Combination of Advanced Optical Modelling with Electrical Simulation for Performance Evaluation of Practical 4-terminal Perovskite/c-Si Tandem Modules

Zhang, Dong; Verhees, Wiljan; Dörenkämper, Maarten; Qiu, Weiming; Bakker, Klaas; Gutjahr, Astrid; Veenstra, Sjoerd; Gehlhaar, Robert; Paetzold, Ulrich W.; Soppe, Wim

DOI
10.1016/j.egypro.2016.07.039

Publication date
2016

Document Version
Publisher’s PDF, also known as Version of record

Published in
Energy Procedia

Citation (APA)

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.
Combination of advanced optical modelling with electrical simulation for performance evaluation of practical 4-terminal perovskite/c-Si tandem modules

Dong Zhanga,*, Wiljan Verheesa, Maarten Dörenkämpera, Weiming Qiub, Klaas Bakkera, Astrid Gutjahra, Sjoerd Veenstra a, Robert Gehhaar b, Ulrich W. Paetzold b, Wim Soppe a, Ingrid Romijn a, L.J. Geerligsa, Tom Aernoutsb and Arthur Weeber a,c

aECN-Solliance, High Tech Campus 21, 5656 AE Eindhoven, the Netherlands
bIMEC-Solliance, Thin Film PV, Kapeldreef 75, B-3001 Leuven, Belgium
cTU Delft-Solliance, Photovoltaic Materials and Devices, Mekelweg 4, 2628 CD Delft, the Netherlands

Abstract

The perovskite solar cell is considered a promising candidate as the top cell for high-efficiency tandem devices with crystalline silicon (c-Si) bottom cells, contributing to the cost reduction of photovoltaic energy. In this contribution, a simulation method, involving optical and electrical modelling, is established to calculate the performance of 4-terminal (4T) perovskite/c-Si tandem devices on a mini-module level. Optical and electrical characterization of perovskite and c-Si solar cells are carried out to verify the simulation parameters. With our method, the influence of transparent conductive oxide (TCO) layer thickness of perovskite top cells on the performance of tandem mini-modules is investigated in case of both tin-doped indium oxide (ITO) and hydrogen-doped indium oxide (IO:H). The investigation shows that optimization of TCO layer thickness and replacement of conventional ITO with highly transparent IO:H can lead to an absolute efficiency increase of about 1%. Finally, a practical assessment of the efficiency potential for the 4T perovskite/c-Si tandem mini-module is carried out, indicating that with a relatively simple 4T tandem module structure the efficiency of a single-junction c-Si mini-module (19.3%) can be improved by absolute 4.5%.

© 2016 The Authors. Published by Elsevier Ltd.

Keywords: 4-terminal; hybrid tandem; perovskite solar cell; simulation; transparent conductive oxide
1. Introduction

As nowadays the power conversion efficiency (PCE) of single-junction (SJ) crystalline silicon (c-Si) solar cells is approaching its practical limit of 26% [1], it is technically very challenging to realize any further improvement. This is implied by the fact that it took about 15 years to enhance the PCE of SJ c-Si cells from 25% [2] to 25.6% [3]. Application of the tandem device architecture, based on commercially successful c-Si solar cell technologies, may allow for an economically feasible route to further improve the performance of solar modules beyond the limits of SJ c-Si technology. Among the candidates for the wide-bandgap top cell of the tandem device, perovskite based solar cells are very promising [4] due to the advantages of high PCE [5], high absorption coefficients, a sharp absorption edge [6], a tunable bandgap [7, 8] and simple preparation process [9].

Theoretical calculations about the maximum attainable perovskite/c-Si tandem cell performance have been published by several authors [10, 11]. This contribution gives a practical evaluation of attainable 4-terminal (4T) perovskite/c-Si module performances based on currently available commercial c-Si solar cells and small-scale perovskite solar cells processed in-house. The tandem module performance is calculated on mini-module level with verified optical and electrical simulations. With the simulation methods, the impact of TCO layer thickness of perovskite top cells on the module performance are investigated. The conventional tin doped indium oxide (ITO) is compared to the state-of-art hydrogen doped indium oxide (IO:H) as TCO of perovskite top cells, further exploring the possible PCE increase by optimizing the TCO. Finally the practically attainable PCE gain of the 4T perovskite/c-Si tandem mini-module compared to the SJ c-Si mini-modules is discussed.

