
0 -~ ~ 
< '" m < z 

'" 0 c~ 

0 
m~ 

V> " ", 
m Cl 

~~ 
c 

C .. '" 
'" 3: ~O »- '" 0'" 
"'0 z c (;; 

"'0 
~ :1::"-' » ,,'" 

0 ~ CO 
in zO 

,,~ 

~ 
m 

'" m ~ 
~ z ~ -





, 

• 

Pages -

Ta bI e 5 
Figures 

For : 

Subject : 

NA I IONI\l. IU'!;I.i\HClI 1.i\1\()](A I'OH 11,:; 

Ott"W,l , C..nad.1 

REPOHT 

National Aeronautical Establishmont 

Flight R~search Sec ti on 

Preface - 6 
Tcxt - 10 

2 
- 17 

Internal 

Hepo I t : LI1 - 302 
Datp. : February 1961 
L"b . Order : NAE 762 
File : C~12 - 17 - 13T- 6 - 4 

A MODEL- CONTROLLED AUfOPlLOT rOR AN AIRBORNE 
VTOL SIMULATOR 

PIepared by : D. F. Daw 
L. V . Ursel 

Submlt ted by : 

Approved by : 

SUMMAIW 

A . D . Wood 
Head 
Flight Research Section 

F. R. Thurston 
Director 

Ta establish valid handlin) qualities requirements 
for VTOL and STOL aircraft a need exists for a simulator which 
ade~uately simulate s the dynamic response and environment of 
the vehicle under consideration . Ta thi s e nd a variaule 
stability helicopter is proposed . 

This report outlines how a model - con trol led auto ­
pilot may be used ta vary the characteri stics of a helicopter, 
enabling simulation of aircraft having a wid e variety of 
dynamic response characteristics . 
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A MODEL - CONTROLLED AUTOPILOT FOR AN AIRBORNE VTOL SIMULATOR 

1 . 0 INTRODUCTION 

The development of VIOL aircraft has recently 
received considerabie attention . A number of experimental 
aircraft of this type have been built and flawn in various 
countries . These are aircraft which attemp t ta combine the 
ability of the helicopter to take off vert i cally, ta land 
vertically , and ta haver , wi t h t he ability of the fi xe d wing 
aircraft ta fly at hi]h forward speed . ,Almost without excep ­
tion these ai rcraft have displayed marginal or unacceptable 
handling qualities . 

The difficulties with VTOL aircraft arise forseveral 
reasons . One reason for poor co ntrol characteristics is that 
the desig ner must commit a ce r ta i n percentage of available 
power ta provide control in hovering and low speed fl i ght , 
thus , to a certain extent , reducing that available for lifting. 
Designers are quite naturally re l uctant to allow this percent ­
age to become too large . Secondly , the aircraft have (generally) 
very low levels of stability or are in fact unstable . This 
latter characteristic is also true for the helicopter but control 
powers are sufficiently high to allow the ~ilot reasonable 
contro!. Thirdly, there is relatively little informat i on avail­
able concerning what criteria establish des i rabie handling 
gualities . There i s information available ~or helicopters 
(Ref . 1) , but th i s is certainly not adequate when compared 
with that available for fixed wi ng aircraft (Ref . 2) . 

Some work has been done to determ i ne the effects of 
varying control power and dampi ng on the pilot ' s ability to 
perform various tasks (Ref . 3) . However . it is clear from a 
r eview of the available informat i on that a great deal more 
information is requ i red . 

To perform the task of increas ing this fund of 
i nformatio n the use of fixed - base ground simulators has evident 
limitations . A number of recent investigations (Ref . 4 , 5, 6 
and 7) show that the representation of aircraft motions and 
the psychological environment of the pilot may be important in 
allowing the correct conclusions to be drawn . Therefore , in 
order to establ i sh va lid ha ndli ng qualities requirements the 
use of a n " airbor ne simulator" appears to be most des i r able . 

