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Abstract

Natural disasters can significantly disturb communication networks. There are
examples of events causing massive connectivity failures in the past, such as
the Great East Japan Earthquake. Network protection mechanisms have been
developed to cope with the destructive power of natural disasters and mitigate
their impact on connections availability, but in terms of accuracy, they are far
from perfect.
Some natural disasters are predictable and can be detected hours or even

days in advance. In that case, an adequate protection strategy can be applied.
Nevertheless, other types of disasters, such as earthquakes, are classified as
unpredictable; thus, protecting the network becomes challenging. Fortunately,
early warning systems can detect ground motion and provide a few seconds
of warning before the shaking is actually felt. In our work, we utilize early
warnings and other disaster data to develop a network protection approach
against earthquakes, which operates under rigorous time constraints. Our goal is
to minimize the number of disrupted connections in the network by rerouting as
many connections as possible out of the disaster zone, such that their availability
is maximized. At the same time, the sum of the bandwidth of the connections
in the network is also maximized.
We create a realistic disaster model using an early warning system and dis-

aster information. We tackle the uncertainties related to unpredictable disasters
by introducing the concept of multiple disaster scenarios. We define the problem
of finding paths with maximized availability considering the multiple scenarios.
The problem is extended further by adding bandwidth constraints. We propose
heuristics to solve the formulated problems and provide an SDN implementa-
tion. We validate the effectiveness of our solutions by conducting a series of
experiments and creating a custom metric to evaluate our results. The results
show that our approach improves the availability of the endangered connections;
using the proposed multi-scenario strategy is more beneficial than a single scen-
ario. The results also show that our bandwidth algorithm can optimize the
bandwidth utilization of the network. Finally, we compare our solution to an
exact solution and find out that our results are very close to optimal. This
work provides a mechanism for network operators to ensure the protection of
critical network communication in the event of a natural disaster and prevent
the potential loss of human lives.
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Chapter 1

Introduction

Data communication has a fundamental role in multiple aspects of today’s life.
With the rapid development of technological innovations, network reliability is
no longer critical only in social communication between people. A network fail-
ure can lead to the interruption of critical services resulting in severe financial
losses. Highly essential industries like transportation, medicine, and energy sup-
ply depend on reliable network connectivity. Ensuring end-to-end connectivity
can be crucial, especially in emergencies, when people have to be evacuated
or need to get in contact with emergency operators. For this reason, network
resilience has been a research topic for the past decades.

Network failures can occur for multiple reasons - single component failure, tar-
geted human-caused attacks, or a natural disaster such as earthquakes, floods,
hurricanes, and tsunamis. Specifically, natural disasters are large-scale, which
puts at risk entire geographical regions to be disconnected from the rest of the
world. Unfortunately, there are examples of such events - The Great East Japan
Earthquake in 2011; hurricane Katrina in 2005 [12] among others.

Protecting the network infrastructure from the destructive power of natural
disasters is, of course, a challenging task. Hence, network protection mechanisms
have been developed to tackle this problem. There are proactive(protection)
approaches that aim to mitigate the damage before the event occurs and react-
ive(recovery) approaches that handle the post-disaster situation. The former
has the benefit of being fast but not always successful, whereas the latter might
be time-consuming but more resource-efficient [17]. Depending on the scale of
the impact, network recovery operations might take hours, days, or even months
before the connectivity is completely restored. In the current work, we develop
a proactive protection strategy. However, in contrast to the common protection
strategies, ours is initiated after the disaster has occurred but prior to damaging
the network components.

1.1 Problem Statement

Protecting a network from a natural disaster is complex due to two main factors:
the scale of the disaster and the uncertainty associated with its occurrence. It is
impossible to predict the exact course of every possible disaster that might strike
a network. Fortunately, there are early-warning systems that could provide
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information about an upcoming earthquake in advance by detecting ground
shaking [28]. This way, we can protect the network’s sections where damage is
expected by redirecting traffic according to the received information.
However, the warning is received shortly before the disaster strikes and the

time available for action is strictly limited. Considering the large scale and
the severe time constraint, it would be impossible for a network operator to
deal with this task; thus, it would be ideal if the network could protect itself
autonomously.
To our knowledge, the existing work that addresses the problem of protect-

ing the existing traffic in networks does not address the uncertainty of natural
disasters sufficiently. They usually consider a particular scenario and extens-
ive knowledge of its impact on the network. Therefore, we propose a system
that receives and responds to an early-warning input and takes autonomous
and dynamic re-routing decisions to find an alternative path with maximized
availability. We address the uncertainty related to the lack of knowledge of the
exact characteristics of the disaster and the damage it will cause by incorporat-
ing multiple scenarios.

1.2 Goal and Contributions

This work aims to mitigate the impact of the disaster by minimizing the number
of disrupted connections, maximizing the availability of the connections, and
satisfying their requested bandwidth.
Our contributions are as follows:

• We assume the presence of an early warning system to provide disaster
information, and based on that, we generate a set of multiple potential
disasters. Under each scenario, network components fail with a certain
probability, depending on their proximity to the epicenter and the dis-
aster’s impact.

• We propose a heuristic approach for finding an alternative path with min-
imal failure probability considering multiple scenarios.

• We provide a comprehensive disaster model and implement the proposed
approach in SDN. We show experimental results to demonstrate the timing
performance of the algorithm and its capability to handle large-scale fail-
ures within time constraints. Our results validate that our multi-scenario
approach outperforms the usage of a single scenario. We prove that our
proposed heuristic achieves results comparable to an exact solution but
within less time.

• We propose a new algorithm to optimize bandwidth utilization in a net-
work.

1.3 Thesis Outline

The organization of this thesis is the following:

• Chapter 2: Background - provides background information about concepts
and topics used further in this report
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• Chapter 3: Related work - provides an overview of the existing related
research

• Chapter 4: Approach - describes a proposed algorithm to create a self-
protecting network and an extension to this approach that provides band-
width guarantees

• Chapter 5: Experiments - describes the experimental setup, disaster model,
numerical results showing the performance of the proposed approach, and
analysis of the achieved results

• Chapter 6: Conclusion - summarizes the thesis and presents some conclu-
sions

• Chapter 7: Future work - finalizes this thesis and gives directions for
further research and areas that can be improved

3
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Chapter 2

Background

This chapter comprises a brief overview of relevant topics required for a complete
understanding of the remaining chapters of this work. We present the concept
of Software-defined networking and its advantages over traditional networking
and argue why it is suitable for implementing a self-protecting network. Next,
we discuss the OpenFlow protocol, followed by an introduction to disaster Early
Warning Systems and earthquakes.

2.1 Software-defined networking and OpenFlow
protocol

Traditional networks consist of physical devices with dedicated functions - routers,
switches, firewalls, etc. Routers constantly exchange routing information to ob-
tain an overview of the network. A significant drawback of these conventional
networks is that they lack flexibility - the initial configuration and any config-
uration change of every device have to be performed by the network operator.
Thus, the complexity scales as the network size grows. Apart from this, dif-
ferent vendors usually supply different hardware devices which run proprietary
software, making the management and maintenance of the network even more
troublesome.

In conventional networking, each component has a combined control and data
(forwarding) plane. The control plane handles the device configuration and
routing information and, based on that, packet forwarding is done in the data
plane. Once the forwarding information is sent to the data plane, it becomes
difficult to change, which contributes to an increase in the network management
complexity [36].
The concept of Software-defined networking was developed to address and

overcome these burdens. The main feature of SDN is the decoupling of the
control and data plane. The control function is transformed from distributed
(in traditional networks) to centralized. The role of a decision-making unit is
assigned to a programmable controller with an overview of the entire network.
The routing decisions are sent from the controller to the forwarding devices in
the data plane using forwarding rules. The difference in the architectures of the
traditional network and SDN are presented in Figure 2.1.
The programmability of SDN enables flexible and simplified dynamic traffic
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Figure 2.1: Comparison between traditional network architecture and
Software-defined network architecture [27].

management. The centralized controller with knowledge of the whole network
implements customized routing algorithms, and the path computation process
is an effortless task. The network behavior is easily adjustable to the ongoing
situation in the case of a disaster, as long as the controller is not affected.
The centralized overview and the adjustability of the data plane makes SDN a
suitable choice for implementing our self-protecting network approach.

The presence of a centralized controller does not bring only benefits. For
instance, a challenge could be to eliminate a single point of failure by ensuring
redundancy. Another one is choosing appropriate positioning of the control-
ler such that the delay of the switch-controller communication is optimized.
However, these issues are not in the scope of this thesis and thus will not be
addressed further.

The OpenFlow protocol is one of the standards used for establishing com-
munication between the two decoupled planes, namely the controller and the
forwarding devices. The OpenFlow switch architecture is shown in Figure 2.2.
The messages exchanged by the controller and the switch determine how differ-
ent types of packets should be processed [11].

