'Keersluis te Ramspol'

Hoofdontwerp

oktober 1987
J.P. Vercouteren
J.J. van der Wiel
Inhoud

Hoofdstuk 1
1.1 Inleiding
1.2 Samenvatting
1.3 Conclusies

Hoofdstuk 2
2.1 Inleiding
2.2 Functionele analyse
2.3 Uitgangspunten
2.4 Randvoorwaarden
2.5 Het programma van eisen

Hoofdstuk 3
3.1 Schutsluis
3.2 Het doorstroomprofiel
3.3 Doorstroomopening Ramsdiep
3.4 Doorstroomopening Ramsgeul
3.5 De keuze van het afsluittmiddel
3.5.1 Het afsluittmiddel in het Ramsdiep
3.5.2 Het afsluittmiddel in de Ramsgeul
3.6 De doorvaarthoogte
3.7 De beweegbare brug
3.8 De autoweg Kampen-Emmeloord
3.9 Het globaal ontwerp
<table>
<thead>
<tr>
<th>Hoofdstuk 4</th>
<th>Methode van uitvoering en bouwvolgorde</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Inleiding</td>
</tr>
<tr>
<td>4.2</td>
<td>Mogelijke bouwmethoden</td>
</tr>
<tr>
<td>4.3</td>
<td>Bodemgesteldheid</td>
</tr>
<tr>
<td>4.4</td>
<td>Mogelijke bouwmethoden voor de keersluis te Ramspol</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Bouwplaats Ramsdiep</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Werkeiland Ramsgeul</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Bouwkuip Ramsgeul</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Prefabricage in Ramsgeul</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Combinatie van prefabricage en ter plaatse bouwen</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Keuze ten aanzien van de methode van uitvoering</td>
</tr>
<tr>
<td>4.5</td>
<td>Bouwvolgorde</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Inleiding</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Bouwvolgorde globaal</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Bouwvolgorde Ramspol</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hoofdstuk 5</th>
<th>Belastingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Inleiding</td>
</tr>
<tr>
<td>5.2</td>
<td>Belastingen op bruggen</td>
</tr>
<tr>
<td>5.3</td>
<td>Wind- en IJsbelasting</td>
</tr>
<tr>
<td>5.4</td>
<td>Belastingen door het water</td>
</tr>
<tr>
<td>5.5</td>
<td>Belastingscombinaties</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hoofdstuk 6</th>
<th>Sluitingsmiddelen</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Inleiding</td>
</tr>
<tr>
<td>6.2</td>
<td>Samenvatting</td>
</tr>
<tr>
<td>6.3</td>
<td>Conclusies</td>
</tr>
</tbody>
</table>
Hoofdstuk 7 Globale dimensies keersluis en de stabiliteit 77
7.1 Pijlers en brugdek in de Ramsgeul 77
7.2 Landhoofden in de Ramsgeul 79
7.3 Stabiliteit van een pijler 79
7.4 Stabiliteit van een landhoofd 81
7.5 De basculekelder en de roldeurkas 81
7.6 Het landhoofd in het Ramsdiep 83
7.7 Stabiliteit van de basculekelder 84
7.8 Stabiliteit van het landhoofd in het Ramsdiep 84
7.9 De bodemverdediging 85
7.10 De oeverbescherming 86

Hoofdstuk 8 De kostprijsberekening 87

Literatuurlijst 91

Bronnen 93

Kaarten

Figuren

Bijlagen

Bijlage 1 Prognoses voor het scheepvaartverkeer
2 Het doorstroomprofiel
3 De breedte van de doorvaartopening
4 Het weigeren van een schuif
5 Het werkeiland
6 Belastingen
7 Stabiliteit
8 Kostprijsberekening

De Bijlagen zijn gebundeld in een apart deel:
"Bijlagen Hoofdstudie"
Hoofdstuk 1. Inleiding, Samenvatting en Conclusies.

1.1 Inleiding.

"Keersluis te Ramspol" is de titel van dit afstudeerverslag. Deze keersluis is een van de alternatieven om de gebieden rondom het Zwarte Water, het Zwarte Meer en de Overijsselse Vecht te beschermen tegen overstrooming.
In het vooronderzoek, bestaande uit deel 1 "Literatuurstudie" en deel 2 "Voorstudie", stonden twee vragen centraal. Ten eerste "Is de keersluis wel zo'n goed alternatief?" en ten tweede "Zo ja, wat zijn de effecten van verschillende factoren die direct met de keersluis te maken hebben?".
Uit de resultaten van de berekeningen kon geconcludeerd worden dat de keersluis een dusdanige reductie van de waterstanden op het Zwarte Meer en het Zwarte Water opleveren dat de veiligheid van de omliggende gebieden kan worden gewaarborgd.
Voor factoren als sluitingscriterium en maximaal mogelijke reductie van het doorstroomprofiel zijn de waarden bepaald.

De conclusie van het vooronderzoek is eenduidig:
De keersluis is een volwaardig alternatief voor dijkverbetering rondom het Zwarte Meer en het Zwarte Water. Door de aanleg van een keersluis kan dijkverbetering achterwege blijven, waardoor het fraaie landschap wordt gespaard.

In tegenstelling tot het vooronderzoek, waarin de keersluis als middel om de achterliggende gebieden te beschermen centraal stond, staat in dit deel, het hoofdontwerp, de keersluis als constructie centraal.
Facetten als programma van eisen, dimensionering en detaillering worden uitgewerkt.
Speciale aandacht wordt geschonken aan de bouwwijze van de keersluis en de dimensionering van de stalen sluitingsmiddelen.

Tot slot komt het uiteindelijke doel van het afstudeerproject aan de orde, namelijk het bepalen van het kostenplaatje van de keersluis te Ramspol.
1.2 Samenvatting.

Om tot een ontwerp te komen van de keersluis is een ontwerpproces doorlopen. De eerste stap in dit ontwerpproces is het analyseren van alle mogelijke functies die de keersluis zou kunnen vervullen.
Na het vaststellen van de functies is gekeken wat de uitgangspunten zijn voor het maken van het ontwerp. Een van de belangrijkste uitgangspunten is de combinatie van de keersluis met een brug. Deze brug vormt een onderdeel van de autoweg Kampen-Emmeloord.
De uitgangspunten worden gevolgd door de randvoorwaarden. Uit de functionele analyse, de uitgangspunten en de randvoorwaarden is een lijst van eisen opgesteld waaraan de keersluis moet voldoen. Dit programma van eisen bevat 27 onderdelen.
Het programma van eisen is verder uitgewerkt en gekwantificeerd. Door het combineren van verschillende eisen wordt de vrijheid voor het ontwerp van de keersluis beperkt. Het resultaat van het kwantificeren en combineren van de eisen is een globaal ontwerp.
Alvorens het globaal ontwerp verdere invulling te geven is gekeken naar de mogelijke bouwmethoden. De toe te passen bouwmethoden is sterk afhankelijk van de plaatselijke omstandigheden. Na het vaststellen van de bouwmethoden is bepaald welke volgorde moet worden gevolgd bij het bouwen van de keersluis.
Het totale kunstwerk staat bloot aan belastingen. Enkele belangrijke belastingsgevallen zijn gekwantificeerd. In het bijzonder de belastingen die van belang zijn voor de sluitingsmiddelen en die belastingsgevallen die een bedreiging vormen voor de constructie als totaal.
In een aparte studie is aandacht geschonken aan de sluitingsmiddelen. Bekeken is of er afgeweken kan worden van de traditionele opbouw van de sluitingsmiddelen. Deze studie resulteerde in twee ontwerpen van de toegepaste sluitingsmiddelen.
Na het ontwerpen van de sluitingsmiddelen is globale invulling gegeven aan de betonconstructie. Met dit ontwerp is onderzocht of de stabiliteit van het kunstwerk onder maatgevende belastingen gewaarborgd is.

Aan de hand van vastgestelde hoeveelheden bouwmaterialen en bij soortgelijke werken gebruikelijke overheadkosten is de kostprijs berekend van het gehele kunstwerk.

Het Ramsdiep kan worden afgesloten met een roldeur. De dagmaat van de doorvaartopening is 20 m. Achter de roldeur komt de brug van de autosnelweg. Deze brug is een basculebrug. De basculekelder en de kas van de roldeur worden gecombineerd.

De verbinding tussen de brug over de Ramsgeul en het Ramsdiep bestaat ook uit een overbrugging. De pijlers worden gefundeerd op het eiland tussen Ramsgeul en Ramsdiep.
Het resultaat van de kostprijsberekening kan in en tabel worden weergegeven:

<table>
<thead>
<tr>
<th></th>
<th>aanlegkosten</th>
<th>aanleg en exploitatie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(in f miljoen)</td>
<td>(in f miljoen)</td>
</tr>
<tr>
<td>keersluis en brug</td>
<td>76</td>
<td>99</td>
</tr>
<tr>
<td>alleen de keersluis</td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>alleen de brug</td>
<td>36</td>
<td>47</td>
</tr>
<tr>
<td>totaal alternatief keer-sluis inclusief brug</td>
<td>86</td>
<td>110</td>
</tr>
</tbody>
</table>
1.3 Conclusies.

De keersluis te Ramspol is een bijzonder aantrekkelijk alternatief voor dijkverhoging langs het Zwarte Meer, het Zwarte Water en de Overijsselse Vecht. De keersluis kan worden gecombineerd met een brug ten behoeve van de autoweg Kampen-Emmeloord. Door het aanleggen van een geïntegreerd kunstwerk blijft de aantasting van het landschap beperkt tot één plaats. Ook wordt hiermee voorkomen dat er twee aparte kunstwerken naast elkaar worden gebouwd. Verbetering van de dijken zal een grotere aantasting van het landschap met zich meebrengen dan de keersluis/brug.

Het integreren van beide kunstwerken brengt nog meer voordelen met zich mee. Ontwerp en uitvoering behoeft slechts eenmaal te vinden, hetgeen vooral financiële voordelen met zich mee brengt. Onderdelen van de constructies die voor zowel de brug als voor de keersluis nodig zijn, zoals de fundering, behoeven nu slechts eenmaal uitgevoerd te worden.

Uit het ontwerp van de keersluis/brug mag blijken dat het integreren van beide kunstwerken technisch en qua uitvoering goed haalbaar is.

Of het alternatief van een keersluis/brug voor uitvoering in aanmerking komt is vooral een financiële kwestie. De kosten van het alternatief van de keersluis dient te worden vergeleken met het alternatief van de dijkverhoging.

Om een reëlle vergelijking te kunnen maken moeten aanlegkosten, inclusief de exploitatie, van de twee alternatieven met elkaar vergeleken worden.

De kosten van de keersluis/brug vormen een geheel. Voor het vergelijken van de alternatieven is het echter wenselijk dat de kosten van de keersluis alleen in rekening worden gebracht.
Het alternatief van de keersluis omvat de bouw van de keersluis en het verhogen van het dijkvak Kampen-Ramspol. Het alternatief van de dijkverhoging omvat een beperkte verhoging van de dijken van de buitenpolders langs het Zwarte Meer en verhoging van de dijken langs het Zwarte Water en de Overijsselse Vecht. Ook zijn hierin begrepen verbeteringswerken voor Zwolle, Hasselt en Zwartsluis.

Het genoemde alternatief van de keersluis kost 63 miljoen gulden. Daartegenover kost het alternatief van de dijkverhoging 165 miljoen.

Het alternatief van de keersluis is aanzienlijk goedkoper dan het alternatief van de dijkverhoging. Opgemerkt moet worden dat de 63 miljoen gulden voor dit alternatief niet gerealiseerd kan worden indien de keersluis niet wordt geïntegreerd met de autoweg Kampen-Emmeloord.

De kosten van het totale project, keersluis met brug, belopen 110 miljoen gulden.
Hoofdstuk 2. Het programma van eisen voor het ontwerp van de keersluis.

2.1 Inleiding.

In deel 1 is gekeken naar de keersluis als middel om het achterliggende gebied te beschermen tegen hoge waterstanden. Als vervolg hierop wordt in dit deel de keersluis als object centraal gesteld. Om tot een invulling van het object te komen moet een ontwerpproces worden doorlopen. Allereerst moet duidelijk zijn wat het doel is van het ontwerpproces. De tweede stap is het vaststellen van de functies van het object en de uitgangspunten en randvoorwaarden voor het ontwerp van het object. Tesamen vormen zij de basis voor het programma van eisen.

Voorafgaand aan het opstellen van de functies, uitgangspunten en randvoorwaarden zal het object, de keersluis, in een breder perspectief gesteld worden. Ten eerste wordt gekeken naar de locatie waar de keersluis is gepland, ten tweede wordt aandacht besteed aan de ideeën die bestaan over de functies van de keersluis.
2.2 Funktionele analyse.

De locatie waar de keersluis moet komen ligt nagenoeg vast. De keersluis moet worden gebouwd ter plaatse van Ramspol, de overgang van het Zwarte Meer naar het Ketelmeer (kaart 2.2.1).

Ter plaatse van Ramspol bevinden zich de Ramsgeul en het Ramsdiep. De Ramsgeul is een brede geul waardoor hoofdzakelijk water afgevoerd wordt afkomstig van de provincies Drenthe en Overijssel. De scheepvaart maakt weinig gebruik van deze geul daar deze niet bebakend is. Door de ondiepten op het Zwarte Meer en het Ketelmeer is het varen niet zonder risico. Tevens is er een beperkte doorvaarthoogte ter plaatse van de Ramspolbrug (2.6 m.). De ondiepten en de beperkte doorvaarthoogte maken dat er alleen pleziervaart plaats kan vinden.

De scheepvaart maakt gebruik van het Ramsdiep. Het Ramsdiep is een kanaal dat enerzijds begrensd wordt door de dijk van de Noordoostpolder en anderzijds door een leidam. Het Ramsdiep en de leidam is aangelegd in de tijd dat de Flevopolder nog niet bestond. De scheepvaart te Ramspol werd daardoor te sterk gehinderd door de golven op het IJsselmeer (nu het Ketelmeer). Momenteel maakt nagenoeg alle scheepvaartverkeer gebruik van deze scheepvaartweg.

Ter plaatse van Ramspol wordt de Ramsgeul en het Ramsdiep overbrugd door de Ramspolbrug. Over de Ramsgeul is dit een vaste brug met vijf doorstroomopeningen (max. doorvaarthoogte 2.6 m), ter plaatse van het Ramsdiep is dit een beweegbare brug, totaal zijn hier drie doorvaartopeningen.

Naast de ideeën over een keersluis te Ramspol bestaan er al uitgebreide plannen voor een autoweg tussen Kampen en Emmeloord. Het tracé van deze autoweg kruist de Ramsgeul en het Ramsdiep ter plaatse van Ramspol. Als oeververbinding is hier een brug voorzien (kaart 2.2.2).

Over de keersluis zelf bestaan verschillende ideeën. Zo wordt er gedacht over het combineren van de brug met de keersluis zodat een geïntegreerde constructie ontstaat.
Door het combineren van de brug en de keersluis kunnen de totaalkosten lager uitkomen dan de totaalkosten van twee aparte kunstwerken. Daarnaast worden aan de keersluis meerdere functies toegedacht. Zo zou de keersluis naast het keren van hoge waterstanden op het Ketelmeer gebruikt moeten kunnen worden als milieukering en als middel voor waterbeheersing.

1. Milieukering.

Door de keersluis te gebruiken als middel om het Zwarte Meer af te sluiten van het Ketelmeer zou een kwaliteitsverbetering op moeten treden van het Zwarte Meer. De kwaliteitsverbetering zou een gevolg moeten zijn van toestroming van schoon water. Het Zwarte Meer wordt grotendeels gevoed door de afvoer van de Vecht, deze afvoer is zodanig vervuild dat het de vraag is of het wel geschikt is voor de gewenste kwaliteitsverbetering. Een andere consequentie is dat de scheepvaart gebruik zal moeten maken van een schutsluis, hetgeen ophoudt en extra kosten met zich meebrengt.

Bij het ontwerp van de keersluis wordt er van afgezien de keersluis de functie van milieukering te geven. De belangrijkste reden hiervoor is de twijfel ten aanzien van de kwaliteitsverandering van het water en de extra kosten die dit met zich meebrengt.

2. Waterbeheersing.

De keersluis kan ook gebruikt worden om water vast te houden op het Zwarte Meer. De waterstand is echter afhankelijk van de afvoer van de Vecht. Deze is echter onvoldoende om voldoende water te leveren in droge perioden. In de droge perioden is het momenteel zo dat er zowel in Drenthe als in Overijssel water wordt onttrokken aan het Zwarte Meer en het Zwarte Water. Het komt voor dat er (vervuil) water van het Ketelmeer naar het Zwarte Meer en het Zwarte Water stroomt.
Voor de natuurgebieden rondom het Zwarte Meer is het niet gewenst dat de waterspiegel omhoog gaat. Ook hier is het nut van de keersluis voor waterbeheersing twijfelachtig. De twijfel wat betreft het nut en de extra kosten die het gesloten zijn van de keersluis met zich meebrengt is de reden de keersluis geen functie te geven wat betreft de waterbeheersing.

De functies van de keersluis blijven beperkt tot de functies die direct gekoppeld zijn met de aard van de keersluis. De keersluis is bedoeld om ongewenste hoge waterstanden, wanneer deze optreden, te keren. Zolang deze waterstanden niet optreden moet de keersluis geopend zijn zodat water en scheepvaart ongehinderd kunnen passeren.

Functies Keersluis te Rampol:

1. Water doorlaten.
2. Scheepvaart doorlaten.
3. Keren van verhoogde waterstanden op het Ketelmeer ten gevolge van windopzet op het IJsselmeer bij een windkracht die groter is dan 7 Bft.

2.3 Uitgangspunten.

De uitgangspunten dienen als vertrekpunten voor het ontwerp. Voorafgaand aan het ontwerp dienen al beslissingen genomen te worden ten aanzien van het gewenste eindresultaat. Deze beslissingen kunnen aanzienlijke consequenties met zich meebrengen. Hierna volgen de uitgangspunten met de overwegingen die tot een bepaalde keuze geleid heeft.
1. De keersluis wordt gecombineerd met de autoweg Kampen-Emmeloord tot een geïntegreerd kunstwerk.

Een belangrijke factor tot de beslissing om de keersluis te combineren met de autoweg is het feit dat de totale kosten lager zullen uitvallen dan de kosten van twee aparte kunstwerken. Tevens blijft de aanslag op de beschikbare ruimte te Ramspol beperkt.

Een kunstwerk is, naast een fysiek obstakel, echter ook een visueel obstakel. Beide kunnen de scheepvaart beïnvloeden waardoor bv. langzamer gevaren wordt. Integreren van kunstwerken is daarom gunstiger voor de scheepvaart.

