
Straightening and simplifying
a multi-view stereo mesh of a city

Yuxuan Kang
June 2017

Master of Science Geomatics

STRA IGHTEN ING AND S IMPL IF I CAT ION OF A MULT I -V I EW
STEREO MESH OF A C I TY

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics for the Built Environment

by

Yuxuan Kang

May 2017

Yuxuan Kang: Straightening and simplification of a multi-view stereo mesh of a
city (2017)
cb This work is licensed under a Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

ISBN 999–99–9999–999–9

The work in this thesis was made in the:

3D geoinformation group
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Prof.dr. Hugo Ledoux
Dr. Abdoulaye Diakité

Co-reader: Dr.ir. Martijn Meijers

http://creativecommons.org/licenses/by/4.0/

ABSTRACT

[Should fit on one page.]

v

ACKNOWLEDGEMENTS

. . .

vii

CONTENTS

1 introduction 1

1.1 Background . 1

1.2 Problem statement . 3

1.3 Research questions . 4

1.4 Research scope . 5

1.5 Research relevance . 5

1.6 Reading guide . 6

2 related work 7

2.1 Feature enrichment . 7

2.2 Segmentation . 9

2.3 Plane detection . 11

2.4 Plane regularization and refinement 13

3 conceptual framework to straighten city mesh 15

3.1 Methodology . 15

3.2 Normal estimation . 17

3.3 Texture information enrichment 17

3.4 Random Sample Consensus algorithm 18

3.5 Plane regularization . 21

3.6 Snapping . 23

3.7 Mesh segmentation . 23

3.8 Segment split . 25

3.9 Mesh simplification . 27

4 implementation and experiments with real-world datasets 29

4.1 Tools and libraries . 29

4.2 Data . 29

4.3 Normal estimation . 32

4.4 Texture information enrichment 32

4.5 Global fitting . 32

4.5.1 Main plane fitting . 32

4.5.2 Snapping . 35

4.5.3 Mesh segmentation . 36

4.6 Local fitting . 38

4.6.1 Small plane fitting . 38

4.6.2 Snapping . 39

4.7 Segments split and removing spikes 40

4.8 Mesh simplification . 43

5 analysis and comparison 45

5.1 Result analysis . 45

5.1.1 Spike problem . 46

5.1.2 ”Wedding cake” effect 47

5.2 Comparison . 48

6 conclusion and recommendations 51

6.1 Research questions . 51

6.2 Discussion . 52

ix

x Contents

6.3 Recommendations and Future works 53

a other test data 61

L I ST OF F IGURES

Figure 1.1 Example of a multi-view stereo pipeline from (a) to
(d) [Furukawa et al., 2015] 2

Figure 1.2 Multi view stereo mesh of city of Amsterdam : Ams-
terdam 3D (CycloMedia Technology, Inc) 3

Figure 1.3 Bumpy facade in triangle mesh 4

Figure 1.4 Low-quality roofs . 6

Figure 2.1 Result from Jonsson [2016] 8

Figure 2.2 Segmentation on different scales [Jonsson, 2016] . . . 10

Figure 2.3 Curvature segmentation result [Jonsson, 2016] 10

Figure 2.4 Planar patch detection using RANSAC [Diakité and
Zlatanova, 2016] . 12

Figure 2.5 Plane refinement [Jonsson, 2016] 14

Figure 2.6 Pitched roof building described by half-spaces from
H1 to H7 [Kada and Wichmann, 2013] 14

Figure 3.1 Workflow diagram of straightening and simplifying
Multi View Stereo mesh 16

Figure 3.2 Normal estimation by the normal of incident faces . . 17

Figure 3.3 UV mapping from triangle mesh to texture image . . 18

Figure 3.4 Model fitting on data with inliers (blue points) and
outliers (red points) . 19

Figure 3.5 Parameter cluster epsilon E controls the connectivity
of the points covered by a detected shape. The input
point set is sampled on four coplanar squares.[Oesau
et al., 2017] . 20

Figure 3.6 Impact of cluster epsilon E over level of details of the
detection [Oesau et al., 2017] 21

Figure 3.7 Snapping points and spikes problem caused by near
coplanar planes . 22

Figure 3.8 Regularization of small planes 22

Figure 3.9 Snapping operations 23

Figure 3.10 Region growing based on topology, normal and tex-
ture information . 25

Figure 3.11 Disconnected segment and spikes problem 26

Figure 3.12 Split segment and remove spikes 27

Figure 3.13 The mesh simplification process: from (a) to (d) . . . 28

Figure 4.1 Test data . 31

Figure 4.2 Textured vertices . 33

Figure 4.3 Different probabilities p 34

Figure 4.4 Test on parameter min points n 34

Figure 4.5 Test on parameter ε . 35

Figure 4.6 Global fitting result of test dataset II 36

Figure 4.7 Comparison between before and after snapping points
to intersetion lines . 36

Figure 4.8 Classification of faces after global fitting 37

Figure 4.9 Comparison between oversegmentation and under-
segmentation . 38

Figure 4.10 Mesh segmentation . 39

xi

xii List of Figures

Figure 4.11 Comparison between unconstrained and constrained
planes in local fitting 40

Figure 4.12 Comparison between result of global fitting and local
fitting, test dataset II 40

Figure 4.13 Comparison of the classification after global fitting
and local fitting . 41

Figure 4.14 Two separate points in one segment are snapped to
the same plane . 41

Figure 4.15 Comparison between before and after removing spikes 42

Figure 4.16 Remove spikes and recolor the mesh 42

Figure 4.17 Mesh simplification . 43

Figure 5.1 Straightened facade . 45

Figure 5.2 Well and badly straightened windows 46

Figure 5.3 Unsolved spike problem caused by unsnapped neigh-
bors . 46

Figure 5.4 Unsolved spike problem caused by mixed neighbors 47

Figure 5.5 ”Wedding cake” effect caused by inclined surface . . 47

Figure 5.6 Input datasets of Jonsson [2016] 48

Figure 5.7 Other test dataset . 49

Figure 5.8 Comparison of the results 50

Figure 5.9 Comparison of the results on edges 50

Figure 6.1 Problem in texture enrichment 53

L I ST OF TABLES

Table 4.1 Relationship between faces and texture files 32

Table 4.2 Relationship between vertex and RGB value 32

xiii

L I ST OF ALGOR ITHMS

3.1 Mesh segmentation: Region growing (Breath First Search) . . . 24

3.2 Segment split . 27

xv

ACRONYMS

xvii

1 INTRODUCT ION

Due to the fast development of hardware and software, nowadays comput-
ers can store and handle huge data compared to the situation decades ago.
The needs for 3D models are growing and expanding rapidly in a variety
of fields. Compare with traditional 2D GIS, 3D indeed has the same func-
tionality: 1) data capture, 2) data structuring 3) data manipulating 4) data
analysis and 5) data prensentation [Zlatanova, 2000]. However, the differ-
ence is that 3D representation of objects is closer to reality which means
it will provide more realistic feelings for 3D GIS users. As many people
may have experienced, when they try to locate themselves in a city, there
are always some difficulties of linking 2D maps with real city objects while
people can easily link them to 3D models according to the shape, size, tex-
ture and other information. Moreover, the way of using 3D is also changing.
Visualization used to be almost the only function for 3D city model, but
now the function of 3D model is extended. Now there are two types of
applications of 3D city model: Non-Visualization and Visualization-Based
applications. For Non-Visualization application, for example there are dsti-
mation of the solar irradiation, energy demand dstimation, aiding position-
ing, determination of the floorspace and classifying building types etc. For
Visualization-Based applications, there are Geo-Visualisation and visualisa-
tion enhancement, visibility Analysis, Estimation of Shadows Cast by Urban
Features, estimation of the propagation of noise in an urban environment,
3D cadastre, visualisation for navigation etc [Biljecki et al., 2015].

Although 3D modelling has many advantages, the fact that 3D model is
hard to maintain cannot be denied. 3D models often suffer from low accu-
racy. These models with low quality will lead to serious error or crashing of
the downstream applications [Zhao et al., 2013]. Besides, if the data has low
quality, it may contains many noises so that straight objects are no longer
exactly regular. Thus many studies are focusing on how to improve the
quality of different kinds of 3D models with different approaches.

1.1 background

There are various ways for 3D representations. Among them, boundary
representation is widely used in many applications. Boundary representa-
tions explicitly store topological information as faces, edges, and vertices
[Lienhardt, 1991]. In computer graphics, this kind of representation is often
referred as polygon mesh such as triangle mesh, and triangle mesh is often
used to represent the surface. Moreover, they can be rendered efficiently
with additional bitmap texture information [Wiemann et al., 2016].

The triangle mesh can be generated from different data sources as well.
First, the spatial data can be collected with two kinds of sensors: active sen-
sors such as laser scanners or passive sensors like cameras. With these two
kinds of sensors, the triangle mesh can be generated based on point cloud

1

2 introduction

(a) Input imagery (b) Posed imagery

(c) Reconstructed 3D geometry (d) Textured 3D geometry

Figure 1.1: Example of a multi-view stereo pipeline from (a) to (d) [Furukawa et al.,
2015]

data [Wiemann et al., 2016] or images using photogrammetry methods [Re-
mondino and El-Hakim, 2006].

The images used for generating 3D mesh is called multi view stereo im-
agery. It makes it possible to generate dense meshes from the images ac-
quired from different sources [Rouhani et al., 2017]. The generation of multi
view stereo mesh is based on photogrammetric method. Furukawa et al.
[2015] concluded the overall approach of generating multi view stereo mesh
is:

• Collect images

• Compute camera parameters for each image

• Reconstruct the 3D geometry of the scene from the set of images and
corresponding camera parameters.

• Optionally reconstruct the materials of the scene

As shown in Figure 1.1, first multi view stereo images can be posed (Fig-
ure 1.1) according to the parameters of the cameras. Tie points can be found
in overlapping images. If the parameters of the cameras are known, by in-
tersecting corresponding image rays (two red lines in Figure 1.1 (c)), the
3D coordinates (x, y, z) can be calculated by image coordinates of two tie
points (x1, y1) and (x2, y2). By proper sampling, points with some density
can be acquired and by triangulating these points, a multi stereo mesh can
be generated.

1.2 problem statement 3

Figure 1.2: Multi view stereo mesh of city of Amsterdam : Amsterdam 3D (Cyclo-
Media Technology, Inc)

The data can be collected efficiently, with cameras mounted on cars or
drones. Besides, existing airborne images can be reused to generate meshes
as well. Thus, it is really helpful for creating and updating city models in a
short time. A big advantage of image based triangle meshes is that images
contain abundant texture information. The textures not only contribute to
the realistic scenes but also to some analysis. For example, each vertex can
be enriched with texture information. It provides more references together
with other features for classification and segmentation of the mesh [Rouhani
et al., 2017].

For this MSc project, the experiment data was collected by CycloMedia
Technology, Inc in 2015. The datasets are multi view stereo meshes from
the city of Amsterdam (Figure 1.2). The data cover 900km roads and 100km2

area. They are collected by cameras mounted on cars. However, the roof
parts will be missed by this means, so the roof data is from aerial images.

1.2 problem statement
Although the generation of multi view stereo mesh can be fast, the quality
of the mesh cannot be guaranteed. There are many data error sources from
data collection to the output meshes. For example, the quality of the mesh
depends on the inner and exterior orientation of the camera. Because in or-
der to get accurate meshes, the distortion of the images should be corrected,
the accuracy of localizing and orientating the camera should be guaranteed.
Moreover, in data processing procedure, overlapping images are matched in
order to generate stereo. The accuracy of imaging matching is also a factor
that has influence on the output meshes.

As shown in Figure 1.3, two subfigures show the same area of a build-
ing facade. Without texture, it is clear to see that the facade is bumpy.
Due to the data error, points often have small deviations from the actual
planes they belong to. Thus these points are on either side of the plane.
However, based on our knowledge about the real world, man-made objects
usually have regular shapes. The facade of the building should be straight
and flat. Thus bumpy objects sometimes are misleading and have a nega-
tive influence on the recognition of the objects. Moreover in many 3D city

4 introduction

(a) Test data with texture

(b) Test data without texture

Figure 1.3: Bumpy facade in triangle mesh

modelling, buidings are often modelled by CityGML, and CityGML model
defines buildings as regular objects in different level of details (LoD) [Fan
et al., 2009]. So straight and flat city objects are more similar to the other
format of city model such as CityGML.