In OpenFlow, the forwarding device contains one or multiple flow tables with
flow entries that identify where to forward the packets of any incoming flow.
The controller can manage the flow entries proactively or reactively by adding,
modifying, or deleting flow entries. The main components of a flow entry are
match fields, counters, and instructions. The match field contains metadata, the
ingress port, and the packet header, which the incoming packet should match.
The matching process begins at the first flow table, following the priority of
the flow entry. If an entry that matches the incoming packet is available, the
instructions defined in the instruction set are executed. When no match is found
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Figure 2.2: OpenFlow switch architecture [11].

in the flow table, the instruction from the miss-flow entry is applied.

2.2 Early-warning systems

Early warning systems (EWS) are systems that detect and characterize up-
coming natural disasters and provide timely information about the emerging
danger[3]. An alarm level is determined to characterize the severity of the
danger, and a warning is distributed via a communication system. The warning
recipients then take appropriate protective actions. The primary purpose of
EWS is to mitigate the destructive effect a disaster might have on a particular
infrastructure and evacuate people out of the risk zones on time [25]. There
are different early warning systems depending on the type of hazard. In the
scope of this work, we are interested only in those hazard events that can cause
communication network outages. Examples are geological hazards (earthquake,
tsunami, volcanic eruptions, etc.) and Hydro-Meteorological Hazards (floods
and storms). The time available for a response, and the action that needs to
be taken, are dependent on the type of the event. Sometimes the event can be
detected days or hours in advance, but other times only a few minutes or even
seconds are available [3].
In the current report, the focus is on earthquake early warning systems

(EEWS). However, the approach we propose applies also to other types of early
warning systems. The function of EEWS is to rapidly detect and characterize
the earthquake and issue an alert/warning to the end-user of a system. Such
warnings are widely available in some countries, like Mexico and Japan. In
contrast, for instance, in the US and India, only a selection of users receive
the warnings [2]. When talking about earthquakes, the available warning time,
namely the time frame between detecting the ground shaking and experiencing
the shaking by the user, is usually seconds or minutes [2]. Even though the
concept of EEWS has existed for over a century, it is still under active develop-
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ment to improve the effectiveness and accuracy of the warnings. In [2], three user
categories are defined - users who use the warning to make personal decisions,
automated response applications, and users who need warning information for
situational awareness. In the event of an earthquake, we believe that the im-
pact of potential network failures can be mitigated by creating a self-protecting
network mechanism, which falls into the second user category. This mechanism
would receive and process a warning from the EEWS and respond automatically
by making protective decisions.

2.3 Earthquakes

Earthquakes are natural disasters with devastating impacts - causing human
fatalities and economic losses. Apart from the damaging effect of the earth-
quake itself, often there are hazardous follow-up events such as landslides and
tsunamis, which enlarge the damage [5]. The severity of an earthquake can be
measured by its characteristics- magnitude and intensity. The magnitude refers
to the total radius of the earthquake, and the intensity is a measure of the ground
shaking that can be felt at a particular location and is varying throughout the
disaster zone [40, 5]. Earthquakes of magnitude lower than 4.5 are unlikely to
cause damage. Intensity scales are used to associate an intensity level to the
expected level of damage. For instance, a widely-adopted intensity scale is the
Modified Mercalli Scale (MMI). The low values in this scale correspond to how
shaking is felt by people, and the higher values represent structural damage[41].
Intensity levels below VI usually do not cause physical damage.
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Chapter 3

Related Work

Protecting a communication network against large-scale failures due to disasters
and mitigating the risk of disrupted connections has been a topic of research in
the past decades. This chapter will discuss the existing related work on network
protection against natural disasters.

3.1 Protection strategies

The authors of [13] presented an overview of research works addressing network
disaster survivability. They discuss different methods to model a disaster and
handle its damaging effect. There are three types of approaches to provide
connection protection- proactive, reactive, and hybrid. Natural disasters are
classified as predictable (when the event can be forecasted in advance) and un-
predictable (when a prediction cannot be made). In the scope of this work, we
focus only on proactive protection against large-scale failures caused by natural
disasters and, more particularly, earthquakes, which are classified as unpredict-
able natural disasters.

3.1.1 Proactive protection

Izaddoost and Heydari wrote multiple papers on developing a dynamic prevent-
ive approach to protect network connections from the destructive behaviour of
natural disasters [18], [20], [19], [21]. The authors aimed to improve network
survivability by rerouting endangered connections through safer paths with de-
sired availability. They assumed probabilistic component failures that vary in
time and depend on the impact radius and disaster intensity. They define a
lower and upper path failure probability threshold as a decision parameter for
rerouting prior to the failure of the original path. In [18] and [19], Izaddoost
and Heydari suggest finding all paths between the source and destination node,
filtering out the shortest paths, and evaluating their end-to-end failure probabil-
ity. The first shortest path is selected if its failure probability is below the lower
threshold. If its failure probability is higher than the upper threshold, another
shortest path is selected. Even though this method can ensure a safe alternative
path, finding all paths for every node pair is computationally intensive; hence
this solution will not be feasible for large networks.
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Finding all possible paths and comparing them is a brute force approach to
finding the optimal solution. We perform such an experiment in our Experiment
section and compare it to our proposed approach’s performance. The results
prove that finding the exact solution is much more time-consuming and does
not provide a significantly better solution than our heuristic.
In [20], Izaddoost and Heydari built upon their previous work. They sugges-

ted computing the link damage probability at several decision intervals during
a disaster and using the average of the maximum and minimum values as a
rerouting decision parameter. This parameter is updated dynamically as the
disaster area expands. In addition, to computing the link damage probability,
they acknowledged the importance of the link in the network by including the
betweenness centrality of the link in the computation. In their most recent work
[21], Izaddoost and Heydari continued their previous study and proposed a self-
adaptive protection model and optimization of the chosen rerouting threshold.
The authors used two methods to model the disaster: they used randomly
chosen locations in the first method. The second method considered a worst-
case scenario by assuming that the disaster can originate from each node. For
both methods, no actual seismic or hazard data was used.
In [32] Saito et al. presented a method for disaster avoidance against heavy

rainfall by performing network reconfiguration. The proposed approach is im-
plemented in SDN and uses actual geographical information and hazard data
from Japan. The system consisted of: disaster risk assessment, disconnection
evaluation, and logical network computation. The geographical area is parti-
tioned into grids based on the amount of rainfall, and a warning is issued for
each grid at a particular time. After the warning grids are determined, the risk
assessment part determines the disaster occurrence probability in this grid. The
network reconfiguration aimed to avoid the disaster impact by migrating VMs
or switching the path for accessing the VM. The authors considered bandwidth
constraints on the communication links and differentiated two types of nodes -
access and data center nodes. Their results showed that the execution of the
network reconfiguration takes about 100 seconds. The evaluation of this solu-
tion is performed on a small network with limited conditions. Therefore the
authors extend their work further in [15].
In their follow-up work [15], the authors also considered link transmission

delay in addition to bandwidth. They defined three types of nodes- data cen-
ter, access, and transit nodes. There is a predefined backup location for every
data center node where the VM can be migrated. The discussed problem is
different from ours because having nodes with specific functions - access and
data center nodes- limits the amount of source-destination pairs. In addition,
the presence of a predefined set of backup nodes suggests that multiple destin-
ations are possible, similar to [24]. The conclusion from the experiment results
was that reconfiguration is more beneficial compared to changing routes. The
execution of the proposed algorithm took about 20 minutes. Therefore we can
conclude that this approach would not solve our problem, where the response
time is within seconds.
In [28] the authors discussed the integration of an early warning system into

a network protection strategy. They assumed gathering and processing real-
time earthquake information and the presence of a path computation element,
which computes and assigns different alarm levels to network components and
decides what further action to take. The authors suggested three re-provisioning
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approaches - extreme - all connections are re-provisioned with full or degraded
bandwidth; relaxed- only critical connections are re-provisioned; careful - some
or all connections are re-provisioned depending on the alarm level.
In [16] Iqbal et al. captured the spatiotemporal behavior of natural disasters.

They proposed polynomial-time algorithms to detect endangered connections
and find a risk-averse path to reroute them under a time constraint. They
proposed a grid-based risk model. Every grid cell is assigned with an availab-
ility value, which corresponds to the probability of a disaster and this disaster
causing damage. The availability of a link is determined by the product of the
availabilities of the grids crossed by the link.