A helicopter with variabie stab i lity 
characteristics would provide su ch a vehicle . 

and control 
It is the 
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objective of this report to show how a model - controlled auto ­
pilot may oe used to control three degrees of freedom of a 
helicopter thus making it possible to vary the characteristic s 
which are of si~nifica nc e in specifying the handling qualities 
requirements for VTOL aircraft . Structural limitations and 
component saturation , which must be taken into account in the 
desjJn of a specific system, are not considered in this analysis. 

2 . 0 PRINCIPLES OF THE MODEL- CONTROLLED AUTOPILOT 

The model-controlled autopilot is a simplified version 
of the self - adaptive flight control system described inReference 
8 . This model - controlled system is characterized by two unique 
features . 

First, the dynamic response characteristics of the 
aircraft under con trol are made to comply with the dynamic 
response characteristics of an analogue model . This model 
may be constructed of passive elements such as resistances, 
condensers , and inductances , or it may contain active analogue 
computing components such as operational amplifiers . 

The second unique feature of this model-controlled 
autopilot is the manner in which the loop gain is maintained 
constant for varying dynamic pressure. With a conventional 
autopilot constant loop gain is maintained by a compensator 
unit which modifies the appropriate feedback signals as a func ­
tion of dynamic pressure . This modification is accomplished 
by potentiometers driven by an airspeed bellows. Non - linearities, 
if required , are "programmed " with cams or shaped potentio ­
meters . This " programming" or " sc hedul ing" i s a ccompl i shed 
only af ter the variations of the required loop gains with 
dyna mic pressure have been determined from test flights. The 
model - controlled autopi lot of Reference 8 actively monitors 
t~e sensitivity of the autopilot-aircraft closed loop combina ­
tion and modifies the autopilot ~ain to keep the closed loop 
gain constant . This model - controlled autopilot therefore rnay 
compensate not only for changes of dynamic pressure but also 
for any other variables which change the loop gain, such as 
damage to control surfaces, etc. 

2 . 1 Simp1ified Mode1 - Contro11ed Autopilot 

Low performance aircraft which do not encounter 
large chan3es of dynamic pressure do not require the automatic 
Jain feature of model - controlled autopilots. An autopilot 
with the model - controlled feature but not the automatic gain 
feature is described in Reference 9 . 

" 
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The term " simplified model - controlled" has been 
chosen by the authors ta describe this autopilot ta avoid 
con fusion with autopilots having an automatic gain feature . 

Figure 1 shows in bloek diagram farm a mode! ­
controlled autopilot for a si ngle degree of freedom system . 
If it is assumed that the components are linear and possess 
the transfer functions as shown, then the over - all transfer 
function will be : 

. 
e ( 5 ) = M (s) 
be (s) 

G( s) + 1 
c{s) . K. AP(s) . H(s) 

The output will follow the model response ta the 
input prov iding : 

(1) Toe feedback transfer function . G(s) , has a modulus 
equal ta unity and an argument of zero degrees . (This condi ­
tion is met in the rate feedback systems co nsidered in this 
report by using a rate gyro with a natural frequency that is 
v2ry high compared with the upper frequency of the bandwidth 
of interest and with a very low damping ratio . ) 

(2) The product c(s) . K. AP(s) · H(s) has a large enou9h 
modulus to ensure an output of the required accuracy and an 
arJument that is less than 180 degrees over the ba ndwidth of 
interest . This condition is met by the proper matching of 
the compensation network to the other frequency se nsitive 
components of the system and by choosin~ a sufficiently large 
value of the gain , K. 

Compensat ion networks may be required to produce 
either or both of the following effects : 

(1) To increase the ba ndw i dth of the system enabling 
the a ircraft to respond to higher frequencies , 

(2) To allow for an increase of the gain of the closed 
loop result ing in a reduction of the error . . 

