waterloopkundig laboratorium
delft hydraulics laboratory

stormvloedkering Oosterschelde
stroom- en golfbelastingen op de dorpel
bij diverse schuifstanden

trapeziumvormige dorpel
sektie Roompot 15
loodrechte golfaanval en aanstroming

verslag modelonderzoek

M1593 deel II
december 1981
stormvloedkering Oosterschelde
stroom- en golfbelastingen op de dorpel
bij diverse schuifstanden

trapeziumvormige dorpel
sektie Roompot 15
loodrechte golfaanval en aanstroming

verslag modelonderzoek

M1593 deel II
december 1981
Inhoud

Lijst van tabellen
Lijst van figuren
Lijst van symbolen

1 Algemeen
 1.1 Inleiding
 1.2 Samenvatting
 1.3 Konklusies

2 Beschrijving van het onderzoek
 2.1 Probleemstelling
 2.2 Geometrie van de kering
 2.3 Hydraulische randvoorwaarden
 2.4 Proevenprogramma
 2.5 Meetopstelling en proefprocedure
 2.6 Verwerking van de metingen

3 Resultaten en vergelijking met de rechthoekige dorpel
 3.1 Statistische belastingen
 3.2 Golfbelastingen

Tabellen 1 t/m 17
Figuren 1 t/m 97

Bijlage: Stroomrefraktie
Tabellen

1 Proevenprogramma
2 Reflektiemetingen, zeewaterstand N.A.P. + 5,5 m
3 Statische belastingen
4 t/m 10 Overzicht van gemeten en genormeerde belastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stromend water.
4 \(K_{vt} \)
5 \(K_{vb} \)
6 \(K_{vv} \)
7 \(K_{vo} \)
8 \(K_{ht} \)
9 \(K_{hv} \)
10 \(K_{ha} \)
11 t/m 17 Overzicht van gemeten en genormeerde belastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stilstaand water.
11 \(K_{vt} \)
12 \(K_{ht} \)
13 \(K_{vb} \)
14 \(K_{vv} \)
15 \(K_{vo} \)
16 \(K_{hv} \)
17 \(K_{ha} \)
Figures

1. Overzicht van de Oosterscheltempedemond met het tracée van de stormvloedkering
2. Doornseden rechthoekige en trapeziumvormige dorpel
3. Ontwerp pijler
4. Ontwerp pijlervoet
5. Configuratie van het model
6. Doornsede over pijler en voet
7. Vormgeving van de schuif in de meetsektie
8. Dwarsdoorsnede geschematiseerde drempel
9. Situatie drukmetingen in de 2 m brede windgolfgoot
10. Plaats drukopnemers aan de dorpelbalk- boven-, voor- en onderzijde met toegekende oppervlakten voor de berekening van de totale vertikale belasting
11. Plaats drukopnemers aan de dorpelblak- voor- en achterzijde met toegekende oppervlakten voor de berekening van de totale horizon tale belasting
12. Toegepaste reflektieëfficiënten en waarden van γ^2, zeewaterst. N.A.P. + 5,0 m
13. Toegepaste reflektieëfficiënten en waarden van γ^2, zeewaterst. N.A.P. + 3,5 m
14. Toegepaste reflektieëfficiënten en waarden van γ^2, zeewaterst. N.A.P. + 5,5 m
15. Opgegeven en gemeten inkomende golfspektre, zeewaterst. N.A.P. + 5,0 m
16. Opgegeven en gemeten inkomende golfspektre, zeewaterst. N.A.P. + 3,5 m
17. Opgegeven en gemeten inkomende golfspektre, zeewaterst. N.A.P. + 5,5 m
18. Statische belastingen, zeewaterst. N.A.P. + 5,0 m
19. Statische belastingen, zeewaterst. N.A.P. + 3,5 m
20. Statische belastingen, zeewaterst. N.A.P. + 5,5 m
21 t/m 34 Vervalbelastingen en maximale normeerde golfbelastingen, normering naar het gewenste inkomende golfbeeld, gedefinieerd op stromend water
35 t/m 46 13,5% en maximale normeerde golfbelastingen, normering naar het gewenste inkomende golfbeeld, gedefinieerd op stromend water
47 t/m 70 Drukbeelden, behorend bij de gemeten maximale ongefilterde genormeerde golfbelastingen, uitgezet t.o.v. de vervaldrukken. Normering naar gewenst inkomend golfbeeld, gedefinieerd op stromend water.

71 t/m 76 Overdrachtsfuncties voor K_{vb}, K_{vo}, K_{vv} en K_{vt} t.o.v. het inkomende golfbeeld, gemeten bij H2

77 t/m 82 Overdrachtsfuncties voor K_{ha}, K_{hv} en K_{ht} t.o.v. het inkomende golfbeeld, gemeten bij H2

83 t/m 88 Fasehoek als functie van de frequentie, fase K_{vt} t.o.v. K_{ht} met bijbehorende gekwadrateerde koherentiefunctie

89 t/m 97 Drukbeelden, behorende bij de gemeten maximale ongefilterde genormeerde golfbelastingen, uitgezet t.o.v. de vervaldrukken. Normering naar gewenst inkomend golfbeeld, gedefinieerd op stilstaand water.
Symbolenlijst

<table>
<thead>
<tr>
<th>Symbool</th>
<th>Betekenis</th>
<th>Dimensie</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Amplitude</td>
<td>m, kN</td>
</tr>
<tr>
<td>f</td>
<td>Frekwentie</td>
<td>Hz</td>
</tr>
<tr>
<td>fn</td>
<td>Nyquist-frekwentie</td>
<td>Hz</td>
</tr>
<tr>
<td>F</td>
<td>Kracht</td>
<td>kN</td>
</tr>
<tr>
<td>H</td>
<td>Golfhoogte</td>
<td>m</td>
</tr>
<tr>
<td>\bar{H}_S</td>
<td>Significante golfhoogte</td>
<td>m</td>
</tr>
<tr>
<td>K_vt</td>
<td>Vertikale resulterende kracht op de dorpel</td>
<td>kN</td>
</tr>
<tr>
<td>K_{vb}</td>
<td>Vertikale kracht op de bovenzijde</td>
<td>kN</td>
</tr>
<tr>
<td>K_{vv}</td>
<td>Vertikale kracht op de voorzijde</td>
<td>kN</td>
</tr>
<tr>
<td>K_{vo}</td>
<td>Vertikale kracht op de onderzijde</td>
<td>kN</td>
</tr>
<tr>
<td>K_{ht}</td>
<td>Horizontale resulterende kracht op de dorpel</td>
<td>kN</td>
</tr>
<tr>
<td>K_{hv}</td>
<td>Horizontale kracht op de voorzijde</td>
<td>kN</td>
</tr>
<tr>
<td>K_{ha}</td>
<td>Horizontale kracht op de achterzijde</td>
<td>kN</td>
</tr>
<tr>
<td>m_0</td>
<td>Oppervlakte van het spectrum = energie in het signaal</td>
<td>m², kN²</td>
</tr>
<tr>
<td>n</td>
<td>Schaalgetal</td>
<td>-</td>
</tr>
<tr>
<td>nf</td>
<td>Normeringsfactor</td>
<td>-</td>
</tr>
<tr>
<td>$O(f)$</td>
<td>Overdrachtsfunctie van kracht-amplitude t.o.v. inkomende golf-amplitude</td>
<td>kN/m</td>
</tr>
<tr>
<td>Q</td>
<td>Debiet</td>
<td>m³/s</td>
</tr>
<tr>
<td>S</td>
<td>Spektrale dichtheid</td>
<td>m²/s[kN²]</td>
</tr>
<tr>
<td>t</td>
<td>Tijd</td>
<td>s</td>
</tr>
<tr>
<td>T</td>
<td>Golfperiode</td>
<td>s</td>
</tr>
<tr>
<td>v</td>
<td>Snelheid</td>
<td>m/s</td>
</tr>
<tr>
<td>α</td>
<td>Reflectiekoëfficiënt</td>
<td>-</td>
</tr>
<tr>
<td>γ</td>
<td>$\sqrt{1/(1 + \alpha^2)}$</td>
<td>-</td>
</tr>
<tr>
<td>Δf</td>
<td>Frekwentie-interval tussen twee spektrale schatters</td>
<td>Hz</td>
</tr>
<tr>
<td>Δh</td>
<td>Verval</td>
<td>m</td>
</tr>
<tr>
<td>c</td>
<td>Dichtheid</td>
<td>kg/m³</td>
</tr>
</tbody>
</table>

Indices:
- c: top
- D: dominant
- i: inkomend
- l: lengte
- m: gemeten
- n: genormeerd
- p: piek
<table>
<thead>
<tr>
<th>RMS</th>
<th>root-meansquare</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>signifikant</td>
</tr>
<tr>
<td>t</td>
<td>totaal (inkomend + gereflekteerd); ook: dal</td>
</tr>
<tr>
<td>T</td>
<td>turbulentie</td>
</tr>
<tr>
<td>w</td>
<td>gewenst</td>
</tr>
<tr>
<td>z</td>
<td>geeft aan dat de betreffende grootheid is bepaald tussen twee neergaande nuldoorgangen.</td>
</tr>
</tbody>
</table>
1 Algemeen

1.1 Inleiding

In een brief, gedateerd 11 oktober 1978 heeft Rijkswaterstaat, Hoofdafdeling Waterloopkunde van de Deltadienst, het Waterloopkundig Laboratorium opdracht verleend tot het uitvoeren van modelonderzoek naar stroom- en golfbelastingen op de dorpels van de Stormvloedkering Oosterschelde. Hierbij diende tevens het stroombeeld achter de kering in geval van een (gedeeltelijk) geopende schuif onderzocht te worden.

Dit belastingen- en stroombeeldonderzoek heeft betrekking op een tweetal dorpeltypen, geplaatst in een sektie met diepe bodemligging, Roompot 15 (zie fig. 1).

Aanvankelijk is onderzoek uitgevoerd aan een dorpel met rechthoekige doorsnede. Toen uit de resultaten bleek dat dit ontwerp niet stabiel was met betrekking tot de vertikale golf- en stroombelastingen, is het proevenprogramma uitgebreid met een aantal proeven waarin belastingen op een dorpel met trapeziumvormige doorsnede zijn bepaald (zie figuur 2). Het gehele onderzoek is uitgevoerd met loodrecht inkomende onregelmatige golven en loodrechte aanstroming.

Het onderzoek naar belastingen op de rechthoekige dorpel is uitgevoerd onder leiding van ir. J.C. Stans die ook het betreffende verslag, M 1593-I, heeft samengesteld. Het stroombeeldonderzoek voor beide dorpels, dat is gerapporteerd in het verslag M 1593-III, alsmede het onderzoek naar belastingen op de trapeziumvormige dorpel dat in het onderhavige verslag M 1593-II is vastgelegd, is uitgevoerd onder leiding van ir. R.M. Korthof, die ook de beide verslagen schreef.

De proeven van de drie deelonderzoeken zijn verricht in hetzelfde model en in dezelfde faciliteit, te weten: de 2 m brede windgolfgoot van het Laboratorium Delft. Uitvoerige beschrijvingen van model en goot vindt u in het verslag M 1593-I. In het onderhavige verslag wordt derhalve volstaan met een globale beschrijving. Ook voor een uitgebreide probleemstelling en relaties met eerder uitgevoerde onderzoeken wordt verwezen naar M 1593-I.
De opbouw van het onderhavige verslag is als volgt:
Hoofdstuk 1 bevat naast algemene informatie een samenvatting en de belangrijkste konclusies. In hoofdstuk 2 wordt ingegaan op probleemstelling, modelgeometrie, hydraulische randvoorwaarden, proevenprogramma, meetopstelling, proefprocedure en verwerking. In hoofdstuk 3 worden de meetresultaten besproken en konclusies getrokken. Hierbij vindt ook een vergelijking met de belastingen op de rechthoekige dorpel plaats.

Het onderzoek M 1593 maakt deel uit van projekt nr. F 7705800 van de Deltadienst van de Rijkswaterstaat.

1.2 Samenvatting

In de 2 m brede windgolfgoot is modelonderzoek verricht (schaal 1 : 60) naar stroom- en golfbelastingen op de dorpel in een diepe sektie van de S.V.K.O. Dit verslag bevat een beschrijving van de belastingsmetingen aan de trapeziumvormige dorpel, alsmede een vergelijking tussen belastingen op de trapeziumvormige en rechthoekige dorpel. Deze laatste belastingen zijn eveneens bepaald in het kader van M 1593; de proeven zijn gerapporteerd in het verslag M 1593-I. Als onderdeel van het onderzoek M 1593 zijn bovendien stroombeelden achter de kering onderzocht, waarvan de gegevens te vinden zijn in M 1593-III. Het onderzoek is uitgevoerd met loodrecht inkomende onregelmatige golven en loodrechte aanstroming. In drie verschillende vervalsituaties zijn telkens twee schuifstanden onderzocht.

De belastingen zijn gemeten met behulp van drukopnemers. Uit de gemeten drukken zijn resulterende belastingen in horizontale en vertikale richting bepaald, alsmede belastingen op de afzonderlijke vlakken van de dorpel.

Alle gepresenteerde belastingen zijn gekorrigeerd voor afwijkingen in het gerealiseerde inkomende golfspectraum t.o.v. het gewenste. Hierbij is ervan uitgegaan dat het gewenste inkomende golfspectraum betrekking heeft op het gebied direct voor de kering, waar bij (gedeeltelijk) weigerende schuif een aanzienlijke stroomsnelheid aanwezig is. De op deze wijze genormeerde maximale belastingen zijn met de bijbehorende statische belastingen uitgezet in fig. 21 t/m 34. Deze belastingen zijn in getalvorm beschikbaar in tabellen 3 t/m 10.

Een heroverweging van de golfrandvoorwaarden heeft ertoe geleid, dat de op-
gegeven gewenste golfspектra dienden te worden opgevat als geldend voor situaties met nagenoeg stilstaand water. Daarom is een aantal (bijna) maatgevende belastingen opnieuw genormeerd, nu met voornoemd uitgangspunt. Deze belastingen zijn weergegeven in tabellen 3 en 11 t/m 17.

1.3 Konclusies

- Resulterende vertikale en horizontale totale (statische en golf-) belastingen nemen, evenals bij de rechthoekige dorpel, toe met de schuifopening.
- De voor het ontwerp maatgevende totale belastingen treden op bij geheel geopende schuif bij zeewaterstand N.A.P. + 3,5 m en verval 4,25 m. Zij bedragen:
 Horizontaal, statisch + golf: 27500 kN. (in oostelijke richting)
 Vertikaal, statisch + golf: 31000 kN. (opwaarts).
- De maatgevende totale vertikale belastingen op de trapeziumvormige dorpel zijn geringer dan die op de rechthoekige dorpel, en zij treden op bij een andere zeewaterstand dan bij de rechthoekige dorpel (\(\Delta h = 4,25\) m).
- De golfdrukken zijn, uitgezonderd het gebied nabij de pijlers, tamelijk gelijkmatig over de lengte van de dorpelbalk verdeeld. Bij de rechthoekige dorpel is dit eveneens het geval.
- Verschillen tussen belastingen, genormeerd naar het gewenste inkomende golfspектrum, gedefinieerd op stilstaand water, en belastingen, genormeerd naar het gewenste inkomende golfspектrum, gedefinieerd op stromend water, bedragen bij geheel geopende schuif 4 tot 9%.
- Faseverschillen tussen resulterende horizontale en vertikale belastingen zijn bij de trapeziumvormige balk (fig. 83-88) kleiner dan bij de rechthoekige (\(\theta: \sim 180^\circ\)), en in tegenstelling tot hetgeen gevonden werd bij de rechthoekige dorpel is er variatie in de fase met de schuifopening.
2 Beschrijving van het onderzoek

2.1 Probleemstelling

De vertikale belastingen op de rechthoekige dorpel, beschreven in M 1593-I zijn zo groot dat de stabiliteit van dit balk-ontwerp niet verzekerd is: de
opwaartse belastingen kunnen binnen het relevante randvoorwaardengebied zo-
danige waarden bereiken dat de dorpel van zijn opleggingen wordt gelicht.
Teneinde dit te verhelpen zijn enkele wijzigingen in het ontwerp aangebracht
te weten:
1. verkleining van het opwaarts belaste bovenvlak
2. aanbrengen van een extra vlak waarop een neerwaartse belasting wordt uit-
geoefend.

