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Subject: Ant Colony Optimization for the Travelling Salesman Problem 
 
The Travelling Salesman Problem (TSP) is a well known problem in the field of transport engineering 
and logistics. It plays an important role in the planning for transport and other logistic systems. A 
promising approach to solve TSPs is Ant Colony Optimization (ACO). 
 
Ant Colony Optimization is a 'nature inspired' heuristic approach that can be used for combinatorial 
optimization. One of the earliest problems that was solved with ACO is the well known Travelling 
Salesman Problem. In the ACO heuristic intelligent agents (so-called 'ants') find their way in a network 
leaving a trail of 'pheromones'.  If a certain path in the network brings the ant closer to its goal, a 
stronger trail is left behind. This trail will attract other ants. While in the first iterations all routes in the 
network are equally attractive to the ants, after a number of iterations the stronger pheromone-trails 
are the routes that leads to the goal. Eventually, only one trail remains which represents the optimal 
solution. 
  
Your assignment is to implement an ACO-algorithm for the Travelling Salesman Problem. The 
algorithm must be able to solve existing TSP-instances. Part of the project is to study the usability of 
OpenStreetMap data to represent the TSP-instance (see http://www.openstreetmap.org).  
 
Studying relevant literature, developing and implementing a model, verification and validation of the 
model, experimenting with different scenario's, presenting solid conclusions and recommendations 
and reporting the research work are all part of this assignment. 
 
The report should comply with the guidelines of the section. Details can be found on the website. 
 
The supervisor, 
 
M.B. Duinkerken 
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NOMENCLATURE

Symbol

a Degree of non-linearity of edge selection
b Degree of attraction to edge without pheromone trail
d Distance (cost)
E Set of edges
f Frequency
G Graph
h Hour
k Number of nearest neighbours
L Length (cost)
m Number of ants
m Minute
n Number of nodes
p Probability
Q Set of nodes
s Second
t Time
T Tour (route)
V Set of vertices
w Search width
α Influence of pheromone trail intensity
β Influence of heuristic information
δ Difference in pheromone trial intensity
η Reciprocal of d
λ Influence of difference in pheromone trial intensity
λi λ-branching factor of node i
ρ Persistence of pheromone trail
σ Standard deviation
τ Pheromone trail intensity
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vi 0. NOMENCLATURE

Sub- or superscript

av g Average
b Best
i j Node i to node j
max Maximum
mi n Minimum
opt Optimal
theo Theoretical

Acronym

ACO Ant Colony Optimization
ACS Ant Colony System
ANTS Approximated Non-deterministic Tree Search
AS Ant System
ATSP Asymmetric Travelling Salesman Problem
BA Bat Algorithm
B&B Branch and Bound
CPU Central Processing Unit
CVRP Capacitated Vehicle Routing Problem
GB Global Best
HCP Hamiltonian Cycle Problem
IB Iteration Best
MDS Multidimensional Scaling
MMAS Max-Min Ant System
OSM OpenStreetMap
PSO Particle Swarm Optimization
PTS Pheromone Trail Smoothing
PTU Pheromone Trail Update
SOP Sequential Ordering Problem
TSP Travelling Salesman Problem
TSP LIB TSP Library
URL Uniform Resource Locator
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ABSTRACT

Nature is a source of inspiration for humans in many ways. An interesting source of inspiration is natural
swarm intelligence. Natural swarm intelligence entails the intelligent behaviour of a group of individuals as a
whole, with individuals having only a limited intelligence. The intelligence of the individuals is judged limited
because they follow very simple rules and there is no centralized control structure to organize the behaviour
of the individuals. Natural swarm intelligence inspires many artificial (exhibited by machines or software)
swarm intelligence applications. One of these applications is based on the colony behaviour of ants.

Ants are almost blind animals, but they are able to find the shortest path between their nest and a food
source. During foraging, the ants communicate to each other via depositing pheromone. When an ant locates
a food source, it carries the food to the nest and deposits a pheromone trail. The path of the other foraging
ants is influenced by this pheromone trail. Stronger pheromone trails attract more ants and shorter paths ac-
cumulate faster in pheromone intensity. This positive feedback mechanism biases the ants to shorter paths.
Eventually, all the ants follow the shortest path to the food source. This simple mechanism of communicating
via pheromones forms the basis of Ant Colony Optimization (ACO). ACO has many applications like solving
scheduling, vehicle routing and Travelling Salesman Problems (TSPs).

The main objective of this research is obtaining knowledge and experience in the field of Ant Colony
Optimization. The emphasis thereby is on the performance in solving Travelling Salesman Problem (TSP)
instances. The TSP is a classical problem in combinatorial optimization problems and has many applications
within logistic systems. The simplicity of formulation is deceitful. Globally, algorithms to solve the TSP can
be divided in exact algorithms and approximate algorithms. Exact algorithms can only be used for instances
of small size. In many real-world problems, the number of nodes is too large for an exact solution within a
reasonable time. Approximation (heuristic) algorithms provide a balance between a near-optimal solution
and a reasonable computation time. ACO is an example of such a heuristic algorithm.

Many different types of ACO algorithms exist. One type is selected: Max-Min Ant System (MMAS). But
even within one type of ACO algorithm one could think of various variants for implementation. How and
why different elements of the algorithm are implemented is discussed in detail. MMAS algorithm is equipped
with conventional heuristic algorithms to improve performance, like nearest neighbour and local search.
The MMAS algorithm is implemented in Delphi 2010 in combination with the discrete simulation package
TOMAS. However, the runs performed with the implemented MMAS algorithm are not discrete event sim-
ulations. The reason why TOMAS still is used is that it provides many useful tools to process elements like
queues. In the computer program it is possible to turn on and off various elements and adjust the parameters
of the MMAS algorithm. To be able to compare the performance of the MMAS algorithm, a second algorithm
is required. Therefore, the exact algorithm Branch and Bound (B&B) is implemented in Delphi 2010.

The source of TSP instances used for experiments is TSP Library (often denoted as TSPLIB). TSP LIB is a
library of sample instances for the TSP. The advantage of TSP LIB is that for most of the instances the opti-
mal solution in terms of cost and route is known. Above that, these instances are used throughout literature.
So it provides a manner for comparison in performance between different methods and thus can be con-
sidered as benchmark instances. As smaller TSP instances provided by TSP LIB were not available in the
desired format, it was chosen to convert these instances. This conversion is done by means of an approxima-
tion algorithm called multidimensional scaling (MDS). For completeness, an introduction is provided in how
OpenStreetMap (OSM) could be used to represent TSP instances.

Various experiments will be performed with the implemented MMAS and B&B algorithms. Both models
are verified and validated. In the available literature concerning MMAS, extensive experiments are performed
on parameter settings, model setups and settings. However, the emphasis of this research is on the perfor-
mance in solving TSP instances with respect to time. It is concluded that the advantage of the heuristic MMAS
approach with respect to the exact solver B&B starts to pay off for TSP instances of around 40 nodes and larger.
A good solution (within 1% of the optimal solution) can be found with MMAS within a small amount of time
compared to the run time required by B&B.
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1
INTRODUCTION

1.1. SWARM INTELLIGENCE
Nature is a source of inspiration for humans in various ways. A interesting source of inspiration is natural
swarm intelligence. Natural swarm intelligence entails the intelligent behaviour of a group of individuals as a
whole, with individuals having only a limited intelligence. The intelligence of the individuals is judged limited
because they follow very simple rules and there is no centralized control structure to organize the behaviour
of the individuals. Natural swarm intelligence forms the inspiration for many artificial (exhibited by machines
or software) swarm intelligence applications. A few examples of swarm intelligence will be introduced.

Flocking and schooling of birds and fish formed the idea behind Particle Swarm Optimization (PSO). PSO
is an algorithm to determine the best point or surface in an n-dimensional space. The algorithms works with
a population (swarm) of candidate solutions (particles). The particles move around in the search space by
obeying simple rules. The movements of particles are influenced by the best known position in the search
space of the particle as the best known position in the search space of the swarm. If better positions are
discovered, these will influence the movements of the swarm. This process is repeated. PSO is a heuristic, so
it is not guaranteed that an optimal solution is ever found. An example of the application of PSO is antenna
radiation field design.

Bat algorithm (BA) is a heuristic algorithm based on the echo locating behaviour of bats. An animal emits
a sound to the environment. The sound waves return from objects. The animal listens to the echoes and
this enables the animal to locate and identify the objects. Echolocation behaviour contains varying sound
properties in terms of frequency, pulse rates of emission and loudness. The algorithm can be summarized as
follows. There is a swarm of bats and each bat flies around randomly with a velocity at a certain position with
varying sound properties. The bat searches for a prey. If the bad finds a prey, it changes sound properties.
The echolocation behaviour of bats is formulated in such a way that the best performing bats are selected
and that it can be used to optimize an (multiple) objective function. An example of the application of BA is
the ergonomic screening of office workplaces.

The last example considers the colony behaviour of ants. Ants are almost blind animals, but they are able
to find the shortest path between their nest and a food source. During foraging, the ants communicate to each
other via depositing pheromone. When an ant locates a food source, it carries the food to the nest and de-
posits a pheromone trail. The path of the other foraging ants is influenced by this pheromone trail. Stronger
pheromone trails attract more ants and shorter paths accumulate faster in pheromone intensity. This positive
feedback mechanism biases the ants to shorter paths. Eventually, all the ants follow the shortest path to the
food source. This simple mechanism of communicating via pheromones forms the basis of Ant Colony Opti-
mization (ACO). ACO has many applications like solving scheduling, vehicle routing and Travelling Salesman
Problems (TSPs).

Figure 1.1: Example of artificial intelligence (a) Bird flock (b) Bat hunting (c) Ant colony
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2 1. INTRODUCTION

1.2. PROBLEM STATEMENT
The main objective of this research is obtaining knowledge and experience in the field of Ant Colony Opti-
mization for the section Transportation Engineering and Logistics. The section deals with scheduling and
routing problems, including the Travelling Salesman Problem. The Travelling Salesman Problem is a clas-
sical problem in combinatorial optimization problems and has many applications within logistic systems.
The simplicity of its formulation is deceitful. Ant Colony Optimization seems a promising approach to solve
Travelling Salesman Problem instances. This research is a first step in exploring the potential of Ant Colony
Optimization in solving these complex problems. In future developments Ant Colony Optimization may form
a shackle in a large simulation environment or real time planning procedure for example. The main research
question is formulated as follows:

How does an Ant Colony Optimization algorithm perform compared to an exact algorithm in solv-
ing Travelling Salesman Problem instances?

In order to answer this main research question, the following sub questions are proposed:

• What is the Travelling Salesman Problem?
• How does an exact algorithm to solve the Travelling Salesman Problem work?
• How does Ant Colony Optimization work?
• How can an Ant Colony Optimization algorithm to solve the Travelling Salesman Problem be imple-

mented?
• How can the performance of an Ant Colony Optimization algorithm and an exact algorithm in solving

Travelling Salesman Problem instances be compared?

1.3. APPROACH
The research is started with a literature survey. First the Travelling Salesman Problem and an exact algorithm
will be considered. Subsequently, an overview of Ant Colony Optimization will be given. Herein different
algorithms will be introduced. One Ant Colony Optimization algorithm from literature will be selected. The
literature concerning this algorithm will be reviewed in detail. The next part focuses on how the informa-
tion from literature can be translated to implementation. For implementation the software package Delphi
2010 in combination with the discrete simulation package TOMAS [Veeke and Ottjes, 2010] will be used. Fi-
nally, the Ant Colony Optimization algorithm is verified and validated. Several experiments are performed to
benchmark its performance. This report will follow the same outline as described above.

The Ant Colony Optimization algorithm is build from scratch. In building this model, (mathematical)
concepts from literature are used. The algorithm must be able to solve existing TSP instances from literature.
For this research two algorithms are required: a heuristic and an exact algorithm. For the exact algorithm, use
will be made of public resources. To eliminate a difference in performance due to programming language,
both algorithms are implemented in Delphi 2010.