The error , or deviation of the output 8(5) from the 
desired output be(S) . M(S) is expressed by : 

1 
c(s) . K. AP(s) · H(s) 
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The autopilot of Reference 9 has an additional 
unique feature in that it is a II bang - bang" serVQ system which 
is made ta approximate a linear system by the methods described 
in References 9 and 10. In this system the error signa 1 is 
used ta pulse - width modulate a square wave oscillation hav i ng 
a frequency ( called the d i t her frequency) above t he bandwid t h 
of the helicopter . The modulated square wave is applied ta a 
pneuma tic servo actuator ta produce a contral surface displace ­
ment as shown in Fi~ure 2 . As the linear approximation of this 
displacement is the i ntegral of the error signa1. the transfer 

fu nction of the autopilot may be approximated by AP{s} = t, 
3 . 0 AUTOPILOT REQUIREMENTS FOR A VTOL SIMULATOR 

In order ta determine characteristic5 which would be 
representative of those of a helicopter, an analogue computer 
simulation of a small single rotor helicopter was done . An 
analogue study of a deflected slipstream VTOL aircraft was 
also done. 

3 . 1 Helicopter Characteristics 

The physical characteristics of the helicopter are 
detailed in Table 1. The simulation of the he l icopter was 
done for the hovering flight case only, the equations for 
which are shown below . 

( i ) x u + X q - we cos i - W (~ - vr + wq) = X(t) 
u q 9 

W • 
(ii ) Z w we sin i - - (w - uq + vp) = Z(t) w 9 

( iii) Y v + Y P + WIJ 
W (v wp + ur) Y( t) - - - = v p 9 

. 
( i v) (I z Iy) L(t) L v + L P I xp qr = v P 

( v ) 
. 

(Ix I z) M(t) M u + M q - I q - - pr = u q Y 

(vi) Nrr - I r - (I - Ix) pq = N(t) z y 

The stability derivatives with respect to speed were 
estimated usi ng the method outl i ned i n Refere nce 11 . The 
rotary derivatives (Xq • yp ' etc . ) were estimated from informa -
tion presented in Reference 12. The tail rotor derivative (Nr ) 
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was estimated using simple momen t um theory . The values for 
the derivatives estimated in this way are shown in Table 11 . 

The equations of motion were scaled using normal 
analogue techniques and the analogue circuit shown in Figure 3 
was set up on an analogue computer . Helicopter response ta 
step inputs was obtained and typical results are shown in 
Fi gures 4a, 4b , and 4c. Examination of the results together 
with an analysis of the helicopter transfer function revealed 
that the longitudinal and lateral modes could be treated as 
second order systems a nd that the directional mode could be 
considered first order (for hovering flight) . 

Although the analogue studies indicated a negative 
value of damping ratio, the installation of an integral rotor 
stab ilizer makes the damping ratio positiv~ (Ref . 13) . There ­
fore l ~ = +0 . 234 is chosen as a representative value . Other 
helicopter characteristics which w€re chosen as being re­
presentative are specified in Figures 5, 6 , and 7. 

The open loop characteristics of the helicopter and 
autopi l ot with no compensation are shown in Figures . 8 , 9, and 
10 . The helicopter characteri stics are those shown in Figures 
5, 6, and 7, and the autopilot characteristic is assumed to be 

s imply AP(s) = ~. 

Figure 8 shows that the gain of the autopilot pitch 
ampl ifier could be set at 3 db . (a voltage 9a in of 1.4) and 
maintain a 30- degree phase mar~ in as recommended for such 

s ystem s (Ref . 14). Over the bandwidth of 0 ~ ~ ~ 1 . 2 the 
1 H 

mj nimum magnitude of the error () () = 42 percent. 
1 + K· AP s · H s 

For better accuracy and greater bandwidth, compensation of 
this loop is required. 

Figure 9 indicates that compensation of the roll 
loop and additional gain are required to obtain an increased 
bandwidth and accuracy . 