De wijzigingen zijn verwezenlijkt door de onderzijde zeeuarts te verleng-
en het gedeelte achter de schuif in te korten. De voorzijde verloopt nu
onder een helling, zodat een trapeziumvormige doorsnede is ontstaan. De
beide doorsneden zijn weergegeven in figuur 2.

Het doel van dit deel van het onderzoek is nu:
- Vaststellen van stroom- en golfbelastingen op een dorpelbalk met trape-
ziuvmormige doorsnede onder ontwerpkondities.
- Vergelijking van deze belastingen met die op de rechthoekige dorpel.

De verkregen belastingen in situaties met verval zonder golven worden ge-
bruikt ter verificatie en ijking van het door de Deltadienst ontwikkelde
rekenmodel ter bepaling van de dorpelbelastingen. De gemeten golfbelasting-
en worden na enige manipulatatie gehanteerd als ontwerpbelastingen.

Een meer uitgebreide probleemstelling voor het gehele onderzoek M 1593 is
opgenomen in M 1593-I, hoofdstuk 2.

2.2 Geometrie van de kering

De in dit onderzoek aangebrachte geometrie van de Stormvloedkering is be-
schreven in M 1593-I, paragraaf 3.1. Dientengevolge wordt thans volstaan
met een opsomming van de belangrijkste kenmerken:
- Pijlerontwerp volgens tek. nr. OS1018, RWS Dir. Sluizen en Stuwen; pijler-
voet volgens tek.nr. OS 2812 van deze Direktie. Zie figuren 3 t/m 6.
- Pijlers hart op hart 45 m.
- Schuif zonder damwandbeplating aan de zeezijde, volgens tek.nr. SCOS 40 A van RWS, Dir. Bruggen, zie fig. 7
- Bodem N.A.P. - 35 m.
- Drempel volgens tekening nr. 78.4.190 van de Afd. Afsluitingswerken van de Deltadienst, als bijlage bij de nota DREMBU M-78-023, zie fig. 8.
- Dorpel met trapeziumvormige doorsnede; hoog 8,5 m, bovenzijde op N.A.P. - 10,5 m; breed 8,0 m; volgens tekening nr. OS 61-11B van R.W.S. Dir. Sluizen en Stuwen; de dorpelhoogte is aangepast i.v.m. passing in het model.

2.3 Hydraulische randvoorwaarden

Dankzij de kennis, opgedaan tijdens deel I van dit onderzoek was het niet nodig om alle proeven van deel I te herhalen met een trapeziumvormige dorpel. Bij elk van de drie onderzochte combinaties van waterstanden zijn twee proeven met verschillende schuifstand verricht. De volgende waterstanden en vervallen zijn ingesteld:
- zeewaterstand N.A.P. + 5,0 m, \(\Delta h = 4,25 \) m
- zeewaterstand N.A.P. + 3,5 m, \(\Delta h = 4,25 \) m
- zeewaterstand N.A.P. + 5,5 m, \(\Delta h = 6,20 \) m

De bij deze zeewaterstanden in te stellen golfbeelden zijn geleverd door de Deltadienst. Spektra ervan zijn weergegeven in figuren 15, 16 en 17. De wijze waarop deze spektra tot stand zijn gekomen, is beschreven in M 1593-I par. 3.2.

De opgegeven spektra zijn in overleg met de Deltadienst ingesteld op stromend water. Hoe dat is gebeurd en welke konsequenties dat heeft, wordt besproken in paragrafen 2.5 en 2.6.

De bij de spektra behorende windsnelheden zijn op Froudeschaal (\(n_v = \sqrt{\Delta h} = \sqrt{60} \)) ingesteld in het model.

2.4 Proevenprogramma

Er zijn 6 proeven met trapeziumvormige dorpel uitgevoerd, zoals blijkt uit tabel 1. De nummering is zodanig dat een gemakkelijke vergelijking met de corresponderende proeven met rechthoekige dorpel wordt verkregen:
<table>
<thead>
<tr>
<th>Zeewaterst. (m + N.A.P.)</th>
<th>Verval (m)</th>
<th>Trapeziumv. dorpel</th>
<th>Onderz. schuif (m + N.A.P.)</th>
<th>Rechth. dorpel</th>
<th>Onderz. schuif (m + N.A.P.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4,25</td>
<td>210</td>
<td>+ 0,8</td>
<td>10</td>
<td>+ 1,2</td>
</tr>
<tr>
<td>+ 5,0</td>
<td>4,25</td>
<td>220</td>
<td>- 1,55</td>
<td>20</td>
<td>- 2,2</td>
</tr>
<tr>
<td>+ 3,5</td>
<td>4,25</td>
<td>270</td>
<td>+ 0,8</td>
<td>70</td>
<td>+ 1,2</td>
</tr>
<tr>
<td>+ 3,5</td>
<td>4,25</td>
<td>280</td>
<td>- 3,1</td>
<td>80</td>
<td>- 2,2</td>
</tr>
<tr>
<td>+ 5,5</td>
<td>6,20</td>
<td>330</td>
<td>+ 0,8</td>
<td>130</td>
<td>+ 1,2</td>
</tr>
<tr>
<td>+ 5,5</td>
<td>6,20</td>
<td>340</td>
<td>- 4,2</td>
<td>140</td>
<td>- 2,0</td>
</tr>
</tbody>
</table>

De proeven 210, 270 en 330 hadden met geheel geopende schuif moeten worden uitgevoerd (Onderzijde schuif op N.A.P. + 1,2 m); door een misverstand is echter de onderzijde van de schuif niet op 20 cm boven de onderzijde van de bovenbalk ingesteld, maar 20 cm eronder. Dit heeft echter slechts geringe invloed op de meetresultaten gehad. De schuif is bij de proeven 220, 280 en 340 juist zover geopend, dat in de situatie met verval zonder golven de overgang van een verdronken naar golvende watersprong even is overschreden.

Bij deze proeven zijn de volgende signalen geregistreerd.
- golfhoogten op 3 plaatsen voor de kering; deze signalen zijn tevens gebruikt ter controle van de zeewaterstand.
- waterstand achter de kering.
- drukken op 18 plaatsen op voor-, achter-, onder- en bovenzijde van de dorpel.

De proeven zijn uitgevoerd in combinatie met de stroommetingen in deze proefomstandigheden (M 1593-III).

2.5 Meetopstelling en proefprocedure

De opstelling van het model in de 2 m brede windgolfgoot is geheel hetzelfde als bij de proeven met rechthoekige dorpel. Figuur 9 geeft er een beeld van. Het model (schaal 1 : 60) bestaat uit één centrale meetsektie, geflankeerd door twee dummysekties. In verband met het maximum van het recirculatie-debiet in de goot kan bij de gevraagde waterstanden uitsluitend stroming in de middensektie worden ingesteld. Teneinde toch een situatie te simuleren van een weigerende schuif in het midden van een serie weigerende schuiven, zijn geleideplaten in de goot aangebracht waarvan de binnenzijden in lijn liggen met het hart van de pijlers. De metingen vinden plaats in het aldus
ontstane meetgootje.

De Oosterschelde waterstand wordt ingesteld met een verstelbare overstort. Het debiet door kering en drempel wordt terugge pomppt naar de zeezijde. Goot en recirculatie, die overigens regelbaar is (klep), vormen een gesloten circuit. Na instellen van de juiste hoeveelheid water in het circuit kunnen de waterstanden dus worden beheerst met overstort en circulatiedebiet.

Vóór de overstort is een golfdempend talud aangebracht teneinde te verhinderen dat golven die aan de Oosterschelde zijde ontstaan ten gevolge van golfdoordringing en -overslag, na reflektie tegen de overstort, de kering weer treffen.

De configuratie van pijler, bovenbalk, dorpeel en schuif is weergegeven in fig. 5 en 6, en de ligging van de drempel t.o.v. kering in fig. 8. De drempel is zodanig in model gebracht dat de doorlatendheid op Froudeschaal is. Hoe dit is bereikt, wordt aangegeven in M 1593-I, par. 4.3.

De dorpeel in de meetsektie, waarvan een doorsnede is weergegeven in fig. 2, is zodanig geplaatst dat er een spleet van 0,5 m hoogte resteert tussen onderzijde dorpeel en bovenzijde drempel. Deze dorpeel is uitgerust met 18 drukopnemers, aangebracht in 3 vertikale dwarsdoorsneden, in voor-, onder-, achter- en bovenzijde. De plaatsen van de drukopnemers zijn aangegeven in figuren 10 en 11.

Ten behoeve van de belastingmetingen zijn vier golfhoogtemeters opgesteld. H₁ is 41,1 m (model) voor het model geplaatst en wordt bij het inregelen gebruikt ter controle van het golfbeeld op stilstaand water. H₂ is 6,6 m voor het model geplaatst en dient ter controle van het golfbeeld in het meetgootje, dus op stromend water. H₃ is direct voor de schuif geplaatst en H₅ achter de kering. H₂ en H₅ worden tevens gebruikt ter controle van zee- en Oosterschelde waterstand.

De proeven verlopen in het algemeen als volgt:
1. Waterstand zeezijde = waterstand Oosterschelde zijde = in te stellen zee-waterstand.
2. Drukopnemers worden op nul afgeregeld.
3. Oosterschelde waterstand wordt op het gewenste niveau gebracht.
4. Op alle drukopnemers wordt de gemiddelde druk gemeten.
5. Stroommetingen, zie M 1593-III, par. 2.4.
6. Drukopnemers worden weer op nul afgeregel.
7. Start golfschot; ongeveer 15 min. ingolven. Tijdens ingolven moeten de waterstanden opnieuw worden afgeregel omdat het debiet door/over de kering verandert door de aanwezigheid van golven (overslag en niet-lineaire relatie tussen Δh en Q).
8. Belastingenmeting. Gedurende 1311 seconden in model, hetgeen overeenkomt met 2,8 uur in proto, worden alle signalen bemonsterd met een frekwentie van 25 Hz en opgeslagen op digitale magneetband voor verwerking met de computer.

Tengevolge van reflekties van het door het golfschot opgewekte golfbeeld tegen model en golfschot (een golf blijft heen en weer lopen totdat hij door demping geheel is verdwenen) bestaat het gemeten golfbeeld uit bijdragen met een looprichting naar de kering toe en bijdragen met een looprichting van de kering af. De eerstgenoemde bijdragen vormen gezamenlijk het inkomende golfbeeld.

Het inkomende deel van het gemeten spektrum kan worden bepaald met de volgende formules:

\[S_i(f) = \gamma^2(f) S_T(f) \]

\[m_{oi} = \int_0^{f_n} S_i(f) \, df = \int_0^{f_n} \gamma^2(f) S_T(f) \, df \]

\[\bar{H}_{z,1/3} \, i = \gamma_{overall} \bar{H}_{z,1/3} \, t = \sqrt{\frac{m_{oi}}{m_{ot}}} \bar{H}_{z,1/3} \, t \]

Hierin is:

\[\gamma(f) = \frac{1}{1 + \alpha^2(f)} \]

met \(\alpha(f) \): reflektiekoëfficiënt van de kering bij de frekwentie \(f \).

index \(i \): inkomend
index \(t \): totaal

De benodigde waarden van de reflektiekoëfficiënt dienden in aparte reflektiemetingen met regelmatige golven te worden vastgesteld. Voor de waterstanden N.A.P. + 5,0 en N.A.P. + 3,5 zijn de waarden van \(\alpha \) en \(\gamma \) ontleend aan M 1593-I; voor de waterstand N.A.P. + 5,5 m zijn per schuifstand twee
reflektiemetingen met regelmatige golven uitgevoerd. De gegevens zijn te vinden in tabel 2. Met één reflektiemeting per schuifstand/waterstandenkombinaatie kan niet worden volstaan, omdat een sterke afhankelijkheid van vertoont. De afhankelijkheid van golfhoogte is geringer en daarom is het gebruik van één golfhoogte verantwoord, mits een representatieve waarde wordt gekozen ($H_{\text{rms}} \div H_s$ van het in te stellen spectrum).

De door de Deltadienst opgegeven inkomende golfspetra zijn in overleg met deze dienst zo goed mogelijk ingesteld in de meetoot. De spetra zijn dus opgevat als geldend voor een situatie met stroming.

2.6 Verwerking van de metingen

In verband met het gestelde doel van de metingen dient de verwerking van de metingen te resulteren in gegevens met betrekking tot belastingen op de afzonderlijke vlakken van de dorpel, alsmede resulterende horizontale- en vertikale belastingen, en uiteraard gegevens omtrent het inkomende golfbeeld.

Inkomend golfbeeld. Van het totale golfbeeld, gemeten op H_s zijn met behulp van het golfanalyseprogramma GOLANA spetra en kumulatieve frekwentieverdelingen van golfhoogten berekend. Hieruit zijn met behulp van de formules van par. 2.5 inkomende golfspetra en $H_{z_1/3}^{\text{i}}$-waarden bepaald. De gebruikte reflektiegelingevens zijn weergegeven in fig. 12, 13 en 14. De inkomende golfspetra zijn afgebeeld in fig. 15, 15 en 17.

Belastingen. De belastingen op de dorpel kunnen in drie delen worden opgesplitst:

1. Belastingen bij gelijke waterstanden aan zee- en Oosterscheldezijde. Aan gezien het drukverloop zuiver hydrostatisch is en dus gemakkelijk en nauwkeurig berekend kan worden, is deze belasting niet gemeten.

2. Vervalbelastingen. Deze belastingen worden gemeten met behulp van de drukopnemers. De draaksignalen worden gekenmerkt door een gemiddelde waarde en een fluktutatie daaromheen. De fluktutaties zijn in dit onderzoek niet verder uitgewerkt. Voor enkele proeven van M 1593-I is dat wel gedaan. De wijze van uitvoering, en de resultaten daarvan worden beschreven in M 1593-I, par. 4.6 om 5.1. In dit onderzoek worden van alle draaksignalen de gemiddelde waarden bepaald (middeling over 3 min. modeltijd), waarna door toekenning van oppervlakten aan iedere drukopnemer gemiddelde krachten op de vlakken van de
dorpel worden bepaald volgens de methode die wordt beschreven voor
golfbelastingen. Sommatie van hydrostatische- en vervalbelastingen levert
statische belastingen t.o.v. de atmosferische druk.

3. Golfbelastingen. Voor de start van een golfproef worden de gemiddelde
vervalbelastingen weggenul. Alle fluktuaties t.o.v. deze situatie worden
derhalve opgevat als golfbelastingen. Golfbelastingen bestaan dan uit een
gemiddelde waarde, bijvoorbeeld door stralingsdruk en/of verandering van
stroombeeld t.g.v. golven, en fluktuaties, voornamelijk door golven en in
geringe mate door stroming (deze laatste treden ook op in de vervalbelas-
tingen).

Golfkrachten op de afzonderlijke vlakken van de dorpel worden verkregen
door de op digitale magneetband opgeslagen druksignalen te vermenigvuldigen
met een toegekend oppervlak en te sommeren over het gehele betreffende op-
pervlak. Figuren 10 en 11 geven informatie over de toegekende oppervlakten.
Op deze wijze worden de volgende signalen samengesteld:

\[
\begin{align*}
K_{VB} & \\
K_{VV} & \\
K_{HV} & \\
K_{HA} & \\
K_{VO} & \\
\end{align*}
\]

Vervolgens worden de totale horizontale en totale vertikale belasting be-
rekend volgens:
\[
K_{ht} = K_{hv} - K_{ha} (+ naar het oosten)
\]
\[
K_{vt} = K_{vb} + K_{vv} - K_{vo} (+ neerwaarts).
\]

Deze 7 signalen zijn na affilteren van frekwenties boven 4 Hz (0,52 Hz in
prototype) bewerkt met het golfanalyseprogramma GOLANA. Hierdoor werden de
volgende gegevens verkregen:
- gemiddelde waarde
- kumulatieve frekwentieverdeling van o-top- en o-dalwaarden
- maximum o-top- en o-dalbelasting in een registratie qua amplitude
 \((a_{zc} \text{ max en } a_{zt} \text{ max})\) en tijdstip in de registratie \((t_{azc} \text{ max en } t_{azt} \text{ max})\)
- energiedichtheidsspektra.

