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establish valid handling qualities requirements
STOL aircraft a need exists for a simulator which

adequately simulates the dynamic response and environment of
the vehicle under consideration. To this end a variable
stability helicopter is proposed.

This report outlines how a model-controlled auto-

pilot may be

used to vary the characteristics of a helicopter,

snabling simulation of aircraft having a wide variety of
dynamic response characteristics.
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A MODEL-CONTROLLED AUTOPILOT FOR AN AIRBORNE VTOL SIMULATOR

1.0 INTRODUCTION

The development of VIOL aircraft has recently
received considerable attention. A number of experimental
aircraft of this type have been built and flown in various
countries. These are aircraft which attempt to combine the
ability of the helicopter to take off vertically, to land
vertically, and to hover, with the ability of the fixed wing
aircraft to fly at high forward speed. Almost without excep-
tion these aircraft have displayed marginal or unacceptable
handling qualities.

The difficulties with VIOL aircraft arise for several
reasons. One reason for poor control characteristics is that
the designer must commit a certain percentage of available
power to provide control in hovering and low speed flight,
thus, to a certain extent, reducing that available for lifting.
Designers are quite naturally reluctant to allow this percent-
age to become too large. Secondly, the aircraft have (generally)
very low levels of stability or are in fact unstable. This
latter characteristic is also true for the helicopter but control
powers are sufficiently high to allow the pilot reasonable
control. Thirdly, there is relatively little information avail-
able concerning what criteria establish desirable handling

ualities. There is information available [or helicopters
Ref. 1), but this is certainly not adeguate when compared
with that available for fixed wing aircraft (Ref. 2).

Some work has been done to determine the effects of
varying control power and damping on the pilot's ability to
perform various tasks (Ref. 3). However, it is clear from a
review of the available information that a great deal more
information is required.

To perform the task of increasing this fund of
information the use of fixed-base ground simulators has evident
limitations. A number of recent investigations (Ref. 4, 5, 6
and 7) show that the representation of aircraft motions and
the psychological environment of the pilot may be important in
allowing the correct conclusions to be drawn. Therefore, in
order to establish valid handling qualities requirements the
use of an "airborne simulator" appears to be most desirable.

A helicopter with variable stability and control
characteristics would provide such a vehicle. It is the
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objective of this report to show how a model-controlled auto-
pilot may be used to control three degrees of freedom of a
helicopter thus making it possible to vary the characteristics
which are of significance in specifying the handling qualities
requirements for VIOL aircraft. Structural limitations and
component saturation, which must be taken into account in the
design of a specific system,are not considered in this analysis.

2.0 PRINCIPLES OF THE MODEL-CONTROLLED AUTOPILOT

The model-controlled autopilot is a simplified version
of the self-adaptive flight control system described in Reference
8. This model-controlled system is characterized by two unique
features.

First, the dynamic response characteristics of the
aircraft under control are made to comply with the dynamic
response characteristics of an analogue model. This model
may be constructed of passive elements such as resistances,
condensers, and inductances, or it may contain active analogue
computing components such as operational amplifiers.

The second unique feature of this model-controlled
autopilot is the manner in which the loop gain is maintained
constant for varying dynamic pressure. With a conventional
autopilot constant loop gain is maintained by a compensator
unit which modifies the appropriate feedback signals as a func-
tion of dynamic pressure. This modification is accomplished
by potentiometers driven by an airspeed bellows. Non-linearities,
if required, are "programmed" with cams or shaped potentio-
meters. This "programming" or "scheduling" is accomplished
only after the variations of the required loop gains with
dynamic pressure have been determined from test flights. The
model-controlled autopilot of Reference 8 actively monitors
the sensitivity of the autopilot-aircraft closed loop combina-
tion and modifies the autopilot gain to keep the closed loop
gain constant. This model-controlled autopilot therefore may
compensate not only for changes of dynamic pressure but also
for any other variables which change the loop gain, such as
damage to control surfaces, etc.

