safely and consistently be able
to avoid these obstacles. When determining such an obstacle avoidance strategy the constraints
of the DelFly Explorer should be taken into account. Such constraints are the turn radius (r),
field of view (α), and safety margin (m). Such a method is already developed for the DelFly
Explorer by Tijmons et al. [2014]. This method consist of a droplet shaped area in front of the
DelFly Explorer, this area will be called ’droplet’. The droplet is visible in Figure 7-1 [de Croon
et al., 2016].

The strategy is to keep the area of the droplet, in which the DelFly Explorer can still safely
make a full turn, clear of any obstacles. The area of the droplet is within the field of view
from the position of the DelFly Explorer, visualized in Figure 7-1. This is the reason why the
droplet shape is determined by the turn radius (r), field of view (α), and safety margin (m). The
aforementioned constraints also determine the total length (l) of the droplet, which with current
settings is equal to 3 meters. The DelFly Explorer is programmed such that when a obstacle is
detected the DelFly Explorer will continue it’s path until it reaches the turning point. At the
turning point the DelFly Explorer starts its clockwise turn. While making the clockwise turn
the droplet script is constantly evaluation the new droplet area in front of the DelFly Explorer.
When this area is clear the DelFly Explorer will continue straight flight while maintaining a
short sensitivity period. In this period an obstacle in the droplet zone will trigger an immediate
turn. All these different stages within the droplet protocol are numbered with phases. Normal
flight is phase 1, triggered droplet is phase 2, turning is phase 3, and the sensitive period is
phase 4. Because in the current configuration the DelFly Explorer will always make a clockwise
turn it was determined to put the cameras under an angle β. This optimizes the droplet without
need for extra manoeuvres.
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Figure 7-1: Graphical droplet representation with stereo-camera under angle β. [de Croon et al.,
2016]

.

The method used to determine if an obstacle in present in the droplet area (and thus the
droplet should be activated) is a disparity map. The disparity map is constructed by stereo
matching the left and right image of the stereo-vision camera equipped on the DelFly Explorer
[Okutami and Kanade, 1994]. Only texture can be adequately matched, non textured areas can
not provide a solid match. A sparse disparity map is then constructed showing the relative shift
between the two stereo images (with respect to the left image) [Hajebi and Zelek, 2006]. This
relative shift provides a cue of the distance of the texture with respect to the DelFly Explorer,
a more detailed explanation on how this is implemented can be found in Tijmons et al. [2014].
The disparities are matched by means of a cost function, a best fit of the lowest three results is
made and presented as a final result. The final disparity map has a disparity resolution of 96.
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Not always is a disparity map sufficient to detect possible obstacles in the droplet. As said
in the paragraph above, to construct a disparity map textures are needed. Sometimes these
textures are not present, for example when heading straight for an uniformly coloured wall. At
first a strategy was used which evaluated the entropy of the stereo-images. When this entropy
was below a certain threshold (meaning there was not enough colour variation in the images)
the droplet would be activated. However this method proved not to be robust enough. In
certain situations and environments there was a large amount of false positives resulting in a
large number of unnecessary consecutive droplet activations. A solution for this problem was
developed. Instead of evaluating the entropy of the images it is evaluated how many useful
textures on the image are present for constructing a disparity map. When the number of
textures is below a certain threshold (often due to large uniformly coloured surfaces) for a
number of consecutive frames the droplet is activated. This often happens when the DelFly
Explorer is close to a uniformly coloured surface, therefore the number of false positives with
respect to the entropy method was greatly reduced.
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7-1 New Droplet

The old droplet method which could only turn clockwise is no longer optimal for the current
project. Rooms and corridors are explored counter-clockwise. Most corridors have a relative
narrow layout, due to this fact it is possible the droplet is triggered by the corridor wall on the
right while the DelFly Explorer is following the left wall. A clockwise turn would then result
in flying back in the direction the DelFly Explorer just came from. Therefore the possibility
should exists to make a counter-clockwise turn. This is determined in the wall-following script,
further explained in Chapter 8.

Because turns in either the clockwise and counter-clockwise direction should be possible, the
camera angles β are reduced to zero, meaning the cameras are oriented along the flying direction.
Creating the situation as sketched in Figure 7-2.
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Figure 7-2: Graphical representation of the new-droplet with stereo-camera under pointed in the
flying direction, both counter- & clockwise turns are possible.

As visualized in Figure 7-2 the turning circle now lies directly ahead of the DelFly Explorer.
This means that at the moment the droplet is activated (phase 2) it should be determined if
the DelFly Explorer is making a clockwise or counter-clockwise turn. A small heading change
should be made accordingly. This heading change is made halfway the activation of phase 2
and phase 3, this is due to the fact that the turn should be in an area earlier cleared safe by
the droplet. These actions are performed by the wall-following script.

The outputs of the droplet script are as follows:

• Disparity Map

• Droplet Phase (1, 2, 3, or 4)
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• Droplet Response (0 or 1)
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Chapter 8

Wall Following

The wall following script is developed such that rooms and corridors can easily be explored and
to aid in the determination of the size of room. The wall following script is programmed to
explore rooms and corridors clockwise. Therefore the script tries to keep the wall on the left
side of the DelFly Explorer. To do this use is made of a disparity map, which is an output of the
droplet script explained in Chapter 7, and the settings of the droplet. The output of the wall
following script will be an actuator input, either for correctly following the wall, because the
droplet was activated, or to adjust for the corridor direction, which will later on be discussed
in more detail.
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8-1 Contourlines

A method that was applied for detecting and following a wall was the use of contour-lines. The
idea behind this method is that clear texture difference between the wall, floor, and ceiling are
very clear. For this method the cvCanny and the cvHoughLines2 method of the openCV library
where used. These were applied to the lower portion of the disparity image to clearly identify
the contour-lines between wall and floor. For this method other than semi-horizonal lines were
filtered out to decrease the effect of other contours. A screenshot of the applied method is
visible in Figure 8-1.

Figure 8-1: Contourlines fitting on a region of interest of the images provided by the DelFly Explorer
camera.

However this method has some major drawbacks that became very apparent during simulation.
When the room is small or the DelFly Explorer is closing on a wall the floor-wall contour-lines
are no longer visible, thus no information about the fall-following. Furthermore, when following
a wall, only contour-lines further away could be identified. The effect of this was that the
algorithm based on the contour-lines had more difficulty with following the wall directly to its
side correctly. These issues might be less apparent with a disparity based method, so this was
the next method to be tested and evaluated.
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(a) Droplet-only behaviour.

(b) Wall-following behaviour.

Figure 8-2: Simulated flight behaviour of the DelFly Explorer for different settings with a 150
seconds simulation time.

8-2 Disparity Based

The disparity based wall-following algorithm uses the droplet as basis. The droplet counts
for each vertical image line the number of high disparities (disparities above a certain droplet
shaped threshold). The wall-following has on the left half of the image slightly lower threshold,
this ensures, when the wall is to close, a slight heading change to the right. This heading changes
is performed before the droplet would be activated. Also when the number of disparities with
a certain value or higher on the left half image plane is too low, the wall-following algorithm
will steer the DelFly Explorer more to the left (in the direction of the wall) to ensure proper
wall-following. The wall-following algorithm is therefore better in following the walls of a room
than the droplet only method, as can be seen in Figures 8-2b - 8-2a.

The performance is determined by the average distance from the wall. Over the different
simulation the mean average distance for the wall-following algorithm this is 2.03m and for the
droplet it is 2.69m, obtained in environment 1. These results are also visualised in Figure 8-3
From this it can be concluded that the wall-following algorithm works successfully.
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Figure 8-3: Boxplot of the average distance to the room wall for the droplet and wall-following
method.
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8-3 Corridor Behaviour

A separate, but important, part of the wall-following algorithm is the corridor behaviour. The
corridor behaviour deals with when the DelFly Explorer is in a corridor and compensates for
overturns, and performs counter clockwise droplets. When heading straight for a wall, but
there is no wall directly on the left side, normally the wall-following algorithm would adjust
the heading of the DelFly Explorer more to the left, but the corridor behaviour prevents this
to ensure a clockwise turn can still be made at the upcoming wall. Furthermore, when in a
corridor a clockwise turn, standard for the droplet, would sometimes results in heading back
they way the DelFly Explorer came through the corridor. This process would be very inefficient,
therefore this part of the algorithm allows in these cases a counter clockwise turn. In Figure 8-4
the result of this corridor behaviour is shown with respect to the droplet only method shown in
Figure 8-5.