Bij alle \(a_{zc} \text{ max en } a_{zt} \text{ max}\)-waarden zijn via \(t_{azc} \text{ max en } t_{azt} \text{ max}\) de (i.v.m.
kostenoverwegingen) ongefilterde momentane drukwaarden opgezocht, die samen
de ruimtelijke drukbeelden leveren, behorende bij de maximale vlak- en
totale belastingen.

Faseverschillen tussen \(K_{ht}\) en \(K_{vt}\) zijn bepaald met behulp van een kruisspek-
trumprogramma.
Uit de figuren 15, 16 en 17 blijkt dat het niet gelukt is om de gevraagde inkomende golven te verwezenlijken. De verschillen zijn van dien aard, dat de gemeten golfbelastingen moeten worden omgerekend naar belastingen die behoren bij de gevraagde inkomende golfbeelden. Kortheidshalve wordt dit normeren genoemd.

In principe komt de normering erop neer, dat uit de gemeten golf- en belastingenspektren overdrachtsfunkties bepaald worden volgens:

\[O(f) = \sqrt{\frac{S_{Fm}}{S_{Him}}} \left[\frac{kN/m'}{golfamplitude} \right], \]

waarna het belastingenspectrum, dat zou zijn opgetreden in aanwezigheid van het gewenste inkomende golfbeeld wordt berekend met:

\[S_{Fw} = O^2(F) S_{Hiw} \left[kN^2/s \right]. \]

Hierin is:
- \(S \) = spektrale dichtheid
- \(O \) = overdrachtsfunctie
- index \(F \) : betrekking hebbend op de belasting
- index \(Hi \) : betrekking hebbend op de inkomende golf
- index \(m \) : gemeten
- index \(w \) : gewenst.

Uiteraard is deze methode slechts toepasbaar in gevallen van lineaire overdracht. Aangezien het tevoren niet duidelijk was of voor alle belastingen van lineaire overdracht kan worden uitgegaan, is in M 1593-I een proef met twee verschillende spektra uitgevoerd.

De golfbelastingsamplituden worden genormeerd via de \(m_0 \)-waarden van het gemeten en het genormeerde belastingenspectrum:

\[\text{normeringsfaktor} = \sqrt{\frac{m_n}{m_{0m}}} = nf \]

index \(n \) : genormeerd
index \(m \) : gemeten.

Hierbij wordt verondersteld dat \(nf \) mag worden toegepast op elke golfbelastingsamplitude.

Zoals in M 1593-I is uiteengezet, is de overdrachtsfunctie niet betrouwbaar in de frekwentiegebieden met geringe energiedichtheid in het gemeten inkomende golfspектrum.

Dit wordt veroorzaakt door enerzijds numerieke onnauwkeurigheden t.g.v. geringe waarden van de noemer (\(S_{Hi} \)) en anderzijds relatief sterke beïn-
vloeding van het belastingenspektrum door turbulentie (S_F t.g.v. S_{Hi} gering omdat S_{Hi} gering is). Het gewenste inkomende golfspektrum loopt echter wel door in het betreffende gebied, dus t.b.v. de normering dient een waarde van de overdrachtsfuntie te worden vastgesteld. Bovendien is het nodig om de hoeveelheid energie in het spektrum t.g.v. turbulentie vast te stellen, omdat wordt verondersteld dat deze bijdrage voor het gemeten en het genormeerde spektrum gelijk is, en dus niet moet worden meegenormeerd.

De uiteindelijke normeringsfaktor n_f wordt nu op de volgende wijze bepaald:

$$n_f = \sqrt{\frac{m_{on}}{m_{om}}}$$

De gemeten m_{om} wordt eenvoudig bepaald als het oppervlak van het spektrum van gemeten belastingen:

$$m_{om} = \frac{65}{1} S_{Fm} \cdot \Delta f$$

De genormeerde m_{on} wordt als volgt bepaald:

$$S_{Fn} = \left\{0^1(f)\right\}^2 \cdot S_{Hiw}$$

$$m_{on} = \frac{65}{1} S_{Fn} \cdot \Delta f + m_{ot}$$

Hierin is:

- $0^1 f$ = overdrachtsfuntie van belastingen t.o.v. inkomende golven, met een aangenomen verloop:

 \[\text{voor } f < 0,057 \text{ Hz: } \quad 0^1(f) = 0(0,057)\]

 \[\text{voor } f > 0,183 \text{ Hz: } \quad 0^1(f) = 0(0,183)\]

 \[\text{spektrale schatter nr.}\]

- m_{ot} = turbulentie-energie, die wordt berekend volgens:

$$m_{ot} = m_{om} - \frac{65}{1} \sum 0^1(f) \cdot S_{Him} \cdot \Delta f$$

Zoals hiervoor reeds is gesteld, heeft zowel normering plaatsgehad naar het gewenste inkomende golfspektrum, gedefinieerd op stromend water, als naar het gewenste inkomende spektrum, gedefinieerd op stilstaand water.
3 Resultaten en vergelijking met de rechthoekige dorpel

In dit hoofdstuk worden de resultaten van de metingen en berekeningen gepresenteerd en besproken. Hierbij worden de belastingen op de dorpel met trapeziumvormige doorsnede telkens vergeleken met die op de dorpel met rechthoekige doorsnede. Uit de vergelijkingen blijkt dat voor vertikale belastingen de trapeziumvormige dorpel aanzienlijk gunstiger is dan de rechthoekige, en dat de verschillen in horizontale richting gering zijn.

Opmerking. Alle in dit verslag opgenomen onderzoeksresultaten gelden voor \(\rho = 1000 \text{ kg/m}^3 \). Dit geldt eveneens voor de resultaten waarmee wordt vergeleken (M 1593-I). Korrektie naar \(\rho = 1025 \text{ kg/m}^3 \) vindt ten behoeve van het verkrijgen van ontwerpgegevens plaats in Nota DDWT 80.296 van de Delta-dienst.

3.1 Statische belastingen

Deze belastingen worden bepaald als som van berekende hydrostatische belastingen en gemeten vervalbelastingen. Figuren 18, 19 en 20 laten de drukbeelden zien die betrekking hebben op deze belastingtoestand: gemiddelde drukwaarden t.o.v. atmosferische druk in situaties met verval zonder golven. In tabel 3 zijn de hieruit berekende waarden van \(K_{vl}, K_{vb}, K_{vv}, K_{vo}, K_{ht}, K_{hv} \) en \(K_{ha} \) opgesomd. In fig. 21 t/m 34 zijn de genoemde belastingen (uitgezonderd \(K_{vv} \)) uitgezet tegen de schuifopening. In deze figuren zijn tevens de statische belastingen op de rechthoekige dorpel weergegeven. In ieder onderzochte vervalsituatie zijn twee schuifposities ingesteld; zowel de vertikale als de horizontale resulterende belasting zijn steeds het grootst bij de grootste schuifopening. Ondanks het geringe aantal meetpunten mag in verband met de bij de rechthoekige dorpel gevonden toename van \(K_{vl} \) en \(K_{ht} \) met de schuifopening worden verondersteld dat deze relatie bij de trapeziumvormige dorpel eveneens voor alle schuifposities geldt. Het verschijnsel hangt samen met afname van \(K_{vb} \) en \(K_{ha} \), als gevolg van toename van het deebiet met toename van de schuifopening.

Uit figuren 21, 22 en 23 blijkt duidelijk dat de resulterende vertikale statische belasting op de trapeziumvormige dorpel aanzienlijk geringer is dan op de rechthoekige dorpel. Voor de meeste proefsituaties geldt dat dit voornamelijk kan worden toegeschreven aan grotere waarden van de statische
druk (geringere onderdrukken t.o.v. de hydrostatische waarden) op de boven-
zijde van de trapeziumvormige dorpel in vergelijking met de rechthoekige.
Vergelijk hiertoe M 1593-II fig. 18, 19 en 20 met M 1593-I fig. 18, 21, 22
en 24.
Deze figuren laten tevens zien, dat het drukverloop aan de voor-, onder-
- en achterzijde minder sterk afwijkt van het hydrostatische verloop, hoewel ook
hier afwijkingen van enkele meters waterkolom voorkomen.

Blijkens figuren 28 en 29 zijn de totale horizontale belastingen \(K_{ht} \) op
beide dorpels ongeveer gelijk, hetgeen eveneens geldt voor \(K_{hv} \) en \(K_{ha} \). Bij
Zeewaterstand N.A.P. + 5,5 m is er echter een verschil in \(K_{ht} \) van ruim 10%.
Hiervoor is geen verklaring gevonden.

3.2 Golfbelastingen

In par. 2.6 is reeds naar voren gebracht dat de gemeten golfbelastingen ge-
normeerder zijn, omdat het niet mogelijk bleek om de gevraagde golfbeelden in
de goot te verwezenlijken. Hierbij werd het versmalde gedeelte van de goot
in beschouwing genomen, dus dat gedeelte, waarin stroming ten gevolge van
verval, overslag en lek door de drempel aanwezig was. De opgegeven spectra
dienden hier zo goed mogelijk te worden gerealiseerd. De normering hield
derhalve in: omrekening naar de belastingen, die zouden optreden indien het
gevraagde inkomende golfspectrum op stromend water aanwezig zou zijn. Deze
wijze van normeren, die in het vervolg zal worden aangeduid met: normering
naar het gewenste inkomende golfspectrum, gedefinieerd op stromend water, is
eveneens toegepast in het onderzoek naar belastingen op de rechthoekige
dorpel.

Na heroverweging van de golfrandvoorwaarden is gekoncludeerd dat de opge-
geven golfspectra dienen te worden opgevat als geldend voor situaties met
nagenoeg stilstaand water (\(< 0,5 \) m/s). Dientengevolge is een aantal vrijwel
of geheel maatgevende belastingen opnieuw genormeerd; ditmaal vond omre-
kkening plaats naar belastingen die zouden optreden indien op stilstaand
water het opgegeven inkomende golfspectrum aanwezig zou zijn. Dit is aange-
duid met: normering naar het gewenste inkomende golfspectrum, gedefinieerd
op stilstaand water.
Bij de uitvoering van deze normering doen zich de volgende problemen voor:

1. Hoewel in het grootste deel van de goot, tussen golfschot en instroombak (zie fig. 9) de gemiddelde stroomsnelheid gelijk aan nul is, is het niet mogelijk om het inkomende golfbeeld op stilstaand water uit het gemeten golfbeeld in dit gedeelte van de goot te bepalen, omdat daarvoor de nodige reflektieregels ontbreken. Weliswaar zijn reflektiemetingen in de meetgoot gedaan, maar de resultaten daarvan hebben daarbuiten geen betekenis, enerzijds juist vanwege het verschil in gemiddelde stroomsnelheid tussen binnen en buiten de meetgoot, anderzijds omdat de reflektiekoëfficiënten van de dummies niet gelijk zijn aan die van de meetsektie.

2. De stroomsnelheid van 0,5 m/s die als randvoorwaarde geldt bij het gewenste spektrum, wordt niet in rekening gebracht als zou worden uitgegaan van het gemeten golfbeeld in het deel van de goot met \(\bar{v} = 0 \). Dit leidt tot overschatting van de golfhoogtereductie die plaatsvindt bij overgang van \(\bar{v} \approx 0 \) naar \(\bar{v} \neq 0 \), en derhalve tot onderschatting van de genormeerde golfbelastingen.

3. De toestroming die verantwoordelijk is voor de toename van de stroomsnelheid vindt in de goot plaats van onderaf op één "punt" (instroombak), in het prototype naar verwachting echter van de zijkanten, en geleidelijk. Beide verschillen veroorzaken een sterkere afname van de golfhoogte in het model dan in het prototype, en daarmee een onderschatting van de genormeerde belastingen, indien in het model getracht wordt het gewenste inkomende golfbeeld vóór de instroombak te realiseren.

Op grond van deze overwegingen is een tussenstap in de normering aangebracht: het gegeven spektrum voor \(\bar{v} = 0,5 \) m/s wordt met behulp van lineaire golftheorie omgerekend naar een prototype-situatie met een stroomsnelheid die overeenkomt met de prototypewaarde van de snelheid in het meetgootje. Hierbij is rekening gehouden met geleidelijke toestroming vanaf de zijkanten. Deze stroomrefraktieberekening wordt toegelicht in de bijlage geheel achter in dit rapport. Vervolgens is dezelfde normeringsmethode toegepast als voorheen, nu echter met het gereflakeerde spektrum als gewenst inkomend golfspektrum op stromend water.

In dit verslag is de volgende informatie met betrekking tot de golfbelastingsmetingen opgenomen:
- statistische gegevens van gemeten golfbelastingen; 0,52 Hz laagdoorlaat (LP) gefilterd (tab. 4 t/m 17)
- statistische gegevens van golfbelastingen, genormeerd naar het gewenste inkomende golfspektrometer, gedefinieerd op stromend water; 0,52 Hz LP gefilterd (tabel 4 t/m 10) alsmede het verloop hiervan met de schuifopening (fig. 21 t/m 46). In deze figuren worden tevens vergelijkbare belastingen op de rechthoekige dorpel weergegeven.
- statistische gegevens van golfbelastingen, genormeerd naar het gewenste inkomende golfspektrometer, gedefinieerd op stilstaand water; 0,52 Hz LP gefilterd (Proeven 210, 270, 280; tabel 11 t/m 17)
- drukbeelden, behorend bij de gemeten maximale ongefilterde golfbelastingen, genormeerd naar het gewenste inkomende golfspektrometer, gedefinieerd op stromend water (fig. 47 t/m 70)
- idem, genormeerd naar het gewenste inkomende golfspektrometer, gedefinieerd op stilstaand water. (Proeven 210, 270, 280; fig. 89 t/m 97)
- overdrachtsfuncties voor de 0,52 Hz L.p. gefilterde belastingen ten opzichte van de inkomende golfspektrometers op stromend water, bepaald uit H₂-registraties (fig. 71 t/m 82)
- inkomende golfspektrometers, bepaald uit H₂-registraties (fig. 15, 16, 17)
- fasefuncties en gekwadrateerde koherentiefuncties van KVT t.o.v. Kht.

Bij de tabellen 4 t/m 17 gelden nog de volgende opmerkingen:

- Ten gevolge van zeer laagfrekwente belastingswisselingen, die niet rechtstreeks verband houden met het golfspektrometer, ontstaat bij f = 0 Hz in het belastingenspektrometer een piek. Hoewel we hier te maken hebben met wisselingen, komt de betreffende energie toch bij o Hz in het spectrum terecht, omdat het onderscheidend vermogen van de spektrumberekening niet is gekozen met het doel deze laagfrekwente verschijnselen precies te lokaliseren.
- Het gemeten gemiddelde is gekorregeerd voor geringe afwijkingen, die ontstaan door onnauwkeurigheden in het op nul afregelen van de druksignalen in de nulsituatie (= verval zonder golven).
- De gemeten 13,5%-, 0,1% en maximale waarden zijn vermeld t.o.v. dit gemiddelde.
- De genormeerde waarden zijn bepaald t.o.v. de statische belastingen, zodat:

\[(o\text{-top})_n = (o - \text{top})_m * \text{normeringsfactor} \times 3.1\]

index n : genormeerd
index m : gemeten.
In fig. 35 t/m 46 is te zien dat evenals bij de rechthoekige dorpel K_{VT} en K_{HT} in het algemeen toenemen met de schuifopening. Voor de vertikale belastingen geldt dit in sterkere mate dan voor de horizontale. Omdat ook de statische belastingen toenemen met de schuifopening, treden de zwaarste totale belastingen op bij geheel geopende schuif. Van de realistische ontwerp- randvoorwaarden (verval 4,25 m, zeewaterstanden N.A.P. + 3,5 en N.A.P. + 5,0 m) is de situatie met zeewaterstand N.A.P. + 3,5 m maatgevend, zowel voor horizontale als vertikale totale belastingen. Dit is een afwijkling t.o.v. de rechthoekige dorpel waar de situatie met zeewaterstand N.A.P. + 5 m maatgevend is. Voor beide typen dorpels overtreffen de totale belastingen bij N.A.P. + 5,5 m de overige aanzienlijk, hetgeen niet verwonderlijk is i.v.m. het grotere verval (6,2 m) en de bij deze zeewaterstand behorende zwaardere golfkondities (Deze situatie wordt voor het ontwerp echter niet als relevant beschouwd).