One way to solve this problem is to control the quality of data acquisition
and processing. Unfortunately, although the data error sources are known,
it is impossible to eliminate all the errors. And in reality, not all applications
can afford accurate but expensive equipments and some applications focus
more on the speed of data acquisition instead of accuracy. So the solution to
improve the quality of the data is not feasible sometimes. Processing exist-
ing data is much more economic and time saving compared to re-collecting
data, thus how to improve poor-quality data becomes a challenging topic.

1.3 research questions

As the problem is stated in the previous section, the aim of this MSc thesis is
to straighten the bumpy objects in the triangle meshes based on plane fitting
methods, so that the regular objects in the mesh can have straight and flat
shapes. As explained in Section 1.1 and 1.2, the data have low quality. In
order to detect planes from such data, RANSAC algorithm is adopted. A
most important feature for RANSAC is that it can deal with data with a
large portion of gross error, this will formally dicussed in Section 3.4.

1.4 research scope 5

The research aims to answer the following question: ”Can RANSAC al-
gorithm based method yield similar or better result than existing approaches for
straightening multi view stereo mesh”. In order to answer the research ques-
tion, there are several sub research questions need to be anwsered as well:

• What methods are currently used? What are the advantages and dis-
advantages?

• How can some plane constraints be used for straightening meshes?

• How can geometry/topology/texture information be used?

• Is it feasible to simplify the straightened meshes regarding data stor-
age and attach textures to simplified meshes?

1.4 research scope
The thesis focuses especially on the man-made objects, trying to restore
regular shapes of these objects and ignore unnecessary details so that the
representation of the objects can be simplified. These thesis mainly works
on planar areas in the city models. Since there is no semantic information in
the data, according to the observation, these planar areas are often: facades
of the buildings, ground, windows and doors, balconies etc. These planar
objects should be straightened in the output mesh. During the procedure,
many redudant details might be ignored so that the output mesh is a more
simplified representation of the objects compared with the original mesh.
However, some important features should be retained, such as some big
windows and balconies on the facade.

By observation of the data, there are some vegetations. The vegetations
are natural objects and they are often not in regular shapes. Similarly non-
planar areas will remain the same in the output mesh.

Roofs of the buildings are regular so they are supposed to be straight-
ened as well. However, the data that this thesis mainly works with has
really poor-quality roofs. The roofs are generated by airborne images, due
to the equipment, flight conditions etc, the quality of the roofs becomes low.
Figure 1.4 shows part of the roof areas, it is clear to see that roofs are not
planar in these data. Thus it is not possible to deal with these parts either.
But the workflow and method can be applied to any similar data with better
quality so that the roofs can be straightened as well.

1.5 research relevance
In recent years, there are more and more ways of data acquisition. All the
data collection methods have different purposes. Some of them aim at high
accurate measurement, the others aim at less accurate but more convenient
and fast data acquisition. Compared with 2D data, 3D data is more difficult
to maintain, regarding in many aspects such as geometry, topology, texture
etc. Different studies focus on soloving problems caused by low quality,
for example the research from Zhao et al. [2014] is to set up a framework
for geometric repair of CityGML models. Similarly, this thesis focuses on
setting up a workflow for straightening multi view stereo mesh.

Some studies about how to straighten the meshes have been done with
different approaches, they are formally discussed in Chapter 2. However,

6 introduction

Figure 1.4: Low-quality roofs

some methods have complex math models and steps. This research has a
more understandable workflow, and it is tested on poor-quality data, which
means it is more portable to data with better quality. Besides, the data comes
from real application which means the research can not only have theratical
values but also practical values.

1.6 reading guide
There are in total 6 chapters. Chapter 2 organises some related works. Chap-
ter 3 explains conceptual framework, workflow and principles of some al-
gorithms related to this research. The details of implementation and exper-
iments are presented in Chapter 4. Then following Chapter 5 will focus on
the analysis of the result and make comparisons with other study of this
topic. Finally, conclusions will be drawn and the research question will be
answered in Chapter 6. Moreover, some existing problems, recommenda-
tions and protential future works will be given in the final chapter as well.

2 RELATED WORK

Several relevant aspects of this thesis have been studied by other researchers.
The following chapter gives an overview of the related studies. Some related
works cover more than one aspect, so they will be discussed more than once
in different perspectives in different sections.

There are four parts in this chapter. First, Section 2.1 discusses some en-
riched features used in different studies for segmentation or classification.
Second, Section 2.2 provides an overview about different approaches for
segmentation. Section 2.3 introduces some related studies about plane de-
tection. Finally, Section 2.4 focuses on how to regularize and refine the fitted
planes. The regularization of the plane is to make the fitted plane more reg-
ular considering the relations to the other planes. The refinement of the
plane is to improve the quality of the fitted plane.

In 3D city modelling, there are not many studies fully focus on MVS
mesh. However, there are plenty of research about point cloud. Due to
some similarities between point cloud and MVS mesh, for exmple they both
contain dense points, the studies about point cloud are also relevant to this
thesis. Besides, there are many studies about segmentation, classification
on images from (multispectral) remote sensing. Since MVS mesh in many
cases contains also spectral information (normally referred as texture), the
studies about segmentation and classification of images are also considered
relevant.

2.1 feature enrichment

For MVS meshes, the primitives are vertex, edge and face. Among them,
vertex contains geometry information while topology information is formed
by edges which connect adjacent points. In order to segment the points well,
only using geometry and topology information is usually not enough. So
some other features are enriched to the points. In this section, some common
features that can be enriched to points or other segmentation unit such as
triangle will be discussed.

Jonsson [2016] did a similar topic to this thesis about detection and cor-
rection of planar regions in triangle meshes. Figure 2.1 shows his result.

The most relavant feature used in this MSc thesis is curvature. In 2D
space, each point on a curve has a corresponding tangent vector, then cur-
vature is the measurement on the rate of change of this tangent vector. So
it describes how much a curve deviates from a straight line. Extend this no-
tion to 3D, since each point on the curved surface has non-unique tangent
vectors in different directions, the curvature coresponds to chosen tangent
vector, which means it is not unique either. Among all the curvatures, the
two principle curvatures are defined as the maximum and minimum cur-
vatures. These two values are input to the defined probablity function to
caculate the probablities of a point is a planar point. As a sequent step,

7

8 related work

(a) Original mesh

(b) Flattened mesh

Figure 2.1: Result from Jonsson [2016]

Markov random field (MRF) is used to make decision on labelling planar
points. More detailed theoratical definition of curvature of a surface is ex-
plained by Taubin [1995], while [Douros and Buxton, 2002] provides more
insights on 3D surface curvature estimation with quadric surface patches.
Curvature feature Jonsson [2016] used is a good indicator for planarity. The
points in planar areas have low curvature, thus planar areas can be detected
well by this feature. However, curvature estimation can achieve decent re-
sults when the data have good quality. If the data contain too much noise,
curvature might not be estimated accurately.

In point cloud processing, the normal is one of the most important feature
apart from geometry of the point [Sampath and Shan, 2010]. Besides, they
also mentioned that the eigen values of the covariance matrix formed by
neighboring points can indicate whether a point is planar or not. If the nor-
malized eigen value is small enough, the point should be planar. More stud-
ies also tend to combine point cloud data with another data for information
enrichment, for example, Demir and Baltsavias [2012] used a combination
of point cloud data and multispectual image to automatically model build-
ing roofs. Although the study does not enrich the features of point cloud
directly, it does use additional features for point classification. First, it uses
slope as feature to separate ground and non-ground points, then NIR (Near
InfraRed), R (red), G (green), B (blue) are used for classification to distin-
guish buildings, bare ground, roads, shadows, grass and trees. Additionaly,
in order to better classify trees, point cloud vertical density can also be a
feature since it is generally much higher at trees than at open terrain or

2.2 segmentation 9

buildings. Their study gives an inspiration of combining color information
and geometry information flexibly to better process points.

A more related work was carried out by Martinovic et al. [2015]. The
same as the study of Demir and Baltsavias [2012], the data is a combination
of point cloud and image. For Random Forest (RF) classifier, the following
features are used: mean RGB values of the point as seen in images, LAB val-
ues of the mean RGB, normal of the point, spin-image descriptor [Johnson
and Hebert, 1999], height of the point above estimated ground plane and so
forth, in total 132-dimensional feature space.

In some research about mesh based semantic 3D modeling, classification
is a neccesity, thus features are important factors in the research of this
area. Verdie et al. [2015] classified based on superfacet instead of individ-
ual triangle facet. These superfacets are clusterd based on shape operator
matrix [Cohen-Steiner and Morvan, 2003] and image analysis. The features
are enriched on each triangle facet instead of point: the relative elevation,
planarity derived from surface variation [Pauly et al., 2002], and horizon-
tality. These features are normalized within 0 and 1. Then the features
for each superfacet are caculated as area-weighted sum of the features for
each facet, also the same procedure takes on the normal of the superfacet.
For more examples, Valentin et al. [2013] used surface curvature, singular
values extracted from principal component analysis (PCA), shape diameter
feature (SDF), shape contexts (SC) and spin images as geometric features for
Conditional Random Field (CRF) energy model.

Rouhani et al. [2017] concluded that the key aspect for mesh segmentation
is the design of feature vectors from both geometric information and photo-
metric information. For example normals, curvatures, planarity, colors and
texture histograms.

In conclusion, considering the data of this project, normal features is con-
sidered necessary and it can be enriched on each vertex based on normal
estimation method or based on normals of the faces. There are too much
noise in the data, thus near planar parts may become bumpy, so that cur-
vature and planarity are assumed to be less distinctive. The data is also
textured so color information can also be used since facade, windows and
other objects are usally in different colors.

2.2 segmentation
The segmentation of mesh is a necessary part in many applications of com-
puter graphics [Katz et al., 2005]. Besides, segmentation can also be appied
to different kinds of data such as image, point cloud etc. Because of the
different formats of the data, the segmentation can base on points in point
cloud, pixels in images, vertices or faces in mesh etc. Although the data
are different, the idea of segmentation can be identical. The aim of the seg-
mentation is to integrate the basic unit such points, pixels etc into segments,
thus more anlayses can be applied on the segments instead of individual
basic unit.

So in this section, all different forms of segmentation are discussed, in
order to get an complete overview.

First, there are some mesh related studies which apply segmentation
methods. Jonsson [2016] segmented the mesh by region growing and it
relies on the label assigned to each vertex. Planar segments are kept for
plane fitting and non-planar segments are disgarded. Besides, in order to

10 related work

Figure 2.2: Segmentation on different scales [Jonsson, 2016]

Figure 2.3: Curvature segmentation result [Jonsson, 2016]

find both big planes such as building facade and small planes like windows
and chimney sides, plane fitting approach is carried on different scales by
using scaling factor σ. This scaling factor is a parameter to control the la-
beling for points. Figure 2.3 shows segmentation on different scales from
largest scale (top) to smallest scale (bottom) , and the blue points are la-
belled as planar points. In the largest scale in Figure 2.3, all the points will
be segmented as a big cluster, thus a big plane will be fitted and the fitted
planes become smaller and smaller by decreasing the scale. It provides an
idea for this project that plane fitting can be carried on different scales to
get different size of planes of the buildings.

Verdie et al. [2015] also applied region growing, but the region growing is
not based on points but on face segments of the mesh. First faces of the mesh
are oversegmented into superfacet based on region growing by comparing
ths similairy of shape operator matrix. The shape operator matrix is esti-
mated for each triangle facet on a local spherical mesh neighborhood with
radius R. Then they use Markov Ramdom Field to label superfacet from the
geometric attributes computed per superfacet. After labelling, they identify

2.3 plane detection 11

a set of nearly planar superfacets by selecting the ones labelled as roof or
facade. For each of them, least square is applied for plane fitting.

Wiemann et al. [2016] used region growing approach as well. It is based
on the method of Wiemann et al. [2012]. The planar regions grow based on
normals.

Many region growing methods assign label to each point, for example the
research from Elberink and Vosselman [2009], Sampath and Shan [2010] and
Sun and Salvaggio [2013], while Orthuber and Avbelj [2015] proposed a dif-
ferent TIN-based region growing where the label is assigned to each triangle
instead of point. So TIN-based region growing starts from a seed triangle,
iteratively include more homogenous triangles into a segment. Since for tri-
angle meshes, each face is also a triangle so this TIN-based region growing
can be applied the MVS mesh as well.

In order to imporve the performance of region growing, Chauve et al.
[2010] designed a seeding strategy that points of better planarity have prior-
ity to be seed points. This will make region growing more efficient.