Figure 8-4: Corridor wall-following behaviour of the DelFly Explorer in a corridor.
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Figure 8-5: Droplet behaviour of the DelFly Explorer in a corridor.
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Chapter 9

Room Size Detector

The room size detector is the part of the algorithm that will make an estimation of the size of
a specific room/corridor the DelFly Explorer is exploring. The main part is that by means of
keeping track of the DelFly Explorer by means of odometry aides in deciding at witch point the
DelFly Explorer has followed the wall all the way around the room. When this point is reached
the DelFly Explorer might need to make some diagonal crossings to cover the whole room, this
is based on the size estimated by the room size detector.

As said the room size and location of the DelFly Explorer are based on odometry. On-board of
the DelFly Explorer a magnetometer is present, as discussed in Section 2-1-1. This magnetome-
ter can determine the heading of the DelFly Explorer. In simulation the speed of the DelFly
Explorer is fixed, in real world experiments it can also be fixed, but the actual speed is then
depended on external factors such as wind. Algorithm such as the droplet and wall-following
provide a control output. Internally there is also a clock keeping track of the time.

With each of these factors known the position of the DelFly Explorer can be computed. Each
time when there is a heading change, a vector based on heading, speed, and flight time can be
computed with respect to the last position. With this vector the coordinates can be determined.
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9-1 Corner Identification

Corner identification is an import factor for this algorithm. All rooms are made up of corners
connected via walls. Via these corners the size of the room can be determined. Furthermore
corners are limited and constant in location, therefore they can be used to identify whether the
DelFly Explorer already visited this corner previously and thus have made a full round in the
room.

9-1-1 Color Histograms

Whenever the droplet is triggered, a substantial corner is made. The first approach was to, at
the moment the droplet would be triggered, save the image histogram. The image histogram
contains for each of the primary colours (blue, green, and red) a number of bins, each bin
corresponding with a different value for these primary colours. For every pixel the corresponding
blue, green, and red value would coupled to a bin and the value for that bin would be increased
by one. This process is done for all the pixels in the image resulting in a histogram as can be
seen in Figure 9-1. Also in that figure the corresponding camera image is shown.

Figure 9-1: Corner approach one and colour histogram.

Figure 9-2: Corner approach two and colour histogram.
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In Figure 9-1 and 9-2 show an approach to the same corner. As visible from the accompany-
ing colour histograms, there is a large distance in colour distribution and a very low correla-
tion.Therefore the DelFly Explorer would need to visit the same corner very often and save all
these different approaches before matches can be made. Therefore it is very difficult to exactly
identify the total number of corners. Therefore this method was disregarded.

9-1-2 Odometry Match

Another method is to entirely rely on odometry for identifying and matching corners. As
explained in the beginning of this chapter by means of the magnetometer, time, and flying
speed the coordinates of the DelFly Explorer can be determined. Whenever in a short time
period the heading of the DelFly Explorer, which can be measured with the magnetometer,
changes above a threshold these turning coordinates will be considered a corner. For each of
these corners different information will be saved: x,y location of the corner, x,y location where
droplet phase 2 activated, the inbound heading, the outbound heading, and the heading change.

Whenever these coordinates are within a certain radius of one of the previous corner registered
in the database, a match will be made. When multiple of these matches are made an good
estimate can be made of the actual size of the room, and provide this information for the next
exploration phase. In the next phase, based on the size of the room, the remainder will be
explored.

The big assumptions within this odometry simulation module are a constant speed and a well
known turning angle. In real world cases these parameters will have a certain uncertainty. This
will influence the matching radius implemented in the real world application.

9-1-3 Odometry Performance

When introducing an random error of maximum 5% on the magnetometer in simulation the
results in Figures 9-3 - 9-4 are obtained. One can see from these figures that the track has an
absolute error of not greater than 2.5m, but on average stays within 1m of the actual position.
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Chapter 10

Room Exploration

Phase 2 of the exploration algorithm is the most simple part. When exploration phase 1 is
finished, a polygon based on the room corners can be constructed. Then the centre of this
polygon is calculated and the a route is planned for the DelFly Explorer to reach that position
and to make a full turn. This turn will provide a clear overview of most of the rooms. During
this full turn exploration phase 3 is activated to already check for possible door candidates.
Sometimes however, it is not possible to make a turn in the centre. Because the room is oddly
shaped or there is an obstacle near/at the centre. Then, after 30 seconds, the algorithm will
move on to the next phase.

In Figure 10-1 a track is presented where the rotation is successful and clearly visible. During
the rotation the door opening is spotted as possible candidate. After the rotation the DelFly
Explorer heads for the door to attempt a manoeuvre.
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Figure 10-1: Flown track of wall-following algorithm (phase 1) followed by the center rotation
(phase 2).
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Chapter 11

Height Calculations

A rather stand-alone subject is the altitude of the DelFly Explorer. The main control loops
in this simulation focus on the horizontal plane. In a large part of the simulations the flying
altitude of the DelFly Explorer was fixed. However in real world scenario’s it is not possible
to fix the height in such a case. Furthermore one would want to prevent the DelFly Explorer
hitting the floor or the roof and keep a relative constant altitude to easy the process of matching
visual cues. In Section 2-1-1 it was explained that one of the sensors on-board is a barometer. A
barometer is a useful device as it senses the air-pressure and when this air-pressure is changing
it correlates to a change in altitude. To determine which altitude exactly, a table is necessary
which matches a pressure with an altitude. However the corresponding air-pressure for a certain
altitude can even differ per room in the environment. Therefore it is useful to develop a method
which could calibrate the barometer for each room.

In Chapter 7 in short the working principle behind obtaining a disparity map was explained.
From this disparity map a 3D-coordinate with respect to the left-camera for each detected pixel
can be calculated. These coordinates can be calculated via Equation 11-1 to 11-3 [Hartley and
Zisserman, 2003].

Z‘ =
d · f
∆

(11-1)

X‘ = (i− w

2
) · Z‘

f
(11-2)

Y ‘ = (j − h

2
) · Z‘

f
(11-3)

First the Z ′ coordinate (the depth) of the pixel can be computed based on the pixel’s disparity
(∆) and properties of the stereo-vision camera such as the distance between the two cameras
(d) and the focal length of the lens (f). With this known Z ′ coordinate the X‘ coordinate
(horizontal position) and Y ‘ coordinate (vertical position) can be computed. To do this also
the relative position of the pixel with respect to the centre of the image needs to be computed.
In the case of the horizontal position this can be done by substracting half of the image width
in pixels (w2 ) from the horizontal position of that pixel on the image (i). This factor is then
multiplied by the depth of the pixel over the focal-length of the lens. The same method can be
applied for the vertical position. The final output are then the Cartesian coordinates (Z ′, X ′, Y ′)
with respect to the left lens of the camera for that pixel.
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The lowest value obtained for the vertical output of the different pixels corresponds to the height
of the floor with respect to the DelFly Explorer (when the floor is in visual range). This value
can then be used to calibrate the barometer.

As one can directly imagine this brings some limitations to the system. When closing into a
wall the floor is in most cases no longer within the visual range of the DelFly Explorer therefore
a much lower estimate of the floor height would be provided because it is based on the lowest
visible part of the wall. This effect is visible in Figure 11-1.

Figure 11-1: The measured floor/ceiling altitude by the stereo-height calculations algorithm during
simulation.

