
Flying and Ground Robot
Collaboration for
Camera-based Search and
Rescue
Bernardo Esteves Henriques

Flying and Ground Robot
Collaboration for

Camera-based Search
and Rescue

Thesis report

by

Bernardo Esteves Henriques

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on February 5, 2024 at 13:00

Thesis committee:

Dr. Ir. E. van Kampen (chair)

Dr. A. Jamshidnejad

Dr. R. van de Plas

Place: Faculty of Aerospace Engineering, Delft

Project Duration: December, 2022 - December, 2023

Student number: 5522978

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Aerospace Engineering · Delft University of Technology

http://repository.tudelft.nl/

Copyright © Bernardo Esteves Henriques, 2024

All rights reserved.

Acknowledgments

They say to leave home is to break your own heart. Looking back, I am lucky to say that, even though I left

my home country, I never left home. I want to take the chance to appreciate the people who helped me

feel at home wherever I went.

To my supervisors, Dr. Anahita Jamshidnejad and Mirko Baglioni, for their constant guidance and

support and for teaching me what it means to be a researcher. To Erik van der Horst, for the long afternoons

at the laboratory and for making me realize that experimental challenges are not so daunting.

To my parents, for always believing in me. ”Thank you” will never be enough. To Tomás, for being

much more than just a brother. I could not be more proud of you. To my cherished friends, for making the

path of life a delightful and fulfilling experience. Our treasured moments together have been the bedrock

upon which I have built this and all other achievements. To Teresa, the most supporting partner I could ask

for, your unwavering encouragement has been a guiding light throughout this journey, and your presence

has made the highs brighter and the lows easier to navigate. You know I could not have done any of this

without you.

Even though this thesis marks the end of my academic life, I leave with the certainty that, regardless of

what the future holds, I will never stop being a student.

Bernardo Esteves Henriques

Delft, November 2023

ii

Contents

Nomenclature iv

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Flying and Ground Robots Collaboration . 1

1.2 Search and Rescue . 1

1.3 Research Formulation . 2

1.4 Report Structure . 3

I Scientific Article 4

2 Flying and Ground Robot Collaboration for Camera-based Search and Rescue 5

2.1 Introduction . 5

2.2 Literature Review . 6

2.3 Main Contributions & Structure of the Paper . 7

2.4 Methodology . 8

2.5 Case Studies . 12

2.6 Results & Discussion . 16

2.7 Limitations & Topics for Future Work . 22

2.8 Conclusions. 23

II Preliminary Analysis 25

3 Literature Review 26

3.1 Introduction . 26

3.2 Image Processing . 28

3.3 Communication Protocols . 35

3.4 Control Strategies and Path Planning . 40

3.5 Conclusion . 52

III Closure 54

4 Conclusion 55

4.1 Revisiting Research Formulation . 55

4.2 Closing Remarks . 57

References 62

iii

Nomenclature

List of Abbreviations

ANN Artificial Neural Network

BFS Breadth-First Search

BoVW Bag of Visual Words

CNN Convolutional Neural Network

DFS Depth-First Search

DNN Deep Neural Network

FAST Features from Accelerated Segment Test

FLC Fuzzy Logic Control

HREC Human Research Ethics Committee

IoT Internet of Things

MPC Model Predictive Control

MQTT Message Queuing Telemetry Transport

PCI Physical Couple Interface

PID Proportional-Integral-Derivative

PRM Probabilistic Roadmap

PSNR Peak Signal-to-noise Ratio

R-CNN Region-based Convolutional Neural Net-

work

RMSE Root Mean Square Error

ROS Robotic Operating System

RRT Rapidly-exploring Random Tree

SaR Search and Rescue

SIFT Scale Invariant Feature Transformation

SPT Shortest Path Tree

SSIM Structural Similarity Index Measure

SURF Speeded Up Robust Features

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

WLAN Wireless Local Area Network

WSAN Wireless Sensor and Actuator Network

XMPP Extensible Messaging and Presence Pro-

tocol

YOLO You Only Look Once

iv

List of Figures

3.1 a) Traditional computer vision workflow, and b) Deep learning workflow. Retrieved from [18]. 28

3.2 A simple ANN architecture composed of a sigmoid hidden layer and a linear output layer.

Weights are represented as w, whereas biases are represented as v. Retrieved from [31]. . 30

3.3 A simple CNN architecture composed of five layers. Retrieved from [32]. 31

3.4 Graphical representation of a CNN. Retrieved from [31]. 31

3.5 Example of change in viewpoints for a) flying robot and b) ground robot. Retrieved from [4]. 33

3.6 Sequential UGV-UAV deployment for unknown environment exploration. Retrieved from [45]. 36

3.7 The UAV attaches a tether to a structure by flying around it. Retrieved from [47]. 37

3.8 The UGV climbs a cliff by winding the tether attached by the UAV. Retrieved from [47]. . . . 37

3.9 Architecture of an FLC-based controller. Retrieved from [31]. 40

3.10 Examples of membership function shapes. Retrieved from [31]. 41

3.11 Architecture of a PID fuzzy controller. Retrieved from [31]. 42

3.12 a) COG and b) MOM defuzzification methods. Retrieved from [31]. 42

3.13 Fundamental MPC scheme. Retrieved from [31]. 45

v

List of Tables

1.1 General considerations and qualitative cost comparison of medium-segment sensors used

in SaR. Own elaboration based on [9]–[15]. 2

3.1 Literature review structure. Own elaboration. 28

3.2 Image processing algorithms comparison. Own elaboration. 32

3.3 Overview of the advantages and disadvantages of FLC. Own elaboration. 44

3.4 Overview of the advantages and disadvantages of MPC. Own elaboration. 46

3.5 Overview of the advantages and disadvantages of search algorithms. Own elaboration. . . 50

vi

1
Introduction

In this work, two captivating and impactful domains are combined: the collaboration of heterogeneous

robot teams and the vital field of Search and Rescue (SaR). The impetus for this thesis work is rooted

in the tremendous potential of combining flying and ground robots to deliver reliable and cost-effective

SaR solutions. There is a strong motivation to bolster SaR operations, particularly in regions most

severely affected by climate change, notably the least developed countries. Section 1.1 delves into the

promising possibilities of integrating aerial and ground-based robots, showcasing real-world applications

across various industries. Section 1.2 sheds light on the demanding, yet indispensable field of SaR,

underscoring the urgent need for cost-effective solutions. Section 1.3 outlines the research objectives and

the fundamental questions addressed throughout the work. Lastly, in Section 1.4, a structured overview of

the report is presented, delineating the content of the subsequent sections.

1.1. Flying and Ground Robots Collaboration
The integration of flying and ground robots presents a promising synergy owing to their distinct yet

complementary capabilities. Unmanned Aerial Vehicles (UAVs) offer cost-effective access to aerial

perspectives and are renowned for their ability to swiftly cover expansive areas. However, their imaging

quality can be compromised due to camera tilting during flight, and they are not suited to accessing

confined spaces. On the other hand, Unmanned Ground Vehicles (UGVs) navigate rugged terrains at a

comparatively slower pace with a restricted field of view. Nonetheless, they excel in tasks requiring heavy

payload transport, access to confined spaces, and precise imaging. Some examples of such synergies in

real-life applications are the following:

Agriculture and Precision Farming: The collaboration of UAVs and UGVs is extensively employed

in precision agriculture. UAVs swiftly survey vast agricultural lands, capturing high-resolution imagery

that helps in monitoring crop health and optimizing resource allocation. Subsequently, UGVs navigate

through the terrain to perform targeted actions, such as precise application of fertilizers or pesticides,

ensuring optimal yield [1], [2].

Infrastructure Inspection and Maintenance: The collaboration of aerial and ground robots is crucial

for inspecting critical infrastructure such as bridges, power lines, and pipelines. UAVs are employed for

initial aerial inspection, identifying potential issues. Subsequently, UGVs with specialized sensors and

tools navigate to conduct close-up inspections and perform necessary maintenance tasks [3].

Disaster Response and Assessment: During natural disasters, combining UAVs and UGVs facilitates

rapid and efficient disaster assessment. UAVs survey disaster-affected regions, providing real-time aerial

imagery for damage assessment and rescue planning. UGVs are then deployed to navigate through the

affected areas, identifying survivors and assessing infrastructure damage in detail [4]–[6].

1.2. Search and Rescue
Natural disasters are a significant and growing threat to human health and safety, with an increasing

frequency and cost of damage. In recent decades, the number and severity of natural disasters have risen

dramatically, highlighting the need for effective disaster management [7]. Thus, optimizing search and

rescue (SaR) operations has become a highly relevant research topic in both academia and industry due

1

1.3. Research Formulation 2

to their importance in mitigating further life losses and injuries. In the case of the least developed countries,

the risk is particularly concerning, as nearly 90% of disaster-related deaths and 98% of people affected by

disasters between 1991 and 2005 occurred in these countries [8]. Since these countries lack the budget to

adopt the most sophisticated SaR solutions, it is vital to make SaR operations not only more reliable but

also more affordable.

Ideally, a SaR solution should strike a delicate balance between being cost-effective and accurate. To

shed light on the cost implications, Table 1.1 contains a qualitative comparison of the cost implications

associated with medium-segment sensors used in SaR applications, such as LiDAR, radar, depth cameras,

RGB cameras, thermal imaging, and acoustic sensors.

Table 1.1: General considerations and qualitative cost comparison of medium-segment sensors used in

SaR. Own elaboration based on [9]–[15].

Sensor Type General Considerations Cost

RGB Cameras Provides standard RGB imaging Low

Depth Cameras Provides depth information, suitable for mapping and navigation Low

Acoustic Sensors Commonly used for underwater search and mapping Low

2D Radar Detects objects and their velocities, effective in various weather condi-

tions

Medium

2D LiDAR High accuracy, detailed mapping, suitable for precision applications Medium

Thermal Imaging Detects heat signatures, crucial for low visibility conditions Medium

3D Radar Same as 2D Radar, but providing information in all three axes High

3D LiDAR Same as 2D LiDAR, but providing information in all three axes High

From the table, it becomes evident that setups relying on RGB cameras, depth cameras, and acoustic

sensors emerge as the lowest costly. Algorithms relying on standard RGB imagery appear to present

particularly high room for improvement due to recent advancements in image processing. Therefore, the

proposed research endeavors to delve into the attainable accuracy of a simple UGV-UAV collaborative

team in performing typical SaR tasks, with both robots leveraging exclusively standard RGB imagery.

1.3. Research Formulation
The research will address the challenge of performing conventional SaR tasks, such as victim detection,

victim tracking, and elevation mapping, using a simple setup relying on RGB cameras and leveraging the

complementary capabilities of the heterogeneous robots. In an attempt to achieve improved performance

compared to past solutions, some of the latest advancements in computer vision are incorporated into

the framework. In recent years, You Only Look Once (YOLO) has emerged as one of the most promising

object detection algorithms. It has proved to achieve real-time object detection while maintaining high

accuracy and requiring less computational resources than in several applications. Thus, the research

objective that is central to this work is formulated as follows:

Investigate the attainable accuracy of a collaborating flying and ground robot team equipped with

RGB cameras and employing YOLO in performing conventional SaR tasks.

Research Objective

The research objective is split into several research questions that will be answered in this thesis. Each

of the research questions relates to one of the SaR tasks. The first research question connects with the

need for an unconventional approach to capturing depth information without relying on a depth camera,

LiDAR, or radar. The central idea is to leverage the reference sizes for a typical human and their image

size to perform depth estimation through camera equations. Nevertheless, in cluttered environments

with occlusions or situations where the human is not standing in a conventional pose, this can result in a

significantly faulted estimation. The motivation for the first research is to use pose estimation as a means

to overcome these obstacles. Thus, research was conducted with human participants after approval from

the Human Research Ethics Committee (HREC) of the Delft University of Technology (letter of approval

no. 3457, issued on September 26, 2023).

Is leveraging pose estimation techniques and camera equations a robust and accurate approach

to performing human depth estimation in photographic images?

Research Question 1

The second research question refers to the task of tracking the SaR victims based on their previous

motion patterns and measurements from both robots. Therefore, unobstructed and cluttered scenarios

representing different trajectories are recreated to assess the improvements of a joint operation compared

to a standalone deployment for each of the robots.

How much improvement does a UGV-UAV collaboration offer in performing object tracking

compared to an individual operation within realistic SaR scenarios?

Research Question 2

The third research question addresses the potential to also provide information regarding the elevation

of the terrain. This is particularly helpful to the SaR human agents in planning their mission. While this

information can be obtained through distance measurement sensors such as LiDAR or radar, the distinct

viewpoints of the UGV and UAV can also be used to estimate it.

To what extent can a collaborative UGV-UAV system generate a dependable and comprehen-

sive elevation map of diverse terrains?

Research Question 3

The research challenges follow logically from one to the other and cover a spectrum of technical and

operational aspects to indicate how advantageous heterogeneous teams of robots are in disaster response.

Successful answers to these questions can lead to the development of more cost-effective SaR robotic

systems that can operate in demanding environments, ultimately improving the effectiveness of disaster

response efforts.

1.4. Report Structure
The report details the outcomes of the research endeavor structured around the defined objectives and

subsequent research questions. Chapter 2 encapsulates the primary findings, elucidating methodologies,

experimental case studies, and the results obtained, as well as limitations of the work, suggestions for

future work, and conclusions. Chapter 3 provides a literature review, synthesizing past research and

identifying research gaps, some of which led to the research formulation. The conclusions of the work are

outlined in Chapter 4 by revisiting the research questions and addressing them. The study illuminates

significant insights, paving the way for future investigations in the field.

3

Part I
Scientific Article

4

1

Flying and Ground Robot Collaboration for
Camera-based Search and Rescue

Bernardo Esteves Henriques
Control & Operations Department (TU Delft), Delft, the Netherlands

Abstract—Search and Rescue (SaR) missions present chal-
lenges due to the complexity of the disaster scenarios and the
urgency to rescue the victims. Most life losses and injuries occur
in developing countries where the budget is scarce. Robotics
has become indispensable for rapidly locating disaster victims.
Combining flying and ground robots more effectively serves
this purpose due to their complementary features in terms of
viewpoint. To this end, a financially cost-effective framework to
perform typical SaR tasks is presented. The method leverages
You Only Look Once (YOLO) and video streams transmitted by
an Unmanned Ground Vehicle (UGV) and an Unmanned Aerial
Vehicle (UAV). Three sets of experiments were conducted at the
Cyber Zoo of the Delft University of Technology. In exploiting
pose estimation to perform human depth estimation, the exper-
iments unveiled the susceptibility of the proposed approaches
to variations in poses. In tracking moving object trajectories,
the collaboration was found to be particularly advantageous
in wide-area cluttered trajectories as opposed to narrow-area
unobstructed trajectories where the deployment of one robot
suffices. In mapping terrain elevation, relative errors dropped
significantly with the collaboration of the UGV and the UAV.
Moving forward, refining algorithms, enhancing collaborative
functionalities, and devising adaptable strategies tailored to
diverse SaR scenarios will be pivotal.

Index Terms—Search and Rescue Robotics, Computer Vision,
Object Detection, Pose Estimation, Homography Estimation,
State Estimation, Terrain Mapping.

ACRONYMS

CNN Convolutional Neural Network
COCO Common Objects in COntext
DLT Direct Linear Transform
EKF Extended Kalman Filter
EMA Exponential Moving Average
FOV Field of View
GPS Global Positioning System
HREC Human Research Ethics Commitee
KF Kalman Filter
RANSAC RANdom SAmple Consensus
RMSE Root Mean Square Error
SaR Search and Rescue
SIFT Scale-Invariant Feature Transform
UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle
UKF Unscented Kalman Filter
YOLO You Only Look Once

NOMENCLATURE

α Smoothing factor

γ Angle to SaR victim

ω Angular velocity

d Depth

dground Ground distance

e Elevation

F Transition matrix

FOVh Horizontal FOV

FOVv Vertical FOV

H Homography matrix

H∗ Optimal homography matrix

hb Bounding box height

k Current time step

K Kalman gain matrix

lfocal Focal length

O Observation matrix

P Covariance matrix

Q Process noise matrix

r Radius

R Measurement noise covariance matrix

simage Image size

sreal Real-world size

U Control input matrix

v Measurement noise vector

wb Bounding box width

x System states

x̂kEMA Predicted system states via EMA

x̂kKF Predicted system states via KF

z Measurement vector

I. INTRODUCTION

Natural disasters are a significant and growing threat to
human health and safety, with an increasing frequency and
cost of damage. In recent decades, the number and severity
of natural disasters have risen dramatically, highlighting the
need for effective disaster management [1]. Thus, optimizing
search and rescue (SaR) operations has become an urgent and
timely research topic in academia and industry due to their
importance in mitigating further life losses and injuries. In the
case of the least developed countries, the risk is particularly
concerning, as nearly 90% of disaster-related deaths and 98%

2

of people affected by disasters between 1991 and 2005 oc-
curred in these countries [2]. Therefore, it is vital to make SaR
operations not only more reliable, but also more affordable.

In the past twenty years, SaR has become increasingly
augmented with robotics [3]. Besides being able to traverse
hazardous environments, robots have the capability of mapping
their surroundings in a fast and automated way. This compe-
tence makes them vital in disaster response effectiveness since
survival rates drop steeply in the aftermath of a catastrophe.
For instance, the survival rate of a very strong earthquake can
drop from 91% in the first thirty minutes to 36.7% at the
end of the second day [4]. Therefore, even if the robots do
not perform the actual rescue themselves, providing a reliable
map of the location of the victims speeds up the mission
planning and increases the chances of success. Table I displays
qualitative cost comparison of conventional sensors included
in robotic SaR setups.

TABLE I
SAR MEDIUM-SEGMENT SENSOR QUALITATIVE COST COMPARISON

[5]–[11].

Sensor Cost

RGB Cameras Low
Depth Cameras Low
Acoustic Sensors Low
2D Radar Medium
2D LiDAR Medium
Thermal Imaging Medium
3D Radar High
3D LiDAR High

Even though the different sensors have different principles
and functionalities, this research focuses solely on the usage of
RGB cameras as it is a promising sensor type to deliver a cost-
effective SaR solution. Furthermore, combining the advantages
of flying and ground robots for mapping the location of
the victims in SaR is promising due to the complementary
capabilities of these robots. Unmanned Aerial Vehicles (UAVs)
provide affordable access to aerial data and are known for
their ability to scan large areas in a short time. However,
their camera is subject to tilting motions that often result in
reduced image quality. Unmanned Ground Vehicles (UGVs)
are typically slower at covering large areas due to rough
terrain and a smaller angle of view. Nevertheless, they are
better suited to carrying heavy weights, accessing confined
spaces, and taking focused photographs. The research is thus
motivated by the potential to combine heterogeneous robots
in SaR applications and the urgent need for accessible SaR
solutions. A graphical representation of a heterogeneous robot
setup is provided in Figure 1.

Throughout the research, the setup performs three different
typical SaR tasks, namely SaR victim localization, trajectory
tracking, and elevation estimation. An assessment is then
provided regarding the accuracy of the proposed setup in
performing the aforementioned tasks.

II. LITERATURE REVIEW

Before advancing to the contributions of the paper, it is
essential to provide the background review that led to the

Fig. 1. Illustration of a possible UGV-UAV setup in which the two robots
have their own specifications and thus cover different areas.

research questions. In the current section, a summary of
the literature review performed is given. This encompasses
several considerations crucial to the domain of SaR, as well
as background theory for a better understanding of the paper.

Prior work has focused on solving the navigation problem
for collaborative teams of flying and ground robots (see e.g.
[12], [13]). Figure 2 showcases an example of the distinct
viewpoints captured by flying and ground robots and hints at
how they can complement each other. On the one hand, a SaR
victim under a roof might not be detected by a flying robot,
but be detected by a ground robot. On the other hand, the
opposite can happen to a SaR victim behind a wall. Therefore,
it is likely that the heterogeneous robots working together can
detect more victims than any of the robots working alone.

Fig. 2. Example of change in viewpoints for a flying robot (left) and a ground
robot (right). Retrieved from [12].

Some studies have focused on processing thermal imaging
to detect humans in SaR scenarios (see e.g. [14], [15]).
Even though the results are auspicious in specific scenarios,
they have not proved to be helpful in environments where
high temperatures are reached, as in the case of fire. If
the environment is emitting higher radiation than the heat
emanating from a human body, the human is not detected.
There are also studies that inspect wave properties, such as by
Doppler-shift sensors, to detect humans based on the motion
of their lungs, their heartbeat, or typical Doppler signatures of
walking humans (see [16]–[18]). Nevertheless, these sensors
are primarily designed to detect motion. In SaR scenarios,
it is essential to identify both moving and stationary targets.
Furthermore, distinguishing human targets from other moving
objects solely based on Doppler readings can be challenging

3

and can lead to false positives. It becomes evident that, due to
the complexity of SaR scenarios, it is vital to include visual
inspection besides other sensors when challenging conditions
are met.

Latest advances in deep learning have attracted attention
to human detection through image processing tasks. Deep
learning models can automatically extract relevant features
from raw data and detect objects even in the presence of chal-
lenging conditions such as low lighting, occlusions, and clut-
tered backgrounds. Their ability to handle high-dimensional
data, such as videos, makes them advantageous compared
to traditional computer vision methods. Convolutional Neural
Networks (CNNs) play a vital role in modern object detection
due to their ability to exploit the spatial structure of images
and to learn translation-invariant representations of objects.
Instead of treating each pixel in an image as a separate input,
convolutional layers are used to learn spatial relationships
between pixels through kernels, enabling CNNs to recognize
more complex features. Several studies (see e.g. [19]–[21])
have shown encouraging results in detecting people in videos
in the context of SaR using CNNs and its variants.

YOLO (You Only Look Once), existing as part of the
CNN family, has gained prominence as an effective object
detection algorithm in recent years [22]. As it uses a single
neural network to detect and classify objects, the training
and deployment process is simplified. It can achieve real-
time object detection while maintaining high accuracy and
requiring less computational resources than other CNN vari-
ants. The YOLO algorithm has already proved its effectiveness
in detecting SaR victims or disaster-affected objects. In [23],
pre-trained deep learning models based on YOLO are used
to detect a flooded area, which is then tracked and mapped
using homography estimation (further elaboration is provided
in the next paragraph). In [24], YOLOv5 is deployed to detect
and localize humans in an outdoor SaR environment, whereas
in [25] YOLOv4-tiny, a compact version of YOLOv4, is
employed to detect victims and to estimate whether they are
standing, laying vertically or laying horizontally.

In the context of SaR, it is vital to detect individuals in
distress while also estimating their location and mapping it
accordingly. To the best of available knowledge, the only
works that focused on simultaneously detecting and localizing
objects in SaR scenarios while using YOLO were discussed
in [23] and [24]. In the case of [23], the Scale-Invariant
Feature Transform (SIFT) key point matching algorithm is
deployed to find corresponding points in pictures taken from
different viewpoints. After determining the correspondences,
a homography matrix is computed to transform coordinates
from one frame to the other. Homography estimation is a
technique used in computer vision to find the relationship
between two images of the same scene but captured from
different viewpoints. As a prerequisite, it is necessary to know
the coordinates of the corresponding points in both frames.
This can be challenging in cases where the images have
limited visual features, occlusions, or significant changes of
viewpoint. Nevertheless, homography estimation provides a
way to model planar transformations accurately, is known to be
computationally efficient, and allows for real-time processing.