De maatgevende resulterende totale belastingen:

Trapeziumvormige dorpel, zeewaterstand N.A.P. + 3,5 m, geopende schuif:

\[
K_{VT} \text{ (stat. + max. golf)} = -31,3 \times 10^3 \text{ kN (normering stromend w.)}
= -31,0 \times 10^3 \text{ kN (normering stilst. w.)}
\]

\[
K_{HT} \text{ (stat. + max. golf)} = +28,2 \times 10^3 \text{ kN (normering stromend w.)}
= +27,5 \times 10^3 \text{ kN (normering stilst. w.)}
\]

Rechthoekige dorpel, zeewaterstand N.A.P. + 5,0 m, geopende schuif:

\[
K_{VT} \text{ (stat. + max. golf)} = -42,0 \times 10^3 \text{ kN (normering stromend w.)}
\]

\[
K_{HT} \text{ (stat. + max. golf)} = +29,4 \times 10^3 \text{ kN (normering stromend w.)}
\]

De bij de maximale golfbelastingen behorende drukbeelden (fig. 47 t/m 70) laten zien dat in het algemeen de drukken tamelijk gelijkmatig over de lengte van de balk zijn verdeeld, uitgezonderd het gebied nabij de pijler.

Resulterende vertikale totale- en golfbelastingen op de trapeziumvormige dorpel zijn in overeenkomstige situaties geringer dan op de rechthoekige dorpel. Bij de resulterende horizontale golfbelasting op de dorpel geldt het tegendeel, waardoor de statische + maximale golfbelasting bij N.A.P. + 3,5 m op de trapeziumvormige dorpel groter is dan op de rechthoekige.

Met betrekking tot vertikale vlakbelastingen is het niet mogelijk zonder meer een vergelijking tussen beide typen dorpels uit te voeren, omdat de afmetingen van overeenkomende vlakken verschillend zijn. Horizontale belastingen liggen voor beide dorpels ongeveer gelijk.
Tijdens de proeven zijn in enkele gevallen belangrijke nulverschuivingen opgetreden tussen de situaties met en zonder golf (verval aanwezig). Met name is dit het geval bij proeven 10 (rechthoekige balk) en 270 (trapeziumvormige balk) en in mindere mate bij proef 210. Het ligt voor de hand te veronderstellen dat hieraan een verandering in stroombeeld tussen de situaties met en zonder golven ten grondslag ligt. Dit kan alleen voor P 10 gekontrôleerd worden omdat in die situatie stroommetingen met en zonder golven zijn gedaan. Uit de stroombeelden (P 13 S en P 13 G, M 1593-III) blijkt echter niets van een dergelijke verandering; sterker nog: bij de situatie van proef 70 (P 73 S en P 73 G) is een dergelijke verandering wel waarneembaar (overgang van golvende watersprong naar watersprong met vrije dekneer), terwijl daarentegen geen opvallende nulverschuivingen zijn gekonstateerd.

In het model kunnen enkele faktoren worden onderkend, die oorzaak kunnen zijn van nulverschuivingen. Deze factoren zijn behandeld in het verslag M 1516; tevens zijn de hierdoor veroorzaakte nulverschuivingen globaal gekwantificeerd. De in het onderhavige onderzoek gevonden nulverschuivingen zijn evenwel aanzienlijk groter dan verklaard kan worden uit de ongunstigste combinatie van factoren volgens M 1516, zodat gekonkludeerd wordt dat deze factoren wellicht meespelen, doch niet de hoofdoorzaak zijn. Een afdoende verklaring is niet gevonden.

De nulverschuivingen zijn overigens wel oorzaak van de negatieve o-topwaarden die hier en daar in de golfbelastingen voorkomen. Herhaalde bepaling van de nulverschuivingen bij proef 270 leidde tot grotere waarden ervan. Deze waarden zijn tussen haakjes in de tabellen 4 t/m 17 vermeld. De bijbehorende genormeerde golfbelastingen worden verkregen volgens formule 3.1. Indien deze nulverschuivingen in rekening gebracht worden, gaat de maatgevende waarde van K_{vt} 2% omhoog en die van K_{ht} ruim 3% omlaag.

De twee toegepaste normeringen leiden uiteraard tot verschillende resultaten. De normering naar het gewenste incomende spektrum, gedefinieerd op stilstaand water levert lagere belastingen dan de eerder gebruikte methode, omdat hierbij wordt uitgegaan van het gerefrakteerde spektrum. De verschillen bedragen bij geheel geopende schuif 4 tot 9%.

M S.V.K.O., Belasting bij gesloten, sluitende en weigerende schuif, sektie R 15, pijlers h.o.h. 40 m, loodrechte golfaanval. Verslag modelonderzoek, Waterloopkundig Laboratorium, 1980.
Evenals bij de rechthoekige dorpel vertonen de overdrachtsfunkties voor K_{VV}, K_{V0}, K_{HV} en K_{ht} (fig. 71 - 82) die zijn bepaald uit het quotiënt van het gemeten belastingenspektrum en inkomend golfspektrum, een verloop dat lijkt op hetgeen op grond van lineaire golftheorie verwacht kan worden. De overige belastingen wijken daar sterk vanaf tengevolge van de vervalstroming, die in relatief belangrijke mate oorzaak is van energie in de spektra van deze belastingen. Om die reden is de geldigheid van de overdrachtsfunkties van K_{vb}, K_{vt}, K_{ha} en K_{ht} beperkt tot golfspektra die niet sterk afwijken van de ingestelde spektra.

De fasefunkties (fig. 83 t/m 88) geven de fase van K_{vt} t.o.v. K_{ht} weer, zodanig, dat een positieve fasehoek betekent, dat K_{vt} in de tijd achter loopt en opzichte van K_{ht}. Bij de fasefunkties zijn ook de gekwadratereerde koherentiefunkties gegeven, die aangeven in hoeverre er verband tussen fluktuaties in K_{ht} en K_{vt} bestaat. Indien dit verband te gering wordt, heeft de fasefunktie uiteraard geen betekenis meer. Dit is het geval als de gekwadratereerde koherentiefuntiewaarde minder dan 0,7 bedraagt.

Bij geopende schuif loopt K_{vt} ruwweg 90° achter op K_{ht}.
Bij slechts enigszins gesloten schuif loopt dit faseverschil vrij sterk terug, zelfs loopt bij lage frekwenties K_{vt} ongeveer 90° voor op K_{ht}. In vergelijking met de rechthoekige dorpel, waarbij in het algemeen de faseverschillen ongeacht de schuifopening ongeveer 180° bedragen, zijn de faseverschillen bij de trapeziumvormige dorpel geringer. Bovendien is er variatie in de fase met de schuifopening, hetgeen bij de rechthoekige dorpel niet het geval is.
Tabel 1 Proevenprogramma

<table>
<thead>
<tr>
<th>Proef</th>
<th>Waterstand (m + N.A.P.)</th>
<th>Onderzijde schuif (m + N.A.P.)</th>
<th>(\sqrt[4]{m_o}) inkomend gewenst (m)</th>
<th>(\gamma) "overall" (-)</th>
<th>(\sqrt[4]{m_o}) totaal gemeten (m)</th>
<th>(\sqrt[4]{m_o}) inkomend gemeten (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>zeezijde</td>
<td>Oostersch.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>+ 5,0</td>
<td>+ 0,75</td>
<td>+ 0,80</td>
<td>3,38</td>
<td>0,907</td>
<td>3,62</td>
</tr>
<tr>
<td>220</td>
<td>+ 5,0</td>
<td>+ 0,75</td>
<td>- 1,55</td>
<td>3,38</td>
<td>0,894</td>
<td>3,86</td>
</tr>
<tr>
<td>270</td>
<td>+ 3,5</td>
<td>- 0,75</td>
<td>+ 0,80</td>
<td>2,57</td>
<td>0,949</td>
<td>3,05</td>
</tr>
<tr>
<td>280</td>
<td>+ 3,5</td>
<td>- 0,75</td>
<td>- 3,10</td>
<td>2,57</td>
<td>0,895</td>
<td>2,96</td>
</tr>
<tr>
<td>330</td>
<td>+ 5,5</td>
<td>- 0,70</td>
<td>+ 0,80</td>
<td>3,59</td>
<td>0,889</td>
<td>3,49</td>
</tr>
<tr>
<td>340</td>
<td>+ 5,5</td>
<td>- 0,70</td>
<td>- 4,20</td>
<td>3,59</td>
<td>0,844</td>
<td>3,99</td>
</tr>
</tbody>
</table>

Opm.
1. De gegeven waarden van \(\sqrt[4]{m_o}\) hebben betrekking op het gedeelte van 0,047 Hz tot 0,249 Hz.
2. \(\sqrt[4]{m_o}\) (inkomend, gemeten) = \(\gamma\) overall \(\ast\) \(\sqrt[4]{m_o}\) (totaal, gemeten).

Tabel 2 Reflektiemetingen N.A.P. + 5,5 m

<table>
<thead>
<tr>
<th>Proef</th>
<th>Onderzijde schuif (m + N.A.P.)</th>
<th>(\bar{H}_i) (m)</th>
<th>(\bar{T}) (s)</th>
<th>(\alpha) (-)</th>
<th>(\gamma) (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>331</td>
<td>+ 0,8</td>
<td>3,6</td>
<td>11,3</td>
<td>0,73</td>
<td>0,809</td>
</tr>
<tr>
<td>332</td>
<td>+ 0,8</td>
<td>2,1</td>
<td>8,3</td>
<td>0,10</td>
<td>0,995</td>
</tr>
<tr>
<td>341</td>
<td>- 4,2</td>
<td>3,6</td>
<td>11,3</td>
<td>0,77</td>
<td>0,792</td>
</tr>
<tr>
<td>342</td>
<td>- 4,2</td>
<td>2,3</td>
<td>8,3</td>
<td>0,77</td>
<td>0,792</td>
</tr>
</tbody>
</table>

Zeewaterstand: N.A.P. + 5,5 m.
Oosterscheldewaterstand: N.A.P. - 0,7 m.
Tabel 3 Statistische belastingen
in 10^3 kN, t.o.v. atmosferische druk.

<table>
<thead>
<tr>
<th>Proef</th>
<th>Vertikaal</th>
<th>Horizontaal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_{vt}</td>
<td>K_{vb}</td>
</tr>
<tr>
<td>210</td>
<td>-24,8</td>
<td>16,2</td>
</tr>
<tr>
<td>220</td>
<td>-23,2</td>
<td>19,2</td>
</tr>
<tr>
<td>270</td>
<td>-26,2</td>
<td>11,3</td>
</tr>
<tr>
<td>280</td>
<td>-23,3</td>
<td>15,1</td>
</tr>
<tr>
<td>330</td>
<td>-29,6</td>
<td>5,8</td>
</tr>
<tr>
<td>340</td>
<td>-23,9</td>
<td>14,5</td>
</tr>
</tbody>
</table>

\[K_{vt} \]
\[K_{vb} \]
\[K_{vv} \]
\[K_{vo} \]
\[K_{ht} \]
\[K_{hv} \]
\[K_{ha} \]
<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde, geccorr.</th>
<th>T_x (s)</th>
<th>T_d (s)</th>
<th>$T_{x,\text{max}}$ (s)</th>
<th>Gemeten waarden t.o.v. het gemiddelde</th>
<th>normeeringsfaktor</th>
<th>genormeerde waarden t.o.v. vervalbelasting</th>
<th>m.b.t. 13,5%-0,1%-en max. waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>- 0,32</td>
<td>7,60</td>
<td>8,64</td>
<td>19,74</td>
<td>1,32 2,06 2,21</td>
<td>0,97</td>
<td>1,83 0-t</td>
<td>5,22 o-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,81 -3,57 -3,65</td>
<td>-0,31</td>
<td>-2,06 -3,84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,95 5,36 5,38</td>
<td>2,86</td>
<td>5,22 t-d</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>- 0,15</td>
<td>6,14</td>
<td>7,05</td>
<td>17,44</td>
<td>0,82 1,54 1,60</td>
<td>0,63</td>
<td>1,36 o-t</td>
<td>3,04 o-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,93 -1,70 -1,90</td>
<td>-0,14</td>
<td>-1,01 o-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,65 2,89 3,23</td>
<td>1,55</td>
<td>3,04 t-d</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>- 1,24 (- 1,81)</td>
<td>8,23</td>
<td>10,43</td>
<td>20,86</td>
<td>2,11 3,20 3,34</td>
<td>0,76</td>
<td>1,85 o-t</td>
<td>5,14 o-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,70 -4,50 -4,60</td>
<td>-1,09</td>
<td>-3,47 o-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,50 6,52 6,84</td>
<td>3,96</td>
<td>6,02 t-d</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>- 0,10</td>
<td>6,32</td>
<td>6,76</td>
<td>23,78</td>
<td>0,76 1,43 1,57</td>
<td>0,66</td>
<td>1,47 o-t</td>
<td>7,49 t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,79 -1,52 -1,80</td>
<td>-0,10</td>
<td>-0,89 o-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,46 2,55 2,85</td>
<td>1,45</td>
<td>2,84 t-d</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>+ 0,36</td>
<td>6,11</td>
<td>7,86</td>
<td>21,57</td>
<td>1,91 3,11 3,37</td>
<td>2,66</td>
<td>4,37 o-t</td>
<td>7,49 t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,93 -3,32 -3,50</td>
<td>1,170</td>
<td>0,42 1,84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,58 5,62 6,40</td>
<td>4,19</td>
<td>7,49 t-d</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>- 0,45</td>
<td>6,66</td>
<td>8,79</td>
<td>23,14</td>
<td>1,07 1,95 2,60</td>
<td>0,63</td>
<td>2,20 o-t</td>
<td>3,64 t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,10 -2,13 -2,45</td>
<td>-0,46</td>
<td>-1,58 o-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,97 3,30 3,56</td>
<td>2,01</td>
<td>3,64 t-d</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 5: Overzicht van gemeten en genormeerde 0,52 Hz LF gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stromend water. Belasting: K_{vw}, dimensie: 10^3 kW.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde, gecorr.</th>
<th>\bar{t}_d (s)</th>
<th>\bar{t}_d (s)</th>
<th>$T_{d,\max}$ (s)</th>
<th>gemeten waarden t.o.v. het gemiddelde</th>
<th>normeeringsfaktor</th>
<th>genormeerde waarden t.o.v. vervelbelasting</th>
<th>m.b.t. $13,5%$</th>
<th>$0,1%$</th>
<th>maximale waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$13,5%$ $0,1%$ max</td>
<td>(*)</td>
<td>gemiddelde $13,5%$ max</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>$-1,02$</td>
<td>9,10</td>
<td>48,75</td>
<td></td>
<td>1,61 2,51 2,65</td>
<td>0,985 1,00 3,24 5,71</td>
<td>0,58 1,60 o t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$-2,27$ $-4,55$ $-4,78$</td>
<td></td>
<td>3,43 5,99 o d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,48 6,02 6,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>$-0,35$</td>
<td>7,98</td>
<td>12,90</td>
<td>25,93</td>
<td>1,08 1,97 2,31</td>
<td>0,988 0,34 1,46 2,54</td>
<td>0,73 1,94 o t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$-1,13$ $-2,15$ $-2,22$</td>
<td></td>
<td>1,93 3,57 o d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,96 3,33 3,62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>$-2,23$ (-3,69)</td>
<td>8,69</td>
<td>10,92</td>
<td>28,84</td>
<td>2,22 3,63 3,68</td>
<td>0,883 0,97 4,60 6,37</td>
<td>$-0,01$ 1,28 o t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$-2,98$ $-4,99$ $-4,99$</td>
<td></td>
<td>4,22 6,20 t d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,79 6,88 7,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>$-0,09$</td>
<td>8,31</td>
<td>13,39</td>
<td>31,51</td>
<td>0,91 1,64 1,69</td>
<td>1,003 0,09 1,03 1,98</td>
<td>0,82 1,60 o t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$-0,94$ $-1,75$ $-1,89$</td>
<td></td>
<td>1,66 2,90 t d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,65 2,83 2,89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>$+0,01$</td>
<td>6,41</td>
<td>7,80</td>
<td>22,46</td>
<td>1,72 2,80 2,89</td>
<td>1,123 0,15 2,14 4,13</td>
<td>1,95 3,26 o t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$-1,92$ $-3,50$ $-3,69$</td>
<td></td>
<td>3,75 6,87 t d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,34 5,42 6,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>$-0,58$</td>
<td>8,67</td>
<td>35,89</td>
<td></td>
<td>1,30 2,73 3,45</td>
<td>1,026 0,59 1,84 3,02</td>
<td>0,74 2,95 o t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$-1,22$ $-2,36$ $-2,37$</td>
<td></td>
<td>2,28 4,16 t d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,22 4,02 4,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel 6 Overzicht van gemeten en genormeerde 0,52 Hz LP gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stroomend water. Belasting: K_{vv}, dimensie: 10^3 kN.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemaal, gecorr.</th>
<th>\bar{T}_e (s)</th>
<th>\bar{T}_d (s)</th>
<th>$T_{e, max}$ (s)</th>
<th>Gemeten waarden t.o.v. het gemiddelde</th>
<th>normeeringsfactor</th>
<th>genormeerde waarden t.o.v. vervalling, gemiddelde</th>
<th>m.b.t. 13,5% 13,5% max 0,1% en max. waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>-0,05</td>
<td>10,08</td>
<td>12,06</td>
<td>21,89</td>
<td>1,68 2,81 2,93 0,984 -0,05 1,60 2,83 o-t</td>
<td>3,23 5,37 5,61</td>
<td>3,18 5,52 t-d</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>-0,03</td>
<td>10,13</td>
<td>12,04</td>
<td>22,94</td>
<td>1,66 3,13 3,23 0,935 -0,03 1,53 2,99 o-t</td>
<td>3,28 5,25 5,55</td>
<td>3,06 5,19 t-d</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>+0,07</td>
<td>9,87</td>
<td>12,24</td>
<td>21,72</td>
<td>1,50 2,64 2,96 0,830 +0,06 1,30 2,52 o-t</td>
<td>1,54 2,57 4,77</td>
<td>2,47 3,96 t-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0,00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>+0,10</td>
<td>10,34</td>
<td>11,89</td>
<td>23,27</td>
<td>1,27 2,29a 2,40 0,956 +0,09 1,31 2,39 o-t</td>
<td>2,57 3,92b 4,33</td>
<td>2,65 4,14 t-d</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>-0,05</td>
<td>9,95</td>
<td>12,20</td>
<td>24,00</td>
<td>1,72 3,04 3,24 1,049 -0,05 1,75 3,34 o-t</td>
<td>3,25 5,53 6,02</td>
<td>3,41 6,31 t-d</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>-0,02</td>
<td>10,34</td>
<td>12,15</td>
<td>23,69</td>
<td>1,60 2,50a 2,61 1,031 -0,02 1,63 2,67 o-t</td>
<td>3,21 5,68b 5,93</td>
<td>3,31 6,11 t-d</td>
<td></td>
</tr>
</tbody>
</table>