As clearly is visible in Figure 11-1 is that the estimated floor/ceiling height based on the
disparity map differs a lot during the course of the simulation. This is, as said earlier, due to
the fact that the actual floor is not within the visual range and therefore the height is based on
the lowest point on the wall. Furthermore one can see that the lowest value (−1500mm with
respect to the DelFly Explorer) is the most dominant value for the floor and is never exceeded
in negative direction, for the ceiling (1500mm with respect to the DelFly Explorer). This is the
actual height of the floor (as in this simulation the altitude of the DelFly Explorer was fixed on
1500mm). The route flown during this simulation is shown in Figure 11-2.
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Figure 11-2: Route flown during the stereo-height simulation.

However using this varying altitude output to constantly calibrate the barometer is due to all
the noise not very useful and will results in erratic flight behaviour. Therefore an addition to
this algorithm would be necessary. The idea is to take the lowest dominant value within the
last measurement period to calibrate the barometer. The result of this addition can be seen
in Figure 11-3. This figure gives a very constant result, namely the actual height of the floor.
Several peaks are visible. Analysis showed that these peaks correspond to the moments the floor
and ceiling are no longer visible, thus the DelFly Explorer is approaching a wall. When the
height difference between the floor and ceiling is below 1.5 m, the measurements are rejected,
as shown in the figure.

The input for the height calculation script is as follows:

• Disparity map

The output of the height calculation script is as follows:

• Floor height

• Ceiling height
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Figure 11-3: The estimated floor/ceiling altitude estimated over a period by the height calculations
algorithm during simulation. Rejected measurements due to a detected wall are also shown.
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Chapter 12

Manoeuvring

When the room exploration phase is finished the next exploration phase will aim at finding a new
room or corridor. The manoeuvring algorithm is responsible for this task. The manoeuvring
algorithm will aid in detecting possible door locations and planning the manoeuvre trough the
door. Firstly, how the door will be identified will be explained in Section 12-1. Secondly, the
actual tracking of the door and manoeuvring through the door will be explained in Section 12-2.
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12-1 Door Detector

The door detector algorithm is based on the disparity map. A number of histograms is formed
and based on the position on the disparity map a certain disparity is placed in a certain bin of the
histogram. Another way this can be visualized is that the disparity map is split into n different
vertical segments. For each of those segments (bins) the average disparity value and total
number of detected disparities is calculated. The bin with the lowest disparity (corresponding
with textures the furthest away) that is under the minimum disparity threshold which also has
a total number of disparities above a certain threshold (this to reduce the effect of false positives
and noise) will be selected as target bin. One of such bins that was selected as target bin can
be seen in Figure 12-1. For the sake of visualisation the disparity grey values were inverted,
normally nearby objects would be white and objects further away light grey.

Figure 12-1: Door detector vertical target bin for 10 histograms, above the disparity map, below
the simulator view.
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As can be seen in Figure 12-1 the target bin contains a number of pixels with a very low
disparity, bright coloured. These pixels correspond to the opening in the wall (the door) which
can be seen in the bottom part of the figure. From this bin, which is now selected as target
bin, the relative 3D coordinates are computed. This can be done by means of Equations 11-1
to 11-3 as discussed in Chapter 11.
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12-2 Door Tracker

The door detector provides, as discussed in the section above, the relative 3D coordinates of a
potential door. The door tracker then calculates the needed s-turn that has to be made such
that the target location is straight ahead and with the same heading. The last part proved to
be the most beneficial as the DelFly Explorer will most times fly parallel to a wall and with
most room this means straight for a perpendicular wall. The s-turns are not directly initiated
as the turn should be in the visual area of the droplet, as explained in Chapter 7. When the
manoeuvre is finished the door detector algorithm will again analyse the incoming images and
determine a new target. Resulting in a new s-turn and coming closer to the lateral position of
the door while the distance of the door decreases. The whole process can be seen in Figures 12-2
to 12-4, for respectively 10, 20, and 30 bins in the histogram.
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Figure 12-2: Representation of the flown route for the door tracker with 10 histograms.

Simultaneously with the manoeuvring algorithm also the the droplet is still active. This means
that whenever the droplet is activated (due to an obstacle) the DelFly Explorer will turn
accordingly. When the droplet turn is finished the door tracker will again determine a new
target location, as the old one is probably no longer within the visual range of the DelFly
Explorer.

When comparing the door detector and tracking algorithm with respect to the droplet the
success rate of the algorithm can be determined. After performing 10 simulations per settins
the results could be analysed. The absolute number of successful passages for each environment
was counted. This is given in Table 12-1.

As one might observe from Table 12-1 is that in two of the three environment the droplet
was not able to pass through the door opening at all. In environment 3 the droplet method
only had half as many successful passages ad the manoeuvring algorithm. From this it can be
concluded that the manoeuvring algorithm indeed has a large added value when exploring office
environments.
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Figure 12-3: Representation of the flown route for the door tracker with 20 histograms.
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Figure 12-4: Representation of the flown route for the door tracker with 30 histograms.

Table 12-1: Number of successful passages of the droplet with respect to the manoeuvring algorithm
for the three different environments

Environment # Manoeuvring Droplet

1 11 0
2 9 0
3 56 28
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12-3 Field of View Analysis

120 simulations where performed to identify the effect of the camera’s field of view of the ability
to locate and manoeuvre trough the door. Field of view angles of 40, 50, 60, 70, 80, and 90
degrees were tested. To be able to perform these test the droplet properties and simulation
settings should be adjusted for each field of view angle. In Figure 12-5 the results of these sim-
ulations are presented. For each of the settings the total number of successful door manoeuvres
was counted. The results were then normalized with respect to the best performing setting. A
clear optimum is present at a field of view of 70 degrees. From that point there is a declining
performance when increasing or decreasing the field of view. Notably one can observe there is
only a small performance difference between a field of view of 50 and 60 degrees. A possible
explanation for these results is that a larger field of view has a larger view of the room and
therefore a dominant false positive will be dominant in more situations. However, a too small
field of view will limit the cases in which the room exit is in view and decreases the ability to
make an approach with a high success probability. Also the optimal number of bins used for
identification of the door might differ per field of view setting, this could be further investigated.

Figure 12-5: Normalized mean bootstrapped simulated door manoeuvring effectiveness with respect
to the field of view of the stereo-vision camera.

As the results for a field of view of 70 degrees was most outstanding, p-values with respect to
the 60 and 80 degrees where computed. The bootstrap method is used, because of the non-
parametric nature of the data and the relative limited population size.[Mooney and Duval, 1993]
For both yields p-value < 0.01.
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Chapter 13

Overall Behaviour

Overall behaviour is needed to connect the different modules and see the result of the sum
of the parts. For each of the 3 environments both multiple droplet and exploration algorithm
simulations were performed. These were analysed based on their exploration factor to determine
how well the algorithm performed. The results are represented in Figure 13-1.

Figure 13-1: Mean bootstrapped average exploration factor, for over 60 simulations, of the droplet-
only and exploration method. Performed in three different simulation environments.
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From this figure it is clear that over all three environments the performance of the exploration
algorithm exceeds the performance of the droplet only method. Furthermore, one can notice
that the deviation in obtained results for the exploration algorithm is higher. This might be
explained due to the fact that, for example door manoeuvres, a small distance can be the
difference between failure or success in a certain approach. Then the approach should be done
all over again and thus will result in a lower performance. From Figure 13-1 it can also be seen
that some environments, such as environment 3, have a good layout for a random exploration
approach such as the droplet. Because a high exploration factor is easily achieved. For all three
environments the observed difference between the methods had a p-value < 0.01. This p-value
was computed by means of the bootstrap method.[Mooney and Duval, 1993]

A very successful run is presented in Figure 13-2. Here it is very clear that the wall-following
algorithm is first active when entering a new room and the layout is thoroughly followed. After
that very successful door manoeuvres are performed with high success-rates.