2. Het tracé van de autoweg ligt vast.

De plannen voor de autoweg, en daarmee het tracé, liggen vast. De consequentie hiervan is dat de plaats van de keersluis hiermee vast ligt (Kaart 2.2.2).

3. De Ramsgeul wordt afgesloten voor scheepvaart.

Momenteel maakt het grootste deel van de scheepvaart gebruik van het Ramsdiep. De geul op het Zwarte Meer is bebakend en sluit direct aan op het Ramsdiep. De toegang tot de Ramsgeul is ondiep, tevens is de maximale doorvaarthoogte beperkt tot 2,6 m. De Ramsgeul is daarom alleen geschikt voor een gedeelte van de pleziervaart. Door de Ramsgeul af te sluiten voor scheepvaart ontstaat een grote vrijheid ten aanzien van het ontwerp van de doorstroomopening (drempel omhoog, schuif vlak boven water).
4. De keersluis is 5% van de tijd gesloten.

In het vooronderzoek is het sluitingscriterium vastgesteld op sluiten bij windkracht 7 Bft. bij wind uit de sector west tot noord. De tijd dat de wind uit de sector west tot noord daadwerkelijk de 7 Bft. overschrijdt is 2% van de tijd. Bij een stormwaarschuwing moet rekening gehouden worden met onzekerheden in de voorspelling, hierbij dient rekening gehouden te worden met een overschrijding van 5%. Bij sluiten bij een windkracht 7 Bft. met een stormwaarschuwing zal daarom met een overschrijding van 5% gerekend moeten worden. De tijd dat de kering gesloten is is daarmee ook 5% van de tijd [1] (Deze overschrijdingen zijn gebaseerd op windmetingen in Den Helder en Groningen).

5. Scheepvaartprognoses voor jaar 2000 (bijlage 1).

De scheepvaartbewegingen zijn van belang voor het ontwerp keersluis, in het bijzonder ten aanzien van de vraag of een schutsluis nodig is in het Ramsdiep [2].

6. Richtlijnen voor scheepvaartwegen, voor de CEMT-klassen I t/m IV.

Het kunstwerk dient onder andere afgestemd te worden op de scheepvaart [1], zie figuur 2.3.1 (doorvaartopeningen, brughoogte, lengte profiel kanaal).

7. De keersluis moet tweezijdig kunnen keren.

Indien de keersluis eenmaal aangelegd is zal de neiging groot zijn om de keersluis te sluiten wanneer er zich een milieuramp voordoet op het Ketelmeer.
Samengevat:

Uitgangspunten voor het ontwerp van de Keersluis:

1. De keersluis wordt gecombineerd met de autoweg Kampen-Emmeloord tot een geïntegreerd kunstwerk.
2. Het tracé voor de autoweg ligt vast (kaart 2.2.2).
3. De Ramsgeul wordt afgesloten voor de scheepvaart.
4. De keersluis is 5% van de tijd gesloten.
5. Scheepvaartprognoses voor het jaar 2000 (bijlage 1).
6. Richtlijnen voor scheepvaartwegen, voor de CEMT-klasse I t/m IV.
7. De keersluis moet tweezijdig kunnen keren.

2.4 De randvoorwaarden.

De randvoorwaarden zijn de voorwaarden die vastliggen en die als onveranderlijk aangenomen dienen te worden.

1. Keersluis dient gesloten te worden bij windkracht 7 Bft. met een stormwaarschuwing voor stormen uit de sector west tot noord.

Deze randvoorwaarde is vastgesteld in het vooronderzoek. De keersluis moet dan gesloten worden daar anders de veiligheid van het gebied gevaar loopt.

2. De keersluis dient te worden geopend bij gelijke waterstand op het Ketelmeer en het Zwarte Meer.

Deze randvoorwaarde is ook vastgesteld in het vooronderzoek. Zodra de waterstand op het Zwarte Meer hoger is dan die op het Ketelmeer moet de keersluis worden geopend daar de waterstand daarmee op het Zwarte Meer en het Zwarte Water ook gaat dalen. Het is zaak het overtollige water zo snel mogelijk kwijt te raken waardoor de beginwaterstand voor een eventuele volgende storm zo laag mogelijk is.
3. Het Ramsdiep moet geschikt zijn voor scheepvaart-klasse V.

Dit is een voorschrift [13], zie figuur 2.4.1.

4. Voor het Ramsdiep geldt onbeperkte doorvaarthoogte.

Dit is een voorschrift [3].

5. De vrijheid voor het ontwerp wordt bepaald door de bestaande situatie wat betreft dwarsprofiel, lengteprofiel en grondgesteldheid van de Ramsgeul en het Ramsdiep.

Samengevat:

Randvoorwaarden:

1. Keersluis dient gesloten te worden bij windkracht 7 Bft. met een stormwaarschuwing voor stormen uit de sector west tot noord.

2. De keersluis dient te worden geopend bij gelijke waterstand op het Ketelmeer en het Zwarte Meer.

3. Het Ramsdiep moet geschikt zijn voor scheepvaartklasse V.

4. Voor het Ramsdiep geldt onbeperkte doorvaarthoogte.

5. De vrijheid van het ontwerp wordt bepaald door de bestaande situatie wat betreft dwarsprofiel, lengteprofiel en grondgesteldheid van de Ramsgeul en het Ramsdiep.
2.5 Het programma van eisen.

Het programma van eisen dient als basis voor het maken van ontwerpen voor de keersluis. Later als er een keuze moet worden gemaakt uit de alternatieve ontwerpen dan zullen deze aan het programma van eisen worden getoetst. Het programma van eisen wordt samengesteld op grond van de functies van de keersluis, de uitgangspunten en de randvoorwaarden.

1. De keersluis moet worden gecombineerd met de autoweg Kampen-Emmeloord tot een geïntegreerd kunstwerk.
2. De functies van het Ramsdiep en de Ramsgeul worden gesplitst, het scheepvaartverkeer mag alleen gebruik maken van het Ramsdiep.
3. De locatie van de keersluis is gekoppeld aan het tracé van de autoweg.
4. Het kunstwerk in het Ramsdiep moet afgestemd zijn op scheepvaartklasse V (CEMT).
5. Voor het Ramsdiep geldt onbeperkte doorvaarthoogte.
6. Het kunstwerk dient alle optredende belastingen op te kunnen nemen.
8. De stabiliteit van het kunstwerk moet gewaarborgd zijn.
9. De keersluis moet worden gesloten bij windkracht 7 Bft. en een stormwaarschuwing voor stormen uit de sector west tot noord.
10. De keersluis dient te worden geopend zodra de waterstand op het Zwarte Meer gelijk is aan de waterstand op het Ketelmeer.
11. De keersluis moet tweezijdig kunnen keren.
12. Het kunstwerk dient te worden beschermd tegen aanvaringen en drijvende voorwerpen.
13. Schepen moeten voldoende vlot en veilig het kunstwerk kunnen passeren.
15. Ter plaatse van het kunstwerk dient een geleide- en remmingwerk aanwezig te zijn.
16. Golfoverslag over de sluitingsmiddelen is toelaatbaar.
17. De sluitingsmiddelen behoeven niet 100% waterdicht te zijn.
19. De uitvoering van de aanleg van het kunstwerk mag niet te veel hinder voor de scheepvaart opleveren.
20. Het kunstwerk dient binnen het bestaande dwarsprofiel van de Ramsgeul en het Ramsdiep te vallen.
22. De hoogte van het wegdek dient zodanig te zijn dat het wegverkeer en het scheepvaartverkeer niet teveel worden gehinderd.
23. Aandacht dient te worden besteed aan de interactie van de keersluis/brug met de bestaande Ramspolbrug.
24. Rekening dient te worden gehouden met een sluitingsmiddel dat weigert.
25. Bij het ontwerp dient rekening gehouden te worden met in de toekomst toe te passen onderhoud en reparaties.
27. Het kunstwerk mag het doorgaande scheepvaartverkeer niet teveel en niet te vaak stremmen.
Hoofdstuk 3. Combineren en kwantificeren van het programma van eisen.

3.1 Schutsluis.

Combinatie van de eisen 9, 10, 13 en 27.

Zodra de keersluis gesloten wordt zal er stemming optreden van het scheepvaartverkeer. De vraag is of stemming van het scheepvaartverkeer acceptabel is. Indien stemming onacceptabel zou zijn, dan zou in het Ramsdiep een schutsluis gesitueerd moeten worden. De keuze voor een schutsluis is afhankelijk van de scheepvaartintensiteit, de tijd dat de keersluis gesloten is en de mogelijkheid om een alternatieve route te volgen.

1. Scheepvaartintensiteit.

Uit de prognoses voor de scheepvaartbewegingen te Ramspol voor het jaar 2000 (zie bijlage 1) blijkt dat circa 100 schepen per week de keersluis zullen passeren. Per dag zullen dat er gemiddeld 17 zijn (1 week = 6 dagen).

De keersluis wordt gesloten als windkracht 7 Bft wordt overschreden tenzij met een stormwaarschuwing voor een storm uit de sector west tot noord. Bij stormen uit de sector west tot noord zullen lege schepen niet afvaren. De lege schepen maken momenteel 5/9 deel uit van het totale aantal scheepsbewegingen. Ook geladen schepen met bestemmingen rondom het IJsselmeer zullen wachten tot de stormafzwakt.

Uitgaande van de lege schepen blijven circa 9 schepen over die de keersluis willen passeren. In de keuze een schutsluis te bouwen zal de pleziervaart niet worden betrokken, daar de pleziervaart grotendeels plaatsvindt buiten het stormseizoen, zie figuur 3.1.1.
2. Tijd dat de keersluis gesloten is.

De keersluis wordt gesloten bij windkracht 7 Bft. tesamen met een stormwaarschuwning voor stormen uit de sector west tot noord. De relatieve tijdsduur dat de windkracht de 7 Bft. uit sector west tot noord overschrijdt bedraagt 2%. Bij een stromwaarschuwning moet rekening gehouden worden met de onzekerheden in de voorspelling. Bij een voorspelling voor overschrijding van windkracht 7 Bft. moet rekening gehouden worden met een relatieve sluitingsduur van 5%. Dit komt overeen met 18 dagen per jaar. De stremming voor de scheepvaart zal echter minder zijn dan 18 dagen per jaar. Overschrijding van windkracht 7 zal ook plaatsvinden op momenten dat het scheepvaartverkeer toch stil ligt, zoals de nachten en de weekeinden. De genoemde 18 dagen is daarom een maximum.

De maximale tijdsduur dat de keersluis gesloten is is circa 18 uur (zie het vooronderzoek). Dit betekent dat het maximaal mogelijke ophoudhoud voor het scheepvaartverkeer circa 1 vaardag is.

3. Alternatieve route.

Indien de route via Ramspol gestremd is, is er de mogelijkheid een alternatieve route te volgen. Deze route loopt via het Zwarte Meer, het Zwarte Water, het Zwolle-IJsselkanaal, de IJssel en het Ketelmeer. De benodigde tijd om te varen bedraagt maximaal een halve dag.

Conclusie: Een schutsluis is niet nodig.

*Toelichting.

De totale stremming zal lager liggen dan 18 dagen, daar er 's nachts en 's zondags niet of nauwelijks gevaren wordt. Bij toename van de windkracht (boven 7 Bft.) uit de sector west tot noord zal de scheepvaart afnemen. De werkelijke situatie zal daarom gunstiger zijn dan hiervoor beschreven. Deze situatie zal acceptabel zijn voor de scheepvaart. De kosten voor de bouw van een schutsluis wegen niet op tegen de economische verliezen ten gevolge van stremming van de scheepvaart.
3.2 Het doorstroomprofiel.

Combinatie van de eisen 7,13 en 27.

Door de aanleg van de keersluis kan en zal het bestaande doorstroomprofiel veranderen. Door het doorstroomprofiel kleiner te maken worden de dure onderdelen van kunstwerk kleiner, hetgeen lagere kosten met zich meebrengt.

In het vooronderzoek is bekeken wat de invloed was van reductie van het doorstroomprofiel. Uit dit onderzoek bleek dat de opsturing van het waterpeil en de stroomsnelheden geringe veranderingen ondergingen, ter plaatse van de keersluis namen de stroomsnelheden wel toe.

Voor het bepalen van het totale doorstroomoppervlak zijn de optredende debieten en stroomsnelheden van belang. In het bijzonder de stroomsnelheden zijn van belang, zowel voor de scheepvaart als voor de bodembescherming.

Voor de scheepvaart bestaan geen specifieke eisen ten aanzien van de stroomsnelheid. In de richtlijnen [1] wordt gesproken over toe te laten stroomsnelheid van 0.5 m/s ter plaatse van het kunstwerk. Daar het debiet en daarmee de stroomsnelheid niet constant is zal er een frequentiekeuze gemaakt moeten worden.

De stroomsnelheid ter plaatse van het kunstwerk van 0.5 m/s is relatief laag. De grenzen kunnen daarom ook anders gekozen worden. Voor de situatie te Ramspol zijn drie stroomsnelheden met bijbehorende frequentie vastgesteld.

<table>
<thead>
<tr>
<th>stroomsnelheid</th>
<th>frequentie</th>
<th>toelichting</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 m/s</td>
<td>1/1</td>
<td>stroming hinderlijk</td>
</tr>
<tr>
<td>1.0 m/s</td>
<td>1/10</td>
<td>stroming problematisch</td>
</tr>
<tr>
<td>1.5 m/s</td>
<td>1/100</td>
<td>scheepvaart niet mogelijk</td>
</tr>
</tbody>
</table>

ad 1. De stroming geeft lichte hinder.

Bij een stroming van 0.5 m/s is scheepvaart nog goed mogelijk. Het is daarom acceptabel dat deze af en toe optreedt.
ad 2. De stroming geeft problemen.
Een stroming die problemen op gaat leveren voor de scheepvaart mag niet te vaak optreden. Daarom is gekozen voor een frequentie van eens in de tien jaar.

ad 3. Scheepvaart wordt gestremd.
De kans dat de scheepvaart gestremd moet worden mag niet groot zijn. Bij 1.5 m/s is passage van een kunstwerk niet meer mogelijk. De bijbehorende frequentie is vastgesteld op 1/100.

Bij het optreden van een zware storm ligt het scheepvaartverkeer stil, zodoende zijn de stroomsnelheden door het kunstwerk als gevolg van een storm niet maatgevend voor het doorstroomprofiel.
Bij een hoog meerpeil met een matige afvoer is de optredende stroomsnelheid relatief laag. Anders ligt het bij een extreme afvoer, de eis is hier dat, bij een bepaalde afvoer te Ramspol met een zekere overschrijdingsfrequentie zonder het optreden van een storm, scheepvaart nog mogelijk moet zijn.

Naast de afvoer van de Vecht wordt de afvoer te Ramspol ook bepaald door water afkomstig uit afwateringsgebieden in Drente en Overijssel. De hoeveelheid wordt gesteld op 1/3 deel van de afvoer van de Vecht. Op grond van de frequentieoverschrijdingslijn van de Vecht en de afvoer van de afwateringsgebieden is een frequentieoverschrijdingslijn samengesteld voor de afvoer te Ramspol (figuur 3.2.1).
Met deze lijn kan de afvoer worden bepaald behorende bij de genoemde frequenties. De combinatie van de afvoer en de bijbehorende stroomsnellheid levert het benodigde doorstroomoppervlak. Uit de relatie afvoer Vecht-IJsselmeerpeil kan de bijbehorende waterstand worden bepaald.

<table>
<thead>
<tr>
<th>frequentie per jaar</th>
<th>afvoer</th>
<th>stroomsnellheid</th>
<th>doorstroomoppervlak</th>
<th>waterstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>167 m³/s</td>
<td>0.5 m/s</td>
<td>334 m²</td>
<td>NAP -0.15 m</td>
</tr>
<tr>
<td>1/10</td>
<td>382</td>
<td>1.0</td>
<td>382</td>
<td>0.00</td>
</tr>
<tr>
<td>1/100</td>
<td>588</td>
<td>1.5</td>
<td>392</td>
<td>+0.16</td>
</tr>
</tbody>
</table>

Maatgevend voor het doorstroomoppervlak zijn de eisen behorende bij de stroomsnellheden van 1.0 en 1.5 m/s. In bijlage 2 is het één en ander uitgewerkt en gecontroleerd. Geconcludeerd kan worden dat het minimaal benodigde doorstroomoppervlak 380 m² onder het peil van NAP is.
3.3 Doorstroomopeningen Ramsdiep.

Combinatie van de eisen 4, 7, 13, 23 en 27.

Voor de bepaling van de afmetingen van de doorvaartopening in het Ramsdiep bestaan een aantal mogelijke alternatieven.

De drempelligging wordt vastgesteld op 1,3 a 1,4 maal de diepgang van het maatgevende schip. Bij een minimaal peil van NAP - 0,4 m. zou de drempel van de keersluis op 3,91 a 4,18 m. onder NAP moeten liggen. Daar de diepte van de scheepvaartgeul niet beneden de NAP - 4 m. komt is voor de keersluis vastgesteld dat de drempel ook op NAP - 4 m. komt.

Op basis van de voorschriften uit Richtlijnen voor Scheepvaartwegen [1] komt de minimale breedte op ongeveer 1,5 maal de breedte van het maatgevende schip. Dit is 17 m.

Naar aanleiding van de in hoofdstuk 3.2 gestelde criteria voor de stroomsnelheid door de keersluis in samenhang met de scheepvaart kan deze eis ook vertaald worden in een soort optimale doorvaartbreedte. Bij 1,5 m/s stromingsnelheid op de boog van het schip wordt het scheepvaartverkeer stilgelegd, met andere woorden bij 1,5 m/s stroming moet het maatgevende schip er nog net door kunnen. Hiervoor zijn berekeningen uitgevoerd en verwerkt in Bijlage 3, het blijkt dat op basis van het optreden van retourstrooming de optimale breedte van de doorvaartopening 20 m. is.