2.1 Simplified Model-Controlled Autopilot

Low performance aircraft which do not encounter
large changes of dynamic pressure do not require the automatic
jain feature of model-controlled autopilots. An autopilot
with the model-controlled feature but not the automatic gain
feature is described in Reference 9.
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The term "simplified model-controlled" has been
chosen by the authors to describe this autopilot to avoid
confusion with autopilots having an automatic gain feature.

Figure 1 shows in block diagram form a model-
controlled autopilot for a single degree of freedom system.
If it is assumed that the components are linear and possess
the transfer functions as shown, then the over-all transfer
function will be:

o(s) M(s)

G(s) +

1
c(s)+K:AP(s).H(s)

The output will follow the model response to the
input providing:

(1) The feedback transfer function, G(s), has a modulus
equal to unity and an argument of zero degrees. (This condi-
tion is met in the rate feedback systems considered in this
report by using a rate gyro with a natural frequency that is
very high compared with the upper frequency of the bandwidth
of interest and with a very low damping ratio.)

(2) The product c(s)-K-AP(s)+H(s) has a large enough
modulus to ensure an output of the required accuracy and an
argument that is less than 180 degrees over the bandwidth of
interest. This condition is met by the proper matching of
the compensation network to the other frequency sensitive
components of the system and by choosing a sufficiently large
value of the gain, K.

Compensation networks may be required to produce
either or both of the following effects:

(1) To increase the bandwidth of the system enabling
the aircraft to respond to higher frequencies,

(2) To allow for an increase of the gain of the closed
loop resulting in a reduction of the error.

The error, or deviation of the output f(s) from the
desired output 69(5)-M(5) is expressed by:

8(s) - b, () - M(
. (s) -84 (s) S): 1

ae(s).m(s) 1+ c(s)-K-AP(s)-H(s)
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The autopilot of Reference 9 has an additional

unique feature in that it is a "bang-bang" servo system which

is made to approximate a linear system by the methods described

in References 9 and 10. In this system the error signal is

used to pulse-width modulate a square wave oscillation having

a frequency (called the dither frequency) above the bandwidth

of the helicopter. The modulated square wave is applied to a

pneumatic servo actuator to produce a control surface displace-

ment as shown in Fijure 2. As the linear approximation of this

displacement is the integral of the error signal, the transfer
1

function of the autopilot may be approximated by AP(s) = =

3.0 AUTOPILOT REQUIREMENTS FOR A VTOL SIMULATOR

In order to determine characteristics which would be
representative of those of a helicopter, an analogue computer
simulation of a small single rotor helicopter was done. An
analogue study of a deflected slipstream VIOL aircraft was
also done.

3.1 Helicopter Characteristics

The physical characteristics of the helicopter are
detailed in Table I. The simulation of the helicopter was
done for the hovering flight case only, the equations for
which are shown below.

(i) X, u + qu - W8 cosi - g (u - vr + wq) = X(t)
(ii) Z.w - W8 sini—g(w—uquvp): Z(t)

(111) Y,V + Y p+ WP - g (v - wp + ur) = Y(t)

(iv) LVV + Lpp w T (Iz - I

(wi} Nr sz - (IY - Ix) pg = N(t)

The stability derivatives with respect to speed were
estimated using the method outlined in Reference 1ll. The
rotary derivatives €56 . % etc.) were estimated from informa-

tion presented in Reference 12. The tail rotor derivative (Nr)

PR gt L S St e
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was estimated using simple momentum theory. The values for
the derivatives estimated in this way are shown in Table II.

The equations of motion were scaled using normal
analogue techniques and the analogue circuit shown in Figure 3
was set up on an analogue computer. Helicopter response to
step inputs was obtained and typical results are shown in
Figures 4a, 4b, and 4c. Examination of the results together
with an analysis of the helicopter transfer function revealed
that the longitudinal and lateral modes could be treated as
second order systems and that the directional mode could be
considered first order (for hovering flight).