Figure 13-2: DelFly Explorer 600s simulated flight track for the exploration algorithm.

A failure case run is presented in Figure 13-3. Here the door manoeuvring algorithm is constantly
unable to manoeuvre trough the door. Therefore the entire simulation time the DelFly Explorer
is stuck in the same room.
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Figure 13-3: Unsuccessful DelFly Explorer simulation flight track for the exploration algorithm.
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13-1 Overall Behaviour Conclusion

When looking at the performance figures for the full exploration method, mainly denoted by
Figure 13-1. It can be concluded that the exploration method delivers for varying environments
a big increase in the exploration factor. However some individual runs encountered problems,
these problem mainly occurred for the center-rotate and door manoeuvring phases. The center-
rotation is often not fully performed because the method used to construct the polygon might
results in different weights for corners. Further more the door manoeuvring algorithm could
be further optimized to increase its success-ratio and thus decrease time spend in an already
explored room.
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Chapter 14

Stereo-Height

As discussed in Chapter 11 the stereo-vision camera of the DelFly can be used to construct a
disparity map. Based on the disparity map and the position of texture on the camera image 3D-
coordinates for a certain texture can be determined. Based on these textures the stereo-height
algorithm will determine the distance of the DelFly Explorer from the floor and ceiling. This
information can be used to estimate the flying altitude, and whether or not a wall is covering
the entire image.
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14-1 Static Test

The first test type consist of static tests. For these tests the DelFly is manually moved through
a series of pre-determined and measured heights. The resultant distance with respect to the
floor and ceiling are shown on the data graph, see Figure 14-1. There is a clear view of the room
with no direct obstructions of walls. The estimated height computed by the DelFly Explorer is
communicated back to the ground station.

The first experiment concerned the algorithm which uses the stereo-vision camera for deter-
mining the flying height of the DelFly Explorer. First tests showed that the exact algorithm
of the simulation resulted in a large amount of noise and unreliable outcomes. A solution in
which for both the lower and upper part of the image the estimated height of all textures was
sorted, was tested. This could then be used to determine the actual height based on the x%
of highest/lowest textures. However sorting these values was a relative large computational
demand for the obtained results, as a noisy frame is more apparent than a large amount of
consecutive noisy frames. Therefore the method was changed to evaluate the estimated height
based on the last 40 computations. As the algorithm was running at 40Hz this meant every
second yields a totally independent measurement. Note, the stereo camera runs only on 24 Hz,
so an image might be used two times for analysis. The test setup consisted of a number of
pre-measured heights over which the DelFly Explorer was varied while being moved through
the environment. Both the estimated floor- and ceiling-height were registered over time. One
of these test is showed in Figure 14-1.
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Figure 14-1: Graph showing estimated and true altitude of ceiling and floor with respect to the
DelFly Explorer.

From this figure it is clear that the estimations are, especially for the floor height, quite accurate
for the majority of the time. The absolute average error obtained is 116 mm for the floor, and
361 mm for the ceiling height.
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A recommendation to improve this method is to look in more detail on how to also filter within
an image. The current method takes the lowest and highest texture of each image. Which may
be more prone to noise and to counteract that the current method takes into account many
consecutive measurements. This makes the method quite interdependent and thus not fast.
With less noise per frame this interdependency can be decreased.
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14-2 Dynamic Test

Besides static tests, flying tests were also performed. These flying tests give a better insight
in how, for example, vibrations affect the results. Also the results are obtained with the same
conditions in which the algorithm would actually be deployed. The experiment is performed in
the Cyberzoo, this is an fenced area of approximately 10m x 10m, in which the 3D location and
attitude of the DelFly Explorer can be accurately tracked. Via this method the exact route of
the DelFly Explorer can be saved. As the ceiling of the Cyberzoo is very high and thus not
within the visual range of the camera, the algorithm will in the dynamic test only consider the
floor height. The heights generated by the stereo-height algorithm can than be compared to
the actual flying height of the DelFly Explorer and whether an obstacle was in view. A typical
result is given in Figure 14-2.

Time [s]
0 20 40 60 80 100 120 140 160

H
ei

gh
t [

m
m

]

-2200

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200
Stereo vision used for height estimate

Estimated floorheight
Actual floorheight

Figure 14-2: Graph showing estimated and true altitude of the floor with respect to the DelFly
Explorer.

The obtained average root mean squared error over the performed experiments is 532mm. This
is a factor 4.6 higher than during static tests. Likely this is cause by the extra vibrations
and pitch angle changes while flying. Further research could investigate design adjustments or
algorithm changes to decrease these effects and thus increase height reliability.
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Chapter 15

Wall Following

The wall-following test is, just like the last stereo height experiment, performed in the Cyberzoo.
This is an fenced area of approximately 10m x 10m, in which the 3D location and attitude of
the DelFly Explorer can be accurately tracked via the optitrack system. Via this method the
exact route of the DelFly Explorer can be saved. Here the ability of the algorithm to follow the
walls and obstacles present in the area is evaluated.

Also the droplet only method is tested to be able to visualize the difference and determine the
performance increase of the wall-following method. For both methods the paths were recorded,
two 2D representations of these paths are visible in Figure 15-2.
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Figure 15-1: Experimental path results for the droplet only algorithm.

As visible in Figures 15-2 and 15-1 the wall-following algorithm is better capable of following
the contours of the cyberzoo. To ensure this, a more active steering behaviour is visible.
Furthermore the paths for each circulation are more similar. This part is of importance for the
odometry algorithm, which depends on revisiting the locations where corner turns are made.
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Figure 15-2: Experimental path results for the wall-following algorithm.

Table 15-1: Average distance from flying path with respect to the wall for wall-following and droplet
only

Run # Wall-Following Droplet

1 2.17 2.23
2 1.77 2.78
3 1.94 2.49

The performance is determined by the average distance from the wall. For the wall-following
algorithm this is 1.96m on average and for the droplet it is 2.50m, obtained over 3 tests form
each. These results are presented in Table 15-1. From this it can be concluded that the wall-
following script works successfully.
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Chapter 16

Room Detection

When wall-following is correctly implemented the route can form the basis for detecting the
the contour of the room. By means of this contour a room size estimation can be created.
Furthermore reoccurring locations can help to identify when a room has been explored. As
explained in Section 9 for this method a dead-reckoning system and magnetic field properties
are used. In the experiment the DelFly Explorer was flown alongside the boundaries of the
Cyberzoo for three rounds. The first round consist primarily of identifying points, based on
turning, used for matching consecutive points. During the experiment the pilot aimed to keep
speed and pitch constant, as these parameters are assumed to be constant by the algorithm.
During flight corners could be matched based on the odometry position estimate and/or the
magnetometer orientation. These matches were then saved. The actual position of the DelFly
Explorer, that was recorded via optitrack, was then matched to these points. In Figure 16-
1 the results are visualized. Only the green points, there were both the odometer and the
magnetometer had a match, would have made it through both matching filters.
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Figure 16-1: Results for correct odometry, magnetometer, and combined match locations during
flight in the Cyberzoo. Numbers indicate in which round the points were generated.
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Analysis of this test showed that in 62.5% the magnetometer matches also had a odometer
match. For odometry this percentage was 50% with respect to the magnetometer. Looking at
the locations of these matches is that they are all located near the boundaries of the Cyberzoo,
which also corresponds to the flown route. Furthermore no clear unbalance in matched locations
is visible from the tests.
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Part V

Conclusion
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Chapter 17

Conclusion

The goal of this project was to aid the development of technology in which the DelFly Explorer
could be used for autonomous exploration in office environments. This technology will be
usable in a wide range of applications, from search and rescue up to entertainment. The goal
was formulated in the research question ’How to increase the indoor explored area of the DelFly
Explorer by means of computationally efficient routing decisions?’. The accompanying sub-
questions where dealt with and answered throughout the process of this thesis.