2
TRAVELLING SALESMAN PROBLEM

In this chapter the Travelling Salesman Problem will be discussed in detail. First a mathematical formulation
of the problem is given. Subsequently, the origin of its complexity is explained. The Travelling Salesman
Problem has various real-world applications. Some examples will be given. During research an open source
library of Travelling Salesman Problem instances is used. This library is introduced. Globally, algorithms to
solve the Travelling Salesman Problem can be divided in exact algorithms and approximate algorithms. One
exact algorithm is discussed in detail.

2.1. PROBLEM DESCRIPTION
A travelling salesman must visit each city in a certain area exactly once. The journey starts and ends at his
home town. Given the cost between each pair of cities, find the route of the journey with minimal cost. This
is called the travelling salesman problem (TSP). Wei and Yuren [2010] formulates the TSP mathematically as
follows: let G = (V ,E) be a graph that consists of the set of vertices (also called nodes, e.g. cities) V and the set
of edges (e.g. roads) E . Find a shortest Hamiltonian cycle of G . A Hamiltonian cycle is a closed path whereby
each vertex in a graph is visited exactly once (named after the Irish mathematician Sir Hamilton). The cost
between each pair of nodes is given in a cost matrix D with elements di j , which represent the cost between
node i and node j . If di j = d j i for all i , j , then the cost matrix is symmetric. Otherwise, the cost matrix is
asymmetric. A TSP instance does not necessarily have only one unique optimal solution. An optimal solution
of an example TSP instance is shown in Figure 2.1.

Figure 2.1: Example optimal solution TSP [Zhou et al., 2012]

The TSP is a classical problem in combinatorial optimization problems. The TSP has been studied exten-
sively in academic circles and still attracts many scholars [Wei and Yuren, 2010]. Laporte [1992] states that
hundreds of articles have been written on the TSP. The simplicity of the formulation of the problem is deceit-
ful. For the first node, there are n possibilities, for the second node n −1 possibilities, for the third node n −2
possibilities etc. The route start and ends at the same node and thus the route is closed. Therefore, it does
not matter from which node the journey starts. The number of possible routes for n nodes can be expressed
as follows:

n(n −1)(n −2)...

n
= (n −1)! (2.1)

3



4 2. TRAVELLING SALESMAN PROBLEM

If the cost matrix is symmetrical, the number of possible routes is counted double in Equation 2.1. The
number of possible routes for n nodes in this case is:

n(n −1)(n −2)...

2n
= (1/2)(n −1)! (2.2)

Globally, algorithms to solve the TSP can be divided in exact algorithms and approximate algorithms. Exact
algorithms, such as Branch & Bound (see section 2.3), Branch & Cut and Dynamic Programming can only be
used for instances of small size since the time to find a solution increases exponentially with the number of
nodes [Shokouhifar and Sabet, 2012]. For example, n = 25 gives (15−1)! possibilities, that is over 87 billion
possibilities. The TSP has become a benchmark for many (newly) developed algorithms [Shi et al., 2008]. In
many real-world problems, the number of nodes is too large for an exact solution within a reasonable time.
Approximation (heuristic) algorithms provide a balance between a near-optimal solution and a reasonable
computation time.

The TSP has many applications within logistic systems. Some applications can be converted to the TSP,
for example by introducing a dummy node. Laporte [1992] proposes a few applications of the TSP:

• Computer wiring: The pins in a computer need to be linked by means of wires. The objective is to
minimize the total required wire length.

• Hole drilling: In various manufacturing industries holes are drilled in for example boards or metal
sheets. The objective is to minimize the distance the drill has to move over the sheet.

• Job sequencing: Various jobs must be performed on a machine. Different tools can be used on the
machine. To change tools, different change-over times are required. The objective is to minimize the
time required to change tools.

2.2. TSP LIBRARY
TSP library (often denoted as TSPLIB) is a library of sample instances for the TSP (and related problems) from
various sources and of various types [Reinelt, 1995]. For most of the instances the optimal solution in terms
of cost and route is known. The instances and optimal solutions can be downloaded from the website (see
bibliography for URL). This is very useful in validating your developed method to solve these instances. Above
that, these instances are used throughout literature. So it provides a manner for comparison in performance
between different methods and thus can be considered as benchmark instances. Also in this research the TSP
LIB is used. TSPLIB provides instances for the following classes of problems:

• Symmetric travelling salesman problem (TSP)
• Asymmetric travelling salesman problem (ATSP)
• Hamiltonian cycle problem (HCP)
• Sequential ordering problem (SOP)
• Capacitated vehicle routing problem (CVRP)

An overview of the symmetric travelling salesman problems provided by TSP LIB with their solution
bounds (a single number indicates that the optimal solution is known) is given in Appendix A. The num-
ber in the file name indicates the number of nodes of the instance. Instance size varies from 17 to almost
86000 nodes. Every TSP file has the same setup as will be described below. Each file consists of two parts. In
the first part the instance is specified with name, type, dimension, edge weight type and edge weight format
(all strings). The edge weight type specifies how the edge weights (or distances) are given: either implicitly
(e.g. Euclidean distance, Manhattan distance, geographical distance, 2D, 3D) in the form of a node list or
explicitly in the form of a cost matrix. Appendix B provides both an explicit as an implicit example. If the cost
matrix is given explicitly, an edge weight format is given. This describes the format of the edge weights, e.g. a
full matrix, a lower triangular matrix or a function. Please note that the edge weight type is essential in case
the cost matrix is given implicitly. If the user does not stick to this specification, the found optimal solution
will not correspond to the optimal solution given by TSP LIB. The second part of the file prescribes the data
of the instance (integers or reals). A few TSP files contain both a list of node coordinates as a cost matrix.
One could also think of other open sources for TSP instances. section 2.4 provides an introduction to how
OpenStreetMap could be used to represent these instances.
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2.3. EXACT ALGORITHM
To save time, use is made of public resources to implement an exact algorithm for solving TSP instances. It
should be noted that the availability of such exact algorithms for Delphi is very limited. Above that, not all
available algorithms are able to read TSP instances from the TSP LIB. Thus in most cases the source code
must be available. A Branch and Bound (B&B) algorithm is selected. B&B was first published by Little et al.
[1963]. The following algorithm is used: Stony-Brook-University [] (see bibliography for URL). This university
collects algorithms for various combinatorial optimization problems. The algorithms are made available for
research or educational use. The B&B source code is edited and made suitable to read instances from TSP
LIB. The execution time of this branch and bound grows with the size of the network. In the description of the
algorithm it is stated that the worst-case time complexity of this algorithm could be as bad as O (n!). Despite
Little’s B&B is able to handle asymmetric TSP instances, this algorithm is only able to handle symmetric TSP
instances. In the remainder of this section more information on Little’s B&B algorithm will be given.

As stated in section 2.1, Branch & Bound (B&B) is one of the exact algorithms to solve TSP instances. Little
et al. [1963] describes B&B as follows. The idea is to break up all feasible routes into increasing smaller subsets
by a procedure called branching. Figure 2.2 provides an example of a branch and bound tree. For each subset,
a lower bound on the cost (length) of the included routes is calculated. These bounds guide the branching of
the subsets. Eventually, a subset is found that contains a single route whose length is less than or equal to the
lower bound of all other subsets. That route is optimal. The subsets of routes are conveniently represented as
the nodes of a tree and the process of partitioning as a branching of the tree. Hence the name of the method:
branch and bound.

For this research Little’s B&B algorithm is implemented in Delphi. The B&B algorithm can be described
more pragmatic as follows. The algorithms starts with an nxn weight matrix for a certain graph. The first
step is reduction: in every row and column of the matrix a zero has to be created by subtracting constants.
The sum of these subtracted constants is a lower bound (indicated in Figure 2.2 top left of the circles) for the
length of all TSP routes from the matrix. Subsequently, the branch and bound process is started. Branching
takes place at a certain edge (indicated as a pair of nodes in Figure 2.2 in the circles). One branch contains all
routes with a certain pair of nodes, the other branch contains all routes without a certain pair of nodes. For
both branches a new matrix has to be formed, for one branch the matrix is reduced in size and for the other
branch the matrix weights are modified. Subsequently, reduction is applied again on these new matrices. This
results in a (new) lower bound value per matrix. Based on these lower bound values, the search in the branch
and bound tree for the optimal solution is guided. For further clarification on the algorithm, an example
provided in the paper by Little et al. [1963] should be considered. Please note that, in a worse-case scenario,
the algorithm may end up examining all possible solutions.

Figure 2.2: Example of branch and bound tree [Little et al., 1963]
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2.4. OPENSTREETMAP
As indicated in section 1.2 the Travelling Salesman Problem has many applications within logistic systems.
At the end of section 2.1 a few applications of the TSP are proposed. However, many other applications of the
TSP are physical transport problems with cities and roads involved. These physical transport problems can be
represented on a street map. OpenStreetMap (OSM) could be used for this representation. It provides nodes
and edges to digitally represent cities and roads. In this section an introduction to the usability of OSM is
given. OpenStreetMap is an initiative to create and provide free geographic data to anyone [OpenStreetMap,
2014a]. The OpenStreetMap foundation was founded in 2004 and is a non-profit organization. The updating
of the maps is completely performed by volunteers and thus is very comparable to Wikipedia.

Elements (also known as data primitives) are the basic components of OpenStreetMap’s conceptual data
model of the physical world and consist of [OpenStreetMap, 2014b]:

• Nodes
• Ways
• Relations

A node represents a specific point on the surface of the earth. To each node are at least an id number
and a pair of coordinates (latitude and longitude) attached. Nodes can be used to define standalone point
features, like a park bench or a water well. A way is an ordered list of nodes (2 – 2 000 nodes) that defines a
poly-line (a connected series of line segments). Ways are used to represent linear features such as rivers and
roads, but can also represent the boundaries of areas such as buildings or forests. Open and closed ways can
be distinguished. An open way is a way which does not share a first and last node. A closed way is a way for
which the last node of the way corresponds with the first node. A relation is a multi-purpose data structure
that documents a relationship between two or more data primitives (nodes, ways, and/or other relations).
For example, a way of more than 2 000 nodes, cannot be represented by a single way. Instead, the feature will
require a relation data structure.

The data from OpenStreetMap can be downloaded in a number of ways [OpenStreetMap, 2014c]. The
entire planet (40 GB compressed) or smaller areas can be selected. Data is available in different forms, one of
them is in the form of XML formatted .osm files. Different tools (like Osmosis, osmconvert, and osmfilter) are
available to extract specific data. OpenStreetMap has the ability to be used as a source to represent TSP in-
stances. However, a conversion of the XML files is required. An interesting open source program is OSM2PO.
It is both a converter and a routing engine. The program converts OpenStreetMap’s XML-data and makes it
routable. A widely used program to view geographic data is the open source program QGIS. There are also
numerous plug-ins available to extend the possibilities of QGIS in the field of routing. Figure 2.3 shows an
example of the usage of the pgRouting plug-in for QGIS to determine shortest path between a pair of nodes
(based on Dijkstra’s algorithm).

Figure 2.3: Example of shortest path between two nodes using pgRouting plugin [QGIS, 2014]



3
PRINCIPLE OF ANT COLONY OPTIMIZATION

As indicated in section 2.1, in many real-world problems the number of nodes of a TSP instance is too large for
an exact solution within a reasonable time. In that case heuristic algorithms may be used. These approxima-
tion algorithms provide a balance between a near-optimal solution and a reasonable computation time. Ant
Colony Optimization is such a heuristic algorithm. In this chapter the principle of Ant Colony Optimization
is discussed. Various types of Ant Colony Optimization exist. A brief overview of these algorithms is given.
Subsequently, one algorithm is selected for implementation.

3.1. ANT COLONY
An ant colony is a community of ants living close to together. Some ant species are able to collectively find
the shortest path between two points [Solnon, 2010] (page 108), often the nest of the ant colony and a food
source. When the path is obstructed or destroyed, a new alternative paths are found. These abilities are
remarkable, since ants are almost blind animals [Dorigo et al., 1996]. For example Deneubourg et al. [1990]
studied the foraging behaviour of ant species in order to develop a model to describe its behaviour. One of the
experiments will be discussed in section 3.2. While an ant moves around, it deposits a pheromone trail on the
ground. The pheromone is a chemical substance. An ant is able to detect the intensity of a pheromone trail.
Initially ants randomly choose their path, but the probability of choosing a direction depends on the intensity
of pheromone trails on the ground [Solnon, 2010] (page 108). So if an ant encounters a pheromone trail, the
higher the probability the ant follows that direction. During following the ant reinforces the pheromone trail
with its own pheromone. So a form of positive feedback takes place; the denser the pheromone trail, the
larger the probability that an ant will follow the trail and will make it denser with its own pheromone. This
principle is illustrated with an example.