a 0,125% waarde i.p.v. 0,1% waarde
Tabel 7 Overzicht van gemeten en normeerde 0,52 Hz LP gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stromend water. Belasting: K_{VO}, dimensie: 10² kN.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde, \bar{T}_{z} (s)</th>
<th>\bar{T}_{d} (s)</th>
<th>$T_{z,max}$ (s)</th>
<th>Gemeten waarden t.o.v. het gemiddelde</th>
<th>normeeringsfactor</th>
<th>genormeerde waarden t.o.v. vervalbelasting gemiddelde</th>
<th>m.b.t. 13,5% 0,1% en max. waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>- 0,75</td>
<td>11,29</td>
<td>12,24</td>
<td>53,55</td>
<td>2,02</td>
<td>3,20</td>
<td>3,58</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 2,31</td>
<td>- 4,47</td>
<td>- 4,51</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,95</td>
<td>6,60</td>
<td>6,78</td>
</tr>
<tr>
<td>220</td>
<td>- 0,23</td>
<td>10,60</td>
<td>12,01</td>
<td>31,69</td>
<td>1,80</td>
<td>3,10</td>
<td>3,31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 2,05</td>
<td>- 4,01</td>
<td>- 4,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,61</td>
<td>5,76</td>
<td>6,42</td>
</tr>
<tr>
<td>270</td>
<td>- 0,92</td>
<td>10,76</td>
<td>12,72</td>
<td>39,34</td>
<td>1,63</td>
<td>2,81</td>
<td>3,52</td>
</tr>
<tr>
<td></td>
<td>(- 1,89)</td>
<td></td>
<td></td>
<td></td>
<td>- 1,99</td>
<td>- 3,60</td>
<td>- 3,79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,36</td>
<td>5,28</td>
<td>5,39</td>
</tr>
<tr>
<td>280</td>
<td>0,11</td>
<td>10,81</td>
<td>11,91</td>
<td>26,95</td>
<td>1,33</td>
<td>2,24</td>
<td>2,50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 1,55</td>
<td>- 2,65</td>
<td>- 2,67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,69</td>
<td>4,43</td>
<td>4,45</td>
</tr>
<tr>
<td>330</td>
<td>- 0,40</td>
<td>10,35</td>
<td>12,51</td>
<td>54,04</td>
<td>1,54</td>
<td>2,56</td>
<td>2,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 1,92</td>
<td>- 4,25</td>
<td>- 4,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,16</td>
<td>5,80</td>
<td>7,29</td>
</tr>
<tr>
<td>340</td>
<td>- 0,14</td>
<td>10,68</td>
<td>12,21</td>
<td>40,76</td>
<td>1,61</td>
<td>2,67</td>
<td>2,73</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>- 1,76</td>
<td>- 3,66</td>
<td>- 3,70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,18</td>
<td>5,72</td>
<td>6,06</td>
</tr>
</tbody>
</table>

* 0,125% waarde i.p.v. 0,1% waarde
Tabel 8 Overzicht van gemeten en genormeerde 0,52 Hz LP gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stromend water. Belasting: \(R_{ht} \), dimensie: \(10^3 \, \text{kN} \).

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde, (T_{ez}) (s)</th>
<th>(T_{zd}) (s)</th>
<th>(T_{z,\text{max}}) (s)</th>
<th>Geomet waarden t.o.v. het gemiddeldelde</th>
<th>normeringfaktor</th>
<th>genormeerde waarden t.o.v. vervalbelasting gemiddeldelde</th>
<th>m.b.t. 13,5% en max. waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>1,20</td>
<td>8,93</td>
<td>12,12</td>
<td>31,64</td>
<td>4,11</td>
<td>7,77</td>
<td>8,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3,72</td>
<td>-6,25</td>
<td>-7,03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,23</td>
<td>13,10</td>
<td>13,36</td>
</tr>
<tr>
<td>220</td>
<td>0,36</td>
<td>10,54</td>
<td>12,58</td>
<td>21,81</td>
<td>3,67</td>
<td>7,23</td>
<td>7,23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-4,00</td>
<td>6,76</td>
<td>-7,41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,36</td>
<td>11,49</td>
<td>12,15</td>
</tr>
<tr>
<td>270</td>
<td>3,21 (4,21)</td>
<td>8,36</td>
<td>11,26</td>
<td>25,00</td>
<td>4,52</td>
<td>8,29</td>
<td>8,69</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3,22</td>
<td>-5,45</td>
<td>-5,56</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,37</td>
<td>12,25</td>
<td>12,26</td>
</tr>
<tr>
<td>280</td>
<td>0,40</td>
<td>10,37</td>
<td>12,31</td>
<td>23,63</td>
<td>3,01</td>
<td>5,11</td>
<td>5,42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3,18</td>
<td>-5,12</td>
<td>-5,95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,95</td>
<td>9,87</td>
<td>9,92</td>
</tr>
<tr>
<td>330</td>
<td>0,96</td>
<td>8,75</td>
<td>9,98</td>
<td>20,75</td>
<td>5,41</td>
<td>10,19</td>
<td>11,48</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3,96</td>
<td>-6,61</td>
<td>-7,30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8,93</td>
<td>16,00</td>
<td>16,36</td>
</tr>
<tr>
<td>340</td>
<td>1,40</td>
<td>10,38</td>
<td>12,45</td>
<td>27,03</td>
<td>3,94</td>
<td>6,35</td>
<td>6,60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-4,32</td>
<td>-8,77</td>
<td>-9,41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7,80</td>
<td>13,79</td>
<td>15,01</td>
</tr>
</tbody>
</table>

\(\times 0,125\% \) waarde i.p.v. 0,1\% waarde
Tabel 9 Overzicht van gemeten en normeerde 0,52 Hz LP gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stromend water. Belasting: \(K_{hv} \), dimensie: 10³ kN.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde gecorr.</th>
<th>(\bar{t}_2) (s)</th>
<th>(\bar{t}_4) (s)</th>
<th>(\bar{t}_{2,\text{max}}) (s)</th>
<th>Gemeten waarden t.o.v. het gemiddelde</th>
<th>normeringsfactor</th>
<th>genormeerde waarden t.o.v. vervalbelasting</th>
<th>m.b.t. 13,5% 0,12%</th>
<th>m.b.t. 13,5% 0,12% en max. waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>- 0,17</td>
<td>10,18</td>
<td>12,06</td>
<td>21,79</td>
<td>4,46 7,59 7,77</td>
<td>0,975</td>
<td>4,18 7,41 o-t</td>
<td>8,42</td>
<td>14,48 t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,63 14,28</td>
<td>14,93</td>
<td></td>
<td>- 0,165 4,88 8,99</td>
<td>8,42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>- 0,53</td>
<td>10,13</td>
<td>12,04</td>
<td>22,94</td>
<td>4,45 8,32 8,52</td>
<td>0,945</td>
<td>3,70 7,55 o-t</td>
<td>8,27</td>
<td>14,08 t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,75 13,90</td>
<td>14,90</td>
<td></td>
<td>- 0,50 5,15 9,38</td>
<td>8,27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>- 0,06</td>
<td>9,88</td>
<td>12,25</td>
<td>21,53</td>
<td>3,60 6,91 7,93</td>
<td>0,828</td>
<td>2,93 6,52 o-t</td>
<td>7,54</td>
<td>11,88 12,80 t-d</td>
</tr>
<tr>
<td></td>
<td>(- 0,442)</td>
<td>7,54 11,88</td>
<td>12,80</td>
<td></td>
<td>- 0,05 3,34 6,08</td>
<td>6,24</td>
<td></td>
<td>10,60</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>+ 0,08</td>
<td>10,35</td>
<td>11,89</td>
<td>23,22</td>
<td>3,37 6,07 6,30</td>
<td>0,957</td>
<td>3,30 6,10 o-t</td>
<td>6,54</td>
<td>11,01 t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,37 10,47</td>
<td>11,50</td>
<td></td>
<td>+ 0,08 3,54 6,17</td>
<td>6,60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>+ 0,24</td>
<td>10,05</td>
<td>12,19</td>
<td>22,65</td>
<td>4,52 7,94 8,19</td>
<td>1,046</td>
<td>4,98 8,82 o-t</td>
<td>9,00</td>
<td>16,75 t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,61 14,63</td>
<td>16,01</td>
<td></td>
<td>+ 0,25 4,69 9,36</td>
<td>9,00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>- 0,08</td>
<td>10,41</td>
<td>12,15</td>
<td>23,46</td>
<td>4,25 6,72 6,90</td>
<td>1,031</td>
<td>4,30 7,03 o-t</td>
<td>8,82</td>
<td>16,20 t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,81 15,08</td>
<td>15,71</td>
<td></td>
<td>- 0,08 5,03 10,83</td>
<td>8,82</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\times 0,125 \) waarde i.p.v. 0,1% waarde
<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde, gecorr.</th>
<th>T_g (s)</th>
<th>T_d (s)</th>
<th>$T_{g,\text{max}}$ (s)</th>
<th>Gemeten waarden t.o.v. het gemiddelde</th>
<th>normeeringsfaktor</th>
<th>genormeerde waarden t.o.v. vervalbelasting</th>
<th>m.b.t. 13,5% - 0,1% - en max waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>- 1,30</td>
<td>10,08</td>
<td>74,80</td>
<td>1,68 - 2,89 3,21</td>
<td>0,994 - 1,29 3,28 - 5,44</td>
<td>0,38 1,90 o-t</td>
<td>3,13 6,12 t-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3,15 5,19 6,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>- 0,89</td>
<td>8,89</td>
<td>12,15</td>
<td>1,30 2,59 2,67</td>
<td>0,977 - 0,87 2,28 - 3,99</td>
<td>0,40 1,74 o-t</td>
<td>2,41 4,76 t-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,44 3,07 3,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>- 3,26 (-4,65)</td>
<td>7,94</td>
<td>47,78</td>
<td>1,84 3,64 3,68</td>
<td>0,911 - 2,97 4,85 - 6,48</td>
<td>- 1,30 0,38 o-t</td>
<td>3,09 4,61 t-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2,06 3,68 3,85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>- 0,32</td>
<td>8,76</td>
<td>13,05</td>
<td>0,97 1,85 1,87</td>
<td>1,119 - 0,38 1,52 - 2,50</td>
<td>0,73 1,73 o-t</td>
<td>2,01 3,52 t-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,04 1,86 1,91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>- 0,72</td>
<td>6,83</td>
<td>49,57</td>
<td>1,65 2,63 2,84</td>
<td>1,109 - 0,80 2,89 - 5,20</td>
<td>1,03 2,36 o-t</td>
<td>3,53 6,51 t-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,89 3,92 3,97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>1,48</td>
<td>7,76</td>
<td>38,48</td>
<td>1,11 2,84 3,36</td>
<td>1,043 - 1,54 2,66 - 3,53</td>
<td>- 0,38 1,96 o-t</td>
<td>2,00 4,46 t-d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,07 1,89 1,91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,92 3,71 4,28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabel 11 Overzicht van gemeten en normeerde 0,52 Hz LF gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stilstaand water. Belasting: K_{VT}, dimensie: 10^3 kn.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde</th>
<th>gemiddelde waarden t.o.v. het gemiddelde</th>
<th>normeeringsfactor</th>
<th>normeerde waarden t.o.v. vervalbelasting</th>
<th>genormaliseerde waarden t.o.v. vervalbelasting</th>
<th>m.b.t. 13,5% en max. waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>- 0,32</td>
<td>1,32 2,06 2,21</td>
<td>0,902</td>
<td>0,90 1,70</td>
<td>o - t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1,81</td>
<td>- 3,57 - 3,65</td>
<td>- 0,29 - 1,92 - 3,58</td>
<td>0,60 1,30</td>
<td>o - d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,95</td>
<td>5,36 5,38</td>
<td>2,66 4,85</td>
<td>1,47 2,89</td>
<td>t - d</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>0,15</td>
<td>0,82 1,54 1,60</td>
<td>0,893</td>
<td>0,60 1,30</td>
<td>o - t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0,93</td>
<td>- 1,70 - 1,90</td>
<td>- 0,13 - 0,96 - 1,83</td>
<td>0,60 1,30</td>
<td>o - d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,65</td>
<td>2,89 3,23</td>
<td>1,47 2,89</td>
<td>1,47 2,89</td>
<td>t - d</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>- 1,24</td>
<td>2,11 3,20 3,34</td>
<td>0,816</td>
<td>0,71 1,72</td>
<td>o - t</td>
<td></td>
</tr>
<tr>
<td>(-1,81)</td>
<td></td>
<td>- 2,70 - 4,50 - 4,60</td>
<td>- 1,01 - 3,21 - 4,77</td>
<td>0,60 1,30</td>
<td>o - d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,50</td>
<td>6,52 6,84</td>
<td>3,67 5,58</td>
<td>1,38 2,74</td>
<td>t - d</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>- 0,10</td>
<td>0,76 1,43 1,57</td>
<td>0,950</td>
<td>0,63 1,40</td>
<td>o - t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 0,79</td>
<td>- 1,52 - 1,80</td>
<td>- 0,10 - 0,85 - 1,80</td>
<td>0,60 1,30</td>
<td>o - d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,46</td>
<td>2,55 2,85</td>
<td>1,38 2,71</td>
<td>1,38 2,71</td>
<td>t - d</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>+ 0,36</td>
<td>1,91 3,11 3,37</td>
<td>1,062</td>
<td>2,41 3,96</td>
<td>o - t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1,93</td>
<td>- 3,32 - 3,50</td>
<td>+ 0,38 - 1,67 - 3,93</td>
<td>0,60 1,30</td>
<td>o - d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,58</td>
<td>5,62 6,40</td>
<td>3,81 6,80</td>
<td>1,93 3,50</td>
<td>t - d</td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>- 0,45</td>
<td>1,07 1,95 2,60</td>
<td>0,982</td>
<td>0,60 2,11</td>
<td>o - t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 1,10</td>
<td>- 2,13 - 2,45</td>
<td>- 0,44 - 1,52 - 2,84</td>
<td>0,60 1,30</td>
<td>o - d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,97</td>
<td>3,30 3,56</td>
<td>1,93 3,50</td>
<td>1,93 3,50</td>
<td>t - d</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 12 Overzicht van gemeten en genormeerde 0,52 Hz LP gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stilstaand water. Belasting: K_{hc}, dimensie: 10^3 kW.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten</th>
<th>gemiddelde</th>
<th>normeerd</th>
<th>genormeerde waarden t.o.v. vervalbelasting gemiddelde</th>
<th>m.b.t. 13,5% - 1,2% waarden</th>
<th>13,5%</th>
<th>0,1%</th>
<th>max</th>
<th>(-)</th>
<th>13,5%</th>
<th>0,1%</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>1,20</td>
<td>4,11</td>
<td>7,77</td>
<td>8,00</td>
<td>4,84</td>
<td>8,38</td>
<td>o-t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3,72</td>
<td>-6,25</td>
<td>-7,03</td>
<td>1,09</td>
<td>-2,05</td>
<td>5,31</td>
<td>o-d</td>
<td></td>
<td>6,59</td>
<td>12,17</td>
<td>t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,23</td>
<td>13,10</td>
<td>13,36</td>
<td>0,911</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>0,36</td>
<td>3,67</td>
<td>7,23</td>
<td>7,23</td>
<td>3,64</td>
<td>6,85</td>
<td>o-t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4,00</td>
<td>6,76</td>
<td>7,41</td>
<td>0,902</td>
<td>3,28</td>
<td>6,36</td>
<td>o-d</td>
<td></td>
<td>-4</td>
<td>10,96</td>
<td>t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,36</td>
<td>11,49</td>
<td>12,15</td>
<td>-2,88</td>
<td>9,66</td>
<td>o-t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>3,21</td>
<td>4,52</td>
<td>8,29</td>
<td>8,69</td>
<td>6,28</td>
<td>9,66</td>
<td>o-t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4,21)</td>
<td>-3,22</td>
<td>-5,45</td>
<td>-5,56</td>
<td>0,812</td>
<td>2</td>
<td>4</td>
<td>o-d</td>
<td></td>
<td>2,60</td>
<td>0,01</td>
<td>1,91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,37</td>
<td>12,25</td>
<td>12,26</td>
<td>5,99</td>
<td>9,95</td>
<td>t-d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>0,40</td>
<td>3,01</td>
<td>7,46</td>
<td>5,42</td>
<td>0,933</td>
<td>5,55</td>
<td>5,18</td>
<td>o-d</td>
<td></td>
<td>3,18</td>
<td>5,42</td>
<td>o-t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3,18</td>
<td>-5,12</td>
<td>-5,95</td>
<td>0,933</td>
<td>2,60</td>
<td>5,18</td>
<td>o-d</td>
<td></td>
<td>5,55</td>
<td>9,26</td>
<td>t-d</td>
</tr>
<tr>
<td>330</td>
<td>0,96</td>
<td>5,41</td>
<td>10,19</td>
<td>11,48</td>
<td>5,55</td>
<td>6,15</td>
<td>12,01</td>
<td>o-t</td>
<td></td>
<td>5,55</td>
<td>9,26</td>
<td>t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3,96</td>
<td>-6,61</td>
<td>-7,30</td>
<td>0,966</td>
<td>2,90</td>
<td>6,13</td>
<td>o-d</td>
<td></td>
<td>8,63</td>
<td>15,80</td>
<td>t-d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,93</td>
<td>16,00</td>
<td>16,36</td>
<td>0,966</td>
<td>2,90</td>
<td>6,13</td>
<td>o-d</td>
<td></td>
<td>8,63</td>
<td>15,80</td>
<td>t-d</td>
</tr>
<tr>
<td>340</td>
<td>1,40</td>
<td>3,94</td>
<td>6,35</td>
<td>6,60</td>
<td>5,26</td>
<td>7,88</td>
<td>o-t</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4,32</td>
<td>-8,72</td>
<td>-9,51</td>
<td>0,985</td>
<td>5</td>
<td>7,88</td>
<td>o-d</td>
<td></td>
<td>5,26</td>
<td>7,88</td>
<td>o-t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,80</td>
<td>13,79</td>
<td>15,01</td>
<td>1,38</td>
<td>7,66</td>
<td>14,78</td>
<td>t-d</td>
<td></td>
<td>7,66</td>
<td>14,78</td>
<td>t-d</td>
</tr>
</tbody>
</table>