Despite of region growing based segmentation, there are some other stud-
ies of point cloud which adopt other segmentation methods i.e cluster-
ing[Filin and Pfeifer, 2006]. Sampath and Shan [2010] mentioned an edge-
based method which can determine the edges in the data set and connect
them to form regions. Besides they concluded some types of available clus-
tering [Jain et al., 1999][Berkhin, 2006][PEH, 2007] : hierachical methods
including bottom up and top down, partitioning methods such as k-means,
model based methods and density based methods. Among them, they used
fuzzy k-means clustering and the number of clusters are estimated by calcu-
lating likelyhood. Alharthy and Bethel [2004] also used clustering method
but the clustering is also based on region growing.

Woo et al. [2002] gives another perspective for point cloud segmentation.
Unlike traditional point cloud segmentation which is based on point, this
method is based on subdivision of 3D grid. A original 3D grid is created
with relatively large voxel size and the size of the voxel decreases by itera-
tively subdividing the voxel. A voxel is not divided until the deviation of
points in this voxel is low enough. Similarly base on voxel, Tseng and Hung
[2016] applied split-and-merge segmentation [Wang and Tseng, 2010][Wang
and Tseng, 2011] using octree structure.

Rouhani et al. [2017] concluded the simplest form of mesh segmentation
may be seen as unsupervised clustering problem based on geometic criteria
[Shlafman et al., 2002]. Besides, there are some deterministic approaches
such as region growing [Koschan, 2003], spectral analysis [Zhang et al.,
2010] and some probabilistic approaches such as MRFs or CRFs.

In conclusion, region growing seems to be the most popular method for
segmentation both on points and image pixels. For this project, since the
mesh contains both point geometry and image texture, region growing can
be suitable for mesh segmentation. There are also some studies which la-
belling the mesh segment, but for this project, there can be semantic enrich-
ment but it is not a focus.

2.3 plane detection

Building is one of the most important type of object in 3D city modeling.
And it normally consists of several planes, for example walls, flat roofs etc

12 related work

(a) 3D mesh provided by the Tango (b) Equivalent point cloud

(c) Extracted patches (d) Patches corresponding to walls and
floor

Figure 2.4: Planar patch detection using RANSAC [Diakité and Zlatanova, 2016]

[Fan et al., 2009]. The following section will provide some related works
with the aspect of plane dectection.

RANSAC is a widely used method for model fitting. It was proposed
by Fischler and Bolles [1981] in image analysis and automated cartography.
They mentioned that RANSAC was capable of intepreting/smoothing data
with a significant percentage of gross errors. Roth and Levine [1993] did
a statistic research showing that this percentage can be even 50%. Since
shapes are often parametric model, many studies use RANSAC to detect
shapes.

Gallup et al. [2010] applied RANSAC on depth map to detect planes.
Schnabel et al. [2007] used RANSAC for point cloud shape detection. The
aims are not only planes, but also cylinders, cones. Each point fixes only
one parameter of the shape. Diakité and Zlatanova [2016] applied RANSAC
on TANGO tablet scanning data to detect indoor planar patches, the result
is shown in Figure 2.4.

Tarsha-Kurdi et al. [2008] proposed an extended RANSAC algorithm for
roof detection from point cloud. The extension of RANSAC includes two
parts: improve the data quality and improve RANSAC algorithm. The algo-
rithm can be improved in two aspects:

• The shape does not necessarily include as many points as possible. Be-
fore the algorithm iteratively replaces the shape with less points with
the one with more points, standard deviation needs to be considered
in order to decide whether it should be replaced.

• If a detected plane does not meet the requirement, the points that fit
this plane should be reassigned to original cloud.

2.4 plane regularization and refinement 13

It provides some ideas for this project about how to control the quality of
the shapes detected by RANSAC.

Besides RANSAC, the Hough Transform [VC, 1962] is a classic shape de-
tection method for detecting parameterized objects, typically lines and cir-
cles. It is often applied on image data, but it is not a necessity. For example,
Borrmann et al. [2011] used Hough Transform to detect planes in 3D point
clouds. Duda and Hart [1972] explained that, in 2D space, each figure point
in original space is a straight line in Hough space and if there are many lines
intersect at one point in Hough space, the intersection point indicates a line
in original space. This notion can be extended to 3D. Borrmann et al. [2011]
explained a method that transform each point to a Hough space defined by
Duda and Hart [1972], where each point in original space is a surface in this
Hough space. If the intersection curves between different surfaces intersect
at one point, this point is a indication of a plane in original space. Tarsha-
Kurdi et al. [2007] explained more details about the implementation of 3D
Hough Transform algorithm, and how to apply it on automatic detection of
3D building roof planes.

In conclusion, there are several methods which are capable of detecting
shapes in 3D applications, for example, Hough Transform, RANSAC and
some other ways such as tensor voting [Kim et al., 2009]. Tarsha-Kurdi et al.
[2007] compared Hough Transform and RANSAC in their experiment. The
conclusion is RANSAC algorithm provides not only results in a shorter time
but also the quality of the result is higher. As explained in Section 1.3, the
data this project uses have low quality, and RANSAC has strong ability to
deal with data containing much noise. So for this project, RANSAC will be
adopted as plane fitting method, and it is also a key factor for this project.
More principles and details of RANSAC will be give in Chapter 3.

2.4 plane regularization and refinement

Since plane fitting is a key component, the quality of the fitted plane is vital.
In city model, buildings are usually relatively regular shaped objects, thus
some rules can be applied to get better models.

Jonsson [2016] did plane refinement by plane growing and merging. First,
planes are placed restrictively according to the segmentation result, which
means the initial planes will be small. Second the plane will grow to include
more triangles into the plane. Then the planes will be merged combining
small planes, if the total vertex-to-plane projection error for the combined
plane is not too high. Figure 2.5 shows the result for each step.

Kada and Wichmann [2013] detected planar segments from point cloud
then each planar segment can be mapped to planar half-space [Mäntylä,
1988]. A single 3D building model can be described as the collection of pla-
nar half-spaces (Figure 2.6). Based on this half-space modeling, Wichmann
and Kada [2014] proposed 3D building adjustment by regularizing planar
half-space. There are two scales for the adjustment: local and global adjust-
ment. Local adjustment is for regularizing the shape of one single building
based on the fact that the component of most buildings are symmetric and
regular (i.e. with 90◦ corners). Thus there are three steps:

• Slope adjustment: half-spaces with similar slope are adjust to their
average value.

14 related work

(a) Initial planes extracted through hierar-
chical curvature segmentation

(b) Plane growing

(c) Planar region merged

Figure 2.5: Plane refinement [Jonsson, 2016]

Figure 2.6: Pitched roof building described by half-spaces from H1 to H7 [Kada and
Wichmann, 2013]

• Orientation adjustment: half-spaces with similar x-y directions are ad-
just to their average angular value by rotating around z axis.

• Position adjustment: vertical half-spaces are moved be sysmetric and
regular.

Global adjustment uses the similar concept but it is applied on all the
buildings. Because buildings in a region often follow some patterns (i.e the
facades of the buildings might all face towards south in an area).

The thesis adopts the method from Verdie et al. [2015], a detection-then-
regularizaiton strategy. First the geometric relationships between differ-
ent planes are detected, including parallelism, orthogonality, Z-symmetry,
coplanarity. Then the orthogonal and z-symmetric planes will be re-orientated
and the coplanar planes will be re-positioned. More details will be discussed
in Section 3.5.

3 CONCEPTUAL FRAMEWORK TO
STRA IGHTEN C ITY MESH

The following chapter provides the conceptual framework to straighten the
mesh, mainly focusing on the theoratical aspects of the project. First Sec-
tion 3.1 shows the workflow and a diagram is given to illustrate the steps
involved. In this section, the reason for such a design is explained as well.
Then the following sections describe some important methods and algo-
rithms used in the workflow. Section 3.2 introduces the method used for
estimating normal for each point. Section 3.3 characterises texture infor-
mation and how it can be enriched to each point in the mesh. Section 3.4
introduces the principle and some characteristics of RANSAC algorithm
which is used for plane detection. Besides, the explaination of its parame-
ters will be given in this section as well. Section 3.5 explains the method
adopted in this project to regularize the planes. Section 3.6 introduces two
kinds of snapping opertions. Section 3.7 gives detailed steps and criteria for
segmenting the mesh. Section 3.8 provides details about how to split the
segment after local fitting in order to detect and remove spikes. After the
mesh is straightened, Section 3.9 explains the way to simplify the mesh so
that the data storage can be reduced.

3.1 methodology

In general, the method consists of two scales: global scale and local scale.
The aim of global scale is to detect large planes for example building facade,
ground, roof etc. Global fitting takes precedence of local fitting because
these parts of city objects will make a sketch of the city model. That is
to say, assume that these planes are already detected, the frame of the city
models is known. Besides, no matter in point cloud data or Multi View
stereo mesh, these large planes contain most of the points, it is much easier
to detect these parts than small details. For these reasons these parts should
be processed first, and the leftover points in this stage will be ones that
describe the details of the models. In the following local scale, these leftover
points from global scale will be the input. The aim of local scale is to detect
small planes that fit well in local area, in order to straighten small objects
such as windows, balconies etc.

Figure 3.1 shows the workflow of the project. The loop formed by the
green boxes are global fitting and local fitting operations. First the texture
information will be enriched to each vertex in the mesh. Then the normal of
each vertex is estimated by the normal of its incident faces. After these two
steps of information enrichment, the points are input to Random Sample
Consensus algorithm (RANSAC) algorighm to detect planes, and right after
it is regularizing the detected planes. With all these planes, points will be
snapped to their corresponding planes. Snapping operation is to project
the point to the plane to get the intersection point, then relocate the point
to this intersection point. After snapping, the global fitting is done, then

15

16 conceptual framework to straighten city mesh

Figure 3.1: Workflow diagram of straightening and simplifying Multi View Stereo
mesh

the points which are not snapped in global fitting will be segmented into
region segments. In local fitting, each segment will be input seperately to
RANSAC to get smaller planes, so different paramters are used. Then the
same as global fitting, it is followed by plane regularization and snapping.
After local fitting, most points are already snapped to one plane. Points
snapped to the same plane will become a segment in this stage. In the
next step, the segments will be splitted into smaller segments defined as
spikes. These spikes will be removed by snapping operation again. The
following step is mesh simplification. Since many parts of the mesh are

3.2 normal estimation 17

Figure 3.2: Normal estimation by the normal of incident faces

already straightened before this step, the vertices can be thinned according
to the flatness of the neighborhood.

3.2 normal estimation
By definition, the normal of a point in a continous surface should be the
normal of the tangent plane of the point. In surface sampled by points, the
normal of the point is normally estimated by its neighbor points, and there
are various ways for estimating normal [Klasing et al., 2009] such as plane
singular value decomposition (SVD) [Hoffman and Jain, 1987][Huang and
Menq, 2001] and plane principle component analysis (PCA).

However, this project adopts a simple and efficient normal estimation
method. Because compare to point cloud , MVS have topology information,
thus it is not neccessary to find nearest neighbors. Considering topology
information, each vertex shared by several faces, the normal can be esti-
mated by all the normal of incident faces. The normal of a vetex ni can be
calculated as follows:

ni(x, y, z) =
n

∑
j=1

nj(xj, yj, zj) j ∈ { all in incident faces of vertex i }

|v| = 1

As shown in Figure 3.2, the normal of P1 is N, and the normals of the
incident face F1, F2, F3, F4 are N1, N2, N3, N4 respectively. N can be estimated
by the normal addition from N1 to N4. With the method above, each point
will contain normal information after this step, which is neccessary for plane
detection.