Figure 3.1: Example of ants [Dorigo et al., 1996]

This example proposed by Dorigo et al. [1996]. Assume that there is a path along which ants are moving
from nest N to food source F and back, see left of Figure 3.1. Suddenly an obstacle is placed on the path, see
middle of Figure 3.1. The ant that is going from N to F and arrives at D , has to decide whether to turn left or
right. The same holds for the ant that is going from F to N and arrives at B . This choice is influenced by the
intensity of the pheromone trail by preceding ants. For example, if the intensity of the left path is higher, the
higher the probability the ant will turn left. The first ant that arrives at D (or B) has no predecessors and thus

7
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the probability of turning left or right is equal. Assume that two ants leave at exact the same time from D and
each choose a different path. The ant following path D −C −B will arrive earlier at B than the ant following
path D−H −B . The implication is that after this arrival, the first ant that arrives at B and is going from F to N
will detect a pheromone trail and have a higher probability of taking path B −C −D than path B −H −D . The
result is that the number of ants following the shorter path is higher and also the intensity of the pheromone
trail on the shorter path is higher. The final result is that almost all ants choose the shorter path. Some ants
may not follow the highest pheromone trail and thus exhibit an exploratory behaviour [Solnon, 2010] (page
110).

3.2. DOUBLE BRIDGE EXPERIMENT
Deneubourg et al. [1990] studied the foraging behaviour of ant species. One of the experiments performed
was the double bridge experiment with Argentine ants, see left of Figure 3.2. The nest is separated from the
food by two bridges of equal length and initially free of pheromone. The ants explore the environment and
eventually reach the food. Initially, the ants select one of the bridges randomly. However, after some time
most of the ants follow one of the bridges. This is due to random fluctuations in path selection, which results
in higher concentrations on one of the bridges and thus attracts more ants.

Figure 3.2: Double bridge experiment [Dorigo, 2006]

Goss et al. [1989] extended the double bridge experiment, see right of Figure 3.2. Now one bridge is longer
than the other. Again, initially the ants select one of the bridges randomly. After some time most of the ants
follow the shorter bridge. Random fluctuations still occur, however the ants following the shorter path arrive
earlier at the food. Therefore the shorter bridge has a higher pheromone trail intensity from the moment the
first ant arrives at the food and this trail will increasingly be reinforced, like described at the end of section 3.1.
Goss et al. [1989] developed an empirical model to describe the observed behaviour. The probability for an
ant to select bridge one and bridge two is given by:

p1 = (m1 +b)a

(m1 +b)a + (m2 +b)a (3.1)

p2 = 1−p1 (3.2)

where m1 is the number of ants that have passed bridge one, m2 is the number of ants that have passed
bridge two. Equation 3.1 is a choice function. The equation quantifies in which way a higher pheromone
trail intensity on bridge one gives a higher probability of choosing bridge one. Parameter a determines the
degree of non-linearity of the choice. For example, a high value of a indicates that if one bridge has a slightly
higher pheromone trail intensity than the other, the next ant will have a very high probability of choosing
that branch. Parameter b indicates the degree of attraction of a bridge without a pheromone trail. Remember
that ants initially wander randomly. The greater b, the greater the pheromone trail intensity must be to let
choices become non-random. a and b are parameters that are fitted to experimental data. It was found that
a ≈ 2 and b ≈ 20 provide a very good fit. The article presenting this equation does not provide restrictions
on parameters a and b. However, in view of the meaning of these parameters the following restrictions seem
plausible: a ≥ 1 and b ≥ 0.
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3.3. ANT COLONY OPTIMIZATION
Ant Colony Optimization (ACO) is a meta-heuristic. A meta-heuristic is a general-purpose algorithmic frame-
work that can be applied to different optimization problems with relatively few modifications [Dorigo, 2006].
Besides routing problems (like the TSP), ACO has many other applications. Like assignment problems (e.g.
sequential ordering [Gambardella and Dorigo, 2000]), scheduling problems (e.g. course timetabling [Socha,
Sampels, and Manfrin, Socha et al.]). The foraging behaviour of ants described in section 3.1 is a main source
of inspiration for ACO algorithms. The ACO algorithm is a multi-agent system in which the agents are artificial
ants [Zhao et al., 2008]. These artificial ants build solutions to a considered optimization problem [Dorigo,
2006]. These ants communicate in a way comparable to real ants. Different ACO algorithms exist. The first
ACO algorithm was introduced by Dorigo et al. [1991], called Ant System (AS). Since then different other ACO
algorithms are proposed. A list of early ACO algorithms is shown in Table 3.1. Solnon [2010] (page 163) states
that ACO has been applied to a large number of combinatorial optimization problems and has shown to be
very competitive in comparison with convenient approaches for many challenging problems.

Dorigo [2006] states that all ACO algorithms share the same idea and illustrates this idea by introducing
an application to the travelling salesman problem. In ACO a number of artificial ants are simulated that move
over edges. These edges connect nodes. To each edge is a pheromone variable attached, which indicates the
intensity of the pheromone trail on that edge. This variable can be influenced by ants depositing pheromone
and evaporation of the pheromone. Pheromone evaporation is a process whereby the pheromone trail inten-
sity of the edges decreases over time. Constraints are applied such that the ants visit each node exactly once
and return to the starting node. ACO is an iterative algorithm. Each ant builds each iteration a solution in
constructive steps. So each iterations consists of multiple constructive steps. Each constructive step an ant
chooses an edge and thus a node, see Figure 3.3. This choice is stochastically determined and is influenced
by the intensity of the pheromone trails. At the end of an iteration, various solutions are build. Based on
the quality of the solutions (in terms of cost), the pheromone variables are updated. Subsequently, a new
iteration takes place with the new pheromone values. New solutions will be build that are similar to the best
solutions from the previous iteration. The long term effect of the pheromone trails is to successively reduce
the size of the search space by concentrating the search on a relative small number of edges [Stützle and Hoos,
1996].

Figure 3.3: Ant at node i chooses a node to move to [Dorigo, 2006]

As the stated at the beginning of this section, the foraging behaviour of ants is a main source of inspiration
for ACO algorithms. However, the reader may have noticed that this inspiration is limited. Many features
are modified or added to the artificial ants, for example the memory containing which nodes have already
been visited, when pheromone trails are deposited and the evaporation of pheromone. Above that, further
improvements are realized by incorporating other heuristics, like local search procedures.

3.3.1. DEVELOPMENT

To get a feeling of the development in early ACO algorithms, some essential differences between these algo-
rithms will be mentioned. To keep this comparison manageable and clear, it is limited to the algorithms that
are closely related to Ant System. The two most important mathematical relations used in ACO algorithms
are the relation describing the probability of moving from node i to node j and the relation describing the
pheromone update (deposition and evaporation). Besides all mentioned aspects below, the algorithms con-
tain modifications or extensions with respect to these two relations. The term “best ant” is used below. For
explanation, the reader is referred to section 4.3. All differences are mentioned with respect to Ant System.
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• In Ant System (AS) a blacklist is used. This blacklist contains all visited nodes. In choosing a node, the
nodes on the black list are excluded. The blacklist thus prevents loops in the constructed path of an
ant. In AS all ants are allowed to deposit pheromone on their constructed path.

– In Ant Colony System (ACS) only the best ant is allowed to deposit pheromone on its correspond-
ing best path. ACS also makes use of a candidate set. This candidate set contains the nodes that
are close to a certain node. In choosing a node, the ants in the candidate set are considered first.
Only if all candidate nodes are visited, the remaining nodes are considered.

– In Max-Min ant System (MMAS) the pheromone trail intensities are restricted within a minimum
and maximum value. Above that, only the best ant is allowed to deposit pheromone on its corre-
sponding best path. Furhtermore, MMAS makes use of a pheromone trail smoothing mechanism.

– In Rank-Based AS only the best ant is allowed to deposit pheromone on its corresponding best
path. In this algorithm all solutions are ranked according to their cost. The pheromone deposition
is directly proportional to the rank of the ant. The better the ranking, the more pheromone is
deposited.

– In Approximated Non-deterministic Tree Search (ANTS) a moving average of the cost over the iter-
ation best solutions is registered. If the cost of an ant is lower than the moving average, pheromone
concentrations are reduced. If the costs of an ant is higher than the moving average, pheromone
concentrations are increased.

Table 3.1: Non-exhaustive list of early ACO algorithms [Dorigo, 2006]

Ant System Dorigo et al. 1991

Elitist Ant System Dorigo et al. 1992

Ant-Q Gambardella and Dorigo 1995

Ant Colony System Dorigo and Gambardella 1996

Max-Min Ant System Stutzle and Hoos 1996

Rank-Based Ant System Bullnheimer et al. 1997

Approximated Non-deterministic Tree Search Maniezzo 1999

BWAS Cordon et al. 2000

Hyper-cube Ant System Blum et al. 2001

3.3.2. STAGNATION

At the end of section 3.3, it is mentioned that evaporation of pheromone is a feature added to artificial ants.
Initial experiments with the double bridge (see section 3.2) indicated that ants rapidly converge to a solution
and little time is spent on exploring alternative routes [Engelbrecht, 2005] (page 373). To force artificial ants
to explore alternative routes, pheromone evaporation is performed every iteration. Pheromone evaporation
causes ants to (partly) forget their search history.

The main problem with AS was that search stagnated (converged) prematurely for more complex prob-
lems, despite the presence of pheromone evaporation. A prematurely stagnated search means that the search
for better solutions concentrates too early around suboptimal solutions. All ants follow the same route and
construct the same solution over and over again, such that better solutions will not be found anymore [Stüt-
zle and Hoos, 2000]. If at each node the intensity of the pheromone trail of one of the edges is significantly
higher than for all others, premature stagnation may occur. In section 4.5 a mathematical formulation is
given to identify stagnation. Whether the detected stagnation is premature is often unknown, since for most
problems the optimal solution is unknown.

The algorithms developed after AS addressed the problem of premature stagnation. It was attempted
to provide a better exploitation-exploration trade-off. So on one hand, the search process should favour
actions that were found and proven effective in the past, thereby exploiting the obtained knowledge about
the search space. On the other hand, the search process has to investigate previously unseen actions, thereby
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exploring the search space [Engelbrecht, 2005] (page 376). So pheromone evaporation favours exploration
on alternative routes. However, as already stated in this subsection that is not sufficient. The algorithms
developed after AS all provide one or more different additional methods to address premature stagnation.
Stützle and Hoos [2000] states that the key to achieve best performance of ACO algorithms is to combine
improved exploitation of the best solutions found during search with an effective mechanism for avoiding
premature stagnation.

3.4. SELECTION OF ACO ALGORITHM
After the first ACO algorithm was proposed in 1991, it has been widely concerned by scholars continuously
aiming for improvements [Zeng et al., 2012]. This led to a tremendous number of different ACO algorithms
in literature, from which a few are listed in Table 3.1. For this research, one ACO algorithm has to be selected.
This selection is mainly based on findings in literature.

The main successful algorithms proposed are Ant Colony System (ACS) and Max-Min Ant System (MMAS)
[Zhang and Feng, 2009], [Dorigo, 2006]. It is shown that ACS and MMAS outperform AS [Stützle and Hoos,
1997], [Dorigo and Gambardella, 1997]. Often, other proposed algorithms take ACS or MMAS as a baseline
for comparison of performance with their proposed algorithm. These algorithms show improvement with
respect to ACS and MMAS, e.g. [Guo, 2006], [Zhang et al., 2007], [Hong and Bian, 2008] and [Zhang and
Li, 2008]. However, no consensus which performs best on the TSP is found in literature. Above that, the
complexity increases with every improvement.