* 0,125% waarde i.p.v. 0,1% waarde
Tabel 13 Overzicht van gemeten en genormeerde 0,52 Hz LP gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stilstaand water. Belasting: K_{vb}, dimensie: 10^3 kN.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde</th>
<th>normering - factor</th>
<th>genormeerde waarden</th>
<th>m.b.t. 13,5%</th>
<th>0,1%</th>
<th>max</th>
<th>13,5%</th>
<th>max</th>
<th>0,1%</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(gecorr.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>- 1,02</td>
<td>1,61</td>
<td>2,51</td>
<td>2,65</td>
<td>0,929</td>
<td>- 0,95</td>
<td>0,55</td>
<td>1,51</td>
<td>o - t</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 2,27</td>
<td>- 4,55</td>
<td>- 4,78</td>
<td></td>
<td></td>
<td>3,05</td>
<td>- 5,39</td>
<td>o - d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,48</td>
<td>6,02</td>
<td>6,08</td>
<td></td>
<td></td>
<td>3,23</td>
<td>5,65</td>
<td>t - d</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>- 2,23</td>
<td>2,22</td>
<td>3,63</td>
<td>3,68</td>
<td>0,823</td>
<td>- 1,84</td>
<td>0,01</td>
<td>1,19</td>
<td>o - t</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(- 3,69)</td>
<td>- 2,98</td>
<td>- 4,99</td>
<td>- 4,99</td>
<td></td>
<td></td>
<td>4,29</td>
<td>- 5,94</td>
<td>o - d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,79</td>
<td>6,88</td>
<td>7,02</td>
<td></td>
<td></td>
<td>3,94</td>
<td>5,77</td>
<td>t - d</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>- 0,09</td>
<td>0,91</td>
<td>1,64</td>
<td>1,69</td>
<td>0,963</td>
<td>- 0,09</td>
<td>0,79</td>
<td>1,54</td>
<td>o - t</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 0,94</td>
<td>- 1,75</td>
<td>- 1,89</td>
<td></td>
<td></td>
<td>0,99</td>
<td>- 1,91</td>
<td>o - d</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,65</td>
<td>2,83</td>
<td>2,89</td>
<td></td>
<td></td>
<td>1,59</td>
<td>2,79</td>
<td>t - d</td>
<td></td>
</tr>
</tbody>
</table>
Tabel 14: Overzicht van gemeten en genormeerde 0,52 Hz LF gefilterde golfbelastingen; normering naar gewenst inklomend golfbeeld, gedefinieerd op stilstaand water. Belasting: K_{ww}, dimensie: 10^3 kN.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde</th>
<th>genormeerde waarden t.o.v. gemiddelde</th>
<th>normeeringsfactor</th>
<th>genormeerde waarden t.o.v. vervalbelasting</th>
<th>m.b.t. 13,5%</th>
<th>0,0x%</th>
<th>o - t</th>
<th>o - d</th>
<th>t - d</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>- 0,05</td>
<td>1,68</td>
<td>2,81</td>
<td>2,93</td>
<td>1,40</td>
<td>2,62</td>
<td>o - t</td>
<td>o - d</td>
<td>t - d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1,79</td>
<td>3,30</td>
<td>3,38</td>
<td>- 0,05</td>
<td>1,68</td>
<td>3,13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,23</td>
<td>5,37</td>
<td>5,61</td>
<td>2,94</td>
<td>5,12</td>
<td>t - d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>+ 0,07</td>
<td>1,50</td>
<td>2,64</td>
<td>2,96</td>
<td>1,22</td>
<td>2,35</td>
<td>o - t</td>
<td>t - d</td>
<td></td>
</tr>
<tr>
<td>(0,00)</td>
<td></td>
<td>- 1,47</td>
<td>2,51</td>
<td>2,71</td>
<td>- 1,09</td>
<td>2,04</td>
<td>o - d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,97</td>
<td>4,53</td>
<td>4,77</td>
<td>2,30</td>
<td>3,69</td>
<td>t - d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>+ 0,10</td>
<td>1,27</td>
<td>2,29</td>
<td>2,40</td>
<td>1,25</td>
<td>2,28</td>
<td>o - t</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 1,42</td>
<td>2,41</td>
<td>2,43</td>
<td>- 1,21</td>
<td>2,13</td>
<td>o - d</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,57</td>
<td>3,92</td>
<td>4,33</td>
<td>2,34</td>
<td>3,96</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

0,125% waarde i.p.v. 0,1% waarde
Tabel 15 Overzicht van gemeten en genormeerde 0,52 Hz LF gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stilstaand water.
Belasting: K_{vo}, dimensie: 10^3 KN.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde gecorr.</th>
<th>Gemeten waarden t.o.v. het gemiddelde</th>
<th>normeringstakor</th>
<th>genormeerde waarden t.o.v. vervalbelasting m.b.t. 13,5% en max, waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13,5%</td>
<td>0,1%</td>
<td>max</td>
<td>(-)</td>
</tr>
<tr>
<td>210</td>
<td>2,02</td>
<td>3,20</td>
<td>3,58</td>
<td>0,936</td>
</tr>
<tr>
<td></td>
<td>-2,31</td>
<td>-4,47</td>
<td>-4,51</td>
<td>3,95</td>
</tr>
<tr>
<td>270</td>
<td>1,63</td>
<td>2,81</td>
<td>3,52</td>
<td>0,807</td>
</tr>
<tr>
<td></td>
<td>-1,99</td>
<td>-3,60</td>
<td>-3,79</td>
<td>3,34</td>
</tr>
<tr>
<td></td>
<td>(-1,89)</td>
<td></td>
<td></td>
<td>3,34</td>
</tr>
<tr>
<td>280</td>
<td>1,33</td>
<td>2,24</td>
<td>2,50</td>
<td>0,926</td>
</tr>
<tr>
<td></td>
<td>-1,55</td>
<td>-2,65</td>
<td>-2,67</td>
<td>2,69</td>
</tr>
</tbody>
</table>

* 0,125% waarde i.p.v. 0,1% waarde
Tabel 16 Overzicht van gemeten en genormeerde 0,52 Hz LP gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stillstaand water. Belasting: K_{hv}, dimensie: 10^8 kN.

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde gecorr.</th>
<th>Gemeten waarden t.o.v. het gemiddelde</th>
<th>normeerrings factor</th>
<th>genormeerde waarden t.o.v. vervalbelasting gemiddelde</th>
<th>13,5%</th>
<th>max</th>
<th>m.b.t. 13,5% - 0,1% en max. waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>- 0,17</td>
<td>4,46</td>
<td>7,59</td>
<td>0,902</td>
<td>- 1,52</td>
<td>6,85</td>
<td>o - t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,84</td>
<td>8,82</td>
<td>9,05</td>
<td>3,87</td>
<td>6,85</td>
<td>o - d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8,63</td>
<td>14,28</td>
<td>14,85</td>
<td>7,79</td>
<td>13,39</td>
<td>t - d</td>
</tr>
<tr>
<td>270</td>
<td>- 0,06</td>
<td>3,60</td>
<td>6,91</td>
<td>7,93</td>
<td>0,770</td>
<td>6,06</td>
<td>o - t</td>
</tr>
<tr>
<td></td>
<td>(- 0,442)</td>
<td>3,97</td>
<td>6,76</td>
<td>7,29</td>
<td>2,72</td>
<td>6,66</td>
<td>o - d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,54</td>
<td>11,88</td>
<td>12,80</td>
<td>5,81</td>
<td>9,86</td>
<td>t - d</td>
</tr>
<tr>
<td>280</td>
<td>+ 0,08</td>
<td>3,37</td>
<td>6,07</td>
<td>6,30</td>
<td>0,922</td>
<td>5,88</td>
<td>o - t</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,78</td>
<td>6,37</td>
<td>6,53</td>
<td>3,18</td>
<td>5,94</td>
<td>o - d</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,85</td>
<td>10,47</td>
<td>11,50</td>
<td>6,36</td>
<td>10,61</td>
<td>t - d</td>
</tr>
</tbody>
</table>

$k_{0,125}$ waarde i.p.v. 0,1% waarde
Tabel 17 Overzicht van gemeten en genormeerde
0,52 Hz LP gefilterde golfbelastingen; normering naar gewenst inkomend golfbeeld, gedefinieerd op stilstaand water.
Belasting: K_{HA}, dimensie: 10^5 kN.

![Diagram](image)

<table>
<thead>
<tr>
<th>Proef</th>
<th>gemeten gemiddelde gecorr.</th>
<th>gemeten waarden t.o.v. het gemiddelde</th>
<th>normeering-faktor</th>
<th>genormeerde waarden t.o.v. vervalbelasting</th>
<th>m.b.t. 13,5%-0,1%-en max. waarden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13,5%</td>
<td>0,1%</td>
<td>max</td>
<td>(-)</td>
<td>13,5%</td>
</tr>
<tr>
<td>210</td>
<td>- 1,30</td>
<td>1,68</td>
<td>2,89</td>
<td>3,21</td>
<td>0,949</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,01</td>
<td>4,06</td>
<td>4,17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,15</td>
<td>5,19</td>
<td>6,15</td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>- 3,26</td>
<td>1,84</td>
<td>3,64</td>
<td>3,68</td>
<td>0,872</td>
</tr>
<tr>
<td>(- 4,65)</td>
<td>1,84</td>
<td>3,64</td>
<td>3,68</td>
<td>0,872</td>
<td>- 2,85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,39</td>
<td>5,03</td>
<td>5,06</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>- 0,32</td>
<td>0,97</td>
<td>1,85</td>
<td>1,87</td>
<td>1,017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,04</td>
<td>1,86</td>
<td>1,91</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,80</td>
<td>3,14</td>
<td>3,15</td>
<td></td>
</tr>
</tbody>
</table>
OVERZICHT VAN DE OOSTERSCHELDEMOND MET HET TRACÉ VAN DE STORMVLOEDKERING

WATERLOOPKUNDIG LABORATORIUM M1593 - 1153 FIG. 1
ONTWERP PJLEROET VOLENS TEKENDING O.S. 2812
VAN RIJKSWATERSTAAT, DIREKTIE SLUIZEN EN STUWEN

WATERLOOPKUNDIG LABORATORIUM

M. 1593 - 1155

FIG. 4
VERTIKALE DOORSNEDE OVER DE MEETSEKTIE

DOORSNEDE A'-A

KONFIGURATIE VAN HET MODEL

MATURE IN m

Prototype

A4

WATERLOOPKUNDIG LABORATORIUM

M1593-1159 FIG. 5
BOVENBALK

DORPENBALK

N.A.P. +11.5 m

N.A.P. -10.0

N.A.P. -14.0

N.A.P. -18.5

N.A.P. -35.0 m

DOORSNEDE OVER PIJLER EN VOET

MATEN IN m

PROTOTYPE

JM

A4

WATERLOOPKUNDIG LABORATORIUM

M1593 - 1160 FIG. 6
VORMGEVING VAN DE SCHUIF IN DE MEETSEKTIE

WATERLOOPKUNDIG LABORATORIUM

MATEN IN m

PROTOTYPE

JM

A4

M1593 -1161 FIG. 7
DWARSDOORSNEDE GESCHEMATISEERDE DREMPEL — 15 m

DIT IS IN HET MODEL WEER-GEGEVEN DOOR

STORTSTEEN 1.5 - 2,2 cm
STORTSTEEN 2.6 - 3,4 cm
STORTSTEEN 1.5 - 2,2 cm
STORTSTEEN 1.3 - 1,8 cm
MARMER 0,4 - 0,8 cm
STORTSTEEN 0,8 - 1,3 cm
MARMER 0,4 - 0,8 cm