3.1.2 Data evacuation

In [44] Xie et al. also discussed the impact of progressive disasters. The au-
thors considered a time-variant network and performed emergency data evacu-
ation. They formulated an optimization to maximize profit and time efficiency.
Similarly to us, they assumed that an early-warning system provides helpful
information to the operator regarding the time and range of the disaster. The
operator can take action accordingly within the available response window. The
duration of the warning window is arbitrarily chosen and not based on disaster
early warning information. Their simulation used two types of disasters: one
that starts from the edge of the network and one from the center. They as-
sumed that at certain time intervals, the disaster expands, and the nodes and
links that fall into the disaster area are destroyed; thus, their disaster model
is deterministic. Unlike our approach, their work encompasses only predictable
disasters. The early warning can be issued days in advance, and the time and
impact zone of the disaster can be accurately predicted.
Ferdousi et al. [10] proposed a proactive approach for data evacuation before

a disaster impacts the network. Their heuristic, called rapid-data-evacuation,
takes the least-delay path to evacuate data from a node located in the disaster
zone to a safe node- outside the range of the disaster. They assumed an evacu-
ation deadline and aimed to evacuate the maximum contents within a minimum
time. Similar to us, their solution aimed to provide an immediate response based
on the received alert. A fundamental difference between this work and ours is
that the authors assumed anycast routing from any source to any destination.
That was possible because multiple nodes contained a content replica that has
to be evacuated. However, that does not apply to our problem because we have
no flexibility regarding the source and destination nodes. Another difference
is that the authors used a deterministic failure approach and custom disaster
model; thus, they assumed complete and specific knowledge on the disaster
zone and impact. Since their solution is to find the least-delay path, assuming
a probabilistic failure could find a better least-delay path. For the simulation,
the authors considered an EMP attack and determined an evacuation window
of 7s. However, for EMP attacks, usually, no warning is available.
The authors of [24] also looked into performing data backup prior to a disaster

occurrence. Equivalently to us, they assumed the presence of an early-warning
system and considered the limited time available for response. The authors
aimed to find multiple nodes in a safe zone where data from the endangered node
can be transferred. That means that multiple destinations are possible. Thus
their approach is less constrained compared to ours. The authors considered
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that precisely one node would be affected by the disaster, and respectively, data
from only this node has to be migrated. Even though it is not impossible to
experience single component failure in real life, we assume such a scenario is
not sufficiently representative. Moreover, having only one affected node, while
migration to multiple nodes is possible, provides a broader range of nodes where
data can be accommodated.
The studies mentioned above discussed proactive protection strategies. Some

of them had the same objective as ours- to provide instant action in response
to an early warning within a limited amount of time. However, except in [16],
the uncertainty of dealing with unpredictable natural disasters is not addressed.
The authors assumed detailed knowledge of the disaster specifics and affected
components. In contrast, our work does address this issue, and we propose a
network protection framework considering multiple disaster scenarios.

3.1.3 Shared Risk Link Groups (SRLG)

The concept of Shared Risk Group (SRG) has been developed to capture the
simultaneous failure of network components located in a specific region or mul-
tiple regions. SRLGs can be used to model a network failure. However, this
approach is usually associated with deterministic failure modeling, where all
elements within the SRG fail together [4]. Usually, the common 1+1 protection
mechanism ensures full protection, which requires finding two disjoint paths to
ensure complete protection. In the context of SRLGs, this will transform into
finding an SRLG disjoint path. The SRLG concept is similar to our method - a
group of network components fails due to a particular disaster striking. Thus,
the multiple disasters can be represented as multiple SRLGs.
Some authors assumed that the failures can have a probabilistic character.

The concept of SRG, or SRLG (if only links are considered), evolved into a
probabilistic SRLG (pSRLG) to create more accurate models and adapt them
to real-world scenarios. Lee et al. [23] proposed a probabilistic SRLG fail-
ure model, where the links within an SRLG fail independently with a certain
probability. In addition, each pSRLG has its probability. Their solution is cat-
egorized as a path protection mechanism. The goal is to determine a pair of
primary and backup paths with minimum joint failure probability formulated
as an integer non-linear program (INLP). They assumed the SRLG events were
mutually exclusive, making their work similar to ours. However, they only con-
sider link failures. Moreover, their approach is not intended to provide emergent
network protection.
Diaz et al. [8] based their work on [23], but in addition to risk minim-

ization, they also provided a traffic engineering solution. They proposed a
load-balancing approach, finding k pairs of link-disjoint working and protec-
tion paths, and selected the best pair in terms of availability.
Yang et al. [45] considered a probabilistic SRLG network to define the prob-

lem of availability-based path selection, which is a problem of finding fully or
partially disjoint paths of specific availability. They prove that the problem is
NP-hard even for a single path in the SRLG network. However, in this work,
the SRLGs are not mutually exclusive. In addition, the links within an SRLG
fail with probability 1. This work differs from ours first because authors deal
with the problem of finding paths to establish connections and not to reroute.
In [30] Pašić et al. present FRAmework for DIsaster Resilience (FRADIR).
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The framework includes network design, disaster failure modeling, and protec-
tion routing and aims to improve the availability of mission-critical applications.
The work is continued further in [31] and [29]. To model the probabilistic re-
gional failures, the authors use Probabilistic SRLGs. The failure probabilities
of a network link depend not only on the distance from the disaster’s epicenter
but also on its availability. A threshold value is defined to determine the list
of SRLG. For the network design, the authors incorporate the spine concept.
That means that certain edges in the topology are selected and upgraded by
increasing their availability. This work differs from ours because the SRLGs are
weighted based on the unavailability of the links they are composed of. In this
sense, multiple pSRLG is not equivalent to our multiple scenarios- in our case,
the probability of a disaster scenario corresponds to its occurrence chance. It
is not related to the failure probability of the components affected under this
scenario. Moreover, the implementation of the spine concept suggests that this
step has to be performed in advance; thus, it cannot be applied as an emergency
protection mechanism.
The authors of [22] proposed an algorithm for partially SRLG-disjoint pro-

tection. They suggested a classification of the SRLGs based on their failure
probability. Two routing models are discussed - Priority Level and Minimum
Weighted Risk-disjoint Protection. The authors aimed to present a realistic
SRLG assignment; thus, the division of the network into SRLGs is based on
seismic hazard maps. As for performance evaluation metrics, they used the
number of affected connections and blocked connections. The formation of mul-
tiple SRLGs is not related to multiple disasters; hence this work differs from
ours.
In [9] the authors considered a risk-aware disaster model by mapping SRLGs

to events from a hazard map, which represents the risk events. Dikbiyik et
al. proposed traffic engineering solutions for proactive and reactive network
protection. Their objective is to minimize the risk and penalty for the network
operator in the event of a disaster. The proposed risk model is very generic and
includes a broad spectrum of disasters that can occur simultaneously.
In contrast to the above-discussed works, our solution provides a detailed and

realistic disaster model and a specific methodology for computing the network
component failure probabilities. The component unavailability in our work is
based on the component’s location regarding the epicenter and the character-
istics of the disaster, such as intensity level.
In addition, we assume both links and nodes can fail due to a disaster, which

contributes to the completeness of our solution. We manage to handle the
uncertainty typical for natural disasters by using multiple disaster scenarios.
Even though our multi-scenario strategy is close to the pSRLG concept, we also
assume an early warning system, which helps us set boundaries of desired timing
performance of our approach. Time limitations are not present in any discussed
probabilistic SRLG related work.
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Chapter 4

Approach

4.1 Disaster-related uncertainty

As established, natural disasters threaten the connectivity of a communication
network. Network components are at risk of failing due to disasters, and en-
suring connections will remain undisrupted is a challenging task. While some
disasters are predictable and one can perform appropriate protection strategies
well in advance, that is not the case when the disaster is unpredictable. Earth-
quakes are an example of an unpredictable disaster. Hence, protecting a network
against an earthquake is possible only after ground motion is detected. In the
scope of this project, we will discuss only earthquakes.
In Chapter 2, we discussed that the warning time available for taking pre-

ventive action is the time window between the moment the ground shaking is
detected and the expected time of the peak ground motion [1]. This time frame
is only a couple of seconds, which imposes a rigorous time constraint- observing
this limitation, the network connections must be protected. They have to be
rerouted away from the hazardous area, if possible. The most time-efficient
option is to reroute the connections automatically- without human interven-
tion. For this reason, we aim to create a system that takes as input disaster
data and automatically executes a customized rerouting algorithm to protect
the connections affected by the disaster.

4.2 Problem Statement

When a disaster strikes, the links in the network, which fall into the disaster
zone, are at risk of failure. Thus, their availability and the availability of the
paths composed by these links will decrease. In other words, the connections
which go through the disaster zone are endangered and have to be protected.
We assume that every connection in the network has a pre-defined availability
requirement, which corresponds to the end-to-end availability of the connection’s
path. Hence, in the event of a disaster, the availability of some of the paths
will decrease. Meaning the connections associated with those paths will have an
increased chance to be disconnected. With this, we come to the problem that
these connections will not meet their pre-defined availability requirement. Our
objective is to maximize the availability of the connections that do not meet
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their availability requirement anymore.

Earthquakes are unpredictable, which means they cannot be detected before
ground shaking has started. Therefore, we do not know how the disaster will
unfold in advance. We, for example, do not exactly know which links will
potentially be damaged and with what probability. If we have information
about a historic earthquake, we can compute the availability of the links in the
network under the assumption that this particular event will occur again. We
can refer to a catalog of historical disasters [42] and observe previous events
in a specific geographical area. However, there is still a level of uncertainty
about the upcoming disaster, which cannot be captured by only looking into
past events. We cannot expect that precisely one of the historical earthquakes
will be identical to the current one. Hence, it will be insufficient to take data for
only one past disaster and compute component and path failure probabilities.
Some authors use hazard maps to identify risk areas and apply a protection
mechanism based on that [22], [9], [33]. However, protecting a network using
such a generic risk model can come at a high resource cost and still not be
effective enough.