Therefore, the selection of the algorithm for implementation is limited to ACS and MMAS. Both require
comparable user-specified parameters values. Stützle and Hoos [1997] states that MMAS performs at least
at the same level of performance as ACS and in most cases gives a better average performance. Zhang and
Feng [2009] states that MMAS is the most widely used ACO algorithm. If quantitative results for runs of the
algorithm are compared, MMAS often performs better than ACS, e.g. [Zhao et al., 2008], [Zhang and Feng,
2009], [Chang et al., 2009], [Zhou et al., 2012].

All of this made to select MMAS for implementation. The arguments to select MMAS proposed in this
section can be summarized as follows:

• Belongs to most successful algorithms.
• Often used as benchmark algorithm.
• Not too complex.
• Slight preference in performance with respect to ACS.





4
MAX-MIN ANT SYSTEM

The MMAS algorithm discussed in this chapter is based on the papers by Stützle and Hoos [1996], Stützle
and Hoos [1997] and Stützle and Hoos [2000]. MMAS is an improved version of AS. Adjustments are made,
but some elements remained the same. One of these adjustments is the usage of limits on the pheromone
trail intensities. This clarifies the name of the algorithm. Stützle and Hoos [2000] states that MMAS has been
specifically developed to combine improved exploitation of the best solutions found during search with an
effective mechanism for avoiding premature stagnation.

The first sections of this chapter gives an overview of the MMAS algorithm. During reading of the sections
of this chapter, the reader is able to locate the specific section in the algorithm. As stated in section 3.3, the
two most important mathematical relations used in ACO algorithms are the relation describing the proba-
bility of moving from node i to node j and the relation describing the pheromone update (evaporation and
deposition). These two relations and the principles involved are discussed in the subsequent sections: sec-
tion 4.2 and section 4.3. In that point of view, the remaining sections provide refinements with respect to
these relations: section 4.4 and section 4.5 provide refinements for the pheromone trail update, while sec-
tion 4.6 provides a refinement for selection of a node. In section 4.7 the extension of MMAS with local search
is discussed. The last section considers initialization of the algorithm. In this chapter a few times is referred
to premature stagnation and the exploitation-exploration trade-off. For more information on these subjects,
the reader is referred to subsection 3.3.2.

4.1. OVERVIEW OF ALGORITHM
After initialization of some parameters and the pheromone trails, a main loop is repeated until a termination
conditions is met. This termination condition could be a maximum number of iterations for example. In the
main loop, first the ants construct each a tour. In choosing a node, an ant chooses among the nodes which
not have been visited yet. So if the ant returns to its home node, every node is visited exactly once. Subse-
quently, the performance of the ants (in terms of solution quality) is computed and compared. Then local
search is applied to improve the constructed solutions. Then the pheromone trails are updated. Finally, two
steps addressing premature stagnation are performed. All these steps enfold one iteration.

Initialize parameters
Initialize pheromone trails
repeat

Initialize ants randomly at home node
Construct complete tours for ants (section 4.2)
Compute and compare the performance of ants
Apply local search (section 4.7)
Update the pheromone (section 4.3)
Constrict pheromone to be within pheromone trail limits (section 4.4)
If stagnation is detected, then apply pheromone trail smoothing (section 4.5)
Number of iterations = Number of iterations + 1

until termination condition is met

13
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4.2. PROBABILITY OF SELECTING NODE
For initialization, each ant is settled on some randomly selected node. Engelbrecht [2005] (page 378) states
that this improves the exploration ability of the search algorithm. Each ant builds a TSP route in constructive
steps from and to this node. For each single ant, the next node is selected by means of a probabilistic function.
The probability that a certain edge is selected is proportional to the pheromone trail intensity of that edge
and inversely proportional to the length of that edge. The mutual influence is determined by setting two
parameters. The function for the probability of moving from node i to node j [Stützle and Hoos, 1996]:

pi j (t ) =


ταi j (t )η

β

i j (t )∑
k not visited τ

α
i k (t )η

β

i k (t )
if node j is not visited yet,

0 otherwise,
(4.1)

where τi j (t ) represents the intensity of pheromone trail on edge (i , j ) at time step t . One could see this
variable as the memory that contains previous search experience. ηi j (t ) represents the local heuristic func-
tion (a priori fixed value) for edge (i , j ) at time step t . ηi j is defined as 1/di j , where di j is the distance between
nodes i and j . So pi j is higher for lower di j . The sum in the denominator ensures that the sum of all prob-
abilities of all “outgoing” edges sums up to 1. α and β represent the influence of the trail intensity and the
heuristic information respectively. α≥ 0, if α= 0, the pheromone information is neglected. β≥ 0, if β= 0, the
attraction to certain edges generated by the heuristic information is neglected. Node j may not be visited yet,
because literature prescribes that loops must be prevented (see subsection 3.3.1). Engelbrecht [2005] (page
376) states that Equation 4.1 effectively balances the exploitation-exploration trade-off. The best balance be-
tween these two is achieved trough proper selection of α and β. Node k is selected from a set of feasible
nodes. This set of nodes only contains immediate neighbour nodes of node i , like shown in Figure 3.3. To
recognize nodes that are already visited, a list with visited nodes should be maintained for each ant.

4.3. PHEROMONE TRAIL UPDATE
The pheromone trail intensity of an edge used in the next iteration is equal to the current pheromone trail
intensity times a factor plus a pheromone deposition. The pheromone trail is updated according to [Stützle
and Hoos, 1996]:

τi j (t ) = ρτi j (t −1)+∆τb
i j (4.2)

where ρ is the persistence of the pheromone trail (0 < ρ < 1), so (1−ρ) is the evaporation. Stützle and Hoos
[1996] states that the evaporation mechanism helps to avoid unlimited accumulation of the pheromone trails.
If an arc is not selected by ants, the evaporation enables forgetting “bad” solutions over time. So evaporation
takes place on all arcs. ∆τb

i j is the amount of pheromone added to edge (i , j ) by the best ant moving over

that edge. So the notation of b is not an exponent, but a superscript. ∆τb
i j is defined as 1/Lb , where Lb is the

length of the best tour. For selecting ‘best’ there are different possibilities. Possibilities are selecting the best
ant/tour of a single iteration (iteration-best, i b) or the best ant/tour of all performed iterations (global-best,
g b). Stützle and Hoos [1996] states that iteration-best favours a higher degree of exploration, whereas global-
best may lead to premature stagnation. In addition, Stützle and Hoos [2000] states that in general, using
exclusively global-best not seems to be a very good idea in the case of MMAS. In experiments it is shown that
the results for iteration-best are significantly better than for global-best [Stützle and Hoos, 1996]. However,
one could also think of mixed strategies of iteration-best and global-best.

4.4. PHEROMONE TRAIL LIMITS
Stützle and Hoos [2000] states that one way to avoid premature stagnation is to influence the probability for
choosing the next node. From Equation 4.1 it can be seen that this directly depends on the pheromone trail
intensity and the heuristic information. The heuristic information as defined is problem-specific and fixed a
priori. However, the dependency on the pheromone trail intensities can be influenced. This provides a tool
to influence the relative influence during running the algorithm. This is achieved trough imposing explicit
limits on the pheromone trails intensities for all edges [Stützle and Hoos, 1996]:
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τmi n ≤ τi j ≤ τmax (4.3)

These limits clarify the name of the algorithm and can be seen as a refinement of the pheromone trail up-
date. It can be formally derived that the maximum possible pheromone intensity is asymptotically bounded
[Stützle and Hoos, 2000]. Above that, it is shown that good values for the minimum pheromone intensity can
be found. The equations for the upper and lower bound are given in Equation 4.4 and Equation 4.5 [Stützle
and Hoos, 1996].

τtheo
max = 1

1−ρ

1

Lopt
(4.4)

τmi n = τmax (1− n−1
p

pbest )

(n/2) n−1
p

pbest
(4.5)

where Lopt is the optimal tour length for the TSP and therefore gives the theoretical value of τ. If the

optimal solution is not known, then Lopt is substituted by Lg l obal
best . Thus, τmax is adapted during the algorithm

and is time dependent. n is the number of nodes in the graph. Stützle and Hoos [2000] states that when
MMAS has converged, the best solution found is constructed with a probability pbest . In this situation, an
ant constructs the best solution found if it makes at each "choice point" the "right" decision by choosing a
solution component with maximum pheromone trail intensity τmax . Engelbrecht [2005] (page 385) states
that pbest is a user-specified parameter which needs to be optimized for each new application. Note that
pbest < 1 to ensure that τmi n > 0. Also, if pbest is too small, then τmi n > τmax . In that case, MMAS sets τmi n

equal to τmax . Using Equation 4.3 and Equation 4.1 it can be seen that this case corresponds to usage of the
heuristic information ηi j only in the solution construction.

Experiments are performed by Stützle and Hoos [2000] to investigate the influence of lower trail limits. It
is shown that it is advantageous to use lower trail limits in terms of lower derivation of the optimal solution.
Above that, it is stated that the importance of lower trail limits increases with increasing problem instance.
τmax is initialized at an arbitrarily high value, τmi n is initialized at 0.

4.5. PHEROMONE TRAIL SMOOTHING
Stützle and Hoos [1997] states that despite pheromone trail intensities are bounded, long runs of the MMAS
still can stagnate prematurely. To address this problem, pheromone trail smoothing (PTS) is introduced. PTS
can be seen as a refinement of the pheromone trail update. The reasoning proposed by Stützle and Hoos
[1997] is that if premature stagnation occurs, not enough new tours are explored. Thus, the TPIs need to be
adjusted such that new tours are explored (again) in a higher extent. When MMAS has converged are is almost
going to, the pheromone trail intensities are increased proportionally to their difference with the maximum
pheromone trail limit [Stützle and Hoos, 1997]:

∆τi j (t )∝ (τmax (t )−τi j (t )) (4.6)

The learned trails so far are not completely forgotten. By increasing the TPIs in this way, and thus reducing
(smoothing) the difference between high and low TPIs, exploration is stimulated. With this mechanism the
solution quality for longer runs increased significantly [Stützle and Hoos, 1997]. To be able to apply PTS,
stagnation needs to be identified. The λ-branching factor of node i (λi ) is defined as the number of edges
leaving node i with a TPI higher than [Gambardella and Dorigo, 1995]:

λδi +τi ,mi n , with (4.7)

δi = τi ,max −τi ,mi n (4.8)

where λ is a parameter, 0 ≤λ≤ 1. τi ,max is the maximum TPI of all edges leaving node i . τi ,mi n is the min-
imum TPI of all edges leaving node i . Stagnation is identified with the meanλi -branching factor, as proposed
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by Gambardella and Dorigo [1995]. The meanλi -branching factor gives an indication of the dimension of the
search space and is defined as: ∑

i λi

n
(4.9)

Stützle and Hoos [1997] states that he has found that for a value of λ = 0.05 and a mean 0.05-branching
factor very close to 1, only very few (often only one) arc exit from a node have a very high selection probability
and practically no new solutions are explored. This is assumed as stagnation. As stated in subsection 3.3.2,
whether the detected stagnation is premature is often unknown, since for most problems the optimal solution
is unknown.

4.6. CANDIDATE SETS
A large part of the run times of MMAS is due to the complexity of the iterations. Therefore it pays off to reduce
the running times of these iterations. One possibility is the usage of candidate sets. Candidate sets can be
seen as a refinement of the selection of a node. Stützle and Hoos [1997] states that this reduces the computa-
tion times by far. Above that, it also has an positive influence on the performance of MMAS. Especially when
the number of iterations or time is limited.

The number of edges that needs to be considered every constructive step contributes to the complexity
of these constructive steps. Standard implementation of an algorithm considers all the edges. However,
with the naked eye one could see that most of the edges are not worth considering. Because they are too
long to occur in short tours. Candidate sets basically reduce the number of edges that are considered to the
promising ones. This reduced graph is called a sub graph. Before the algorithm starts, two sets are created
for each node: a candidate set (often referred to as nearest neighbours) and a remainder set. The candidate
set contains the promising nodes and the remainder set the remaining nodes. When constructing a tour, an
ant chooses probabilistically the next node among the nodes in the candidate set according to Equation 4.1.
If all the candidate nodes are already visited, the ant chooses among the nodes in the remainder set. In this
latter case, the ant deterministically chooses the node for which the following equation is maximum [Stützle
and Hoos, 2000]:

ταi jη
β

i j (4.10)

Figure 4.1: The 10 nearest neighbour sub graph for u159 [Reinelt, 1994] (page 64)

To speed up pheromone update (see section 4.3), Stützle and Hoos [2000] proposes to only apply pheromone
evaporation to the arcs which are incorporated in the candidate sets. If this is implemented, it is important
to notice that pheromone can still be deposited on all edges, and thus τ is correctly present in Equation 4.10.
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However, it is not denoted that this also influences the identification of stagnation. The PTI on the arcs that
are not incorporated in candidate sets can only increase due to pheromone deposition and thus not reach
a value below the bound of Equation 4.7. So a mean 0.05-branching factor that is very close to 1 to identify
stagnation is not applicable and an other value must be set.