Figure 10 indicates that the required bandwidth and 
accuracy may be obtained by increasin~ the gain . No compensa ­
tion is necessary . For example , to obtain an accuracy of 
10 percent between the helicopter response and model response 

00 ooM ooM 
over a bandwidth of 0 ~ ooM ~ ~ax. (where ~ax . = 1.7 from 

H H H 
Fig. 6) an additional ga in of (20.3 + 6)db . = 26 .3 db. is 
necessary . 
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3 . 2 Compensated Autop i lot and Helicopter Characteristics 

3 . 2 . 1 Pitch Rate Control Loop 

Figure 11 ind i cates the characteristics of a lead 
network suitable ta compensate the pitch rate con trol loops 
a nd Figure 12 indicates the compensated characteristics of 
this loop . 

A 30- de3ree phase margin now oecurs at ~ ~ 32 when 
wH 

a gain of 21 . 2 db . (voltage ratio of 11 . 5) is added . This 
results in an error between the helicopter response and the 
model response as shown in Figure 13 . A maximum error of 8 . 5 

percent i s now obtained over a bandwidth of 0 ~ (~3 . 5 . The 
"H 

error curve for a 9ain of 15 . 2 db . (voltage ratio of 5 . 73) is 
a150 shown ta illustrate the effect of 9ain on the error . 

3 . 2 . 2 Roll Rate Control Loop 

The compensation network of Figure 11 may a150 be 
used with the roll rate control loop since the pitching and 
ro11in~ characteristics of the helicopter are essentia11y the 
same . Figure 14 shows the compensated roll rate characteristics. 

Twenty - one db . of gain may be added to produce a 30-
degree phase margin . Figure 15 shows the error curve for the 
compensated raIl rate control loop . 

3 . 3 Characteristics of Models Suitable for Representation of 
a VTOL Aircraft 

The longitudinal characteristics for a deflected slip­
stream VTOL aircraft were obtained by performing an analogue 
computer experiment utilizing data from Reference 15 . Results 
of the simulation are shown in Figure 16 . In order that a range 
of characteristics mi3ht be investigated, data from Reference 3 
was a1so used . Models which incorporate characteristics such 
as those cited could be constructed using resistors , capacitors 
and inductances (for the case of statically and dynamically 
stable modes . ) For unstable modes , models could be constructed 
using analogue computer components . Representative ranges of 
model characteristics are shown in Figures 5 , 6 , and 7 . 

4 . 0 ANALOGUE SIMULATION 

The compensated pitch rate con trol loop of Figure 5 



Page - 7 
LR - 302 

was simulated on an analogue computer . A model natural 
frequency (wM) of 0.566 a nd damping ( ~ M) of 0 .323 were used . 
These va lues were representative of the longitudinal character ­
istics of a deflected slipstream VTOL aircraft (Fig. 16) . The 
helicopter had characteristics wM ; 0 . 194 and ~ H; 0 . 234 (Fig . 
5) . The analogue study included a s imulation of the "bang - bang" 
serVQ system shown in Figure 2 and a fixed time delay of 0 . 05 
second correspo nding ta the lag in the helicopter con trol s%tem. 

The computer diagram is shown in Figure 17 . Shown 
below are calculations used for computer seal ing . The general 
equation of motion for the helicopter an.d reference model is 
of the farm : 

6 + (2'1'" ) 6 + W 26 ; f (t) 
n n 

The solution of the equation to a step function is of the ferm: 

[~ll 
~lt ~2t J 6 f(t) + e + ~2(~1 - ~2) ; 

~2 ~l (~l - ~2) 

Using this solution it may be shown that 

é has a maximum value when tan (JJ ,./1 - r?t '" 2 1'] 
n 

e has a maximum value when tan oon 
2 - ~ 

2 
- W n 

Using these relationships and assuming f(t) has a value of 
0 .10 (where f(t) in the physical case is the ratio of moment 

l 
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input to moment of inert i a ), the maximum values are : 

that 
rad . 