The approach used in [24] differs from the one in [23] in
the determination of the corresponding points within distinct
frames. More specifically, instead of using SIFT to make
correspondences, trigonometry is used.

When localizing humans in SaR scenarios, estimating their
pose can be key. In cluttered environments where only some
body parts of a human are visible, pose estimation can be
extended to provide an estimate of where the invisible key
points are situated in the image. Apart from being valuable
for depth estimation, knowing whether a victim is standing or
lying on the floor can hint at their health state. It can also
be useful to determine when a victim is pointing in a certain
direction, for instance, as it can indicate an area of interest. In
[26], the relative position between 3D key points is used for
human action recognition.

For the SaR team, it is not only valuable to receive informa-
tion about the position of the victims at each moment in time
but also tracking information which includes their speed to
estimate where they will be in the following time frames. For
this purpose, state estimation can be performed to fuse position
measurements from different sensors, as well as to apply mod-
els that describe the typical motion conducted by humans. The
Kalman Filter (KF) is the most used state estimation technique
in such scenarios due to its remarkable ability to combine
noisy sensor measurements and dynamic models seamlessly,
providing accurate and efficient real-time state estimates. This
technique is applied in [27] to track the position of multiple
humans, even when they are momentarily occluded. If the
motion of the object to be tracked is highly non-linear, using
more sophisticated filters, such as the Extended Kalman Filter
(EKF) or the Unscented Kalman Filter (UKF), can yield better
results. In [28], a comparison is drawn between using a KF
and a UKF in tracking a human head, proving that the UKF
has a better performance at visual curve tracking, namely in
surveillance tasks, at the expense of increasing computational
complexity.

Another convenient piece of information for SaR teams
is the traversability and elevation of the terrain. In [29], a
technique for extracting the ground characteristics (including
the roughness, slope, discontinuity, and hardness) from images
using neural networks, in order to determine traversability is
presented. While the extraction of ground characteristics from
images using neural networks can certainly provide valuable
information about terrain traversability, the effectiveness of
this approach can be significantly enhanced when combining
the distinct viewpoints of UGVs and UAVs. In addition to
getting more coverage of the terrain, the collaboration of the
robots is also less likely to be misled by optical illusions.

III. MAIN CONTRIBUTIONS & STRUCTURE OF THE PAPER

The main contributions of the research stem from the
following three sources:

1) The pose estimation module is extended to estimate
the location of the key points that are missing from
an image based on body proportions and symmetry.
YOLO is leveraged to perform depth predictions based
on reference human body measurements. A case study
involving participants is conducted.

4

2) YOLO is employed in streams from a UGV and a UAV,
along with a localization algorithm, to map the detections
into real-world coordinates. The measurements are fused
through a KF and are tested in diverse scenarios through
performance metrics.

3) An algorithm is created to estimate the elevation of the
terrain based on YOLO and homography estimation. It is
tested via several lab experiments for different elevations
and distances from the camera.

The rest of the paper is organized as follows: Section IV
addresses the proposed research methodologies in detail. This
encompasses the developed and adopted techniques to detect,
localize, and track humans, as well as to map the terrain ele-
vation. Subsequently, Section V refers to case studies used to
validate and support the developed approaches and algorithms
using real-world data, as well as to obtain experimental results.
As such, it addresses the equipment used, along with the
experimental setup. Afterward, Section VI presents the results
obtained based on the case studies and discusses them in light
of the research questions. Reflections on the limitations of
this work and possible topics for future research are provided
in Section VII. Lastly, the main conclusions drawn from this
study are given in Section VIII.

IV. METHODOLOGY

This section describes the methods developed for perform-
ing human detection and pose estimation, human localization,
human tracking, and elevation map generation. Even though
these methods can be extended for teams of multiple flying
and ground robots, the study is focused on a team composed
of a single UAV and a single UGV.

A. Human detection and pose estimation

Due to its ability to significantly speed up the class
detection process while maintaining high accuracy, YOLO
is the chosen computer vision algorithm for this research.
This groundbreaking algorithm can simultaneously identify
bounding boxes and class probabilities for objects in a single
pass through a neural network. Having been the focal point
of extensive research endeavors, it has undergone several
iterations and improvements since its launch in 2015. In this
research, YOLOv8, the most recent version of YOLO, is
employed for both detection and pose estimation tasks. In
particular, the YOLOv8n model representing the nano version
was chosen due to being lightweight and faster than other
YOLOv8 models. YOLOv8n was trained on the Common Ob-
jects in COntext (COCO) dataset comprising 330,000 diverse
images [30]. Among these, 200,000 images are annotated for
object detection, segmentation, and captioning tasks across
80 object categories, including common and specific objects.
Annotations encompass bounding boxes, segmentation masks,
and captions, enhancing the model’s precision and versatility.
Figure 3 depicts an example output of the YOLOv8n model
for a front and top view of a human. Bounding boxes are
drawn around detected classes, and a confidence score from
0 to 1 is attributed to each class. The bigger the confidence
score, the more confident the algorithm is that the object in the

picture matches the class. It is possible to define a confidence
threshold for the detections. The algorithm does not flag a
detection if the confidence score is lower than the confidence
threshold.

Fig. 3. Output of the YOLOv8n model for the front view (left) and top view
(right) of a human.

In order to obtain pose information, an alternative model
named YOLOv8n-Pose is employed whenever such informa-
tion is required. This model is trained on a specialized version
of the COCO dataset, designed for pose estimation tasks.
This dataset contains 200,000 images labeled with key points
for pose estimation tasks [30]. The dataset supports 17 key
points for human figures, facilitating detailed pose estimation.
Figure 4 depicts an example output of the YOLOv8n-Pose
model for a front view of a human.

Fig. 4. YOLOv8n-Pose is extended to also perform pose estimation. Expand-
ing on the previous output, it also estimates the positions of key points that
represent body parts.

These key points are given in a pre-defined body part order
whenever it is possible to estimate their location: nose, eyes,
ears, shoulders, elbows, hands, hips, knees, and feet. Since
the depth estimation module might rely on the location of a
key point that is missing in a particular scenario, in this work,
YOLOv8n-Pose was extended by the authors to also estimate
the location of missing key points. This makes pose estimation
more robust to occlusions. Figure 5 showcases the output of

5

the extended model in more challenging scenarios where some
body parts are occluded.

Fig. 5. During the study, YOLOv8n-Pose was further extended to estimate
the location of missing key points based on typical body proportions and
symmetry (represented in white). Examples of the output of the algorithm are
given for a SaR victim behind a wall (left), under a roof (middle), and behind
a door (right).

Building upon the output of the regular YOLOv8n-Pose,
the algorithm loops through the entire key points vector to
find key points that are missing and to estimate their location
if the location of its dependencies is available. The procedural
form of the algorithm is given below. In the experiments, n
was set to 10 as this value is sufficient to determine all missing
key points.

Algorithm 1 Complete key points
1: K: List of key points
2: N : Names of key points
3: n: Number of iterations
4: i: Index variable
5: N ← get keypoint name()
6: for iteration← 1 to n do
7: for i← 0 to length of K do
8: if K[i] is None then
9: K[i]← estimate keypoint(K,N, i)

10: end if
11: end for
12: end for
13: return K

The dependencies are the key points required to estimate the
location of a particular key point and are defined a priori. As an
example, the location of the right elbow can be estimated using
the right hand and right shoulder, through body proportions, or
using the location of the shoulders and the left elbow, through
body symmetry. The high-level layout of the algorithm is given
below.

B. Human localization
In the realm of computer vision and robotics, the accurate

mapping of image pixels to real-world coordinates plays a
pivotal role in enabling machines to perceive and interact with
their surroundings.

1) Homography estimation: One indispensable technique in
achieving a mapping from the image pixels to real-world co-
ordinates, especially when dealing with planar surfaces, is ho-
mography estimation. In the context of this work, homography

Algorithm 2 Estimate key point
1: K: List of key points
2: N : Key points and dependencies
3: i: Index of current key point
4: k: Current key point
5: d: Dependencies of k
6: w: Weights for k
7: I: Indices of required key points
8: W : Selected weights
9: i← 0

10: while i < len(N) do
11: k ← N [i]
12: d← k[”dependencies”]
13: w ← k[”weights”]
14: deps satisfied← True
15: for j ← 0 to len(d) do
16: if not all(K[kp[”idx”]] not None for dep in d[j] for

kp in K if kp[”name”] == dep) then
17: deps satisfied← False
18: break
19: end if
20: end for
21: if deps satisfied then
22: break
23: end if
24: i← i+ 1
25: end while
26: if i = len(N) then
27: return err(”Cannot estimate key points.”)
28: end if
29: I ← [indices of required key points]
30: W ← w
31: return comb(K, I , W)

estimation serves as a valuable auxiliary method, facilitating
the transformation of 2D image points into their corresponding
real-world coordinates relative to robotic platforms. The choice
of employing homography estimation stems from its ability
to handle perspective transformations, making it particularly
well-suited for scenarios where images captured by cameras
mounted on robots need to be translated into a coherent
real-world reference frame. However, homography estimation
relies on certain key assumptions, including the coplanarity of
reference points and the absence of lens distortion, which are
essential considerations when applying this method in practical
applications.

The homography transformation of 2D points is performed
using a 3 ×3 matrix, commonly represented as H and known
as the homography matrix (see (1)). In (1), we have h̃ij =
hij/h33 for i, j = 1, 2, 3, where h33 can be set equal to
1 without losing the generality because of the homogenous
property of the projection.

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 = h33

h̃11 h̃12 h̃13

h̃21 h̃22 h̃23

h̃31 h̃32 1

 (1)

6

Note that (1) shows that there are eight unknowns in the
matrix that represent eight (three rotational, three translational,
and two scalars) degrees of freedom. The eight equations
needed to compute these eight unknowns are constructed by
selecting four reference points for which the corresponding
x-coordinates and y-coordinates in both camera view and
augmented view are known. Suppose a set of N points
P1 = {(xi, yi) for i = 1, 2, . . . , N} that are coplanar in
the camera view. Also, consider the set of these points
when they have been represented in the augmented view, i.e.,
P2 = {(x′′

i , y
′′

i) for i = 1, 2, . . . , N}. For each point, (2) is
used to obtain two linear equations by applying an approach
known as Direct Linear Transform (DLT):

[
xi yi 1 0 0 0 −xix

′′
i −yix

′′
i −x′′

i
0 0 0 xi yi 1 −xiy

′′
i −yiy

′′
i −y′′i

]


h̃11

h̃12

...
h̃32

h̃33 = 1

 = 0

(2)

When dealing with more than four reference points, com-
puting H transforms into an optimization problem. The objec-
tive is to determine an optimal homography matrix H∗ that
minimizes a defined cost function. The cost function typically
involves measuring geometric distances, like the Euclidean
distance, between the projected points (x̃′′

i , ỹ
′′
i) obtained using

H and the actual corresponding points (x′′
i , y

′′
i) in the map

view. The optimal homography matrix H∗ minimizes the
algebraic sum of the geometric distances across all reference
points. However, when dealing with outliers in the reference
points, like non-coplanar or erroneous points, the accuracy
of estimating matrix H is compromised. To address this,
the RANdom SAmple Consensus (RANSAC) algorithm is
employed. RANSAC randomly selects subsets of reference
points, computes H using the DLT method, and classifies
points as inliers or outliers based on the cost function (e.g.,
geometric distance). It iteratively refines H using only the
inlier subset, ensuring a robust estimation of H even in the
presence of outliers.

Given H, P1 in camera view can be transformed into P2 in
augmented view using the following equation from [23]:x′′

i /λ

y
′′

i /λ
λ

 = H

xi

yi
1

 (3)

where λ is a scaling factor that is introduced in homography
transformations. It represents the transformation’s scale factor
and ensures that the transformed points maintain their relative
positions after the homography transformation.

2) Depth estimation: Another vital approach to estimating
real-world coordinates from 2D points in photographic images
is depth estimation. Under a simplified pinhole camera model,
it is possible to deduct straightforward equations that relate
camera specifications to distances. The camera is assumed
to be calibrated, and the parameters such as focal length,
reference object size, and field of view are known or can be
accurately measured.

Note that (4) allows us to estimate the depth d of an object
from its real-world size sreal, the focal length of the camera
lfocal, and the size of the object in the image simage:

d =
sreallfocal
simage

(4)

Also note that (4) can be rearranged to calculate sreal of an
object based on simage and d:

sreal =
dsimage

lfocal
(5)

where lfocal of the camera lens is usually provided by camera
manufacturers. Alternatively, lfocal can be computed based on
the image dimensions and the field of view (FOV) of the
camera. An illustration of the vertical and horizontal FOV of
a camera is given in Figure 6.

Fig. 6. A sketch of the vertical v (left) and the horizontal h (right) FOV
of a camera, where γ represents the angle between the camera and the SaR
victim.

These values can be substituted in (6) or (7) to determine
lfocal of a camera, in case it is not provided. In these equations,
Himage and Wimage represent, respectively, the height and the
width of the image in pixels:

lfocal =
Himage

2 tan
(
FOVv

2

) (6)

lfocal =
Wimage

2 tan
(
FOVh

2

) (7)

C. Human tracking

State estimation is a fundamental requirement in several SaR
contexts, as it enables one to make inferences about the states
of a dynamic system based on noisy sensor measurements.
The primary objective of state estimation in this study is to
infer the trajectory of a moving SaR victim.

The two sources of position measurement are obtained from
the distinct robotic platforms: a ground robot and a flying
robot. Each position measurement is computed by vector
summation of the position of the robot and the position of
the victim relative to that robot. The position of the robots
can generally be measured with the support of a position-
determination system, such as the Global Positioning System
(GPS). The position of the victim relative to each robot can
be computed using (3) and (4). A visual representation of the

7

procedure is available in Figure 7. In the present study, the
position of the robots is assumed to be known at all times
with no error.

Fig. 7. There are two sources of measurement for the location of the victim,
one per robot. The estimated location at each time step is the vector sum of
the position of the robot and the position of the victim relative to the robot.

A KF is then employed to fuse the measurements with a
motion model of a human agent. By incorporating knowledge
of how the system is expected to evolve over time, the filter
can make predictions about future states, even when no new
measurements are available. Furthermore, a KF ensures that
the estimated states evolve realistically according to the model,
providing a continuous and coherent trajectory. However,
formulating a motion model for humans in SaR scenarios
is extremely challenging due to the unpredictability of their
movement. Therefore, a simplistic linear motion model has
been adopted, which assumes that agents have no acceleration
if there are no measurements available. The formulation of
the state estimator is divided into the state transition model,
observation model, as well as the prediction, update, and
filtering steps, as follows:

1) State Transition Model: The State Transition Model
describes how the state of a system evolves over time. The
state vector, denoted as xk, represents the position and velocity
in a 2D space at time step k:

xk =


xk

yk
ẋk

ẏk

 (8)

This vector encapsulates both the current position and
velocity in the x and y directions, given that the superscript
. represents the time derivative. The State Transition Model
predicts the next state, xk+1, based on the current state xk:

xk+1 = Fxk (9)

where F represents the state transition matrix, which charac-
terizes how the system evolves over time. It is important to
note that in this specific system model, there is no utilization
of a control input matrix U , meaning that state evolution from
a time step to the next is solely determined by the inherent
dynamics defined by F and no external control inputs uk are
incorporated.

2) Observation Model: The Observation Model relates the
measurements obtained from sensors to the underlying state of
the system. The measurement vector, denoted as z, comprises
position measurements:

zk =


xmeasured
k

ymeasured
k

ẋmeasured
k

ẏmeasured
k

 (10)

These measurements are subject to noise and uncertainties.
The Observation Model establishes a connection between the
state vector, xk, and the noisy measurements, zk:

zk = Oxk (11)

where O represents the observation matrix, which defines how
the state relates to the measurements. A measurement noise
vector vk may also be incorporated in this formulation.

3) Prediction Step: The KF operates in two main steps:
prediction and update. The prediction step estimates the future
state of the system based on the current state and any available
control inputs. In the following equations, the superscript −

represents the variable before the update step is performed.
a) State Prediction: The predicted state, x̂−

k+1, is calculated
using the State Transition Model:

x̂−
k+1 = Fx̂k (12)

This step provides an initial estimate of the future state
of the system.

b) Error Covariance Prediction: The error covariance ma-
trix, P−

k+1, estimates how uncertain the state prediction
is. It is determined by propagating the current error
covariance, Pk, through the State Transition Model and
by adding the process noise, Q:

P−
k+1 = FPkF

T +Q (13)

where P−
k+1 quantifies the uncertainty associated with the

state prediction.
4) Update Step: The update step of the KF refines the state

estimate based on new measurements, in order to reduce the
uncertainty and improve the accuracy.

a) Kalman Gain Calculation: The Kalman gain, Kk, deter-
mines how much weight to give to the measurements in
the state update at time step k. It depends on the error
covariance prediction, P−

k , the observation matrix,O, and
the measurement noise covariance, R:

Kk = P−
k O

T (OP−
k O

T +R)−1 (14)

The Kalman gain reflects the relative importance of the
prediction and measurement information.

b) State Update: The state estimate, x̂KF
k , is updated using

the Kalman gain and the difference between the ac-
tual measurements, zk, and the predicted measurements,
Ox̂−

k :

x̂k = x̂−
k +Kk(zk −Ox̂−

k) (15)

8

This step combines the prediction and the measurement
information to yield a more accurate state estimate.

c) Error Covariance Update: The error covariance matrix,
Pk, is updated to reflect the reduced uncertainty after
incorporating the measurements:

Pk = (I−KkO)P−
k (16)

This matrix quantifies the remaining uncertainty in the
state estimate, accounting for the influence of the mea-
surements.

5) Filtering Step: To further refine and smoothen the
output obtained from the KF, an Exponential Moving Average
(EMA) filter is employed. This additional step helps to provide
a more stable representation of the estimated system state by
giving the output state variables from the KF as input to the
EMA. Unlike a simple moving average, which gives equal
weights to all data points in the averaging window, EMA
assigns exponentially decreasing weights to older data points.
This characteristic allows the EMA to react more quickly to
recent changes in the data while still incorporating information
from the past.

The state prediction is filtered using the following relation-
ship, where x̂KF

k represents the state as predicted by the KF
and x̂EMA

k represents the state as predicted by the EMA:

x̂EMA
k = αx̂KF

k + (1− α)x̂EMA
k−1 (17)

where α represents the smoothing factor of the EMA filter.
A higher value of α gives more weight to recent data points,
making the EMA more responsive to recent changes. Con-
versely, a lower α value results in a smoother EMA curve.

D. Elevation map generation

The proposed approach to determining terrain elevation is
divided into three steps illustrated in Figure 8.

Firstly, the UGV needs to receive information about its
straight-line distance dground to the target object on the ground.
The UAV might be able to provide this information by
leveraging homography estimation and trigonometry if both
the UGV and the target object are in its FOV. If not, the UGV
has to estimate this distance, making use of depth estimation
that is formulated via (4). After obtaining this knowledge,
the UGV proceeds to calculate the expected position of the
specified point in the camera frame under the assumption of
perfectly flat ground. With the expected position in hand, the
UGV then undertakes a critical comparison. It contrasts the
anticipated position, based on the assumption of a flat terrain,
with the actual perceived position of the touchdown point
as observed from its ground-level perspective. The outcome
of this comparison is used to obtain the elevation e, which
essentially represents the vertical deviation of the terrain from
the hypothetical flat surface, via the formulation in (5). By
systematically mapping this e at various points across the
terrain, the UGV generates a comprehensive elevation map
of the area.

Applying this methodology is particularly challenging when
the object sits close to the UGV or at a high elevation, as it is

Fig. 8. In determining terrain elevation, the UAV drops an object where
the elevation is to be determined. The UGV receives information about its
ground distance dground to the UAV or determines the distance itself using
depth estimation given by (4). This information is used to determine the point
where the object would touch the ground if the ground were flat (this estimated
point is represented in blue). Through the camera, the UGV catches sight of
the point where the object actually touches the ground (represented in red).
The pixel distance between these two points is used to compute the elevation
e of the ground (represented in green) using (5).

partially occluded, and thus affects the depth perception. By
perceiving the object as smaller, the algorithm tends to deem
it farther away, which decreases the estimated elevation. A
visual depiction of this phenomenon is given in Figure 9.

Fig. 9. When the object sits close to the UGV, as in a) and b) or is at a
high elevation, as in b) and d), partial occlusion is more significant. In the
image a) dground = 1 m, e = 25 cm, b) dground = 1 m, e = 75 cm, c)
dground = 3 m, e = 25 cm, d) dground = 3 m, e = 75 cm.

To mitigate this effect, depending on the geometry of the
object, it is possible to take the width of the object as a
reference, as the width is only distorted in extreme scenarios.

V. CASE STUDIES

This section describes the experimental setup employed
during the research. Firstly, an overview of the laboratory

9

setting and the specifications of the robots are given, along
with general considerations. In order to fulfill the research
objectives, an experiment is conducted to estimate the depth
of humans in photographs making use of their poses. The
experiment, data collection process, and post-processing of
the images are thus thoroughly described. Afterward, case
studies encompassing tracking an object moving in circular
trajectories with different radii in and out of the presence of
obstacles were performed. The last task consists of making
the UAV transport and drop an object where the elevation
of the terrain needs to be determined. The UGV proceeds
to determine the elevation after post-processing the collected
video streams. In the experiments, challenging scenes that
encompass occlusions and the temporary unavailability of the
sensors are recreated.

A. General Experimental Setup

The experimental sessions have been conducted at the Cyber
Zoo of the Delft University of Technology. Cyber Zoo (see
Figure 10) is a research and test laboratory in the Faculty of
Aerospace Engineering that embeds a 10 m × 10 m synthetic
turf surrounded by safety nets to protect participants and
robots during the experiments. Furthermore, the experimental
facilities at the Cyber Zoo are equipped with twelve high-tech
cameras and Motive, a software platform designed to control
motion capture systems for various tracking applications. By
placing markers asymmetrically in a rigid body, it is possible
to track them using Motive to obtain their position, velocity,
and 3D orientation (pitch, roll, and yaw).

Fig. 10. Cyber Zoo including the reference frame. The origin corresponds to
the center of the laboratory.

The drone used in the experiments was a Parrot Bebop 2
(see the right-hand side plot in Figure 11). Parrot Bebop 2
is a small quadcopter that measures 382 mm in front, 328
mm on either side and 89 mm in height. It weighs 500 g and
has a 2700 mAh battery. Depending on the circumstances,
the drone can fly continuously for up to 25 minutes on this
battery power. The 14 MP front camera on Parrot Bebop 2
can record 1080p video at 30 fps. It is also equipped with

a bottom camera used to estimate its velocity. This in-built
camera is not suited to video recording, but another 14 MP
bottom camera, which can also record 1080p video at 30 fps,
has been attached to the bottom of the drone. The drone also
has its own WiFi network, allowing it to connect to other
devices. It boasts a dual-core processor operating at 500 MHz
per core, orchestrating seamless flight control and navigation.
Complemented by a quad-core GPU, this drone efficiently
processes captured video and image data, ensuring smooth and
high-quality visuals.