Als gevolg van het dicht na elkaar liggen van twee kunstwerken in de scheepvaartgeul en het feit dat de keersluis vlak na een bocht in de scheepvaartweg ligt is het niet onwaarschijnlijk dat het scheepvaartverkeer hier veel hinder van ondervindt. Bij toepassing van twee doorvaartopeningen in het Ramsdiep wordt het geheel veel overzichtelijker en zal de scheepvaart minder hinder ondervinden van de keersluis. Een derde alternatief is dus twee doorvaartopeningen van 17 m. breed.
In Bijlage 3 is een keuzeafweging gemaakt met behulp van
een keuzetabel. In deze keuzetabel zijn de volgende
toetsingscriteria gebruikt:

- Kosten
- Eisen t.a.v de beroepsvaart
- De uitvoering
- Eisen t.a.v de pleziervaart
- Onderhoudsmogelijkheden
- Schadegevoeligheid

De bovengenoemde toetsingscriteria staan vermeld in
volgorde van belangrijkheid. Extra te maken kosten vanwege
bijvoorbeeld het aanleggen van een tweede doorvaartopening
wegen zwaarder dan het iets minder eenvoudig kunnen
uitvoeren van het bouwwerk. Voor de kosten, de eisen
t.a.v. de beroepsvaart en eisen voor de pleziervaart zijn
nog subcriteria opgesteld. Voor de invulling van de
keuzetabel en toelichting op de afwegingen zie Bijlage 3.

Het resultaat van deze keuzeafweging is dat blijkt dat het
toepassen van een doorvaartopening met een breedte van 20
m. de meest gunstige oplossing is.

Bij het controleren van de zakking van het maatgevende
schip bij een stroomsnelheid van 1,5 m/s en een
doorvaartbreedte van 20 m. blijkt dat deze voldoet. De
overdiepte bij het passeren van de keersluis onder
genoemde condities wordt niet minder dan 1/3 van de
diepgang van het maatgevende schip.

Conclusie:

Het toepassen van een doorvaartbreedte van 20 m. in het
Ramsdiep is de beste oplossing. De drempel in de keersluis
komt op NAP - 4 m.
3.4 Doorstroomopeningen Ramsgeul.

Combinatie van de eisen 2,7,20,21,24 en 26.

De Ramsgeul neemt het grootste gedeelte van de afvoer voor zijn rekening. Het totale doorstroomoppervlak te Ramspol is gerelateerd aan de mogelijk optredende stroom snelheden. Nu de afmetingen bekend zijn van de doorvaartopening in het Ramsdiep kan het doorstroomoppervlak van de Ramsgeul worden bepaald. Het onderwaterprofiel van de doorvaartopening onder NAP in het Ramsdiep bedraagt 4m.*20m. Het totale doorstroomprofiel te Ramspol is vastgesteld op 380 m² (zie Hst 3.2 en Bijlage 2), zodat voor de Ramsgeul een oppervlak van 300 m² onder NAP nodig is.

De keersluis te Ramspol moet worden gesloten indien er een windkracht optreedt die de 7 Bft. overschrijdt (storm uit de sector west tot noord). Op dat moment moet het doorstroomoppervlak in de Ramsgeul worden afgesloten. Aan de wijze waarop dit oppervlak afgesloten moet worden moet nader invulling worden gegeven. Aan de mogelijkheden om het oppervlak af te sluiten zijn beperkingen gesteld. Allereerst dient het oppervlak gezocht te worden binnen het bestaande dwarsprofiel van de Ramsgeul (fig 3.4.1). Door binnen dit profiel te blijven zullen later veranderingen in de bodemligging beperkt blijven. Tevens zal door een onveranderde bodemligging voor en achter het kunstwerk de afvoer zelf niet nadelig worden beïnvloed.

Een tweede beperking ten aanzien van de afsluiting van het doorstroomoppervlak wordt bepaald door de mogelijke weigering van een schuif. Indien een schuif weigert mag het achterliggende gebied niet direct gevaar lopen op overstromen. Indien een doorstroomopening van 300 m² met een afsluitmiddel wordt afgesloten dan is de veiligheid niet meer gewaarborgd. Het doorstroomoppervlak zal daarom moeten worden verdeeld in verschillende doorstroomopeningen.
Binnen de twee genoemde beperkingen ten aanzien van de afsluiting van het doorstroomoppervlak in de Ramsgeul blijven nog veel mogelijkheden open ten aanzien van de verdeling en maten van de doorstroomopeningen. Bij het verder bekijken van de mogelijkheden dienen de volgende factoren in het oog te worden gehouden:

- de grenzen bepaald door een weigerend sluitingsmiddel
- de aanpassing binnen het bestaande dwarsprofiel
- de economie en uitvoerbaarheid

- Een weigerend sluitingsmiddel.

Allereerst dient de vraag beantwoord te worden welke gevolgen acceptabel zijn indien een sluitingsmiddel weigert.

Het gevolg van een weigerend sluitingsmiddel is dat de waterstand in het te beveiligen gebied gaat stijgen. Deze stijging van de waterstand is een functie van het doorstroomoppervlak van het weigerende sluitingsmiddel. Hoe groter het doorstroomoppervlak, hoe hoger de waterstand op zal lopen.

De dijken achter de keersluis in het te beveiligen gebied zullen een bepaalde reserve hebben. De dijkhoogten zullen een bepaalde overhoogte hebben ten aanzien van de maximaal optredende waterstand waarop de dijk wordt gedimensioneerd. Door deze overhoogte als reserve te gebruiken voor de waterstandsverhoging ten gevolge van een weigerend sluitingsmiddel is hiermee een criterium gevonden voor het toe te laten doorstroomoppervlak.

Met behulp van het computermodel is gekregen voor verschillende doorstroomoppervlakken wat de waterstandsverhogingen waren bij variërende doorstroombreedtes. Bij deze berekeningen is uitgegaan van een gemiddelde bodemligging van NAP -3.00 m. (gezien het bodemprofiel zal de gemiddelde drempelligging ongeveer deze diepte bedragen). Ten gevolge van de functiesplitsing tussen Ramsdiep en de Ramsgeul bestaan er ten aanzien van de Ramsgeul geen beperkingen ten aanzien van de drempeldiepte.
Uit de resultaten, zie bijlage 4, blijkt dat bij een doorstroomoppervlak van 60 m² (20m*3m) een waterstandsverhoging in het achterliggende gebied optreedt van ca 0.40 m. Een waterstandsverhoging van 0.50 m is het maximum toelaatbare.

- Aanpassing aan het bestaande bodemprofiel.

Uitgaande van een bodemligging van NAP -3.00 m. is de maximale schuifbreedte ca 20 m. Er kan echter gevarieerd worden in de maten van de doorstroomopeningen (breedte, diepte). Door het toepassen van van elkaar verschillende maten van de doorstroomopeningen kan een optimale aanpassing aan het bodemprofiel worden gevonden (zie fig 3.4.2 en 3.4.3). Bij de figuren is rekening gehouden van een gemiddelde pijlerbreedte van 4 m. (later zullen deze worden gedimensioneerd. Uit de figuren blijkt dat door het vrij steile verloop van de bodemhelling het aantal kleinere doorstroomopeningen, ondanks het veranderen van de breedte, aan beide zijden van de grote openingen beperkt blijft tot één aan elke zijde.

De mogelijkheid bestaat ook uit het zoeken van een recht- hoekig profiel zodanig dat de aantasting van het huidige profiel niet te groot is (fig 3.4.4 en 3.4.5). Bij een drempeldiepte van -3.00 m. is het doorstroomprofiel gelijk aan 300 m², dit is precies gelijk aan het benodigde oppervlak. Tevens blijft er tussen het bodemprofiel en de bovenzijde van de drempel een verschil van één meter. Deze ruimte kan voor en achter de keersluis gebruikt worden voor de bodembescherming.

Bij fig 3.4.5 is het doorstroomoppervlak groter dan noodzakelijk. Tevens zal voor de bodembescherming grondverplaatsing nodig zijn.
- Economie en uitvoerbaarheid.

Uit de figuren blijkt dat aan weerszijden van de grote doorstroomopeningen slechts een doorstroomopening met kleinere afmetingen mogelijk is. Door de minder diepe bodemligging neemt de bijdrage aan de totale afvoer af, dit betekent een minder economische bijdrage aan het geheel. Meerdere kleine openingen aan de weerszijden van de grote doorstroomopeningen heeft daarom geen zin. Dit nadelige aspect dient ten gunste van het zo goed mogelijk inpassen in het bodemprofiel. Een ander nadelig aspect heeft te maken met de uitvoering. Door een discontinuïteit in de drempeldiepte wordt de uitvoering van de fundering bemoeilijkt.

Uit figuur 3.4.4 blijkt dat de inpassing van een recht-hoekig profiel binnen het bodemprofiel redelijk goed mogelijk is. De nadelen van de discontinuïteiten worden door deze uitvoering ondervangen. Nadeel is wel dat de stroming gedeeltelijk wordt verstoord. Deze verstoering kan worden ondervangen door het bodemprofiel voor en achter de keersluis aan te passen aan het doorstroomprofiel van de keersluis. Dit is zeer wel mogelijk daar er voor en achter de keersluis een bodemverdediging moet worden aangelegd om de bodem te beschermen tegen te hoge stroomsnelheden.

Een ander economisch aspect dat gunstig is bij het recht-hoekig profiel is de uniformiteit van de sluitingsmiddelen, aanslagen en bewegingsmechanismen. Uniformiteit is gunstiger ten aanzien van de bouw, het onderhoud en de vervanging van het geheel of van onderdelen.

Door het afstemmen van het doorstroomprofiel op het bodemprofiel zal de lengte van de keersluis groter worden in vergelijking met het rechthoekige dwarsprofiel. Door de totale lengte te beperken zullen ook de kosten lager worden (één en ander komt ook aan de orde bij de methode van uitvoeren).
Conclusie:
Voor de doorstroomopeningen in de Ramsgeul wordt gekozen voor vijf doorstroomopeningen van 20 meter breed en met een drempelling op NAP -3.00 m.

De overweging hiertoe:
- Door rechthoekig profiel eenvoudig uit te voeren.
- De totale breedte is minder dan bij de alternatieven. Uitgezonderd een, die echter een groter doorstroomoppervlak heeft dan benodigd.
- De uniformiteit van afsluitmiddelen, aanslagen en bewegingsmechanismen is gunstig ten aanzien van uitvoering, onderhoud en vervanging.
- Het nadeel ten aanzien van de verstoring van de stroming kan worden ondervangen door de aan te brengen bodembescherming voor en achter de keesluis.
3.5 De keuze van het afsluitmiddel.

Combinatie van de eisen 2, 7, 9, 10, 11, 12, 16, 17, 18, 20, 21, 24, 25, 26.

Na het vaststellen van het doorstroomoppervlak en de maximale breedte van het afsluitmiddel is het nu mogelijk om een gefundeerde keuze te maken voor het principe van het afsluitmiddel.

Duidelijk is dat een bewegbare waterkering nodig is op die plaatsen waar het doorstroomoppervlak aanwezig is. Een keuze is mogelijk tussen een vormvaste bewegbare constructie, zoals een deur, en een niet vormvaste constructie.

Afhankelijk van de bewegingsrichting en de manier van bewegen (rotatie, translatie of een combinatie van beide) zijn een acht tal typen sluitingsmiddelen te onderscheiden. Zie voor een verdere uitwerking onderstaande figuur.

In figuur 3.5.2 en 3.5.3 zijn schetsen te zien van deze mogelijke sluitingsmiddelen.

1. De Roldeur - Een roldeur is over het algemeen een zware constructie die, hangend of over een railbaan, vanaf de zijkant in de af te sluiten opening wordt gebracht. In het hoofd (de zijkant) is een grote ruimte nodig om de roldeur in de geopende toestand in te kunnen bergen.
Meestal is deze grote betonnen behuizing het dure onderdeel van de constructie.

2 De Draaideur - Bij de draaideuren is nog een verdere onderverdeling te maken. Mogelijk zijn de bekende puntdeuren, maar ook een enkele draaideur wordt tegenwoordig veel toegepast. Een mooie, veel toegepaste oplossing is ook een waaierdeur (zie figuur 3.5.1).

3 De Hefdeur - Bij de hefdeur vindt de beweging plaats in het verticale vlak loodrecht op de stromingsrichting. Veelal wordt het bewegingsmechanisme uitgevoerd met heftorens en contragewichten, maar indien de grootte van de stroomsnelheid daar aanleiding toe geeft worden ook wel tweezijdig werkende vijzels toegepast (Oosterschelde).

4 De Dakstuw - Deze geheel onder water gelegen constructie beweegt vanuit een plat vlak naar boven toe en vormt zo een soort dak, welke het water keert.

5 De Klepdeur - De klepdeur is een platte in de bodem gelegde deur die tegen de stroming in omhoog getrokken of geduwd wordt en zo het water keert.

6 De Segmentschuif - Dit is een boven de waterspiegel hangend segmentvormige constructie die onder invloed van het eigen gewicht in het water zakt en zo het water kan keren.

7 De Sectorschuif - De sectorschuif is ook een segment-vormige constructie. In geopende toestand bevindt hij zich geheel onder water en wordt om het water te keren naar boven toe bewogen.

8 De niet vormvaste constructie - Dit soort constructies bestaan veelal uit kunststofzakken of -rollen die zich in een constructie in de bodem bevinden. Om het water te gaan keren worden deze rollen gevuld met water en onder een overdruk met water zal het geheel zich uitzetten. Bij een voldoende grote omvang kan het water ook gekeerd worden.

Voor de afweging om te komen tot het beste afsluitmiddel wordt een keuzetabel gebruikt (tabel 2). De criteria die gebruikt zijn worden hieronder toegelicht:

- kostten: Niet alleen de kosten om het afsluitmiddel zelf te maken maar ook de kosten van de behuizing en bewegingsmechanismen worden meegenomen.
Van belang zijn de gekappaliseerde kosten in relatie tot de totale bouwkosten. Een alternatief wat bij de bouw ervan relatief goedkoop is kan, doordat het dan ook meestal onderhoudsgevoelig is, bij vaststellen van de gekappaliseerde kosten een duurder alternatief zijn. Een afweging wordt gemaakt tussen relatief goedkoop (+), gemiddelde prijs (0) en relatief duur (-).

- **Sluiten bij stromend water:** De keersluis wordt gesloten bij het optreden van windkracht 7 Bft. Op dat moment stroomt het water met een maximale snelheid van ongeveer 1,5 m/s door de keersluis. Het afsluitmiddel moet dus goed kunnen sluiten bij stromend water. Een afweging wordt gemaakt tussen goed (+), voldoende (0) en matig (-).

- **Openen bij waterstandsverschil:** Dit criterium sluit aan bij sluiten bij stromend water. Op het moment dat de keersluis geopend gaat worden (bij gelijke waterstand binnen- en buitengaats) kan er als gevolg van storingen zich eerst een waterstandsverschil hebben ontwikkeld. Het afsluitmiddel moet dan zeker open kunnen, wanneer dit niet gebeurt is het zelfs mogelijk dat er gevaarlijke situaties optreden in het achterliggende gebied als gevolg van gestremde lozing. Over het algemeen is het wel zo dat indien een sluitingsmiddel goed kan sluiten bij stromend water, deze ook kan openen bij een waterstandsverschil.

- **Tweezijdig keren:** De keersluis moet niet alleen de windopzet als gevolg van een storm op het IJsselmeer kunnen keren. Wanneer de keersluis eenmaal aanwezig is zal hij in het geval van een ramp op het Ketelmeer ook gebruikt willen worden als milieukering. Daartoe wordt de keersluis gesloten en bouwt zich, als gevolg van gestremde lozing, een negatief waterstandsverschil op.

- **Schadegevoeligheid:** Schade als gevolg van drijvende voorwerpen, ijsgang en scheepvaart kan in twee onderdelen gesplitst worden: schade aan de sluitingsmiddelen wanneer deze zich in de gesloten toestand bevinden en schade aan de sluitingsmiddelen wanneer deze zich in hun behuizing bevinden.
Voor wat het eerste betreft moet de keersluis beschermd worden met een opvangconstructie, voor de Ramsgeul (geen scheepvaart) kan dit een vaste constructie zijn voor en na de keersluis en voor het Ramsdiep (wel scheepvaart) kan een staalkabel op trommels een uitkomst bieden die in de bodem kan worden gelaten. Schadegevoeligheid blijft dus alleen als criterium over in het geval dat de keersluis geopend is (ankers, aanvaringen en drijvende voorwerpen). Een afweging wordt gemaakt tussen snel te repareren schade (+), binnen redelijke termijn en niet te kostbaar te repareren schade (0) en veel tijd vergend en dure reparatiekosten (-).

- onderhoud: Het onderhoud moet op de meest eenvoudige wijze plaats kunnen vinden en mag niet teveel hinder opleveren voor scheepvaart en de waterafvoer. Van belang is dus de aanwezigheid van bewegende delen onder water. Eenvoudig uit te voeren onderhoud wordt positief beoordeeld (+) terwijl moeilijk uit te voeren onderhoud negatief beoordeeld wordt.

- uitvoering: Natuurlijk moeten de mogelijkheden om het afsluitmiddel met behuizing te bouwen aanwezig zijn. Negatief is een grote diepe bouwput of een bijzonder omvangrijke te bouwen constructie.

- gebruik: Gebruikseisen zijn ook van belang. De sluitingsmiddelen moeten eenvoudig gesloten kunnen worden, alhoewel dat niet in een bijzonder korte tijd hoeft. Een afweging wordt gemaakt tussen eenvoudig gebruik (+), niet te moeilijk in het gebruik (0) en moeilijk in het gebruik (-).

Omdat tussen de Ramsgeul en het Ramsdiep een duidelijk verschil aanwezig is voor wat betreft de functies zal de keuzeafweging voor het sluitingsmiddel ook verschillend zijn. Hiertoe worden ook twee verschillende keuzetabellen opgesteld. De niet vormvaste constructies worden buiten beschouwing gelaten, vanwege de grootte van het te keren waterstandsverschil zullen dit soort constructies bijzonder omvangrijk worden.
3.5.1 Het Afsluitmiddel in het Ramsdiep.

Bij de keuze voor het afsluitmiddel in het Ramsdiep speelt het nietgenoemde criterium "Ruimte" een grote rol. Daar de vaargeul een onbeperkte doorvaarthoogte [13] kent is het niet mogelijk een sluitingsmiddel toe te passen die boven het water hangt en in het water wordt gelaten. De hefdeur en de segmentschijf vallen van te voren dus al af en worden in de keuze niet meegenomen. Een gekunstelde oplossing met bijvoorbeeld een hefdeur die van opzij boven de opening wordt gehangen en daarna in het water wordt afgelaten wordt niet meegenomen. Tabel 1 is de keuzetabel voor het afsluitmiddel voor het Ramsdiep.