Although the analogue studies indicated a negative
value of damping ratio, the installation of an integral rotor
stabilizer makes the damping ratio positive (Ref. 13). There-
fore, n = +0.234 is chosen as a representative value. Other
helicopter characteristics which were chosen as being re-
presentative are specified in Figures 5, 6, and 7.

The open loop characteristics of the helicopter and
autopilot with no compensation are shown in Figures.8, 9, and
10. The helicopter characteristics are those shown in Figures
5, 6, and 7, and the autopilot characteristic is assumed to be
simply AP(s) = %.

Figure 8 shows that the gain of the autopilot pitch
amplifier could be set at 3 db. (a voltage gain of 1.4) and
maintain a 30-degree phase margin as recommended for such

w
systems (Ref. 14). Over the bandwidth of O 5 e é 1.2 the
H
1
= 42 )
1 + K-AP(s)+H(s) e

For better accuracy and greater bandwidth, compensation of
this loop is required.

minimum magnitude of the error

Figure 9 indicates that compensation of the roll
loop and additional gain are required to obtain an increased
bandwidth and accuracy.

Figure 10 indicates that the required bandwidth and
accuracy may be obtained by increasing the gain. No compensa-
tion is necessary. For example, to obtain an accuracy of
10 percent between the helicopter response and model response

<mM<mex .
over a bandwidth of 0 = 5~ = ——GQ—L (where ——%ﬂi# = 1.7 from
H H H
Fig. 6) an additional gain of (20.3 + 6)db. = 26.3 db. is
necessary. _
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3.2 Compensated Autopilot and Helicopter Characteristics

3.2.1 Pitch Rate Control Loop

Figure 11 indicates the characteristics of a lead
network suitable to compensate the pitch rate control loops
and Figure 12 indicates the compensated characteristics of
this loop.

A 30-degree phase margin now occurs at %L = 32 when
H

a gain of 21.2 db. (voltage ratio of 11.5) is added. This
results in an error between the helicopter response and the
model response as shown in Figure 13. A maximum error of 8.5

percent is now obtained over a bandwidth of 02 %ﬁ 3.5. The
error curve for a gain of 15.2 db. (voltage ratio of 5.73) is

also shown to illustrate the effect of gain on the error.

3.2.2 Roll Rate Control Loop

The compensation network of Figure 11 may also be
used with the roll rate control loop since the pitching and
rolling characteristics of the helicopter are essentially the
same. Figure 14 shows the compensated roll rate characteristics.

Twenty-one db. of gain may be added to produce a 30-
degree phase margin. Figure 15 shows the error curve for the
compensated roll rate control loop.

3.3 Characteristics of Models Suitable for Representation of
a VIOL Aircraft

The longitudinal characteristics for a deflected slip-
stream VIOL aircraft were obtained by performing an analogue
computer experiment utilizing data from Reference 15. Results
of the simulation are shown in Figure 16. In order that a range
of characteristics might be investigated, data from Reference 3
was also used. Models which incorporate characteristics such
as those cited could be constructed using resistors, capacitors
and inductances (for the case of statically and dynamically
stable modes.) For unstable modes, models could be constructed
using analogue computer components. Representative ranges of
model characteristics are shown in Figures 5, 6, and 7.

4,0 ANALOGUE SIMULATION

The compensated pitch rate control loop of Figure 5
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was simulated on an analogue computer. A model natural
frequency (wM) of 0.566 and damping (qM) of 0.323 were used.

These values were representative of the longitudinal character-
istics of a deflected slipstream VIOL aircraft (Fig. 16). The
helicopter had characteristics wy = 0.194 and q,,= 0.234 (Fig.

5). The analogue study included a simulation of the "bang-bang"
servo system shown in Figure 2 and a fixed time delay of 0.05
second corresponding to the lag in the helicopter control system.