As for the ground robot, the Parrot Jumping Sumo was
used. It is a compact, wheeled ground robot, forming part
of the MiniDrones line by Parrot. Displaying a moveable
base with two independently driven wheels, it measures 185
mm in length, 150 mm in width, and 110 mm in height.
Weighing 180 g, Parrot Jumping Sumo features a 550 mAh
battery, granting an operational time of up to 20 minutes.
It can perform horizontal and vertical jumps up to 80 cm.
The robot incorporates a wide-angle camera providing 480p
at 15 fps. Just like Parrot Bebop 2, Parrot Jumping Sumo is
equipped with its own WiFi network, allowing it to connect to
other devices. Parrot Jumping Sumo is powered by an ARM
Cortex A9 processor running at a clock speed of around 1
GHz, facilitating swift and responsive execution of commands
and sensor data processing, enabling its agile movements and
interactions.

The Parrot Jumping and the Sumo Parrot Bebop 2 drone
are depicted in Figure 11.

Fig. 11. Parrot Jumping Sumo (left) and Parrot Bebop 2 (right).

Overall, the autonomy of the robots, the sufficient quality
of their cameras, their affordability, their ready-to-use nature,
and their user-friendly interfaces make them suitable for this
research.

The processing of the photographs and videos was per-
formed using an external computer. The external computer
employed in this study was equipped with an Intel Core i7-
1185G7 processor, part of the 11th generation, operating at a
base frequency of 3.0 GHz and reaching up to 4.8 GHz with
Turbo Boost capability. It boasted 16 GB of LPDDR4x RAM
and integrated Intel Iris Xe Graphics. Storage was facilitated
by a 512 GB PCIe NVMe SSD. The operating system utilized
was Ubuntu 20.04.6 LTS. All the source code for the project
was composed using Python, owing to its compatibility with
external code, versatility, and robust libraries.

B. Experimental Human Depth Estimation

The primary objective of the experiments is to leverage pose
estimation techniques to enhance the precision and to increase
the robustness of human depth estimation. To achieve this goal,

10

a collection of static photographic representations of humans
assuming diverse poses is deemed essential. Participants for
this study were sourced from the personal network of the
researchers. During the process of recruitment, an effort has
been made to recruit participants with diverse physical char-
acteristics, such as different heights, shoulder-to-shoulder and
shoulder-to-elbow distances. This is crucial to ensure that the
participants are somewhat representative of the generality of
the population. As the experiments involve humans, they were
conducted after approval from the Human Research Ethics
Committee (HREC) of the Delft University of Technology (let-
ter of approval no. 3457, issued on September 26, 2023). The
experiment was performed on 24 participants of 12 different
nationalities. The reference values used for height, shoulder-to-
shoulder distance, and shoulder-to-elbow distance of a typical
human were 1.70 m, 38 cm, and 30 cm in that order, based
on [31], an article that contains anthropometric data for the
US population between 2011 and 2014. The measurements
are divided by gender, and in the research, the average of
the male and female measurements was taken and rounded
to the nearest integer cm. The participants were measured
to obtain an idea of how closely they matched the reference
values. Naturally, it is expected that a larger deviation from
the reference values in the sample of participants yields a
higher error for the algorithm that takes the reference values
as guidelines. The measurements and reference values are
displayed in Table II, where µ represents the average value
and σ represents the standard deviation.

TABLE II
PARTICIPANTS MEASUREMENTS AND REFERENCE VALUES.

Measurement Reference [m] µ[m] σ[m]

Height 1.7000 1.7538 0.0732
Shoulder-to-shoulder 0.3800 0.4075 0.0398
Shoulder-to-elbow 0.3000 0.3054 0.0218

As can be seen from the table, µ for height, shoulder-to-
shoulder distance, and shoulder-to-elbow distance are respec-
tively, 3.16%, 7.24%, and 1.80% higher than the reference,
whereas σ is 4.17%, 9.77%, and 7.14% of the value of µ
in that order. Thus, the measurements from the participants
match the reference relatively closely, with the shoulder-to-
shoulder distance the least reliable measurement in terms of
both µ and σ. While µ for shoulder-to-elbow distance is
closer to the reference than that for the height, the worst-
case measurement is still less reliable than that of the height
due to its increased σ. On grounds of the challenge of
determining these distances precisely in a conventional SaR
scenario, the algorithm privileges using height, shoulder-to-
shoulder distance, and shoulder-to-elbow distances owing to
their decreasing absolute values.

During the experiments, each participant was asked to pose
in 7 different poses for the camera (see Figure 12): standing
facing the camera, standing in profile, standing back to the
camera, sitting facing the camera, sitting in profile, lying on
the side facing the camera, and lying face-up. These poses
have been repeated for distances of 1.5 and 3 meters from the
UGV.

Fig. 12. The participants were instructed to adopt specific poses for the UGV
camera. The photographs were captured systematically from varying distances
of 1.5 m and 3 m. The sequence of poses encompasses a) standing facing
the camera, b) standing in profile, c) standing back to the camera, d) sitting
facing the camera, e) sitting in profile, f) lying on the side facing the camera,
and g) lying face-up.

The experiments thus generated 14 photographs per partic-
ipant and 336 photographs in total. All photographs are post-
processed using the YOLOv8n-Pose extended model to predict
the bounding boxes and the location of the key points. The key
points are augmented by leveraging typical body proportions
and body symmetry as described in Subsection IV-A. This
ensures that all key points are estimated even when some
body parts are not detected or are not captured by the camera.
Distances between key points are then inserted into (4) to de-
termine the depth. The equation compares a measured distance
in the camera frame in pixels against a reference real-world
value for that distance. As different poses distort different key
point distances, the camera frame distance substituted in the
equation depends on the pose. When the participant is standing
or lying on the floor, the distance between the feet and the
head is compared against a reference value for the human
height. When the participant is sitting facing the camera or
in profile, the shoulder-to-shoulder distance or the shoulder-
to-elbow distance is compared against the reference values,
respectively.

C. Experimental Object Tracking

The main purpose of this experiment is to track the move-
ment of a real-world object by leveraging the video streams
of both a UGV and a UAV. In a real-world SaR scenario,
the object of interest to be tracked is most commonly a
SaR victim. Nevertheless, due to the limited space at the
experimental facility and due to the need to compare the
obtained trajectory against the ground truth for the movement,

11

a small and precise trajectory had to be replicated. For this
purpose, a volleyball was chosen elected as the object to
be tracked. The volleyball was attached to a rod that was
tied to a 360-degree motorized rotating stand. By moving
the rod, the radius r of the trajectory can be manipulated.
The motorized rotating stand allows for adjustable angles of
rotation, directions of rotation, and angular velocity ω. During
the experiment, different obstacles were placed around the
trajectory to occlude both the aerial and the ground view of the
volleyball. A visual depiction of the experiment is provided in
Figure 13.

Fig. 13. The motorized rotating stand makes the volleyball move in a circle
with constant angular velocity ω = 6 rpm. During the experiments, the UGV
and the UAV capture video streams of the movement of the ball, both in an
unobstructed environment (left) and in a cluttered environment (right). The
radius r of the trajectory is adjustable.

In all the experiments, the center of rotation is placed at
the center of the Cyber Zoo (x, y) = (0, 0). The UGV is
kept static at (x, y) = (0,−3), and the UAV hovers at a 3 m
altitude as close as possible to the center of the Cyber Zoo
(x, y) = (0, 0). It is crucial to keep the altitude of the UAV
approximately constant so that the homography matrix H does
not require calibration after every frame. Since integrating GPS
data is out of the scope of the project, DaVinci Resolve, a
video editing software, was used to manually place the center
of rotation in the center of the camera frame for each frame.
By doing so, it is simulated that the tilting motion of the UAV
in the x and y directions is compensated for and does not
constitute an additional source of error. In a real-life situation,
obtaining a similar compensating effect can be achieved using
the real-time position of the UAV. Throughout the experiments,
ω and the direction of the rotation were kept constant at 6 rpm
counterclockwise. Five main settings were tested: r = 0.75 m,
r = 1.0 m, and r = 1.25 m in an unobstructed environment,
r = 1.25 m in a cluttered environment for the UAV only (i.e.,
the UGV view is unobstructed) and r = 1.25 m in a totally
cluttered environment.

For each experiment, both video streams are post-processed
frame by frame and off-board in an external laptop using the
YOLOv8n model. In the case of the UGV, (3) and (4) are
employed to determine the position of the volleyball in the
reference frame depicted in Figure 10. As for the UAV, (3) is
sufficient to determine the position of the volleyball. Since the
UGV records videos at 15 fps and the UAV records videos at
30 fps, the frames are aligned before inputting the measured

locations to the KF. Afterward, the measurements are taken as
xmeasured and ymeasured in (10). The KF is updated at 30 fps,
meaning that there are no measurements from the UGV in
half of the instances, due to the halved frame capture rate.
The estimated trajectory is then compared with the ground
truth for each setting, making use of different performance
metrics.

D. Experimental Elevation Map Generation

In the last experimental session, the UAV carries and drops
a signaling object where the e is to be determined. In a real-
world SaR scenario, this object is dropped in the vicinity of
a victim to obtain information about the elevation and conse-
quent reachability of the specific location. For this purpose, a
remote air-dropping system was incorporated into the setup.
During the experiments, a thrower is attached to the bottom of
the UAV. Whenever the object needs to be released, a remote
control is manually operated. Even though the maximum
payload of the airdrop system is 750 g, any object weighing
more than 150 g seriously jeopardizes flight stability. For
this reason, a tennis ball weighing 58 g was selected as the
signaling object. In the course of the experiment, the tennis
ball was dropped on top of boxes with varying heights. A
visualization of the experiment is given in Figure 14.

Fig. 14. The UAV carries and drops the tennis ball where the elevation of
the terrain should be estimated. The UGV positions itself in an adequate
perspective to estimate the elevation.

In order to assess the performance of the algorithm when
the UGV is at different distances dground from the signaling
object and when the elevation e changes, 12 photographs were
captured using the camera of the UGV for dground = 1, 2, 3, 4
m and for e = 25, 50, 75 cm. These images were then
processed off-board, simulating two different scenarios. In
the first scenario, the UGV estimates the elevation on its
own. Thus, it makes use of the YOLOv8n model and (4) to
estimate dground and uses this estimation and (3) to determine
the point where the signaling object would touch the ground
if it was flat. It proceeds to compute the pixel distance
between this point and the actual point where the ball touches
the ground and applies (5) to determine the elevation. In a
second scenario, it is assumed that the UAV computes dground
from the sky, given its privileged viewpoint. To achieve this

12

computation, the YOLOv8n model needs to be further trained
to also detect the Parrot Jumping Sumo, which is not the case
in its default version. After leveraging (3) to transform both
the signaling object and the UGV from the camera frame to the
Cyber Zoo reference frame, dground is estimated using simple
trigonometry. Nevertheless, given that additional training of
the YOLOv8n model is out of the scope of this research and
that the error in the computation of dground from the aerial
perspective is expected to be negligible, it is assumed that the
UGV receives the true value for dground with the assistance
of the UAV. After this step, the UGV performs the subsequent
computation steps, as in the case without assistance.

VI. RESULTS & DISCUSSION

The current section covers the results obtained from the pro-
posed methodology and case studies, along with a discussion
entailing the major findings.

A. Human Depth Estimation

After batch-processing all photographs, the average, maxi-
mum, and minimum depth, along with their upper and lower
dispersion, were obtained. Out of the 336 photographs, in only
5, no humans were detected above a confidence threshold of
20%, amounting to a miss rate of 1.49%. For the remaining
98.51% of photographs, the results are divided by pose and
distance from the camera and are exhibited in Figure 15.

From the plots, a few observations can be drawn. Firstly,
the distance to the camera appears to have the biggest impact
when the participant is standing. When the person is closer
to the camera, the algorithm yields promising results given
the proximity to the ground truth, the small upper and lower
dispersion, and the non-substantial errors in the extremum.
This is not the case for a larger distance from the camera,
where these metrics degrade significantly. In cases where the
participant is sitting or lying on the floor, the pattern seems
to be consistent regardless of the distance to the camera. A
possible explanation for this phenomenon is lens distortion.
When assuming a simplified pinhole camera model, lens
distortion is not accounted for. Lens distortion refers to optical
anomalies in camera lenses causing deviations from ideal light
projection. Standing positions, being farther from the image
center, amplify distortion effects. Consequently, this impacts
depth perception more than sitting or lying poses, exacerbating
inaccuracies.

Secondly, the worst-case scenarios are predominantly situa-
tions where depth is estimated in excess rather than in defect.
This is compatible with the observation that the measurements
of participants are, on average higher than the reference values
increasing the depth estimate. While the shortest participants
are only slightly shorter than the reference, the tallest partic-
ipants are significantly taller than the reference. Thus, this
effect is expected to reverse for short ethnic groups and
aggravate for tall ethnic groups. It is, therefore, advisable to
adjust the reference values depending on the location where
the SaR mission needs to be performed.

Thirdly, standing poses appear to be the least prone to errors
on average. While it is true that their error pattern changes

significantly with the distance from the camera, the average
depths remain close to the ground truth. Sitting and lying poses
appear to be more challenging in this domain. Two causes
were identified for this phenomenon: poses where a smaller
measurement is taken to compare against the reference are
more prone to uncertainties (e.g. shoulder-to-shoulder distance
as opposed to height), as well as poses where participants have
a wider range of motion. When asked to stand, all participants
stood still in a similar fashion. However, when sitting, they
placed their legs more openly or closely and curved their back
to different extents. The same goes for lying poses, where they
tilted their bodies and stretched their arms and legs to different
degrees.

To obtain a visual perspective on the average relative errors,
a graph of the relative errors for each pose and distance to the
camera across all participants and for one arbitrary participant
is given in Figure 16.

Looking at the curves for all participants, it is observed
that, as expected, the curves keep the same pattern except
for the standing poses. It is also verified that sitting and lying
poses generally display a bigger relative error than the standing
poses. The slight discrepancy in the pattern for standing
poses owes to the fact that when some of the participants
were standing 1.5 m from the camera, their faces were not
caught by the camera. Thus, the position of their faces was
estimated using body proportions, giving rise to a new source
of error. Nevertheless, sitting in profile and lying face-up still
appeared to be the most challenging. The average across all
poses for the average relative errors is 13.73% and 9.67%
for camera distances of 1.5 m and 3 m, respectively. The
explanation for this 4.06% discrepancy lies in the fact that
participants did not always place themselves in the exact
expected distance from the UGV. These slight displacements
of a few centimeters have a higher impact on the average
relative errors when the distance is smaller. Assuming that
this is the only experimental random error unrelated to the
algorithm, misplacement amounts to 12.18 cm on average.
This seems reasonable and means that the actual relative
error from the algorithm alone ranges from around 4% to
10%. Indeed, most of the relative errors sit between <1%
to 12%. It is also noticeable that the relative error appears
to have minimum to no correlation with the distance from
the camera. In the case of the arbitrarily chosen participant,
the relative error is suspected to arise from the physical
discrepancies of the participant, as well as slight deviations
from the conventional pose. This participant has a height of
1.83 m, shoulder-to-shoulder distance of 40 cm, and shoulder-
to-elbow distance of 31 cm, which represents increases of
7.65%, 5.26%, and 3.33% with respect to the reference value,
respectively. Therefore, poses relying on height, such as poses
1, 2, 3, 6, and 7, are more prone to errors compared to poses
4 and 5 for this specific participant.

As a final note, the average relative errors seem to be
distance-independent, which means that the absolute errors
vary linearly with the distance from the UGV. Relative errors
can be as low as <1% but also as high as >20%, depending
on the pose and the physical characteristics of the SaR victim.
Therefore, depending on the requirements of the mission,

13

Fig. 15. Depth estimation averages, standard deviations, and extremum for 1.5m (left) and 3m (right) distance from the UGV.

Fig. 16. Average relative errors for a 1.5m and 3m distance to UGV for an
arbitrarily chosen participant and across all the participants.

the algorithm can prove to be sufficient or not. Taking into
account that the photographs were taken in a well-lit and
unobstructed environment, the results are expected to degrade
in challenging SaR scenarios. For that reason, even though
the results are promising to some extent, it is extremely likely
that they require improvement before being applied in real
life. Regarding the possibility of processing the photographs
in real-time, in 10 runs of the algorithm, the 336 photographs
took between 83.38 and 93.43 seconds to post-process, which
averages 0.248 to 0.278 seconds per photograph. Since the
photographs are captured at 15 fps, an acceleration of around
3.75x is required to achieve real-time processing. Ideally, this
should be achieved through code optimization and not through
more expensive hardware. Improvements on the proposed
approach can also be achieved by adding a UAV to assist the
UGV in detecting and localizing SaR victims, which leads to
the following tracking experiment.

B. Object Tracking

Upon finishing the offline processing of all videos, the
estimated volleyball trajectories were compared against the
ground truth, employing different performance metrics. While
each of the metrics gives an indication of how close a
trajectory is to the ground truth, relying on a standalone
metric proves to be ambiguous. For that reason, the results are

analyzed by comparing the values for Root Mean Square Error
(RMSE), extreme deviation, and area ratio. The RMSE shows
how close the estimated volleyball paths are to the real ones
on average. Extreme deviation spots where these estimates and
the ground truth stray the farthest. The area ratio refers to the
percentage of the area enclosed by the ground truth that is
covered by the estimated trajectory. It thus checks how well
the overall shapes match. Exploiting all three gives a better
idea of how accurate the estimations are overall. Contrary
to expectations, the obstacles proved to be too challenging
for the UGV. The fact that the tracked object is a volleyball
instead of a human increases the difficulty of the task, as the
object is smaller and with a less distinctive pattern. Thus, in
the presence of a cluttered environment with shadows, the
UGV makes practically no detection, making it inapplicable to
generate an estimated trajectory. For this reason, the analysis
is performed for r = 0.75, 1.0, 1.25 m with unobstructed
views and for r = 1.25 m with obstacles placed for the UAV
only. The performance metrics for the UGV only, UAV only,
and UGV-UAV collaboration in these scenarios are shown in
Table III, where the best performance for each metric and
scenario is highlighted in bold. To make the analysis more
visual, the performance metrics should be accompanied by a
visual inspection of Figures 17, 18, 19, and 20, which depict
the estimated trajectories for r = 0.75, 1, 1.25 m and for
r = 1.25 m with obstacles for the UAV, respectively. As
expected, the metrics tend to degrade with increasing values
of r and in cluttered environments.

As can be seen from Table III, the RMSE for the UGV-UAV
collaboration sits between the RMSE for each robot alone
in the four scenarios. Since the RMSE should ideally be as
low as possible, the UGV-UAV seems to be a compromise
between the two robots alone. On the one hand, it captures
trends from one of the robots, which are closer to the real
trajectory. On the other, it tends to deviate from the real
trajectory if the measurements from at least one of the robots
also deviate. This happens because no delay is assumed to exist
in transmitting data from the robots to the external computer,
making it synchronized. It is also stated that it is not always
the same robot that performs better alone. In some of the
scenarios, the UGV yields more promising results, while in
others, the UAV presents better performance metrics. Given

14

TABLE III
PERFORMANCE METRICS FOR DIFFERENT SETUPS AND TRAJECTORIES

r (m) RMSE/r (%) [−] Extreme Deviation [m] Area Ratio (%) [−]

UGV UAV UGV-UAV UGV UAV UGV-UAV UGV UAV UGV-UAV

0.75 77.218 89.492 88.090 1.5811 1.5600 1.5600 39.769 97.895 96.557
1.0 93.440 79.492 85.697 2.1608 1.7575 1.9561 64.832 86.568 93.551
1.25 95.028 62.681 79.992 3.4031 1.7921 2.3525 55.183 26.980 65.447
1.25-obstacles 95.028 100.946 98.035 3.4031 3.6800 2.4621 55.183 37.896 78.164

Fig. 17. Estimated object trajectories for r = 0.75 m. UGV alone (left), UAV alone (middle), and UGV-UAV collaboration (right).

Fig. 18. Estimated object trajectories for r = 1.0 m. UGV alone (left), UAV alone (middle), and UGV-UAV collaboration (right).

Fig. 19. Estimated object trajectories for r = 1.25 m. UGV alone (left), UAV alone (middle), and UGV-UAV collaboration (right).

15

Fig. 20. Estimated object trajectories for r = 1.25 m with obstacles for the UAV. UGV alone (left), UAV alone (middle), and UGV-UAV collaboration (right).

that their standalone performances chiefly depended on their
measurements, it is impractical to predict beforehand which
of the two robots will perform better when the scenario is
unknown, as this depends on the obstacles and the movements
of the robots. For this reason, even though the UGV-UAV setup
is not the best solution when it comes to RMSE in any of the
scenarios specifically, it still represents the most advantageous
compromise overall to handle an unknown scenario.

Regarding the extreme deviations from the true trajectory,
the UAV produces the best results whenever its view is unob-
structed. As a consequence, if small extreme deviations from
the true trajectory are the most vital requirement in a particular
mission and the scenario is known to be unobstructed, using
a UAV standalone seems to be the best solution. A plausible
reason for this phenomenon is that the camera from the UAV
captures more fps. Due to the increased frame capture rate,
it captures more points closer to each other, preventing the
motion model in the KF from reaching higher velocities and
deviating extremely from the true trajectory. Nevertheless,
when the view of the UAV is obstructed, the amount of
time with no measurements increases, allowing the estimated
trajectory to deviate from the true trajectory significantly.
That being the case, a UGV-UAV can significantly enhance
performance, given that measurements from the UGV are
extremely valuable when there are no measurements from the
UAV for a long time.

The area ratio is the performance metric where a UGV-
UAV collaboration stands out the most. As can be observed in
the estimated trajectories, the UGV-UAV does an auspicious
job of keeping the shape of the estimated trajectory close to
a circle. When r = 1.25 m with an unobstructed view, the
metric degrades since it is the only occasion where none of
the robots detects the object in the first instants. While there is
no information on the whereabouts of the object, it is assumed
to be at the center of the Cyber Zoo (x, y) = (0, 0). Thus,
the shape of the estimated trajectory is significantly impacted.
These findings are supported by the results presented in Ta-
ble III, where the UGV-UAV collaboration scores the highest
or very close to the highest, with a significant improvement
to any of the two standalone robots.

Regarding the time to process the videos offline with the
external computer, in 10 runs of a 10-second video for the
ground view, the estimated trajectory takes between 19.41 and
22.30 seconds to obtain. Similarly, a 10-second video for the

aerial view takes between 20.16 and 22.68 seconds to process.
The collaborative setup takes between 36.68 and 42.19 seconds
to generate the estimated trajectory. Thus, as expected, the
computing power required to achieve a collaborative mission
almost doubles. The code should be optimized to yield 4x
acceleration if real-time processing is aimed.