2. Experiments

To verify the optical and electrical modelling, semi-transparent perovskite solar cells, c-Si cells and c-Si mini-modules are processed. Fabrication of semi-transparent perovskite solar cells start with ITO coated glass substrates which are ultrasonically cleaned for 10 minutes in detergent, deionized water and iso-propanol. The dense TiO$_2$ layer is made by spincoating a solution of 5 % titanium tetra-isopropoxide (TTIP) and 1% 1M HCl in iso-propanol. The obtained layers are annealed at 500 °C for 30 min. The perovskite precursor solution is made by mixing Pb(CH$_3$CO$_2$)$_3$·3H$_2$O, PbCl$_2$ and methylammonium iodide (MAI) in dimethylformamide (DMF). The precursor solution is spincoated on top of the TiO$_2$ layer in a N$_2$ filled glovebox at 3000 rpm for 60 s. The perovskite layer is formed by annealing at 130 °C for 10 min [12]. On top of the perovskite layers a P3HT solution is spincoated (15 mg/ml in chlorobenzene doped with 5 µl 4-tert-butylypyridine (tBP) and 10 µl of a 170 mg/ml solution of lithium bistrifluoromethanesulfonamide (LiTFSi) in acetonitrile). To finish the devices a 160 nm thick ITO layer is deposited through a shadow mask by sputtering.

The metal-wrap-through (MWT) c-Si solar cells based on 6-inch n-type wafers are manufactured with mainstream industrial processes [13, 14] and then sliced by laser into 15.2 cm2 squares for assembly of mini-modules. Laser processing is used to form via-holes by which the front side metal grid is wrapped through the wafer. The cell structure comprises a boron emitter, and a phosphorous Back Surface Field (BSF). Metallization is applied using screen-printing and is fired through the silicon nitride layers. Fig. 1(a) shows the picture of a c-Si mini-module with 4 MWT c-Si cells connected in series and this mini-module is designed to be the bottom sub-module of the tandem module. Fig.1(b) demonstrates the schematic layout of the designed 4T perovskite/c-Si tandem mini-module which is analyzed later with the simulation. This tandem module consists of a MWT c-Si bottom sub-module (Fig.1(a)) and interconnected perovskite top sub-module processed on the inner side of module glass. The Cu-coated backsheet is patterned for series connection of MWT cells and 4T wiring.

For characterization, the injection-level dependent I-V measurement for c-Si cells is done with the Neonee solar simulator. The I-V characteristics of the perovskite cells is measured with a solar simulator built in-house inside the glovebox. External parameters of the semi-transparent perovskite cell and the SJ MWT c-Si mini-module processed in-house are listed in Table 1. The steady-state PCE of the cell is measured after it is kept at the maximum power point for 5 min. Regarding the reflectance and transmittance measurements, an Agilent Cary 5000 with integrating sphere is used. The external quantum efficiency (EQE) is measured with an Optosolar setup.
Fig. 1. (a) Picture of the encapsulated MWT c-Si mini-module consisting of 4 MWT cells connected in series on Cu-coated backsheets and (b) the sketch of designed 4-terminal perovskite/c-Si tandem mini-module

Table 1. Performance of the semi-transparent perovskite cell and MWT c-Si module measured at standard illumination conditions

<table>
<thead>
<tr>
<th>Device</th>
<th>Aperture area (cm²)</th>
<th>V_oc (V)</th>
<th>J_sc (mA/cm²)</th>
<th>FF</th>
<th>PCE</th>
<th>Steady-state PCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-transparent perovskite cell</td>
<td>0.16</td>
<td>0.978</td>
<td>17.0</td>
<td>0.607</td>
<td>10.1% (backward scan)</td>
<td>8.8%</td>
</tr>
<tr>
<td>Encapsulated MWT c-Si mini-module (with antireflective coating)</td>
<td>64</td>
<td>2.61</td>
<td>9.77</td>
<td>0.756</td>
<td>19.3%</td>
<td>-</td>
</tr>
</tbody>
</table>