From related research a couple of restrictions based on the platform where found. The stereo-
board has a used resolution of 128x96 pixels, a 168MHz processor, and 192kB RAM. This lead
to the fact that indeed a computationally efficient method would be necessary. Furthermore
literature provided insights about different methods for the range of tasks the algorithm should
be able to perform. These tasks later translated themselves in the different modules used
for simulation and experimentation (4). For example, from the BUG-algorithm wall-following
proved to be a very useful property for this research.

As first step the simulation process was structured in different modules (1). In simulation
all modules were developed, tested, and the new behaviour compared to the old (2). Finally
also their combined behaviour was analysed. The droplet based wall-following method proved
to be an adequate method to follow the contours of the room in simulation. Also the door-
manoeuvring algorithm increased the ability to pass through doors with a factor 2.7 with respect
to the old method (5). Room odometry was able to identify when a room was explored and a
new area was entered (3). These methods performed well in simulation and resulted in a large
increase in the exploration factor for indoor environments up to a factor 10 with respect to the
old droplet-only method. From these results it can be concluded that the indoor exploration
capabilities indeed increased with this new method.
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The static stereo-height experiment gave very promising results in the static tests. The average
root mean squared error over the performed experiments is 116 mm for the floor, and 361 mm
for the ceiling height. Performance decreased in the dynamic test with an average root mean
squared error over the performed experiments is 532 mm. At this moment the algorithm could
only be used with a moving average filter to calibrate the barometer after certain observation
times, but not instantaneously as preferred and still with a relative large uncertainty. The wall-
following algorithm performed really well in the tests performed. With decreasing the average
distance to the wall from 2.50 m obtained with the droplet to 1.96m. This at the cost of more
controller inputs leading to a less smooth flown route and thus a decrease in effective range.
Finally the room detection experiment showed the algorithm is in real flight experiments able to
identify when corners where visited multiple times by means of an odometer and magnetometer.

C.R. Fonville The Exploring DelFly



Chapter 18

Recommendations

Concerning the software development, improvements could be made regarding the door-
manoeuvring algorithm. When analysing all the simulation runs, this is the part that often
took the longest time. A possible addition could be to loiter in front of a possible door candi-
date to do several attempts before selecting a new candidate. Also solutions in which the flight
speed will be adjusted to decrease the droplet size could be investigated to potentially increase
the success-rate of the algorithm.

Furthermore, the algorithm could be made more be robust for real flight applications, for
example with live speed estimation instead of assumed speed. This will make the odometry
used for room detection more reliable. The corners that are detected are used to determine the
target for the centre rotation, however this location is often close to a wall and therefore not
executed. By improving this estimation the usefulness of this centre rotation can be enhanced.

In real flight tests this room detection algorithm should be tested in combination with wall-
following. This to review performance of the room detection algorithm when combined with
autonomous flight. Also the effectiveness of the wall-following algorithm with respect to the
droplet-only method can be further evaluated in non-square rooms, simulations predict that
in these settings it will outperform the droplet-only even more. Finally the door manoeuvring
should be added to the real flight experiments to test the algorithm in real flight as a whole.
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Appendix A

Appendices

Flowchart representation of the exploration algorithm. Only readable in pdf-viewer.
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:WallFollower()

I_printf("WallFollower %p\n",this)

comment_block_2

drudder = 0

disparity_map = 0

inputs

interlaced_camera = 0

psi = 0

droplet_phase = 0

servo = 0

temp1 = 0

outputs

temp2 = 0

velocity = 0.55

turn_rate = 2.09

own data

initial_loops = 0

fixed delfly velocity

exploration_phase = 0

delfly turn rate

area_counter = 0

initaliazation, counter for
the total loops of this

script

time_old = 0

behaviour is depended on the
exploration phase

x_loc

each identified area gets
it's own area number

= 0

evaluate_disparities
room_odometer

y_loc

= 0

nWP = 1

t_old = 0

attitude

= myPI

turn_angle = 0

corner_counter = 1

phase_timer_2 = 0

phase_reset_2 = 0

phase_reset_3 = 0

turn = 0

ncorners = 0

psi_old = myPI

last_time = 0

door_track_set_time = 0

door_timer = 0

door_tracker

tracker_stage = 0

outbound_time = 0

inbound = 1

new_room_check

cr_phase = 0

center_rotate_time = 0

center_rotate

cr_phase_bored = 30000

cr_average_x = 0

center_rotate_discard = 0;

cr_average_y = 0

stop phase 2 after x*1000
seconds

:~WallFollower()

printf("Close WallFollower\n")

DLF = 1; //droplet length
factor

Fl_Group WallFollower::createGui()

myGUI = new Fl_Group(11,55,200,100,"WallFollower")

myGUI->end()

myGUI

int WallFollower::init()

0

void WallFollower::run()

double myt

gettime(&myt)

get the time

time = (int)(myt 1000.0)

CvSize imageSize = cvGetSize(disparity_map)

_width = imageSize.width

time is in *1000 seconds
obtain disparity map and

determine properties

_height = imageSize.height

_height2 = _height / 2

disparityMat = Mat(disparity_map)

disparityMat.convertTo(disparityMat, 4)

exploration_phase == 0

servo = 0

 True 

exploration_phase = 0

 False 

droplet only

turn = 1

exploration_phase == 1

!!!!!!!!!!!!!!!!

servo = evaluate_disparities()

 True 

exploration_phase == 2

 False 

!!!!!!!!!!!!!!!!
first exploration phase is

wall following only

current_best = 

TEST
exploration_phase = 3;

TEST
evaluate disparity map and

determine servo output

0

center_rotate_discard = 0;

time_end_1 = time

set current_best histogram
to zero

center_rotate()

 True 

exploration_phase == 3 

 False 

save the exploration_phase 1
end time

exploration phase for
checking alternative corner

directions and overall
exploration

time - cr_phase_bored >= time_end_1

TEST
exploration_phase = 3;

TEST
function that heads for the

middle to make a circular
turn

exploration_phase = 3

 True 

 False 

if phase 2 takes to long/not
possible move on to pahse 3

current_best = 

0 

tracker_stage = 0

 True 

exploration_phase == 4

 False 

exploration phase for
finding the door

servo = evaluate_disparities()

printf("EP 3
");

low_disparity_tracker()

the stage of the door track
manoeuvre is reset

servo = door_tracker()

 True 

droplet()

 False 

find possible door candidets
inbound = set_bound(); //check if the delfly
is still in the bounds of the measured area

boundaries
new_room_check(); //determine if the area

counter should be increased
printf("WITHIN AREA %d

", inbound);
exploration phase for targeting the door

servo != 0 && initial_loops > 50

make a s-manoevre towards the door
inbound = set_bound(); //check if the delfly
is still in the bounds of the measured area

boundaries
new_room_check(); //determine if the area

counter should be increased
printf("WITHIN AREA %d

", inbound);
droplet always evaluates if the droplet is

activated and acts acoordingly

room_odometer()

 True 

%d  Inbound: %d \n", exploration_phase, inbound)