Ter toelichting de volgende afwegingen:
- kostonen: Volgens [23] is de oplossing van een roldeur een relatief dure oplossing, echter vergeleken met een dubbel stel puntdeuren is de roldeur een goedkopere oplossing. Bij de afweging in [23] wordt gesteld dat draaideuren goed kunnen sluiten bij stromend water. Indien dit water niet te snel stroomt zal dit ook wel kunnen. In het geval van de keersluis te Ramspol, waar aanzienlijke stroomsnelheden kunnen optreden, zullen de bewegingswerken die nodig zijn om tegen de stroming in te kunnen sluiten aanzienlijk duurder zijn. Tevens zal de vorm van de constructie bij draaideuren en puntdeuren het nodig maken een stijve constructie te maken, hetgeen het geheel weer duurder maakt. Vergeleken met de draaideuren is de roldeur dan een goedkopere oplossing. De sectorschuif kent een enorme constructie onder de drempel van de sluis, de uitvoering hiervan maar ook het onderhoud brengen zoveel kosten met zich mee dat gesteld wordt dat dit een duurdere oplossing zal zijn dan de roldeur. De klepdeur en de dakstuw kennen een relatief eenvoudige en goedkope constructie onder water, alhoewel het onderhoud wel extra kosten met zich meebrengt zijn deze twee alternatieven toch goedkoper dan de roldeur.
sluiten bij stromend water: Hierboven is al genoemd de twijfel of draaideuren bij aanzienlijke stroommannelijk goed kunnen sluiten. De klepdeur is ook een ongunstige oplossing omdat de stroomrichting ook van de andere kant kan komen waardoor een ongewenste krachtswerking op deze klepdeur het resultaat is. Een dakstuw en een sectorschuif zijn goede oplossingen. Een roldeur kan ook goed sluiten in stromend water, indien daarbij de berekening rekening mee gehouden wordt.

openen bij waterstandsverschil: Eenzelfde motivatie als hierboven is genoemd is hier van toepassing.

tweezaadig keren: Een roldeur, een dakstuw en een sectorschuif zijn goede oplossingen. De andere mogelijkheden voldoen slecht, tenzij een dubbel stel puntdeuren en een goede vergrendeling bij draaideuren wordt toegepast.

schadegevoeligheid: Doordat de roldeur in een behuizing zit die moeilijk te beschadigen is, is ook de roldeur het minst schadegevoelig. De draaideuren kunnen gemakkelijk door langswarend scheepvaartverkeer gefalom worden. De klepdeur, de dakstuw en de sectorschuif kunnen onherstelbaar beschadigd worden door te diep stekende schepen of slepende ankers.

onderhoud: De behuizing van de roldeur is eenvoudig af te sluiten met een kopschot en droog te zetten, waardoor onderhoud van bewegende delen eenvoudig en regelmatig uitgevoerd kan worden zonder dat het scheepvaartverkeer hier hinder van ondervindt. Ook omdat de keersluis maar enkele keren per jaar gesloten zal moeten worden is het droogzetten van de roldeur te accepteren. De andere oplossingen geven meer problemen. Bij de draaideuren zal of de constructie drooggezet moeten worden of de deur moet er uit worden gelicht om onderhoud te kunnen plegen. Het hinderlijke droogzetten van de scheepvaartdoorweg geldt voor de klepdeur, de dakstuw en de sectorschuif. Problemen met vuil en slib dat in de onderwaterconstructie kan bezinken speelt ook een grote rol. Bij de roldeur is voor dat deze gaat sluiten de railbaan eenvoudig schoon te spuiten met spuitplassen die in de constructie zijn aangebracht, moeilijker wordt het bij de drie onderwaterconstructies.
uitvoering: Uitvoeringstechnisch gezien is het alternatief van de draaideuren de meest gunstige oplossing. Doordat de behuizing van de roldeur gecombineerd kan worden met de basculekelder van de bascule brug is de roldeur een redelijke oplossing. De klepdeur, de dakstuw en zeker de sectorschuif hebben een extra diepe bouwput nodig, wat kostenverhogend werkt.

gebruik: Een roldeur en een draaideur zijn eenvoudig in het gebruik omdat er zicht op is wat er gebeurt. Moeilijker wordt het bij de klepdeur, de dakstuw en de sectorschuif waar het grootste gedeelte van de beweging onder water plaatsvindt.

Conclusie:

Voor het Ramsdiep is een roldeur de beste oplossing.

3.5.2 Het Afsluitmiddel in de Ramsgeul.

Bij de keuze van het beste afsluitmiddel voor de Ramsgeul speelt ook hier de niet genoemde factor ruimte een grote rol. In hoofdstuk 3.4 is globaal de plaats en de vorm van de doorstroomopeningen in de Ramsgeul aangegeven. Hieruit volgt dat de bewegingsrichting niet gezocht kan worden in de breedte. Dit resulteert erin dat de roldeuren niet in de afweging worden meegenomen.

Tabel 2 bevat de keuzeafweging tussen de overgebleven afsluitingsmiddelen voor de Ramsgeul. De volgende overwegingen lagen hieraan ten grondslag:

-kosten: Doordat de keersluis gecombineerd wordt met een autoweg moeten er pijlers gemaakt worden. Een goedkope oplossing is dan het alternatief dat gebruik maakt van deze pijlers. Dit geldt voor de draaideuren, de hefdeur de klepdeur en de segmentschuif. De sectorschuif en de dakstuw maken nagenoeg geen gebruik van de aanwezige pijlers. Een eenvoudige onderwaterconstructie is ook kostenbesparend, evenals een eenvoudig bewegingswerk. Voornamelijk de draaideuren en de hefdeur hebben deze eigenschappen.
- sluiten bij stromend water: Bij dit criterium geldt eigenlijk dezelfde overweging als onder 3.5.1 genoemd, echter het alternatief in de vorm van de hefdeur is uitstekend geschikt voor sluiten in stromend water. Samen met de dakstuw, de segmentschuif en de sectorschuif wordt de hefschuif voor wat sluiten in stromend water betreft positief beoordeeld.

- openen bij waterstandsverschil: Evenals in het bovenstaande komen de draaideuren en de klepdeur er hier niet zo best af. De andere alternatieven worden positief beoordeeld.

- tweezijdig keren: Alleen de draaideur (niet het dubbel stel puntdeuren) en de klepdeur zijn niet erg geschikt om tweezijdig te keren, tenzij er bijzonder zware en dure bewegings- en ondersteuningswerken aangebracht worden.

- schadegevoeligheid: De alternatieven die zich in geopende toestand boven de waterspiegel bevinden zijn niet heel erg gevoelig voor schade. Ijsgang kan de draaideuren beschadigen en vuil en slib kan de werking van de klepdeur, de dakstuw en de sectorschuif bemoeilijken en op den duur beschadigen. Hier zijn de hefdeur en de sectorschuif de beste oplossingen.

- onderhoud: Alhoewel het droogzetten van een doorstroomopening niet veel hinder oplevert voor de waterafvoer zijn de alternatieven die in geopende toestand boven de waterspiegel staan in het voordeel. De hefschuif en de segmentschuif worden hier positief beoordeeld, terwijl de onderhoudsgevoelige alternatieven als de klepdeur, de dakstuw en de sectorschuif negatief worden beoordeeld.

- uitvoering: De uitvoering bij de draaideuren en de hefschuif is de meest gunstige oplossing, deze is eenvoudig. De segmentschuif, de klepdeur en de dakstuw worden iets minder gunstig geacht omdat hier of zeer zware afsluitmiddelen nodig zijn of een diepere constructie benodigd is. De sectorschuif is uitvoeringstechnisch de meest ongunstige oplossing omdat een zeer diepe en omvangrijke constructie onder de drempel nodig is.
- gebruik: Evenals bij de afweging in 3.5.1 zijn hier de alternatieven die vanaf boven de waterspiegel in het water worden gelaten in het voordeel. Ongunstig zijn de constructies die zich in de geopende toestand onder water bevinden.

Conclusie:

Voor het afsluiten van de doorstroomopeningen in de Ramsgeul zijn hefdeuren de beste oplossing.
3.6 De doorvaarthoogte.

Combinatie van de eisen 1, 2, 4, 5, 13, 18, 22, 27.

Voor het Ramsdiep geldt een onbeperkte doorvaarthoogte [3], dit heeft tot gevolg dat er in de brug van de auto- (snel)weg een beweegbaar gedeelte ter plaatse van het Ramsdiep moet komen. De vraag moet echter beantwoord worden op welk niveau deze brug moet komen. De hoogteligging van de brug is een kosten-baten vraagstuk. Wordt het wegedek laag gelegd dan zal de brug vaker geopend moeten worden dan wanneer het wegedek hoog ligt. Indien de brug hoog ligt zullen de kosten voor de aanleg van het geheel hoog zijn. Hoe hoger de ligging van het wegedek hoe langer de opritten en hoe hoger het energieverbruik van het wegverkeer dat het hoogteverschil moet overbruggen. Daartegenover staat dat een lager gelegen wegedek lagere kosten met zich meebrengt ten aanzien van de aanlegkosten van de constructie. De consequentie is echter dat de brug vaker geopend dient te worden voor het scheepvaartverkeer. Het openen van een brug brengt echter wachttijden met zich mee voor zowel het wegverkeer als voor de scheepvaart. Daar het hier een auto(snel)weg betreft zijn stremmingen ten gevolge van brugopeningen ongewenst.

Om de hoogteligging van het wegedek vast te stellen zullen verschillende aspecten ten aanzien van de scheepvaart worden bekeken.

--- De beroepsvaart.

Het Ramsdiep moet toegankelijk zijn voor schepen die behoren tot scheepvaartklasse V. De hoogte van deze schepen is vastgesteld op 6.70 m. (figuur 2.4.1). In de richtlijnen wordt voor de doorvaarthoogten 7.00 m. aanbevolen (zie figuur 3.2.1). Door deze maat als minimum aan te houden behoeft de brug enkel voor bijzondere transporten en voor zeiljachten te worden geopend.
- De pleziervaart.

Ook de pleziervaart is in categorieën ingedeeld (figuur 2.4.1). Wat betreft de hoogteligging van het wegdek zijn in het bijzonder de zeiljachten van belang. Uit de tabel in de figuur blijkt dat drie van de vier categorieën een hoogte hebben van 12 m. of meer. Het maken van onderscheid, zoals bepaalde openingstijden of verplicht maststrijken, is daarom moeilijk. Een andere factor die zeer ongunstig is is de periode waarin de pleziervaart plaats vindt. Vaart de beroepsvaart regelmatig gedurende het gehele jaar (fig 3.1.1). De pleziervaart vindt plaats geconcentreerd gedurende de hoogtijdagen pinksteren en pasen en de maanden juni, juli en augustus (fig 3.1.1). Is de brugligging daarom lager dan 12 m. dan betekent dat dat gedurende een korte periode de brug vaak open moet, hetgeen onacceptabel is. Doordat het hoge scheepvaartverkeer voornamelijk in de zomerperiode plaatsvindt mag er van worden uitgegaan dat het maximale meerpeil overwegend onder NAP is. Er moet daarom van een hoogteligging van de onderzijde van de brug uitgegaan worden van ca NAP +12.00m.

conclusie:
De doorvaarthoogte is NAP +12.00 m.

overweging:
Door de korte periode waarin de pleziervaart plaatsvindt zal de brug vaak open moeten indien deze onder de 12 m. ligt. Daar de mastlengte voor de verschillende categorieën geen verschillen vertonen kan er geen onderscheid worden gemaakt ten aanzien van openingstijden of het verplicht maststrijken. Deze zeer ongunstige factoren bepalen de doorvaarthoogte op NAP +12.00 m.
3.7 De beweegbare brug.

Combinatie van de eisen 1, 2, 5, 18.

Over het Ramsdiep moet een beweegbare brug komen om te voldoen aan de eis van een onbeperkte doorvaarthoogte. Ook voor beweegbare bruggen bestaan verschillende typen. De bewegingsrichtingen kunnen roterend en transferrend zijn, zowel in het horizontale vlak als in het verticale vlak. Een globale indeling van de bruggen is als volgt:

- beweging in het horizontale vlak:
 - roteren - draaibrug
 - transferen - een brug die weggeschoven wordt

- Beweging in een vertikaal vlak:
 - roteren - basculebrug
 - transferen - ophaalbrug
 - transferen - hefbrug

Bij het nader bekijken van de verschillende mogelijkheden wordt al snel duidelijk dat de keuze beperkt wordt tot de ophaalbrug en de basculebrug.
- De hefbrug valt af daar er een onbeperkte doorvaarthoogte geldt.
- Een draaibrug is een constructie die toegepast wordt indien twee doorvaartopeningen tegelijk vrij moeten zijn voor doorvaart. Bij het Ramsdiep is er slechts één doorvaartopening. Daarnaast is de constructie duur gezien het bewegingsmechanisme dat nodig is om de brug te openen.
- Een brug die weggeschoven wordt is hier niet op zijn plaats gezien de bijzondere constructie die hiervoor nodig is.
Blijft de keuze tussen de ophaalbrug en de basculebrug. Beide oplossingen zijn voor de situatie te Ramspol goed mogelijk.
Er kan wel onderscheid worden gemaakt tussen de ophaalbrug en de basculebrug ten aanzien van de eis dat het kustwerk geïntegreerd moet worden in de omgeving. De constructie van de basculebrug bevindt zich geheel onder het wegdek terwijl de constructie van de ophaalbrug zich geheel boven het wegdek bevindt. Door de reeds hoge ligging van het wegdek is het ongewenst de constructie van de brug boven het wegdek te situeren. Ten aanzien van deze eis is de basculebrug te prefereren boven de ophaalbrug. Tevens kan de constructie van de basculebrug op eenvoudige manier worden gecombineerd met de keersluis. De keuze ten aanzien van de beweegbare brug valt daarom op de basculebrug.
3.8 De autoweg Kampen-Emmeloord.

Combinatie van de eisen 1, 3, 13, 22, 25.

De keersluis te Ramspol zal worden gecombineerd met de aan te leggen autoweg tussen Kampen en Emmeloord. Deze autoweg zal bestaan uit twee maal twee rijstroken. Er moet echter rekening mee worden gehouden dat in de toekomst, indien de verkeersintensiteit toe gaat nemen, de autoweg verbreed moet kunnen worden zodat er twee maal drie rijstroken beschikbaar komen. Voor de situatie te Ramspol betekent dit dat er voor de brug rekening gehouden moet worden met een verbreding van het wegedek. Tijdens het ontwerp zal hier rekening mee gehouden dienen te worden.

De eisen die aan autowegen en autosnelwegen worden gesteld die liggen vast [32]. Van belang voor de situatie te Ramspol zijn de dwarsprofielen van het wegedek, de maximale helling voor de opritten en de overgangsbogen tussen de hellingen en de horizontaal liggende wegdelen [25].

Het dwarsprofiel van het wegedek ligt vast [32]. Voor de twee maal twee rijstroken wordt de totale breedte 27,52 m. (fig.3.8.1.a), voor de twee maal drie rijstroken wordt de totale breedte 34,72 m. (fig.3.8.1.b).

Voor het overbruggen van een hoogteverschil zijn hellingen nodig. Voor autosnelwegen is het normaal maximum hellingspercentage 2% (1:50). De overgang tussen een helling en een horizontaal gelegen weggedeelte zal bestaan uit overgangsbogen. De overgang van een horizontaal gedeelte en een opgaande helling is een voetboog, de overgang van een horizontaal gedeelte naar een neergaande helling is een topboog (fig.3.8.2). Aan deze overgangsbogen zijn grenzen gesteld ten aanzien van de minimale straal. Voor wegen met gescheiden rijbanen worden normaal stralen gebruikt van 12.500 m. voor de topboog en 15.000 m. voor een voetboog. Voor zowel een topboog als voor een voetboog wordt een minimum aangehouden van 10.000 m.

Voor het ontwerp van de keersluis/brug te Ramspol wordt een maximaal hellingspercentage toegepast van 2% en voor de stralen voor zowel topboog als voor voetboog wordt 10.000 m. aangehouden.
De hoogteligging van het wegdek over het Ramsdiep ligt vast, de hoogteligging van het wegdek over de Ramsgeul ligt echter niet vast. Het is niet nodig het wegdek op dezelfde hoogte te leggen als het Ramsdiep. Wordt dezelfde hoogte gehandhaafd dan brengt dit extra kosten met zich mee daar de opritten en de constructie hoger komen te liggen. Aan weerszijden van de constructie in het Ramsdiep kunnen direct de overgangsbogen worden ingezet. Uitgaande van een hoogteligging van het wegdek op ca NAP +13,00 m. (doorvaarthoogte 12 m. + constructiehoogte van ca 1 m.) moet er een hoogteverschil worden overwonnen van ca 8,00 m. (uitgaande van een wegligging van NAP +5,00 m.). Dit hoogteverschil moet worden overwonnen met overgangsbogen (R=10,000 m.) en hellingen (1:50). Om van een horizontaal gedeelte op een helling te komen van 1:50 is een horizontale afstand nodig van 200 m., het verticale hoogteverschil dat deze overgangsboog met zich meebrengt is 2 m. (fig. 3.8.3). De topboog en de voetboog tesamen beslaan een lengte van 400 m. en een hoogteverschil van 4 m. Van het te overbruggen hoogteverschil resulteert nog 4 m., dit hoogteverschil moet worden overbrugd met een helling van 1:50, hetgeen een lengte oplevert van 200 m. De totale lengte om een hoogteverschil van 8 m. te overbruggen komt daarmee op 600 m.

De consequentie van het inzetten van een boogstraal aan weerszijden van de brug over het Ramsdiep is dat het wegdek op de brug over de Ramsgeul en op eventuele aanbruggen gekromd zal moeten zijn. Dit zal moeten worden bereikt door de overspanningen tussen de pijlers een helling te geven gelijk aan de raaklijn aan de topboog ter plaatse.

Een belangrijk gegeven is dat verkeer op een autosnelweg niet mag stoppen daar dit gevaar oplevert voor de verkeersveiligheid. Dit betekent dat er voor personeel, dat nodig is voor bediening of onderhoud, een aparte toegang moet zijn naar de verschillende onderdelen van het kunstwerk. Ook voor onderhoud is het beter dat er een speciale toegang is tot de verschillende onderdelen van de keersluis.
Binnen het ontwerp van de keersluis is er ruimte voor een dienstweg over de keersluis. Deze ruimte wordt gevonden tussen de pijlers van het wegdek en de hefschuiven (fig.3.8.4). De hefschuiven zullen voor de pijlers van het wegdek dienen te komen om in de toekomst de mogelijkheid te hebben de schuiven voor reparatie of onderhoud te verwijderen. Voor het wegdek zelf moet extra ruimte in de breedte worden vrijgehouden om in de toekomst de brug te kunnen verbreden. De hefschuiven komen daardoor op enige afstand van de pijlers van het wegdek. De ontstane 'loze' ruimte kan worden gebruikt voor een dienstbrug. Naast de functie van toegangsweg tot de verschillende onderdelen van het kunstwerk kan vanaf deze brug onderhoud en reparaties gepleegd worden aan de hefschuiven.