As mentioned in Chapter 2, there are early warning systems that can provide
a notification when a disaster is detected. However, these systems are not
perfectly accurate, especially in a fast-evolving disaster such as an earthquake.
Therefore, when receiving a warning message from an EWS, we expect a certain
error margin, both in terms of location and magnitude [26], [1]. A way to tackle
this possibility of error is to consider multiple disaster scenarios when assessing
the components and connections’ availability.

If we consider a single disaster scenario where link failures are independent,
and set the link weight to be −log(1- link failure probability), finding a single
alternative path with minimum failure probability is the same as finding the
shortest path. This problem is trivial and solvable in polynomial time. How-
ever, the failures are no longer independent when multiple scenarios are factored
in, making finding a path with minimized failure probability a difficult prob-
lem. Finding an alternative path for one connection is a sub-problem of finding
alternative paths for all endangered connections. The authors of [23] proved
that the problem of minimizing the path failure probability of a single path in
probabilistic SRLG networks is NP-complete. This problem is equivalent to our
sub-problem, hence our problem is also NP-complete.

To summarize, the problem we have to solve is identifying the endangered con-
nections (connections that do not meet the availability requirement), rerouting
them through alternative paths with maximized availability, considering mul-
tiple disaster scenarios. In addition, we aim to maximize the sum of the band-
widths of the saved connections while adhering to a capacity constraint. It is
important to note that the rerouting operation must be performed under a strict
time constraint - within a few seconds after receiving the warning message.

4.2.1 Problem 1: Finding an alternative path with min-
imized failure probability under multiple scenarios

This subsection will define the problem of finding an alternative path with min-
imum failure probability for an endangered connection under multiple disaster
scenarios.
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Prerequisites: We consider a network failure model where multiple disaster
scenarios are possible but only one of them will occur. Thus, disaster scenarios
are mutually exclusive. Let a disaster scenario be s ∈ S, and the probability of
this scenario to occur be πs. Following the mutual exclusiveness of the disaster
scenarios, their occurrence probabilities sum up to 1.
Availability computation: Let c ∈ C be a connection from the source to the

destination node. The availability of a connection is equal to the availability
of the path that connects the source and the destination node. In case the
component failures are independent, we can compute the availability of a path
as the product of the availability of all links and nodes composing this path.
The availability (A) of a link (l) or node (v) is the probability that this link or
node will not fail and can be computed using (4.1 and 4.2).

Al = 1− Fl (4.1)

Av = 1− Fv (4.2)

Following from this, the availability of the path is computed as shown in (4.3):

Ap =

n∏
i=1

1− Fli ·
n∏

i=1

1− Fvi (4.3)

Thus, the failure probability of the path is represented as:

Fp = 1−Ap (4.4)

Objective: Given the prerequisites above, we can state that our objective is to
minimize the path failure probability under each scenario. That can be denoted
as follows:

min
∑
s∈S

πs · F s
p (4.5)

4.2.2 Problem 2: Finding an alternative path with minim-
ized failure probability under bandwidth constraint

To make our approach more applicable to real-world situations, we extend the
algorithm presented in Section 4.4.1 by adding a bandwidth property. This
addition translates to assigning a bandwidth capacity to the links in the network
and specifying the amount of bandwidth requested by each connection (source-
destination pair). Because in real communication networks, the connections are
heterogeneous [34], we assume they request a different amount of bandwidth
following certain distribution.

Adding a bandwidth property to the links and the connections in the network
imposes an additional constraint to the previously defined problem. That is, the
capacity of the alternative path has to comply with the bandwidth requirement
of the connections. Thus, we have to extend the problem we defined in Subsec-
tion 4.2.1. The essence of the problem remains the same; every connection has
an availability requirement. If the current path from source to destination node
has lower availability than required, we consider this connection endangered.
A new path with a higher availability has to be found. The new problem is
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that every link composing the alternative path should have enough capacity to
accommodate the incoming connection.

In other words the previously defined Objective 1 4.5 remains valid, however
under the following constraint: ∑

c∈C

Bl
c ≤ Bl

max (4.6)

Where Bl
c is the bandwidth of the connections going through the link and

Bmaxl is the maximum capacity of the link.

To evaluate our solution, we have to define a custom compound metric. In
this metric, we value availability equal to bandwidth retention. Thus we define
our compound metric as Ap + B where Ap is the availability of a connection,
and B is the network retention of a connection in percentages.

Objective 2: Our next objective is to maximize the sum over all connections
of our custom compound metric.

An alternative path must be computed after establishing that a particular
connection needs rerouting. Previously, we used a heuristic to find a path with
a maximized availability. However, this is not always as straightforward as
before in the current situation. We might encounter a situation where this
path does not have sufficient resources- namely, some of the links belonging
to the new path do not have enough capacity available (4.6). An option to
handle this is to keep looking for another path with enough capacity; otherwise,
we have to drop the connection. Unfortunately, we might be unable to find
such a path. That is a highly undesirable situation because, in the event of a
natural disaster, the traffic going through the network is of great importance
and possibly a matter of life or death. Hence, we are motivated to find a
solution that avoids dropping connections due to bandwidth constraints while
guaranteeing the requested bandwidth and maximized availability. It is crucial
to minimize the dropped connections, to maximize the amount of fully functional
connections.

4.3 Framework overview

Before going forward with the solution to the problem, we will provide an over-
view of the system as a whole and the input required to perform the rerouting
algorithm. In essence, our system consists of two main components - an oper-
ating network and an early warning system. A schematic overview of the entire
system is available in Figure. 4.1.

4.3.1 Network input

To protect the network efficiently, we need a centralized, programmable control
unit, which receives the warning and controls the routing behavior of all the
nodes in the network. While there are various ways to realize this, including
traditional networking, we choose to present an SDN implementation. Using
a centralized SDN controller to receive the disaster information is practical
because not every node has to contain this information.
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The controller receives a set of connection requests. We define a connection
as a pair of source and destination nodes, and all connections have a specified re-
quested availability. The SDN network consists of nodes (switches) V connected
to an SDN controller and a set of links L, connecting the nodes. The control-
ler has the role of a path computation unit and runs a customized controller
application, where we implemented the rerouting algorithm.
The controller’s input is the network topology information — namely, the

location of the nodes and the links, characterized by their geographical coordin-
ates. In addition to the source and destination point, each link’s geographical
information also includes a set of coordinates defining intermediate points, which
provides a more accurate view of the actual trajectory of the links. In Chapter
5, we explain in more detail how we make use of this geo-location data.

4.3.2 Disaster Model and Input

The controller receives disaster information containing disaster scenarios and
the corresponding links and node failure probabilities. This list is an output
created after processing the warning message issued by the EWS. A warning
message generated from an EWS contains disaster information depending on
the type of disaster. We assume the contents of such messages and extract the
information we need to generate disaster scenarios. The proposed self-protecting
approach can also apply to other kinds of disasters. However, we will only look
into a case study considering earthquakes for this project.
To obtain knowledge about the seismic activity in a particular location, we

propose using data from the catalog of past disasters [42] relevant for the spe-
cific geographical region where our network is located. We can filter the set
of historical disasters by date, magnitude, and intensity. The intensity of an
earthquake determines its severity and the level of damage it can cause at a
particular location. A widely-adopted intensity scale is the Modified Mercalli
(MM) Intensity Scale [41]. Based on this scale, we can conclude that an intensity
level lower than VI is unlikely to cause damage to the links in the network. To
obtain the size of the expected disaster area and expected intensity level based
on magnitude, we use the data provided by the authors of [38] at [37]. Using
this data, we can select an earthquake epicenter from the catalog and look at
the correlation between disk radius size, the intensity level, and the magnitude
of the disaster.
We assume that the early warning message sent from the earthquake EWS

provides information about the estimated time of the disaster, the location of
the epicenter, and the magnitude of the earthquake. This data is sufficient to
form one scenario. However, we assume that this information is not completely
accurate, and to cover the possible error margin, we create multiple scenarios.
In Chapter 5, we provide a detailed explanation of how we derive the multiple
scenarios. By itself, the EWS warning message is insufficient for the controller
to take any actions. Therefore, after obtaining the size of the area impacted by
the disaster, we can compute failure probabilities for the links and nodes located
in those areas. Even though some authors consider only link failures [39], we
believe that also including node failures will make our solution more versatile.
Thus, our list contains values for both link and node failure probabilities for
all scenarios. Using the coordinates of the disaster’s epicenter and the radius
of the impacted area, network components falling into this area are assigned
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a failure probability. The failure probability decreases linearly as the distance
from the epicenter increases- so does the intensity level. The component failure
probabilities take values between 0 and 1 for intensity levels between VI and X,
respectively. If the intensity level is lower than VI, we consider a component does
not fail, meaning its failure probability equals 0. To determine the distance of a
link from the epicenter, we split the link into line segments based on the provided
intermediate points and take the shortest distance from the line segment to the
epicenter point.