3.3 texture information enrichment
Apart from normal information, texture information can also be enriched
for each vertex. UV mapping is a texture mapping method for projecting

18 conceptual framework to straighten city mesh

Figure 3.3: UV mapping from triangle mesh to texture image

2D image to 3D model surface. For a triangle mesh, UV coordinates can be
generated for each vertex. The triangle mesh is unfolded at the seams with
each triangle laying on a flat page. Thus each triangle has three UV coordi-
nates for three vertices, and these three UV coordinates define a triangle part
on the texture image which can be automatically linked to its correspond-
ing triangle in the mesh (Figure 3.3). Besides, UV coordinates are optionally
applied per face [Murdock, 2008] so that a shared vertex can have different
UV coordinates for its related triangles. Thus adjacent triangles can be to-
tally separated in texture image. For example in Figure 3.3, p4(x4, y4, z4) are
linked to q4(u4, v4) and q′4(u

′
4, v′4), thus triangle T(p2, p3, p4) and triangle

T(p4, p5, p6)are positioned in different areas in texture image.
UV coordinates range is normalized to [0,1]. In order to get RGB informa-

tion for each vertex, there should be a coodinate transformation from UV
coordinates to image coordinates. For this project, the origin of UV coor-
dinates is bottom left corner and the origin of image coordinate is top left
corner, equation 3.1 is the transformation from UV coordinates to image co-
ordinates. From image coordinate (x, y), the RGB value of the image can be
acquired.{

x = bu× width + 0.5c
y = b(1− v)× height + 0.5c

(3.1)

3.4 random sample consensus algorithm
Random sample consensus (RANSAC) [Fischler and Bolles, 1981] is a widely
used method for parameter estimation of a mathematical model. A most
important feature for RANSAC is that it can deal with data with a large
portion of gross error. There are two important terms for RANSAC: inlier
and outlier. Compared to least squares which fits model based on all the

3.4 random sample consensus algorithm 19

(a) Blue line is fitted by RANSAC and
green line is fitted by least squares

(b) Plane fitting by RANSAC

Figure 3.4: Model fitting on data with inliers (blue points) and outliers (red points)

input data, RANSAC will detect which points can fit a model best, and
the other points will be ignored. So RANSAC is also an outlier detection
method. Figure 3.4 (a) shows the result from RANSAC and least squares in
line fitting in 2D space, it is clearly to see the result from least squares will be
influenced by outliers and RANSAC fits a better line. The same with plane
fitting shown in subfigure (b). Because of this characteristic, RANSAC is
capable of robustly dealing with data containing more than 50% of outliers
[Schnabel et al., 2007].

RANSAC can be described as the following steps:

1. Randomly choose a set of points as inliers. The number of points
should be just enough for estimating the model.

2. Estimate the parameters of the model based on these inliers.

3. Check all the other points whether they can fit to the estimated model
within a error tolerance. If so, add all these points (inliers) to consen-
sus set.

4. If there are enough points in consensus set, use all these points to
compute a new model, otherwise repeat the previous steps.

5. After predetermined number of trials, if a consensus set with more
points cannot be found, return the model fitted by the largest consen-
sus set.

There are some parameters required for RANSAC. In the context of plane
detection, the following parameters are needed for this project:

• epsilon (ε): It defines the absolute maximum tolerance Euclidean dis-
tance between the point and the plane. Only points within the epsilon
will be included as inliers.

• normal threshold (σ): The threshold of the deviation between the esti-
mated normal of the point and the normal of the plane. The deviation
is described as dot product of two normals, and the closer the dot
product is to 1, the smaller deviation is between the two normals. For
inliers, the deviation should not exceed this threshold.

• cluster epsilon (E): Clustering of the points into connected compo-
nents covered by a detected shape is controlled via parameter E, the

20 conceptual framework to straighten city mesh

(a) A large value for clus-
ter epsilon E leads to de-
tecting a single planar
shape

(b) A moderate value for
cluster epsilon E yields
the detection of four
squares

(c) A small value for cluster
epsilon E leads to over-
segmentation

Figure 3.5: Parameter cluster epsilon E controls the connectivity of the points cov-
ered by a detected shape. The input point set is sampled on four coplanar
squares.[Oesau et al., 2017]

influence of this paramter is shown in Figure 3.5. A large cluster ep-
silon will lead to relatively large planes and some details will not be
distinguished while small cluster epsilon yield more detailed plane de-
tection but might lead to oversegmentation as well. Figure 3.6 shows
results from different cluster epsilon E.

• probability (p): RANSAC cannot always ensure the model is esti-
mated by the largest consensus set, this parameter defines the proba-
bility of missing the largest plane. A lower probability provides more
reliable results but it leads to more iterations and runtime.

• min points (n): It defines the minimum points used for estimating
the model. However this parameter is not strict, based on the chosen
probability, planes may also be detected by a lower number of points.

The parameters of RANSAC are important for detecting planes represent-
ing features. For this project, there are two scales, the paramters should be
set differently for them.

For global fitting, the aim is to detect large planes such as facade, thus n
should be a large number. Besides, in order to avoid oversegmentation in
this stage, E should be relatively large as well. Because in global fitting, the
detected planes are main planes, the quality of them should be guaranteed.
And the points on the facade are normally regular than the other parts, σ
should be close to 1 and ε should be small enough to strictly throw out
outliers and avoid generating spikes. It is meant that all the window points
etc will be regarded as outliers, then they will be detected in the local fit-
ting. p should be small so that it allows more iterations to get more reliable
detections.

For local fitting, small planes such as windows should be detected thus n
and E should be small. For this data, the normal of the points in small parts
have more deviations, so σ should be relaxed but ε should still be small to
avoid spike problem. p should be small in order to ensure the quality of the
detected planes.

3.5 plane regularization 21

(a) Input point set (b) cluster epsilon E set to 2.0 (one color
per detected shape)

(c) cluster epsilon E set to 0.5 (d) cluster epsilon E set to 0.25

Figure 3.6: Impact of cluster epsilon E over level of details of the detection [Oesau
et al., 2017]

3.5 plane regularization
With the proper design of the parameters, RANSAC can detect generally
reasonable planes, however, it only considers the distribution of the points
instead of considering the city model as a whole. For example for a building
model, there should be some constraints with the plane components [Wich-
mann and Kada, 2014]. For example, Figure 3.7 shows a problem caused
by unregularized planes. After plane detection, points as inliers will be
projected on the plane and moved to the location of projected point, this
operation is referred as snapping in this project (Figure 3.7 (a)). However,
if two planes are near coplanar as shown in Figure 3.7 (b), there are two
planes fitted on these points, two green points are inliers of the green plane
and three blue points are inliers of the blue plane. After snapping, they will
be projected to their corresponding planes, then some spikes will appear.
Thus, plane regularization is neccessary.

For this project, the method from Verdie et al. [2015] is adopted. They
defined 4 types of geometric relationships between planes as follows:

let P1, P2 be two planes, n1,n2 be their normal vectors respectively, c1 be
the centroid of points fitted to P1 and c2 be the centroid of points fitted to
P2.

• Parallelism. P1 and P2 are ε-parallel if |n1 · n2| ≥ 1− ε.

• Orthogonality. P1 and P2 are orthogonal if |n1 · n2| ≤ ε.

• Z-symmetry. P1 and P2 are ε-Z-symmetric if ||n1 · nz| − |n2 · nz|| ≤ ε.
nz is the vertical z-axis. Z-sysmmetry is mainly for regularizing roofs.

22 conceptual framework to straighten city mesh

(a) Point snapping (b) Near coplanar planes problem

Figure 3.7: Snapping points and spikes problem caused by near coplanar planes

(a) Planes fitted in global fitting and local
fitting

(b) Remove unregularized planes

Figure 3.8: Regularization of small planes

• Coplanarity. P1 and P2 are d-ε-coplanar if they are ε-parallel and the
|d⊥(c1, P2) + d⊥(c2, P1)| < 2d.

For this project, these four geometric relationships are reused. Based on
them, near parallel, orthogonal, Z-symmetric and coplanar are made exactly
parallel, orthogonal, Z-symmetric and coplanar respectively. [Oesau et al.,
2017].

Apart from the rules explained above, another problem is that RANSAC
does not consider if a detected plane is actually valid in reality. In local
fitting, because the parameters of RANSAC are relaxed and sometimes it is
difficult to get decent segmentation result, some unreasonable planes might
be detected. Thus it is neccessary to regularize the detected planes in this
stage. Figure 3.8 shows the simulating planes from global fitting and local
fitting. There are three big planes fitted in global fitting, and several small
planes fitted in local fitting. In order to remove unreasonable planes such
as the yellow plane in Figure 3.8 (a), first the directions of the main planes
are stored in a set N. Then all the small planes should be either parallel
or orthogonal to one of the main direction in N. In Figure 3.8, there are
three main planes with two main directions, clearly the yellow plane does
not satisfy the constraints so it will be removed (Figure 3.8 (b)).

3.6 snapping 23

(a) Original mesh and fitted planes (b) Snapping vertices to the corresponding
plane

(c) Original mesh and two fitted planes (d) Snapping vertices to the intersection
line

Figure 3.9: Snapping operations

3.6 snapping
Snapping is an important operation in this project. The advantage of snap-
ping is that it is simple and it keeps the original topology of the mesh. There
are two kinds of snapping operations:

• Snapping points to planes: After planes are detected by RANSAC, dif-
ferent points belong to different planes as inliers. These inliers are
projected to the planes and they are moved to their projected posi-
tions. By snapping the points to the planes, bumpy surfaces can be
straightened.

• Snapping points to intersection lines: In global fitting, there are some
main planes detected. The intersection lines of these planes can be the
corners. In order to sharpen the corners, the points near these inter-
section lines are projected to the lines and moved to their projected
positions.

Figure 3.9 shows two types of snapping operations in this project. By
snapping the vertices to their corresponding plane, the mesh will be straight-
ened. And by snapping points to the intersection lines, the corners will be
more regular and clean. The results are shown in Section 4.5.2.

3.7 mesh segmentation
After global fitting, the points on the large planes such as facade are snapped.
The leftover points are windows, doors and other details on the main plane
or some other noisy objects like vegetations or cars etc. In order to detect
planes from these points and straighten them, first it is neccessary to seg-
ment them then detect planes on each segment.

24 conceptual framework to straighten city mesh

There are various methods to segment a mesh. As it is mentioned in
Chapter 2, region growing is one of the most popular method used for
segmentation, so it is adopted in this project. There are three kinds of in-
formation used in mesh segmentation. First, topology relationship is used
for finding the connected points. It is explicit information for a mesh be-
cause the neighboring points of a vertex share edges with it, thus they are
connected in the mesh. As explained in Section 3.2 and 3.3, every vertex in
the mesh already contains normal and texture information. Based on these
three kinds of information, Algorithm 3.1 shows the steps of region growing
and it can be described as follows:

1. Add seed point pseed to a region

2. For each point pi in the region, find its unsnapped neighbor points pj.

3. Compare the similarity of the normal between pseed and pj, if it is
within a threshold, add pj to the segment.

4. If not, compare the RGB distance between pseed and pj, if the distance
is within a threshold, add pj to the segment.

5. Repeat step 1 to step 4 until no more point is added to the segment

6. Start a new segment with another seed point.

7. Continue until every unsnapped point belongs to a segment.

Algorithm 3.1: Mesh segmentation: Region growing (Breath First
Search)

Data: Points
Result: List of segments

1 while Points is not empty do
2 segment.add(pseed)
3 Points.remove(pseed)
4 for point pi in segment do
5 for neighbor point pj of pi do
6 if pj not in segment & pj is not snapped then
7 if |nseed · nj| > threshold σ then
8 segment.add(pj)
9 Points.remove(pj)

10 else if RGB(pseed)-RGB(pj) < threshold λ then
11 segment.add(pj)
12 Points.remove(pj)
13 end
14 end
15 if segment.size > threshold n then
16 SegmentList.add(segment)
17 end
18 return SegmentList

Manhattan distance is used for measureing RGB distance for this project
since it is simple, fast and it performs the best for evaluating the similarity
of texture compared with Euclidean distance, Vector Cosine Angle distance

3.8 segment split 25

(a) connected vertices with texture and
normal information

(b) Segment (green) after region growing

Figure 3.10: Region growing based on topology, normal and texture information

[Vadivel et al., 2003]. The definition of Manhattan distance in terms of tex-
ture is shown in Equation 3.2:

D(pi, pj) = |R(pi)− R(pj)|+ |G(pi)− G(pj)|+ |B(pi)− B(pj)| (3.2)

Figure 3.10 shows an example result of this method. After P1 is added
to the segment as seed point, its neighbor points P2 to P5 will be regarded
as candidates. Since P2, P3 have similar normal as P1, they will be added
to the segment. The normal deviation between P1 and P4 is relatively large,
however their RGB distance is small, so P4 will be added to the segment
as well. Finally P1 to P4 will belong to the same segment, and P5 will be
excluded.

This region growing method takes both normal and texture into consider-
tion. The advantage is that according to the observations to textured mesh,
segments normally have similar colors. And there might be some errors
when estimating normals so if region growing is only based on normals,
some points which are supposed to be in the same segment will be sepa-
rated for example P1 and P4 in Figure 3.10. However, normal should still be
the prior criteria because it is an indicator to planarity and texture is not key
factor for a segment. For example, some areas on the facade are in shadows,
so they have totally different colors from the other part of the facade but all
the facade points are supposed to be in the same segment. Moreover, the
number of points that a segment contains should be larger than a threshold,
otherwise no reliable planes can be fitted on the segment.