In concluding remarks, metrics degrade with increasing r
and in the presence of challenging environments. The col-
laboration between the robots appears to particularly enhance
the area covered ratio. Nevertheless, it also plays a role in
achieving a compromise in the RMSE obtained and improving
the extreme deviation, especially in cluttered environments,
provided that communication is smooth and with no substan-
tial delays. The need to include both robots depends on the
intricacies of the scenario, namely whether a larger or smaller
area needs to be covered and on the presence of obstacles.
It is likely that for unobstructed narrow-area trajectories, the
deployment of one robot suffices. Particularly, the standalone
UAV offers more encouraging results when compared to the
standalone UGV. If a wide-area trajectory with obstacles needs
to be tracked, the deployment of both robots is advisable. In
cases where utmost precision is required, carefully planning
the motion of the robots and even the possibility of deploying
more robots need to be considered.

C. Elevation Map Generation
Subsequent to receiving the video feeds from the UGV, a

frame where the signaling object was dropped and is in contact
with the ground is selected. For this frame, the algorithm uses
the procedure described in the methodology to determine the
point where the object is touching the ground, the point where
it would touch the ground if it were flat, and the elevation
in pixels. Unless specified, the algorithm assumes by default
that the UAV only carries and drops the object, and does not
provide assistance in elevation determination. It is vital to note
that throughout the analysis, the effect of partial occlusion in
the signaling object was mitigated by taking the width of the
object as explained in the methodology.

An example of the output of the algorithm is provided in
Figure 21. In 10 runs of this experiment, the photograph takes
between 0.54 and 0.62 seconds to be processed via the external
computer. Given that real-time processing requires processing
15 fps for the UGV, the code requires around 9x acceleration
to achieve it.

16

Fig. 21. When processing the video frame, the algorithm draws the point
where the target object touches the ground (red), the point where it would
touch the ground if the ground was flat (blue), and the line connecting them,
which represents e (green). The photograph has reduced quality since the
UGV captured it while moving.

In this frame, the ground distance from the UGV to the
signaling object is 2 m, while the height of the box is 20 cm.
The algorithm outputs a depth estimate of 2.091 m and an
elevation estimate of 18.13 cm, representing relative errors of
4.55% and 9.35%, respectively. Even though this result is en-
couraging, it is crucial to test the performance of the algorithm
when the UGV is positioned at different ground distances
from the signaling object and in varying elevations. For this
purpose, Figure 22 displays the distribution of measurements
and relative errors for different depths and elevations when the
UAV does not assist the UGV in determining the elevation.

From the top left plot in Figure 22, it is noticeable that
the depth distribution from the UGV follows the perfect esti-
mate closely. Apparently, for shorter distances, the algorithm
slightly overestimates the depth, while for larger distances, the
algorithm tends to underestimate it. Although the explanation
for this occurrence is not trivial, it is suspected to be related
to lens distortion, reduced resolution for larger distances, and
the need for more precise calibration at larger distances. Even
though the elevation is, to some degree, underestimated for
the depth of 4 m, the data seems to be marginally above the
perfect estimate across all distances. Consequently, elevation
is expected to be generally underestimated, which is confirmed
in the estimated elevation distribution. Looking at the relative
errors, the curves appear to have inverse trends. While the
depth relative errors tend to increase with decreasing depth,
the elevation relative errors tend to increase with increasing the
depth and, more specifically, with decreasing the elevation.
Both of these trends are according to the expectations. For
smaller depths, any deviation from reality has a higher impact
on the depth relative error. Since the estimate for the elevation
depends on the estimate for the depth, the errors for the
elevation are a consequence of both error sources. Even though
for larger depths, the depth relative errors typically decrease,
the absolute errors slightly increase as observable in the depth
distribution. This error propagates and has a higher impact
on the elevation relative error when the elevation is small. As

observed in the 3D graphs, the depth relative errors range from
around 2% to 25%, whereas the elevation relative errors range
from around 0% to 35%.

In order to assess the improvement in cases where the UAV
provides a precise measurement of the ground distance to the
signaling object to the UGV, Figure 23 portrays the elevation
distribution and relative errors in the same scenarios, with UAV
assistance. The depth distribution and relative errors are not
shown since they are assumed to be perfect, with inexistent
errors.

Judging by the elevation distribution, it is clear that, even
though the median values practically did not change, the
dispersion of elevations around the mean is significantly
reduced. In this layout, the average relative errors are also
notoriously mitigated. Except for one data point, the relative
errors are lower than 13% in all instances. The data point
corresponding to an elevation of 25 cm and to a depth of
4 m appears to be an outlier, where nearly no error was
mitigated. Thus, for this data point, in particular, the error
originates entirely from the elevation perception and is not
related to a misleading depth estimate. An explanation for
this happening relies on the fact that the homography matrix
responsible for mapping the depth into real-world coordinates
was calibrated using reference points up to distances of 3 m
only. This finding highlights the importance of calibrating the
camera and homography matrices using reference points that
cover most of the areas of interest.

To recapitulate, there are two main sources of elevation error
in the proposed setup, namely depth estimation and subse-
quent elevation estimation. Depth estimation errors originate
mainly from assuming a simplified pinhole camera model and
low image resolution, which leads to inaccuracies in object
detection. In practical scenarios, occasional partial occlusion
of the signaling object also plays a role. Ideally, the UAV
supports the UGV in this task. As for elevation estimation
errors, in addition to the same error sources, they also originate
from inadequate homography calibration in particular regions.
Furthermore, the simplified pinhole camera model plays a
bigger role, since camera equations are applied twice, instead
of just once. Without the assistance of the UAV, relative
elevation errors distribute virtually homogeneously between
0% and 35%. With the assistance of the UAV, they sit below
13%, except for a particular data point where a relative error of
35% is reached. Since these results are generated in a well-lit
environment, and the UGV is assumed to be aligned with the
signaling object, these metrics are susceptible to degradation
in more challenging scenarios. Moreover, depth values and
elevation values encompassing a wider state-space region are
also expected to further challenge these metrics. As with the
discussion of other experiments, the applicability of the studied
approach largely depends on the requirements of the mission.
It is anticipated that the setup is not suitable for high-precision
applications, such as for terrain mapping for construction. The
pertinence of its employment in SaR missions depends on the
characteristics of the terrain, which can be extremely hilly or
relatively flat, and of the area to be covered.

17

Fig. 22. Top: Depth distribution (left) and relative errors (right) without assistance from the UAV. Bottom: Elevation distribution (left) and relative errors
(right) without assistance from the UAV.

Fig. 23. Elevation distribution (left) and relative errors (right) assuming that the UAV provides a perfect estimate for depth.

18

VII. LIMITATIONS & FUTURE WORK

The current section goes through the limitations of the work,
as well as suggestions on how it can be improved in the future.
Even though some of the limitations have been mentioned
throughout the paper, they are revisited to be discussed further.

A general limitation of the work is that it is not yet
developed for real-time applications. To achieve this, it is
essential to go through the code and make sure that no
unnecessary computations are being performed. Furthermore,
YOLO is known to have several times (often 10x or more)
faster inference speeds with GPU acceleration. It is also always
possible to use an external computer with more processing
power, making real-time applications seem feasible. Onboard
processing seems less likely, especially for elevation mapping.
For the first set of experiments, an improvement of 3.75x is
required using one-third of the processing power, resulting in
an overall 11.25x boost. The object tracking task required a 4x
time optimization using two-thirds of the processing power,
resulting in an overall 6x acceleration. However, elevation
mapping is expected to require 9x acceleration using one-
third of the processing capability, representing an overall 27x
boost and making it look far unrealistic. Nevertheless, it is
recommended to double-check these assumptions, optimize
the code and hardware, and attempt to achieve real-time
onboard processing. The need to communicate to a central
station for the computations to be performed is another central
limitation. In an ideal setup, no external computer should be
required. Furthermore, the study is limited in not considering
the addition of further UGVs and UAVs to the robot team. This
can enable increased accuracy in the depth estimation tasks
through triangulation of the estimates of several robots, as well
as the possibility of tracking more SaR victims simultaneously
and having UAVs sequentially drop and pick up signaling
objects to map the elevation in wider areas in a shorter amount
of time.

Regarding the first set of experiments related to human
depth estimation, a major limitation is a dependency on well-lit
environments to achieve proper results. It is essential to make
the system more robust to challenging environments, such as
the presence of smoke or dark environments. For this purpose,
similar approaches can be tested with thermal cameras instead
of RGB cameras. Furthermore, in the set of poses studied, only
one of the three measurements is taken to compare against the
reference, and the one that yields the best results is used for
each pose. Nevertheless, the algorithm should be able to au-
tonomously identify which measurement to take as a reference
and to merge information from different body measurements to
make an even more informed estimate. It is also interesting to
run the algorithm in non-conventional human poses, which are
not so common in the COCO dataset, and to check whether the
results are significantly degraded. The algorithm should also
be tested for individuals who deviate the most from pattern
measurements, such as for children and for individuals with
a limb loss. Lastly, even though the program already includes
a module to estimate the location of the missing key points
based on the body symmetry and proportions, this has only
been put into practice during the experiments when the face

and the shoulders of some participants were not caught on
the camera at short distances. It is, therefore, crucial to put
it into a challenge by collecting and processing photographs
of participants surrounded by different obstacles. Furthermore,
real-time deployment was not yet achieved and is encouraged.

One of the major limitations of the second set of experi-
ments is the lack of coordination and motion planning of the
robots. They are assumed to be still since their motion planning
is out of the scope of the project due to time constraints.
Nevertheless, an effective coordination of the movements of
the robots is expected to enhance the advantages of the
heterogeneous robot team. As they navigate, robots can adeptly
deviate from potential obstructions, ensuring a clearer line of
sight and maneuverability within the environment. Further-
more, in instances where a specific area demands heightened
attention or presents challenges, one robot can coordinate with
another robot to cover that particular zone at any given time.
Further investigation is also required into the efforts of getting
the tracking algorithm to run in real-time and ideally onboard,
since this is absolutely vital in tracking tasks. The impact
of delays in transmitting the information, that can make the
measurements and their receipt by the robots asynchronous,
should also be considered, and the impacts should be assessed.
Moreover, the trajectory estimation approach proposed in this
research, should be tested for ground truth trajectories of other
shapes, such as ellipses, straight lines, or random trajectories.
Moreover, it is of interest to include wider outdoor trajectories
and trajectories with varying speed magnitudes. By including
a diverse set of typical SaR victim trajectories, it is also
possible to predict whether another state estimator, such as
a Particle Filter, an EKF, or a UKF, is more precise than
a simple KF for this task. In addition, the volleyball posed
several challenges due to its small size and non-distinctive
pattern, causing the UGV to barely detect the ball in the
presence of obstacles. Since the ultimate goal is to track the
movements of humans, which are easier for YOLO to detect,
real humans should be included in the experiments. When
doing so, experiments should also be performed containing
several human trajectories simultaneously. To handle multi-
trajectory situations effectively, the algorithm needs to be
extended to distinguish the data points that belong to each
SaR victim, making it more complex but also more realistic.

As for the elevation mapping, the need to optimize the
algorithm to run onboard and in real time persists. Since
calibrating the homography matrix using more reference points
is expected to make the algorithm more precise but also slower
to run, it is crucial to investigate how many reference points
can be added while keeping the running times low enough
for real-time applications. Furthermore, the results hint that
implementing a simplified pinhole camera model originates
significant errors that are not fully mitigated even with the
assistance of the UAV. Therefore, the prospect of including a
more complex camera model that captures optical phenomena
such as lens distortion and parallax is worth looking into.
Moreover, the UAV should be able to autonomously identify
regions of interest to determine the elevation, such as areas
where there is a concentration of SaR victims or areas where
the terrain looks particularly challenging. Subsequently, it

19

should autonomously drop the object. Lastly, in the current
approach, the UAV carries only one object at a time and needs
to pick it up and transport it somewhere else for the elevation
at a different point to be estimated. Future work should explore
possibilities to make this process scalable. An option includes
carrying a larger number of small signaling objects.

VIII. CONCLUSIONS

The research objective included leveraging the complemen-
tary capabilities of flying and ground robots to deliver an
affordable and effective SaR solution. For this purpose, a
few typical SaR tasks were performed experimentally, namely
estimating human depth from photographs using pose es-
timation, tracking the trajectory of an object by applying
data fusion, and estimating terrain elevation. To ensure a
simplistic setup and to keep the hardware costs low, these
tasks were performed requiring visual depiction only, through
photographs and videos.

The depth estimation experiment revealed the potential of
the algorithm for accurately estimating human depth from
photographs, yet unveiled its susceptibility to variations in
poses. Even though most of the average relative errors origi-
nating from the algorithm are below 10%, they can also soar
above 20% in specific circumstances. Such nuanced findings
underscore the need for more robust algorithms capable of
performing reliably beyond controlled environments and hint
at the benefit of having access to an aerial view of the scene.
The need to integrate the proposed system into a broader depth
estimation module, which includes other forms of sensing,
such as thermal imaging and acoustic sensing, remains a
priority.

When tracking the trajectories of objects, the collaborative
advantage of deploying both aerial and ground robots is
evident in keeping the overall shape of the trajectory close
to the true trajectory. Furthermore, this setup is more fault-
safe in keeping a low RMSE and in preventing large extreme
deviations, especially in cluttered environments. Overall, for
unobstructed narrow-area trajectories, the deployment of one
robot suffices. Particularly, the standalone UAV offers more
encouraging results when compared to the standalone UGV.
For wide-area trajectories with obstacles, the advantages of
deploying both robots are more evident. In the widest trajec-
tory simulated and in the presence of obstacles to the aerial
view, the deployment of both robots showcased a reduction
of 28% in the extreme deviation of the true trajectory, and
an increase of 42% in the area covered ratio compared to
the best-performing robot. The ability to navigate obstacles
and maintain precision in diverse environments remains a
challenge that demands further attention.

The proposed setup for elevation mapping faces two pri-
mary elevation error sources: depth estimation and subsequent
elevation estimation. Depth estimation inaccuracies stem from
simplified camera models and low image resolution, impacting
object detection, compounded by occasional object occlusion.
Elevation errors also result from poor homography calibration
in specific regions, exacerbated by the double application
of the simplified camera model. Without UAV assistance,

elevation relative errors range from 0% to 35%, dropping to
under 13% with the UAV help, except for one instance reach-
ing 35%. These findings, observed in well-lit scenarios with
aligned UGV-object settings, are expected to degrade in more
challenging environments. The suitability of the approach
varies: it does not meet high-precision needs but could find
utility in SaR missions contingent on terrain characteristics
and coverage area. Future work should delve into making this
process adequate for real-time processing and scalable.

Collectively, these experiments represent notable progress
in leveraging visual data and robotic capabilities for SaR.
However, they also serve as a poignant reminder of the
multifaceted nature of real-world scenarios, where dynamic
and unpredictable conditions demand adaptable, versatile, and
resilient systems. While running these experiments in real-
time seems realistic, running them onboard is more daunting,
especially for the elevation mapping task. Moving forward,
bridging the gap between experimental findings and real-
world deployment remains imperative. Addressing the identi-
fied limitations by refining algorithms, enhancing collaborative
robot functionalities, and devising adaptable strategies tailored
to diverse SaR scenarios will be pivotal. In essence, while
these experiments mark significant strides in harnessing visual-
based techniques within robotic systems for SaR missions,
they contribute to an ongoing journey towards more effective,
adaptable, and accessible solutions vital for saving lives.

REFERENCES

[1] R. T. Newkirk, “The increasing cost of disasters in developed countries:
A challenge to local planning and government,” Journal of Contingencies
and Crisis Management, vol. 9, no. 3, pp. 159–170, Dec. 2001.

[2] M. Zorn, Natural Disasters and Less Developed Countries, S. Pelc and
M. Koderman, Eds. Springer International Publishing, Cham, Switzer-
land, Aug. 2018, pp. 59–78.

[3] R. R. Murphy, S. Tadokoro, and A. Kleiner, Disaster Robotics, B. Sicil-
iano and O. Khatib, Eds. Springer International Publishing, Heidelberg,
Germany, Jan. 2016, pp. 1577–1604.

[4] J. Qi, D. Song, H. Shang, N. Wang, C. Hua, C. Wu, X. Qi, and J.
Han, “Search and rescue rotary-wing UAV and its application to the
Lushan Ms 7.0 earthquake,” Journal of Field Robotics, vol. 33, no. 3,
pp. 290–321, Jul. 2016

[5] J. P. Zelten, “Digital photography and the dynamics of technology
innovation,” Ph.D. dissertation, Massachusetts Institute of Technology,
Massachusetts, USA, Feb. 2002

[6] I. C. Condotta, T. M. Brown-Brandl, S. K. Pitla, J. P. Stinn, and K. O.
Silva-Miranda, “Evaluation of low-cost depth cameras for agricultural
applications,” Computers and Electronics in Agriculture, vol. 173, pp.
105-394, Jun. 2020

[7] A. P. Hill, P. Prince, J. L. Snaddon, C. P. Doncaster, and A. Rogers,
“Audiomoth: A low-cost acoustic device for monitoring biodiversity and
the environment,” HardwareX, vol. 6, no. e00073, Oct. 2019

[8] H. H. Titi, Feasibility Study for a Freeway Corridor Infrastructure Health
Monitoring (HM) Instrumentation Testbed. Wisconsin DOT Research &
Library Unit, Wisconsin, USA, Jul. 2012

[9] L. Zhaohua and G. Bochao, “Radar sensors in automatic driving cars,”
in 2020 5th International Conference on Electromechanical Control
Technology and Transportation (ICECTT), Nanchang, China: IEEE, Oct.
2020, pp. 239–242

[10] S. Hummel, A. Hudak, E. Uebler, M. Falkowski, and K. Megown, “A
comparison of accuracy and cost of lidar versus stand exam data for
landscape management on the Malheur National Forest,” Journal of
Forestry, vol. 109, pp. 267–273, Jul. 2011

[11] D. Van Nam and K. Gon-Woo, “Solid-state lidar based-slam: A concise
review and application,” in 2021 IEEE International Conference on Big
Data and Smart Computing (BigComp), Jeju Island, Korea (South):
IEEE, Jan. 2021, pp. 302–305

20

[12] P. Fankhauser, M. Bloesch, P. Krüsi, R. Diethelm, M. Wermelinger, T.
Schneider, M. Dymczyk, M. Hutter, and R. Siegwart, “Collaborative
navigation for flying and walking robots,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Daejeon,
South Korea: IEEE, Dec. 2016, pp. 2859–2866

[13] J. Delmerico, E. Mueggler, J. Nitsch, and D. Scaramuzza, “Active
autonomous aerial exploration for ground robot path planning,” IEEE
Robotics and Automation Letters, vol. 2, no. 2, pp. 664–671, Jan. 2017

[14] C. D. Rodin, L. N. de Lima, F. A. de Alcantara Andrade, D. B. Haddad,
T. A. Johansen, and R. Storvold, “Object classification in thermal images
using convolutional neural networks for search and rescue missions with
unmanned aerial systems,” in 2018 International Joint Conference on
Neural Networks (IJCNN), Rio de Janeiro, Brazil: IEEE, Oct. 2018, pp.
1–8

[15] J. McGee, S. J. Mathew, and F. Gonzalez, “Unmanned aerial vehicle and
artificial intelligence for thermal target detection in search and rescue
applications,” in 2020 International Conference on Unmanned Aircraft
Systems (ICUAS), Athens, Greece: IEEE, Sep. 2020, pp. 883–891

[16] D. Falconer, R. Ficklin, and K. Konolige, “Robot-mounted through-wall
radar for detecting, locating, and identifying building occupants,” in
Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings, vol.
2, San Francisco, CA, USA: IEEE, Apr. 2000, pp. 1868–1875

[17] J. Geisheimer, W. Marshall, and E. Greneker, “A continuous-wave (cw)
radar for gait analysis,” in Conference Record of Thirty-Fifth Asilomar
Conference on Signals, Systems and Computers, vol. 1, Pacific Grove,
CA, USA: IEEE, Nov. 2001, pp. 834–838

[18] Q. Zhou, J. Liu, A. Host-Madsen, O. Boric-Lubecke, and V. Lubecke,
“Detection of multiple heartbeats using doppler radar,” in 2006 IEEE
International Conference on Acoustics Speech and Signal Processing
Proceedings, vol. 2, Toulouse, France: IEEE, May 2006, pp. II–II

[19] M. B. Bejiga, A. Zeggada, and F. Melgani, “Convolutional neural
networks for near real-time object detection from UAV imagery in
avalanche search and rescue operations,” in 2016 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China:
IEEE, Jul. 2016, pp. 693–696

[20] V. A. Feraru, R. E. Andersen, and E. Boukas, “Towards an autonomous
UAV-based system to assist search and rescue operations in man
overboard incidents,” in 2020 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR), Abu Dhabi, United Arab Emi-
rates: IEEE, Nov. 2020, pp. 57–64

[21] I. Martinez-Alpiste, G. Golcarenarenji, Q. Wang, and J. M. Alcaraz-
Calero, “Search and rescue operation using UAVs: A case study,” Expert
Systems with Applications, vol. 178, pp. 114-937, Sep. 2021

[22] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of YOLO
algorithm developments,” Procedia Computer Science, volume 199,
pages 1066–1073, Oct. 2022

[23] N. D. Nath, C.-S. Cheng, and A. H. Behzadan, “Drone mapping of
damage information in GPS-denied disaster sites,” Advanced Engineer-
ing Informatics, vol. 51, pp. 101-450, Jan. 2022

[24] L. Xing, X. Fan, Y. Dong, Z. Xiong, L. Xing, Y. Yang, H. Bai, and
C. Zhou, “Multi-UAV cooperative system for search and rescue based
on YOLOv5,” International Journal of Disaster Risk Reduction, vol. 76,
pp. 102-972, Jun. 2022

[25] Y. I. Putra, A. H. Alasiry, A. Darmawan, H. Oktavianto, and Z. M.
E. Darmawan, “Camera-based object detection and identification using
YOLO method for Indonesian search and rescue robot competition,” in
2022 5th International Seminar on Research of Information Technology
and Intelligent Systems (ISRITI), Yogyakarta, Indonesia: IEEE, Dec.
2022, pp. 508–513

[26] M. Adel Musallam, R. Baptista, K. Al Ismaeil, and D. Aouada, “Tem-
poral 3d human pose estimation for action recognition from arbitrary
viewpoints,” in 2019 International Conference on Computational Science
and Computational Intelligence (CSCI), Las Vegas, NV, USA: IEEE,
Dec. 2019, pp. 253–258

[27] S. Vasuhi, M. Vijayakumar, and V. Vaidehi, “Real time multiple human
tracking using Kalman filter,” in 2015 3rd International Conference on
Signal Processing, Communication and Networking (ICSCN), Chennai,
India: IEEE, Mar. 2015, pp. 1–6

[28] P. Li, T. Zhang, and B. Ma, “Unscented Kalman filter for visual curve
tracking,” Image and Vision Computing, vol. 22, no. 2, pp. 157–164,
Feb. 2004

[29] A. Howard and H. Seraji, “Vision-based terrain characterization and
traversability assessment,”Journal of Robotic Systems, vol. 18, no. 10,
pp. 577–587, Apr. 2001

[30] G. Jocher, A. Chaurasia, and J. Qiu, YOLO by Ultralytics, version 8.0.0,
Jan. 2023. [Online]. Available: https://github.com/ultralytics/ultralytics

[31] C. D. Fryar, Q. Gu, C. L. Ogden, and K. M. Flegal, “Anthropometric
reference data for children and adults; USA, 2011-2014,” Vital and
health statistics. Series 3, Data from the National Health and Nutrition
Examination Survey, vol. 39, Aug. 2016

*This part has been assessed for the course AE4020 Literature Study.