4.3.3 Prioritizing connections

According to [1], the amount of available warning time at a particular location
depends on its distance from the epicenter, which means shorter warning times
for connections traversing closer to the epicenter. Therefore, we sort the con-
nections based on their proximity to the epicenter. Connections that traverse
closer to the epicenter will be rerouted before connections that are located fur-
ther away. That is beneficial because connections with a higher chance of being
impacted and lower warning times are protected first.

4.4 Proposed Solution

4.4.1 Solution to Problem 1

To solve the problem stated in Subsection 4.2.1, we propose an approach for
finding a safer alternative path for connections that are located within the dis-
aster zone. We described the method in Algorithm 1. The used notations are
given in Table 4.1.

During the regular operation of the network, before the disaster warning is re-
ceived, we route the traffic through the shortest path calculated using Dijkstra’s
algorithm. When a disaster warning is received, we compute component failure
probabilities and determine which connections do not meet the availability re-
quirement. The network should be reconfigured to redirect the ongoing traffic
through a safer route. We do this by rerouting the traffic outside the disaster
zone or through a path with higher availability than the operating path.

To find which connections need to be rerouted, we compute their current
availability and compare it to the pre-defined connection availability require-
ment. If the path availability is lower than the requested value, the connection
is marked as endangered, and we need to find a new path. If we find a path that
ensures higher availability than the availability of the original path, the flow is
redirected to this path. If we cannot find such a path, the original path remains
operational. That means the connection is not reroutable, and the traffic flow
cannot be protected.

The path with the highest availability can be computed using Dijkstra’s
weighted shortest path algorithm. If we assign link weights to be the negat-
ive logarithmic value of the link availability: −log(Al), the minimum weight
path will be the highest availability path. This solution will give the optimal
path if the link failures are independent we fully know the disaster specifics
and consider that this particular disaster will occur. However, we are not sure
which disaster will occur in our case. We consider multiple disaster scenarios,
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each with a respective occurrence probability. This consideration will change
the previously discussed way to compute the overall path failure probability in
(4.4) because component failures will no longer be independent. To encompass
the correlation of the link and node failures for multiple scenarios, the general
path failure probability Fg is computed as the sum of the path failure probabil-
ity for every scenario, multiplied by the occurrence probability πs of the scenario
itself. The proposed solution is a heuristic to find a path with approximately
the highest availability. The general path failure probability under all scenarios
together is calculated as shown in (4.7):

Fg =
∑
s∈S

πs ∗ F s
p (4.7)

If the operating path has lower availability than requested (rerouting threshold),
the system must discover a new, safer path from the source to the destination
node. To find such a path, we will use the weighted Dijkstra’s algorithm with
link weights equal to the negative logarithmic value of the link availability and
the node availability(of the tail node): −log(Al)+(−log(Av)). The difference is
that this time, we loop over all scenarios in the list and compute link weights for
every link, as shown in Algorithm 2. We exclude the failure probability of source
and destination nodes for the availability computation as these nodes are fixedt
and cannot be excluded from the alternative path. The algorithm compares the
availability of the newly discovered path with the availability of the endangered
path. If the availability of the new path is higher, the connection is rerouted;
else, the operating path remains unchanged.

The time complexity for the proposed heuristic Algorithm 1 can be denoted
as O(|C|2 + |C| · (|S||L|+ |V |2), where |C| is the number of connections in the
network, |S| is the number of scenarios, |L| is the number of links, and |V | is
the number of nodes.

Notation Description

c ∈ C Connection
l ∈ L Link
v ∈ V Node
Al Link availability
Av Node availability
Ap Path availability
Fl Link failure probability
Fv Node failure probability
Fp Path failure probability
Fg General path failure probability under multiple scenarios
πs Scenario Probability
F s
l Link failure probability under scenario s ∈ S

F s
v Node failure probability under scenario s ∈ S

F s
p Path failure probability under scenario s ∈ S

Table 4.1: List of notations.
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Algorithm 1 Finding alternative path for endangered connections

Let C be all the connections in the network
Sort the connections in C ascending on their distance to the epicenter.
for each connection c ∈ C do
Fg ← 0
Scenarios S are all scenarios
for each scenario s ∈ S do
Ap = 1
Links L are all the links in connection c
for each link l ∈ L do
Al ← 1− Fl (Equation 4.1)
v ← tail node of l
if v ̸= destination node then
Av ← 1− Fv (Equation 4.2)

end if
Ap ← Ap ·Al ·Av (Equation 4.3)

end for
Fg ← Fg + πs · (1−Ap) (Equation 4.7)

end for
if Fg ≥ rerouting threshold then
Find alternative path using Dijkstra with custom weight function in Al-
gorithm 2
Compute Fg of alternative path
if Fg of the alternative path < Fg of original path then
Reroute flows through the new path

else
Keep the original path

end if
end if

end for

Algorithm 2 Link/Node failure and Link/Node weight computation

Fl ← 0
Fv ← 0 (Destination node)
Scenarios S are all the scenarios
for each scenario s ∈ S do
Fl ← Fl + πs · F s

l

Fv ← Fv + πs · F s
v

end for
if Fl > 0 or Fv > 0 then
link weight← −log(1− Fl)− log(1− Fv)

else
link weight← 0

end if
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4.4.2 Solution to Problem 2

To address the problem stated in 4.2.2, we propose an algorithm for finding
an alternative path that satisfies the bandwidth requirement. The first step is
to observe the link’s bandwidth usage - this will give us an overview of how
much bandwidth is used and available on each link. To find a higher availability
alternative path, we use a modified version of the customized weight function,
where at each hop, we evaluate the bandwidth utilization of the link. If the link
has insufficient capacity, we mark it as a bottleneck and find a different shortest-
path without bottleneck, if possible. A bottleneck is a link that does not have
sufficient capacity to accommodate the incoming connection. This algorithm is
described in Algorithm 4. The notations used are given in Table 4.2.
If it is impossible to find a path without bottlenecks, we use Dijkstra’s al-

gorithm again, but this time without considering the bandwidth of the links.
In essence, we perform a look-ahead to see which path would have been pre-
ferred if there were no bandwidth constraints. Then, we choose this path to be
the alternative and try to resolve the previously established bottleneck on this
path. To do so, we analyze the utilization of the link and observe whether there
is a lower-demand connection, which we can remove and route our connection
instead. Note that we remove an ongoing connection only in case:

• Condition 1: this would release enough resources to route the incoming
connection

and

• Condition 2: the incoming connection has higher requested bandwidth

We want to remove only one connection to resolve the bottleneck. If we
remove multiple, the number of connections that need to be rerouted will in-
crease. Furthermore, we want to remove a lower-demand connection because
otherwise, we will decrease the amount of data transferred through the net-
work, only worsening the situation. In other words, we prioritize connections
that require more bandwidth to maximize the network’s throughput (see ??).
To decide which connection to remove, we calculate an optimal bandwidth

value using 4.8.

Bopt = Bh −Bavail (4.8)

where Bh is the amount of bandwidth requested by the candidate connection
and Bavail is the residual available bandwidth on the link. Then, we select
one connection to be removed from the existing connections going through this
bottleneck link. The bandwidth of the selected connection must be higher or
equal but closest to the calculated optimal value. After finalizing this step, we
iteratively attempt to route the removed connection. We simplify our problem
because we are trying to find a path for a connection with a lower bandwidth
requirement. As a last resort, it will be dropped if it is not possible to find a
safer path to reroute the removed connection.

Encountering a single bottleneck link or, ideally, none is a favorable scenario.
However, we can expect that this is not always the case. For this reason, our
algorithm should be able to handle situations where the chosen path for rerout-
ing consists of more than one link with insufficient capacity. To handle this
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case, we are using multiple layers of recursion. Namely, after resolving the first
bottleneck, we go back to the function that finds the shortest path and checks
if there is a new obstructed link. This procedure continues until all conflicts are
resolved, and the flow can be rerouted successfully to the intended path. The
pseudo-code of the algorithm is described in Algorithm 3. The time complex-
ity for Algorithm 3 can be denoted as O(|C|2 · (|V |2 + |C|2)), where |C| is the
number of connections in the network and |V | is the number of nodes.
Combined with Algorithm 1, the complexity for the full algorithm is O(|C|2+

|C| · (|S||L| + |C|2 · (|V |2 + |C|2)), where Dijkstra’s algorithm is replaced by
Algorithm 3.

4.4.3 Optimization

For optimization purposes, to avoid spending too much time looking for a path
for a particular connection, we set a limit of five attempts. This way, the execu-
tion will not be stalled when we encounter a connection requiring an excessive
number of attempts to compute a safer path. The need for this optimization is
due to the rigorous time constraint.

