Straightening and simplifying a multi view stereo mesh of a city

Yuxuan Kang

Mentor #1: Hugo Ledoux
Mentor #2: Abdoulaye Diakité
Data: Amsterdam 3D

Amsterdam 3D from Cyclo-Media Technology, Inc

900km roads and 100km 2 area
Generation of MVS mesh

(a) Multi view images
(b) Posed images
(c) Reconstructed 3D geometry
(d) Textured 3D geometry

Example of a multi view stereo pipeline from (a) to (d) [Furukawa et al., 2015]
Motivation

• Because of measurement error, many vertices will have deviations from the actual planes they belong to. This will lead to a 3D mesh with low quality, and redundancy.
• By straightening and simplifying the mesh, 3D model can be improved, the city model will be cleaner.
Research questions

• Can RANSAC algorithm based method yield similar or better result than existing approaches for straightening multi view stereo mesh?
• Subquestions:
 • 1. What methods are currently used? What are the advantages and disadvantages?
 • 2. How can some plane constraints be used for straightening meshes?
 • 3. How can geometry/topology/texture information be used?
 • 4. Is it feasible to simplify the straightened meshes regarding data storage and attach textures to simplified meshes?
What is RANSAC

- Random sample consensus (RANSAC) [Fischler and Bolles, 1981] is a widely used method for parameter estimation of a mathematical model.
Why is RANSAC

- Datasets have low quality
- RANSAC is capable of robustly dealing with data containing more than 50% of outliers [Schnabel et al., 2007]
Related work

Most related work:
1. Get planar areas according to some features: curvature, normal, texture, elevation, planarity, horizontality etc.
2. Plane fitting on these planar areas.
3. Project points to planes.
Related work

Input data:
- Smoother
- Much less noise
- Good quality

By Mickael Jonsson
(2016, Linkoping, Sweden)
Related work

Segment the mesh to find planar areas based on curvature

(a) Initial planes extracted through hierarchical curvature segmentation
(b) Plane growing
(c) Planar region merged

By Mickael Jonsson
(2016, Linkoping, Sweden)
Related work

(a) Original mesh

(b) Flattened mesh
Tools and software

- C++
- CGAL (the Computational Geometry Algorithms Library): Polygon Mesh Processing, Point Set Shape Detection, 2D Triangulation
- CImg: Texture information enrichment
- Meshlab for visualization.
Methodology

Input
- Normal estimation
 - RANSAC
 - Planes
 - Plane regularization
 - Snapping points
 - If local fitting is done?
 - Yes
 - Refine the mesh
 - Simplifying the mesh
 - No
 - Segment split
 - Region growing
 - Simplifying the mesh
 - Refine the mesh
 - Region segments
 - Output
Test data 1

1. facade of two gable roof buildings, one flat roof building
2. part of ground
Test data 2

1. facade of two flat roof buildings
2. vegetation
3. ground
Test data 3

1. One complete building
2. part of ground
3. Cars
Test data 4

1. multiple buildings on the two sides of the road
2. part of ground
3. Cars, bench etc.
Normal estimation
Texture information enrichment

![Diagram showing texture information enrichment with points p1 to p6 and q1 to q6 labeled with coordinates. The diagram includes a texture image with points q1 to q6 and labels q4' and q4's coordinates.]
Texture information enrichment

(a) Test data I

(b) Test data II
Global fitting

Get main planes:
1. Facade
2. Ground
3. Roof
Plane regularization

- Planes that are near parallel are made parallel: normal vectors of planes that form angles smaller than a user-defined threshold are made equal.

- Planes that are near coplanar are made coplanar.

- Planes that are near orthogonal are made exactly orthogonal.

- Planes that are near symmetrical with respect to a user-defined axis are made symmetrical.

From Verdie et al. [2015]
Near coplanar problem

(a) Point snapping

(b) Near coplanar planes problem
Snapping

1. Snapping vertices to planes

2. Snapping vertices to intersection lines
Snapping vertices to planes
Snapping vertices to planes
Snapping vertices to intersection lines
Snapping vertices to intersection lines
Mesh segmentation

Method - Region growing

Rules:
1. If the adjacent vertex has similar normal, it will be included in the same segment. (Dot product)
2. If the adjacent vertex does not have similar normal, but has similar color, it will be included in the same segment. (Manhattan distance)
Segmentation Result

(a) Test data I
(b) Test data II
(c) Test data III
(d) Test data IV
Plane constraint
In local fitting

(a) Planes fitted in global fitting and local fitting
(b) Remove unregularized planes
Plane constraint
In local fitting

(a) Test data II unconstrained planes (b) Test data II constrained planes
(a) Global fitting

(b) Local fitting
Segment split

(a) Points belong to one segment are separated in 2D space

(b) Spikes problem in 3D space
(a) Split red segment into two segments (b) Refine the mesh by removing the spike (green and red)
(a) Spikes on facade
(b) After removing spikes
Test data 1

(a) Original mesh
(b) Result
(c) Result with color
Test data 2

(a) Original mesh
(b) Result
(c) Result with color
Test data 3
Test data 4
Demo
Mesh simplification

(a) Original mesh
(b) P_1 and P_2 are defined as unnecessary points according to the rules
(c) Remove unnecessary points
(d) Retriangulate the mesh
Remove unnecessary vertices
Kept faces
Simplified mesh: 44624 vertices and 88452 faces

Original mesh: 54962 vertices and 109082 faces
Comparison
(a) Result from Jonsson [2016]

(b) Result from this thesis
(a) Result from Jonsson [2016]
(b) Result from this thesis
Conclusion

• Can RANSAC algorithm based method yield similar or better result than existing approaches for straightening multi view stereo mesh?

Yes, according to the comparison, it produces similar result. More importantly, it can apply to data with low quality.
• **Subquestions:**

 1. What methods are currently used? What are the advantages and disadvantages?
 - Segmentation based. Stable and good results but only when segmentation can achieve good result.

 2. How can some plane constraints be used for straightening meshes?
 - Plane constraints can be used to improve the quality of detected planes. However, plane constraints should be used carefully otherwise they will have negative influences on the detected planes.

 3. How can geometry/topology/texture information be used?
 - Plane fitting is based on the geometry of the points. Topology information is useful in mesh segmentation. Moreover, in mesh simplification, the topology information is used as well. Texture information can be used in region growing.
4. Is it feasible to simplify the straightened meshes regarding data storage and attach textures to simplified meshes?

Since many vertices are snapped to the same planes, it is not necessary to keep all the triangles, so many triangles are removed after simplification. The indices of the vertices and the number of triangles are changed. The texture information is highly related to triangles and indices, thus it is tricky to attach textures back to simplified meshes.
Recommendation

- RANSAC does not consider spatial relations but only relies on the parameters of detecting a plane. i.e points on two separate buildings might be inliers of the same plane.
- Detect ground first, then segment different buildings, input individual buildings to RANSAC.
- Using finite polygon instead of infinite plane. i.e not all building planes intersect but with infinite plane representation, every two planes intersect.
• Better use texture information
• Smooth image to get rid of some details
• Use color of the triangles
(a) Original concave shapes of the polygon

(b) Convex shapes after triangulation
(a) Edge-based region growing on non-manifold mesh

(b) Self-intersection problem
Thank you!