Helico~ter Model Reference Model . . 
0 = 0 .85 rad . /sec. e = 0 . 50 ma x . max . 
" .. 
0 = 0 . 10 rad . /sec . e = 0 . 08 max . max . 

For purposes of computer sealing it was assumed 
. .. 2 e = 1. 00 rad . /sec ., e = 1.00 rad . lsec .. e = 5.00 max . max . 

If the ma ximum voltage for linear ope.r;atf-o n of the 
compu ter is 100 volts then sealing factors for e, e, and e are 
100 , 100, and 20 respectively . 

The amplitude of the sawtooth input to the trigger 
circuit was chosen 50 that the circuit would not saturate (i.e . 
error signal would always be less than 50 volts) . Biasing 
circuits we re necessary because of the characteristics of the 
trigger and to compensate for amplifier drift . 

Results of this study indicated that the helicopter 
followed the model response to step inputs with an accuracy of 
bet ter than 5 percent at a gain of 12 . The 0 . 05 - second time 
delay did not produce any measurable change in performance . 

5 . 0 CONCLVSIONS 

A model - controlled autopilot appears suitable for 
use with a helicopter as an airborne VTOL simulator . With the 
following limitations a simplified vers ion of such an auto -
pilot will enable the helicopter to assume the dynamic character­
istics of any desired model . 

(1) The proposed system only cont rols the an~ular motion s 
of the helicopter . 

(2) The gai n cross - over frequencies of the helicopter 
ffiay be extended by ffieans of compensation networks to approxi ­
mately 3 . 5 times the natural frequencies , in pitch and roll, 
of the helicopter . 

(3) Addi ng the maximum gains that will permit stabie 
operation within the frequency ranges 0 < w ~ 3 . 5wH the errors 
will not exceed 8 . 5 percent in pitch and roll . 

• 
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PHYSICAL CHARACTERISTICS OF A LIGHT SINGLE ROTOR HELICOPTER 

Gross Weight 

Pitching Moment of Inertia 

Rolling Moment of Inertia 

Yawing Moment of Inertia 

Height of Rotor Hub Above C.G. 

Rotor Diameter 

Number of Blades 

Radius at which Slade Starts 

Blade Chord 

Solidity 

Rotor Angular Velocity 

Tip Speed 

Flapping Moment of Inertia (per bladel 

Cyclic Pitch Control Range (Longitudinal) 

Cycl ic Pitch Control Range (Lateral) 

Cyclic Pitch per Degree Stabilizer Bar Tilt 

Stab ilizer Bar Tilt Between Stops 

Effe ctive Tail Arm 

Tail Rotor Diameter 

Total Hover ing H. P. 

2000 lb . 

1360 slug ft~ 

270 slug ft~ 

1070 s lug ft~ 

4.5 ft. 

35 . 13 ft. 

2 

10 . 8 percent 

1. 184 - 0 . 351x 

0 .0330 

34 . 9 rad . /sec. 

613 f. p . s . 

252 slug ft~ 

± 14 . 3 deg. 

± 10 . 8 deg . 

0.88 

4 . 5 deg . 

253 inches 

6 ft . 

180 
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TABLE II 

STABILITY DERIVATIVES FOR A SMALL SINGLE 
ROTOR HELICOPTER 

x ; - 1.140 lb./ft . /sec·. 
u 

Xq 
; +226 lb . /rad . /sec. 

Mu ; +5 . 14 ft . lb./ft . /sec . 

M ; 

q 
- 1016 ft . lb . /rad . /sec 

Z ; - 73.6 lb./ft./sec. w 

N ; - 660 ft.lb./rad./ s ec. 
r 

Y ; X v u 

; 

; 

The Remaining Derivatives are Insignificant in Hoverlng Flight 

• 
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