There are different algorithms to determine the candidate sets, like exact methods (e.g. Delaunay trian-
gulation) and heuristic methods. It might be interesting to notice that an optimal tour can be found within a
low number of nearest neighbours. For example, an optimal solution for the problem pr2392 (see Appendix
A and section 5.8) can be found within the 8 nearest neighbours and an optimal for the problem pcb442 (see
Appendix A and section 5.8) can be found even within the 6 nearest neighbours [Reinelt, 1994] (page 64). An
example of a sub graph with the 10 nearest neighbours is shown in Figure 4.1. This sub graph does contain
an optimal route.

4.7. LOCAL SEARCH
Stützle and Hoos [1996] states that it is possible to find near optimal solutions for TSPs using only tour con-
structions with MMAS, however it cannot compete with more specialized algorithms for the TSP. To improve
the tours constructed by ants, the MMAS algorithm is extended with local search. The goal of local search is
faster convergence and an earlier detection of high quality solutions. Examples of local search heuristics are
2-opt exchange, 3-opt exchange and variable depth search ([Lin and Kernighan, 1973]).

Figure 4.2: Example of a 2-opt exchange [Reinelt, 1994] (page 106)

After a solution route is constructed for a TSP instance, local search may be applied. So local search may
be applied after every iteration. By altering the solution, the heuristic looks for an improvement. A closer look
will be taken at 2-opt exchange, since this form of local search is the easiest to explain. In short, a 2-opt move
consists of eliminating two edges and reconnecting the two resulting paths in a different way to obtain a new
route (see Figure 4.2). The two edges that are eliminated may not have a node in common. It is important to
notice that there is only one way possible to create a new route. Above that, a part of the new route will be
passed in opposite direction in comparison with the old route. If the sum of the length of the new two edges
is smaller than the length of the old two edges, this may be an improvement.

The number of possible 2-opt moves is given in Equation 4.11. For every node i , all the 2-opt exchanges
with the edge between node i and its successor node in the route must be considered. If one or multiple
improvement(s) are found, the best 2-opt exchange must be applied. So searching for 2-opt moves takes time
O (n2): all pairs of edges in route must be considered. As stated earlier, local search may be applied after every
iteration. Similar to pheromone trail update (see section 4.3) one could think of different strategies for which
ants are allowed to apply local search. For example, all the ants, only the iteration best ant or a mixed strategy.
Above that, one could think of to limit the search for beneficial 2-opt moves, since some pairs of edges have
more potential than others. For every node i , only the 2-opt exchanges for the edges connecting to nearest
neighbours of node i are considered.

n(n −3)

2
(4.11)
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4.8. INITIALIZATION

4.8.1. PHEROMONE TRAIL

The pheromone trail intensities are initialized by setting τi j to some arbitrarily high value. After the first
iteration, the pheromone trail intensities will be set to τmax by the imposed upper bound. A reasoning for
this initialization is proposed by Stützle and Hoos [2000].

Taking the ratio of pheromone trail intensities from the zeroth and first iteration, it can be seen that this
ratio is a factor ρ for very large initial value of τi j . For the second iteration it is a factor ρ2 etc. For a smaller ini-
tial value of τi j , the ratio increases. Thus, for a smaller initial value of τi j , the relative difference between trail
intensities increases more strongly. However, it is desired that the selection probabilities from Equation 4.1
evolve more slowly to support exploration during the first iterations. Hence, τi j is initialized by setting it to
some arbitrarily high value.

One might have noticed that the candidate sets from section 4.6 can be seen as a form of initial solution.
One could also think of creating an initial solution by depositing pheromone on certain edges. However the
pheromone trail intensities on all the edges are initialized by setting τi j to some arbitrarily high value. This
can be explained by the exploitation-exploration trade-off and the principle of premature stagnation. Stützle
and Hoos [2000] states that the key to achieve best performance of ACO algorithms is to combine improved
exploitation of the best solutions found during search with an effective mechanism for avoiding premature
stagnation. One of the key aspects of MMAS is to initialized pheromone trails deliberately to achieve a higher
exploration of solutions at the start of the algorithm. An initial solution in the form of depositing pheromone
would undermine this aspect.

4.8.2. PARAMETERS

Various parameters are required at the beginning of the MMAS algorithm. Stützle and Hoos [1996] and Stützle
and Hoos [2000] performed experiments with several parameter values. Stützle and Hoos [1996] states that ρ
and m are the two largest instances.

Concerning ρ, this variable was varied between 0.7 and 0.99. It is observed that for a low number of
iterations better (in terms of derivation of optimal solution) tours are found by using lower values of ρ. Stützle
and Hoos [2000] states that this is due to the fact that for lower values of ρ the pheromone trails which are
not reinforced decrease faster and therefore the search concentrates earlier on the best tours found so far. If
ρ is high, too few iterations are performed to reach significant differences between the pheromone trails on
arcs in high quality tours and those which are not. On the other hand, for a larger number of iterations better
tours are found by using higher values of ρ.

Concerning α and β, these variables were varied between 1.0 and 5.0. These variables have considerable
influence on the results. Stützle and Hoos [1996] states that high values forα have a negative influence on the
performance of MMAS. On the other hand, higher values for β do not have much impact, and values around
1.0 to 5.0 seem appropriate. It is observed that optimal values for β are problem specific, while α= 1.0 always
seems best.

Concerning pbest , as stated earlier: this is a user-specified parameter which needs to be optimized for
each new application. During experiments by Stützle and Hoos [1996] and Stützle and Hoos [2000] used a
value of pbest = 0.05 or 0.005. Stützle and Hoos [2000] performed an experiment by systematically varying
pbest (and thus the lower pheromone trail intensity) from 0.0005 to 0.5 and one series with τmi n = 0. The
results of this experiments are shown in Figure 4.3. The average tour length is given over 25 runs, the best
results per instance are denoted in italic. Note that smaller values of pbest result in tighter trail limits.

Figure 4.3: Computational results for different lower pheromone trail limits [Stützle and Hoos, 2000]
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Concerning the number of ants m, this is an important parameter since the more ants are used, the more
paths have to be constructed, the more pheromone deposits have to be calculated etc. But, ants communi-
cate their experience about the search space with other ants. So the fewer ants are used, the less possibilities
for the algorithm for exploration. This may cause bad solution quality. Dorigo et al. [1991] found with exper-
iments for developing AS that that the optimal number of ants is equal to the number of nodes n. This is also
used in the experiments by Stützle. Other applications in literature also tend to use this number of ants.

Concerning the candidate sets, Stützle and Hoos [1996] states that the size of a candidate set usually
comprises between 10 to 30 nodes. During his experiments, a candidate list size of 20 nodes is used. Also
in the experiments by Stützle and Hoos [2000] a candidate set of 20 nodes is used.





5
MODEL SETUP

In chapter 4 several variants of MMAS are presented. Several elements of this algorithm can be implemented
in multiple ways. This chapter will give insight in how these elements are implemented and why these are
selected. The corresponding sections are given the same name. In section 4.1 an overview of the MMAS
algorithm was given. In addition to this, an overview of the implemented algorithm will be given. This should
give a clear overview of the computer program. For completeness, a short introduction will be given on the
input and output facilities of the computer program.

5.1. LOOPS
This section does not directly relate to a section of previous chapter. Since in a Hamiltonian cycle every node
must be visited exactly once, it is necessary that no loops are included. In the implementation of MMAS the
route of an ant is forced to a Hamiltonian cycle. So during selection of a node (see Equation 4.1), already vis-
ited nodes are excluded by means of a blacklist. Therefore, if the ant returns to the home node, no loops are
included in the route. The implementation with a blacklist is prescribed by the literature concerning MMAS.
However, one could also think of not forcing the route to a Hamiltonian cycle. The loops then have to be elim-
inated after the ant returned to the home node. Both approaches have their advantages and disadvantages.
In literature no decisive answer is found which approach is best.

5.2. PHEROMONE TRAIL UPDATE
For depositing pheromone, a ‘best’ ant must be selected. It was chosen to use a mixed strategy of iteration-
best and global-best ants. Experiments on larger instances have shown that using mixed strategies may yield
a faster convergence of the algorithm and produce improved results [Stützle and Hoos, 2000]. It is stated that
the best performance was obtained by using a mixed strategy with increasing usage of global-best ant over
time. The following schedule is applied as proposed by Stützle and Hoos [2000], where f g b is the frequency
of usage of the global best ant to update the pheromone trail. So in the first 25 iterations only the iteration
best ant is used. By gradually shifting the emphasis from the iteration-best ant to the global-best ant in up-
dating the pheromone, a transition from a stronger exploration to a stronger exploitation is established. To
be complete, the iteration-best only and global-best only strategies are also implemented.

Table 5.1: Schedule mixed strategy pheromone trail update

Iteration range f g b

0 - 25 0

26 - 75 5

76 - 125 3

126 - 250 2

251- ∞ 1

5.3. PHEROMONE TRAIL SMOOTHING
In section 4.5 it is stated that for a value of λ = 0.05 and a mean 0.05-branching factor very close to 1, only
very few (often only one) arc exit from a node have a very high selection probability and practically no new
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solutions are explored [Stützle and Hoos, 1997]. This is assumed as stagnation. If the development of lambda
mean is considered (see Figure 5.1), it can be seen that firstly lambda mean is stable on n −1. Subsequently,
it decreases and could decrease from n − 1 to 2 (two edges with PTI higher than Equation 4.7). Lambda
mean first is stable on n −1 because none of the exiting edges from a node has a PTI lower than the bound
mentioned in Equation 4.7. After a certain number of iterations, the PTI on all the edges that are not used up
and to that moment has decreased below the bound. Consequently, lambda mean decreases significantly at
that instance. How fast lambda mean decreases, depends on the selection the value of ρ. The higher the value
of ρ, the faster lambda mean decreases. Often, lambda mean does not reach a value of 2 but fluctuates around
a certain low value. Since a mean 0.05-branching factor very close to 1 to identify stagnation is not completely
clear, a closer look is taken at this aspect. Several runs of TSP instances indicated that a mean 0.05-branching
factor smaller than 2.5 is appropriate to identify stagnation. This value is implemented. From Figure 5.1 it
can clearly be seen that stagnation is identified in iteration 30 and that PTS is applied.

Figure 5.1: Example of development of lambda mean for TSP instance eil51

5.4. CANDIDATE SETS
Prior to the start of the algorithm, for a candidate set is determined for each node. A relative simple (with
respect to e.g. Delaunay triangulation) heuristic as proposed by Reinelt [1994] (page 70) is implemented to
determine the candidate sets. The basic idea is obtain the nearest neighbours based on their coordinates. The
heuristic will be introduced only for the horizontal x-coordinates. First all the nodes are sorted in a list, based
on their x-coordinate. For every node i , the nodes just above and just below are selected. This is realized by
introducing search width w . Only the w nodes above and below node i are selected. Among these selected
nodes, the k nearest neighbours are computed. The corresponding edges are marked as candidate edges. In
the complete heuristic, vertical coordinates are also taken into account. The complete heuristic is described
below. It might be helpful to notice that the algorithm works with overlap of quadrants in the x-y plane.
Please note that if k is specified, that number of nearest neighbours is not necessarily found for every node.
Referring back to Figure 4.1, the candidate sets obtained with k = 10 and w = 20 for this instance contained
94% of the 10 nearest neighbours shown [Reinelt, 1994] (page 70).