Part II
Preliminary Analysis

25

3
Literature Review

3.1. Introduction
Natural disasters are a significant and growing threat to human health and safety, with an increasing

frequency and cost of damage. In recent decades, the number and severity of natural disasters have

risen dramatically, highlighting the need for effective disaster management [7]. Thus, optimizing search

and rescue (SaR) operations has become a hot research topic in academia and industry due to their

importance in mitigating further life losses and injuries. In the case of the least developed countries, the risk

is particularly concerning, as nearly 90% of disaster-related deaths and 98% of people affected by disasters

between 1991 and 2005 occurred in these countries [8]. Therefore, it is vital to make SaR operations not

only more reliable but also more accessible.

In the past twenty years, SaR has become increasingly augmented with robotics [16]. Besides being

able to traverse hazardous environments, robots have the capability of mapping environments in a fast and

automated way. This competence makes them vital in disaster response effectiveness since survival rates

drop steeply in the aftermath of a catastrophe. For example, the survival rate to a very strong earthquake

(surface wave magnitude of 7.0) dropped from 91% in the first thirty minutes to 36.7% at the end of the

second day [17]. Therefore, even if the robots do not perform the actual rescue themselves, providing a

reliable map of the location of the victims speeds up the mission planning and increases its chances of

success. For this thesis, the collaboration between an unmanned ground vehicle (UGV) and an unmanned

aerial vehicle (UAV) is proposed to localize as many victims as possible in a SaR scenario.

3.1.1. Research scope
The scope of the research encompasses the design and hardware implementation of a UGV-UAV collabo-

ration software, including processing the captured images from their cameras. The research focus for the

thesis is developing a fast and low-cost solution to create a global map containing the coordinates of the

detected victims.

The proposed hardware implementations and experiments will be conducted in the Cyber Zoo at the

Delft University of Technology. The UGV used in this project is a differential drive robot equipped with a

camera whose purpose is to detect victims from the ground. The UAV is a quadcopter equipped with a

single camera, whose purpose is to provide a rough map of the scenario through aerial photographs.

3.1.2. Literature review objective
Both UGVs and UAVs have been applied to SaR missions in the past. UAVs provide affordable access to

aerial data and are known for their ability to scan large areas in a small amount of time. However, their

camera is subject to tilting motions that often result in reduced image quality. UGVs are typically slower at

covering large areas due to rough terrain and a smaller angle of view. Nevertheless, they are better suited

to carrying weights, accessing confined spaces, and taking high-quality photographs. Thus, combining the

advantages of both types of robots is promising to improve the performance of the team. The research

objective for the literature review given below is motivated by this logic:

The literature review delves into the development of an affordable autonomous UGV-UAV

collaborative team to create a global map of the locations of victims in SaR scenarios.

26

3.1. Introduction 27

In order to address the research objective, it is first necessary to define the different fields that potentially

contain research gaps to be addressed.

The role of the drone is to fly to an area dictated by the ground robot, explore it and transmit raw aerial

photographs of the scenario. Thus, the first sub-objective of the research is to learn how to process the

photographs to extract the locations of obstacles and victims in an efficient way. Paparazzi open-source

software is to be used for the motion planning of the drone.

The role of the ground robot is to transmit photographs from the ground and visit all the victims while

avoiding obstacles. Hence, the images taken by the ground robot also need to be processed and merged

with the photographs received from the drone to create a global map, which constitutes another sub-

objective of this research. After generating the global map, the UGV adopts a target-oriented strategy

to visit all victims as fast as possible while avoiding obstacles. For this purpose, a suitable mission and

motion planning algorithm has to be chosen. This report reviews three promising solutions: Fuzzy Logic

Control (FLC), Model Predictive Control (MPC), and search algorithms. Hence, the last sub-objective

emerging from the UGV is familiarising these control strategies and path planning algorithms.

3.1.3. Literature review research questions
The objective and sub-objectives raise several research questions, forming the direction for the literature

review.

1. How to process the consecutive aerial photographs and merge the photographs from the UGV and

the UAV?

(a) Which object classification algorithms are the most suitable for accuracy and ease of implemen-

tation?

(b) How to make sure that an object captured from two different points of view is, in fact, the same

object?

(c) How to scale the dimensions of the objects in an autonomous way?

(d) How to assess if the information transmitted by the UAV is relevant?

2. How to make the two robots communicate effectively?

3. What state of the art algorithm should be used to plan the path and motion of the UGV?

3.1.4. Literature review structure
The literature review finds research supporting a thesis that can answer the research questions and

fulfill the research objectives. In Section 3.1, the relevance of the project is discussed. Furthermore, the

project is clearly stated by defining its scope and objectives. Then, in Section 3.2, an overview of different

image processing algorithms is given. This includes object classification algorithms and techniques to

fuse the information in the images taken from different points of view. One of the most crucial aspects to

ensure the effectiveness of the system is the functional communication between the UGV and the UAV.

Hence, Section 3.3 is dedicated to describing communication protocols for the sequential and concurrent

deployment of the two robots. Subsequently, Section 3.4 inspects the state of the art FLC-based controllers,

MPC-based controllers, and search algorithms for path planning. The literature review is concluded in

Section 3.5 by providing a summary of the literature review and by identifying possible improvements in

future work based on research gaps found in the literature. An overview of the structure of the literature

review is given in Table 3.1.

3.2. Image Processing 28

Table 3.1: Literature review structure. Own elaboration.

Chapter Content Research Questions

3.1 Introduction Problem Definition, Research Ques-

tions

-

3.2 Image Processing Object Classification and Image Fu-

sion

1a & 1b & 1c & 1d

3.3 Communication Protocols Sequential Deployment, Concurrent

Deployment, Design Considerations

2

3.4 Control Strategies and Path

Planning

Fuzzy Logic Control, Model Predic-

tive Control and Search Algorithms

3

3.5 Conclusion Literature Review Summary -

3.2. Image Processing
One of the main goals of the research is the post-processing of photographs collected by the UGV and

the UAV. Thus, the current chapter provides an extensive literature review on object classification and

image fusion. Firstly, the photographs must be analyzed to extract relevant information, such as detecting

and categorizing objects as obstacles or victims, to answer Question 1(a). To achieve this, Section 3.2.1

focuses on assessing the state of the art object detection algorithms. Once the objects have been detected,

the images taken from two different angles of view must be fused. By performing image fusion, it is

expected that errors and uncertainty are decreased. Hence, Section 3.2.2 evaluates topics such as object

matching and scaling to address Questions 1(b) and 1(c), respectively. It is then essential to determine

when the images taken by the UAV are not enhancing the operation of the UGV and discard them when

that is the case to fulfill the purpose of Question 1(d). The chapter concludes with a discussion of the

essential findings and an assessment of the impact of the review on the project in Section 3.2.3.

3.2.1. Object classification
Object classification is a crucial task in computer vision, which involves identifying and categorizing objects

in images or videos. Accurately detecting and classifying objects is crucial in various applications, ranging

from surveillance to autonomous driving and robotics. Significant advancements in computer vision have

been made in recent years, particularly deep learning-based methods. These methods have demonstrated

remarkable performance in object classification tasks, often outperforming traditional computer vision-

based methods. Nevertheless, the latter still have their own strengths and can be effective in specific

scenarios. A comparison between the two workflows is depicted in Figure 3.1.

Figure 3.1: a) Traditional computer vision workflow, and b) Deep learning workflow. Retrieved from [18].

3.2. Image Processing 29

In this section, both traditional computer vision-based and deep learning-based methods for object

classification are explored in Section 3.2.1 and Section 3.2.1. Then, Section 3.2.1 contains considerations

to help the reader choose the most suitable workflow for a specific scenario.

Traditional computer vision

Traditional computer vision-based methods involve extracting relevant features from input images, which

are then used to train classifiers or detectors, as represented in Figure 3.1. In this subsection, several

feature extraction algorithms and classifiers are examined: color-based detection, feature-based detection,

template matching, Bag of Visual Words (BoVW), and Support Vector Machines (SVMs). No distinction is

made between feature extractors and classifiers because most algorithms can have both purposes, and

numerous examples of combinations exist in the literature.

Firstly, color-based detection segments regions of an image based on their color, making it useful for

detecting objects with distinct color patterns. Color-based detection is helpful in robotics for tasks such

as identifying and sorting different colored objects in a warehouse. For instance, a robot with a color

camera and color-based detection algorithm can sort items based on their colors, such as separating

apples and oranges. As an example of this approach, Thendral et al. [19] perform a case study to quickly

and accurately identify oranges based on their color without needing physical contact or additional sensors.

Another common approach is to use feature-based detection to identify key features in an image, such

as edges or corners, and use these features to classify objects. This method is helpful in detecting objects

with distinct visual features, such as the octagonal shape of a stop sign. One of the primary applications of

the method is autonomous vehicles, where lane markings, traffic signs, and other vehicles on the road

have distinct shapes, as investigated by Chen et al. [20]. In search and rescue missions, feature-based

detection can detect humans in a disaster zone. To illustrate this, Gautham et al. [21] propose a framework

using Scale Invariant Feature Transformation (SIFT) for high-density detailed feature extractions since

disaster scenarios are characterized by their complexity. In essence, the SIFT algorithm transforms the

image into a collection of local feature vectors that are distinctive and invariable to scaling, rotations, and

translations of the image [22]. An alternative to this algorithm is to use Speeded Up Robust Features

(SURF), a concept introduced by Bay et al. [23] in 2006. SURF is generally faster and more robust, using

a more specific descriptor and a more robust method of calculating the scale and orientation. In 2006,

Rosten and Drummond [24] introduced Features from Accelerated Segment Test (FAST), a method to

extract more detailed information about key points. Unlike SIFT and SURF, FAST does not produce a

descriptor by itself, but it can be combined with the former to achieve better results.

When a template of the object is available, and the object is not expected to be occluded, template

matching is often a viable solution. It compares an input image to a predefined template image, identifying

regions of the input image that match the template. Hence, it is also particularly useful for detecting objects

with distinct shapes. An example is robotic surgery, where it can be used to detect and track surgical

instruments in real time during a procedure. This can be done by creating a template of the surgical

instrument and then using template matching to track its location and orientation in the surgical field, such

as in the work of Reiter et al. [25].

The BoVW model is also a popular technique for object recognition in computer vision. It is based

on the idea that an image can be represented as a histogram of visual words, similar to words in a text

document. In the BoVW approach, an image is first divided into small regions, and features are extracted

from each region. These features might be extracted using SIFT, SURF, or other descriptors. Then, the

features are clustered into a set of visual words, which is fundamentally a set of visual features, using a

clustering algorithm. A clustering algorithm is, in essence, a machine learning algorithm that is used to

group similar objects based on their features. An outcome is a dictionary of visual words representing the

range of features in the image. Once the visual words have been defined, an image can be represented

as a histogram of the frequency of each visual word in the image. Afterward, the histogram is used as a

classifier. This technique is used by Xu et al. [26] to classify a terrain using aerial images.

SVMs are the most common classifiers found in the literature. The formulation was first introduced by

Cortes and Vapnik [27] in 1995. The idea behind SVM is to find the best decision boundary that separates

the data points into different classes. One of the advantages of SVM is that it has a solid theoretical

foundation based on statistical learning theory, which makes it possible to control the trade-off between

model complexity and generalization performance. Furthermore, SVM is suitable for small to medium-sized

3.2. Image Processing 30

datasets and relatively insensitive to irrelevant features. Nevertheless, it showcases limitations, including

its sensitivity to the choice of hyperparameters, its tendency to overfit on noisy datasets, and its difficulty in

handling large-scale datasets. Examples of successful SVM implementations include the work of Kavitha

and Suruliandi on melanoma detection [28] in the field of medicine and the case study performed by

Wang et al. [29] on apple harvesting robots. In autonomous driving, applications include autonomous lane

change, as investigated by Liu et al. [30].

Deep learning

Deep learning is a sub-field of machine learning that has revolutionized computer vision in recent years.

Deep learning approaches use neural networks with many layers to learn features directly from raw data,

such as images or videos, without needing handcrafted features (see Figure 3.1).

Neural networks are a class of machine learning algorithms inspired by the structure and function of

the human brain. Its most basic formulation is the perceptron, a single-layer neural network capable of

classifying linearly separable patterns. Over the years, researchers developed and refined neural network

architectures, introducing multi-layer neural networks, which allowed for non-linear pattern recognition

tasks. However, the lack of computing power and training data limited the practical application of neural

networks. With the substantial developments in computer science and backpropagation, an algorithm

for training multi-layer neural networks, neural networks gained broader acceptance in machine learning.

Backpropagation allows neural networks to learn from large amounts of labeled data and has been used to

achieve a state of the art performance on various tasks, including image recognition, speech recognition,

and natural language processing.

Artificial Neural Networks (ANNs) are computational models inspired by the structure and function of

biological neurons in the human brain. ANNs are composed of multiple layers of artificial neurons, each

receiving input from the neurons in the previous layer and producing an output passed on to the next layer

of neurons. The produced output is usually a non-linear function of a linear combination of the inputs. The

function applied by each neuron is called the activation function and is one of the design hyperparameters.

In an ANN, the input layer receives input data, which is passed through one or more hidden layers, each

consisting of multiple neurons. The final layer is the output layer, which produces the final output of the

network. The connections between neurons in an ANN are characterized by a set of weights, which are

adjusted during training to minimize the error between the predicted and actual output. Figure 3.2 displays

a typical architecture of an ANN.

Figure 3.2: A simple ANN architecture composed of a sigmoid hidden layer and a linear output layer.

Weights are represented as w, whereas biases are represented as v. Retrieved from [31].

A Deep Neural Network (DNN) is a type of ANN containing multiple hidden layers. By containing

more hidden layers, they can learn more complex and abstract representations of the input data. While

increasing the number of hidden layers can mean improved accuracy, it also leads to higher computational

intensity and a tendency to overfit.

Convolutional Neural Networks (CNNs) are a class of DNNs specifically designed for image-processing

tasks. They use a series of convolutional layers to extract features from images, with each layer learning a

set of kernels that are applied to the input image to produce a set of feature maps. These feature maps are

3.2. Image Processing 31

then passed through non-linear activation functions to introduce non-linearity into the model. The output of

the convolutional layers is then passed through one or more fully connected layers, which produce the

final classification output. A typical CNN architecture and the graphical representation of the procedure

are shown in Figure 3.3 and Figure 3.4, respectively.

Figure 3.3: A simple CNN architecture composed of five layers.

Retrieved from [32].

Figure 3.4: Graphical

representation of a CNN.

Retrieved from [31].

The main advantage of CNNs over ANNs for image processing tasks is their ability to exploit the

spatial structure of images. ANNs treat each pixel in an image as a separate input, which does not

consider the spatial relationships between pixels. In contrast, CNNs use convolutional layers to learn

spatial relationships between pixels in an image through kernels, which are matrices convolved with the

input image. Therefore, convolutional layers in CNNs can learn filters specific to different patterns. By

learning them, CNNs can recognize more complex features in images. Additionally, CNNs use pooling

layers to reduce the size of the feature maps and make them more robust to translations of the input image.

Hence, CNNs can learn translation-invariant representations, which means they can recognize an object

regardless of its position in the image. In contrast to ANNs, which can have millions of parameters, CNNs

typically have fewer parameters due to parameter sharing. The same set of filters is applied to different

input image regions, and they make use of pooling layers, which reduce the size of the feature maps.

One of the main advantages of deep learning in computer vision can also be one of its main disadvan-

tages. On the one hand, it has the ability to automatically extract relevant features from raw data, making

it possible to train models on large-scale datasets with millions of images; on the other hand, it is generally

computationally expensive, making it impractical for some applications. Essentially, deep learning models

may require large amounts of labeled data, which can be time-consuming. Furthermore, deep learning

models may be susceptible to overfitting, which occurs when the model becomes too complex and starts

to fit the training data too closely, resulting in poor performance on new data.

Dhillon and Verma [33] performed a global review of models, methodologies, and applications of CNNs

to object detection. Some of the mentioned applications include the framework suggested by Villa et al.

to monitor wild animals [34] and a technique proposed by Shan et al. for automatic recognition of facial

expressions [35]. Fundamentally, CNNs have been applied to numerous image processing applications

and form the current state of the art in object detection.

Selection considerations

Several considerations should be taken into account when selecting between traditional computer vision

algorithms and deep learning-based approaches for object classification. It is vital to highlight that there

are no complex rules regarding the best selection, as it depends on the problem. O’Mahony et al. [36]

have compared traditional computer vision and deep learning by naming the most important advantages of

each technique. In their publication, they emphasize that, even though deep learning consistently performs

better than traditional algorithms, there are still situations where using profound learning results in an

excessive workload.

There is no question that deep learning revolutionized the field of computer vision, as it introduced

the concept of end-to-end learning. The underlying patterns are discovered automatically by feeding it a

3.2. Image Processing 32

dataset of labeled images, which have been annotated with what classes of objects are present in each

image. Consequently, the traditional problem of choosing which features are essential in each given image

becomes irrelevant. Hence, the workflow of a computer vision engineer changed dramatically, where

the knowledge and expertise in extracting hand-crafted features have been replaced by knowledge and

expertise in iterating through deep learning architectures [36].

Despite the substantial change in paradigm, using deep learning can be too extreme in some situations,

as traditional computer vision techniques can solve the problem much more efficiently and in fewer lines

of code. Consider classifying two product classes on an assembly line conveyor belt, one with red paint

and one with blue paint. A deep neural network works provided that enough data can be collected to train

it. However, the same can be achieved by using simple color thresholding. One must practice common

sense when choosing which route to take for a given computer vision application [36].

An overview of the strengths and weaknesses of various image processing algorithms can be found

in Table 3.2. Siamese networks, Faster Region-based Convolutional Neural Network (R-CNN), and You

Only Look Once (YOLO) algorithms are treated in Section 3.2.2 due to their extensive applicability in

object-matching tasks.

Table 3.2: Image processing algorithms comparison. Own elaboration.

Algorithm Advantages Disadvantages

Color-based detection Simple to implement, computa-

tionally efficient

Sensitive to lighting conditions

and color variations, may re-

quire manual tuning of color

thresholds

Feature-based detection (SIFT, SURF) Robust to variations in lighting,

scale, and rotation, can handle

complex scenes

Can be computationally inten-

sive, may require manual selec-

tion and design of features, may

not work well with textureless or

repetitive scenes

Template matching Simple to implement, computa-

tionally efficient

Sensitive to variations in scale,

rotation, and lighting, requires

an accurate template

Bag of Visual Words (BoVW) Robust to variations in lighting,

scale, and rotation, can handle

complex scenes, can capture

spatial relationships between

features

Requires a large amount of

training data, can be computa-

tionally intensive, may require

manual selection and design of

features

Siamese networks Can learn to compare images

directly without relying on fea-

ture extraction, can handle vari-

ations in lighting, scale, and ro-

tation, can work well with small

datasets

Requires a large amount of

training data and computational

resources, may not generalize

well to unseen data, can be sen-

sitive to image quality

Convolutional Neural Networks (CNN) Can learn features automati-

cally from raw pixels, robust to

variations in lighting, scale, and

rotation, can handle complex

scenes

Requires a large amount of

training data and computational

resources, can be prone to over-

fitting, may not be interpretable

Faster R-CNN Can detect objects accurately

and efficiently, can handle com-

plex scenes, can capture spa-

tial relationships between ob-

jects

Requires a large amount of

training data and computational

resources, may not be as accu-

rate as YOLO for large objects

YOLO (You Only Look Once) Can detect objects accurately

and efficiently, can handle com-

plex scenes, can handle larger

objects better than Faster R-

CNN

May not be as accurate as

Faster R-CNN for small objects

or scenes with occlusions

3.2. Image Processing 33

3.2.2. Image fusion
One of the primary motivations for using a multi-robot setup in this research is that obtaining information

from the air and the ground can help locate and assist more victims in the aftermath of a disaster. Thus,

image fusion is critical in combining information from different viewpoints. To exemplify this challenge,

Figure 3.5 depicts the view for a UGV and a UAV when collaborating on creating an environment map.

Figure 3.5: Example of change in viewpoints for a) flying robot and b) ground robot. Retrieved from [4].

Before using the pictures to plan a joint mission, it is essential to ensure that the objects captured from

different viewpoints are indeed the same and that their dimensions are accurately estimated. Moreover,

it is equally important to assess the relevance of the information transmitted by the UAV. If the UAV is

temporarily unavailable or transmitting noisy images, it is vital that the UGV learns to recognize it and not

rely on this information. Various techniques for object matching, object scaling, and relevance assessment

are thus explored in Section 3.2.2, Section 3.2.2, and Section 3.2.2, respectively.

Object matching

One of the critical challenges in multi-robot systems is to ensure that the robots can recognize the same

objects despite differences in viewpoints. The current subsection explores various approaches for matching

objects captured from different viewpoints.

One approach to matching objects captured from different viewpoints is to use the traditional computer

vision techniques assessed in Section 3.2.1. Features such as corners and edges are matched across the

images to establish correspondence. These correspondences can then compute a transformation between

the two images, which can be used to align the images and match the objects. Traditional methods are

suitable for applications where the objects are well-defined and have distinct features that can be reliably

detected. In Figure 3.5, the green dots represent features being tracked across the two photographs.

Novel deep learning-based object detection algorithms, including Faster R-CNN and YOLO, are

powerful tools for detecting objects in images. As reviewed by Du [37], these novel algorithms can learn

rich representations of objects and often outperform CNNs in real-time object detection tasks. Therefore, a

promising object-matching solution is to combine Siamese networks with YOLO, as suggested by Melekhov

et al. [38]. A Siamese network is a type of neural network architecture that learns to compare two inputs

and determine how similar they are. Thus, detected objects can be fed into a Siamese network to produce

meaningful matches, even when the objects have complex shapes and appearance variations.

Once the objects have been matched, verifying that the results are satisfactory is crucial. By using visual

cues, such as object appearance, it is possible to establish object identity and check the associations. For

instance, if two images contain a person and a car, the person in the first picture can never be considered

a car in the second picture. In this straightforward example, visual cues should be used to reject the match

and search for a better match. Further verification can be done by considering geometric constraints.

Marques et al. [39] propose using the spatial relationship between objects in the scene to match them.

Reconsidering the previous example, if two images contain a person and a car, and the person is located

next to the car in both images, it is likely that the person and the car are the same physical objects.