3.8 segment split
After local fitting, most points are already snapped to one certain plane,
while some still remain unsnapped. According to the plane they are snapped
to, a label will be assigned to each vertex. Based on these labels, all the
points are classified to different big segments. These segments are sub-
stantially formed by RANSAC algorithm, so points in the same segment
have similar normals and they can fit to the same plane model. However,
RANSAC does not consider the topology of the points, which means the
points in the same segment may be separated in space. As shown in Figure
3.11, in previous plane fitting step, points are snapped to different planes,
the blue points are snapped to blue plane and the red points are snapped
to red plane. Based on the planes they are snapped to, there are two seg-

26 conceptual framework to straighten city mesh

(a) Points belong to one segment are
separated in 2D space

(b) Spikes problem in 3D space

Figure 3.11: Disconnected segment and spikes problem

ments the red one and the blue one at this stage. However, in Figure 3.11

(a), the red segment actually has two disconnected components, circled by
dash lines. In Figure 3.11 (b), the 3 red points make a spike in the mesh, in
order to remove the spike, it is neccessary to split the red segment into two
separated segments.

Region growing is again adopted but with a different rule. The following
is the description of the algorithm and pseudo code (Algorithm 3.2):

1. Add seed point to a region

2. For each point pi in the region, find its neighbor points pj.

3. Check if pi and pj have the samel label (snapped to the same plane), if
so, add pj to the region.

4. If not, mark pj as an edge point, and record the label of pj.

5. Repeat step 2 and 4 until no more point is added to the segment.

6. Start a new segment with another seed point.

7. Terminate until every point belongs to a segment.

After the algorithm, segments which contain disconnected components
are split so that the points in one segment are all connected. The connec-
tivity between different segments are checked when splitting the segments.
Then a segment is defined a spike if:

1. The number of points in the segment is less than a threshold n.

2. More than half of the edge points of this segment are connected to the
same segment.

If more than half of the edge points of the segment i are connected to
another segment j, merge these two segments and snap all the points in
segment i to the plane corresponding to segment j.

As shown in Figure 3.12, the original red segment (Figure 3.11) is split
into two segments, the green one and the red one. The green segment

3.9 mesh simplification 27

Algorithm 3.2: Segment split
Data: Points
Result: List of segments

1 while Points is not empty do
2 segment.add(seedpoint)
3 Points.remove(seedpoint)
4 for point pi in segment do
5 for neighbor point pj of pi do
6 if pj not in segment & label(pj) 6=label(pi) then
7 segment.add(pj)
8 Points.remove(pj)
9 else if pj is snapped then

10 Connectivity(segment, label(pj))++
11 end
12 end
13 SegmentList.add(segment)
14 end
15 return SegmentList

(a) Split red segment into two segments
(green and red)

(b) Refine the mesh by removing the spike

Figure 3.12: Split segment and remove spikes

only contains three points and all its edge points are connected to the blue
segment, so it is an ”island” on the blue segment. By definition the green
segment is a spike and all the three points are snapped to the blue plane so
that the mesh will be refined.

3.9 mesh simplification

After straightening the MVS mesh, many points are already snapped to
planes. Many triangles are on the same planes, so it is not necessary to keep
all the triangles. In order to reduce the data storage, two steps are adopted
to simplify the mesh: (1) remove unnecessary vertices (2) retriangulate the
mesh. In removing vertices step, there are three rules:

28 conceptual framework to straighten city mesh

(a) Original mesh (b) P1 and P2 are defined as unneccessary
points according to the rules

(c) Remove unneccessary points (d) Retriangulate the mesh

Figure 3.13: The mesh simplification process: from (a) to (d)

• If a vertex and all its adjacent vertices in mesh are snapped to the same
plane, it is defined as an unnecessary vertex thus it will be removed.

• If a vertex is not snapped to any plane, it will be kept.

• If a vertex has unsnapped neighbors, it will be kept.

Retriangulation of the faces is based on 2D constrained Delaunay triangu-
lation instead of 3D [Shewchuk, 1997]. According to the rules in removing
unnecessary vertices step, only one type of faces in all the original faces
will be removed, that is the face with 3 vertices all snapped to the same
plane, all the other faces can be kept. So among all the points that are kept,
only points that are snapped need to be triangulate. The 3D coordinates of
these snapped points are transferred to 2D coordinates in the plane they are
snapped to, then they are triangulated in 2D space. These newly generated
triangle faces are added to the face list, then the simplified mesh can be
acquired.

4
IMPLEMENTAT ION AND
EXPER IMENTS W ITH REAL-WORLD
DATASETS

This chapter explains the implementation details and some experiments on
test data sets. This chapter is organised based on the workflow described
in Section 3.1, so each section explains one particular step in the workflow.
First Section 4.1 introduces some tools and libraries used in the project. Sec-
tion 4.2 will describe the data used for this project, and give more detailed
description on the test data sets. Section 4.3 and 4.4 show some results on
normal estimation and texture information enrichment. Section 4.5 and 4.6
describes detailed implementation in global fitting and local fitting respec-
tively. Section 4.7 shows the implementation and experiments on segments
split and removing spikes. Finally Section 4.8 explain the implementation
and experiments of mesh simplification.

4.1 tools and libraries
There are some tools and libraries used for this project. For the development,
object-oriented programming language C++ is used. The most important li-
brary used is CGAL, it provides various geometric algorithms in the form
of a C++ library [The CGAL Project, 2017]. Some important packages of
CGAL used for this project are listed in the following:

• Polygon Mesh Processing [Loriot et al., 2017] : Normal estimation.

• Point Set Shape Detection [Oesau et al., 2017] : Plane detection and
plane regularization.

• 2D Triangulation [Yvinec, 2017] : Mesh simplification.

CImg [Tschumperlé, 2012] is a lightweight, open-source C++ toolkit for
image processing. In this project, it is used for texture information enrich-
ment. Besides, there are some software used for this project. FME is used for
converting 3D data format. Cloud Compare [Girardeau-Montaut, 2017] im-
plements plane detection so it is used for some preliminary results. Meshlab
[Cignoni et al., 2008] is mainly for visualization of the mesh.

4.2 data
As briefly mentioned in Section 1.1, the data is collected by CycloMedia
Technology, Inc. The data is collected by different means. The building fa-
cade, ground etc is collected by cameras mounted on cars and the roof parts
are from airborne images. As explained in Section 1.1, by photogrammetric
method, overlapping images can be matched and the coordinates of each
pixel in the image can be calculated. By resampling and triangulation, the

29

30 implementation and experiments with real-world datasets

multi view stereo mesh can be generated. Because the data is from different
source, the quality is not the same in one data set. For these data sets, the
roof parts have much lower quality.

The data sets are 3D city models of the city of Amsterdam. The data is
originally in COLLADA format (usually with .dae file extension), which is
for interactive 3D applications. In order to operate more easily, the data is
converted into OBJ file (with .obj file extension).

OBJ file represents 3D geometry with the following components:

• geometry of vertex: v x y z

• vertex normals: vn x y z (normal is not necessary normalized)

• UV coordinates: vt u v

• face, depending on what information is available, face can have different
formats, for example: f v1/vt1 v2/vt2 v3/vt3 or v1/vt1/vn1 v2/vt2/vn2
v3/vt3/vn3 (v, vt and vn represent the indices of vertex, UV coordinates
and normal respectively).

Apart from OBJ file, each OBJ file is linked to several texture files which
are in JPEG data format. MTL material file (.mtl) is the link between OBJ
and texture files.

The data are clipped into different files and each one only covers a small
part of Amsterdam. In order to test if the method works well in different
kinds of situations, there are four test date sets in these experiments and
they are shown in Figure 4.1. Different data sets have different features:

• Test data I consists of two gable roof buildings and one flat roof build-
ing, it also contains part of the ground. It contains 52879 vertices and
104842 faces.

• Test data II has also several buildings, so it is similar to test data I,
but the buildings have different shapes. There are some noises in this
dataset, for example, some vegetations are attached to the facade. The
size of the data is a little bigger than test data I with 54962 vertices
and 109082 faces.

• Test data III has one single building but compared with test data I and
II, it also contains more than one corner. Besides, it also has some
other objects such as the cars on the ground. There are 91898 vertices
and 182114 faces in test data III.

• Test data IV is a more complex scene. It has multiple buildings and
the difference is that the buildings are on the two sides of the road.
Besides, there are some extra objects on the road such as cars, bench
etc. The size is a little larger than test data III with 100466 vertices and
199348 faces.

The whole workflow will operate on each test data set in later sections.
For each test data set, some implementation details will be explained and
the results and analyses will be given after important steps.

4.2 data 31

(a) Test data I without texture (b) Test data I with texture

(c) Test data II without texture (d) Test data II with texture

(e) Test data III without texture (f) Test data III with texture

(g) Test data IV without texture (h) Test data IV with texture

Figure 4.1: Test data

32 implementation and experiments with real-world datasets

Table 4.1: Relationship between faces and texture files

Face index Vertex indices/UV indices Texture file
1 1757/1757 1758/1758 1759/1759 fx-i-0.jpg
2 5024/5024 5025/5025 1758/1758 fx-i-0.jpg
...
5746 44245/45513 44246/45514 44247/45515 fx-i-1.jpg

Table 4.2: Relationship between vertex and RGB value
Vertex index UV coordinates Texture file Image coordinates RGB
2045 (0.258845 0.976459) fx-i-0.jpg (207,24) (197,125,28)
2045 (0.391349 0.095430) fx-i-0.jpg (313,905) (200,145,30)
2045 (0.612067 0.534668) fx-i-1.jpg (490,465) (180,130,35)

4.3 normal estimation
The OBJ file is loaded and if there is no normal information contained, the
normal will be first estimated. It is implemented by CGAL Polygon Mesh
Processing, computing normals package. As explained in Section 3.2, the
normal is estimated for each vertex, as the average of its incident face nor-
mals.

4.4 texture information enrichment
In the original data set, vertices do not contain texture information. In order
to attach texture information to each vertex, the link between vertex and the
pixel should be found. In OBJ file, different faces may link to different im-
ages, it is neccessary to store the relationship between face and image. The
relationships is described in Table 4.1. According to this relationship, each
vertex will be related to a pixel of a certain image using its UV coordiantes.
The Equation 3.1 shows the relationship between image coordinates and UV
coordinates. Each vertex can be related to several pixels from different im-
ages, so the average RGB value is calculated and assigned to this vertex, this
relationship is shown in Table 4.2.

After this step, each vertex is enriched with an RGB value, then the ver-
tices with color can be visualized by generating a new mtl file, defining
different colors, and OBJ file can be linked to this mtl file so that each vertex
can be colored. The texture enriched vertices are shown in Figure 4.2. It is
clear to see that vertices are correctly enriched with texture information.

4.5 global fitting

4.5.1 Main plane fitting

After normal estimation and texture enrichment, the first step is global fit-
ting. In this step, the whole test data will be the input and parameters
should be strict in order to get accurate main planes such as facade, ground,
roof etc. As mentioned in Section 3.4, RANSAC parameters setting is an
important factor for the performance of the method. Parameters should be
set properly to adjust to the test data set, and they should be set differently

4.5 global fitting 33

(a) Test data I (b) Test data II

(c) Test data III (d) Test data IV

Figure 4.2: Textured vertices

for global fitting and local fitting. In order to get a better understanding
of the influcence of some important parameters for global fitting, test data
I is used as an example to test different settings of parameters. And since
RANSAC has some randomness because it randomly chooses the hypothet-
ical inliers (see Section 3.4), the tests on parameters are performed several
times to reduce the influence of randomness on the conclusions.

First, different probabilities are tested. Two extreme examples are chosen,
one is when p = 0.05 and the other is when p = 0.95. As shown in Figure 4.7,
when p = 0.95 the facade plane is not extended to cover the whole facade
points, the facade plane is detected and it already satisfies the requirement
for minimum number of points for estimating the plane, so the iteration
stops. Compared with the situation when p = 0.05, the facade plane is
better fitted and includes all the facade points, moreover, an extra roof plane
is detected while it is often ignored when p = 0.95. So in global fitting,
probability p should be set as a very low number.