3. Method to analyze the performance of 4T perovskite/c-Si hybrid tandem mini-modules

3.1. Optical simulation for calculating the short-circuit current density

The method to analyse the performance of 4T hybrid tandem mini-modules is mainly based on advanced optical simulation combined with solving diode equations. Optical simulation is carried out with the GenPro4 program [4, 15, 16] developed at Delft University of Technology, aiming to calculate the short-circuit current density \(J_{sc} \) of solar cells. With the optical simulation, the reflectance \(R \), transmittance \(T \) and absorbance of each layer \(A \) of solar cells can be calculated. It is assumed that the active-area short-circuit current density \(J_{sc} \) approximates the current density \(J \) calculated from the absorbance of active layers \((\text{CH}_3\text{NH}_3\text{PbI}_3 \ (\text{MAPI}) \) layer for perovskite cells \(J_{\text{MAPI}} \) and the c-Si “layer” for c-Si cells \(J_{\text{cSi}} \)), which is expressed by the following equations:

\[
J_{sc1} \approx J_{\text{MAPI}} = q \int_{300}^{1200} A_{\text{MAPI}}(\lambda)\phi(\lambda)d\lambda \quad \text{and} \quad J_{sc2} \approx J_{\text{cSi}} = q \int_{300}^{1200} A_{\text{cSi}}(\lambda)\phi(\lambda)d\lambda ,
\]

where \(J_{sc1} \) and \(J_{sc2} \) are the active-area \(J_{sc} \)’s of perovskite top and c-Si bottom cells, \(\lambda \) is the wavelength, \(q \) is the elementary charge and \(\phi(\lambda) \) is the photon flux of the AM1.5 solar spectrum. Since reflection and parasitic absorption losses of solar cells are taken into account, this assumption is acceptable for estimating \(J_{sc} \) if the thickness of the active layer is smaller than the collection length of minority carriers. To validate the optical simulation and the assumption of \(J_{sc} \) calculation, optical and electrical measurements are carried out for both perovskite and c-Si solar cells and compared with the simulation results. Fig. 2(a) shows that the simulated \(R \) and \(T \) of semi-transparent perovskite cells have a good agreement with the measurements. The I-V characterization of perovskite cells
processed in this study shows that calculated J_{MAP1} (17.7 mA/cm2) approximates the measured J_{sc1} (17 mA/cm2). With respect to c-Si cells demonstrated in Fig. 2(b), all the light absorption in the c-Si wafer is able to contribute to the current except the free carrier absorption (FCA) in highly doped emitter and back surface field (BSF). Therefore, the FCA in the emitter and BSF, which causes parasitic absorption losses, is differentiated from the rest of light absorption in the c-Si wafer. Based on the measured doping concentration and sheet resistance, two FCA layers corresponding to the emitter and BSF are defined in the optical structure to indicate FCA losses at wavelengths over 1 μm [17]. The FCA is determined by the absorption coefficients calculated by the following equations [18]:

$$\alpha_{\text{FCA,B}} = 1.8e - 9 \cdot N \cdot \lambda^{2.18} \quad \text{and} \quad \alpha_{\text{FCA,P}} = 1.68e - 6 \cdot N \cdot \lambda^{2.88},$$

(2)

where $\alpha_{\text{FCA,B}}$ and $\alpha_{\text{FCA,P}}$ correspond to the absorption coefficient of the boron-doped emitter region and phosphorus-doped BSF region, N is the free carrier concentration. As demonstrated in Fig. 2(b), the simulated reflectance fits well with the measurements. Furthermore, Fig. 3 shows the simulated absorbance spectrum is in good agreement with the EQE measured at the active area of the MWT cell, suggesting that J_{sc2} approximates J_{cSi} and further validating the accuracy of the assumption in Eq. 1.

![Fig. 2. Device picture, the optical structure and comparison between the simulated and measured reflectance, absorbance and transmittance spectra for (a) semi-transparent perovskite cells and (b) MWT c-Si cells](image)

Fig. 3. Comparison between the simulated absorbance spectrum of c-Si “layer” and measured EQE spectrum of MWT c-Si cells.
3.2. Modified one-diode equation for calculating open-circuit voltage and fill factor of c-Si mini-modules

In tandem devices, c-Si bottom cells operate at lower injection levels than the standard irradiance condition. Depending on the optical structure of tandem devices and the materials used in the top cells, the injection level for the c-Si bottom cell varies. The injection-level change for a c-Si bottom cell has direct impact on its short-circuit current (I_{sc2}). The I_{sc2} is related to J_{sc2} by the equation:

$$I_{sc2} = J_{sc2} \cdot a_{Si} \cdot (1 - c),$$

where a_{Si} is the area of c-Si cells, c is the area fraction of the metal grid and J_{sc2} can be calculated from Eq. 1. The variation of I_{sc2} leads to the change of open-circuit voltage (V_{oc2}) and fill factor (FF_2) of c-Si cells, which can be basically calculated with the one-diode equation. However, with the diode parameters all kept constant, the injection-level dependence of c-Si cells cannot be accurately calculated. Chegaar et al. has reported the injection-level dependence of the diode parameters [19] for multicrystalline Si cells. Compared to what Chegaar et al. reported, Fig. 4 shows that the injection-level dependence of three diode parameters for the MWT c-Si mini-module (picture of Fig. 1(a)) follow the same trend, that is, the saturation current (I_0) increases exponentially with I_{sc2}, the ideality factor (n) increases linearly with I_{sc2}, the series resistance (R_s) remains constant. However, a slight difference is that instead of following one linear equation, the shunt resistance (R_{sh}) remains constant at the I_{sc2} of over 0.35 A. With the introduction of the injection-level-dependent diode parameters, the one-diode equation is modified as follows:

$$I = I_{sc2} - I_0 (I_{sc2}) \cdot (\exp\left(\frac{V + I \cdot R_s}{n I_{sc2} \cdot k \cdot T}\right) - 1) - \frac{V + I \cdot R_s}{R_{sh} (I_{sc2})},$$

where k is the Boltzmann constant and T is the absolute temperature. Fig. 5 shows that with Eq. 4, V_{oc2} and FF_2 of the MWT c-Si mini-module at different injection levels can be accurately calculated.
3.3. Calculation of 4-terminal tandem mini-module PCE

In the 4T tandem modules, the perovskite top cells are interconnected and fully rely on the TCO for current transport. In addition to the parasitic absorption losses that have been considered in the optical simulation, the resistance loss resulting from front and rear TCO electrodes cannot be neglected [20, 21]. This resistance loss (r) is calculated by the equation:

$$
\frac{1}{r} = \frac{1}{r_{ww}} + \frac{1}{J_{m1} \cdot V_{m1} \cdot w \cdot L} \left(\frac{J_{m1} \cdot x \cdot L \cdot \rho}{d_1 \cdot L} \right) dx + \frac{1}{J_{m1} \cdot V_{m1} \cdot w \cdot L} \left(\frac{J_{m1} \cdot x \cdot L \cdot \rho}{d_2 \cdot L} \right) dx \approx J_{sc1} \cdot \rho \cdot w^2 \left(\frac{1}{d_1} + \frac{1}{d_2} \right),
$$

where J_{m1} and V_{m1} are the current density and voltage at the maximum power point, ρ is the resistivity of TCO, w is the cell width (5 mm), d_1 and d_2 are the front and rear TCO layer thickness respectively and L is the length of the cell (8 cm). The PCE of 4T tandem modules (η_{4T}) is expressed by the equation:

$$
\eta_{4T} = \frac{(1-f) \cdot (1-r) \cdot V_{oc1} \cdot J_{sc1} \cdot FF_{1}}{100} + \frac{V_{oc2} \cdot J_{sc2} \cdot FF_{2}}{100 \cdot a_A} \cdot 100\%,
$$

where f is the fraction of the dead area (2%) in perovskite top sub-modules and a_A is the aperture area of the tandem mini-modules (64 cm²) and V_{oc1} and FF_1 are the open-circuit voltage and fill factor of the perovskite top cell for which the measured values or the literature values are used in the analysis.