 False 

if there is a servo output
and the initial phase of the

simulation is over,
determine odomotry location

temp1 = x_loc

temp2 = y_loc

 nWP - 1 

room_odometer keeps track of
heading and location of the

delfly, also it checks for
corners

 nWP - 1 

initial_loops++

printf("Phase: %d  Area: %d
", exploration_phase,

area_counter);

float WallFollower::evaluate_disparities()

counter for

offset_min = -16

offset_max = -4

set parameters

offset_med = -12

-20 //the maximum offset
pixels should have with

respect to the droplet to be
in wall range

disparity_threshold_low = 80

-8  //the minimum offset
pixels should have with

respect to the droplet else
the wall is too close

disparity_threshold_high = 20

offset from the droplet for
pixels to be in medium range

disparities_lr_difference = 100

treshold for when the wall
is too far

min_disparities_treshold = 10

treshold for when the wall
is too close

med_disparities_treshold = 30

maximum disparity difference
between the left and right

half plane (to see if
turning towards the wall is

allowed)

servo = 0

minimum amount of
disparities needed to

determine if measurement is
trustworthy

disparities_left_high = 0

minimum amount of medium
close disparities needed to
determine the obstacle is
too close to make a left
turn towards the wall

set variables

disparities_left_low = 0

disparities_left = 0

disparities_right_high = 0

disparities_right_low = 0

disparities_right = 0

disparities_medium = 0

sumdisparities_left = 0

sumdisparities_right = 0

averagedisparities_left = 0

averagedisparities_right = 0

uint disparities_max

= 

 128 

values that determine the
droplet shape

38,37,37,36,36,35,34,34,33,33,32,32,31,31,30,30,30,29,29,29,29,28,28,28,28,27,27,27,27,27,26,26,26,26,26,26,26,25,25,25,25,25,25,25,25,25,25,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,25,25,25,25,25,25,25,25,25,25,26,26,26,26,26,26,26,27,27,27,27,27,28,28,28,28,29,29,29,29,30,30,30,31,31,32,32,33,33,34,34,35,36,36,37,37,38,39 

for (int i = 0

i < _width

90deg fov uint
disparities_max[128] = {

42,41,41,41,40,40,40,39,39,39,39,38,38,38,38,37,37,37,37,37,36,36,36,36,36,35,35,35,35,35,35,35,34,34,34,34,34,34,34,34,33,33,33,33,33,33,33,33,33,33,33,33,33,33,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,33,33,33,33,33,33,33,33,33,33,33,33,33,33,34,34,34,34,34,34,34,34,35,35,35,35,35,35,35,36,36,36,36,36,37,37,37,37,37,38,38,38,38,39,39,39,39,40,40,40,41,41,41,42,42
};

main loop over the disparity
map

i++)

for (int j = 0

j < _height

j++)

i< _width / 2

disparityMat.at<int>(j, i) >(int)disparities_max[i] + offset_max

 True 

disparityMat.at<int>(j, i) > (int)disparities_max[i] + offset_max

 False 

disparities_left_high++

 True 

disparityMat.at<int>(j, i) > 1

 False 

count the disparities on the
left half plane that are too

high

disparities_left++

 True 

i< _width / 2

 False 

count the total number of
disparities on the left half

plane

sumdisparities_left += disparityMat.at<int>(j, i)

disparities_right_high++

 True 

disparityMat.at<int>(j, i) > 1

 False 

count the disparities on the
right half plane that are

too high

disparities_right++

 True 

 False 

count the total number of
disparities on the left half

plane

sumdisparities_right += disparityMat.at<int>(j, i)

disparityMat.at<int>(j, i) >(int)disparities_max[i] + offset_min

 True 

disparityMat.at<int>(j, i) > (int)disparities_max[i] + offset_min

 False 

disparities_left_low++

 True 

disparityMat.at<int>(j, i) > (int)disparities_max[i] + offset_med

 False 

count the disparities on the
left half plane that are too

low

disparities_right_low++

 True 

 False 

count the disparities on the
right half plane that are

too low

disparities_medium++

 True 

disparities_left > 0

 False 

count the disparities on the
image that are above medium

value

averagedisparities_left = (float)(sumdisparities_left / disparities_left)

 True 

disparities_right > 0

 False 

calculate the average value
of the disparities on the

left half plane

averagedisparities_right = (float)(sumdisparities_right / disparities_right)

 True 

disparities_left_low < disparity_threshold_low

 False 

calculate the average value
of the disparities on the

left half plane

servo = (float)-0.05

 True 

disparities_left_low + disparities_lr_difference - disparities_right_low  < 0 && disparities_medium > med_disparities_treshold

 False 

printf("%f %f
", averagedisparities_left,
averagedisparities_right);

printf("%d %d
", disparities_left_high,
disparities_right_high);

servo output when the wall on the
left is too far away

ed_case = 0

servo = (float)0

 True 

disparities_left_high > disparity_threshold_high

 False 

servo output to ensure no
overturn when approaching a

wall

ed_case = 1

servo = (float)0.05

 True 

*droplet_phase == 2 && phase_reset_3 == 0

 False 

printf("ed_case 1
");

servo output when the wall
on the left is too close

ed_case = 2

averagedisparities_left < averagedisparities_right && disparities_left > min_disparities_treshold

 True 

determine if the droplet is
(counter)clockwise

turn = -1

 True 

turn = 1

 False 

if (disparities_left_low <
disparities_right_low &&

disparities_left >
min_disparities_treshold) {

printf("TURN -1\n")

phase2_x = x_loc

phase2_y = y_loc

 nWP - 1 

save information about the
location and attitude when
the droplet was activated

phase2_heading = attitude

 nWP - 1 

phase_reset_3 = 1

 nWP - 1 

servo

int WallFollower::droplet()

*droplet_phase == 2 || cr_phase == 1 || cr_phase == 3

exploration_phase == 4

 True 

*droplet_phase == 3

 False 

set all other manoeuvres to
zero when phase of the

droplet is equal to 2
first time the phase is 2

the delfly will make a small
turn to have a good droplet

path

exploration_phase = 3

 True 

time - phase_timer_2 > 3000

 False 

reset settings for
door_tracker

door_track_set_time = 0

phase_timer_2 = time

 True 

phase_reset_2 == 0

 False 

reste phase timer if the
data is too old

time - phase_timer_2 > 0

 True 

 False 

only perfrom when a
direction change has not yet

been completed

servo = 0

 True 

time - phase_timer_2 > 1157

 False 

turn after 1.157 s / 1157 ms

ed_case = 4.1

servo = -turn

 True 

time - phase_timer_2 > (1157 + 164)

 False 

turn heading .3432 rad takes
0.1640 s / 164 ms

ed_case = 4.2

servo = 0

 True 

time - phase_timer_2 > (1157 + 164 + 1106)

 False 

straight is 0.6538m
1.229s/1229 ms -(164+82)/2

= 1106 ms

ed_case = 4.3

servo = turn

 True  False 

return heading -.1716 rad
takes 0.082 s / 82 ms

ed_case = 4.4

* DLF))

time - phase_timer_2 > (1157 + 164 + 1106 + 82)

servo = 0

 True  False 

total time =
1157+164+1106+82 = 2510

ed_case = 4.5

* DLF + 82))

time - phase_timer_2 > (1157 + 164 + 1106 + 82 + 100)

phase_reset_2 = 1

 True  False 

after the initial turning
time has passed (based on
turn rate and droplet angle)

set phase reset to stop
turning

* DLF + 82 + 100))

servo = turn

 True 

when the turning state of
the droplet is reached
variables can be reset

ed_case = 5

exploration_phase == 4

exploration_phase = 3

 True 

phase_reset_2 = 0

 False 

phase_reset_3 = 0

servo

float WallFollower::door_tracker()

droplet_wait_time = 1157

servo = 0

parameters

door_x = (current_best.x / 1000) / 5

variables
turn = 1; // in this phase
the droplet will always

rotate clockwise

door_z = (current_best.z/1000) - ((droplet_wait_time/1000)  velocity)

calculate based on the
estimated door position best

lateral change

door_heading = tan(door_x / door_z)

3.2 divided by two, don't
know why, gives realistic

outcome

double turn_speed = .4

door_turn_time = ((1.0  0.785398)/(turn_speed turn_rate))1000

calculate maneouvers within
droplet area

door_straight_time = (abs(door_x / velocity)  2)1000 - door_turn_time

.4 // 1 is the maximum turn
rate (2.09 rad/s)

door_straight_time < 0

heading change of 45 deg; (1
(1/4)myPI/(turn_speed*turn_rate))

door_straight_time = 0

 True 

door_track_set_time == 0

 False 

always set minimum 0 for
door straight time

turn_speed = 376 / ((door_x
/ velocity) * 2);

door_timer = time

 True 

time - door_timer >= droplet_wait_time && time - door_timer < droplet_wait_time + door_turn_time