Van de keersluis zijn twee uitvoeringen mogelijk. De keuze ten aanzien van de plaats van de hefschuiven ten opzichte van de autoweg is nog vrij. De hefschuiven kunnen aan de Ketelmeerzijde of aan de Zwarte Meerdijk geplaatst worden. De hefschuiven aan de Ketelmeerzijde genieten de voorkeur gezien de plaats van de dienstweg ten opzichte van de schuiven. Komen de hefschuiven aan de Zwarte Meerdijk dan komt de dienstbrug aan de zijde waar de hoge waterstanden en de golven optreden. De golven weerkasten tegen de schuiven, waardoor golfklappen optreden tegen de onderzijde van de dienstbrug. Om dit te voorkomen moet de dienstbrug hoog komen te liggen waardoor in de toekomst te weinig vrij profiel overblijft tussen de onderzijde van de autoweg en de bovenzijde van de dienstbrug. De plaats van de hefschuiven aan de Ketelmeerzijde verdient daarom de voorkeur. De hoogte ligging van de dienstbrug is daarmee afhankelijk van de waterstand en de golven die optreden indien een hefschuihf weigert.
3.10 Het globaal ontwerp.

Door het kwantificeren en combineren van de eisen uit het programma van eisen blijkt dat de vrijheid ten aanzien van het ontwerp aanzienlijk is begrensd. In deze paragraaf worden de beperkingen op een rijtje gezet waardoor reeds een beeld kan worden verkregen van het uiteindelijke ontwerp. De in deze paragraaf voorkomende maten zijn nog niet helemaal definitief daar de constructie nog niet gedimensioneerd is. De aangegeven maten zijn echter wel grenzen waarbinnen de constructie zal vallen.

Het traject van de snelweg volgend vanuit de richting Kampen komt men eerst op de oprit naar het kunstwerk. Deze oprit wordt ingezet met een voetboog met een straal van 10.000 m. Na 200 m. gaat deze voetboog over in een helling van 2% (1:50). Na 200 m. gaat deze helling over op een topboog met een straal van 10.000 m. Circa 34 m. voor deze overgang bevindt zich het bruggehoofd van de keersluis /brug in de Ramsgeul. De keersluis bestaat uit vijf doorstroomopeningen ieder met een breedte van 20 m. De bovenzijde van de drempel ligt op een diepte van NAP -3.00 m. Als afsluitmiddel zullen de doorstroomopeningen worden voorzien van hefschuiven. Voor de pijlers worden in dit globaal ontwerp een breedte gereserveerd van 4 m. De totale lengte voor de constructie in de Ramsgeul komt daarmee op 124 m.

De topboog wordt doorgezet tot de constructie van de keersluis in het Ramsdiep. De afstand tussen de constructies in de Ramsgeul en in het Ramsdiep bedraagt circa 110 m. Tussen de constructies in de Ramsgeul en het Ramsdiep zal nog een overbrugging moeten komen. Deze overbrugging zal komen boven een dijklichaam dat als waterkering dienst doet voor de ruimte tussen de twee keersluizen. De keersluis/brug bestaat uit meerdere onderdelen. De bewegende delen bestaan uit een beweegbare brug (basculebrug) en een roldeur.
De doorvaartopening heeft een breedte van 20 m., de
drempel ligt hier op NAP -4.00 m. Aan de Noordoostpolder-
zijde bevindt zich het landhoofd, aan de Kampereilandzijde
bevindt zich een geïntegreerde constructie die enerzijds
een kelder voor de bascule bevat en anderzijds een kast
voor de roldeur.
Na het landhoofd wordt weer een topboog ingezet met een
straal van 10.000 m. Na 200 m. gaat deze over in een
helling van 1:50, die op zijn beurt na 200 m. overgaat in
een voetboog met een straal van 10.000 m. Na 200 m. loopt
de weg weer horizontaal.
De uitvoering van de opritten naar de keersluis en de
verbinding tussen de twee kunstwerken staat nog vrij.
De keuze bestaat uit aanbruggen of grondlichamen. De keuze
is afhankelijk van de kosten die met de aanleg van het een
en ander zijn gemoeid.
Hoofdstuk 4. Methode van uitvoering en bouwvolgorde.

4.1 Inleiding.

In het voorgaande hoofdstuk zijn de eisen uit het programma van eisen verder uitgewerkt. Door het combineren en kwantificeren van eisen blijken de hoofdlijnen van het ontwerp vast te liggen. Alvorens definitief te gaan detailiseren en dimensioneren is het raadzaam de methode van uitvoering onder de loupe te nemen. De keuze ten aanzien van een bepaalde bouwwijze heeft ook invloed op het verdere ontwerp van het kunstwerk.

De methode waarop een bouwwerk gerealiseerd wordt kan zeer verschillend zijn. Als voorbeelden kunnen twee gelijksoortige kunstwerken genoemd worden, namelijk de Haringvlietsluizen en de Oosterschelde dam. De Haringvlietsluizen zijn gebouwd op een werkeland, dat wil zeggen ter plaatse. De Oosterschelde dam is geheel geprefabriceerd.

Om de methode van uitvoering vast te stellen moet gekeken worden naar de specifieke voor- en nadelen van de verschillende methoden.
4.2 Mogelijke bouwmethoden.

Bij de wijze van uitvoering kan onderscheid gemaakt worden tussen het ter plaatse bouwen van de constructie en het prefabriceren van de constructie. Naast het ter plaatse bouwen of prefabriceren kan nog een combinatie van deze twee methoden worden overwogen.

In de situatie te Ramspol wil ter plaatse bouwen zeggen dat er in den droge gebouwd wordt, bijvoorbeeld in een bouwkuip of op een werkeland (vergelijk Haringvlietsluizen). Prefabricage wil zeggen het bouwen van de constructie in den natte, bijvoorbeeld vanaf schepen (vergelijk Oosterschelde dam). Elke methode heeft zijn voor en nadelen, daarnaast kunnen de omstandigheden een bepaalde methode noodzakelijk maken.

- Voordelen van ter plaatse bouwen:

Er is ruimte voor materiaal en materieel.
Goede maatvoering mogelijk.
Goede kwaliteitsbeheersing en -controle mogelijk.
Mogelijkheid van gelijktijdig uitvoeren van verschillende bouwfasen.
Onafhankelijk van weercondities.

- Nadelen van ter plaatse bouwen:

Er is ruimte nodig voor de bouwplaats.
Relatief lange bouwtijd.

- Voordelen van prefabricage:

De bouwtijd ter plaatse van de constructie is relatief kort.
Er is weinig ruimtebeslag ter plaatse van de constructie.
Bij repetitie in de bouw worden de bouwkosten lager.
- Nadeelen van prefabricage:

4.3 Bodemgesteldheid.

Een belangrijk onderdeel van het totale bouwwerk dat nog niet nader bekeken is maar dat wel van groot belang is voor de methode van uitvoering is de fundering van de keersluis/brug. De wijze van funderen is afhankelijk van de bodemgesteldheid. Uit het bodemprofiel (fig. 4.3.1.) te Rampsol blijkt dat er zich een veenlaag bevindt tussen NAP -4.00 m. en NAP -8.00 m. Veen is een grondsoort die door de geringe draagkracht ongeschikt is om op te funderen. Funderen op staal wordt daarmee onmogelijk. Er moet daarom gekeken worden naar het funderen op palen. Daar de funderingsdiepte ongeveer samenvalt met de veenlaag zijn relatief korte palen nodig. De veenlaag zal echter ook als werkvlak moeten functioneren. Door zijn slechte draagkracht is de veenlaag ook hiervoor ongeschikt. Er zal dus een andere oplossing moeten worden gevonden.

Door de geringe diepte waarop de veenlaag zich bevindt en door de geringe dikte van de veenlaag (ca 3 m.) is het zeer goed mogelijk de veenlaag weg te baggeren en te vervangen door zand. Indien nodig kan het zandpakket worden verdicht. Hierdoor wordt een draagkrachtige bodem gemaakt, tevens wordt zekerheid verkregen t.a.v. de bodemopbouw. Door het creëren van een draagkrachtige bodem wordt de mogelijkheid geschapen om de constructie te funderen op staal.
4.4 Mogelijke bouwmethoden voor de keersluis te Ramspol.

4.4.1 Bouwplaats Ramsdiep.

Ten aanzien van de bouwwijze van de constructie in de Ramsgeul bestaat grote vrijheid. Deze vrijheid bestaat niet in het Ramsdiep. De ruimte voor een bouwput of werkgeeland is hier zeer beperkt. De keersluis met beweebare brug ligt hier in de as van de vaarweg. Enerzijds van de as komt een bruggehoofd, anderzijds komt een geïntegreerde constructie die zowel ruimte biedt voor de roldeur als ook voor het contragewicht van de basculebrug. Deze constructie zal zodanig zijn dat prefablicage niet mogelijk is. Er zal dus ter plaatse gebouwd moeten worden. Daar de scheepvaart niet gestremd mag worden is een werkgeel met een dijk aan de zijde van de doorvaart niet mogelijk. Een bouwkuip bestaande uit damwanden met stempels stuit ook op bezwaren. De kelders zullen bestaan uit betonnen wanden, toepassing van stempels is daardoor problematisch. Een oplossing zal daarom gezocht moeten worden in twee dijken loodrecht op de as van de vaarweg en bijvoorbeeld een kistdam aan de kopzijde van de bouwplaats. Door het maken van een kistdam blijft een doorvaartbreedte gehandhaafd van ca 30 m. Op deze wijze blijft voldoende ruimte over voor de scheepvaart.

4.4.2 Werkeiland in Ramsgeul.

De keersluis te Ramspol bestaat uit twee aparte constructies. Het bouwen van de keersluis op een werkgeeland is zeer goed mogelijk. Het is echter de vraag of de bouw in het Ramsdiep en in de Ramsgeul wel tegelijk uit te voeren zijn. Reden om hier aan te twijfelen is het ruimtebeslag. Via Ramspol moet water afgevoerd kunnen worden uit de provincies Drente en Overijssel. Er is dus ook tijdens de bouw een minimaal profiel nodig voor de afvoer van water.
Het tegelijk bouwen van het Ramsdiep en de Ramsgeul betekent een te grote reductie van het doorstroomprofiel. Dit kan worden ondervangen door eerst de constructie in de Ramsgeul te bouwen. Na het verwijderen van de dijken komen de doorstroomopeningen vrij waardoor het mogelijk wordt de doorstroomopening in het Ramsdiep te verkleinen. Het na elkaar bouwen van de twee constructies impliceert echter wel een langere bouwtijd.

Een tweede probleem vormt de doorlatendheid van de bodem. Doordat de veenlaag wordt weggebaggerd en wordt vervangen door zand neemt de doorlatendheid van de bodem toe.

Er bevinden zich geen ondoorlatende lagen in de bodem waardoor een damwandscherm o.i.d. niet kan zorgen voor een droge bouwkup. Er moet door een bronbemaling voor worden gezorgd dat het werkeiland droog blijft. Er moet dus zorg worden besteed aan de bronbemaling. Blijk van de toestroming van water zo groot dan zullen er maatregelen genomen dienen te worden ten aanzien van de doorlatendheid van de bodem. De toestroming van water is direct afhankelijk van de doorlatendheid van de bodem, door de doorlatendheid van de bodem te verkleinen neemt het toestromend debiet evenredig af. De doorlatendheid kan op verschillende wijzen worden verkleind. Dit kan worden bereikt door de het buitentalud van de ringdijk te bekleden met een ondoorlatende laag, ook het verdichten van de bodem zal de doorlatendheid doen afnemen. Verder kan worden gedacht aan waterdichte schermen en het injecteren van de bodem.

Een derde probleem dat zich voordoet is de bescherming van de ringdijk tegen de stroming van het water. Het werkeiland in de Ramsgeul komt precies in de stroomgeul te liggen. De consequentie hiervan is dat de stroming loodrecht op de ringdijk komt te staan, de stroming moet afbuigen en vervolgens om de hoeken van het eiland stromen. Aandacht dient daarom besteed te worden aan de bodembescherming en aan de bescherming van de ringdijk. Naast de punten die extra aandacht vragen biedt een werkeiland grote voordelen. Het belangrijkste voordeel is het kunnen werken in den droge.
Er is geen bijzonder materieel nodig en er is voldoende ruimte voor keten, magazijnen, materialen en materieel. Door alle activiteiten te concentreren op de bouwplaats is weinig tijd nodig voor de aanvoer van materiaal. Goede maatvoering, kwaliteitsbeheersing en -controle is mogelijk.

Werkzaamheden ten behoeve van de fundering zijn eenvoudig uit te voeren. Het funderen op staal, het eventueel verdichten van de bodem of het heien/boren van palen levert geen problemen op.

Een laatste voordeel is het kunnen aanbrengen van de bodemverdediging ter plaatse van de overgang van de constructie naar de aanliggende bodem.

4.4.3 Bouwkuip in Ramsgeul.

Om het probleem van toestromend water naar de bouwkuip te ondervangen bestaat de mogelijkheid om een waterdichte bouwkuip te maken. Deze bouwkuip zal bestaan uit een damwand, een onderwaterbetonvloer met eventueel trekpalen tegen de opwaartse waterdruk en uit stempels om de damwand te steunen. Op deze wijze krijgt men een droge bouwkuip, tevens wordt het probleem van uitschuring van de bodem door de stromend water ondervangen. Aan deze oplossing kleven verschillende bezwaren.

De onderwaterbetonvloer is als fundering voor de keersluis misschien overbodig. Indien er geen trekpalen worden toegepast moet een dikke vloer worden gestort (>2.5 m.), bij toepassing van palen kan met een dunnere vloer worden gewerkt (echter minimaal 1.5).

De bouwkuip heeft zeer beperkte ruimte, de ruimte zal niet veel groter worden genomen dan de oppervlakte van de fundering. Verder wordt de ruimte beperkt door de stempels voor de damwand. De consequentie hiervan is dat de opslag van materiaal en materieel op de wal moet gebeuren, ook alle voorbereidende werkzaamheden moeten hier geschieden. Een volgend probleem is het transport van materiaal en materieel van en naar de bouwkuip.
4.4.4 Prefabricage in Ramsgeul.

Door geen werkeland te maken in de Ramsgeul wordt de mogelijkheid geschapen om zowel het Ramsdiep als de Ramsgeul tegelijkertijd uit te voeren, hetgeen een versnelde bouwtijd met zich meebrengt. Tegenover de voordelen ten aanzien van ruimtebeslag en bouwtijd staan verschillende nadelen. Voor de prefabricage van de elementen is een aparte bouwplaats nodig. Deze bouwplaats kan in de directe omgeving liggen maar kan ook elders liggen. Ook hier wordt de afstand voor transport van materiaal en materieel vergroot. Ligt de bouwplaats van de elementen niet ter plaatse dan kan de geringe waterdiepte problemen opleveren voor het transport van onderdelen. Het voordeel bij prefabricage dat optreedt bij een grote repetitie van onderdelen gaat hier niet op daar er slechts een geringe repetitie is. Andere bezwaren tegen prefabricage zijn de extra kosten die het werken op water met zich meebrengen, de noodzaak om nauwkeurig te werken en de onzekerheid t.a.v. de kwaliteit van het bouwwerk onder de waterspiegel.

4.4.5 Combinatie van ter plaatse bouwen en prefabricage.

Deze combinatie zal bestaan in het ter plaatse bouwen van de pijlers en bruggenhoofden en het prefabriceren van de drempels en het wegdek. Het voordeel van deze methode is gelegen in het tegelijkertijd kunnen uitvoeren van de bouw in het Ramsdiep en de Ramsgeul en in de zekerheid ten aanzien van de kwaliteitsbeheersing en maatvoering van de pijlers.

De nadelen van het prefabriceren blijven echter van kracht. Veel aandacht moet worden besteed aan de toleranties, de maatvoering en de uitvoering. In het bijzonder de aansluiting van de drempels met de bodem, de bodembescherming, de inkassing in de pijlers en de aanslag van de deur met de drempel behoeven extra aandacht.
De aanvoer van materiaal en materieel zal over water moeten plaatsvinden en er is speciaal materieel nodig. Verder zal op de wal nog een bouwplaats moeten worden gemaakt om de elementen te kunnen bouwen.

4.4.6 Keuze ten aanzien van methode van uitvoering.

Ten aanzien van de bouwwijze kan worden gekozen uit vier alternatieven: - een werkeiland.
- een bouwkulip.
- prefabricage.
- combinatie ter plaatse/prefab.

Elk alternatief heeft zijn eigen specifieke voor- en nadelen. Toch kan ten aanzien van de verschillende alternatiewen een duidelijk onderscheid worden gemaakt op grond waarvan een keuze gemaakt kan worden.

2. Een bouwkulip is een alternatief voor het werkeiland. Deze oplossing moet gekozen worden als de maatregelen die genomen moeten worden ten aanzien van grondwaterstrooming bij het werkeiland te duur of te omvangrijk zijn. Hetzelfde geldt ten aanzien van de bescherming van de dijk van het werkeiland tegen de stroming.

3. Prefabricage is nodig indien de bouwtijd ter plaatse kort moet zijn, hetgeen bereikt wordt door het gelijktijdig uitvoeren van de bouw in de Ramsgeul en in het Ramsdiep.

4. De combinatie van ter plaatse bouwen en prefabricage van onderdelen is van belang als de bouwtijd kort moet zijn en het prefabriceren, het transporteren en plaatsen van pijlers op grote problemen stuit (geringe waterdiepte).
Daar aan de bouwtijd geen stringente eisen gesteld zijn is er geen noodzaak tot gelijktijdig uitvoeren van de bouw in de Ramsgeul en in het Ramsdiep. Het bouwen van een bouwkuip in plaats van een werkgeul is een omvangrijke en dure operatie. Er kunnen veel en ingrijpende maatregelen getroffen worden om het werkgeul te bemalen of te beschermen tegen stroming eer de bouwkuip als alternatief in beeld komt.

Voor het bouwen van de keersluis te Ramspol wordt gekozen voor een werkgeul in de Ramsgeul en voor een werkgeul in het Ramsdiep. De factoren die doorslaggevend zijn, zijn:
- Alle bouwactiviteiten zijn geconcentreerd op het werkgeul.
- Opslag van materiaal en materieel in directe nabijheid van bouwplaats.
- Korte transportafstanden.
- Geen bijzonder materieel nodig.
- Goede maatvoering, kwaliteitsbeheersing en -controle mogelijk.
- Funderingswerkzaamheden (bodem verdichten/heiën afhankelijk van wijze van funderen) leveren geen problemen op.
- Verschillende bouwfases zijn tegelijk uit te voeren.
- De aansluiting van de bodemverdediging aan de constructie is eenvoudig aan te brengen.