Min points (definition see Section 3.4) is also an important parameter. It
determines the size of the planes detected in this stage. Figure 4.4 shows
the results when n = 200 and n = 1000. 14 planes are detected when
n = 200, these planes include facade, roof, ground and some windows.
When n = 1000, only 3 planes are detected. The aim of global fitting is only
to find main planes, so that the windows and other details should be left for

34 implementation and experiments with real-world datasets

(a) p = 0.05 (b) p = 0.95

Figure 4.3: Different probabilities p

(a) n = 200 (b) n = 1000

Figure 4.4: Test on parameter min points n

local fitting, thus n should be reasonably large. Besides, if n is small, instead
of fitting a complete facade plane, all the facade points will be divided into
several parts and be fitted to different planes since a plane does not require
many points. This will probably lead to spikes problem (in Figure 4.4).

Epsilon ε determines how close the point to the plane should be. Large ε
will lead to spike problem while small ε will make less points fit to a model
but fit more accurate model. Figure 4.5 shows when ε = 0.5, many points
that are actually far away from the facade plane are snapped to the facade,
for example many points on the window are moved to the facade. This
causes severe problem to the model, so in order to avoid this, ε must be a
small number.

Besides above mentioned parameters, there are two parameters cluster
epsilon E and normal deviation σ. Since in global fitting, it only focuses on
the main planes, some details can be ignored, thus E should be relatively

4.5 global fitting 35

(a) ε = 0.5 (b) ε = 0.03

Figure 4.5: Test on parameter ε

large. And for points on the main surfaces such as facade, the quality of
the normal is relatively high, so the normal deviation should be small. To
conclude the parameters setting, in general the parameters used for global
fitting can be set as:

• probability p = 0.03

• min points n = 1000

• epsilon ε = 0.05

• cluster epsilon E = 1

• normal threshold σ = 0.98

However, depends on the quality of the results, the parameters can change
a little to adjust to the test data better.

4.5.2 Snapping

As explained in Section 3.6, there are two types of snapping in global fitting.
First, after detecting planes, inlier points are snapped to their correspond-
ing planes. Second, points that are close to the intersection lines of the
main planes, will be snapped to the intersections between planes so that the
corners can be sharpened.

Figure 4.6 shows the result of test dataset II before and after snapping
points to planes. It can be seen that after snapping, the facade and the
ground are straightened.

Because the normal of the edge point is usually not regular, which means
it is not in the direction of one of the two main planes, and the direction
is usually in between. Thus these points will not be snapped to the main
planes, leading to ragged edge problem. Figure 4.5 (a) shows the ragged
edge problem, and after snapping points to the intersection lines, the quality
of the edge is much improved.

36 implementation and experiments with real-world datasets

(a) Test dataset II before snapping (b) Test dataset II after snapping

Figure 4.6: Global fitting result of test dataset II

(a) Test datset III before snapping (b) Test datset III after snapping

Figure 4.7: Comparison between before and after snapping points to intersetion
lines

After global fitting, points on main surfaces are snapped. In order to
check which areas have been straightened, the triangle faces can be classified
into 3 classes based on the number of points snapped in the triangle:

1. red: no vertex is snapped.

2. orange: one vertex is snapped.

3. yellow: two vertices are snapped.

4. green: all three vertices are snapped.

Figure 4.8 shows the classification results of all four test datasets. The
green areas are flat while the red areas remain the same as the original
data. It can be seen that after global fitting, most parts of the facade are
straightened and the windows, balconies are not processed yet.

4.5.3 Mesh segmentation

As shown in Figure 4.8, there are still many points unsnapped. In order
to fit small planes on these points, it is neccessary to get segments of these

4.5 global fitting 37

(a) Test data I (b) Test data II

(c) Test data III (d) Test data IV

Figure 4.8: Classification of faces after global fitting

points, and input these segmetns to RANSAC. It is because in local fitting,
the parameters of RANSAC are relatxed and RANSAC does not consider
if the points are actually on the same plane in real world, as long as the
requirements are satisfied, the plane can be modelled.

The mesh segmentation is based on region growing in Section 3.7. In or-
der to grow regions efficiently, the topology information needs to be used. A
triangle mesh contains many faces and each face has 3 vertices, thus these 3

vertices are connected to each other. From the face information, it is possible
to make a structure to store neighboring points for each vertex.

After that, for each vertex, compare the similarity between its neighboring
points and the seed point of the segment, if they are similar, they will be put
into the same segment. There are two criteria for similarity in this project:

• normal deviation: compare the normal of the seed point and the nor-
mal of the neigbors of the vertex, if the deviation of the normals is not
high, they belong to the same segment.

• RGB mahattan distance: if the deviation of the normals is high, com-
pare the RGB mahattan distance between the seed point and neighbors
the vertex, if the distance is short enough, they belong to the same seg-
ment.

38 implementation and experiments with real-world datasets

(a) Test data I oversegmentation (b) Test data I undersegmentation

Figure 4.9: Comparison between oversegmentation and undersegmentation

The quality of the data is low, thus the results of the segmentation some-
times can be unsatisfying. Oversegmentation is the main problem in this
stage, because the mesh is bumpy so the deviations of the normals are large.
However, with the help of texture information, oversegmentation can be
reduced. Figure ?? shows the results between with and without texture in-
formation when region growing. Colors are reused for segments, so two dif-
ferent segments might have the same color. It is clearly to see that although
with texture information, the data is still oversegmented, this problem is
reduced.

Figure 4.10 shows the segmentation results of all 4 test datasets. White
parts in the figure are already straightened in global fitting and the vertices
are colored based on segments. It can be seen that due to the quality of the
data, oversegmentation cannot be avoid.

4.6 local fitting

4.6.1 Small plane fitting

Each segment from mesh segmentation will be input individually to RANSAC
to detect smaller planes. Considering the influence of each parameters of
RANSAC explained in Section 4.5.1, the paramters should be changed to ad-
just to local fitting. Generally speaking, the parameters should be relaxed,
thus it allows more planes to be detected. The parameters used for local
fitting is listed below, and for different datasets there might be some minor
adjustments:

• probability p = 0.05

• min points n = 80

• epsilon ε = 0.03

• cluster epsilon E = 0.5

• normal threshold σ = 0.9

In this step, much more planes are detected, and since the parameters for
detecting planes are relaxed, some of them might be invalid. Thus there

4.6 local fitting 39

(a) Test data I (b) Test data II

(c) Test data III (d) Test data IV

Figure 4.10: Mesh segmentation

should be more constraints on these planes. As explained in Section 3.5,
detected planes in local fitting should be orthogonal or parallel to main
planes detected in global fitting.

Figure 4.11 shows the results of small plane fitting with and without plane
constraint. In subfigure (a), there are some planes detected which clearly
does not exsit in reality for example the oblique plane on the ground. After
constrain the planes by the rules, sub figure (b) shows that some invalid
small planes are removed thus unreasonable fitting can be controlled by
this means.

4.6.2 Snapping

After detecting small planes, similar to global fitting, following is snapping .
However, different from global fitting, in local fitting there is only one kind
of snapping operation, that is snapping inlier points to the planes. Because
small planes are less regular and their intersection lines usually do not fit to
the intersection lines in reality.

Figure 4.12 compares the result of global fitting and local fitting of test
dataset II. Compared with the results from global fitting, windows and some
other small parts of the model are straightened after local fitting. However,

40 implementation and experiments with real-world datasets

(a) Test data II unconstrained planes (b) Test data II constrained planes

Figure 4.11: Comparison between unconstrained and constrained planes in local fit-
ting

(a) Global fitting (b) Local fitting

Figure 4.12: Comparison between result of global fitting and local fitting, test
dataset II

in some parts where the original data is in bad quality, there will be many
spikes and the mesh will become less smooth than the original mesh.

The same as the classification rules in global fitting in Section 4.5.2, tri-
angles can be classified into 4 classes. Figure 4.13 shows the classification
result. As shown in the figure, compared with the classification result after
global fitting, most points are snapped to one plane after local fitting. How-
ever there are still many points remain unprocessed. These points mainly
are on the edges.

4.7 segments split and removing spikes
In local fitting, most points are snapped to some plane. And based on
the plane they are snapped to, all the snapped points can be labelled with

4.7 segments split and removing spikes 41

(a) After global fitting (b) After local fitting

Figure 4.13: Comparison of the classification after global fitting and local fitting

Figure 4.14: Two separate points in one segment are snapped to the same plane

plane ID and can be classified into different segments according to these
IDs while all the unsnapped points can be classified into the same segment.
As explained in Section 3.8, the segments often have several disconnected
components. In order to define and remove spikes, it is neccessary to split
these disconnected components into different segments.

As shown in Figure 4.14, one color represents one segment. It is clear
to see that some disconneted points are snapped to the same plane thus
they are in the same segment. For exmaple two white points circled by red
dashed lines, clearly they are snapped to the same plane but they are totally
separate. Thus they should be split into two segments so that they can be
defined as spikes and be removed.

A segment is defined as a spike if it meets the requirements described
in Section 3.8. The idea is to remove all the small segments which are
surrounded by large segments. It is noticeable that there are many spikes
after local fitting, in order to get more smooth surfaces, it is neccessary
to remove them. If a segment is defined as a spike, all the points of the
segments will be snapped. Figure 4.15 shows a small part of the facade of
test data set II. The colors of the two subfigures are the same, and the purple
part is the facade. In subfigure (a), there are several spikes on the facade and

42 implementation and experiments with real-world datasets

(a) Spikes on facade (b) After removing spikes

Figure 4.15: Comparison between before and after removing spikes

(a) Test data I (b) Test data II

(c) Test data III (d) Test data IV

Figure 4.16: Remove spikes and recolor the mesh

in subfigure (b), they are detected and snapped to the facade plane, thus the
facade becomes more smooth.

After removing spikes, all the vertices are recolored based on the planes
they are snapped to. Figure 4.16 shows the colored final results of 4 test
datasets. Colored parts of the mesh are already straightened and the white
parts remain unprocessed.

4.8 mesh simplification 43

4.8 mesh simplification
According to the rules of removing verices in Section 3.9, some vertices will
be removed. Figure 4.17 (a) shows the result of removing unneccessary ver-
tices. It is clearly to see that many points on the planes are gone, and it is
still possible for see the shape of the building including windows and bal-
conies, because important vertices describing the features of the buildings
are kept. In Section 3.9, it is also mentioned that some faces can be kept,
Figure 4.17 (b) shows the kept faces. There are many empty spaces in these
straighten areas, if these areas are triangulated, the mesh will be complete
and there will be less faces and vertices so that the data storage will be
reduced.

(a) After removing unnecessary points,
Test data II

(b) Kept faces, Test data II

Figure 4.17: Mesh simplification

5 ANALYS IS AND COMPAR ISON

In this chapter, the results will be analysed in details. Section 5.1 will show
the good and bad aspects of the results. In some situations, the mesh can be
well straightened however in other situations, the method might not work
very well. Section 5.2 compares the results from this thesis and Jonsson
[2016]. These two thesis have the same aim but use different method and
data. In this section, the results of these two methods will be compared.

5.1 result analysis
Some results are already shown in Chapter 4. The datasets used in this
thesis are real world data, so they contain much noise.

It can be seen that global fitting has reliable detected planes. Because
these main surfaces contain many points so that the noise has little influence
on the detected planes. So in general, main surfaces like facade are well
straightened (shown in Figure 5.1).

Figure 5.1: Straightened facade

However, the detailed parts like windows etc are much more problematic.
In some situations, the small parts can be well straightened, for example in

45

46 analysis and comparison

Figure 5.2: Well and badly straightened windows

(a) Original mesh (b) Spikes problem

Figure 5.3: Unsolved spike problem caused by unsnapped neighbors

Figure 5.2, the inside of the window in purple are well straightened. But
in more situations, these parts cannot be straightened. According to the
observations, the inner parts of the windows are often bumpy, which means
the normals are not consistent and the deviations of the points are large
thus it is difficult to detect planes automatically in these parts. As shown
in Figure 5.2, some windows are partly straightened (green part) or not
straightened at all (white part).

5.1.1 Spike problem

Some common problems will happen in straightening process. The first one
is spike problem. Although this method tries to remove as many spikes
as possible, it is still an unavoidable problem. For example in Figure 5.3,
because the neighboring points of the spikes (in purple and green) are not
straightened, the spikes cannot be snapped to any planes according to the
method, thus in this situation, the spikes cannot be removed.