GEVEEVS ONTLEEND AAN TEKENING 78.4.100 VAN DE AFDeling AFSLUITINGSWERKEN VAN DE DELTADIENST (BIJLAGE 1 NOTA DREMBO M-78-023)
SITUATIE DRUKMETINGEN IN DE 2 meter
BREDE WINDGOLFGOOT

WATERLOOPKUNDIG LABORATORIUM

M1593 - 1193 FIG. 9
BOVEN- EN VOORZIJDE TOEGEKENDE OPPERVLAKTEN (m²)

<table>
<thead>
<tr>
<th>DRUKOPNEMER</th>
<th>35,02</th>
<th>33,21</th>
<th>45,15</th>
<th>45,16</th>
<th>22,57</th>
<th>22,58</th>
<th>57,75</th>
<th>57,75</th>
<th>319,18</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAAL</td>
<td>319,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ONDERZIJDE TOEGEKENDE OPPERVLAKTEN (m²)

<table>
<thead>
<tr>
<th>DRUKOPNEMER</th>
<th>65,42</th>
<th>54,29</th>
<th>73,37</th>
<th>67,72</th>
<th>36,38</th>
<th></th>
<th></th>
<th></th>
<th>319,18</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLAATS DRUKOPNEMERS AAN DE DORPELBALK, BOVEN-, VOOR- EN ONDERZIJDE MET TOEGEKENDE OPPERVLAKTEN VOOR DE BEREKENING VAN DE TOTALE VERTIKALE BELASTING

WATERLOOPKUNDIG LABORATORIUM

JM

A4

M1593-1194 FIG.10
VOORAANZICHT

ACHTERAANZICHT

GEBASEERD OP TEKENING OS-51-14A
DIREKTIE SLUIZEN EN STUIVEN VAN
RUKSWATERSTAAT
N.B. DORPELHOOGTE 8.5m

<table>
<thead>
<tr>
<th>VOORZIJDE</th>
<th>ACHTERZIJDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRUKOPNEMER</td>
<td>TOEGEKENDE OPPERVLAKTE (m²)</td>
</tr>
<tr>
<td>15</td>
<td>96.18</td>
</tr>
<tr>
<td>17</td>
<td>81.57</td>
</tr>
<tr>
<td>18</td>
<td>78.80</td>
</tr>
<tr>
<td>19</td>
<td>71.80</td>
</tr>
<tr>
<td>TOTAAL</td>
<td>328.15</td>
</tr>
</tbody>
</table>

PLAATS DRUKOPNEMERS AAN DE DORPELBALK VOOR- EN ACHTERZIJDE, MET TOEGEKENDE OPPERVLAKTEN VOOR DE BEREKENING VAN DE HORIZONTALE BELASTING

WATERLOOPKUNDIG LABORATORIUM

M.1593-1195 FIG.11
TOEGEPASTE REFLEKTIEKOEFFICIENTEN EN WAARDEN VAN j^2
ZEEWATERSTAND N.A.P. ± 5.0m

WATERLOOPKUNDIG LABORATORIUM
TOEGEPASTE REFLEKTIEKOEFFICIENTEN EN WAARDEN VAN β^2
ZEEWATERSTAND N.A.P. +3,5 m
TOEGEPASTE REFLEKTIEKOEFFICIENTEN EN WAARDEN VAN χ^2
ZEEWATERSTAND N.A.P. +5,5 m
OPGAVE DELTADIENST

zeewaterstand : N.A.P. + 5,0 m
wind : 33,7 m/s
\(\bar{H} \), \(\frac{1}{3} \) : 3,54 m
\(\bar{f} \) : 5,75 s
OPGAVE DELTADIENST

ZEEWATERSTAND : N.A.P. + 3,5 m
WIND : 26,1 m/s
\bar{H}_z, V_2 : 2,78 m
\bar{T}_z : 5,40 s

OPGEGEVEN EN GEMETEN INKOMENDE GOLFSPEKTRA

WATERLOOPKUNDIG LABORATORIUM

M1593-1200 Fig.16
OPGAVE DELTADIENST

ZEEWATERSTAND: N.A.P. + 5,5 m
WIND: 36,5 m/s
\bar{H}_z, \bar{V}_z: 3,79 m
\bar{T}_z: 5,84 s

OPGAVE DELTADIENST

OPGEGEVEN EN GEMETEN INKOMENDE GOLFSPEKTRA

WATERLOOPKUNDIG LABORATORIUM

M 1593-1201 FIG.17
STATISCHE BELASTINGEN (T.O.V. ATMOSFERISCHE DRUK)

\[\sigma = 100 \text{ kN/m}^2 \]

WATERLOOPKUNDIG LABORATORIUM

M 1593-1202

FIG. 18
PROEF : 270

ZEEWATERSTAND : N.A.P. +3,50 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. +0,80 m

PROEF : 280

ZEEWATERSTAND : N.A.P. +3,50 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. -3,10 m

STATISCHE BELASTINGEN (T.O.V. ATMOSFERISCHE DRUK)

--- 100 kN/m² JB

A4

WATERLOOPKUNDIG LABORATORIUM

M1593-1203 FIG.19
PROEF : 330
ZEEWATERSTAND : N.A.P. +5,5 m
O.S. WATERSTAND : N.A.P. -0,7 m
SCHUIFONDERZUDE : N.A.P. +0,8 m

PROEF : 340
ZEEWATERSTAND : N.A.P. +5,5 m
O.S. WATERSTAND : N.A.P. -0,7 m
SCHUIFONDERZUDE : N.A.P. -4,2 m

STATISCHE BELASTINGEN (T.O.V. ATMOSFERISCHE DRUK)

WATERLOOPKUNDIG LABORATORIUM

100 kN/m²

A4

M1593-1204

FIG. 20
Statistische belastingen en maximale genormeerde golfbelastingen, normering naar het gewenste inkomen-de golfspectrum, gedefinieerd op stromend water.
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSE INKOMEN- DE GOLFSPEKTRUM, GEDEFINIEERD OP STROMEND WATER

ZEEWATERSTAND
N.A.P. +3,5m

OOSTERSCHELDE WS
N.A.P. -0,75m

WATERLOOPKUNDIG LABORATORIUM

M1593-1206 FIG.22
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMERDE
GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMEN-
DE GOLFSPEKTRUM, Gedefinieerd Op Stroomend Water

ZEEWATERSTAND
N.A.P. +5,5 m

OOSTERSCHELDE W.S.
N.A.P. -0,75 m

A4

WATERLOOPKUNDIG LABORATORIUM
M1593-1207 FIG.23
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMEERDE
GOLFBELASTINGEN, NORMERING NAAR HET GEWESTE INKOMEN
DE GOLFSPEKTRUM, GEFDEINIEERD OP STROMEND WATER

ZEEWATERSTAND
N.A.P.+5,0 m
OOSTERSCHELDE W.S.
N.A.P.+0,75 m

WATERLOOPKUNDIG LABORATORIUM
M1593-1208 FIG.24
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMERDE
GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMEN
DE GOLFSPEKTRUM, GEDEFINIEERD OP STROMEND WATER

ZEEWATERSTAND
N.A.P. +3,5m

OOSTERSCHELDE WS,
N.A.P. -0,75m

WATERLOOPKUNDIG LABORATORIUM
M1593-1209 FIG.25
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMEN-DE GOLFSPEKTRUM, GEDEFINIEERD OP STROMEND WATER

ZEEWATERSTAND
N.A.P. +5,0 m
OOSTERSCHELDE W.S.
N.A.P. +0,75 m

WATERLOOPKUNDIG LABORATORIUM
M1593-1210 FIG.26
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMERDE
GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMEN-
DE GOLFSPEKTRUM, GEDUREINEERD OP STROMEND WATER

ZEEWATERSTAND
N.A.P. +3,5 m

OOSTERSCHELDE WS.
N.A.P. -0,75 m

WATERLOOPKUNDIG LABORATORIUM
M1593-1211

FIG. 27
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMEN- DE GOLFSPEKTRUM, GEDEFINIEERD OP STROMEND WATER

ZEEWATERSTAND
N.A.P. +5,0 m
OOSTERSCHELDE W.S.
N.A.P. +0,75 m

WATERLOOPKUNDIG LABORATORIUM
M1593-1212 FIG.28
Golfsbelastingen 0,52 Hz L.P. gefilterd

Statistische belastingen en maximale genormeerde golfbelastingen, normering naar het gewenste inkomen-de golfspektum, gedefinieerd op stromend water

Zeewaterstand
N.A.P. +3,5 m

Oosterschelde W.S.
N.A.P. -0,75 m

Waterloopkundig Laboratorium
M1593-1213

FIG. 29
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMEERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMEN DE GOLFSPEKTRUM, GEDEFINIEERD OP STROMEND WATER

ZEEWATERSTAND N.A.P. +5,0 m
OOSTERSCHELDE WS. N.A.P. +0,75 m

WATERLOOPKUNDIG LABORATORIUM
M 1593-1215 FIG.31
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMEN-DE GOLFSPEKTRUM, GEDEFINEERD OP STROMEND WATER

ZEEWATERSTAND N.A.P. +3,5 m
OOSTERSCHELDE W.S. N.A.P. -0,75 m

WATERLOOPKUNDIG LABORATORIUM

M1593-1216 FIG.32
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

STATISCHE BELASTINGEN EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMENDE GOLFSPEKTRUM, GEDEFINIEERD OP STROMEND WATER

ZEEWATERSTAND
N.A.P. +3,5m
OOSTERSCHELDE W.S.
N.A.P. -0,75m

WATERLOOPKUNDIG LABORATORIUM
M1593-1218 FIG.34

RECHTHOEKIGE DORPEL
TRAPEZIUM-VORMIGE DORPEL
13,5% - EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMENDE GOLFBEELD, GEDEFINIEERD OP STROMEND WATER.

GOLFBELASTINGEN 0,52 Hz LP GEFILTERD

ZEEWATERSTAND
N.A.P. +5,0 m

OOSTERSCHELDE WS
N.A.P. +0,75 m

A4

WATERLOOPKUNDIG LABORATORIUM
M1593-1219

F10.35
13,5% - EN MAXIMALE GENORMEERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMENDE GOLFBEELD, GEDEFINIEERD OP STROMEND WATER.

GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

ZEEWATERSTAND
A4
N.A.P. +3,5 m
OOSTERSCHELDE W.S.
N.A.P. - 0,75 m

WATERLOOPKUNDIG LABORATORIUM
M1593-1220 FIG.36
13,5% - EN MAXIMALE GENORMEERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMENDE GOLFBEELD, GEDEFINIEERD OP STROMEND WATER.

GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

ZEELANDSTAND N.A.P. + 5,0 m
OOSTERSCHELDE W.S. N.A.P. + 0,75 m

WATERLOOPKUNDIG LABORATORIUM
M1593-1221 FIG.37
GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

13,5% - EN MAXIMALE GENORMERDE GOLFBELASTINGEN,
NORMERING NAAR HET GEWENSTE INKOMENDE GOLFBEELD,
GEDEFINIEERD OP STROMEND WATER.
13,5% - EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMENDE GOLFBEELD, GEDEFINIËRD OP STROMEND WATER.

ZEEWATERSTAND
A4
B
OOSTERSCHELDE WS.
N.A.P. +0,75 m

13,5% TOP
13,5% DAL

RECHTHOEKIGE DORPEL
TRAPEZIUM-VORMIGE DORPEL

Kv0

(10^3 kN)

MAX. TOP

h.o.h. AFSTAND PULERS 45 m
SEKTIE R 15
LENGTE DORPEL-BALK 41,1 m

MAX. DAL

POSITIE ONDERKANT SCHUIF (m t.o.v. N.A.P.)

SCHUIFOPENING (m)

GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

WATERLOOPKUNDIG LABORATORIUM

M1593-1223 FIG.39
13,5\% - EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEVENSTE INKOMENDE GOLFBEELD, GEDEFINIEERD OP STROMEND WATER.
13,5% - en maximale genormeerde golfbelastingen, normering naar het gewenste inkomende golfbeeld, gedefinieerd op stromend water.
13,5% - EN MAXIMALE GENORMEERDE GOLFBELASTINGEN,
NORMERING NAAR HET GEWENSTE INKOMENDE GOLFBEELD,
GEDEFINIEERD OP STROMEND WATER.

GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

ZEEWATERSTAND
N.A.P. +3,5 m

OOSTERSCHELDE WS.
N.A.P. - 0,75 m

WATERLOOPKUNDIG LABORATORIUM

M1593-1226 FIG.42

RECHTHOEKIGE DORPEL

TRAPEZIUM-VORMIGE DORPEL
13,5% - EN MAXIMALE GENORMERDE GOLfbeLastingEN, NORMERING NAAR HET GEWENSTE INKOMENDE GOLfbeEld, GEDEFINIEERD OP STROMENd WATER.

GOLfbELASTINGEN 0,52 Hz L.P. GEFILTERD

ZEETYPE STAND N.A.P. +5,0
OOSTERSCHELDE WS N.A.P. +0,75 m

WATERLOOPKUNDIG LABORATORIUM
M1593-1227 FIG.43
13,5% - EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMENDE GOLFBEELD, GEDEFINIEERD OP STROMEND WATER.
13,5% - EN MAXIMALE GENORMERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMENDE GOLFBEELD, GEDEFINIEERD OP STROMEND WATER.
13,5% - EN MAXIMALE GENORMEERDE GOLFBELASTINGEN, NORMERING NAAR HET GEWENSTE INKOMENDE GOLFBEELD, GEDEFINIEERD OP STROMEND WATER.

GOLFBELASTINGEN 0,52 Hz L.P. GEFILTERD

ZEEWATERSTAND N.A.P. +3,5 m
OOSTERSCHELDE WS N.A.P. - 0,75 m

WATERLOOPKUNDIG LABORATORIUM

M1593-1229 FIG.46
DRUKBEELDEN, BEHOOREN BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEBEDE T.O.V. VERVALDRUKKEN IN kN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEEF OP STROMEND WATER

WATERLOOPKUNDIG LABORATORIUM

M 1593-1230 FIG. 47
DRUKBEELDEN, BEHOOREN BIJ DE GEMETEN MAXIMAAL ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEGEZET T.O.V. VERVALDRUKKEN IN kN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

PROEF : P210
ZEEWATERSTAND : N.A.P. +5,0 m
O.S. WATERSTAND : N.A.P. +0,75 m
SCHUIFONDERZUDE : N.A.P. +0,8 m

PROEF : P220
ZEEWATERSTAND : N.A.P. +5,0 m
O.S. WATERSTAND : N.A.P. +0,75 m
SCHUIFONDERZUDE : N.A.P. -1,55 m

WATERLOOPKUNDIG LABORATORIUM
M1593-1231 FIG.48
Drukbeelden, behorend bij de gemeten maximale ongefilterde genormeerde golfbelastingen, uitgezet t.o.v. vervaldrukken in kN/m². Normering naar gewenst inkomend golfbeeld gedef. op stromend water.