Tegenover deze voordelen staan de nadelen ten aanzien van de toestroming van grondwater, het beschermen van de ringdijk tegen stromend water en de morphologische veranderingen van het geulpatroon als gevolg van het werkgeul in de bestaande geul.
Mocht de toestroming van grondwater te groot zijn vanwege de goede doorlatendheid van de bodem, dan kunnen de volgende maatregelen worden genomen:
- Bodem verdichten
- Ringdijk bekleden met ondoorlatende laag
- Schermen aanbrengen in bodem (verlengen kwelweg).
- Injecteren van de bodem.
De toestroming van grondwater is afhankelijk van de geohydrologische situatie. Afhankelijk van uitkomsten van veldonderzoek kunnen maatregelen genomen worden.

Bescherming van de bodem door uitschuring ten gevolge van de stroming door water kan worden ondervangen door:
 - Geleiding van de stroom.
 - Bekleden van ringdijk met stortsteen o.i.d.
4.5 Bouwvolgorde.

4.5.1 Inleiding.

In het voorgaande is vastgesteld dat de bouw van de keersluis ter plaatse zal zijn. De aanleg van de keersluis/brug zal plaatsvinden op een werkeland. Het probleem is echter dat de bouw van de keersluis in de Ramsgeul niet gelijktijdig met de bouw van de keersluis in het Ramsdiep kan plaatsvinden. Het gelijktijdig uitvoeren van deze twee constructies betekent een te grote reductie van het doorstroomprofiel. Het is nu zaak een zodanige werkvolgorde te vinden dat de bouw zoveel mogelijk continu kan plaatsvinden.

Voordat een gedetailleerde werkvolgorde wordt vastgesteld wordt eerst globaal de situatie bekeken ter plaatse van Ramspol.

4.5.2 Bouwvolgorde globaal.

Door het uitvoeren van de bouwwerkzaamheden in werkeland is men genoodzaakt eerst het kunstwerk in de Ramsgeul te bouwen en daarna het kunstwerk in het Ramsdiep. Na het wegbaggeren van de dijken voor en achter de doorstroomopeningen komt er voldoende doorstroomprofiel vrij om het werkeland in het Ramsdiep te bouwen.

De eerste factor die nu in beschouwing wordt genomen is de situatie van de bouwplaats ten opzichte van de omgeving. De keersluis bevindt zich op een afstand van 300 m. ten opzichte van de Ramspolbrug. De aanvoer van materiaal en materieel kan plaatsvinden over wegen die aansluiten aan de openbare weg. Er zijn nu drie mogelijkheden om de bouwterreinen te bereiken.

1. Vanaf de dijk van de Noordoostpolder (fig 4.5.2.1). Het werkterrein in het Ramsdiep zou door deze weg kunnen worden bereikt. Het werkeland zou daartoe moeten aansluiten op de dijk, waardoor de tijdelijke doorvaaropening aan de zijde van de leidam komt te liggen.
2. Vanaf het Kamperelant (fig 4.5.2.1).
Vanaf het Kamperelant kan een weg en een werkbrug worden aangelegd die het werkeiland in de Ramsgeul met de openbare weg verbindt.

3. Via de leidam (fig 4.5.2.2).
Ter plaatse van de leidam zou een weg aangelegd kunnen worden die uitkomt tussen de twee werkeilanden. Het werkeiland in het Ramsdiep moet dan aan de zijde van de leidam komen, de tijdelijke vaargeul komt dan aan de zijde van de dijk van de Noordoostpolder.
Ten aanzien van het laatste alternatief kan reeds opgemerkt worden dat het praktisch op grote bezwaren stuit. De weg over de leidam moet aansluiten op de weg over de huidige Ramspolbrug. Ter plaatse van deze aansluiting is de ruimte zeer beperkt. Daarnaast maakt er veel verkeer gebruik van de Ramspolbrug. Het werkverkeer zal daarom teveel hinder opleveren voor het gewone verkeer.
De twee overblijvende mogelijkheden zijn beide goed te realiseren. De mogelijkheid bestaat om beide bouwwerken ter plaatse te bouwen elk bereikbaar van de oever waar de bouwplaats het dichtste bij ligt.

Een tweede factor die nu in beschouwing moet worden genomen is de economie van de methode van uitvoering. Het probleem hier bij is dat beide bouwwerken geheel los van elkaar staan gedurende de bouwperiode. Na het gereed komen van het bouwwerk in de Ramsgeul moeten alle voorzieningen zoals keten, loods, magazijnen en leidingen worden verplaatst. Gedurende deze periode zullen alle bouwactiviteiten een dieptepunt bereiken (zie fig 4.5.2.3). Het geheel opnieuw inrichten en opzetten van een bouwplaats betekent extra werk. Het geheel duidt op een zeer oneconomisch gebruik van materiaal, materiaal en middelen. Het is daarom zaak de periode met verlaagde bouwactiviteit zo kort mogelijk en de afname in de bouwactiviteit zo min mogelijk te doen zijn. Dit alles kan grotendeels voorkomen worden door de twee werkeilanden elkaar te laten overlappen (fig 4.5.2.4).
De opzet kan daarmee als volgt worden:
In bijlage 5 zijn enkele aspecten van de werkgeel landen nader bekeken.
4.5.3 Bouwvolgorde.

Fase 0. de bestaande situatie.
Figuur 4.5.3.1. (de figuren geven slechts een indicatie hoe het een en ander eruit gaat zien)
Fase 1. Voorbereidende werkzaamheden.
Figuur 4.5.3.2.
1. Aanleg van een weg van de openbare weg naar de plaats waar de werkbrug komt.
2. Verwijderen van de leidam ter plaatse van het werkeland.
3. Wegbaggeren van de veenlaag tot op een diepte van circa NAP -9.00 m.
4. Aanstorten van de bodem met zand tot een diepte van NAP -4.00 m. in het Ramsdiep en NAP -3.00 m. in de Ramsgeul.
5. Verdichten van de bodem. figuur 4.5.3.3.
6. Aanleg van de ringdijk om het werkeland en van het werkterrein in de Ramsgeul.
7. Aanleg van de werkhaven.
8. Aanleg van de werkbrug tussen werkeland en weg op Kampereiland.
9. Leegpompen van het werkeland en het aanbrengen van de bemaling.
10. Inrichten van het werkeland en het werkterrein.

Fase 2. Bouw van keersluis/brug in Ramsgeul.
15. Verwijderen materiaal en materieel op bodem van werkeland voor en achter keersluis.
16. Aanbrengen bodembescherming direct aansluitend aan drempel. figuur 4.5.3.4.
17. Wegbaggeren van dijken voor en achter de doorstroomopeningen van de keersluis.
Fase 3. Aanleg werkeland in Ramsdiep.
18. Plaatsen kistdam in Ramsdiep.
19. Aanleg dijken tussen werkterrein en kistdam.
20. Leegpompen van werkeland en het aan aanbrengen van bemaling.

Fase 4. Bouw keersluis/brug in Ramsdiep.
22. Aanbrengen van de bodembescherming voor en achter de drempel.
23. Aanleg dijklichamen voor de opritten.
25. Aanbrengen van de bewegende delen (basculebrug, roldeur en hefachuiven).

Fase 5. Gebruiks fase.
figuur 4.5.3.5.
Hoofdstuk 5. Belastingen.

5.1 Inleiding.

In dit hoofdstuk zullen de verkeersbelastingen de windbelastingen en de belastingen ten gevolge van waterstandsverschillen, stroming en golven nader bekeken worden.

5.2 Belastingen op bruggen.

De belastingen waarop bruggen moeten worden berekend zijn vastgelegd in de Voorschriften voor het ontwerpen van Stalen Bruggen (V.O.S.B.) [35]. De in deze voorschriften gebruikte belastingen zijn ook van toepassing op betonnen bruggen.

De belastingen kunnen worden verdeeld in verticale en horizontale belastingen.

67
De verticale belastingen bestaan uit belastingen door het eigen gewicht van de constructie en uit mobiele belastingen. Het eigen gewicht van de constructie kan worden berekend aan de hand van de toegepaste materialen en van de afmetingen van de constructieonderdelen. Voor de mobiele belastingen zijn vaste belastingscombinaties vastgesteld. Voor de situatie te Ramspol zal rekening worden gehouden met verkeersklasse 60 (Bruggen in hoofdverkeerswegen, waarbij omleggen van verkeer is uitgesloten fig 5.2.1). De belasting op de rijweg bestaat uit een gelijkmatig over het oppervlak van de rijweg verdeelde belasting, tezamen met over de gehele lengte van de brug een stel geconcentreerde lasten per rijstrook (fig 5.2.2). Bij meer dan een rijstrook moet ook gekeken worden naar een gelijkmatig verdeelde belasting in combinatie met twee lastenstelsels. Van deze belastingscombinatie behoeft slechts 80% in rekening te worden gebracht.

De belangrijkste horizontale belastingen zijn de windbelasting en de remkrachten. Tevens moet rekening worden gehouden met temperatuursveranderingen. Voor de windbelasting moet worden gerekend met een kracht van 1500 N/m² loodrecht op de as van de brug. Het oppervlak dat voor de windbelasting in rekening moet worden gebracht bestaat uit een strook ter hoogte van de totale rijvloerconstructie (constructiehoogte) met de verkeersband. De verkeersband reikt bij bruggen met gewoon verkeer van de bovenkant van de rijvloer tot en met 2.5 m. daarboven. Deze verkeersband strekt zich uit over de gehele lengte van de brug. Voor bruggen met gewoon verkeer moet worden gerekend met een remkracht op de constructie van 200 kN (klasse 60). Bij de genoemde belastingen zal altijd van de ongunstigste situaties moeten worden uitgegaan.
5.3 Windbelasting en IJsbelasting.

De windbelasting is in het bijzonder van belang voor de bruggen en voor de hefschuiven in geopende stand. Voor bruggen zijn de windbelastingen opgenomen in de voorschriften voor het ontwerpen van bruggen [35]. Windbelastingen op constructies zijn te vinden in de Technische Grondslagen voor de Berekening van Bouwconstructies—TGB 1972 [36].

Over ijsbelasting op waterbouwkundige kunstwerken is weinig bekend. Een richtgetal voor deze belasting is 20 kN/m², werkend over een hoogte van 2 m.

5.4 Belastingen door het water.

De belastingen door het water kunnen worden onder verdeeld in twee soorten belastingen:

A — Horizontale belastingen, en
B — Andere soorten belastingen.

De horizontale belastingen worden voornamelijk veroorzaakt door het waterstandsverschil. Deze belasting komt naar voren als de resultante van de verschillende hydrostatische drukken die over de keersluis staan.

Doordat de golfbelasting als quasi-stationair opgevat kan worden kan deze belasting ook in de bepaling van de horizontale krachten meegenomen worden.
De horizontale belastingen bestaan dus uit:

1 - Het waterstandsverschil, en
2 - De golfbelasting.

De andere soorten belastingen bestaan uit ten eerste verticale krachten en krachten als gevolg van trillingen. De verticale krachten worden tot stand gebracht door het eigen gewicht van het sluitingsmiddel, de zuigkracht als gevolg van de stroming, wrijving van het bewegingswerk en de opwaartse kracht als gevolg van onderdempeling van een gedeelte van het sluitingsmiddel. De krachten als gevolg van het trillingsverschijnsel komen tot stand door het onregelmatig loslaten van wervels aan de onderkant van de schuif. Ook het slecht dimensioneren van de onderkant van de schuif kan tot resultaat hebben dat de stroomlijnen weer gaan aanliggen en dit veroorzaakt plaatselijk afwisselend onder- en overdrukken. De andere soorten belastingen bestaan dus uit:

3 - Verticale krachten als gevolg van het sluiten in stromend water, en
4 - Trillingen.

Het is duidelijk dat voordat de schuif of de roldeur gedimensioneerd kan worden er eerst duidelijkheid moet bestaan over de aard en de grootte van de belastingen. Daarbij is het van belang te weten dat de belastingssituatie in de gesloten toestand van andere aard is dan de belastingssituatie wanneer het sluitingsmiddel aan het sluiten is.

Doordat de Ramsgeul en het Ramsdiep verschillende sluitingsmiddelen bevatten, maar ook doordat ze niet op dezelfde manier belast worden, moet ook onderscheid gemaakt worden tussen deze twee sluitingsmiddelen.
In Bijlage 6 is uitvoerig stilgestaan bij al de mogelijke effecten van de belasting door het water. Voor een betere motivatie en uitwerking van de problemen wordt dan ook verwezen naar deze bijlage.

Belangrijke resultaten uit Bijlage 6 worden aangestipt.

Het blijkt dat in de gesloten situatie het geval Westen-Wind maatgevend is. Door de westelijke oriëntering van de keersluis komt bij Westen-Wind bovenop het al grote stil-waterstandverschil nog een aanzienlijke golfbelasting. In figuur 5.4.1 staan de maatgevende horizontale belastingen voor zowel het Ramsdiep als de Ramsgeul.

De hoogte van de sluitingsmiddelen is vastgesteld, hierbij is rekening gehouden met het feit dat golfoverslag niet bezwaarlijk is.
De roldeur in het Ramsdiep moet reiken tot op een hoogte van NAP + 2,7 m., bij een bodemligging van NAP -4 m. komt de totale hoogte van de roldeur op 6,7 m.
De hefschuiven in de Ramsgeul moeten reiken tot een hoogte van NAP + 3,25 m., met een drempelligging op NAP -3,0 m. komt de totale hoogte van de hefschuiven op 6,25 m. Bij deze hoogte is er van uitgegaan dat het halve volume van 1 procent van de hoogste golven bij de superstorm mag overslaan.

Gedurende het sluiten van de hefschuiven in de Ramsgeul wordt ook de grootste belasting geleverd door het geval Westen-Wind, zie figuur 5.4.2. De maximale stroomsnelheid die op kan treden onder de schuiven door is berekend op 2,65 m/s. Deze stroomsnelheid treedt op, op het moment dat de schuiven bijna gesloten zijn.

Bij het berekenen van de krachten op de roldeur in het Ramsdiep bleek dat het resulterende waterstandsverschil zo hoog op kan lopen, waardoor de deur niet meer goed zou kunnen sluiten. Een oplossing kan worden gevonden in het toepassen van doorlaatschuiven in de roldeur.
Berekend is dat het bruto oppervlak van deze schuiven minimaal 30 m² moet zijn. Bij toepassing van deze doorlaatschuiven blijkt dat het geval M (Meerpeil) een maatgevende belasting oplevert juist op het moment dat de keersluis bijna gesloten is. Figuur 5.4.3 laat de twee maatgevende horizontale belastingsgevallen zien gedurende het sluiten van de roldeur in het Ramsdiep. De maximale stroomsnelheid langs en door de roldeur kan oplopen tot 2,57 m/s voor het geval WNW-Wind.

Een andere methode om de roldeur in zijn inkassing te krijgen is het geleiden van de punt van de deur. Dit kan worden bewerkstelligd door een balk uit te slaan over het water. Deze balk moet de de punt van de deur geleiden. Ook bestaat de mogelijkheid de deur te voorzien van een zogenaamde zoekneus. De belasting die optreedt bij een gesloten deur wijkt af van de deur met doorstroom-openingen, zie figuur 5.4.4.

Bij het dimensioneren van de sluitingsmiddelen zal aandacht moeten worden besteed aan de onderzijde van de hefschuiven. Een foute aanpak van dit probleem kan leiden tot ongewenste krachten (trillingen) en zelfs in het extreme geval tot schade.

Wanneer de keersluis buiten functie is bevindt de roldeur zich in een kast, de hefschuiven hangen boven het water. Gesteld is dat een hefschuif in de ruststand, in een situatie dat de keersluis niet gesloten hoeft te worden, niet belast mag worden door het water of drijvend vuil. Dit komt er op neer dat in de rustsituatie de onderkant van de hefschuif minimaal op NAP + 2,0 m. komt te hangen. Met de vastgestelde hoogte van een hefschuif van 6,25 m. komt in de rusttoestand de bovenkant van de hefschuif op NAP + 8,25 m.
5.5 Belastingscombinaties.

Voor het globaal vaststellen van de dimensies van de constructie is het belangrijk combineren van belastingen te bekijken die op kunnen treden en die maatgevend zijn. Gekeken wordt naar belastingscombinaties die van belang zijn voor de constructie als totaal.

De eerste belastingscombinatie die wordt bekeken is die combinatie die de keersluis af zou kunnen doen schuiven. De combinatie wordt gezocht in een maximale horizontale belasting en een minimale verticale belasting. De horizontale belastingen bestaan uit windbelasting, ijsbelasting en de belasting ten gevolge van een waterstandsverschil als de keersluis gesloten is. De verticale belasting wordt gevormd door eigen gewicht en de verkeersbelasting. Het eigen gewicht is altijd aanwezig, de verkeersbelasting niet. De minimale verticale belasting zal daarom bestaan uit enkel het eigen gewicht. Geen verkeersbelasting houdt in dat er ook geen verkeersband aanwezig is waarop windbelasting aan kan grijpen. Horizontaal blijven over de belasting door waterstandsverschil en door ijsbelasting. De belasting door ijs is kleinere dan door het waterstandsverschil. Het gelijktijdig optreden van deze belastingen is uitgesloten.

Het maximale waterstandsverschil treedt op onder extreme omstandigheden. Deze omstandigheden doen zich alleen voor na een lange en zeer natte periode. Ijsvorming, en dus ijsbelasting, doet zich voor tijdens helder weer. Dit is strijdig met de natte periode die nodig is voor de extreme waterstandsverhoging bij een superstorm. De belasting ten gevolge van het waterstandsverschil is ook een orde groter als de windbelasting. Kritieke situaties doen zich daarom enkel voor als de keersluis gesloten is.

De maatgevende belastingscombinatie wordt dus gevormd door enkel het eigen gewicht van de constructie en door het waterstandsverschil dat optreedt tijdens een superstorm.

De eerste situatie doet zich voor als de horizontale belasting maximaal is en de verticale belasting minimaal is. Deze situatie doet zich voor als het waterstandsverschil maximaal is. De verticale belasting zal betaan uit enkel het eigen gewicht.

De tweede situatie doet zich voor als zowel de horizontale en verticale belastingen maximaal zijn. Deze situatie is gelijk aan de vorige, echter nu moet er de verkeersbelasting bij worden opgeteld. De vraag is echter of de volledige belasting, zoals genoemd in de VOSB, in rekening moet worden gebracht. De kans is namelijk hoegenaamd uitgesloten dat alle extreme belastingen tegelijk optreden. Volstaan wordt met het in rekening brengen van enkel de gelijkmatig verdeelde belastingen op het wegdek. De lastenstelsels worden niet in rekening gebracht. Bij de extreme weersomstandigheden waarbij het waterstandsverschil optreedt zal vrachtverkeer en bijzondere transporten niet mogelijk zijn op de brug.
Hoofdstuk 6. De sluitingsmiddelen.