The computer diagram is shown in Figure 17. Shown
pelow are calculations used for computer scaling. The general
equation of motion for the helicopter and reference model is
of the form:

6+ (2m) 8 + @ %0 = £(t)

The solution of the equation to a step function is of the form:

= N T g B

- w A 2
where S W, F Jo V1 o-q

Using this solution it may be shown that

6 has a maximum value when tan o NS q2t = 29

by [0, w2y m )
© has a maximum value when tan W, Jl = qzt = - e

2.2 2
4q wn - wn

Using these relationships and assuming f(t) has a value of
0.10 (where f(t) in the physical case is the ratio of moment

2 ¢ B0 i e A R i & Rkt

- T rTTETNTEYTTT
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input to moment of inertia), the maximum values are:

Helicopter Model Reference Model
émax. = 0.85 rad./sec. émax. = 0.50
6 . = 0.10 rad./sec. 6 = 0.08
. For purposes of computer scaling it was assumed
that 6 = 1.00 rad./sec., 0 = 1.00 rad./sec?, 0__ = 5.00
rad.

If the maximum voltage for linear operation of the

computer is 100 volts then scaling factors for 6, 6, and O are
100, 100, and 20 respectively.

The amplitude of the sawtooth input to the trigger
circuit was chosen so that the circuit would not saturate (3w
error signal would always be less than 50 volts). Biasing
circuits were necessary because of the characteristics of the
trigger and to compensate for amplifier drift.

Results of this study indicated that the helicopter
followed the model response to step inputs with an accuracy of
better than 5 percent at a gain of 12. The 0.05-second time
delay did not produce any measurable change in performance.

5.0 CONCLUSIONS

A model-controlled autopilot appears suitable for
use with a helicopter as an airborne VIOL simulator. With the
following limitations a simplified version of such an auto-
pilot will enable the helicopter to assume the dynamic character-
istics of any desired model.

(1) The proposed system only controls the angular motions
of the helicopter.

(2) The gain cross-over frequencies of the helicopter
may be extended by means of compensation networks to approxi-
mately 3.5 times the natural frequencies, in pitch and roll,
of the helicopter.

(3) Adding the maximum gains that will permit stable
operation within the frequency ranges O Lwl 3. 5wy, the errors
will not exceed 8.5 percent in pitch and roll.
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PHYSICAL CHARACTERISTICS OF A LIGHT SINGLE ROTOR HELICOPTER

Gross Weight

Pitching Moment of Inertia

Rolling Moment of Inertia

Yawing Moment of Inertia

Height of Rotor Hub Above C.G.

Rotor Diameter

Number of Blades

Radius at which Blade Starts

Blade Chord

Solidity

Rotor Angular Velocity

Tip Speed

Flapping Moment of Inertia (per blade)
Cyclic Pitch Control Range (Longitudinal)

Cyclic Pitch Control Range (Lateral)

Cyclic Pitch per Degree Stabilizer Bar Tilt

Stabilizer Bar Tilt Between Stops
Effective Tail Arm
Tail Rotor Diameterxr

Total Hovering H.P.

2000 1b.

1360 slug ft2

270 slug ftg
1070 slug ft2
4.5 ft.

35.13 ft.

2

10.8 percent

1.184:0.35lx
0.0330

34.9 rad./sec.
613 f.p.s.

252 slug ft°
* 14.3 deg.
+ 10.8 deg.
0.88

4.5 deg.

253 inches
6 ft.

180
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TABLE II

STABILITY DERIVATIVES FOR A SMALL SINGLE
ROTOR HELICOPTER

X, = -1.140 1b./ft./sec.
Xq = +226 lb./rad./sec.

M, = *5.14 £t 1b/EE./ sec.
Mq = -1016 ft.lb./rad./sec
Z, = =736 1b./ft./sec.

N, = -660 ft.lb./rad./sec.
Y, = X,

¥, = K,

LV & MU

The Remaining Derivatives are Insignificant in Hovering Flight
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