Matching objects captured by multiple robots is a critical task in multi-robot systems. In this subsection,

diverse object matching and verification approaches have been discussed, including traditional computer

vision techniques and deep learning-based object detection algorithms. Traditional computer vision is

3.2. Image Processing 34

typically advantageous in situations where a limited number of well-defined objects is to be matched.

As an example, if the goal is to match a hexagon-shaped stop sign seen from different perspectives,

traditional computer vision is an obvious choice due to the well-defined shape of the object and the

need for less training data. However, if the environment is unpredictable and it is not possible to select

characteristic features in objects (such as edges or corners), deep learning-based object detection has

shown to be able to learn rich representations of objects from raw data and is, therefore, the most suitable

option. Furthermore, verification algorithms have also been dissected, namely visual cues and geometric

constraints. By exploring these approaches and verifying them, robots can work collaboratively to identify

and locate objects of interest, even in complex and dynamic environments.

Object scaling

When processing the images, it is essential to ensure that the objects match and that the images are

correctly scaled. The size of an object can be used to estimate its distance from the camera, which is

a critical parameter for terrain mapping. Nonetheless, determining the scale of an object is challenging,

especially when the cameras have different focal lengths. In this chapter, methods to scale objects in

images without the need for human intervention are reviewed.

The most straightforward way of scaling objects in images is to use known object dimensions as a

reference. If the dimensions of a specific object are known, this information can be used directly to estimate

the dimensions of other objects in the image. This method called object-based scaling, is often used in

crowd surveillance, where the dimensions of people or vehicles are known or can be estimated from other

sources.

It is also possible to estimate the sizes of objects using monocular depth estimation and stereo vision.

Monocular depth estimation estimates the depth of a scene using a single camera. In contrast, stereo

vision involves using two cameras placed a certain distance apart to capture two slightly different images

of the same scene. Monocular depth estimation relies on perspective, shading, texture, and motion cues.

On the other hand, stereo vision analyses the disparities between the images to estimate the depth of

objects in the scene and their size. Stereo vision is generally more accurate, but it requires an extra

camera. Lagisetty et al. [40] have successfully used stereo vision for robotic object detection and obstacle

avoidance.

A more recent approach is to use deep learning techniques to learn the scale of objects in images.

This can be achieved by training a neural network to estimate the size of objects based on their visual

appearance. For this purpose, a large dataset of labeled images where the ground truth size of objects

is known needs to be collected. Once the network is trained, it can automatically scale objects in new

images without needing prior knowledge of their size. A clear advantage of this approach is that object

classification, matching, and scaling can be achieved simultaneously as three different outputs of the same

network. Kuhad et al. [41] implement this technique to the application of estimating the number of calories

contained in a food sample by estimating the size of the portion and using visual features such as colors.

Regardless of the approach used, it is crucial to consider potential differences between different

cameras, such as varying focal lengths, the field of view, and perspective distortion. These factors can

have a significant impact on the accuracy of the scaling, and careful calibration of the cameras is necessary

to achieve accurate results. Moreover, the accuracy of the scaling is often limited by the resolution and

quality of the images, as well as by the presence of occlusions.

Relevance assessment

When working with multiple robots, it is essential to ensure that the information transmitted by each robot

is relevant to the mission. Nonetheless, the relevance of information is not solely determined by the type

of information itself but also by the quality of the data that the robots have captured. For instance, if

the image quality of the photographs taken by a robot is poor, it may not be possible to extract useful

information from them, even if the object detection algorithm is state of the art. For this reason, it is vital to

perform a quality assessment of the data. This includes evaluating the image quality and focusing on its

resolution, sharpness, and contrast. The most common technique found in the literature for evaluating

image quality is to use metrics such as peak signal-to-noise ratio (PSNR) and structural similarity index

measure (SSIM), using the formulations included in the work of Setiadi [42]. Ding et al. [43] propose

using neural networks, SVMs, PSNR, and SSIM to assess image and video quality. Using this combined

framework makes it possible to obtain mapping functions between objective quality assessment and

3.3. Communication Protocols 35

subjective quality assessment indexes. This functionality is particularly valuable if assessment criteria

depend on the circumstances. For example, suppose a robot is in a challenging environment, such as

a poorly illuminated room. In that case, the images may not be high quality, but they may still contain

valuable information. In contrast, if the robot captures images in a clutter-free environment, the images

may be of high quality, but the information they provide may not add to the mission.

Suppose one robot is the center of operations, and an auxiliary robot is used to get a different perspective

for the mission. In that case, it is vital that the auxiliary robot transmits relevant information. Assessing the

relevance of information depends on the specifications of the mission. Taking as an example obstacle

avoidance tasks, if the goal is that a UAV double-check the location and dimensions of obstacles detected

by the UGV, it only provides relevant photographs if it is referring to the same obstacles. Thus, in this case,

it makes sense to discard all images provided by the UAV where object-matching algorithms do not find

correspondence with the photos taken by the UGV.

To sum up, assessing the relevance of information transmitted by the robots involves evaluating the

quality of the images captured, the context in which they were captured, and if they are inside the scope.

Only by considering these factors can it be ensured that the information is helpful for the mission.

3.2.3. Discussion
Several object classification and image fusion algorithms have been dissected throughout the current

chapter. It has been found that even though some algorithms are more sophisticated than others, there

are no hard rules regarding the perfect algorithm selection. The designer can use a specific method for

different purposes and even combine methods to increase performance.

There are two broad categories of object classification algorithms, namely traditional computer vision

and deep learning. Traditional methods, such as SIFT and SURF, have been successfully applied to

object detection tasks for many years. However, for SaR applications, it can be too demanding to define a

priori the characteristic features of each object. SaR environments are characterized by their complexity,

unpredictability, and object occlusions. Hence, deep learning-based approaches, particularly those based

on convolutional neural networks (CNNs), are a promising alternative, especially if complex and diverse

data sets can be collected, which is expected to be the case at the CyberZoo at the Delft University of

Technology. Nevertheless, traditional computer vision algorithms would again be suitable candidates if a

simplified representation of obstacles and victims is to be considered, such as red circles and blue circles

on the ground.

As for image fusion, the importance of accurate object matching, scaling, and performing relevance

assessments has been addressed. It has been found that Siamese networks are novelty and have shown

encouraging results in matching objects across different viewpoints. When scaling objects, state of the

art consists of monocular depth estimation, stereo vision, and deep learning. In a laboratory setting, it is

possible to include an object with a known size as a reference in case object scaling is not the focus of the

work. Finally, relevance assessment relies on image quality, context, and scope. The state of the art is to

combine neural networks, SVMs, and metrics such as PSNR or SSIM to evaluate not only the quality of

the image but also the value it brings to the mission.

Considering the discussed topics, image processing is highly relevant to various engineering ap-

plications. Guaranteeing robust image processing is even more crucial in applications without human

intervention, which is standard practice in robotics. Therefore, a clear research gap is a need to optimize

sophisticated deep-learning object detection and matching algorithms to require less data and make

computer vision more accessible, even for non-experts.

3.3. Communication Protocols
In a multi-robot system, the effective communication of robots is critical to their operation. This chapter

investigates the communication requirements of a UGV-UAV collaboration and how communication can

be designed to be functional and efficient to answer Question 2.

In Section 3.3.1, a comprehensive review of communication protocols in a sequential deployment

setting is provided. Due to its relative simplicity, the sequential deployment setting is the starting point.

Subsequently, Section 3.3.2 explores the communication protocols for concurrent deployment, which is a

more realistic scenario and closer to the research objectives. In this setting, the robots must communicate

3.3. Communication Protocols 36

in real time and bidirectionally to ensure effective coordination. Thus, the significant challenges of moving

from sequential to concurrent deployment are mentioned, and examples of how concurrent deployment can

be used in real-life applications are given. Then, Section 3.3.3 compromises a study on the various design

options available, including parameter tuning, such as the frequency at which information is exchanged.

Finally, Section 3.3.4 discusses how the literature review on communication protocols can shape the

research. This includes an analysis of the essential findings and how they can contribute to designing and

implementing the communication protocols between the two robots.

3.3.1. Sequential deployment
A sequential deployment of robots means that they work in a predetermined order, and each robot performs

its task independently. Consequently, the second robot being deployed has to wait for the first to complete

its task, leading to reduced speed performance. Even though sequential deployment presents fewer real-

life applications than concurrent deployment, there are still many examples where sequential deployment

suffices and provides satisfactory results.

Fankhauser et al. [4] use a UAV to provide the first mapping of an indoor environment with obstacles

and a target location in their first experimental setup. The UGV is only then deployed and updates the

global map created by the UAV with its own observations. In the case of this experiment, the data is

transmitted via Wi-Fi to a processor incorporated into the UGV with high computational power and performs

all merging computations. In a later stage, Fankhauser et al. declare that their work can be adapted to

support concurrent deployment. This statement is further discussed in Section 3.3.2. Delmerico et al. [44]

also propose an air-ground collaboration architecture to solve a ground path planning problem. Unlike the

work of Fankhauser et al. [4], this operation is conducted outdoors. In the first stage, a human operator

operates a UAV to follow determined waypoints. Then, the UAV learns to explore the area of interest and

creates a map of the terrain in its local processor. Similarly, the UGV is then deployed and updates the

map based on its own perception. However, instead of receiving the rough mapping provided by the UAV

locally and operating on its own processor, all information is sent to an external computer responsible for

merging the mappings and returning key information. This setup, composed of a UGV, a UAV, and an

external computer, is often used in real life because it alleviates the workload on the robots.

De Petris et al. [45] examine a sequential UGV-UAV deployment architecture to map unknown envi-

ronments. The UGV is the primary exploring agent in their research and carries the UAV while moving.

As long as the environment can be explored from the ground, the UAV remains in its platform, and all

exploration is conducted by the UGV. However, if particular areas are inaccessible from the ground, the

UAV is deployed and explores them. Meanwhile, the UGV waits for the UAV to land back on the platform

before continuing its operation. An illustration of the experiment can be found in Figure 3.6, which depicts

an example of sequential deployment.

Figure 3.6: Sequential UGV-UAV deployment for unknown environment exploration. Retrieved from [45].

3.3. Communication Protocols 37

In the case of this experiment, both the UGV and the UAV keep a mapping of the explored terrain in

their local processors. Selected information is shared only when requested. Even though the information

is transmitted wirelessly in this setup, docking stations offer the opportunity to communicate via USB sticks.

Wang et al. [46] designed a Physical Couple Interface (PCI) to allow wired communication in UGV-UAV

applications. Wired communication has the advantage of speeding up information exchange. Nevertheless,

it has the physical limitation of the proximity of the robots. Furthermore, a more precise UAV landing

control is required to ensure it is correctly plugged in after landing.

Some of the most common communication protocols in the literature are Wi-Fi and Bluetooth. Wi-Fi is

a natural choice in most cases due to its easy availability, especially in indoor settings. However, when

power saving is a significant concern, the low-power wireless technology of Bluetooth can transmit data

over short distances. Another option would be to use ZigBee, which is not only a low-power but also a

low-data-rate communication protocol. However, it is more often used in environments that are not subject

to considerable changes, such as industrial automation. Cellular communication via a cellular modem

and a SIM card can also be considered if data needs to be transmitted over large distances. Lastly, radio

frequency presents itself as a flexible approach. Equipping the robots with radio frequency transceivers

and adjusting the wavelength of the signal makes it possible to make a compromise between transmission

distance and frequency.

In summary, the communication infrastructure for sequential deployment can be relatively simple, as

the communication is unidirectional and time-dependent. It may consist of a wireless or a wired network,

depending on the environment where the robots operate and the needs of the mission. Generally, the

bandwidth requirements for communication in sequential deployment are low, and the design can be

straightforward.

3.3.2. Concurrent deployment
Concurrent deployment of robots means that they perform tasks simultaneously and do not necessarily

need to wait for inputs from other robots. Even though they are still working together to achieve a common

goal, they are more independent. Compared to sequential deployment, concurrent deployment requires

more complex and dynamic communication protocols. In this setting, the robots need to communicate with

each other in real-time and bidirectionally.

Fankhauser et al. [4] have extended their previous work on sequential deployment to allow for concurrent

operations. To do so, information is transmitted per batch at a defined frequency. By transmitting information

per batch, the UGV can update a specific batch and communicate its findings while the UAV is exploring

another batch and communicating its own updates. This allows them to share incomplete maps and

incentivizes the UAV to explore new areas. The UGV then utilizes map updates from the UAV to increase

the range and precision of path planning. In this experiment, all algorithms are running real-time: localization

and mapping, legged state estimation, and navigation planning.

Miki et al. [47] investigate a framework where a UAV physically assists a UGV in climbing a cliff by

attaching a tether to a structure on top of the cliff. The UGV then climbs by winding the fixed tether. The

setup used in their experiments is depicted in Figure 3.7 and Figure 3.8.

Figure 3.7: The UAV attaches a tether to a

structure by flying around it. Retrieved from

[47].

Figure 3.8: The UGV climbs a cliff by winding

the tether attached by the UAV. Retrieved from

[47].

3.3. Communication Protocols 38

This novel collaborative system makes the two robots navigate as a team through an unknown environ-

ment and enhances UGV traversability by reaching previously inaccessible areas. During the course of

the mission, a global map is maintained by the two robots that communicate via Wi-Fi. To achieve the

required computing power, both robots are custom-made. The computations on the drone run on a Jetson

TX2 module, which is developed specifically for applications where real-time processing is required and

bandwidth can be an issue. As for the ground robot, a UP core processing unit is used.

Another application where the physical coordination between a ground robot and a flying robot is

beneficial is object manipulation. In their work, Lissandrini et al. [48] propose an architecture of two

heterogeneous robots to enable heavy payload transportation and agile manipulation. In the experimental

setup, the two robots grasp a plastic bar allowing elastic deformation. A plastic box is placed as an obstacle

so that the robots need to perform an avoidance maneuver to take the plastic bar to the destination. In

their work, Lissandrini et al. run the experiment simultaneously in the Gazebo simulator and experimental

environments. To ensure a common interface to both the simulation and laboratory, a Robotic Operating

System (ROS) network is used. All computations are done off-board on a local computer. Thus, the UGV

and the UAV communicate with the local computer via Wi-Fi.

Zhou et al. [49] focus on a swarm of UAVs to explore an indoor environment as fast as possible. They

propose a fully autonomous system with little communication by ensuring UAVs explore different regions.

The UAVs perform computations on board and store their own findings. However, even in such a scenario,

communication protocols are set for the case when two robots accidentally explore the same region. For

this purpose, communications are maintained through a local ad hoc network.

The battery of the drone is a limiting operation factor in many real-life applications. Flying robots

typically cannot hover for more than 10-15 minutes. Ren et al. [50] suggest an air-ground collaboration to

overcome this issue. The ground robot acts as a mobile charging station and follows the flying robot from

the ground. As soon as the battery drops below a defined threshold, the flying robot lands on the ground

robot and recharges before being deployed again. No communication protocols are referred to in their

work, as it is entirely done in simulation. Thus, it is still a research gap to be explored in real life in the

future.

Depending on the requirements of each application and the amount of data that needs to be transmitted,

several communication options are available for the concurrent deployment of robots. ROS remains one

of the most popular platforms, as it allows robots to communicate using a variety of protocols, making it a

flexible option. However, robotic operating systems can be targets of cyber attacks, which raise security

concerns. In their study, Mukhandi et al. [51] show that it is possible to integrate Message Queuing

Telemetry Transport (MQTT) and ROS for securing a ROS-enabled robotic system. MQTT is a lightweight,

publish-subscribe messaging protocol designed for Internet of Things (IoT) devices. Following the logic of

IoT, Extensible Messaging and Presence Protocol (XMPP) is also an open-source protocol that allows

real time communication between devices over the internet. It is highly scalable and robust, making it

suitable for robotic applications. Bendel et al. [52] propose a communication infrastructure using XMPP

and demonstrate the capabilities of their service platform in one case study of remote robot control. The

third IoT communication protocol in literature is Wireless Sensor and Actuator Network (WSAN). WSAN is

a wireless communication protocol that allows robots to communicate with each other using sensors and

actuators. It is suitable for dynamic environments where robots adapt to changing conditions. Curiac [53]

investigated the conceptual framework, challenges, and perspectives of WSANs, concluding that it is a

good backbone for complex distribution and mobile control applications.

Essentially, concurrent deployment of robots requires more complex and dynamic communication

protocols than sequential deployment. Real-time, bidirectional, dynamic, robust, low latency, and scalable

communication protocols are crucial for efficiently coordinating tasks. Different experimental setups are

found in the literature; computations can be done on-board or off-board, and robots can be customized, as

in the case of the work of Miki et al. [47], where the processor for the drone is chosen specifically to enable

low bandwidth communication. Having a powerful external computer performing the computations allows

for the integration of real-life hardware and simulations and more sophisticated service protocols. IoT led

to several communication infrastructures, such as ROS, MQTT, XMPP, and WSAN. It has been found that

combining different options can lead to an increasingly safe system.

3.3. Communication Protocols 39

3.3.3. Design considerations
Designing communication protocols in robotics requires careful consideration of several important fac-

tors, namely the environment in which the robots operate, the available bandwidth, latency, robustness,

scalability, security, and flexibility.

Firstly, the specific environment in which the robots operate is critical when designing a communication

protocol. For example, if the robots operate in a noisy environment or with low visibility, the communication

infrastructure needs to be designed to handle noise and interference or degraded signal quality. Further-

more, the available bandwidth is a crucial design variable. The communication protocol should be designed

to efficiently use the available bandwidth, especially in scenarios where multiple robots communicate

simultaneously. Bandwidth limitations can cause communication delays or failures, which can impact the

overall performance of the robotic system. In the same line of thought, the latency must be minimized to

ensure timely decision-making and coordination of tasks. In case there is network congestion or lost or

corrupted messages, it is vital to ensure that communication is robust. Hence, a system that maintains

reliable communication, even in the face of disruptions, is less likely to fail. In cases where swarms of robots

are studied, scalability is a crucial issue. As the number of robots in the system increases, the protocol

must handle the increased communication load without negatively impacting performance. Security is

one of the most critical considerations in the design of communication protocols for robotics. Especially

in outdoor environments, preventing unauthorized access or interference with the robotic system is vital.

Lastly, the protocol should be flexible and capable of handling task and scenario changes.

The frequency of information exchange between robots highly depends on the task. For example, if

the robots perform a task requiring high precision, such as mapping an area while avoiding obstacles,

the frequency of information exchange must be high to ensure timely and accurate decision-making. In

contrast, if the robots are performing a task that requires less precision, such as monitoring a particular area,

the frequency of information exchange can be lower. If the robots exchange information too frequently, it

may result in a communication overload and harm the performance of the system. Nonetheless, if the

robots exchange information too infrequently, it may lead to delayed decision-making and coordination of

tasks.

To sum up, designing communication protocols for robots requires careful consideration of several

vital factors. The protocol must be designed to operate effectively in the specific mission. Even though

the design may not always be straightforward, it is essential in multi-robot settings to come up with solid

solutions from the beginning so that the mission can run smoothly and the objectives can be fulfilled.

3.3.4. Discussion
This chapter explores communication protocols for both sequential and concurrent deployment scenarios

in robotic systems. Sequential deployment offers a more straightforward approach; it might be worth

considering first implementing sequential deployment before moving to concurrent deployments, such as

in the study conducted by Fankhauser et al. [4]. Even if the final goal is that both robots are kept active

simultaneously, ensuring that they can perform their tasks sequentially helps in troubleshooting. For the

purpose of this research and most real-life applications, achieving a well-performing concurrent system is

naturally the final goal.

Given that the CyberZoo at the Delft University of Technology is equipped with a Wireless Local Area

Network (WLAN), transmitting information via Wi-Fi is straightforward. The literature study concluded that

Wi-Fi is one of the most common means of communicating in robotic applications in indoor environments

due to its availability and reliability. ROS is worth considering, as it allows a standard interface to interact

with both robots. Since the experiments are to be performed in a controlled academic setting, integrating

MQTT, XMPP, or WSAN is not a priority, as safety is not a concern. Knowing that the processing power of

the robots is not substantial, it makes sense to have an external computer to perform complex calculations

while interacting with both robots. Hence, it is expected that communication will happen bidirectionally

between the robots and the computer.

After the experiments are moved to a concurrent deployment scenario, determining the frequency of

information exchange is a critical design consideration. Depending on the bandwidth of the WLAN and

the processing power of the hardware, it is expected that the frequency of information exchange is tuned

by trial and error. Regarding design considerations, latency and flexibility are prioritized over security or

scalability.

3.4. Control Strategies and Path Planning 40

Overall, communication protocols are fundamental to the effective operation of robotic systems. The

literature review presented in this chapter provides valuable insights into designing a suitable communi-

cation infrastructure for this research. An identified research gap is the development of highly scalable

communication frameworks, as recent applications typically involve multiple robots. An example is the

deployment of swarms of drones in concerts and shows, as described by Ohta [54]. In the context of

deployment in the vicinity of people, ensuring increased cyber security of communication protocols is

another research gap to be addressed.

3.4. Control Strategies and Path Planning
Before deciding which control and path planning strategy to adopt for the UGV, it is crucial to review and

compare the most favorable algorithms in similar applications, to address Question 3. Even though several

options have been used in robotics in the past, the most promising solutions, given the characteristics of this

project, include FLC, MPC, and search algorithms. Thus, it is essential to understand their mathematical

formulations, assets, drawbacks, and examples of past implementations. For this purpose, inspections

on FLC, MPC, and search algorithms are provided in Section 3.4.1, Section 3.4.2, and Section 3.4.3,

respectively. Subsequently, Section 3.4.4 discusses the reviewed content and concludes the chapter.

3.4.1. Fuzzy Logic Control
FLC is a mathematical framework that deals with reasoning that is approximate rather than fixed and exact.

The concept was first introduced by Zadeh in 1965 [55]. It is used in control systems to produce decisions

based on incomplete or imprecise information. Fuzzy logic is an alternative to Boolean logic, where binary

values of true and false are replaced by degrees of truth represented by fuzzy sets. This allows for a more

efficient and natural representation of uncertain and complex systems, leading to better control decisions.

This concept is thoroughly described in Section 3.4.1, where the fundamentals of FLC are given. The

general mathematical background is then followed by a review of two FLC types, namely Mamdani and

Takagi-Sugeno Control, in Section 3.4.1 and Section 3.4.1, respectively. A review of the advantages and

disadvantages of FLC found in the literature is presented in Section 3.4.1. Lastly, examples of FLC in

robotics are identified in Section 3.4.1.

Fundamentals of FLC

The basic idea behind FLC is to map input variables to output variables using rules derived from expert

knowledge or data. For this purpose, three steps must be taken: fuzzification, inference, and defuzzification.

The architecture of a typical FLC-based controller can be found in Figure 3.9.

Figure 3.9: Architecture of an FLC-based controller. Retrieved from [31].