Apart from the situations where the neighbors of the spikes are not snapped
to any planes, Figure 5.4 shows another situation where the neighbors of the

5.1 result analysis 47

(a) Original mesh (b) Spikes problem

Figure 5.4: Unsolved spike problem caused by mixed neighbors

(a) Original mesh

(b) ”Wedding cake” effect

(c) Threshold θ = 1◦

Figure 5.5: ”Wedding cake” effect caused by inclined surface

segment are snapped to different planes or unsnapped so that it does not
meet the requirement of defining a spike. In this situation, the spikes are
not defined as spikes so that they will not be removed.

5.1.2 ”Wedding cake” effect

Another problem is ”Wedding cake” effect. It often happens in global fitting
on large surfaces especially ground surfaces. Because ground surfaces often
have many points, and if the ground is not exactly horizontal, these points
might be separated into several parts and fitted to different planes. Because
these planes are constrained, the detected planes will be made orthogonal
if they are near orthogonal. This sometimes leads to stage problem shown
in Figure 5.5 (b). In order to solve this problem, the threshold of the angle θ
to orthogonality should be small (shown in Figure 5.5 (c)).

48 analysis and comparison

(a) Vreta Church data set

(b) Vasallen data set (c) Container data set

Figure 5.6: Input datasets of Jonsson [2016]

5.2 comparison
The method of this thesis is compared with the method from Jonsson [2016].
As explained in Chapter 2, Jonsson [2016] used segmentation based method.
Generally speaking, the planar areas are detected based on curvature of the
vertices then planes will be fitted on these planar areas. This method works
very well when the data has good quality so that planar areas are easier to
be detected and they are complete in general. However with low-quality
data, oversegmentation is a problem so it might has negative influences on
the results of straightening.

As shown in Figure 5.6, the three input datasets of Jonsson [2016] have
good quality, the meshes are smooth and have little noise. However, the
datasets used in this thesis have much lower quality, so it is not possible to
apply the same method on these datasets.

In order to compare if the method of the project can yield similar results,
besides the data collected by Cyclomedia Technology Inc, the method is also
tested on other dataset from Jonsson [2016]. Figure 5.7 shows the test data
used for comparison. It can be seen that this dataset has better quality and it
contains much less noises. The data contains ground, a building and several
trees.

5.2 comparison 49

(a) Overview of the data

(b) Small part of the data

Figure 5.7: Other test dataset

Figure 5.8 compares the results of Jonsson [2016] and the method of this
thesis applying on the dataset with similar quality. It seems two methods
can yield similar results, but since these two results are not from exactly
the same dataset, there are still some differences. A clear difference is that
the method of this thesis removes the windows on the facade according to
the chosen parameters because as shown in Figure 5.7, the windows in this
dataset are very shallow.

Two methods can achieve similar results on main surfaces, however the
method of this thesis also refines the edges. A common problem of straight-
ening the mesh is that the edges are always ignored because the points on
the edges often have irregular normals. In the method of Jonsson [2016],
points on the edges have higher curvatures thus they are often not defined
as planar areas. After straightening the mesh, these points will remain the
same. However, this thesis provides an inspiration that edges can be refined
by snapping points to the edges. Figure 5.9 compares the results between
unrefined and refined edges.

50 analysis and comparison

(a) Result from Jonsson [2016]

(b) Result from this thesis

Figure 5.8: Comparison of the results

(a) Result from Jonsson [2016] (b) Result from this thesis

Figure 5.9: Comparison of the results on edges

6 CONCLUS ION AND
RECOMMENDAT IONS

The aim of this thesis is to design a method which can straighten Multi View
Stereo meshes. Since the data is real world data and it contains many noises,
the method has to be applicable to low-quality data. First in section 6.1,
reseach questions defined in Section 1.3 will be answered. Then there will
be some discussions on the methods and the results in Section 6.2. Finally
in Section 6.3 some recommendations and future works will be given.

6.1 research questions
In this section, the research questions posed in Section 6.1 will be answered.

• ”Can plane fitting methods yield similar or better result than existing ap-
proaches”.

According to the comparison in Chapter 5, the method of this the-
sis yields similar result and it is capable of dealing with data with
low quality. According to the experiment, plane fitting method like
RANSAC is capable of detecting planes in the datasets with a lot of
noises. Compared with segmentation based methods, using plane fit-
ting method can be more efficient and robust. The method of this
thesis actually combines both plane fitting and segmentation in global
fitting and local fitting respectively. The reason is that in global fitting,
main planes are the aims and it is not neccessary to segment them be-
cause it is easy to detect these planes directly. However, in local fitting,
because the parameters of the plane fitting method are relaxed, it is
neccessary to get planar segments first.

Besides the main research question, the sub research questions can
also be answered:

• How can some plane constraints be used for straightening meshes?

Plane constraints can be used to improve the quality of detected planes.
Sometimes detected planes might have small errors so they are nearly
but not exactly orthogonal, coplanar etc. Plane constraints can help
to correct these small deviations. However, plane constraints should
be used carefully otherwise they will have negative influences on the
detected planes. More details will be discussed in Section 6.2.

• How can geometry/topology/texture information be used?

Geometry is the basic information of MVS mesh. Plane fitting is based
on the geometry of the points. Topology information is useful in mesh
segmentation. Since MVS mesh already provides topology informa-
tion, which means the incidents of each points are known. Thus region
growing can be based on this topology information. Besides, it is also
used for calculating normal for each vertex from incident faces. More-
over, in mesh simplication, the topology information is used as well.

51

52 conclusion and recommendations

By comparing if a vertex and its incidents are snapped to the same
plane, it is decidable whether a vertex should be kept or removed. Tex-
ture inforamtion is additional information in MVS mesh, this project
also tests how texture information can be involved. Due to low qual-
ity of the data, oversegmentation is a common problem. According
to the experiments, texture inforamtion can reduce this problem in re-
gion growing, because it is expected that same segment should have
similar color, region growing will not stop easily because of the large
deviations of normals.

• Is it feasible to simplify the straightened meshes regarding data storage and
attach textures to simplified meshes?

According to the final results, MVS mesh is straightened and many
unneccessary details are removed at the same time. Thus the repre-
sentation of the model is simplified which is an advantage of 3D city
modeling because in 3D models, some details are not important and
useful. After MVS mesh is straightened, the project also tests whether
the mesh can be simplified with data storage. Since many vertices
are snapped to the same planes, it is not neccessary to keep all the
triangles, so many triangles are removed after simplification. Less ver-
tices and faces means the straightend meshes are simplified regarding
data storage. However, because after removing vertices, the mesh is
retriangulated, the indices of the vertices and the number of triangles
are changed. The texture information is highy related to triangles and
indices, thus it is tricky to attach textures back to simplified meshes.

6.2 discussion
In this section, the choice of the methods and some shortcomings of the
methods will be discussed.

As explained before, a lot of research prefers segmentation based method.
They use different approaches to get planar areas based on normal, curva-
ture etc. Then planes are fitted on these planar areas. Segmentation based
methods can achieve good results when the data contains a few noises. In-
stead of plane fitting method, this thesis adopts plane fitting method di-
rectly in global fitting without segmentation, because it is relatively easier
to detect these main planes so it is not neccessary to segment the mesh first.
Besides, the data of this thesis uses has low quality, it is difficult to achieve
decent segmentation results. RANSAC has strong ability to detect planes
with many outliers, so it is suitable for the datasets of this project.

In local fitting, this thesis also adopts segmentation method, because
compare with global fitting, local fitting is more tricky. RANSAC does
not consider if points are spatially related, and in fact, these details to be
straighten in local fitting are always separate, so they should be segmented
first. In mesh segmentation, oversegmentation and undersegmentation are
two main problems. Between these two problems, according to the experi-
ment, oversegmentation is preferable, because if the mesh is oversegmented,
plane fitting method will ignore many non planar areas, these parts will
remain the same as the original mesh. However, if the mesh is underseg-
mented, plane fitting method will fit some planes which do not exist in
reality. If the points are snapped to these planes, the quality of the mesh
will decrease.

6.3 recommendations and future works 53

Figure 6.1: Problem in texture enrichment

Texture information is enriched to each vertex in this thesis. It is used in
region growing in this project. And because the data has relatively low qual-
ity, normal based region growing often leads to oversegmentation. Includ-
ing texture information in segmentation can reduce this problem. However,
texture information on each vertex is limited, much texture information is
lost because vertices are discret but texture is continous and stored in face
unit. Because of this, neighboring points sometimes have totally different
colors. Figure 6.1 shows part of a window. P1 and P2, P3 and P4 are con-
nected. However, because there is a distance between neighboring points,
P2 and P4 will get RGB values of blue, while P1 is black and P3 is white.
For this reason, texture information can only be a supplyment during mesh
segmentation.

6.3 recommendations and future works

There are several aspects that can be improved in this thesis. Besides, there
are some related future work that this thesis can contribute to.

In this thesis, the input of global fitting is the whole dataset. The founda-
tion of this way is that RANSAC is capable of detecting planes among all
the points with noises. However, farther points have less spatial relations
and RANSAC does not consider spatial relations but only relies on the pa-
rameters of detecting a plane. The consequence is that RANSAC might fit
planes on points that are far away, which means these planes might not be
valid in reality. There are two recommendations for solving this problem.
The first one is segmentation. The reason why a lot of research resorts to
segmentation before actual operations on the mesh is that segmentation is
a way to find highly spatially related points, because points in a segment
often have more spatial relations. However there are situations where it is
not possible to get decent segmentation results. Then the second way is to
clip the whole data into several parts. First, ground points can be found
and based on this, separate buildings can be clipped into different datasets.
Because the points on the same building have more spatial relations, thus
the best way is to clip separate buildings and input them to RANSAC. By
this means, the detected planes are more likely to be valid.

54 conclusion and recommendations

The way of using texture information can be improved as well. In order
to solve the texture problem stated in Section 6.2, there are two recommen-
dations. First the texture images can be blurred using some filters. Thus
neighboring points are less likely to be influenced by some details in the
texture images. Besides, as explained before, much texture information is in
faces, so the average color value of the incident faces of the vertex might be
a better indicator of the texture of the point.

Snapping points to edges is a way to refine the edges in this thesis. Edges
are defined as the intersection lines of the planes. Planes are infinite so that
every two planes will have one infinite intersection line. However in reality,
a building consists of several polygons instead of planes, which means some
planes detected in this project will not intersect in reality. So it is necessary
to transfer detected planes into polygons, and use the intersection line seg-
ment of two polygons as edge. Using polygon representation has advantage
of defining, generating other format of city models.

Apart from recommendations on the methods used in this MSc project,
there are also some related works:

Semantic enrichment is an important topic in city modeling. Verdie et al.
[2015] provides an idea of labeling segments as ground, roof, facade etc
based on planarity, elevation, horizontality. Besides, texture information
enrichment can be used for semantic enrichment as well. For example, veg-
etation can be identified with texture and planarity.

If the mesh and the detected planes are enriched with semantics, it would
be possible to translate MVS mesh to other format of city model such as
cityGML. There are several Level Of Details (LODs) in cityGML. Consider-
ing the condition of the MVS mesh used in this project, it is better to start
with LOD 0. LOD 0 only contains ground and foot prints of the buildings,
and since the facade of the buildings and ground plane can be detected, by
intersecting these planes, the foot prints of the buildings can be acquired
thus LOD 0 can be generated. As described in Chapter 1, the roof of the
MVS mesh in this project has bad quality, it is difficult to restore the shape
of the roof. However, it is still possible to get elevation values for each roof
according to some statistics on roof points. If the elevation of the roof is
known, LOD 1 can be generated. LOD 2 is more problematic because the
shape of the roof is the characteristics of LOD 2. In order to solve this prob-
lem, some other data can be combined with MVS mesh. For example AHN3

data has much more accurate point cloud on roof areas, it might be feasible
to replace the roof areas of MVS mesh with AHN3 data so that the quality
of the roof can be improved.

B IBL IOGRAPHY

Alharthy, A. and Bethel, J. (2004). Detailed building reconstruction from
airborne laser data using a moving surface method. In 20th Congress of
International Society for Photogrammetry and Remote Sensing, pages 213–
218.

Berkhin, P. (2006). A survey of clustering data mining techniques. In Group-
ing multidimensional data, pages 25–71. Springer.

Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., and Çöltekin, A. (2015). Ap-
plications of 3d city models: State of the art review. ISPRS International
Journal of Geo-Information, 4(4):2842–2889.