1. Two lists are created. One list contains the nodes sorted with respect to their x-coordinate. The other
list contains the nodes sorted with respect to their x-coordinate. Let ix and i y denote the positions of
node i these lists respectively.

2. For every node i = 1,2, . . . ,n do:

(a) Create four sets: Q1,Q2,Q3,Q4

(b) Q1 =
{

j | jx ∈ {ix +1, ..., ix +w} and jy ∈ {i y +1, ..., i y +w}
}
,

Q2 =
{

j | jx ∈ {ix +1, ..., ix +w} and jy ∈ {i y −1, ..., i y −w}
}
,

Q3 =
{

j | jx ∈ {ix −1, ..., ix −w} and jy ∈ {i y −1, ..., i y −w}
}

and
Q4 =

{
j | jx ∈ {ix −1, ..., ix −w} and jy ∈ {i y +1, ..., i y +w}

}
.

(c) Create nearest neighbour set for node i . Add at maximum two nearest neighbours from every set
Qi for i = 1,2,3,4 to the nearest neighbour set. Remove those nodes from their corresponding sets
Qi . The number of nodes added/removed in this step is denoted with l .
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(d) Compute the k − l nearest neighbours in the reduced set Q1 ∪Q2 ∪Q3 ∪Q4, and add those nodes
to the nearest neighbour set of node i .

To guarantee stable behaviour of the nearest neighbour component, obey the following restrictions:

• Number of nearest neighbours k ≥ 8
• Search width w ≥ k/2

As stated at the end of section 4.6, to speed up pheromone update Stützle and Hoos [2000] proposes
to only apply pheromone evaporation to the arcs which are incorporated in the candidate sets. Since this
disables the possibility to use a mean 0.05-branching factor that is very close to 1 to identify stagnation and
the pheromone evaporation is a relative simple operation, it is chosen to apply evaporation on all the edges.

5.5. LOCAL SEARCH
To extend the MMAS algorithm, 2-opt exchange is implemented as a local search algorithm. 2-opt exchange is
a rather simple heuristic. Stützle and Hoos [1996] states that it is well known that other local search heuristics
(like 3-opt exchange or variable depth search) give higher quality routes. 2-opt exchange, 3-opt exchange and
variable depth search usually result in an average route length within 8-10%, 5% and 2% respectively from
the optimal route length [Stützle and Hoos, 1996]. Since one of the purposes of this research is to explore the
potential of ACO, 2-opt exchange is considered sufficient. Above that, 2-opt exchange is easier to implement.
A procedure to perform 2-opt exchange is described below [Reinelt, 1994] (page 106).

1. Let T be a route constructed by an ant.
2. Perform the following until failure:

(a) For every node i = 1,2, ...,n:
Examine all 2-opt exchanges involving the edge between node i and its successor node in the
route. If possible: choose the best 2-opt exchange and update T .

(b) If no improvements can be found, then declare failure.

A straightforward implementation of a local search procedure is computationally too expensive for larger
TSP instances [Stützle and Hoos, 1996]. Therefore, the number of 2-opt exchanges checked for node i is
limited to the edges connecting to nodes from the candidate set of node i (as described in section 5.4).

Similar to the pheromone trail update, the trade-off which ants are allowed to apply local search exists.
Basically two options can be considered. One option allows all the ants to perform local search after every
iteration. The other option allows only the iteration-best ant to improve its route by local search. Stützle and
Hoos [1996] performed experiments to compare differences in performance between these two. It is stated
that the first mentioned option is preferable for TSPs. During implementation it appeared that allowing all
the ants performing local search as described above is computationally expensive. It does not outweigh the
gain in improvement of solution quality (for more details on the performance, see tables presented in Stützle
and Hoos [1996]). Therefore, the local search heuristic is only implemented for the iteration-best ant.

5.6. TERMINATION CONDITIONS
As stated in section 4.1, the main loop of the MMAS algorithm is repeated until a termination condition is
met. The following termination conditions are implemented:

• Number of iterations = specified maximum number of iterations
• Run time = specified maximum duration
• Cost ≤ specified threshold value

The first one is used very often in literature concerning MMAS and other ACO algorithms. Since this
research focuses on a comparison of two algorithms, our implementation of MMAS should also have this
possibility. The run time is not used often in literature. However, as will be explained in the introduction
of chapter 6, during our experiments more emphasis will be on performance with respect to time. The last
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termination condition enables to set a threshold value. If the found cost is smaller or equal to this threshold
value, the run is terminated. With this option, the run time is unknown a priori. This termination condition
is useful when the optimal solution of a TSP instance is known.

5.7. CONCEPTUAL MODEL
In section 4.1 a generic overview of the MMAS algorithm is given. In this section, that algorithm will be
translated to a conceptual model. For this conceptual model a few assumptions hold:

• Symmetric (so di j = d j i ) TSP instances
• Data part in 2D coordinates
• Euclidean edge weight type (denoted as EUC−2D)

In the conceptual model all classes and associated processes from the implemented MMAS algorithm will
be described. Firstly all classes and their attributes are denoted. Secondly, all the processes are described. In
order to create a clear overview of the algorithm, the processes are reduced to the highest level of simplicity.
Finally, the procedure of loading a TSP map is described to support the comprehension of the algorithm. If
possible, references are made to the equations introduced in chapter 4. Please note that the ant class does
not have a process and the node and edge class do have a process. This is a design choice.

• Node Class

– ID
– x
– y
– Occupance queue
– Candidate nodes list
– Candidate edges list
– Remaining (= connected − candidate) edges list
– Connected may be visited edges list
– Process

• AllNodes Class

– Node queue

• Edge Class

– ID
– Length
– Tau
– Connected nodes list
– Occupance queue
– Position in "visited edges list"
– Process

• AllEdges Class

– Edge queue

• Ant Class

– Home node
– Last visited node
– Cost
– Visited edges list
– May not be visit edges list
– Number of constructive steps

• UpdateManager Class

– Process
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• Node class process
repeat
begin

for all ants on node determine next edge

if not last edge

if not all nearest neighbours visited, choose among nearest neighbours:
1. determine stochastically which edges of connected edges may be visited and the de-
nominator of Equation 4.1
2. determine which edge to be selected (Equation 4.1)
else choose among remaining edges:
1. determine deterministically which edge to be selected (Equation 4.10)

if last edge, find edge to home node

if not all nearest neighbours visited, search among nearest neighbours
else search among remaining edges
NewIteration = true

move ant to selected edge
proceed 1 time unit

end

• Edge class process
repeat
begin

for all ants on edge

update data of ant: cost and visited edges
move ant to next node

proceed 1 time unit

end

• Update manager class process
repeat
begin

if NewIteration = true then
begin

find iteration best path among ants
apply 2-opt local search to iteration best ant
check for new global best
update pheromone limits (Equation 4.4 and Equation 4.5)
destroy ant
evaporate pheromone (Equation 4.2)
deposit pheromone on path: 3 possible strategies (Equation 4.2)
constrict pheromone (Equation 4.4 and Equation 4.5)
identify stagnation (Equation 4.9)
if stagnation is identified then apply pheromone trail smoothing (Equation 4.6)
create new ants
NewIteration = false

end
proceed 1 time unit

end
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• Load TSP map procedure
begin

create nodes
determine k nearest neighbours for search width w for every node
determine k − l nearest neighbours
create edges

attach candidate edges to node based on candidate nodes
attach remaining (=connected − candidate) edges to nodes

end

5.8. TSP LIBRARY
The TSP library was introduced in section 2.2. As indicated, in this research the TSP LIB will be used. The TSP
LIB rounds the calculated distances to the nearest integer, since most of the written applications require this.
For further and detailed information on the TSP LIB, one could read the complete description of the library
(named DOC.PS).

All the TSP instances are provided in a file with extension .tsp. Delphi 2010 is not directly able reading files
with this extension. Therefore, in this case the file must be converted. One way of doing this is as follows. The
file can be opened with Wordpad (text editor for Microsoft Windows). Notepad could also be used, but does
not show the incorporated layout of the file. Then the file must be saved as a text file (.txt). The application is
able to read coordinates in scientific notation. All the other information must be deleted. Above that, negative
coordinates are not allowed. Also take care that no white lines are inserted, especially at the end of the file.
A folder with all adjusted and suitable TSP instances is incorporated with the program. Own TSP instances
can be used, as long as they have the same format as the incorporated TSP instances. This means obeying the
rules prescribed in this section and for every node a node ID, x-coordinate and y-coordinate on one line.The
Euclidean distance between a pair of nodes is calculated as follows:

di j = round
{√

(xi −x j )2 + (yi − y j )2
}

(5.1)

An overview of the symmetric travelling salesman problems with their solution bounds (a single number
indicates that the optimal solution is known) is given in Appendix A. All the smaller TSP instances (n < 50) are
given in an other format than EUC−2D. For research purposes it is also desired to investigate these smaller
instances. To make these instances readable for the written application, it is chosen to convert the instances
with explicit edge weight matrices (denoted as MATRIX) to 2D coordinates. This conversion is done by means
of an approximation algorithm called multidimensional scaling (MDS, also known as principal coordinates
analysis). An introduction to this technique is given in Appendix C.

5.9. INTERFACE
In this section a short introduction will be given on the interface of the computer program. In Figure 5.2 the
control panel is shown. A description of the controls is given below the figure. The computer program gener-
ates three output files: a text file and two figures. The text file contains all the information of the performed
run, the format of this text file is shown in Figure 5.3. One figure captures the graph indicating history of
minimal found cost (as it is part of Figure 5.2). The other figure captures the route of the best route found and
is shown in Figure 5.4.

A few additional remarks:

• Concerning radio buttons number 4 (see Figure 5.2), this functionality is implemented because it is
useful during model development. With this radio button turned on, the random number generators
are pseudo random. Every time the same sequence of random numbers is generated and thus is pre-
dictable. During normal usage of the algorithm, it should be turned off.

• It is not possible to turn off the nearest neighbours functionality. This is because it was too entwined
with the rest of the code.



5.9. INTERFACE 27

• The number of nearest neighbours also influences the local search procedure. The more nearest neigh-
bours are set, the local search procedure becomes computationally more expensive.

• There is no possibility for animating the movement of the ants. As described in the introduction of
section 5.7, the ant class does not have a process. A disadvantage of this choice is that animation of the
movement of the ants is more complicated.

Figure 5.2: Control panel

1. Button for loading TSP map.
2. Two edit boxes for nearest neighbour settings (see section 4.7 and section 5.5).
3. Radio buttons and edit box for setting termination condition.
4. Radio buttons for enabling/disabling predictability of the random number generators.
5. Radio buttons for selecting pheromone trail update strategy (see section 4.3 and section 5.2).
6. Radio buttons for enabling/disabling local search (see section 4.7 and section 5.5).
7. Five edit boxes for setting parameters (see subsection 4.8.2).
8. Button to start run.
9. Check box for enabling/disabling trace function of TOMAS.

10. Check box for enabling/disabling step mode of TOMAS.
11. Button to interrupt run.
12. Button to resume run.
13. Button to close/open TOMAS form.
14. Button to stop run and generate output files (see Figure 5.3 and Figure 5.4).
15. Graph indicating history of minimal found cost.
16. Timer indicating elapsed time.
17. Progress bar indicating progress with respect to set termination condition.
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Figure 5.3: Format text file

Figure 5.4: Best found route

5.10. TOMAS
As indicated in section 1.3 discrete simulation package TOMAS [Veeke and Ottjes, 2010] will be used in com-
bination with Delphi 2010. However, the runs performed with the implemented MMAS algorithm are not
discrete event simulations. It does not matter if all the ants that belong to one iteration move around simul-
taneously or one after one. Also, there is no time interaction. An ant does not have to wait because of the ant
in front of him. In other words, there is no process interaction. In essence is a run of an ACO algorithm (as
presented in chapter 4) a (static) Monte Carlo experiment. It relies on random sampling and runs are repeated
many times in order to obtain numerical results. The reason why TOMAS still is used is that it provides many
useful tools to process elements like queues. Further clarification may be found in the conceptual model of
section 5.7.