6.1 Inleiding.

In de keersluis zijn twee soorten sluitingsmiddelen voorzien. In de Ramsgeul zijn vijf hefschuiven en in het Ramsdiep is één roldeur geprojecteerd. Deze afsluitmiddelen vormen een essentieel onderdeel van de keersluis. De belangrijke functie van deze sluitingsmiddelen was reden er in een aparte studie aandacht aan te besteden. De resultaten van dit onderzoek, ontwerp en dimensionering, zijn in een apart rapport weergegeven.

In dit hoofdstuk wordt volstaan met de samenvatting en conclusies van het rapport.

6.2 Samenvatting.

Na de keuze van het soort sluitingsmiddelen is gekozen naar enkele recente praktijkvoorbeelden van bestaande sluitingsmiddelen.

Onderzocht is op welke ontwerpprincipes de recent uitgevoerde roldeur in de nieuwe schutsluis te Hansweert en de hefschuiven in de Kreekraksluizen zijn gebaseerd en hoe enkele belangrijke details zijn uitgevoerd.

Op grond van deze praktijkvoorbeelden, is een eigen ontwerpfilosofie opgesteld. Hierin is onderscheid gemaakt tussen de roldeur en de hefschuiven op basis van een heel verschillend werkingsprincipe.

Voor zowel de roldeur als voor de hefschuiven zijn de maatgevende belastingen opgesteld.

Op basis van de ontwerpfilosofie en de belastingen is een ontwerp gemaakt voor zowel de roldeur als de hefschuiven, waarna beide sluitingsmiddelen gedimensioneerd zijn. Bij de hefschuiven is meer aandacht besteed aan enkele details en bij de roldeur is na een eerste globale dimensionering een controleberekening met de computer uitgevoerd.
Deze controleberekening was nodig om te zien of de verplaatsingen en vervormingen binnen acceptabele grenzen bleven. Daarnaast was het controleren van de stabiliteit van de deur tijdens het sluiten noodzakelijk.

6.3 Conclusies.

Wanneer een hefschuif uitgevoerd wordt als een orthotrope plaat kan een aanzienlijke winst worden behaald in het totaalgewicht van de constructie. De hefschuif die ontworpen is voor de Ramsgeul weegt ongeveer 45 ton, terwijl een vergelijkbare hefdeur van dezelfde afmetingen al snel over de honderd ton weegt. Belangrijk detail hierbij is dat de hefschuiven in de Ramsgeul niet belast worden door scheepsaanvaringen, voor de vergeleken hefdeuren was dit wel het geval. Hierdoor loopt de vergelijking een beetje mank maar de gewichtsbesparing blijft. Een lager totaal gewicht heeft ook gevolgen voor de totale kosten, die meestal in guldens per kilogram constructiestaal kunnen worden uitgedrukt.

De roldeur is in twee opzichten uniek. Op basis van een eigen ontwerpfilosofie werd geconcludeerd dat uitvoering van een roldeur met een tweezijdige beplating niet nodig is, daartoe is de ontworpen roldeur uitgerust met maar één kerende plaat. Er zijn maar weinig toepassingen bekend van roldeuren met maar één kerende plaat.

Ook de roldeur wordt uitgevoerd met een orthotrope plaat. Over het algemeen wordt aangenomen dat roldeuren slecht te gebruiken zijn in situaties waarin tijdens een waterstandverschil of met stroming moet worden gesloten. In deze deelstudie is geconcludeerd dat deze algemene aannname ongegrond is. Indien er rekening mee gehouden wordt kan een roldeur wel degelijk sluiten bij stromend water zonder de aanwezigheid van schuiven en zonder dat de roldeur aan zal slaan tegen zijn opleggingen. Een probleem van de ontworpen roldeur kan echter wel zijn dat deze absoluut geen schoonheidsprijs verdient, wanneer ontworpen wordt op functionaliteit en op kosten moeten vaak concessies gedaan worden ten opzichte van esthetische vormgeving.

76
Hoofdstuk 7. Globale dimensies keersluis en de stabiliteit.

7.1 Pijlers en brugdek in de Ramsgeul.

De totale lengte van de pijler wordt door deze drie constructies bepaald. De breedte wordt bepaald door de benodigde ruimte van de motorruimten en heftorens voor de hefschuiven. Verder zijn de pijlers van het wegdek van belang voor de breedte.

Voor de breedte benodigd voor de motorruimtes en heftorens is een ruimte gereserveerd van 4 m. breed en 8 m. lang.

De breedte van de bruggen is afhankelijk van het aantal rijstroken. In eerste instantie moet worden uitgegaan van twee maal twee rijstroken met aan weerszijden vluchtstroken. Later moet de mogelijkheid bestaan dat de brug met twee rijstroken wordt uitgebreid. De brug kan worden gemaakt van voorgespannen elementen. Na aanbrengen van deze elementen kan een druklaag worden gestort. Er bestaan verschillende systemen voor deze brugdekken. Als voorbeeld wordt hier het ZIP-systeem toegepast [35]. Het standaardprofiel van een autosnelweg met twee maal twee rijstroken heeft een breedte van 27.5 m. De breedte van een ZIP-ligger is 1.2 m. Langs de randen worden speciale randbalken gelegd, zogenaamde TRA-liggers, met variabele breedte. Benodigd voor het brugdek zijn 18 ZIP-liggers en twee TRA-balken.

De liggers zullen worden opgelegd op een dwarsbalk die rust op drie brugpijlers. Aan de zijden van de dwarsbalk moeten voorzieningen worden getroffen die het mogelijk moeten maken de dwarsdrager later te verlengen om zo verbreding van de brug mogelijk te maken.
De dienstbrug heeft een rijstrook van 3 m. nodig. Met drie ZIP-liggers en twee TRA-ligger komt de breedte op 4,6 m. De totale lengte van de pijler wordt 40,1 m. Ter plaatse van de bruggen kan de pijler smaller worden, deze is vastgesteld op 2 m. Aan de onderzijde is een voetplaat voorzien van 4 m. breed en 40 m. lang, bij een dikte van 1,5 m. De kopzijden worden afgeschuind, hetgeen gunstig is voor de geleiding van stroom. Tevens kan drijvend ijs op deze manier worden gebroken.

De motorruimte en het wegdek van de dienstbrug bevinden zich op een niveau van NAP +4,0 m., ter hoogte van de kolommen van de autosnelweg houden de wanden op, op een hoogte van NAP +3,0 m. Indien een schuif weigert zal ter hoogte van de drempel een waterstand inclusief de golfhoogte optreden van NAP +3,25 m. Echter de weigerende schuif hangt met de onderkant op NAP +2,0 m. en reduceert zodoende de waterstand achter de schuif. De motoren moeten droog blijven en moeten eenvoudig bereikbaar zijn, ook de onderkant van de dienstbrug mag niet aangevallen worden. De motoren op een hoogte van NAP +4,0 m. evenals de dekhoogte van de dienstbrug waarborgen dit streven, de onderkant van de dienstbrug komt dan op ongeveer NAP +3,0 m.. Ter plaatse van de kolommen van de autoweg moet de stroom goed geleid worden, dit betekent dat de wanden tot een hoogte van circa NAP +3,0 m. moeten worden doorgetrokken zodat het stromende water niet tegen de kolommen kan komen en schade veroorzaken.

De hoogte van de kolommen voor de autoweg is afhankelijk van de plaats van de pijler. Deze varieert met het niveau van het wegdek van de autosnelweg mee. De bovenkant van de hefvoeren komen tot op een hoogte van NAP +3,4 m. Zie voor een beeld van de hefdeur en de hefvoeren tekening 0-2. Zie de figuur 7,2 voor een bovenaanzicht en een zijkaanzicht van de pijler.
7.2 Landhoofden in de Ramsgeul.

De landhoofden in de Ramsgeul worden uitgevoerd als een halve pijler, waarbij aan de landzijde de vloerplaat is doorgetrokken ter ondersteuning van de landhoofdpijler, er ontstaat dan een soort L-muur. Voor en achter het landhoofd zullen vleugelwanden er voor moeten zorgen dan het aansluitende grondlichaam goed aansluit op het landhoofd. Ter plaatse van de hefschuiven sluit het grondkerende lichaam aan op NAP +6,25 m., dit is de aanleghoogte van de verbindende dijken. Ter plaatse van de doorgang van de dienstweg wordt een uitsparing gemaakt in het dijklichaam, van waaruit de dienstweg onderdoor de autoweg wordt geleid.

Berekend is dat de onderplaat over een lengte van 6,6 meter doorgetrokken moet worden om stabilitiet van deze landhoofden te kunnen waarborgen. Zie tekening 7.2 voor een doorsnede van een landhoofd.

7.3 Stabiliteit van een pijler.

Zie ook bijlage 7.

De stabiliteit van de pijlers moet worden gecontroleerd zowel in de langsrichting als in de dwarsrichting. Verschillende belastingsgevallen moeten worden gecontroleerd. Allereerst wordt gekeken of de pijler niet af gaat schuiven. Dit betekent dat er gekeken moet worden naar een maximale horizontale belasting en een minimale verticale belasting. Gekeken wordt daarom naar de belasting die optreedt ten gevolge van het maximale waterstandsverschil (fig 5.4.1). De verticale belasting wordt gevormd enkel door het eigen gewicht van de constructie. Hierbij wordt in rekening gebracht de brug met twee maal twee rijstroken.

De pijler moet voldoen aan het criterium \(V \times \tan \phi > H \). Voor het berekende eigen gewicht en de optredende horizontale belasting blijkt de pijler aan het gestelde criterium te voldoen.
Er blijkt onder deze extreme omstandigheden een factor van 2.8 verschil te zitten tussen de schuifweerstand en de horizontale kracht.

De korrelspanningen onder de constructie zijn ook aan grenzen gebonden. Enerzijds mogen zij een bepaalde waarde niet overschrijden, anderzijds kunnen zij niet kleiner worden dan nul. De maximale waarden treden op aan de uiteinden van de pijler. De funderingsplaat oefent een moment uit op de bodem. De eerste controle betreft de plaats waar de gronddrukken negatief kunnen worden. Gekeken moet worden naar een maximaal waterstandsverschil samen met een minimale verticale belasting.

Het criterium is \(V/A - M/W > 0 \).

Voor de optredende belastingen blijkt aan het criterium te worden voldaan.

Voor de wegbelasting wordt alleen de gelijkmatig verdeelde belasting in rekening gebracht. De lastenstelsels worden buiten beschouwing gelaten. De kans dat alle belastingen in volle grote tegelijk aanwezig zijn is verwaarloosbaar klein. Tijdens een superstorm zal door de hoge ligging van het wegdex de toegang voor vrachtverkeer worden afgesloten.

Het criterium voor maximale grondspanningen is \(F/A + M/W < S_{\max} \).

Aan dit criterium wordt ruimschoots voldaan.

Door de grote lengte van de pijler is er geen sprake van kantelen.

In dwarsrichting blijkt de pijler ook stabiel te zijn. Hiervoor zijn twee gevallen onderzocht, nl. de stabiliteit tijdens de bouw fase onder windbelasting en in de gebruiks fase onder rembelasting.

De horizontale krachten blijken vele malen kleiner dan het eigen gewicht van de constructie. Gevaar voor instabiliteit blijkt er niet te zijn.
7.4 Stabiliteit van een landhoofd.

De pijlers van de landhoofden zijn hetzelfde opgebouwd als de pijlers in de stroomgeul. Echter aan de ene zijde bevindt zich nu het zandlichaam van de dijk. Daar de pijler door de gronddruk af wil schuiven wordt de funderingsplaat 6,6 m. onder het grondlichaam doorgezet. Het verschil tussen de horizontale belasting en de schuifweerstand bedraagt een factor 2.

Op grond van de resultaten met de pijlers in de stroomgeul kan worden aangenomen dat aan de genoemde criteria wordt voldaan. De gemiddelde gronddruk blijkt een orde groter te zijn dan de drukken ten gevolge van een moment. Verder blijft de gronddruk ruimschoots beneden de toelaatbare grondspanningen.

7.5 De basculekelder en de roldeurinkassing.

Doordat uitbreiding van de afmetingen voor de autoweg naar afmetingen benodigd voor de autosnelweg bij de basculekelder nagenoeg onmogelijk is wordt de basculekelder ontworpen op de afmetingen van de autosnelweg (twee maal drie rijstroken), dit in tegenstelling tot de rest van de constructie.

De basculekelder en de roldeurinkassing worden één geheel, waarbij bovenop de roldeurinkassing een brugwachtershuis is geprojecteerd naast de autoweg met een uitzichtniveau op NAP 19,0 m.

Ter plaatse van de aansluiting tussen de basculekelder en de roldeurinkassing zal wel een voeg gemaakt worden in verband met krimpvervorming.

Ter plaatse van de basculekelder en de roldeurinkassing wordt het geheel uitgerust met een vloerplaat van 1,5 m dik die zich over de gehele omvang van de constructie uitstrekt.
De basculekelder.

De bovenkant van de basculebrug en dus ook de bovenkant van de basculekelder komt op een hoogte van NAP +13,0 m. Met een geschatte constructiehoogte van 1 m. is hiermee de vereiste doorvaarthoogte van 12 m. gewaarborgd. Het dek van de basculekelder krijgt een breedte die overeenstemt met de breedte van de autosnelweg 34,7 m. De lengte is gebaseerd op de omvang van het contragewicht van de basculebrug en is gesteld op 12 m. Om uitvoerings-technische redenen is de 1,5 m. dikke vloerplaat op NAP-5,5 m. gefundeerd. De hoogte van de basculekelder komt hiermee op 18,5 m..

Om er voor te zorgen dat bij calamiteiten in de basculekelder de motoren en andere apparatuur droog blijven is de kelder voorzien van een tussenvloer op NAP +3,0 m.. De ruimten onder deze tussenvloer kunnen gebruikt worden als berging.

De roldeurinkassering.

De roldeurinkassering krijgt een breedte van 10 m. een lengte van 28 m. en een hoogte van 10 m.. De vrije ruimte hierin voor de roldeur is: breed 5 m.. lang 22 m. en hoog 10 m.. Aan weerszijden van en achterin de roldeurinkassering op een niveau van NAP +3,0 m. bevinden zich ruimtes voor de bewegingsmechanismen, waaronder motoren, generatoren en vertragingskasten. De hoogte van 10 m. is benodigd omdat bovenop de roldeur een ballastgewicht wordt geplaatst met een onderhoudspad.

De 1,5 m. dikke vloerplaat wordt voor de inkassing doorgetrokken naar het landhoofd aan de andere zijde van de doorvaartopening en vormt de drempel en aanslag van de constructie. De gehele roldeur wordt afgedekt met een plaat waarbij aan de kopzijde een uitsparing van 2 m. is gemaakt om inhangen en verwijderen van de roldeur mogelijk te maken.
Bovenop een gedeelte van de roldeurinkassing is het brugwachtershuis gesitueerd. Dit bedieningshuis zal niet alleen de bediening van de brug moeten herbergen, maar ook de bediening van de schuiven en de roldeur. Hiertoe is een aantal ruimtes gereserveerd de bedieningsruimte waar soft- en hardware kan worden opgesteld ten behoeve van zowel de basculebrug als de sluitingsmiddelen. Op de onderste verdieping van het brugwachtershuis is er ruimte voor een aantal generatoren, waarmee in noodgevallen energie kan worden opgewekt. Het uitzichtniveau van het brugwachtershuis is vastgesteld op NAP +19,0 m., het dak komt op NAP + 20,0 m.

De gehele constructie krijgt een breedte van 43 m.. Om stabiliteit van de basculekelder te waarborgen wordt ook de achterzijde van de kelder voorzien van een 1,5 m. dikke plaat die zich uitstrekt tot 6,5 m achter de achterwand van de kelder. De figuren 7.5.1 en 7.5.2 laten een lengte-doorsnede en een bovenaanzicht zien van de basculekelder tesamen met de roldeurinkassing. In het bovenaanzicht is de plaats van het brugwachtershuis geaceurd weergegeven.

7.6 Het landhoofd in het Ramsdiep.

Het landhoofd in het Ramsdiep bevat de oplegging en een afdrukmecanisme van de roldeur, terwijl ook de basculebrug daar opgelegd is. Hiertoe is een 2 meter dikke muur over een lengte van 36 m. benodigd. Ter plaatse van de roldeuroplegging is een 3 m. diepe en 6 m. brede constructie benodigd. Het geheel sluit aan de zijkanten aan op vleugelwanden op een niveau van NAP + 3,0 m. Doordat er hier, net als bij de landhoofden in de Ramsgeul, ook een grote grondruk aanwezig is zal om de stabiliteit te kunnen waarborgen de vloerplaat over een lengte van 6,6 m. doorgetrokken moeten worden. Tekening 7.6 laat een doorsnede en een bovenaanzicht zien van het landhoofd in het Ramsdiep tesamen met een gedeelte van de drempel.
7.7 Stabiliteit van de basculekelder.

Controle basculekelder en kas roldeur.

Voor de basculekelder is gekeken waar de gronddruk is onder de funderingsplaat. Deze druk is een orde kleiner dan de toelaatbare gronddruk. De drukken ten gevolge van momenten op de funderingsplaat zijn weer een orde kleiner dan de drukken ten gevolge van het eigen gewicht. Aan de criteria wat betreft de gronddrukken wordt daarom voldaan. Wel is er gevaar voor afschuiven van de constructie ten gevolge van gronddruk tegen de de achterwand. Ook hier is het doortrekken van de funderingsplaat voldoende om afschuiving te voorkomen.

7.8 Stabiliteit van het landhoofd in het Ramsdiep.

Daar het landhoofd overeenkomt met de andere landhoofden zal ook van dit landhoofd de stabiliteit gewaarborgd zijn.
7.9 De bodemverdediging.

In Bijlage 4 "De weigering van een schuif" is aangetoond dat de maximale stroomsnelheid in het geval van een supersstorm en een weigerende schuif op kan lopen tot maximaal 5 m/s. De bodembescherming ter plaatse van de schuiven, maar ook in het Ramsdiep ter plaatse van de roldeur moet berekend worden op deze hoge stroomsnelheid.

Voor deze bijzondere omstandigheid is specifiek modelonderzoek nodig om de grootte van de stortsteen te kunnen bepalen. Dit in verband met het feit dat er geen sprake is van uniforme stroming en een volledig ontwikkelde turbulente grenslaag.