Notation Description

c ∈ C Connection
h ∈ H Connection that needs to be rerouted
l ∈ L Link
Bh Requested connection bandwidth for candidate connection h
Bc Bandwidth used by existing connection c
Bmax Maximum bandwidth capacity of the link
Bused Used bandwidth
Bavail Available bandwidth
Bopt Optimal bandwidth value

Table 4.2: List of used notations.

Algorithm 4 Bandwidth extension in custom weight function

if Bh ≤ Bl
avail then

weight← 1.0
else if Bh > Bl

avail then
Add link to bottlenecks
No routing through link possible

end if
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Algorithm 3 Rerouting with bandwidth constraint

Let H be all the connections that need rerouting
for each connection h ∈ H do
Remove the current bandwidth used by h before finding a new path:
Bused ← Bused −Bh

Find the shortest path and possible bottleneck links with a Weighted Dijk-
stra’s algorithm using a custom weight function (Algorithm 4)
if path is found then
mark h to be installed

else if connection h cannot be routed because of limited bandwidth Bavail

on link l then
Pick the bottleneck link
Bl

avail ← Bl
max −Bl

used

Bopt ← Bh −Bl
avail

Sort the connections c going through link l ascending on bandwidth usage

for each connection c ∈ l do
if Bc < Bh ∧ Bc ≥ Bopt then

Remove c
Add c to H
exit loop

end if
end for
Install h

else if No path is found then
Drop connection h

end if
end for
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Figure 4.1: System overview.
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Chapter 5

Experiments

5.1 Setup

For our experiments, we simulated earthquakes located in Italy. We selected
three locations for earthquake epicenters - two of them are in places where an
earthquake has occurred in the past, according to the USGS catalog of histor-
ical disasters [42]. The third epicenter is in a location where the density of the
network links and nodes is low. In addition, for each epicenter, we take three
additional locations to incorporate the uncertainty of the EWS (described be-
low in Subsection 5.1.1). We use a topology of a network located in Italy, made
available by the authors of [43]. The topology and the chosen earthquake epi-
centers are shown in Figure 5.1. The network consists of 25 nodes and 35 links
and is emulated using the Mininet network emulator[7] running on a virtual
environment.

5.1.1 Configurations

To model the disaster, we assume that the EWS message provides the expected
location and magnitude of the disaster. However, according to [26], it is possible
to have an error of ±1.0 units for the expected magnitude value as well as for
the epicenter location. In [1] the authors also discuss error in the magnitude.
In our simulation, we address this possible error to tackle this uncertainty and
prepare for the upcoming disaster. When we receive a warning indicating a
particular magnitude, we generate multiple scenarios to encompass the error
by taking additional magnitudes of ±1.0 units. For instance, if the magnitude
value in the warning message is 7.1, we consider it can also be either 6.1 or 8.1
- this corresponds to three possible scenarios for the upcoming disaster. The
magnitudes of interest range from 4.6 to 8.1 because an earthquake of a lower
magnitude is unlikely to damage a network component. For our experiments,
we choose three main magnitude values to cover the entire spectrum.
In addition, we assume that the location information is also not completely

accurate. Therefore, we choose three additional location points where the dis-
aster epicenter can be expected for each of the three locations. The extra points
are located 20 kilometers from the primary location. To define the coordinates
of the three additional points, we set the initial bearing to be 60◦, 180◦, and
300◦, to the main point. This way, we increase the number of scenarios and
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Location 1

Location 2

Location 3

Figure 5.1: Network topology: red asterix- main epicenter location;
red cross- additional epicenter locations; blue dot- network node.

obtain 12 scenarios for each primary location. We assume that the scenarios
are mutually exclusive, and each of them has an equal probability of occurring;
hence we assign an occurrence probability of 0.083 to each scenario.

We generate a list of node and link failure probabilities for each scenario—the
probability for a link or node to fail decreases as the distance from the epicenter
increases. However, the component failure probability is not dependent only on
its distance from the epicenter; we also consider the properties of the expected
disaster. To obtain information about the size of the disaster area, for the differ-
ent intensity levels and the desired magnitude, we refer to the data set created
by the authors of [38]. When we receive the magnitude of the disaster from the
EWS, we can use this data set as a reference to find out the corresponding disk
size and intensity level.

We assume that the intensity reflects on the failure probability. Therefore
we distribute the probability values in the range [0, 1] to decrease linearly for
intensity levels between VI and X. Also, the probabilities are distributed lin-
early by distance; thus, we have an upper and lower bound for each intensity
level. For intensity level XI, we assume a constant failure probability of 1 due
to the extremely destructive power expected by an earthquake of such a high
intensity. The probability range for each intensity level is available in Table.
5.1. In other words, we measure the distance from the links and nodes to the
epicenter to determine whether they are located in the disaster area and, if
so, in which intensity level and assign a failure probability. To perform more
realistic measurements and encompass the curvature of the Earth, we compute
the shortest distance between any two points using the geodesic module from
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the geopy Python library [6]. In addition, to find the distance between a link
and the epicenter with better precision, we take line segments of the link de-
termined by the available intermediate coordinates and compute the shortest
distance from a line segment to the epicenter.

Intensity
level

Lower
bound

Upper
bound

XI 1 1
X 0.8 1
IX 0.6 0.8
VIII 0.4 0.6
VII 0.2 0.4
VI 0 0.2

Table 5.1: Probability ranges.

All experiments are performed by simulating static traffic consisting of 300
ping requests, combining all possible source-destination pairs. The bandwidth
units across the connections are 192, 96, 48, 21, 12, and 3, following the
distribution- 1: 2: 4: 10: 10: 20, respectively as proposed in [28]. The capacity
of every link is determined by the amount of bandwidth used by the connec-
tions going through the link. We performed experiments with three different
over-provisioning strategies where the utilization of every link is 40%, 60%, and
80%. In addition, we also performed the experiments without any bandwidth
constraint, which is, in essence, the same as having unlimited capacity. The
availability requirement of all connections is 0.99.
The experiments are performed in a virtual Ubuntu environment with two vir-

tual cores of an Intel Core i7-8750H Processor (Base 2.20GHz) and 8 Gigabytes
of memory.

5.1.2 Objectives

The main objective of our experiments is to observe whether our approach is
beneficial for protecting our network. We do this by evaluating if multiple
scenarios add a benefit compared to having only one scenario. We also observe
the run-time of the proposed algorithm and measure the number of affected
connections, how many of them were successfully rerouted and how much is their
availability improvement. Another thing we want to look at is the algorithm’s
behavior as the size of the disaster area increases, and finally, we will look at
bandwidth retention after a disaster.
We perform experiments to answer the following questions:

• What is the effect of increasing the magnitude on the number of affected
components?

• What is the ratio between the affected and improved connections?

• How does an increase of the disaster area affect the runtime performance?

• What portion of the total time is spent computing, and what portion is
spent installing the new path?
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• Does the runtime depend on the location of the earthquake?

• Is the achieved response time lower than the time available for reaction
imposed by the early warning?

• What is the availability improvement of the newly found paths compared
to the original?

• Is there an actual benefit of using multiple scenarios instead of a single
scenario?

• How much bandwidth is retained after rerouting the connections?

5.1.3 Evaluation

To evaluate the performance of the proposed heuristic approach, we define met-
rics for the assessment of the disaster’s impact and the effectiveness of the
proposed solution. First, we obtain the total amount of affected links and nodes
under the considered multiple scenarios. Using this, we derive the number of
endangered connections, which is the number of connections eligible for rerout-
ing. To determine which connections have to be rerouted, we set an availability
requirement for each connection- if the availability of the path that the connec-
tion is currently going through is lower or equal to 99%, it has to be rerouted if
possible. We divide the endangered connections into two categories- reroutable
and non-reroutable flows. If a connection is reroutable, we can find an altern-
ative path with improved availability compared to the original path. A higher
number of reroutable connections means higher effectiveness of the approach.
We perform the experiments for multiple magnitude values to test the al-

gorithm’s performance when disaster area scales. As the magnitude of the dis-
aster increases, the disaster area expands, and more network components are
likely to be affected. We define a node or link as affected if such a component
has a failure probability larger than 0. The amount of affected components also
depends on the location of the epicenter and the density of the components
around this particular location. Therefore, we perform the experiments at three
distinct locations. We also performed experiments with multiple and single
scenarios where for the case of a single scenario, the occurrence probability is 1.

5.2 Results

Every experiment is run five times, and the presented results are averaged over
the total amount of runs.

5.2.1 Affected components

As the magnitude increases, the disaster area gets more extensive, and the
amount of affected links and nodes also increases. This trend can be observed
for all three locations in Figure 5.2. The most severe increase is visible for
location 1, where we see a linear increase in the number of affected links and
a superlinear increase in the number of affected nodes. We can explain the
difference between the severity of the increase at location 1 and location 2 & 3
by looking at the network’s density. Location 1 has more links and nodes in its

30



5.7±1.0 6.4±1.0 7.1±1.0
Magnitude

0

2

4

6

8

10

12

14

Nu
m

be
r

4

8

12

1
3

6

Location 1
Affected links
Affected nodes

(a) Number of affected links and nodes at location 1.
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(c) Number of affected links and nodes at location 3.