6
EXPERIMENTS WITH MMAS

In this section various experiments will be performed with the implemented MMAS algorithm. The main
purpose of these experiments is to evaluate its performance and compare it with B&B. For verification of
the implemented MMAS algorithm, some experiments performed in literature with MMAS are repeated. In
this research verification and validation are intermingled, because for most instances of the TSP library the
optimal solution is known. This optimal solution should correspond to a virtual reality and thus also enables
validation. The optimal solution corresponds to a virtual reality because the formulation of a TSP instance is
a model of reality and a model will never exactly correspond to reality. In the available literature concerning
MMAS, extensive experiments are performed on parameter settings, model setups and settings. However,
the objective of this research is not to repeat these experiments. Certain settings and setups emerged to let
MMAS perform better than others, as indicated throughout chapter 4 and chapter 5. This information is used
for the experiments in this chapter. It was also noted that there was not much emphasis on performance
with respect to time. In the view of the objectives of this research introduced in section 1.2, it was chosen to
complement research on MMAS with respect to the aspect time performance and make use of the findings of
previous research.

6.1. EXPERIMENTAL PLAN
Various experiments are performed in this chapter. Globally they can be divided in three categories:

• Verification
• Parameter setting
• Performance

The first experiment (section 6.2) focuses on verification of the implemented MMAS algorithm. In other
words, is the algorithm implemented correctly? Experiments for two TSP instances performed in literature
are repeated and compared. As indicated in subsection 4.8.2, the number of ants m is one of the most im-
portant parameter settings. In the second experiment (section 6.3), the influence of the number of ants on
solution quality and speed is investigated. The remaining experiments focus on performance. On one hand
the performance of MMAS is compared with B&B. On the other hand, insight in the performance of MMAS
with respect to time is deepened by limiting the number of iterations.

As MMAS is a heuristic algorithm, the solution quality is not constant. Therefore, for each experiment
several runs are performed. Resulting in a best solution and an average solution with standard deviation (σ).
For most of the experiments an average is taken over 10 runs. For the sake of clarity, an experiment consists of
one or multiple series of a number of runs. Each run consists of a number of iterations. During experiments a
moderate computer with a Intel Core 2 DUO 2.66GHz processor, a Crucial MX100 256GB SSD and 4GB DDR3
memory is used.

For each experiment, various parameters need to be set. As indicated in the introduction of this chapter,
in literature extensive experiments are performed on parameter settings. Some of these parameters let MMAS
perform better than others. In fact, the parameters need to be optimized for every new TSP instance. How-
ever, the purpose of this research is not to repeat extensive experiments with parameter settings. Therefore,
the guidelines provided by literature will be used. A brief summary of the recommendations concerning pa-
rameter settings is given in subsection 4.8.2. This forms the basis of the parameters used in the experiments.
For every experiment, a list with the parameter settings used is provided.
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6.2. VERIFICATION
Verification of the implemented MMAS algorithm consists of two parts. The first part was performed during
implementation of the algorithm. As described trough chapter 4 and chapter 5, MMAS consists of various
components with their own mathematical relations and principles. The MMAS algorithm was built step by
step. The function of every added component is checked for correct (corresponds to function as intended
in literature) implementation by comparing results of the algorithm with hand calculations. As the optimal
solutions are known for the TSP instances from TSB LIB, it provides another form of verification. Above that, a
second part of verification is performed by means of a comparative experiment with the complete algorithm.

For further verification an experiment performed in literature (see Stützle and Hoos [1997]) is repeated.
The same settings are used and are listed in Table 6.1. Only the number of iterations and the number of runs
performed is reduced. For eil51 the number of iterations is reduced from 10 000 to 51 and the number of runs
is reduced from 25 to 10. For kroA100 the number of iterations is reduced from 10 000 to 10 and the number
of runs is reduced from 25 to 10. The reason why the number of iterations and runs is reduced, is because of
the run time. If 10 000 iterations would be performed with our implementation, it would result in extreme
long run times. The same reasoning holds for the size of the TSP instance, since comparison could be made
for larger TSP instances (over 1 000 nodes). For every run an other random seed is chosen by turning off the
predictability of the random generators. Above that, pheromone trail update is set to dynamical and local
search is turned on.

The results of the experiment are shown in Table 6.2. The percentage between the parenthesis indicates
the deviation from optimal tour length given by TSP LIB. If the results from our implementation are compared
with the results from literature, one can see that the results from literature are better in terms of solution
quality. Which is not surprising, since our implementation performed a fraction of the number of iterations.
However, our implementation approaches the solution quality from literature quite well. The necessity to
decrease the number of iterations and runs indicates that the code is better optimized in literature than for
our implementation.

Table 6.1: Settings experiment

Number of ants n/2

α 1

β 2

ρ 0.96

pbest 0.05

Nearest neighbours 20

Search width 20

Table 6.2: Results from literature (left) and implemented MMAS algorithm (right), average over 5 runs

Instance Best solution Avg. solution σ Best solution Avg. solution σ Avg. run time
literature literature lit. MMAS MMAS MMAS [hh:mm:ss]

eil51 426 (0.00%) 427 (0.16%) 0.70 430 (0.94%) 434 (1.81%) 2.10 0:02:16

kroA100 212×102 (0.00%) 213×102 (0.01%) 16.4 216×102 (1.29%) 221×102 (3.93%) 260 0:07:53

6.3. TOUR CONSTRUCTIONS
One tour construction equals one ant that has completed a route. So the number of tour constructions per-
formed during a run is the product of the number of ants and the number of iterations. Given a certain
number of tour constructions, how should these tour constructions be distributed over the number of ants
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and the number of iterations? The objective of this experiment is to investigate the influence of this distri-
bution. If more information is known about the influence of this distribution, this can be kept in mind while
parameters for a run of the algorithm are set in general. During experiments the solution quality and speed is
monitored. A fixed number of 750 tour constructions is used for two TSP instances: eil51 and pr76. For every
run an other random seed is chosen by turning off the predictability of the random generators. Above that,
pheromone trail update is set to dynamical and local search is turned on. All the other settings are listed in
Table 6.3.

Table 6.3: Settings experiment

α 1

β 3

ρ 0.85

pbest 0.05

Nearest neighbours 20

Search width 20

The results of the experiment are shown in Table 6.4 and Table 6.5. The percentage between the parenthe-
sis indicates the deviation from optimal tour length given by TSP LIB. The results indicate that the influence
of the distribution of the number of tour constructions on the run time to complete 750 tours constructions
is significant (reduces with 77% and 82% for eil51 and pr76 respectively), while influence on the solution
quality is relative limited. Therefore, the choice for the combination of number of ants and the number of
iterations should be made with care. This makes the number of ants a relative important setting. As stated
in subsection 4.8.2 it is recommended to use a number of ants m equal to the number of nodes n. This rec-
ommendation is supported by these measurements. The results from Table 6.4 and Table 6.5 are graphically
represented in Figure 6.1 and Figure 6.2 respectively.

Table 6.4: Results for TSP instance eil51, average over 5 runs

Ants Iterations Best sol. Avg. solution σ Avg. run time [hh:mm:ss]

10 75 427 (0.23%) 429 (0.70%) 1.20 0:02:36

15 50 428 (0.47%) 430 (0.85%) 1.50 0:01:51

25 30 428 (0.47%) 431 (1.22%) 2.60 0:01:14

30 25 428 (0.47%) 430 (0.99%) 1.50 0:01:04

50 15 433 (1.64%) 435 (2.21%) 1.70 0:00:46

75 10 429 (0.70%) 436 (2.35%) 5.40 0:00:36

Table 6.5: Results for TSP instance pr76, average over 5 runs

Ants Iterations Best sol. Avg. solution σ Avg. run time [hh:mm:ss]

10 75 109×103 (0.59%) 110×103 (1.34%) 730 0:18:51

15 50 109×103 (1.06%) 110×103 (1.36%) 310 0:12:09

25 30 109×103 (0.88%) 110×103 (1.58%) 905 0:08:06

30 25 109×103 (0.86%) 110×103 (1.49%) 682 0:06:23

50 15 109×103 (1.24%) 111×103 (2.20%) 631 0:04:31

75 10 109×103 (0.95%) 110×103 (1.92%) 809 0:03:24
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Figure 6.1: Graph presenting average run time for TSP instance eil51 for different distributions of 750 tour constructions

Figure 6.2: Graph presenting average run time for TSP instance pr76 for different distributions of 750 tour constructions

6.4. MMAS VERSUS B&B
In this section various TSP instances will be solved by both the MMAS as the B&B algorithm. The B&B algo-
rithm was not able to solve TSP instances with sizes of n > 50 within reasonable time limits (hours). Therefore,
the comparison is limited to instances with sizes n < 50. The MMAS algorithm is terminated when a solution
quality within 1% of the optimal solution provided by TSP LIB is found. The objective of this experiment is
to give an indication of the performance of the implemented MMAS algorithm with respect to B&B in gen-
eral, so for the TSP instances which are not included in TSP LIB and for which the optimal solution is often
unknown. For every run an other random seed is chosen by turning off the predictability of the random gen-
erators. Above that, pheromone trail update is set to dynamical and local search is turned on. All the other
settings are listed in Table 6.6. Please note that only 5 nearest neighbours are used, since relative small TSP
instances are considered.

During experiments it appeared that the exact B&B algorithm and the MMAS algorithm end up with the
same optimal solution as provided by TSP LIB. This provides another form of verification. The results of the
experiment are shown in Table 6.7. One could see that for the smaller instances, both algorithms are com-
petitive regarding solving speed. However, as problem size increases, the strength of the heuristic algorithm
becomes visible. In relative small amount of time a near optimal solution is found. The advantage for even
larger TSP instances will become clear in section 6.5.
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Table 6.6: Settings experiment

Number of ants n (17 to 48)

α 1

β 3

ρ 0.8

pbest 0.05

Nearest neighbours 5

Search width 10

Table 6.7: Performance B&B algorithm (left) compared with MMAS algorithm (right), average over 10 runs

TSP instance Solution B&B Run time B&B [hh:mm:ss] Solution threshold MMAS Avg. run time MMAS [hh:mm:ss]

gr17 190×101 < 00:00:01 ≤ 190×101 +1% < 00:00:02

gr24 140×101 < 00:00:02 ≤ 140×101 +1% < 00:00:02

fri26 936 < 00:00:01 ≤ 936+1% < 00:00:02

swiss42 130×101 0:02:14 ≤ 130×101 +1% 00:00:08

gr48 458×101 0:10:42 ≤ 458×101 +1% 00:00:31

6.5. ITERATION CONSTRAINTS

6.5.1. VARIABLE CONSTRAINT

In this subsection one TSP instance (berlin52) will be solved with various restrictions on the number of iter-
ations. The objective of this experiment is to give an indication of the development in accuracy (in terms of
solution quality) for the implemented MMAS algorithm for different limitations on the number of iterations.
It is assumed that TSP instance berlin52 is representative for a general conclusion in view of the objective of
this experiment. For every run an other random seed is chosen by turning off the predictability of the random
generators. Above that, pheromone trail update is set to dynamical and local search is turned on. All the other
settings are listed in Table 6.8.

The results of the experiment are shown in Table 6.9. The percentage between the parenthesis indicates
the deviation from optimal tour length given by TSP LIB. One could see that for an increasing number of it-
erations, the accuracy increases. Above that, within five iterations or less, the implemented MMAS algorithm
was not able to find the optimal solution within 10 runs. In addition to Table 6.9, the accuracy for increasing
number of iterations is shown in Figure 6.3. The figure shows that the improvement in accuracy decreases for
an increasing number of iterations. The red line indicates the optimal solution.

Table 6.8: Settings experiment

Number of ants 52

α 1

β 3

ρ 0.8

pbest 0.05

Nearest neighbours 20

Search width 20
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Table 6.9: Results TSP instnace berlin52, average over 10 runs

Iterations Best sol. Avg. solution σ Avg. run time [hh:mm:ss]

1 782×101 (3.65%) 797×101 (5.65%) 128 00:00:06

5 767×101 (1.70%) 788×101 (4.55%) 107 00:00:29

10 754×101 (0.00%) 775×101 (2.71%) 109 00:00:58

15 754×101 (0.00%) 767×101 (1.69%) 73.7 00:01:26

20 754×101 (0.00%) 765×101 (1.47%) 83.1 00:01:49

Figure 6.3: Graph presenting average solutions (blue) and best solutions (green) from Table 6.9 and the optimal solution (red)

6.5.2. FIXED CONSTRAINT

In this subsection various larger (n > 50) TSP instances will be solved with a restriction on the number of
iterations. The algorithm is allowed to perform only 2 iterations. The objective of this experiment is to give an
indication of the performance (both in solution quality as in required run time) of the implemented MMAS
algorithm during a limited number of iterations. It is assumed that the TSP instances used are representative
for a general conclusion in view of the objective of this experiment. For every run an other random seed is
chosen by turning off the predictability of the random generators. Above that, pheromone trail update is set
to dynamical and local search is turned on. All the other settings are listed in Table 6.10.