Borrmann, D., Elseberg, J., Lingemann, K., and Nüchter, A. (2011). The 3d
hough transform for plane detection in point clouds: A review and a
new accumulator design. 3D Research, 2(2):1–13.

Chauve, A.-L., Labatut, P., and Pons, J.-P. (2010). Robust piecewise-planar 3d
reconstruction and completion from large-scale unstructured point data.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference
on, pages 1261–1268. IEEE.

Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and
Ranzuglia, G. (2008). MeshLab: an Open-Source Mesh Processing Tool.
In Scarano, V., Chiara, R. D., and Erra, U., editors, Eurographics Italian
Chapter Conference. The Eurographics Association.

Cohen-Steiner, D. and Morvan, J.-M. (2003). Restricted delaunay triangula-
tions and normal cycle. In Proceedings of the nineteenth annual symposium
on Computational geometry, pages 312–321. ACM.

Demir, N. and Baltsavias, E. (2012). Automated modeling of 3d building
roofs using image and lidar data. In Proceedings of the XXII Congress
of the International Society for Photogrammetry, Remote Sensing, Melbourne,
Australia, volume 25.

Diakité, A. A. and Zlatanova, S. (2016). First experiments with the tango
tablet for indoor scanning. ISPRS Annals of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, pages 67–72.

Douros, I. and Buxton, B. F. (2002). Three-dimensional surface curvature
estimation using quadric surface patches. Scanning.

Duda, R. O. and Hart, P. E. (1972). Use of the hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–15.

Elberink, S. O. and Vosselman, G. (2009). Building reconstruction by target
based graph matching on incomplete laser data: Analysis and limita-
tions. Sensors, 9(8):6101–6118.

Fan, H., Meng, L., and Jahnke, M. (2009). Generalization of 3d buildings
modelled by citygml. In Advances in GIScience, pages 387–405. Springer.

55

56 BIBLIOGRAPHY

Filin, S. and Pfeifer, N. (2006). Segmentation of airborne laser scanning data
using a slope adaptive neighborhood. ISPRS journal of Photogrammetry
and Remote Sensing, 60(2):71–80.

Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a
paradigm for model fitting with applications to image analysis and au-
tomated cartography. Communications of the ACM, 24(6):381–395.

Furukawa, Y., Hernández, C., et al. (2015). Multi-view stereo: A tutorial.
Foundations and Trends R© in Computer Graphics and Vision, 9(1-2):1–148.

Gallup, D., Frahm, J.-M., and Pollefeys, M. (2010). Piecewise planar and
non-planar stereo for urban scene reconstruction. In Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1418–
1425. IEEE.

Girardeau-Montaut, D. (2017). Cloudcompare (version 2.9) [gpl software]. [ac-
cessed 17-April-2017].

Hoffman, R. and Jain, A. K. (1987). Segmentation and classification of range
images. IEEE transactions on pattern analysis and machine intelligence,
(5):608–620.

Huang, J. and Menq, C.-H. (2001). Automatic data segmentation for geo-
metric feature extraction from unorganized 3-d coordinate points. IEEE
Transactions on Robotics and Automation, 17(3):268–279.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review.
ACM computing surveys (CSUR), 31(3):264–323.

Johnson, A. E. and Hebert, M. (1999). Using spin images for efficient object
recognition in cluttered 3d scenes. IEEE Transactions on pattern analysis
and machine intelligence, 21(5):433–449.

Jonsson, M. (2016). Make it flat: Detection and correction of planar regions
in triangle meshes.

Kada, M. and Wichmann, A. (2013). Feature-driven 3d building modeling
using planar halfspaces. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf.
Sci, pages 37–42.

Katz, S., Leifman, G., and Tal, A. (2005). Mesh segmentation using feature
point and core extraction. The Visual Computer, 21(8-10):649–658.

Kim, H. S., Choi, H. K., and Lee, K. H. (2009). Feature detection of triangular
meshes based on tensor voting theory. Computer-Aided Design, 41(1):47–
58.

Klasing, K., Althoff, D., Wollherr, D., and Buss, M. (2009). Comparison of
surface normal estimation methods for range sensing applications. In
Robotics and Automation, 2009. ICRA’09. IEEE International Conference on,
pages 3206–3211. IEEE.

Koschan, A. (2003). Perception-based 3d triangle mesh segmentation using
fast marching watersheds. In Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 2,
pages II–II. IEEE.

BIBLIOGRAPHY 57

Lienhardt, P. (1991). Topological models for boundary representation: a
comparison with n-dimensional generalized maps. Computer-aided de-
sign, 23(1):59–82.

Loriot, S., Tournois, J., and Yaz, I. O. (2017). Polygon mesh processing. In
CGAL User and Reference Manual. CGAL Editorial Board, 4.9.1 edition.

Mäntylä, M. (1988). An introduction to solid modeling.

Martinovic, A., Knopp, J., Riemenschneider, H., and Van Gool, L. (2015). 3d
all the way: Semantic segmentation of urban scenes from start to end in
3d. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4456–4465.

Murdock, K. L. (2008). 3ds Max 2009 bible, volume 560. John Wiley & Sons.

Oesau, S., Verdie, Y., Jamin, C., and Alliez, P. (2017). Point set shape detec-
tion. In CGAL User and Reference Manual. CGAL Editorial Board, 4.9.1
edition.

Orthuber, E. and Avbelj, J. (2015). 3d building reconstruction from lidar
point clouds by adaptive dual contouring. ISPRS Annals of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, 2(3):157.

Pauly, M., Gross, M., and Kobbelt, L. P. (2002). Efficient simplification
of point-sampled surfaces. In Proceedings of the conference on Visualiza-
tion’02, pages 163–170. IEEE Computer Society.

PEH, D. (2007). Ro duda, pe hart, and dg stork, pattern classification, new
york: John wiley & sons, 2001, pp. xx+ 654, isbn: 0-471-05669-3. Journal
of Classification, 24(2):305–307.

Remondino, F. and El-Hakim, S. (2006). Image-based 3d modelling: a review.
The Photogrammetric Record, 21(115):269–291.

Roth, G. and Levine, M. D. (1993). Extracting geometric primitives. CVGIP:
Image Understanding, 58(1):1–22.

Rouhani, M., Lafarge, F., and Alliez, P. (2017). Semantic segmentation of 3d
textured meshes for urban scene analysis. ISPRS Journal of Photogram-
metry and Remote Sensing, 123:124–139.

Sampath, A. and Shan, J. (2010). Segmentation and reconstruction of poly-
hedral building roofs from aerial lidar point clouds. IEEE Transactions
on geoscience and remote sensing, 48(3):1554–1567.

Schnabel, R., Wahl, R., and Klein, R. (2007). Efficient ransac for point-cloud
shape detection. In Computer graphics forum, volume 26, pages 214–226.
Wiley Online Library.

Shewchuk, J. R. (1997). Delaunay refinement mesh generation. Technical
report, DTIC Document.

Shlafman, S., Tal, A., and Katz, S. (2002). Metamorphosis of polyhedral
surfaces using decomposition. In Computer graphics forum, volume 21,
pages 219–228. Wiley Online Library.

Sun, S. and Salvaggio, C. (2013). Aerial 3d building detection and modeling
from airborne lidar point clouds. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 6(3):1440–1449.

58 BIBLIOGRAPHY

Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P., et al. (2007). Hough-
transform and extended ransac algorithms for automatic detection of
3d building roof planes from lidar data. In Proceedings of the ISPRS
Workshop on Laser Scanning, volume 36, pages 407–412.

Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P., et al. (2008). Extended ransac
algorithm for automatic detection of building roof planes from lidar
data. The photogrammetric journal of Finland, 21(1):97–109.

Taubin, G. (1995). Estimating the tensor of curvature of a surface from a
polyhedral approximation. In Computer Vision, 1995. Proceedings., Fifth
International Conference on, pages 902–907. IEEE.

The CGAL Project (2017). CGAL User and Reference Manual. CGAL Editorial
Board, 4.9.1 edition.

Tschumperlé, D. (2012). The cimg library. In IPOL 2012 Meeting on Image
Processing Libraries, pages 4–pp.

Tseng, Y.-H. and Hung, H.-C. (2016). Extraction of building boundary lines
from airborne lidar point clouds. International Archives of the Photogram-
metry, Remote Sensing & Spatial Information Sciences, 40.

Vadivel, A., Majumdar, A., and Sural, S. (2003). Performance comparison
of distance metrics in content-based image retrieval applications. In In-
ternational Conference on Information Technology (CIT), Bhubaneswar, India,
pages 159–164.

Valentin, J. P., Sengupta, S., Warrell, J., Shahrokni, A., and Torr, P. H. (2013).
Mesh based semantic modelling for indoor and outdoor scenes. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2067–2074.

VC, H. P. (1962). Method and means for recognizing complex patterns. US
Patent 3,069,654.

Verdie, Y., Lafarge, F., and Alliez, P. (2015). Lod generation for urban scenes.
Technical report, Association for Computing Machinery.

Wang, M. and Tseng, Y.-H. (2010). Automatic segmentation of lidar data
into coplanar point clusters using an octree-based split-and-merge al-
gorithm. Photogrammetric Engineering & Remote Sensing, 76(4):407–420.

Wang, M. and Tseng, Y.-H. (2011). Incremental segmentation of lidar point
clouds with an octree-structured voxel space. The Photogrammetric
Record, 26(133):32–57.

Wichmann, A. and Kada, M. (2014). 3d building adjustment using planar
half-space regularities. ISPRS Annals of the Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, 2(3):189.

Wiemann, T., Lingemann, K., and Hertzberg, J. (2016). Optimizing trian-
gle mesh reconstructions of planar environments. IFAC-PapersOnLine,
49(15):218–223.

Wiemann, T., Nüchter, A., and Hertzberg, J. (2012). A toolkit for automatic
generation of polygonal maps-las vegas reconstruction. In Robotics; Pro-
ceedings of ROBOTIK 2012; 7th German Conference on, pages 1–6. VDE.

BIBLIOGRAPHY 59

Woo, H., Kang, E., Wang, S., and Lee, K. H. (2002). A new segmentation
method for point cloud data. International Journal of Machine Tools and
Manufacture, 42(2):167–178.

Yvinec, M. (2017). 2D triangulation. In CGAL User and Reference Manual.
CGAL Editorial Board, 4.9.1 edition.

Zhang, C., Wang, L., and Yang, R. (2010). Semantic segmentation of urban
scenes using dense depth maps. In European Conference on Computer
Vision, pages 708–721. Springer.

Zhao, J., Stoter, J., and Ledoux, H. (2014). A framework for the automatic
geometric repair of citygml models. In Cartography from pole to pole,
pages 187–202. Springer.

Zhao, Z., Ledoux, H., and Stoter, J. (2013). Automatic repair of citygml lod2

buildings using shrink-wrapping. ISPRS.

Zlatanova, S. (2000). 3D GIS for urban development. International Inst. for
Aerospace Survey and Earth Sciences (ITC).

A OTHER TEST DATA

61

colophon
This document was typeset using LATEX. The document layout was gen-
erated using the arsclassica package by Lorenzo Pantieri, which is an
adaption of the original classicthesis package from André Miede.

	1 Introduction
	1.1 Background
	1.2 Problem statement
	1.3 Research questions
	1.4 Research scope
	1.5 Research relevance
	1.6 Reading guide

	2 Related work
	2.1 Feature enrichment
	2.2 Segmentation
	2.3 Plane detection
	2.4 Plane regularization and refinement

	3 Conceptual Framework to straighten city mesh
	3.1 Methodology
	3.2 Normal estimation
	3.3 Texture information enrichment
	3.4 Random Sample Consensus algorithm
	3.5 Plane regularization
	3.6 Snapping
	3.7 Mesh segmentation
	3.8 Segment split
	3.9 Mesh simplification

	4 Implementation and experiments with real-world datasets
	4.1 Tools and libraries
	4.2 Data
	4.3 Normal estimation
	4.4 Texture information enrichment
	4.5 Global fitting
	4.5.1 Main plane fitting
	4.5.2 Snapping
	4.5.3 Mesh segmentation

	4.6 Local fitting
	4.6.1 Small plane fitting
	4.6.2 Snapping

	4.7 Segments split and removing spikes
	4.8 Mesh simplification

	5 Analysis and comparison
	5.1 Result analysis
	5.1.1 Spike problem
	5.1.2 "Wedding cake" effect

	5.2 Comparison

	6 Conclusion and recommendations
	6.1 Research questions
	6.2 Discussion
	6.3 Recommendations and Future works

	A Other test data