 False 

save start time of manoeuvre

door_track_set_time = 1

tracker_stage = 1

printf("Door tracker stage !!!: %d \n", tracker_stage)

servo = copysign(turn_speed, door_heading)

 True 

time - door_timer >= (droplet_wait_time + door_turn_time) && time - door_timer < (droplet_wait_time + door_turn_time + door_straight_time)

 False 

after the droplet wait time
turn in the s manoeuvre

tracker_stage == 1

tracker_stage = 2

 True 

 False 

printf("Door tracker stage: %d  Servo status: %f \n", tracker_stage, servo)

door_straight_time == 0

tracker_stage = 3

 True 

 False 

printf("Door tracker stage: %d  Servo status: %f \n", tracker_stage, servo)

servo = 0

 True 

time - door_timer >= (droplet_wait_time + door_turn_time + door_straight_time) && time - door_timer < (droplet_wait_time + (2 * door_turn_time

 False 

straight part of the s
manoeuvre

tracker_stage == 2

tracker_stage = 3

 True 

 False 

printf("Door tracker stage: %d  Servo status: %f \n", tracker_stage, servo)

+ door_straight_time))

 True 

servo = -copysign(turn_speed, door_heading)

 False 

last turn of s manoeuvre

tracker_stage == 3

tracker_stage = 4

 True 

time - door_timer > (droplet_wait_time + (2 * door_turn_time

 False 

printf("Door tracker stage: %d  Servo status: %f \n", tracker_stage, servo)

+ door_straight_time))

 True 

servo = 0

 False 

head straight for target

exploration_phase = 3

door_track_set_time = 0

tracker_stage == 4

printf("Door tracker stage: %d  Servo status: %f \n", tracker_stage, servo)

 True 

low_disparity_tracker()

 False 

tracker_stage = 0

printf("SERVO 1 %f
", servo);

printf("%d %f %f %f
", exploration_phase, servo, door_x, door_z);

int time_difference = time - time_old;
printf("%d

", time_difference);
time_old = time;

printf("SERVO 2 %f
", servo);

always keep checking for a better door fit while performing
s manoeuvre

servo

int WallFollower::low_disparity_tracker()

const int ndisp_hist = 35

track_treshold = 40

set parameters

disp_hist_threshold = 10

25 the number of histograms
used for the analysis

focal_length = 140

the max disparity value a
pixel can have to count for

tracking /6

base_line = 60

the minimum amount of pixels
with a low value in a

histogram needed compete for
tracking histogram

disp_hist_range = ceil((float)_width/ (float)(ndisp_hist))

focal lenght in mm

disp_histograms disp_hist

baseline lenght in mm
set variables

= 

 ndisp_hist 

-1

disp_histograms best_hist = best_hist.id = (int)(ndisp_hist/2)

best_hist.average = 8

best_hist.x = 0

best_hist.z = 0

best_hist.heading = 0

float contrast = 0

float contrast_old = 0

_width == 128

for (int i = 0

 True 

i < _width

go over the disparity map
and fill the different
histogram patches

i++)

for (int j = 0

j < _height

j++)

disparityMat.at<int>(j, i) >= 1

disparityMat.at<int>(j, i) < track_treshold

 True 

for (int i = 0

 False 

disp_hist

 True 

 False 

.total++

 (int)(i / disp_hist_range) 

save for every histogram the
total, sum, average

disp_hist

.sum += disparityMat.at<int>(j, i)

 (int)(i / disp_hist_range) 

disp_hist

.average = (float)(disp_hist

 (int)(i / disp_hist_range) 

.sum / disp_hist

 (int)(i / disp_hist_range) 

.total)

 (int)(i / disp_hist_range) 

i < ndisp_hist

loop over the different
histograms to find the the

one furthest away

i++)

for (int k = 1

k < 7

loop over a couple of
adjaced histograms to find

the contrast

k++)

i - k < 0

contrast += (float)(disp_hist

 True 

contrast += (disp_hist

 False 

calculate contrast with
other histograms

.average - disp_hist

.average)

i + k > ndisp_hist

 i - k 

 i 

contrast += (float)(disp_hist

 True 

contrast += (float)(disp_hist

 False 

.average - disp_hist

 ndisp_hist 

.average)

contrast > contrast_old

.average - disp_hist

 i + k 

.average) + (disp_hist

 i 

 i - 1 

 i 

contrast_old = contrast

 True 

contrast = 0

 False 

disp_hist

.contrast = contrast_old

 i 

disp_hist[i].total > disp_hist_threshold && disp_hist[i].average < best_hist.average

best_hist = disp_hist

 True 

exploration_phase == 3 && *droplet_phase < 2

 False 

determine if it is a
suitable histogram or an

improving histogram

best_hist.id = i

 i 

best_hist.z = (base_line focal_length) / (best_hist.average / 6)

best_hist.x = ((disp_hist_range  best_hist.id + disp_hist_range / 2) - _width / 2)  (best_hist.z / focal_length)

best_hist.heading = tan(best_hist.x / best_hist.z)

(exploration_phase == 2 && *droplet_phase < 2 && best_hist.average < current_best.average

|| (exploration_phase == 2 && droplet_phase < 2 && best_hist.average <= current_best.average && best_hist.contrast > current_best.contrast))

 True 

printf("Best histogram: %d  Distance x: %f  Best average: %f Contrast: %f \n", best_hist.id, best_hist.x, best_hist.average, best_hist.contrast)

 False 

heading in rad

abs(best_hist.id - (ndisp_hist / 2)) < abs(current_best.id - (ndisp_hist / 2))

current_best = best_hist

 True 

 False 

current_best.heading = attitude

 nWP - 1 

printf("Best histogram: %d  Distance x: %f  Best average: %f Contrast: %f \n", best_hist.id, best_hist.x, best_hist.average, best_hist.contrast)

 True 

(exploration_phase == 4 && best_hist.average < current_best.average) || (exploration_phase == 4 && best_hist.average <= current_best.average && best_hist.contrast > current_best.contrast)

 False 

if it was door search phase
and droplet is not activated

move to door approach pahse

current_best = best_hist

exploration_phase = 4

tracker_stage = 0

printf("Best histogram: %d  Distance x: %f  Best average: %f Contrast: %f \n", best_hist.id, best_hist.x, best_hist.average, best_hist.contrast)

 True 

if in door approach phase a
better match is found, head

for the better match

current_best = best_hist

door_track_set_time = 0

tracker_stage = 0

0

double WallFollower::room_odometer()

printf("%d %d %f
", best_hist.id,
best_hist.total,

best_hist.average);
printf("%d %f %d

", exploration_phase, servo,
best_hist.id);

corner_angle = 1

corner_match_radius = 1

set parameters

corner_match_delay = 2000

corner_evaluate_max = 20

corner_evaluate_threshold = 6

in *1000 seconds

corner_match_heading = 1

number of latest corners
that will be evaluated to

determine if the next
exploration phase is reached

turn_angle = 0

needed number of corners
that should have an earlier

match to go to the next
exploration phase

corner_evaluate_counter = 0

the max number of radians
difference between corner
headings to be a possible

match
set variables

corner_evaluate = 0

attitude[nWP - 1]

attitude

 False 

dt = time - t_old

 True 

set unknown waypoint
attitude to zero

= 0

 nWP - 1 

x_loc

determine the time
difference between

manoeuvres

= x_loc

 nWP 

calculate the new waypoint
location base on

speed/time/attitude/old-
waypoint

+ (cos(attitude

 nWP - 1 

- myPI) velocity  (dt / 1000))

 nWP - 1 

y_loc

= y_loc

 nWP 

+ (sin(attitude

 nWP - 1 

- myPI) velocity  (dt / 1000))

 nWP - 1 

isnan(*psi

|| isinf( psi))