Figure 5.2: Number of affected links and nodes over magnitude for
different locations.

proximity, and that is why more links and nodes are affected when the disaster
area increases.

5.2.2 Affected connections

Figure 5.3 shows the total amount of affected connections for an epicenter at
location 1 for different magnitude values and different network utilization. We
have chosen to showcase location 1 because of its previously mentioned prox-
imity to a dense area. As expected, increasing the magnitude results in more
affected connections (non-improved connections + improved connections). That
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is strongly related to Figure 5.2, where an increase in magnitude showed an in-
crease in affected network components. Moreover, we can see that the share of
improved connections depends on network utilization. The ratio of improved
vs. non-improved connections decreases when network utilization increases. The
reasoning explains this decrease that when more components in a subset (the
disaster area of location 1) of the network fail, the remaining components in that
subset reach their capacities by taking overloads of failing components. Never-
theless, even at 80% utilization, our algorithm still saves most of the affected
connections.

5.2.3 Time Performance

Figure 5.4(a), 5.4(b), and 5.4(c) depict the amount of time spent on computa-
tion, installation, and total time, respectively, over increasing magnitude values
for all locations. If we look at computation time, Figure 5.4(a), we see an in-
crease in the amount of time when the magnitude of the disaster increases. That
is expected because the computation time is closely related to the number of
affected components. If we look at the worst-case scenario, we see that location
1 with a magnitude of 7.1±1.0 has a computation time of 25 seconds. That
would be above our target, but it is essential to keep in mind that this config-
uration has a high magnitude and that location 1 is in a highly dense area. We
also have an underperforming virtual hardware setup, and with a 2× upgrade of
the computation components, our algorithm would be able to handle even our
most severe scenario. Finally, let us take notice of locations 2 and 3. We see
that lower density areas have significantly lower computation times following
our assumption that the computation time is strongly related to the number of
affected components. These results show us that the computational intensity of
our algorithm is low enough to be used for severe earthquake disasters.
In addition to the computation time, we also measure the time needed to

install the flows as shown in Figure 5.4(b). From this figure, we can see a
dependency between the installation time and the number of flows that need
to be rerouted, as we see a slight increase with the increase in magnitude and
slightly higher values for more dense areas.
Since the install time is low regardless of the disaster area and epicenter

location, we can conclude that the total runtime follows the trend observed at
the computation time. Total time for all locations are shown in Figure 5.4(c).
We measured the total time at different locations to see the effect of having

multiple against single scenarios on the running time. The results in Figure 5.5
show that having a single scenario gives a lower runtime compared to multiple
scenarios, which is expected. The reason is that with multiple scenarios, we
have more affected components (see Table 5.2); thus, more connections are
considered endangered. Therefore, alternative paths for more connections are
being computed and, respectively, installed. However, again we notice that
the epicenter location plays a role- in Figure 5.5(b), we see that the difference
between single and multiple scenarios is not as significant as in Figure 5.5(a).
Figure 5.6 shows the total time needed to both compute and install the new

paths for location 1 for all three provisioning strategies and unlimited capa-
city. As expected, for higher network utilization, the time increases. However,
the difference between the utilization levels, including unlimited, is not remark-
able. The runtime is mainly related to computation time, which is correlated
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Figure 5.3: Total number of affected connections and number of im-
proved and non-improved connections for different capacity utiliza-
tion.

to the number of affected components and number of affected connections, re-
spectively. Other factors, like provisioning strategy and installation time, are
insignificant, and thus we can conclude that the utilization level is of minimal
importance in terms of runtime. That is, however, influenced by our emulation
environment, and installation times are expected to be more significant in actual
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Figure 5.4: Time performance at 40% capacity utilization for all loca-
tions.

implementations.

5.2.4 Availability Improvement

To measure the improvement in the availability of the connection after finding an
alternative path using the proposed algorithm, we take the average availability
of the connections before rerouting and compare it to their availability after
rerouting. The results for all utilization levels are presented in Figure 5.7. As
expected, the newly computed paths’ availability is higher than the original
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Single Scenario Multiple Scenarios
Endangered connections Saved connections Endangered Saved connections

Loc 1
5.7 0 0 131 110
6.4 131 100 168 119
7.1 131 102 215 144

Loc 2
5.7 0 0 60 60
6.4 52 52 137 92
7.1 60 60 137 92

Loc 3
5.7 0 0 30 30
6.4 30 30 55 30
7.1 35 30 55 30

Table 5.2: The number of affected connections and the number of saved
connections for all three locations, all three magnitudes, and for single
and multiple scenario configurations.
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(b) Total runtime for multiple and single scenarios - Location 3.

Figure 5.5: Total runtime for two locations at 40% capacity utilization

paths. The average increase is 9.42% in Figure 5.7(a), 6.63% in Figure 5.7(b),
4.89% in Figure 5.7(c), and 4.00% in Figure 5.7(d); moreover, we notice that the
improvement gains are increased with increased magnitudes of the earthquakes.
That results from an increased drop in availability of the original scenario, and
thus, there is more to be improved by our algorithm.

Furthermore, we can establish that the availability improvement is more sig-
nificant for lower utilized networks. That can be explained with the simple
understanding that when a network is utilized more extensively, there is less
space for connections to be rerouted. That is proven by the fact that the im-
provement gain for lower magnitudes is comparable for all utilization levels but
drops for higher magnitudes where more connections have to be rerouted, and
less space is available.
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Figure 5.6: Total time for Location 1 - different capacity utilization

We can conclude that our rerouting algorithm is making significant improve-
ments in availability and that this would be beneficial in an earthquake disaster.
Especially in severe scenarios, our algorithm is making notable improvements.

5.2.5 Comparison between multiple and single scenarios

To verify the assumption that using multiple scenarios is beneficial compared
to using a single scenario, we compare the availability of the newly computed
paths. In Figure 5.8 we see the availability of the paths computed with a
single scenario and multiple scenarios for different magnitudes across different
utilization strategies at location 1. We see that the availability with multiple
scenarios is higher than with a single scenario which validates our approach.
Also, it is notable that our multi-scenario solution seems to outperform the
single scenario more when the situation worsens. When the magnitude increases,
the difference between the multiple and single scenarios gets larger. Finally,
we also notice that when the network utilization increases, the solution with
multiple scenarios has a lower drop in availability than the single scenario. We
conclude that, even though the improvements are not always significant, the
extra compute that it takes is worth the increase in availability.
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Figure 5.7: Comparison of the availability of the new path vs. the
availability of the original path at location 1.

5.2.6 Bandwidth Retention

Figure 5.9 shows a comparison of the bandwidth retention in the network
between our algorithm and a basic rerouting algorithm that does not include
our bottleneck resolving algorithm. In these graphs, we show the percentage
of bandwidth remaining after rerouting. To compute this bandwidth, we only
count connections with a failure probability lower than our rerouting threshold.
Figure 5.9(a) shows that the bandwidth that can be saved is strongly dependent
on the free capacity that is available in the network. The common reasoning
explains that more bandwidth can be retained when more space is available.
More interesting is, however, Figure 5.9(b), here we see that if more traffic
needs rerouting, the difference between our solution and a basic rerouting solu-
tion increases. We can conclude that our solution significantly increases the
retained bandwidth in the network, especially for more severe disasters.
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(c) Availability of the new path at 60% capacity utilization
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Figure 5.8: Comparison between the availability of the alternative path
- multiple vs. single scenario.

5.3 Comparison between our solution and the
exact solution

We expect our heuristic approach to provide a suboptimal solution to finding
an alternative path. To check our approximation’s accuracy, we will compare
it to an exact solution. To find the exact solution, we implement a function to
find all possible paths between a source and a destination node and evaluate
their availability. We choose the path with the highest availability and compare
it to the path we find using our heuristic. We expect that there will be a path
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(b) Bandwidth retention at location 1 at 60% capacity utilization

Figure 5.9: Comparison between the bandwidth retention of our al-
gorithm vs. a basic rerouting algorithm.

Loc 1 Loc2 Loc3
5.7±1.0 0 0 0
6.4±1.0 0 45 0
7.1±1.0 16 45 0

Table 5.3: Number of connections with a higher-availability path.

with better availability in some cases than the one we achieved; however, we
expect this to come at the cost of very long computation times. We conduct
experiments using three metrics to validate these expectations- path availability,
computation time, and the number of connections for which a better path exists.

In Table 5.3, we see the number of connections for which using the exact
solution provides a path with higher availability for all three test locations.
Notably, for the lowest magnitude case, a better path does not exist for any
location. At location 3, that is the case for all magnitudes.