1 cm ≈ 20 kN/m²

WATERLOOPKUNDIG LABORATORIUM

M 1593-1233 FIG. 50
PROEF : 210
ZEEWATERSTAND : N.A.P. + 5,0 m
O.S. WATERSTAND : N.A.P. + 0,75 m
SCHUIFONDERZUDE : N.A.P. + 0,8 m

PROEF : 220
ZEEWATERSTAND : N.A.P. + 5,0 m
O.S. WATERSTAND : N.A.P. + 0,75 m
SCHUIFONDERZUDE : N.A.P. - 1,55 m

DRUKBEELDEN, BEHOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

1cm = 20 KN/m²

WATERLOOPKUNDIG LABORATORIUM

M 1593 - 1234

FIG. 51
DRUKBEELDEN, BEHOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEBEZET T.O.V. VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

WATERLOOPKUNDIG LABORATORIUM

M 1593-1235 FIG.52
PROEF : 210
ZEEWATERSTAND : N.A.P. +5,0 m
O.S. WATERSTAND : N.A.P. +0,75 m
SCHUIFONDERZUDE : N.A.P. +0,80 m

PROEF : 220
ZEEWATERSTAND : N.A.P. +5,0 m
O.S. WATERSTAND : N.A.P. +0,75 m
SCHUIFONDERZUDE : N.A.P. -1,55 m

DRUKBEELDEN, BEHOOREN BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN kN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

WATERLOOPKUNDIG LABORATORIUM
M1593-1236

1cm ≈ 20 kN/m²

JB

A4

FIG. 53
PROEF : 210
ZEEWATERSTAND : N.A.P. +5,0 m
O.S. WATERSTAND : N.A.P. +0,75 m
SCHUIFONDERZUIDE : N.A.P. +0,8 m

PROEF : 220
ZEEWATERSTAND : N.A.P. +5,0 m
O.S. WATERSTAND : N.A.P. +0,75 m
SCHUIFONDERZUIDE : N.A.P. -1,55 m

DRUKBEELDEN, BEHOOREN BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGESTELD T.O.V. VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

WATERLOOPKUNDIG LABORATORIUM

1cm = 20 KN/m²

M 1593 - 1237

A4
PROEF : 270
ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. +0,8 m

PROEF : 280
ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. -3,1 m

DRUKBEELDEN, BEHOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEGEZET TOV VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

WATERLOOPKUNDIG LABORATORIUM
M 1593-1239 FIG.56
PROEF : 270
ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. +0,80 m

PROEF : 280
ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. -3,1 m

DRUKBEELDEN, BEHOOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN kN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER
PROEF : 270
ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. +0,8 m

-30,2 -37,7
6,9 18 14 13 27 -19,9
6,6 17 -12,9
10,4 18 24 -8,9
5,7 20 22 13 -0,8

KVBDAAL

PROEF : 280
ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. -3,1 m

-8,4 -11,2
-14,8 15 14 13 -8,6
-15,4 17 -5,9
-14,2 18 -5,3
-11,2 20 22 -5,5

-9,6 -14,5
7 6 5

-10,9 -3,8
-5,9 -4,5

DRUKBEELDEN, BEHOOREN BI DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN kn/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

1cm = 20 kn/m²

WATERLOOPKUNDIG LABORATORIUM

M 1593 - 1241

JB

A4
PROEF : 270

ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZIJDE : N.A.P. +0,80 m

PROEF : 280

ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZIJDE : N.A.P. -3,1 m

DRUKBEELDEN, BEHOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEGEZET TOV VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GELEG. OP STROMEND WATER

1cm = 20 kN/m²

WATERLOOPKUNDIG LABORATORIUM

M 1593-1242 FIG.59
PROEF : 270
ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. +0,80 m

PROEF : 280
ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. -3,1 m

DRUKBEELDEN, BEHOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN kN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

1cm = 20 kN/m²

WATERLOOPKUNDIG LABORATORIUM

M 1593-1244 FIG. 61
DRUKBEELDEN, BEHOOREN BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENSTE INKOMEND GOLFBEELD GEDEELD OP STROMEND WATER.
Dr ukbeelden, behorend bij de gemeten maximale ongefilterde genormaliseerde golfbelastingen, uitgezet t.o.v. vervaldrukken in kN/m². Normering naar gewenst inkomend golfbeeld gedef. Op stromend water.

PROEF : 330

- ZEEWATERSTAND : N.A.P. +5,5 m
- O.S. WATERSTAND : N.A.P. -0,7 m
- SCHUIFONDERZUDE : N.A.P. +0,8 m

PROEF : 340

- ZEEWATERSTAND : N.A.P. +5,5 m
- O.S. WATERSTAND : N.A.P. -0,7 m
- SCHUIFONDERZUDE : N.A.P. +4,2 m

WATERLOOPKUNDIG LABORATORIUM

M 1593 - 1247

FIG. 64

<table>
<thead>
<tr>
<th>1 cm = 20 kN/m²</th>
<th>JB</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td></td>
</tr>
</tbody>
</table>
PROEF : 330
ZEEWATERSTAND : N.A.P. +5,5 m
O.S. WATERSTAND : N.A.P. -0,7 m
SCHUIFONDERZUDE : N.A.P. +0,8 m

KvB TOP

PROEF : 340
ZEEWATERSTAND : N.A.P. +5,5 m
O.S. WATERSTAND : N.A.P. -0,7 m
SCHUIFONDERZUDE : N.A.P. -4,2 m

DRUKBEELDEN, BEHOEDEND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

1cm = 20 KN/m²

WATERLOOPKUNDIG LABORATORIUM
M1593-1248 FIG.65
PROEF : 330
ZEEWATERSTAND : N.A.P. +5,5 m
O.S. WATERSTAND : N.A.P. -0,7 m
SCHUIFONDERZUDE : N.A.P. +0,8 m

PROEF : 340
ZEEWATERSTAND : N.A.P. +5,5 m
O.S. WATERSTAND : N.A.P. -0,7 m
SCHUIFONDERZUDE : N.A.P. -4,2 m

DRUKBEELDEN, BEHOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN kN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

1cm = 20 kN/m²
A4

WATERLOOPKUNDIG LABORATORIUM
M 1593-1249
FIG.66
DRUKBEELDEN, BEHOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEGEZET T.O.V. VERWALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

1cm = 20 kn/m²

WATERLOOPKUNDIG LABORATORIUM

M 1593-1251 FIG.68
PROEF : 330
ZEEWATERSTAND : N.A.P. +5,5 m
O.S. WATERSTAND : N.A.P. -0,7 m
SCHUIFONDERZUDE : N.A.P. +0,8 m

PROEF : 340
ZEEWATERSTAND : N.A.P. +5,5 m
O.S. WATERSTAND : N.A.P. -0,7 m
SCHUIFONDERZUDE : N.A.P. -4,2 m

DRUKBEELDEN, BEHOOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEGEVEN T.O.V. VERVALDRUKKEN IN kN/m². NORMERING NAAR GEWENSTE INKOMEND GOLFBEELD GEDEF. OP STROMEND WATER

1cm ≈ 20 kN/m²

WATERLOOPKUNDIG LABORATORIUM
M 1593 - 1252

A4

FIG.69
OVERDRACHTSFUNKTIES VOOR K_{VB}, K_{VO}, K_{VV} EN K_{VT}
T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2

WATERLOOPKUNDIG LABORATORIUM

PROEF 210

M1593-1255 FIG.71
OVERDRACHTSFUNKTIES VOOR K_{VB}, K_{VO}, K_{VV} EN K_{VT}
T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2

WATERLOOPKUNDIG LABORATORIUM

PROEF 220

M1593-1256 FIG.72
OVERDRACHTSFUNKTIES VOOR K_{VB}, K_{VO}, K_{VV} EN K_{VT}
T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2
OVERDRACHTSFUNKTIES VOOR K_{VB}, K_{VO}, K_{VV} EN K_{VT} T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2
OVERDRACHTSFUNKTIES VOOR K_{VB}, K_{V0}, K_{VV} EN K_{VT} T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2
OVERDRACHTSFUNKTIES VOOR K_{VB}, K_{VO}, K_{VT} EN K_{VV}
T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2

WATERLOOPKUNDIG LABORATORIUM
OVERDRACHTSFUNKTIES VOOR K_{HA}, K_{HV} EN K_{HT}
T.O.V. HET INKOMENDE GOLFBEELD , GEMETEN BI H2
OVERDRACHTSFUNKTIES VOOR \(K_{HA} \), \(K_{HV} \) EN \(K_{HT} \)
T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2

FREKWENTIE (Hz)
OVERDRACHTSFUNKTIES VOOR K_{HA}, K_{HV} EN K_{HT}
T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2
OVERDRACHTSFUNKTIES VOOR K_{HA}, K_{HV} EN K_{HT}
T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2
OVERDRACHTSFUNKTIES VOOR K_{HA}, K_{HV} EN K_{HT}
T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BIJ H2

WATERLOOPKUNDIG LABORATORIUM
OVERDRACHTSFUNKTIES VOOR K_{HA}, K_{HV} EN K_{HT}
T.O.V. HET INKOMENDE GOLFBEELD, GEMETEN BI H2
A. FASEHOEK ALS FUNKTIE VAN DE FREKWENTIE
FASEHOEK >0 WIL ZEGGEN: $K_V > K_H$
B. GEKWADRATIEERDE KOHERENTIEFUNKTIE

PROEF P 210
JB

WATERLOOPKUNDIG LABORATORIUM

M 1593 - 1267
FIG. 83
A. FASEHOEK ALS FUNCTIE VAN DE FREKWENTIE
FASEHOEK >0 WIL ZEGGEN: K_{VT} LOOPT ACHTER OP K_{HT}

B. GEKWADRATEERDE KOHERENTIEFUNKTIE

PROEF P 220
K_{VT} t.o.v. K_{HT}

WATERLOOPKUNDIG LABORATORIUM

M 1593-1268
FIG. 84
A. FASEHOEK ALS FUNKTIE VAN DE FREKWENTIE
FASEHOEK > 0 WIL ZEGGEN: K_{VT} LOODT ACHTER OP K_{HT}

B. GEKWADRATEERDE KOHERENTIEFUNKTIE

WATERLOOPKUNDIG LABORATORIUM
A. FASEHOEK ALS FUNKTIE VAN DE FREKWENTIE
FASEHOEK >0 WIL ZEGGEN: $K_V < K_H$

B. GEKWADRATEERDE KOHERENTIEFUNKTIE
A. FASEHOEK ALS FUNKTIE VAN DE FREKWENTIE
FASEHOEK >0 WIL ZEGGEN: K_V LOOPT ACHTER OP K_H

B. GEKWADRATEERDE KOHERENTIEFUNKTIE

WATERLOOPKUNDIG LABORATORIUM

PROEF P330 JB
K_V t.o.v. K_H A4
M 1593-1271 FIG. 87
A. FASEHOEK ALS FUNKTIE VAN DE FREKWENTIE
FASEHOEK >0 WIL ZEGGEN : K_V LOOPT ACHTER OP K_H

B. GEKWADRATEERDE KOHERENTIEFUNKTIE

WATERLOOPKUNDIG LABORATORIUM

PROEF P 340 JB
K_V t.o.v. K_H

M 1593 - 1272 FIG. 88
ZEEWATERSTAND: N.A.P. +5,0 m
O.S. WATERSTAND: N.A.P. +0,75 m
SCHUIFONDERZUDE: N.A.P. +0,8 m

GOLFBELASTINGEN 0,52 Hz LP GEFILTERD

DRUKBEELDEN, BEHOOREN BI DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN kN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STILSTAAND WATER

PROEF 210

WATERLOOPKUNDIG LABORATORIUM

M 1593-1273 FIG.89
GOLFBELASTINGEN 0.52 Hz LP GEFILTERD

DRUKBEELDEN, BEHOOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STILSTAAND WATER

1 cm ≈ 20 KN/m²

PROEF 210

WATERLOOPKUNDIG LABORATORIUM

M 1593-1274 FIG.90
GEFILTERD

GOLFBELASTINGEN 0,52 Hz

1cm = 20 kN/m²

PROEF 270

A4

M 1593-1276

FIG. 92
K_{HV TOP}

ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. +0,8 m

K_{HV DAL}

ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. +0,8 m

GOLFBELASTINGEN 0,52 Hz LP GEFILTERD

DRUKBEELDEN, BEHOOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEBER ZET T.O.V. VERWALDRUKKEN IN kn/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STILSTAAND WATER

1 cm = 20 kn/m² JB
PROEF 270 A4
M 1593-1277 FIG.93
KHA TOP

-2,1 -4,7
7,0 16
14 13
27 2,6
25 3,1
19 22
24 2,8
2,9 2,4

KHA DAL

-34,5 -30,3
-14,8 -14
13
-16,5
2,4
-12,9
-11,8
18
-19
-20
-12,1

ZE EWATERSTAND: N.A.P. +3,5 m
O.S. WATERSTAND: N.A.P. -0,75 m
SCHUIFONDERZUDE: N.A.P. +0,8 m

ZE EWATERSTAND: N.A.P. +3,5 m
O.S. WATERSTAND: N.A.P. -0,75 m
SCHUIFONDERZUDE: N.A.P. +0,8 m

GOLFBELASTINGEN 0,52 HZ LP GEFILTERD

DRUKBEELDEN, BEHOOREN BIJ DE GEMETEN MAXIMALE
ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGE-
ZET T.O.V. VERVALDRUKKEN IN KN/m². NORMERING NAAR
GEWENST INKOMEND GOLFBEELD GEDEF. OP STILSTAAND WATER

1cm = 20 KN/m²
PROEF 270

WATERLOOPKUNDIG LABORATORIUM
M 1593 - 1278
FIG.94
ZEEWATERSTAND : N.A.P. +3,5 m
O.S. WATERSTAND : N.A.P. -0,75 m
SCHUIFONDERZUDE : N.A.P. -3,1 m

GOLFBELASTINGEN 0,52 Hz LP GEFILTERD

DRUKBEELDEN, BEHOREND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN kN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STILSTAAND WATER

1cm = 20 kN/m²
PROEF 280
M 1593 - 1279
GEFILTERD

DRUKBEELDEN, BEHOOREN BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STILSTAAND WATER

PROEF 280

WATERLOOPKUNDIG LABORATORIUM

M 1593-1280 FIG.96
GOLFBELASTINGEN 0,52 Hz LP GEFILTERD

DRUKBEELDEN, BEHOEND BIJ DE GEMETEN MAXIMALE ONGEFILTERDE GENORMEERDE GOLFBELASTINGEN, UITGEZET T.O.V. VERVALDRUKKEN IN KN/m². NORMERING NAAR GEWENST INKOMEND GOLFBEELD GEDEF. OP STILSTAAND WATER

1cm = 20 KN/m²

PROEF 280

WATERLOOPKUNDIG LABORATORIUM

M 1593-1281 FIG.97
Bijlage Stroomrefraktie

Stroomrefraktie is verandering van golflengte en -hoogte indien een golftrein loopt vanuit een gebied met gemiddelde stroomsnelheid $\bar{v} = 0$ naar een gebied met $\bar{v} \neq 0$. Hierbij worden twee situaties onderscheiden: toestroming van onderaf en toestroming vanaf de zijkanten.

In [1] wordt het geval van regulier golven op diep water ($h > \frac{1}{4}L$) beschouwd. De golfhoogteverandering wordt dan als volgt beschreven:

Toestroming van onderaf:
$$\frac{H}{H_0} = \frac{C_0}{\sqrt{C(C + 2u)}} = \varepsilon \quad 1)$$

Toestroming van opzij:
$$\frac{H}{H_0} = \sqrt{\frac{C}{C + 2u}} = \phi \quad 2)$$

$H =$ golfhoogte
$C =$ golfvoortplantingssnelheid t.o.v. (stromend) water
$U =$ gemiddelde stroomsnelheid
index 0: op stilstaand water
zonder index: op stromend water.

Bij de berekening van stroomrefraktie, zoals in dit onderzoek uitgevoerd, is per spektrale schatter de golfamplitudeverandering berekend.

Voor spektrale dichtheden wordt de formule (toestroming van opzij):

$$\frac{S}{S_0} = \phi^2 = \frac{C}{C + 2u}$$

Omdat de refraktie van $u = 0.5$ m/s naar $u = u_{proef}$ wordt bekeken, is de berekening uitgevoerd volgens:

$$S_{iw} u_{proef} = \frac{\phi^2_{u_{proef}}}{\phi^2_{0.5}} \star S_{iw} 0.5$$

Waarin:

$S_{iw} =$ gewenste inkomende spektrale dichtheid
index $u_{proef} =$ behorend bij tijdens proef opgetreden stroomsnelheid
index $0.5 =$ behorend bij $u = 0.5$ m/s.
Voor de berekening van C en C_0 is gebruik gemaakt van lineaire golftheorie:

$$\omega = uk + (gk \tanh kh)^{\frac{1}{2}}$$

$$C = \frac{L}{T} = \frac{\omega}{k} \text{ voor } u = u_{proef} \text{ en } u = 0,5 \text{ m/s.}$$

Literatuur

1. P. Groen, R. Dorrestein: Zeegolven
 K.N.M.I., 1976

2. G.B. Witham, Mass, momentum and energy flux in water waves,
 Jnl. of Fluid Mechanics
 Vol. 12, 1, Jan. 1962.