 True 

attitude

 False 

if internal attitude can not
be obtained or is incorrect

keep the old value

= psi_old

 nWP 

else

attitude

= psi

 nWP 

*psi != 0

psi_old = psi

 True 

addition

 False 

= attitude

 nWP 

calculate the attitude
change

- attitude

 nWP 

attitude[nWP] < 1 && attitude[nWP - 1]>6

 nWP - 1 

addition

 True 

attitude[nWP - 1] < 1 && attitude[nWP]>6

 False 

compensate for one full turn

+= 2  myPI

 nWP 

addition

 True 

for (int i = 0

 False 

-= 2  myPI

 nWP 

i < corner_counter -6

printf("%f %f %f
", addition[nWP],

attitude[nWP], attitude[nWP-
1]);

caculate the addition of all
turns since the last corner,
don't count corners after

latest turn

i++)

addition[nWP - i]

addition

 False 

turn_angle += addition

 True 

= 0

 nWP - i 

(turn_angle > corner_angle || turn_angle < -corner_angle) && exploration_phase == 1

 nWP-i 

printf("CORNER :-D \n")

 True 

corner_counter++

 False 

printf("%f
", turn_angle);

if sum of turns is above the
corner treshold

printf("heading_in %f \n", phase2_heading)

corner_counter = 1

corners

reset counter since last
corner

.x = x_loc

 ncorners 

save corner location etc

corners

 nWP 

.y = y_loc

 ncorners 

corners

 nWP 

.area = area_counter

 ncorners 

corners

.heading_in = phase2_heading

 ncorners 

corners

.rotation = copysign(1,servo)

 ncorners 

corners[ncorners].heading_out;
corners[ncorners].heading_change;

corners

.phase2_x = phase2_x

 ncorners 

corners

.phase2_y = phase2_y

 ncorners 

corners

.area = area_counter

 ncorners 

time - last_time > corner_match_delay

int old_corners = 0

 True 

ncorners++

 False 

for (int i = 0

i < area_counter

i++)

old_corners += ncorners_room

for (int i = 0

 i 

i < ncorners_room

compare new corner with the
old corners in the database

i++)

 area_counter 

corners[ncorners].heading_in < corners[i + old_corners].heading_in + corner_match_heading && corners[ncorners].heading_in > corners[i + old_corners].

corners[ncorners].x < corners[i + old_corners].x + corner_match_radius && corners[ncorners].x > corners[i + old_corners].x - corner_match_radius && corners[ncorn

 True 

last_time = time

 False 

//compare corner's heading
with the different database

values

corners

 True 

 False 

compare corner's x and y
coordinates with the

different database values

.match = i + old_corners

 ncorners 

save the corner id of the
matched corner

printf("CORNER MATCH :-D %d \n", corners

.match)

 ncorners 

ncorners_room

++

 area_counter 

exploration_phase == 1

if no corner is registred
increase the number of

manouevres since last corner

ncorners_room[area_counter] > corner_evaluate_max

 True 

t_old = time

 False 

check if the room is
explored based on corner

matches

corner_evaluate = corner_evaluate_max

 True 

corner_evaluate = ncorners_room

 False 

for (int i = 1

 area_counter 

i <= corner_evaluate

i++)

corners[ncorners - i].match >= 0 && area_counter == corners[ncorners-1].area

corner_evaluate_counter++

 True 

corner_evaluate_counter>= corner_evaluate_threshold

 False 

exploration_phase = 2

 True 

 False 

nWP++

save time

increase waypoint number

0

int WallFollower::set_bound()

double angle

= 

 5 

0 

float p1x, p1y, p2x, p2y

double odometer_offset = 2

int old_corners = 0

for (int i = 0

max offset from the area in
meters to be 'out of bounds'

i < area_counter

i++)

old_corners += ncorners_room

for (int i = 0

 i 

i < ncorners_room

check for own location and
eacht of the offset

locations (cross-shaped) if
it is within the area

calculate for each of these
positions the sum of the

angles with all of the
vertices

i++)

 area_counter 

p1x = corners

.x - x_loc

 i 

+ odometer_offset

 nWP-1 

p1y = corners

.y - y_loc

 i 

+ odometer_offset

 nWP-1 

p2x = corners



Bibliography

A. Angeli, S. Doncieux, J. A. Meyer, and D. Filliat. Incremental vision-based topological SLAM.
In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1031–
1036, Nice, 2008. ISBN 9781424420582. doi: 10.1109/IROS.2008.4650675.

B. Baddeley, P. Graham, A. Philippides, and P. Husbands. Holistic visual encoding of ant-like
routes: Navigation without waypoints. Adaptive Behavior, 19(1):3–15, 2011. ISSN 1059-7123.
doi: 10.1177/1059712310395410.

B. Baddeley, P. Graham, P. Husbands, and A. Philippides. A Model of Ant Route Navigation
Driven by Scene Familiarity. PLoS Computational Biology, 8(1), 2012. ISSN 1553-7358. doi:
10.1371/journal.pcbi.1002336.

S. S. Baek, F. L. Garcia Bermudez, and R. S. Fearing. Flight Control for Target Seeking by
13 gram Ornithopter. In IEEE International Conference on Intelligent Robots and Systems,
pages 2674–2681, 2011. ISBN 9781612844541. doi: 10.1109/IROS.2011.6048246.

C. Bills, J. Chen, and A. Saxena. Autonomous MAV Flight in Indoor Environments using Single
Image Perspective Cues. In IEEE International Conference on Robotics and Automation,
pages 5776–5783, Shanghai, 2011. ISBN 9781612843865. doi: 10.1109/ICRA.2011.5980136.

S. Birchfield and C. Tomasi. Depth Discontinuities by Pixel-to-Pixel Stereo. International Jour-
nal of Computer Vision, 35(3):269–293, 1999. ISSN 09205691. doi: 10.1023/A:1008160311296.

J. L. Blanco, J. A. Fernandez-Madrigal, and J. Gonzalez. Toward a Unified Bayesian Approach
to Hybrid Metric–Topological SLAM. IEEE Transactions on Robotics, 24(2):259–270, 2008.
ISSN 1552-3098. doi: 10.1109/TRO.2008.918049.

C. L. Bottasso, D. Leonello, and B. Savini. Path Planning for Autonomous Vehicles by Trajec-
tory Smoothing Using Motion Primitives. IEEE Transactions on Control Systems Technology,
16(6):1152–1168, 2008. ISSN 1063-6536. doi: 10.1109/TCST.2008.917870.

B. J. Cohen, S. Chitta, and M. Likhachev. Search-based Planning for Manipulation with Motion
Primitives. In IEEE International Conference on Robotics and Automation, pages 2902–2908,
Anchorage, 2010. ISBN 9781424450404.

A. J. Davison and D. W. Murray. Simultaneous Localization and Map-Building Using Active
Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):865–880,
2002. ISSN 0162-8828. doi: 10.1109/TPAMI.2002.1017615.

The Exploring DelFly C.R. Fonville



G. C. H. E. de Croon, K. M. E. de Clercq, R. Ruijsink, B. Remes, and C. de Wagter. Design,
aerodynamics, and vision-based control of the DelFly. International Journal of Micro Air
Vehicles, 1(2):71–98, 2009.

G. C. H. E. de Croon, C. de Wagter, B. D. W. Remes, and R. Ruijsink. Sub-sampling: Real-
time vision for micro air vehicles. Robotics and Autonomous Systems, 60(2):167–181, 2012a.
ISSN 09218890. doi: 10.1016/j.robot.2011.10.001.

G. C. H. E. de Croon, E. de Weerdt, C. de Wagter, B. D. W. Remes, and R. Ruijsink. The
Appearance Variation Cue for Obstacle Avoidance. IEEE Transactions on Robotics, 28(2):
529–534, 2012b. ISSN 15523098. doi: 10.1109/TRO.2011.2170754.

G. C. H. E. de Croon, L. M. O’Connor, C. Nicol, and D. Izzo. Evolutionary robotics ap-
proach to odor source localization. Neurocomputing, 121:481–497, 2013. ISSN 09252312. doi:
10.1016/j.neucom.2013.05.028.
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