Als eerste benadering kan de formule van Izbash gebruikt worden, met als resultaat dat bij de optredende stroomsnelheid een steen met een diameter van 75 cm. benodigd is. Dit zijn stenen van 500 tot 600 kg.

Deze maximale stroomsnelheid treedt alleen op in de richting van het Zwaar Meer en zal lokaal aanwezig zijn bovenop de drempel. Voor en na de constructie is over een lengte van 40 m. een toplaag met een diameter van 75 cm. nodig. Op het punt waar de stroming zich verwijdert heeft kan over een lengte van 40 m volstaan worden met een bestorting van stenen met een diameter van 30 cm (40 to 50 kg) waarna het geheel over kan gaan op de zanderige bodem. Voor het gedeelte van 40 m. voor en na de drempel wordt in verband met onderloopsheid een filterconstructie toegepast. Deze filterconstructie wordt ter plaatse in het werkeiland aangebracht. De bestorting met stenen met een diameter van 30 cm. worden aangebracht wanneer de dijken van het eiland weggebaggerd zijn.

De filterconstructie bestaat uit een 520 grams filterdoek met daarop een laag van 15 cm dik grof grind, waarop een laag met een dikte van 60 cm met stenen van 50 tot 60 kg met daarop een enkele laag stenen van 500 tot 600 kg. Deze filterconstructie wordt doorgetrokken tot 40 m. voor en na de constructie waar het filter over gaat in de stortstenen laag met stenen van 50 tot 60 kg.
De totale dikte van het filter wordt 1,5 m en sluit aan de bovenzijde aan op de voetplaat van de pijlers en bascule-kelder. Voor een beeld van de bodembescherming zie figuur 7.9.
In bijlage 7 is de berekening uitgevoerd voor de bodembescherming en de filterconstructie.

7.10 De oeverbescherming.

De dijken van het werkeiland worden beschermd met een goedkope tijdelijke bekleding, die zal bestaan uit een 520 grams filterdoek met daarop vastgemaakt rietbanden. Het geheel wordt afgestort met 400 kg stortsteen per vierkante meter. Deze tijdelijke bekleding wordt zowel onder als boven de waterlijn aangebracht.
De dijken die in de definitieve fase de twee kunstwerken verbinden en laten aansluiten aan de Noordoostpolder en het Kampereiland zullen bestaan uit een duurzame bekleding.
Onder de waterlijn zullen kraagstukken worden aangebracht, bestaande uit een 520 grams filterdoek bestort met 400 kg per vierkante meter stortsteen. Boven de waterlijn tot op een niveau van NAP +5,0 m. zullen betonblokken op een 10 cm dikke gebroken grindlaag worden toegepast.
De kraagstukken zullen worden verankerd met een teenconstructie, welke ook als ondersteuning dient voor de betonblokken. Deze teenconstructie zal bestaan uit een azobé plank op perkopenpalen. Het resterende deel van de dijk zal worden afgewerkt met een grasmat op een 1 m. dikke kleilaag. In verband met de uitvoeringsmogelijkheden zal het onderwatertalud 1:5 worden. Boven de waterlijn (NAP) is gekozen voor een helling van 1:3.
Hoofdstuk 8 De Kostprijsberekening.

Voor de gehele keersluis/brug is een kostprijs berekening gemaakt. Er is gebruik gemaakt van ervaringen die op de afdelingen kostprijsberekeningen van RWS Directie Sluizen en Stuwen en RWS Directie Bruggen zijn opgedaan met soortgelijke werken.

De kostprijsberekening die gemaakt is moet beschouwd worden als een globale kostprijsberekening waarvan de uitkomst een afwijking kan vertonen van 10% tot 20%

In Bijlage 8 is de kostprijsberekening uitgevoerd. Ook is een schatting gemaakt voor de te verwachten exploitatiekosten voor de keersluis/brug voor de eerst komende 50 jaar.

Het resultaat van de kostprijsberekening is dat de aanneemsom van de keersluis/brug geraamd is op 76 miljoen gulden waarvan de brug ten behoeve van de nieuw aan te leggen autoweg 36 miljoen voor haar rekening neemt.

De kosten van de aanleg van de keersluis/brug inclusief de exploitatie van het geheel worden geraamd op 99 miljoen gulden, waarvan de keersluis/brug 47 miljoen voor haar rekening neemt.

Om een vergelijking met het alternatief van dijkverhoging mogelijk te maken moeten de kosten van de keersluis vermeerderd worden met de kosten van een stukje dijkverhoging tussen Kampen en Ramspol. De keersluis zal dijkverhoging in de rest van het gebied overbodig maken. Het dijkvak Kampen-Ramspol heeft een lengte van ongeveer 8 kilometer.

Bij de geschatte aanneemsom van 1,2 miljoen per kilometer en exploitatiekosten van 10% van de aanneemsom kost dit stukje dijkverhoging inclusief exploitatiekosten 10,5 miljoen gulden.

Hiermee komt het alternatief van de keersluis te Ramspol inclusief dijkverhoging op 110 miljoen gulden, waarvan de brug voor de autoweg een gedeelte van 47 miljoen voor haar rekening neemt. Indien de dijkverhoging in het dijkvak Kampen-Ramspol gecombineerd wordt met de aanleg van de autoweg zullen de kosten van de keersluis nog meer gedrukt worden.
Netto komt de aanleg inclusief exploitatie van het alternatief van de keersluis (zonder brug) neer op 63 miljoen gulden.

Het alternatief van dijkverhoging langs het gehele gebied, waarbij ook de buitenpolders als Kampereiland beter beschermd worden, wordt door Provinciale Waterstaat van Overijssel ingeschat op 150 miljoen gulden. Dit bedrag is nog exclusief de exploitatiekosten van de dijkverhoging. Dijkverhoging is voor onderhoud een goedkopere oplossing dan het aanleggen van een keersluis.

Indien de exploitatiekosten van dijkverhoging geschat kunnen worden op 10% komt het alternatief van dijkverhoging op 165 miljoen gulden.

De resultaten van de kostprijsberekening in tabelvorm zullen het geheel verduidelijken:

<table>
<thead>
<tr>
<th></th>
<th>aanneemsom</th>
<th>totale kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in miljoenen</td>
<td>in miljoenen</td>
</tr>
<tr>
<td>keersluis/brug</td>
<td>76</td>
<td>99</td>
</tr>
<tr>
<td>alleen keersluis</td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>alleen brug</td>
<td>36</td>
<td>47</td>
</tr>
<tr>
<td>alternatief 1</td>
<td>50</td>
<td>63</td>
</tr>
<tr>
<td>alternatief 2</td>
<td>150</td>
<td>165</td>
</tr>
<tr>
<td>alt. 1 incl. brug</td>
<td>86</td>
<td>110</td>
</tr>
</tbody>
</table>

Alternatief 1 is het alternatief van de keersluis. Dit betekent dat gekeken wordt naar de aanleg van de keersluis en de aanleg van de verbeterde dijk tussen Kampen en Ramspol.

Alternatief 2 is het alternatief van de dijkverhoging.

De totale kosten zijn de kosten van aanleg inclusief de exploitatiekosten voor de eerstkomende 50 jaar.
Tot slot een kanttekening bij het vergelijken tussen de kosten van de keersluis/brug met de kosten van de keersluis en de kosten van de brug apart. Duidelijk mag zijn dat deze vergelijking in principe niet op gaat. De keersluis en de brug worden gefundeerd op één en dezelfde constructie. Dit betekent dat de keersluis niet voor 40 miljoen gemaakt kan worden indien besloten wordt de autoweg niet aan te leggen. De redenatie gaat andersom ook op, de brug van de autoweg kan niet voor 36 miljoen gemaakt worden indien de keersluis niet aangelegd wordt.

Een eerste interpretatie van de tabel laat zien dat, zelfs indien de bovengens van de marge waarbinnen de prijs zal liggen wordt aangenomen, de aanleg van de keersluis/brug goedkoper is dan de dijkverhoging.
Literatuurlijst:

[16] Staal bo III, collegeaantekeningen g16, prof. ir. A.A. van Douwen.

92
[34] Lange Golven 1, collegegedictaat b73, C. Verspuy en M. de Vries, Delft mei 1981.

Bronnen:

[1] KNMI
Kaart 2.2.1
Tabel 1: CEMT-Klasseafmetingen en ontwerp klasseafmetingen van de CVB

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Type</th>
<th>Landvermogen (ton)</th>
<th>CEMT,Klassifikatie vaarwegen</th>
<th>CVB, Ontwerp vaarwegen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>breedte (m)</td>
<td>lengte (m)</td>
</tr>
<tr>
<td>I</td>
<td>Spits</td>
<td>300</td>
<td>5,00</td>
<td>58,5</td>
</tr>
<tr>
<td>II</td>
<td>Kempener</td>
<td>600</td>
<td>6,60</td>
<td>50,0</td>
</tr>
<tr>
<td>III</td>
<td>Hapert</td>
<td>1,000</td>
<td>8,20</td>
<td>67,0</td>
</tr>
<tr>
<td>IV</td>
<td>Rijn-Hernekanaalschip</td>
<td>1,550</td>
<td>9,50</td>
<td>80,0</td>
</tr>
<tr>
<td>V</td>
<td>Groote Rijnchip</td>
<td>7,000</td>
<td>11,50</td>
<td>95,0</td>
</tr>
<tr>
<td>VI</td>
<td>4-baksduwstel</td>
<td>10,000</td>
<td>15,00</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 3: Categorieën en afmetingen van recreatieschepen

Motorboot Z = zeilboot H = hoogte
T = diepgang B = breedte L = lengte

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Motorboten</th>
<th>Categorie</th>
<th>Zeilboten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>T</td>
<td>B</td>
</tr>
<tr>
<td>M1</td>
<td>H</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>M2</td>
<td>2,25</td>
<td>1,00</td>
<td>1,50</td>
</tr>
<tr>
<td>M3</td>
<td>2,75</td>
<td>14,00</td>
<td>4,00</td>
</tr>
<tr>
<td>M4</td>
<td>3,40</td>
<td>15,00</td>
<td>4,25</td>
</tr>
</tbody>
</table>

Figuur 2.3.1
overschrijdingsfrequentielijnen voor de afvoer te Vechterweert (a);
te Ramspol (b)
De werking van de roldeuren

Enkele Draaideur

Enkelkerende keersluis met één stel puntdeuren

De werking van watierdeuren.

Figuur 3.5.2
Tabel 4.2.1 Richtlijnen voor de doorvaartwijde van bewegbare bruggen in rechte vaarwegvakken

<table>
<thead>
<tr>
<th>CEMT klasse</th>
<th>Horizontale afmetingen van de maatgevende schepen</th>
<th>Doorvaartwijde</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hoogte</td>
<td>niet druk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>centr. *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>excen. *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(A)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(C)</td>
</tr>
<tr>
<td>I</td>
<td>39 x 5.10</td>
<td>Laag</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.00</td>
<td>7.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.30</td>
<td>7.00</td>
</tr>
<tr>
<td>II</td>
<td>55 x 5.10</td>
<td>Laag</td>
<td>8.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.50</td>
<td>8.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.00</td>
<td>8.50</td>
</tr>
<tr>
<td>III</td>
<td>55/57 x 7.20</td>
<td>Laag</td>
<td>9.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.50</td>
<td>9.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.00</td>
<td>9.50</td>
</tr>
<tr>
<td>IV</td>
<td>35 x 9.50</td>
<td>Laag</td>
<td>10.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.50</td>
<td>10.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.00</td>
<td>10.50</td>
</tr>
</tbody>
</table>

(maten in meters)

* voor de begrippen druk, niet druk, centr. en excen. wordt verwezen naar de voorgaande tekst.

**Voor de geldigheid van deze richtlijnen wordt verwezen naar hoofdstuk 2.

Zie opmerking op blz. 44.

Tabel 4.1.1 Richtlijnen voor de doorvaarthoogte van bewegbare bruggen voor de beroepsvaart

<table>
<thead>
<tr>
<th>CEMT klasse</th>
<th>Horizontale afmetingen van de maatgevende schepen</th>
<th>Doorvaarthoogte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hoge variant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>variant</td>
</tr>
<tr>
<td>I</td>
<td>39 x 5.10</td>
<td>5.30</td>
</tr>
<tr>
<td>II</td>
<td>55 x 5.10</td>
<td>6.30</td>
</tr>
<tr>
<td>III</td>
<td>55/57 x 7.20</td>
<td>6.60</td>
</tr>
<tr>
<td>IV</td>
<td>35 x 9.50</td>
<td>7.00</td>
</tr>
</tbody>
</table>

(maten in meters)

4.2 Doorvaarthoogte beveegbaar deel (voor definitie zie bijlage 2).

Bij het vaststellen van de doorvaarthoogte van het beweegbaar deel spelen de volgende criteria een belangrijke rol.

KRITERIA
NORMAAL-DWARSPROFIEL 2x2-STROOKS AUTOSNELWEG OP EEN KUNSTWERK

FIG 3.81a

NORMAAL-DWARSPROFIEL 2x3-STROOKS AUTOSNELWEG OP EEN KUNSTWERK

FIG 3.81b

TOPBOOG

$R = 10,000 \text{ m}$

$\theta = 1:50$

VOETBOOG

$R = 10,000 \text{ m}$

FIG 3.82.
\[b = R \tan \alpha \]
\[p = \frac{b^2}{2R} \]
\[R = 10000 \text{ m} \]
\[\tan \alpha = 1:50 \]
\[b = 200 \text{ m} \]
\[p = 2 \text{ m} \]

FIG. 3.8.3.

FIGUUR 3.8.4.

1 = HEFTOREN MET SCHUIF
2 = DIENSTWEG
3 = AUTO(SNEL)WEG 2 x 2 (2x3) RIJSTROKEN
FIG. 431. BODEMPROFIEL TE RAMSPOL
Bouw keersluis/brug Ramsgeul
Bouw keersluis/brug Ramsdiep
Tib = periode met verlaagde bouwactiviteit

FIG. 4.5.2.3.
FIG. 4.5.3.2.

1. VERWIJDEREN LEIDAM
2. WEGBAGGEREN VEENLAAG
3. AANSTORTEN ZAND
4. AANLEGGEN WEG IN POLDER
FIG. 4533.

1. AANLEG WERKEILAND
2. AANLEG HULPBRUG/WERKHAVEN
3. INRICHTEN WERKEILAND
4. BOUW KEERSLUIS
1. AANSLUITEN HULPBRUG MET DIENSTBRUG
2. VERWIJDEREN DIJKEN VOOR/ACHTER KEERSLUIS
3. AANLEGGEN WERKEILAND RAMSDIEP
4. BOUW KEERSLUIS RAMSDIEP
FIG. 4.5.35.

1. VERWIJDEREN DIJKEN / HULPBRUG
2. AANLEGGEN DIJKLICHAMEN + AANBRUGGEN
3. INHANGEN AFSLUITMIDDELEN
4. AFWERKEN v.h. GEHEEL
<table>
<thead>
<tr>
<th>Klasse</th>
<th>Gelijkmatig verdeelde belasting</th>
<th>Een wagen asdrukken</th>
<th>Elk verdeeld over</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>400 kgf/m² (4000 N/m²) met een maximum van 1,2 tonf per m² rijstrook (12 kN/m²)</td>
<td>3 x 20 tonf (3 x 200 kN)</td>
<td>4 wielen</td>
</tr>
<tr>
<td>45</td>
<td>300 kgf/m² (3000 N/m²) met een maximum van 0,9 tonf per m² rijstrook (9 kN/m²)</td>
<td>3 x 15 tonf (3 x 150 kN)</td>
<td>4 wielen</td>
</tr>
<tr>
<td>30</td>
<td>200 kgf/m² (2000 N/m²) met een maximum van 0,6 tonf per m² rijstrook (6 kN/m²)</td>
<td>3 x 10 tonf (3 x 100 kN)</td>
<td>4 wielen</td>
</tr>
</tbody>
</table>

Fig. 5.2.1

Maten in cm

KLASSE 60

![Diagram of KLASSE 60](image)

Fig. 5.2.2

<table>
<thead>
<tr>
<th>Hoogte h boven maaiveld in m</th>
<th>1 aan Noordzeekust in N/m² (kgf/m²)</th>
<th>2 land in N/m² (kgf/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>970 (97)</td>
<td>710 (71)</td>
</tr>
<tr>
<td>8</td>
<td>990 (99)</td>
<td>730 (73)</td>
</tr>
<tr>
<td>9</td>
<td>1010 (101)</td>
<td>750 (75)</td>
</tr>
<tr>
<td>10</td>
<td>1020 (102)</td>
<td>770 (77)</td>
</tr>
<tr>
<td>15</td>
<td>1070 (107)</td>
<td>830 (83)</td>
</tr>
<tr>
<td>20</td>
<td>1120 (112)</td>
<td>880 (88)</td>
</tr>
<tr>
<td>25</td>
<td>1150 (115)</td>
<td>930 (93)</td>
</tr>
<tr>
<td>30</td>
<td>1190 (119)</td>
<td>970 (97)</td>
</tr>
<tr>
<td>35</td>
<td>1220 (122)</td>
<td>1010 (101)</td>
</tr>
<tr>
<td>40</td>
<td>1250 (125)</td>
<td>1040 (104)</td>
</tr>
</tbody>
</table>

Fig. 5.3.1
Figuur 5.4.2

Maatgevende Horizontale drukken gedurende het sluiten in de Ramsgeul.
Maatgevende horizontale drukken gedurende het sluiten in het Ramsdiep.
Maatgevende horizontale drukken gedurende het sluiten in het Ramsdiep Roldeur zonder doorstroomopeningen
lengtedoorsnede basculékelder-roldeurinkassing

Figuur 7.5
<table>
<thead>
<tr>
<th>Alternatieven:</th>
<th>Roldeur</th>
<th>Draaideur</th>
<th>Dakstuw</th>
<th>Klepdeur</th>
<th>Sector-schuif</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Sluiten bij</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stromend water</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Openen bij</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterstandverschil</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Tweezijdig keren</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Schadegevoeligheid</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Onderhoud</td>
<td>+</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Uitvoering</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Gebruik</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alternatieven:</td>
<td>Draaideur</td>
<td>Hefdeur</td>
<td>Dekstuw</td>
<td>Klepdeur</td>
<td>Segment-schuif</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Criteria:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosten</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sluiten bij</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroomend water</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Openen bij</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterstandverschil</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Tweezijdig keren</td>
<td></td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Schadegevoeligheid</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>Onderhoud</td>
<td>0</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Uitvoering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gebruik</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
</tbody>
</table>