During the fuzzification step, input variables are converted into fuzzy sets, which represent linguistic

terms such as ”low”, ”medium”, or ”high”. A fuzzy set A on a domain X is defined by the membership

function µA(x), which is a mapping from the universe X into the unit interval µA(x) : X → [0, 1]. The
description of the value of µA(x) is expressed in the equation below.

µA(x) =


0 x is with full certainty not a member of A

∈ (0, 1) x is partially a member of A

1 x is with full certainty member of A

(3.1)

3.4. Control Strategies and Path Planning 41

According to this representation, a variable x belonging to Universe X can become a partial member

of A. This is the characteristic that distinguishes fuzzy sets from traditional crisp sets and eases the

integration of linguistic information. Hence, vague linguist terms such as ”far” or ”near” are precisely

quantified using analytical expressions. The shapes of the membership functions are chosen intuitively

and define the conventions for classifying the variables. Common shapes for membership functions can

be found in Figure 3.10.

Figure 3.10: Examples of membership function shapes. Retrieved from [31].

A set of rules is used throughout the inference process to make decisions based on the input variables.

The rules are usually expressed in the form of ”if-then” statements, where the antecedent (if-part) defines

the conditions that must be met, and the consequent (then-part) defines the action to be taken. The rules

are evaluated in order, and the outputs from each rule are combined using fuzzy operators to produce the

overall output. Since rules are typically represented as R, the basic inference process is illustrated in the

following equation:

Ri : If x is Ai then y is Bi i = 1, 2, ...,K (3.2)

In (3.2), x represents the input or antecedent linguistic variable, Ai is the antecedent linguistic variable

represented by a fuzzy set, y is the output or consequent linguistic variable, whereas Bi represents the

consequent linguistic variable in terms of a fuzzy set. The usage of fuzzy connectives such as ”and” and

”or” is further illustrated in the following expressions:

Ri : If x1 is Ai1 and x2 is Ai2 ... and xp is Aip then y is Bi i = 1, 2, ...,K (3.3)

Ri : If x1 is Ai1 or x2 is Ai2 ... or xp is Aip then y is Bi i = 1, 2, ...,K (3.4)

The connectives ”and” and ”or” are usually implemented using t-norms and s-norms, respectively. Due

to their simplicity, the most common approach is to use the minimum function for the connective ”and” and

the maximum function for the connective ”or”. Of course, there is a margin to combine different connectives

and select other t-norms and s-norms.

The output computational process for an FLC involves using the mathematical concept of implication

[56]. Various implication algorithms are available, but Mamdani (or minimum) implication is most commonly

used in literature. The membership degree of each rule R, represented as µR, is calculated for Mamdani

implication using the following equation:

µR(x, y) = I(µA(x), µB(y)) (3.5)

The Mamdani implication is computed as follows:

3.4. Control Strategies and Path Planning 42

I(µA(x), µB(y)) = min(µA(x), µB(y)) (3.6)

Thus, Mamdani implication can be referred to as minimum implication. The previous Equations (3.5) and

(3.6) form the basis for max-min inference, also known as Mamdani inference. The following Section 3.4.1

covers Mamdani control in more detail. Another relevant fuzzy controller is the Takagi-Sugeno controller,

covered in Section 3.4.1. The defuzzification step is covered in the respective subsections.

Mamdani Control

The architecture of a Proportional-Integral-Derivative (PID) fuzzy controller is depicted in Figure 3.11.

Figure 3.11: Architecture of a PID fuzzy controller. Retrieved from [31].

As it can be seen from Figure 3.11, the fuzzy controller is composed of a dynamic pre-filter, a static map

(the general architecture described in Section 3.4.1), and a dynamic post-filter. The pre-filter determines

the integral and the derivative of the error signal. Naturally, these two additional inputs must also be

fuzzified to be used in the inference. A common approach is to represent them as a singleton fuzzy set

whose value is one of the crisp values.

After converting the inputs to fuzzy sets A′ and performing inference based on rules to obtain the output

fuzzy set B′, it is necessary to convert the output back to a crisp value that can be used as a control

command. This process is called defuzzification and constitutes the last step of the procedure. There are

several methods for defuzzification, being Center of Gravity (COG) and Mean of Maxima (MOM) are the

two most used (see Figure 3.12). Once again, there is a margin to pick any method deemed appropriate.

Figure 3.12: a) COG and b) MOM defuzzification methods. Retrieved from [31].

Mamdani systems are known for their simplicity and ease of interpretation, making them popular for

many real-world applications.

3.4. Control Strategies and Path Planning 43

Takagi-Sugeno Control

Takagi-Sugeno (TS) is a type of fuzzy logic control system that was proposed by T. Takagi and M. Sugeno

in 1985 [57]. It is a hybrid system that combines the strengths of both fuzzy logic and mathematical

modeling.

The main difference between Mamdani control and Takagi-Sugeno control is how the consequents

are defined. While in Mamdani control, the consequents are linguistic terms to describe the output y (see

(3.2)), Takagi-Sugeno specifies the outputs as an analytical expression based on the inputs, f(x). Thus,
rules are adapted and defined as in the equation below.

Ri : If x is Ai then yi = fi(x) i = 1, 2, ...,K (3.7)

In (3.7), fi(x) is typically either a constant or a linear combination of the inputs.

The output of a controller with K rules is computed by taking the average of all outputs y weighted by

each rule’s membership degrees, as expressed in the following equation:

y =

∑K
i=1 µRiyi∑K
i=1 µRi

(3.8)

Takagi-Sugeno systems are also known for their simplicity, as they use linear mathematical models that

allow for simple and efficient implementation. They are also particularly suitable for predictive modeling

applications since they clearly understand the relationship between inputs and outputs. The fact that they

combine fuzzy logic and mathematical modeling contributes to their flexibility.

Advantages and disadvantages of FLC

FLC allows experts to express their knowledge about the system using linguistic terms and rules, which

can be more intuitive and easier to understand than mathematical models. FLC is also well suited for

dealing with uncertainty and imprecision, as it allows for the integration of expert knowledge and data

flexibly and adaptively. It is relatively simple to implement and can be applied to many systems, making it

a popular choice for many control applications. Not only is it robust to changes in system dynamics, as the

rules can be updated to reflect changes in the system, but it also can handle a wide range of input and

output variables. It can easily accommodate changes in the system or the goals of the control. Moreover,

it is less sensitive to measurement noise than other control methods, as the fuzzification process can

smooth out the input signals. Lastly, it provides interactive control, as the expert can adjust the rules and

control parameters to achieve the desired performance.

Even though FLC-based controllers present a wide range of advantages, these also come with draw-

backs. Naturally, it requires expert knowledge of the system to create the rules and determine the control

parameters, which can be time-consuming and challenging. Creating rules that accurately represent

the behavior of the system can be complex and challenging, especially for large and complex systems.

It is also important to highlight that FLC lacks the mathematical rigor of other control methods, making

it challenging to analyze the stability and robustness of the control system. It can be computationally

intensive, especially for large and complex systems, as the rules need to be evaluated in real-time. As

with other intelligent control methods, it is prone to over-fitting, where the rules fit too closely to the training

data and do not generalize well to new data. Another one of the major drawbacks is that it is typically not

well suited for systems with strong non-linearities, as the linear combination of rules may not accurately

capture the non-linear behavior of the system. Lastly, it is susceptible to local optima, where the control

system converges to a sub-optimal solution rather than the global optimum.

An overview of the advantages and disadvantages of FLC, based on the work of Albertos et al. [58], is

given in Table 3.3.

3.4. Control Strategies and Path Planning 44

Table 3.3: Overview of the advantages and disadvantages of FLC. Own elaboration.

Advantages of FLC Disadvantages of FLC

• Natural expression of knowledge • Expert knowledge required

• Handling of uncertainty • Complexity in rule creation

• Simplicity • Lack of mathematical rigor

• Robustness • Computational cost

• Flexibility • Prone to over-fitting

• Insensitivity to measurement noise • Not suited to strong nonlinearities

• Interactivity • Susceptible to local optima

Examples of FLC in robotics

FLC-based controllers have numerous applications in robotics, including navigation and control tasks,

object manipulation, adaptive control, and human-robot interaction, just to name a few.

FLC can be used to control the motion of robots, enabling them to navigate uncertain or changing

environments. Seraji et al. [59] propose using a novel measure of terrain traversability to infer a fuzzy

rule-based traversability index in real-time. This index is then used as one of the weighting factors in

guiding the robot. Besides being used for navigation, FLC can be used to make decisions about obstacle

avoidance, as demonstrated by Pandey et al. [60] in a simulation environment.

In cases where robotic manipulation is of interest, FLC can control the dexterity of robotic arms, allowing

them to perform tasks such as grasping and manipulating objects in an unstructured environment. Ciobanu

and Popescu [61] created a framework with an FLC-based controller to make a robot capable of complex

in-hand manipulation tasks.

In adaptive control, fuzzy logic can adjust robot behavior based on environmental changes or the

performance of the robot. This allows the robot to improve its performance and adapt to new conditions

continually. In the case of Das and Kar [62], a fuzzy logic system is used to estimate parameter variations

and unknown nonlinearities in the kinematics of a wheeled robot, and improvements have been noted both

in simulation and experimental tests.

FLC can also be used to interpret human input and control the behavior of robots in human-robot

interaction applications, such as in rehabilitation or assistive technology. Ascensão [56] uses FLC to

control a drone that performs therapeutic sessions for children diagnosed with autism.

Considering the examples mentioned above, it is concluded that FLC provides a versatile and flexible

approach for controlling robots in uncertain and complex environments, making it an essential tool for

planning the mission and motion of robots.

3.4.2. Model Predictive Control
Model Predictive Control (MPC) is a family of control methods that use mathematical models to predict the

future behavior of a system and optimize control inputs to achieve a desired outcome. It was first proposed

in an early form by Clarke et al. in 1987 [63]. The current chapter compromises both the fundamentals

of MPC (explained in Section 3.4.2) and the advantages and disadvantages of using MPC (given in

Section 3.4.2). Subsequently, Section 3.4.2 entails a literature review on the usage of MPC in robotics.

Fundamentals of MPC

Due to the predictive character of the MPC, its performance highly depends on how accurate the available

models of the system are. The mathematical models used in MPC can be either linear or nonlinear,

depending on the complexity of the system being controlled. The MPC algorithm consists of three main

steps: prediction, control optimization, and action [64]. The model of the system predicts its future behavior

based on the current state and control inputs in the prediction step. In the control optimization step, an

optimization problem is solved to determine the control inputs that minimize a cost function while satisfying

constraints on inputs, outputs, and the system. The optimization process is typically performed in real-time

and repeated at a fast rate, with the computed control, and the model is updated based on new observations.

3.4. Control Strategies and Path Planning 45

Then, the first action is implemented, the horizon is moved forward for one control time step, and the

optimization is performed again. These steps are illustrated in Figure 3.13.

Figure 3.13: Fundamental MPC scheme. Retrieved from [31].

In a deterministic, time-invariant system, the dynamics are modeled using the relationship expressed in

the system of equations below.

{
xk+1 = f(xk,uk)

yk = g(xk,uk)
(3.9)

In (3.9), xk represents the current state vector, uk designates the current control input vector, and yk
represents the current system output. xk+1 is the value of the state vector in the following time step.

Figure 3.13 illustrates the fundamental principles of MPC, which involve predicting the process output ŷ
over a prediction horizonHp at the current time step k. Next, the optimal control sequence is computed over

a control horizon Hc, and the first action is executed. In order to determine the optimal control sequence, a

cost function is minimized. The general form of the cost function is expressed in the following equation:

Jk(xk,uk) = h(xk,uk) (3.10)

In (3.10), J is a scalar indicator describing how good the control inputs will be in the future. Even

though the cost function can be theoretically arbitrary, it typically represents a trade-off between variables.

A possible formulation is to have the first term represent the error in following the reference signal and a

second term corresponding to the controller effort. Both terms are then penalized in the cost function to

ensure that the reference is followed closely while applying a low control effort. At each time step k, the
minimization expressed in (3.11) is computed, subject to the constraints in (3.12).

u∗
k = argmin

uk

Jk(xk,uk) (3.11)


xk+1 = f(xk,uk)

yk = g(xk,uk)

u ≤ uk ≤ u

x ≤ xk+1 ≤ x

(3.12)

3.4. Control Strategies and Path Planning 46

In (3.11), u∗
k represents the optimal control sequence over the prediction horizon. The two first

constraints in (3.12) impose the dynamics (see (3.9)), while the two other constraints set limits to the input

variables and states (being u and x the lower limits for the current control input and following state and u
and x the upper limits for the current control input and following state).

Advantages and disadvantages of MPC

MPC is particularly useful in handling constraints on inputs, outputs, and the system itself, making it ideal

for controlling systems with hard constraints. In addition, the algorithms can explicitly consider trade-offs

between conflicting objectives, such as maximizing production and minimizing energy consumption. It can

track a desired reference signal, even with disturbances. Unlike FLC, it can handle linear and nonlinear

systems, making it a flexible control strategy for many applications. By using predictions of the future

behavior of the system, MPC algorithms can achieve improved performance compared to traditional control

methods, such as PID control. It is essential to highlight that this requires knowledge of an accurate model

of the system. Lastly, MPC-based controllers can provide real-time control for complex systems, making

them ideal for robotics.

MPC-based controllers also pose a list of disadvantages. The biggest obstacle to real hardware

implementation is computational complexity. MPC algorithms require solving an optimization problem at

each time step, which can be computationally intensive, especially for large and complex systems. This

can be a problem for real-time control applications requiring fast updates. As previously mentioned, it

requires a mathematical model of the system being controlled, which can be complex to develop and

maintain. Inaccuracies in the model can lead to poor performance or instability of the control system.

Furthermore, these algorithms are sensitive to the initial conditions and may require a warm-up period

to converge to a satisfactory solution. Setting up the hyperparameters is definitely a challenge. If the

prediction horizon is too short, the algorithm may be too reactive, while if it is too long, it may be too slow

to respond to changes in the system. Furthermore, tuning the optimization parameters and cost functions

is required to achieve the desired control performance. Therefore, expert knowledge is also required.

Besides, MPC algorithms are usually sensitive to disturbances and may require additional robustness

measures, such as state and input constraints, to ensure stability. It is concluded that implementing MPC

algorithms can be challenging, and there are many implementation details that can affect the performance

and stability of the control system.

An overview of the advantages and disadvantages of MPC is provided in Table 3.4

Table 3.4: Overview of the advantages and disadvantages of MPC. Own elaboration.

Advantages of MPC Disadvantages of MPC

• Optimality • Computational complexity

• Handling constraints • Modeling complexity

• Explicit consideration of trade-offs • Initialization issues

• Precise reference tracking • Tuning (e.g. prediction horizon)

• Flexibility

• Real time control

Examples of MPC in robotics

As in the case of FLC, MPC can be applied in trajectory tracking and obstacle avoidance. It can be used to

implement a control strategy that tracks a desired reference trajectory for the position and orientation of

the robot, considering constraints on the speed and acceleration of the robot. Carron et al. [65] apply this

knowledge to a robotic arm, showing that their data-driven MPC controller yields improvements compared

to traditional PID controllers and even non-data-driven MPC schemes. Furthermore, it can be used to

implement a control strategy that avoids obstacles in the environment while tracking a desired reference

trajectory. In doing this, it uses obstacle information to generate control inputs that steer the robot around

obstacles while maintaining a smooth trajectory, as in the work of Lim et al. [66].

One of the most distinguishing features of MPC is that it can be used to implement trade-offs, including

control strategies that optimize the power consumption of robots. The MPC algorithm can consider the

3.4. Control Strategies and Path Planning 47

energy consumption of the robot, speed, and other constraints to generate control inputs that result in

the most energy-efficient motion. Cho et al. [67] apply this reasoning to saving energy consumption in

hydraulic-legged robots. The proposed method showed significantly improved energy efficiency compared

to the existing pump control methods in simulation and laboratory experiments.

As can be seen from the examples in the current subsection, MPC provides a solid framework for

controlling robots and optimizing their operation by implementing trade-offs, making it a state of the art

control approach in robotics.

3.4.3. Search algorithms
Search algorithms are a family of algorithms designed to locate and sort data. They have been successfully

used in a wide range of contexts. The most significant developments in this field date to the 1970s with

the rise of computer science. In this chapter, the fundamentals of search algorithms in general, grid-

based methods, and sampling-based methods are given in Section 3.4.3, Section 3.4.3 and Section 3.4.3,

respectively. Then, Section 3.4.3 goes through the advantages and disadvantages of using search

algorithms for path planning. Lastly, Section 3.4.3 provides examples of how search algorithms can be

used to plan a path to be followed by robots.

Fundamentals of search algorithms

A search algorithm is a set of rules or instructions to find specific information from a collected dataset. They

have been developed over several centuries, and their applications range from mathematics to computer

science and operations research. In robotics, search algorithms are commonly used to find the shortest

path connecting two graph points. Fu et al. [68] have reviewed the state of the art algorithms for solving the

shortest path problem. Most algorithms used for this purpose are heuristic, as they make use of heuristic

functions to estimate the cost of reaching the goal from each node in the graph.

A heuristic is a general cognitive framework designed to solve a complex problem with an intuitive

approach. Heuristic methods include using trial and error or rules of thumb to speed up finding a satisfactory

solution. Thus, they are relevant when a short-term approximation is prioritized over the perfect solution.

In computer science, they are widely used to ease the computational complexity of algorithms. According

to Edward A. Silver et al. [69], reasons to use heuristic methods include mathematical problems that do

not have analytic solutions or situations where it is computationally prohibitive to reach analytic or iterative

solutions. Heuristic techniques are also appropriate in cases where it is beneficial for the decision-maker

to understand how the solution is reached and to develop an intuitive feeling as to which variables are

particularly important.

Grid-based methods

Grid-based methods are algorithms that discretize the space by dividing it into a grid of cells. They are

suitable for small-scale environments with well-defined boundaries where a discrete representation of

the space is feasible. They are commonly used for tasks where the robot must navigate a maze-like

environment. Examples of grid-based methods include Dijkstra’s algorithm, A*, the Bellman-Ford algorithm,

Breadth-First Search (BFS), and Depth-First Search (DFS). This subsection focuses on Dijkstra’s and A*

algorithms due to their increased relevance in robotics applications.

Dijkstra’s algorithm Dijkstra’s algorithm has been named after its inventor, Dutch computer scientist

Edsger W. Dijkstra. As inputs, it requires a weighted, directed graph G and a starting vertex s. The outputs

consist of the length of the shortest path from s to v for every vertex v in G, and the shortest path tree

(SPT), which is a subgraph of G that includes all vertices reachable from s and the edges that form the

shortest paths from s to each reachable vertex.

The algorithm works by maintaining a set of visited nodes and a set of unvisited nodes. Initially, all

nodes are unvisited, and the algorithm assigns an initial distance value of infinity to every node except

for the starting node, which has a distance value of zero. The unvisited node with the smallest distance

value is selected at each algorithm step and added to the visited node-set. Then, all of its neighbors in

the adjacent edges are examined, and their distance values are updated if a shorter path is found. The

described steps are repeated until the destination node is visited or until there are no more nodes to visit.

Through the steps, a data structure is used to keep the nodes in order based on their distance values.

Thus, this priority queue is the mechanism that keeps track of the node with the smallest distance value.

3.4. Control Strategies and Path Planning 48

The algorithm is summarized in its procedural form below.

Algorithm 1: Dijkstra’s Algorithm

Input: G, s
Output: distSet, shortest path tree formed by edges with shortest distances in distSet

SPTSet← {s}
distSet← initialize all distances to∞, except distSet[s]← 0
while SPTSet does not contain all vertices in G do

u← vertex in G with minimum distance in distSet that is not already in SPTSet
Add u to SPTSet
for each neighbor v of u that is not in SPTSet do

dist← distSet[u] + weight(u, v)
if dist < distSet[v] then

distSet[v]← dist

end

end

end

return distSet

Dijkstra’s algorithm is guaranteed to find the shortest path between the starting node and all other

nodes in the graph, provided that no edges have a negative weight. In the case that the weights represent

real distances, as in the classic case of planning a path for a robot to follow, this condition is guaranteed

to be respected, and the effectiveness of the algorithm is proved. However, under specific formulations,

Dijkstra’s algorithm would not be suitable. A meaningful, practical example in path planning is the case

where a driver has the option to pay a toll which can reduce the overall travel time or distance. If the weights

represent the offset to a base distance, negative weights can represent traveling less than expected,

whereas positive weights may refer to distances longer. Thus, to use this algorithm, it is essential to

formulate the problem such that no negative edge weights exist, to avoid causing infinite loops where the

algorithm keeps revisiting the same nodes.

A* algorithm The A* algorithm is a popular heuristic search algorithm that expands on the advantages

of Dijkstra’s algorithm. It uses an admissible heuristic function to guide the search toward the goal node

while exploring the search space efficiently. An admissible heuristic is a function that underestimates the

distance to the goal node, i.e., it never overestimates the distance. By using an admissible heuristic, the

A* algorithm can avoid exploring paths that are unlikely to lead to the goal node and focus on those paths

that are more promising. The A* algorithm maintains two nodes during the search, an open and a closed

set. The open set contains the nodes that have been discovered but not explored, while the closed set

contains the ones that have already been explored.

Initially, the open set contains only the starting node. At each step of the algorithm, the A* algorithm

selects the node with the lowest estimated cost f(n) = g(n) + h(n), where g(n) is the cost of the path from

the starting node to node n and h(n) is the estimated cost from node n to the goal node. The algorithm

then expands the selected node by examining its neighbors and adding them to the open set if they have

not been explored yet. Furthermore, it updates the cost values from the starting node to node n and from

node n to the goal for each neighbor node as they are being examined. The A* algorithm terminates when

the goal node is found or the open set becomes empty. If the goal node is found, the algorithm reconstructs

the optimal path from the starting node to the goal node by following the parent pointers of each node,

starting from the goal node and ending at the starting node. The optimal path has the lowest cost among

all possible paths.

The procedural form of the algorithm can be found below.

One of the main advantages of the A* algorithm is its efficiency, especially when the heuristic function

is well-designed and informative. An excellent heuristic function can significantly reduce the number of

nodes that need to be explored, making the algorithm much faster than other search algorithms. However,

designing a good heuristic function can be challenging and require domain-specific knowledge and insights.

3.4. Control Strategies and Path Planning 49

Algorithm 2: A* algorithm

Input: start,goal, successors, cost,heuristic
Output: path, g(goal)
open← {start}
closed← {}
g(start)← 0
f(start)← heuristic(start)
while open 6= {} do

current← node in open with lowest f score

if current = goal then

path← reconstruct path from start to goal

return path, g(goal)

end

move current from open to closed
for neighbor in successors(current) do

if neighbor in closed then
continue

end

tentative_g ← g(current) + cost(current,neighbor)
if neighbor not in open then

add neighbor to open
end

else if tentative_g ≥ g(neighbor) then
continue

end

parent(neighbor)← current

g(neighbor)← tentative_g
f(neighbor)← g(neighbor) + heuristic(neighbor)

end

end

return failure

Sampling-based methods

Sampling-based methods sample the environment and then use probabilistic algorithms to plan a path

that avoids obstacles. They are suitable for large-scale environments where creating a complete map in

advance is challenging. They can handle complex and dynamic environments and are particularly suitable

for tasks where the robot needs to explore new or unknown areas. Examples of such algorithms include

Rapidly-exploring Random Tree (RRT) and Probabilistic Roadmap (PRM). For this report, RRT is explained

in more detail due to its predominance in literature and to exemplify how sampling-based methods differ

from grid-based methods.