The results of the experiment are shown in Table 6.11. The percentage between the parenthesis indicates
the deviation from optimal tour length given by TSP LIB. One could see that within this restricted run time,
the implemented MMAS algorithm provides a reasonable (within 9% of the optimal solution) average solution
quality. An other interesting thing to notice is that the average solution quality for example the TSP instance
pr76 is better than for berlin52. Since the number of iterations performed is the same, one could think of a
difference in solution quality due to the structure of the map. In addition to Table 6.11, the average run time
for increasing TSP instance size is shown in Figure 6.4. This figure gives an indication of the development of
the run time for increasing TSP instance size of the implemented MMAS algorithm.



6.5. ITERATION CONSTRAINTS 35

Table 6.10: Settings experiment

Number of ants n (52 to 150)

α 1

β 3

ρ 0.8

pbest 0.05

Nearest neighbours 20

Search width 20

Table 6.11: Results under time constraint, average over 10 runs

Instance Iterations Best sol. Avg. solution σ Avg. run time [hh:mm:ss]

berlin52 2 780×101 (3.43%) 802×101 (6.33%) 152 00:00:10

pr76 2 110×103 (1.86%) 112×103 (3.13%) 102×101 00:00:42

kroA100 2 218×102 (2.48%) 227×102 (6.62%) 539 00:01:40

bier127 2 122×103 (3.17%) 124×103 (5.05%) 198×101 00:05:13

ch150 2 696×102 (6.56%) 706×102 (8.16%) 86.2 00:11:46

Figure 6.4: Graph presenting average run time from Table 6.11





7
CONCLUSIONS AND RECOMMENDATIONS

7.1. CONCLUSIONS
The performance of MMAS (ACO algorithm) and B&B (exact solver) is compared by implementing these al-
gorithms in Delphi 2010. Both models are verified and validated. With both models exact the same TSP
instances are solved. TSP instances are used for which the optimal solution is known. The B&B algorithm
stopped when the optimal solution was found. The MMAS algorithm stopped when a solution within 1% of
the optimal solution was found. The run time required for completing these operations is measured.

With MMAS qualitative good solutions can be obtained in solving TSP instances. The advantage of the
heuristic MMAS approach with respect to the exact solver B&B starts to pay off for TSP instances of around
40 nodes and larger. A good solution (within 1% of the optimal solution) can be found with MMAS within a
small amount of time compared to the run time required by B&B. The run time required by MMAS increases
exponentially with the number of nodes of the TSP instance (see Figure 6.4). The worst-case time complexity
of the B&B algorithm could be as bad as O (n!). It is shown that the computational time required by B&B
increases so fast with increasing TSP instance size, that for larger TSP instances this exact algorithm is not
suitable anymore. MMAS thus provides a necessary and good alternative.

The accuracy (in terms of solution quality) of the implemented MMAS algorithm increases with the num-
ber of iterations allowed. In the region of with a low number of iterations allowed, the accuracy increases fast.
The increment in accuracy decreases as the number of iterations allowed increases (see Figure 6.3). If the
MMAS algorithm is performed under an iteration constraint and is only allowed to perform two iterations, an
average solution quality of within 9% of optimality is found for TSP instances up to 150 nodes. The number
of iterations performed and TSP instances attacked in literature concerning MMAS give a strong indication
that the code is better optimized in literature than for our implementation of MMAS.

The performance of MMAS algorithm relies on conventional algorithms like nearest neighbour and local
search. The implementation of local search significantly improves the performance of MMAS. Without these
algorithms, MMAS cannot compete with other specialized algorithms for solving TSP instances. If MMAS is
compared with the most efficient heuristics to solve TPS instances, there is still a considerable gap to close
[Stützle and Hoos, 1996].

The Travelling Salesman Problem is a classical problem in combinatorial optimization problems. The
TSP has many applications within logistic systems. However, the simplicity of formulation of the problem
is deceitful. Globally, algorithms to solve the TSP can be divided in exact algorithms and approximate algo-
rithms. Little’s B&B is such an exact algorithm. The idea of this algorithm is to break up all feasible routes
into increasing smaller subsets by a procedure called branching. For each subset, a lower bound on the cost
(length) of the included routes is calculated. These bounds guide the branching of the subsets. Eventually, a
subset is found that contains a single route whose length is less than or equal to the lower bound of all other
subsets. That route is optimal.

ACO is a heuristic (approximate) algorithm. Many different ACO algorithms exist, but the underlying
thought is the foraging behaviour of ants. During foraging, the ants communicate to each other via depositing
pheromone. When an ant locates a food source, it carries the food to the nest and deposits a pheromone trail.
The path of the other foraging ants is influenced by this pheromone trail. Stronger pheromone trails attract
more ants and shorter paths accumulate faster in pheromone intensity. This positive feedback mechanism
biases the ants to shorter paths. Eventually, all the ants follow the shortest path to the food source. For ACO
features are modified or added to create artificial ants. Above that, further improvements are realized by
incorporating other heuristics, like local search and nearest neighbour procedures.
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7.2. RECOMMENDATIONS
As stated in section 1.2, the main objective of this research is obtaining knowledge and experience in the field
of Ant Colony Optimization. For further extension of this knowledge and experience recommendations are
formulated. Regarding the implemented MMAS algorithm:

• In the implemented MMAS algorithm, the parameters are set once. In literature concerning MMAS the
dynamic adjustment of the most important parameters (like ρ and m) is suggested. By adjusting these
parameters, the speed of convergence and the obtainable solution quality can be influenced [Stützle
and Hoos, 1996]. This extension provides an interesting way to continue research on MMAS.

• As stated in section 5.1, during implementation the route of an ant is forced to a Hamiltonian cycle, as
prescribed by literature concerning MMAS. Therefore, if the ant returns to the home node, no loops are
included in the route. However, one could also think of not forcing the route to a Hamiltonian cycle.
The loops then have to be eliminated after the ant returned to the home node. It is recommended to
investigate the advantages and disadvantages of both approaches.

• During literature review one TSP solver was encountered many times, called Concorde [Waterloo, 2011].
It is praised for it’s performance. The library of Concorde contains over 700 functions to solve TSP in-
stances. It may pay off to take a closer look at this computer program. For example the incorporated
Lin-Kernighan heuristic to improve the local search phase of MMAS.

• In section 3.4 a deliberately choice for MMAS algorithm is given. However, this algorithm originates
from the first developments in ACO algorithms (mid 90s). Since then a tremendous number of different
ACO algorithms are developed. To further extend the knowledge and experience in the field of ACO
algorithms, a more recent algorithm may be considered.

Regarding the implemented research model:

• At the beginning of the research, there is searched for a “graph package” to extend to possibilities of
Delphi 2010. This graph package should give additional possibilities to set up and work with a graph.
However, such a package was not found. During implementation of the model, it is encountered that
setting up a graph by using lists of node and edge IDs is sufficient for a basic setup of an ACO algo-
rithm. However, as need for increasing complex operations increases, the lack of such a graph package
becomes visible. At first sight simple operations do not only become very devious and hard to pro-
gram, they also become computationally expensive. For example, the implementation of local search
(see section 5.5). After two edges are deleted, there is only one way to create a new route. To reconnect
the two parts, the two correct pairs of nodes/edges must be identified. To do this, the orientation of an
edge in the route is required. Subsequently, if an improvement is detected, the list of visited edges must
be updated. The right edge must be replaced with the right edge and the visited edges in between these
two edges are now visited in opposite direction and thus must be mirrored. As can be seen, this forms
a cumbersome structure. Therefore it is recommended to pay extra attention to setting up a graph.

• In this research only symmetric TSP instance are considered. However, in reality this is of course not
always the case. Therefore, asymmetric TSP instances may be considered. Solving asymmetric TSP
instances entails more difficulties. For example in adding local search, a 2-opt exchange is not directly
applicable since the direction in which the nodes are visited does matter now.

• During experiments more emphasis was on performance with respect to time than the experiments
performed in literature. The presented run times are real wall-clock times. It is recommended to use
CPU time instead to benchmark an algorithm. CPU time measures only the time while the processor is
actively performing calculations for the program. Wall-clock time measures the total time to complete
the process and is for example dependent on the time for resources to become available.

• As stated in section 5.9, there is no possibility for animating the movement of the ants. For illustrative
purposes one could implement this animation. One could also think of adjusting the thickness of the
drawn edges dependent on their pheromone trail intensity.

• In section 2.4 an introduction to how OpenStreetMap could be used to represent TSP instances is given.
As many applications of the TSP are physical transport problems with cities and roads involved, it’s rec-
ommended to further investigate the possibilities to make use of this promising source of information.
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APPENDIX A

Figure 1: Symmetric travelling salesman problems (part 1) [Reinelt, 1995]
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Figure 2: Symmetric travelling salesman problems (part 2) [Reinelt, 1995]
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Figure 3: Symmetric travelling salesman problems (part 3) [Reinelt, 1995]





APPENDIX B

Figure 4: Example TSP file with explicit cost matrix
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Figure 5: Example TSP file with implicit cost matrix



APPENDIX C
As indicated in section 5.8, it is chosen to convert the smaller TSP instances with explicit edge weight matrices
to a 2D coordinates list. This conversion is done by means of an approximation algorithm called multidimen-
sional scaling (MDS). In this appendix an introduction to MDS will be given.

MDS is a collective noun for multi variable data analysis methods that are used to analyse similarities or
dissimilarities in a data set. MDS visualizes the similarities or dissimilarities in a low-dimensional space and
thus enables inspection of underlying meaningful dimensions. MDS can be divided in two main approaches:
metric and non-metric. If the analysed matrix contains metric distances, the approach is metric MDS. Oth-
erwise, the approach is non-metric MDS. In view of the usage of MDS in this research, this appendix focuses
on metric MDS. The general approach of MDS consists of two steps:

• Calculate a (dis)similarity matrix among pairs of objects (i.e. observations, samples, elements etc.)
• Apply one of the MDS models to obtain a low-dimensional representation.

Dissimilarity is defined as the distance between two elements under a certain criterion. In other words:
how different are these elements? So for example, the Euclidean distance between two nodes is a measure of
their dissimilarity. A (dis)similarity matrix is a matrix that contains the (dis)similarity between every pair of
elements. The matrix is square and symmetric. The diagonal entries are defined as zero, meaning that zero is
the measure of dissimilarity between an element and itself.

Remember that an explicit edge weight matrix is given and that a 2D coordinates list is desired. The next
step is that metric MDS (also known as principal coordinate analysis) transforms the distance matrix into a
set of coordinates such that the (Euclidean) distances derived from these coordinates approximate as well
as possible the original distances from the distance matrix [Sanchez, 2013]. This conversion makes use of
the (dis)similarity matrix. It is important to note that the orientation of the coordinates in the output file
is arbitrary. This is because the created map with nodes can be rotated, while the distances between the
nodes are maintained. Thus the orientation of the coordinates in the output file is arbitrary. Above that, it
is emphasized that MDS is an approximation technique and thus does not provide exact results. Therefore,
the optimal solutions found by the B&B and MMAS algorithm for the converted TSP instances deviate from
the optimal solutions provided by TSP LIB. However, this deviation is limited (order of a few percent for the
converted TSP instances). Since both algorithms face the same TSP instance, there is no mutual difference.

MDS is implemented as a standard function in many statistical computer programs. For this research
use is made of the computer program R and the standard function cmdscale. For further information on this
function the reader is referred to the manual of R. The result of the conversion for TSP instance swiss42 is
shown in Figure 6.

Figure 6: Result of MDS for TSP instance swiss42
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