4. Results and discussion

4.1. Impacts of TCO on the performance of tandem mini-modules

Based on the 4-terminal tandem module architecture, the layer stack for optical simulation is defined as shown in Fig. 6(a). Two optimizations are implemented into the studied module structure. One is the application of the antireflective texture developed in-house with imprint lithography. The imprinted texture is a replica of random pyramids on textured c-Si wafer, reducing the reflection losses and scattering the light to enhance the light absorption of solar cells. The other optimization is that the MAPI layer thickness is increased up to 330 nm as suggested by Liu et al. [22] to increase the photocurrent of the perovskite top cell without degradation of V_{oc} and FF. With the methodology introduced in section 3, the impact of TCO layer thickness on tandem module performance is investigated. In addition, in-house ITO is compared to published state-of-art IO:H [23] as TCO in perovskite top cells to further explore the PCE potential of the tandem module. Fig. 6(b) demonstrates the optical constants of ITO and IO:H, indicating that IO:H has lower absorption in ultraviolet (UV) and near infrared (NIR) than ITO at the
same layer thickness. Although IO:H has lower free carrier density, implied by the low NIR absorption, IO:H has no larger resistivity than ITO due to its higher mobility. Fig. 7(a) shows the PCE of the tandem modules as a function of front and rear ITO layer thickness. The optimum front ITO layer thickness is about 120 nm. However, for the rear ITO, the layer thickness can be over 250 nm. The difference in desired front and rear ITO layer thickness originates from their different optical characteristics of the adjacent layers. Since the light is incident from the front ITO, its parasitic absorption is more relevant for a larger part of the solar spectrum compared to the rear ITO. As the front ITO layer thickness rises, the resistance loss decreases while the parasitic absorption loss increases. At the front ITO layer thickness of below 120 nm, the decrease of the resistance loss overruns the increase of the parasitic absorption loss as the front ITO layer thickness rises, leading to the PCE improvement. At above 120 nm, the increase of the parasitic absorption loss dominates and hence the overall PCE of the tandem module decreases as the front ITO layer thickness rises. For the rear ITO layer, its related resistance loss dominates and hence the much thicker layer is preferred. Similar to ITO, the module PCE increases with the rear IO:H layer thickness as shown in Fig. 7(b). However, with respect to the front IO:H, the increase of the parasitic absorption loss cannot overrun the decrease of the resistance loss as the layer thickness rises. This is mainly due to the very low parasitic absorption of IO:H. With respect to the PCE of tandem modules, variation of the front and rear TCO layer thickness between 100 nm and 300 nm can lead to an absolute PCE difference of 0.5%. Replacement of ITO with IO:H results in an additional PCE gain of absolute 0.5%.

Fig. 6. (a) Schematic layer stack of the 4T perovskite/c-Si tandem mini-module for optical simulation and (b) optical constants of the ITO and IO:H (the resistivity of ITO and IO:H is 4.3e-4 Ω·cm and 2.7e-4 Ω·cm respectively)

Fig. 7. PCE of the 4T tandem mini-module as a function of front and rear TCO layer thickness in case of (a) ITO and (b) IO:H. The V_{oc} and FF of perovskite cells are 0.978 V and 60.7% from Table 1.
4.2. Assessment of possible PCE gain for 4T perovskite/c-Si tandem mini-modules

Based on investigation of TCO presented in section 4.1, front and rear IO:H layer thicknesses of 180 nm and 240 nm respectively are used in the structure of Fig. 6(a) for the calculation of tandem module PCE to investigate the possible PCE gain. The reason for choosing those layer thickness is that further increase of the layer thickness cannot leads to a noticeable PCE enhancement. Compared to the SJ MWT c-Si mini-module with a PCE of 19.3% (Table 1), the absolute PCE gain is plotted as a function of \(V_{oc} \) and \(FF \) of the perovskite top cell. As shown in Fig. 8, the \(V_{oc} \) and \(FF \) of perovskite cells achieved in-house at the current stage (yellow circle) can lead to about 0.5% PCE gain. With the highest \(V_{oc} \) and \(FF \) that is published in the literature for the semi-transparent perovskite cells (yellow square) [9], an absolute PCE gain as high as 4.5% is attainable.

5. Conclusion

In this contribution, a simulation method to calculate the performance of 4T perovskite/c-Si tandem modules is introduced and can be used for optimization of tandem module structures. To validate this simulation method, optical modelling of both perovskite and c-Si cells is experimentally verified. To accurately calculate the performance of MWT c-Si cells at different injection levels, the one-diode equation is modified by introducing injection-level dependent diode parameters. With the proposed simulation method, the impacts of TCO on the performance of tandem modules are investigated. Variation of front and rear TCO layer thicknesses changes the parasitic absorption and resistance losses of tandem modules, leading to an absolute PCE difference of 0.5%. The state-of-art IO:H can result in an absolute PCE increase of 0.5% compared to in-house ITO. At last, compared to the PCE of 19.3% for encapsulated SJ MWT c-Si mini-modules, the simulation in this study shows the semi-transparent perovskite cells processed in-house can lead to an absolute PCE gain of 0.5% with the tandem module structure. Furthermore, with highest reported \(V_{oc} \) and \(FF \) achieved in semi-transparent perovskite cells, an absolute PCE gain of 4.5% should be feasible.

Acknowledgements

This work is funded by TKI Hi Eff and TO2 Solliance projects. Authors would like to thank Rudi Santbergen at TU Delft and Yu Wu, Agnes Mewe, John van Roosmalen and Gianluca Coletti at ECN for their helpful discussion.
References