5.3.1 Availability comparison

When we measure the availability of the alternative path computed with the
proposed heuristic and the exact solution, we see that even though, in some
cases, the exact solution provides a higher-availability path, the difference is
minor (shown in Figure 5.10). From Table 5.3, we know that for location 2, we
have the highest number of better paths. However, on average, the difference
is about 0.02%, which is negligible, meaning that our solution is an excellent
approximation and the computed paths have almost optimal availability.
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Figure 5.10: Comparison between the availability of the new path using
our solution against the exact solution for all locations and unlimited
capacity.

5.3.2 Computation time

When we measure the time needed to find the exact solution, it is no surprise
that it is significantly higher than our solution’s runtime (see Figure 5.11). At
location 1, finding the exact solution takes more than 2 minutes. Considering
the results shown in Figure 5.10, we can conclude that our solution is very close
to optimal at a much lower time cost.
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Figure 5.11: Comparison between the computation time using our solu-
tion against exact solution for all locations and unlimited capacity.

5.4 Custom bandwidth & availability metric

As described in our second problem definition, we will judge our algorithm with
our custom metric Ap +B, where B is the percentage of the bandwidth that is
retained. We compare our approach with the basic algorithm used in Subsection
5.2.6, and the result of this is shown in Figure 5.12. We see that our solution
scores better on our custom metric than the basic approach, proving that our
solution is a step towards improving network reliability without the cost of an
exact solution.
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Figure 5.12: Custom metric at location 1 at 60% capacity utilization.
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Chapter 6

Conclusion

Natural disasters are a known threat that disrupts network connectivity. Net-
work protection strategies against disasters have been widely researched; how-
ever, it remains a challenge to create a practical approach. The issue comes from
that that disasters like earthquakes are unpredictable and progress very rapidly
after they occur. Even though early warning systems issue notifications when
an earthquake starts, the available response time is strictly limited. Moreover,
the information provided by the EWS is not entirely accurate. Under these
conditions, applying a protection mechanism against a specific disaster model
might not provide the desired result because the actual disaster might unfold
unexpectedly.

We have proposed a solution that encompasses multiple scenarios generated
based on the received early warning message to address the above issues. We
use earthquake data to estimate the disaster area and assign failure probabil-
ities to the components located in this area. Our work aims to save as many
endangered connections as possible by routing them through alternative paths
with maximized availability. In addition, we added a bandwidth constraint to
get a more realistic scenario. That transformed our problem to finding a path
with maximized availability, which does not exceed the available link capacity.

We proposed an algorithm for the defined problem that can identify bottle-
neck connections in a network and reroute these bottlenecks to create space for
higher bandwidth connections. We assessed their performance by choosing three
independent epicenter locations with different characteristics and performed the
same experiments in all locations. The results showed that the run-time of our
approach is fast enough to be performed within the bounds of the response win-
dow. We showed that our approach improves the availability of the connections
by ≈ 9% on average when the link capacity is unlimited. In addition, we demon-
strated that having multiple scenarios provides higher availability, hence better
protection than the single scenario case. We compared our heuristic to an exact
solution and found that we could produce an excellent approximation in signi-
ficantly less time. Finally, we combined connection availability and connection
bandwidth into a custom metric that shows our algorithm is able to combine
optimization for availability and throughput. To summarize, our work showed
that the proposed solutions improve network availability within a reasonable
time frame.

This work can now be used as a tool for network operators to minimize the
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damage to critical infrastructure during a natural disaster, minimizing the dev-
astation a natural disaster brings.
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Chapter 7

Future Work

We created a network failure model with multiple mutually exclusive disaster
scenarios and developed a protection strategy against them in the current work.
We limited our scope to earthquakes; however, we can broaden the spectrum by
adapting the system to other types of disasters such as hurricanes and tsunamis.
That will require a different disaster model and a different type of early warning
message.
Another interesting addition is to increase the number of disaster scenarios

and analyze the trade-off between performance improvement and execution
time. By adding more scenarios, the level of uncertainty will decrease; hence
we can expect a better level of protection. However, this will eventually result
in higher response times. Nonetheless, that might be less significant if we look
at different disasters with longer warning times.
In our solution, we defined two problems- the second problem builds up on

the first one by adding a bandwidth constraint, making our approach more
realistic. We can expand this further by adding more constraints, valid in a
real-world implementation. For instance, it will be worth considering the links’
propagation delay and extending the problem to finding a least-delay alternative
path.
Our experiments show that the time spent on installing flows, which also

includes modifying flows, is not significant; however, we are performing the
testing in an emulated environment. Therefore, the obtained results might differ
when using actual hardware. Authors of [14] provide insights about the latency
associated with adding, modifying, and deleting a flow entry. They consider
factors such as the priority of the flow and flow table occupancy. From a time-
efficiency perspective, it is reasonable to consider mechanisms for reducing the
flow installation time. A way to achieve this is to adjust the algorithm such that
first, we perform all path computations and then install/modify the flows. The
advantage of this will be that only the final flow will be installed if a connection
has to be rerouted multiple times. In addition to that, when we have multiple
connections with equal bandwidth demand, and we have to choose one of them
to be moved, we can select a connection that has been selected for rerouting in
the past.
In terms of implementation, we proposed an SDN solution, and we assumed

only one SDN controller is present, and it is outside of the disaster zone. We
focused on protecting the data plane and not the control plane. Therefore, this
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aspect can be further developed by looking into the deployment of redundant
controllers to avoid a single point of failure. Furthermore, the location of the
controllers can be chosen in a way that provides disaster resiliency [35].
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Fernando A Kuipers, and Lajos Rónyai. A tractable stochastic model of
correlated link failures caused by disasters. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pages 2105–2113. IEEE, 2018.

[39] Phuong Nga Tran and Hiroshi Saito. Geographical route design of phys-
ical networks using earthquake risk information. IEEE Communications
Magazine, 54(7):131–137, 2016.

[40] U.S. Geological Survey (USGS). Earthquake mag-
nitude, energy release, and shaking intensity. https:

//www.usgs.gov/programs/earthquake-hazards/

earthquake-magnitude-energy-release-and-shaking-intensity.

[41] U.S. Geological Survey (USGS). The modified mercalli intensity
scale. https://www.usgs.gov/natural-hazards/earthquake-hazards/

science/modified-mercalli-intensity-scale/.

[42] U.S. Geological Survey (USGS). Search earthquake catalog. https://

earthquake.usgs.gov/earthquakes/search/.

[43] Alessandro Valentini, Balázs Vass, Jorik Oostenbrink, Levente Csák,
Fernando Kuipers, Bruno Pace, David Hay, and János Tapolcai. Network
resiliency against earthquakes. In 2019 11th International Workshop on
Resilient Networks Design and Modeling (RNDM), pages 1–7. IEEE, 2019.

[44] Xiaokang Xie, Qing Ling, Ping Lu, Wei Xu, and Zuqing Zhu. Evacu-
ate before too late: Distributed backup in inter-dc networks with pro-
gressive disasters. IEEE Transactions on Parallel and Distributed Systems,
29(5):1058–1074, 2017.

[45] Song Yang, Stojan Trajanovski, and Fernando A Kuipers. Availability-
based path selection and network vulnerability assessment. Networks,
66(4):306–319, 2015.

50

https://github.com/jtapolcai/regional-srlg/tree/master/earthquake
https://github.com/jtapolcai/regional-srlg/tree/master/earthquake
https://www.usgs.gov/programs/earthquake-hazards/earthquake-magnitude-energy-release-and-shaking-intensity
https://www.usgs.gov/programs/earthquake-hazards/earthquake-magnitude-energy-release-and-shaking-intensity
https://www.usgs.gov/programs/earthquake-hazards/earthquake-magnitude-energy-release-and-shaking-intensity
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/modified-mercalli-intensity-scale/
https://www.usgs.gov/natural-hazards/earthquake-hazards/science/modified-mercalli-intensity-scale/
https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/earthquakes/search/

	Preface
	Introduction
	Problem Statement
	Goal and Contributions
	Thesis Outline

	Background
	Software-defined networking and OpenFlow protocol
	Early-warning systems
	Earthquakes

	Related Work
	Protection strategies
	Proactive protection
	Data evacuation
	Shared Risk Link Groups (SRLG)


	Approach
	Disaster-related uncertainty
	Problem Statement
	Problem 1: Finding an alternative path with minimized failure probability under multiple scenarios
	Problem 2: Finding an alternative path with minimized failure probability under bandwidth constraint

	Framework overview
	Network input
	Disaster Model and Input
	Prioritizing connections

	Proposed Solution
	Solution to Problem 1
	Solution to Problem 2
	Optimization


	Experiments
	Setup
	Configurations
	Objectives
	Evaluation

	Results
	Affected components
	Affected connections
	Time Performance
	Availability Improvement
	Comparison between multiple and single scenarios
	Bandwidth Retention

	Comparison between our solution and the exact solution
	Availability comparison
	Computation time

	Custom bandwidth & availability metric

	Conclusion
	Future Work