RRT algorithm The RRT algorithm is designed to efficiently explore a high-dimensional space to find

a feasible path between a start and goal configuration. The basic idea behind the RRT algorithm is to

construct a tree of configurations that grows from the start configuration towards the goal configuration. At

each iteration of the algorithm, a random configuration is generated in the state space, and the nearest

configuration in the tree is found. An attempt is made to extend the tree from the nearest configuration

toward the random configuration. If the extension leads to a new configuration close enough to the goal

configuration, the algorithm terminates and returns a viable path.

The algorithm in its procedural form is given below.

The RRT algorithm has several advantages over other motion planning algorithms, including its ability

to handle high-dimensional spaces and explore narrow passages in the state space. However, in some

cases, the algorithm may require many iterations to find a viable path, and it may not always find the

optimal path. There are several variants of the RRT algorithm, including the RRT* algorithm, which is an

3.4. Control Strategies and Path Planning 50

Algorithm 3: RRT algorithm

Function RRT(start,goal,max_iter, step_size,goal_radius):
tree.add_node(start)
for i← 1 to max_iter do

q_rand← sample random config

q_near ← nearest neighbor(q_rand, tree)
q_new ← extend(q_near, q_rand, step_size)
if distance(q_new,goal) < goal_radius then

tree.add_node(q_new)
tree.add_edge(q_new,goal)
return construct path(start, goal, tree)

end

tree.add_node(q_new)
tree.add_edge(q_near, q_new)

end

return None

extension of the basic RRT algorithm that seeks to improve the quality of the solution by using a different

cost function and rewiring the tree structure during the search. Other variants of the RRT algorithm include

the bidirectional RRT, which searches for a path from both the start and goal configurations simultaneously,

and the informed RRT*, which uses a heuristic function to guide the search toward the goal configuration.

Advantages and disadvantages of search algorithms

Search algorithms are a powerful tool for path planning in robotics. These algorithms offer several advan-

tages; the main advantage is that they guarantee completeness and optimality under certain conditions. In

this context, being complete means that it can find a feasible solution if one exists, whereas being optimal

refers to finding the best solution possible. For example, Dijkstra’s algorithm is complete and optimal when

used with a non-negative cost function, as described in Section 3.4.3. Furthermore, search algorithms

are flexible and can be adapted to various problem domains. Grid-based methods and sampling-based

methods can be applied to path planning in two-dimensional spaces and three-dimensional spaces with

varying degrees of complexity. It is also worth noting that they can be highly efficient in finding solutions to

path-planning problems. The A* algorithm is an excellent example of an algorithm that has been tailored

to be efficient, as it uses a heuristic function to guide the search toward the goal, improving on Dijkstra’s

algorithm.

Nevertheless, there are some disadvantages to using search algorithms for path planning. Firstly,

routing problems typically have combinatorial complexity, meaning that the number of possible solutions

grows exponentially with the size of the problem. Thus, search algorithms struggle to find optimal solutions

in such cases and can become computationally expensive. Moreover, these algorithms can be sensitive

to the environment and the problem formulation. For instance, grid-based methods are sensitive to the

size and resolution of the grid, while sampling-based methods are sensitive to the distribution of samples.

Lastly, they struggle to handle uncertainty and are not designed to re-plan in real-time when obstacles or

other environmental factors change.

Despite these challenges, search algorithms remain a valuable tool for path planning in robotics. Only

by carefully considering the advantages and disadvantages of search algorithms is it possible to select

the best approach for the specific problem domain and application. Table 3.5 summarizes the mentioned

advantages and disadvantages of search algorithms.

Table 3.5: Overview of the advantages and disadvantages of search algorithms. Own elaboration.

Advantages of search algorithms Disadvantages of search algorithms

• Completeness and Optimality • Combinatorial Complexity

• Flexibility • Sensitivity to Environment

• Efficiency • Difficulty in Handling Uncertainty

3.4. Control Strategies and Path Planning 51

Examples of search algorithms in robotics

Search algorithms are essential tools for solving various problems in robotics. They have been applied in

various robotic systems to facilitate path planning, obstacle avoidance, and motion planning. They offer a

robust and efficient approach to addressing the challenges of robot navigation in complex environments.

The biggest application of search algorithms in robotics is path planning. Algorithms such as A*, Dijkstra,

RRT, and PRM are commonly used to find the optimal or feasible path in high-dimensional configuration

space. Examples include the work of Kavraki et al. [70], where PRM, combined with a learning algorithm,

is used to plan paths in high-dimensional environments in fractions of a second. In obstacle avoidance,

RRT has been used frequently to find a collision-free path for robots. In the study by Bouzid et al. [71], an

extension of RRT, named multi-RRT* fixed node, is successfully used to plan the motion of a quadrotor in a

cluttered environment. In addition, search algorithms have been applied to motion planning in robotics, as

in the case of the study conducted by Guo and Parker [72], that opted for a search method in an attempt to

plan not only paths for multiple robots but also to plan their velocities. The algorithm was then implemented

and successfully run on indoor ground robots.

Search algorithms have been successfully applied in various robotic systems to facilitate path planning,

obstacle avoidance, and motion planning. Due to their efficiency, it is expected that the use of search

algorithms will continue to grow in the field of robotics and play an increasingly important role in developing

autonomous systems.

3.4.4. Discussion
Fuzzy Logic Control, Model Predictive Control, and Search Algorithms are all powerful techniques in

robotics that enable intelligent decision-making in various tasks. The dissected literature shows that they

are mainly used for path planning, motion planning, and obstacle avoidance. Applications further include

object manipulation, adaptive control, and human-robot interaction.

FLC has been applied in numerous robotic applications due to its ability to handle uncertainty and

imprecision. It provides a flexible way to design control systems based on expert knowledge or empirical

data due to its simple and straightforward formulation. Since its introduction in 1965, FLC has been applied

to numerous fields. It shows great promise in robotics applications requiring sensors, actuators, and

algorithms to achieve the desired outcome. An identified research gap is the need to bridge the gap

between FLC and deep learning, as suggested by Fan [73]. FLC and deep learning can benefit from this

collaboration, as fuzzy logic can assist in re-examining heuristics and reformulating neural computing to

increase efficiency, whereas deep learning can tune the initial parameterization conducted by an expert.

MPC is another popular control technique widely used in robotics applications because it handles

non-linear dynamics and constraints. It is a powerful optimization-based control approach that can plan and

execute a sequence of control actions over a finite horizon while considering constraints and uncertainties.

Compared to FLC, it offers a more rigorous mathematical formulation and the possibility to consider trade-

offs explicitly. In the context of SaR, this is particularly useful to minimize the search time for victims and

find the most significant possible number of victims while avoiding obstacles. Its primary disadvantage in

real-life applications is its computational complexity. It is expected that MPC remains one of the most solid

and robust control algorithms and that research in this area is oriented toward reducing its computational

cost.

Search Algorithms are used in robotics mainly for path optimization. They provide a systematic way

to explore the configuration space and find an optimal or feasible path to reach the goal. They can

mathematically guarantee completeness and optimality in certain conditions, making them a robust solution.

Nevertheless, it is crucial to review their formulation when applying them to large-scale problems, as

combinatorial complexity tends to increase exponentially with the increase of the graph size. The literature

review shows that recent work in heuristic search algorithms involves combining them with learning

algorithms to look for similarities between different problems and decrease computational time.

In conclusion, FLC, MPC, and search algorithms are all promising algorithms for intelligent decision-

making in robotics. The choice of technique depends on the desired mathematical rigor, the availability

of a model, and computational power. Research gaps in control strategies and path planning algorithms

include integrating learning algorithms and bridging the gap between theory and practice to prove their

effectiveness in recent complex problems, as highlighted in [70], [73], [74].

3.5. Conclusion 52

3.5. Conclusion
The Search and Rescue (SaR) industry stands to benefit substantially from the usage of robotics. Robots

have the potential to offer a fast and automated response in the aftermath of disasters, which is vital

in saving human lives. Furthermore, they are able to access remote areas and mitigate the risks to

human rescuers by substituting them in traversing hazardous environments. Nevertheless, assessing their

performance and reliability in laboratory settings is essential before trusting robots with such a vital task.

Recently, the focus of researchers has included creating heterogeneous teams of robots that complement

their characteristics for the benefit of the mission and implementing and testing these setups. With this

in mind, this literature study aims to provide supporting knowledge to fulfill the research objective of

developing an affordable autonomous UGV-UAV collaborative team to create a global map of the

locations of victims in SaR scenarios.

The literature review provides a comprehensive overview of the state of the art of image processing

methods, one of the main focuses of the work. In order to ensure that the UGV and UAV collaborate

effectively, it is essential to understand how they can detect victims and obstacles and merge the information

to create a global map for the mission. The literature study then delves into communication protocols,

guaranteeing that information is transmitted and exchanged as expected. As the reader becomes familiar

with image processing techniques and communication frameworks that allow a global map of the SaR

scenario to be created and transmitted, it is then indispensable to plan the path and motion for the UGV

to assist the victims while avoiding obstacles. The literature study reviews the state of the art of control

strategies and path-planning algorithms for that purpose. By synthesizing these topics, the literature study

offers a thorough understanding of the potential of implementing autonomous UGV-UAV collaborative SaR

teams.

Image Processing Advancements in computer science have allowed computers to detect and classify

objects in photographs. Initially, this was exclusively accomplished using traditional computer vision

methods that required expert knowledge in defining features that characterize each object to be searched

in the images. Recently, artificial intelligence has been revolutionizing the field of computer vision by

creating Convolutional Neural Networks (CNNs), a type of neural network specifically designed for image

processing. Deep learning algorithms are able to extract outputs directly from raw data accurately, provided

that they are trained with significant amounts of labeled images. The comparison conducted by O’Mahony

et al. [36] clearly illustrates the differences between the two workflows. Since collecting labeled images can

be too time-consuming for some applications, deep learning has still not made traditional computer vision

algorithms obsolete. Nevertheless, current research aims to develop even more sophisticated and efficient

deep learning algorithms, including Faster Regional-based Convolutional Neural Networks (R-CNNs) and

You Only Look Once (YOLO). Regarding fusing images taken from two different viewpoints, the state

of the art includes Siamese networks, which automatically detect how similar two inputs are. In object

scaling, stereo vision is state of the art, as it analyses the disparities between different images to estimate

the depth of the objects in the scene. The relevance of the photographs depends on the image quality,

the context in which they were captured, and the scope. Combining Support Vector Machines (SVMs)

and metrics such as Peak Signal-to-noise Ratio (PSNR) or Structure Similarity Index (SSIM) constitutes

novelty in the field by mapping objective quality to subjective quality assessments.

Communication Protocols Without effective communication, combining robots to achieve a common

goal is impossible. Communication protocols should be designed to enable the fast and robust exchange

of information. In order to choose a suitable communication protocol for a given application, it is crucial

to consider if communication is unidirectional or bidirectional, the available bandwidth, maximum latency

allowed, scalability, security, flexibility, and robustness to transmission failures. Sequential deployment

of robots does not require strict communication considerations, as information must not be exchanged

in real time. In the case of concurrent deployment of robots, communications are more dynamic and

complex, as robots communicate in real time, and latency should be minimal. The work of Fankhauser

et al. [4] showcases the challenges of switching from a sequential to a concurrent deployment setting.

Communication protocols between two robots can involve direct communications between them or also with

an external computer. Wi-Fi remains the most common means of communication due to its availability and

simplicity. However, investment in the field of IoT led to the creation of more sophisticated frameworks for

real time communication, including Message Queuing Telemetry Transport (MQTT), Extensible Messaging

and Presence Protocol (XMPP), and Wireless Sensor and Actuator Network (WSAN).

Control Strategies and Path Planning In any SaR mission, it is necessary to establish a path to rescue

all victims in the most efficient way, to save precious time. In the case of autonomous SaR robotics, it is

even more crucial to define a suitable path for the robots to follow and to plan their motion to track it as

closely as possible. Given that the world of control theory is vast, the literature study focused on the most

promising solutions that have been applied to SaR robotics in the past, namely Fuzzy Logic Control (FLC),

Model Predictive Control (MPC) and search algorithms. The literature study clarifies that all three control

methods are encouraging in the field of intelligent decision-making in robotics. The selection depends

mainly on the desired mathematical rigor and available computational power. FLC is the most suitable

choice in cases where simplicity is a priority. If the problem requires handling hard constraints and making

trade-offs, MPC is the adequate solution. In cases where the problem is exclusively path planning and

not motion planning, and the size of the problem is not too large, search algorithms can often guarantee

completeness and optimality and therefore provide a reliable solution. Therefore, all of them are currently

actively researched due to their substantial potential in the field of robotics.

Closing Remarks In conclusion, this literature review has successfully addressed all research questions

and has presented a comprehensive overview of SaR robotics. In addition, it has identified significant

research gaps that future researchers can explore to advance the field further. The research gaps identified

include the need to optimize sophisticated deep-learning object detection andmatching algorithms to require

fewer data. Such an achievement will make traditional computer vision algorithms obsolete and will allow

fast and reliable image processing, even for non-experts. Regarding communication protocols, research

gaps include the need to develop safe and scalable communication frameworks for IoT applications. In

the field of robotics, it is increasingly popular to use multi-robot architectures. Scalability issues are even

more prone to occur due to the expected miniaturization of robots in the future, as discussed by Sitti [75].

With the current development of society, various robotic applications are raising ever higher requests

for solving constrained optimization problems. Thus, more efforts should be made in MPC research to

bridge the gap between MPC theory and applications, as highlighted by Xi et al. [74]. Another interesting

research gap is to bridge the gap between FLC and deep learning. According to Fan [73], research in FLC

has declined since 1998, partially due to a lack of convincing applications in complex machine learning

problems. However, there is an opportunity to use FLC to re-examine heuristics and reformulate neural

computing to achieve more efficient algorithms in practice. The literature review also suggests combining

search algorithms with learning algorithms to look for similarities between different problems and decrease

computational times. The present review is valuable for researchers and industry professionals seeking to

broaden their knowledge in this domain.

53

Part III
Closure

54

4
Conclusion

In this chapter, the main conclusions of the thesis are provided. Firstly, in Section 4.1, the research

objective and research questions are revisited to reflect on the extent to which they can be answered.

Subsequently, in Section 4.2, concluding remarks on the project are given in a general tone.

4.1. Revisiting Research Formulation
The research objective, as well as the research questions posed in Chapter 1 are repeated below for

convenience. A reflection is then provided one by one to get an overview of the success of the work.

The research objective included leveraging the complementary capabilities of flying and ground robots to

deliver an affordable and effective SaR solution in mapping unknown disaster areas. For this purpose, a

few typical SaR tasks were performed experimentally, namely estimating the distance of a human from the

robot from photographs using pose estimation, tracking the trajectory of an object by applying data fusion,

and estimating the terrain elevation. To ensure a simplistic setup and to keep the hardware costs low,

these tasks were performed by requiring visual depiction only through photographs and videos. Due to the

emergence of YOLO as one of the leading object detection algorithms, as concluded from the literature

study, it was incorporated into the framework. Therefore, the research objective was formulated as follows:

Investigate the attainable accuracy of a collaborating flying and a ground robot team equipped

with RGB cameras and employing YOLO in performing conventional SaR mapping tasks.

Research Objective

The research objective led to the development of a modular Python program consisting of several

functionalities divided by task. The evolution of the program occurred hand-in-hand with frequent testing,

making use of real photographs and videos from the robots and the laboratory facilities to validate the

algorithms. Prior to the experiments, several programs were installed and tested to ensure the smooth flow

of information and command exchange between the external computer, the Parrot Bebop 2, and the Parrot

Jumping Sumo. In addition, safety briefings were attended to guarantee the safety of the experiments,

as well as the safety of the participants. The first research question, related to the detection and depth

estimation of participants, making use of pose estimation as a supporting algorithm, was formulated as

given below.

Is leveraging pose estimation techniques and camera equations a robust and accurate approach

to performing human depth estimation in photographic images?

Research Question 1

The experimental sessions involved 24 participants in the CyberZoo, and estimating their depths (i.e.,

their distance from the SUMO Jumping Robot) for different poses and distances to the camera of the

UGV. The experiment revealed the potential of the algorithm to accurately estimate human depth from

photographs, yet unveiled its susceptibility to variations in poses. Even though most of the average

55

4.1. Revisiting Research Formulation 56

relative errors originating from the algorithm are below 10%, they can also soar above 20% in specific

circumstances. Nevertheless, auspicious results include a module to estimate missing key points, which

indeed shows increased robustness. Even in situations where some body parts of the participants were

occluded, such as the shoulders and the face, the algorithm practically did not showcase a reduction in

accuracy. Compared to more simplistic algorithms that simply take the width or height of the object into

consideration when estimating its depth, which is much more prone to faulted predictions due to occlusion,

the proposed solution represents a significant improvement. Moreover, the fact that the estimation can be

done through several different reference measurements and can be fused also offers increased robustness,

as the algorithm is less dependent on a specific measurement (e.g., the height). However, the accuracy

values obtained are contingent on well-lit scenarios and were only tested in distances up to 3 m. It is

expected that the accuracy significantly drops in poorly lit scenarios, scenarios with several occlusions, or

even at larger distances where the resolution of the camera plays a bigger role. Thus, in the eventuality

that the UGV performs this task by itself, the need to integrate the proposed system into a broader depth

estimation module, which includes other forms of sensing, such as thermal imaging and acoustic sensing,

remains a priority. In order to tackle this difficulty, a UAV assists the UGV in tracking the trajectories of

objects, giving origin to the second research question, specified below.

How much improvement does a UGV-UAV collaboration offer in performing object tracking

compared to an individual operation within realistic SaR scenarios?

Research Question 2

The estimated trajectories were evaluated based on three performance metrics, namely the Root Mean

Square Error (RMSE), the extreme deviation from the true trajectory, and the area ratio, which represents

the portion of the area under the true trajectory that is covered by the estimated trajectory. When tracking

the trajectories of objects, the collaborative advantage of deploying both aerial and ground robots is

evident in keeping the overall shape of the trajectory close to the true trajectory. Nevertheless, this is not

always reflected in the metrics, reason why visual inspection of the trajectories should accompany the

analysis. The collaborative setup is more fault-safe in keeping a low RMSE, as it is frequently close to the

average of the RMSE obtained with the deployment of each of the robots individually. The collaboration is

extremely effective at preventing large extreme deviations, especially in cluttered environments. Overall,

for unobstructed narrow-area trajectories, the deployment of one robot suffices as the joint deployment of

the robots offers practically no improvements. Particularly, the standalone UAV offers more encouraging

results when compared to the standalone UGV. However, for wide-area trajectories or in the presence of

obstacles, the advantages of deploying both robots are evident. In the widest trajectory simulated and

in the presence of obstacles to the aerial view, the deployment of both robots showcased a reduction

of 28% in the extreme deviation of the true trajectory and an increase of 42% in the area covered ratio

compared to the best-performing robot. The ability to navigate obstacles and to maintain precision in

diverse environments remains a challenge that demands further attention, as it is expected to further

improve the collaborative setup. Lastly, the setup could be extended to compute an elevation profile of the

terrain, giving rise to the third research question, as formulated below.

To what extent can a collaborative UGV-UAV system generate a dependable and comprehen-

sive elevation map of diverse terrains?

Research Question 3

The proposed setup for elevation mapping faces two primary elevation error sources: depth estimation

and subsequent elevation estimation. Depth estimation inaccuracies stem from simplified camera models

and low image resolution, impacting object detection, compounded by occasional object occlusion. Eleva-

tion errors also result from poor homography calibration in specific regions, exacerbated by the double

application of the simplified camera model. Without UAV assistance, elevation relative errors range from

0% to 35%, dropping to under 13% with UAV help, except for one instance reaching 35%. This instance

occurs in a poorly calibrated area regarding homography calibration, highlighting the importance of having

diverse reference points in the calibration step. These findings, observed in well-lit scenarios with aligned

UGV-object settings, are expected to degrade in more challenging environments. The suitability of the

4.2. Closing Remarks 57

approach varies: it does not meet high-precision needs but could find utility in SaR missions contingent on

terrain characteristics and coverage area. Lastly, in the current approach, the UAV carries only one object

at a time and needs to pick it up and transport it somewhere else for the elevation at a different point to be

estimated. Therefore, future work is essential to answer about the scalability of the approach.

4.2. Closing Remarks
Collectively, these experiments represent notable progress in leveraging visual data and robotic capabilities

for SaR. However, they also serve as a poignant reminder of the multifaceted nature of real-world scenarios,

where dynamic and unpredictable conditions demand adaptable, versatile, and resilient systems. While

running these experiments in real-time seems realistic, running them onboard is more daunting, especially

for the elevation mapping task. Moving forward, bridging the gap between experimental findings and

real-world deployment remains imperative. Addressing the identified limitations by refining algorithms,

enhancing collaborative robot functionalities, and devising adaptable strategies tailored to diverse SaR

scenarios will be pivotal. In essence, while these experiments mark significant strides in harnessing

visual-based techniques within robotic systems for SaR missions, they contribute to an ongoing journey

towards more effective, adaptable, and accessible solutions vital for saving lives.

References

[1] A. Pretto, S. Aravecchia, W. Burgard, N. Chebrolu, C. Dornhege, T. Falck, F. Fleckenstein, A.

Fontenla, M. Imperoli, R. Khanna, F. Liebisch, P. Lottes, A. Milioto, D. Nardi, S. Nardi, J. Pfeifer, M.

Popović, C. Potena, C. Pradalier, E. Rothacker-Feder, I. Sa, A. Schaefer, R. Siegwart, C. Stachniss,

A. Walter, W. Winterhalter, X. Wu, and J. Nieto, “Building an aerial–ground robotics system for

precision farming: An adaptable solution,” IEEE Robotics & Automation Magazine, volume 28,

number 3, pages 29–49, Sep. 2021 (cited on page 1).

[2] C. Potena, R. Khanna, J. Nieto, R. Siegwart, D. Nardi, and A. Pretto, “Agricolmap: Aerial-ground

collaborative 3d mapping for precision farming,” IEEE Robotics and Automation Letters, volume 4,

number 2, pages 1085–1092, Apr. 2019 (cited on page 1).

[3] B. Hament and P. Oh, “Unmanned aerial and ground vehicle (uav-ugv) system prototype for civil

infrastructure missions,” in 2018 IEEE International Conference on Consumer Electronics (ICCE),

Las Vegas, NV, USA: IEEE, Mar. 2018, pages 1–4 (cited on page 1).

[4] P. Fankhauser, M. Bloesch, P. Krüsi, R. Diethelm, M. Wermelinger, T. Schneider, M. Dymczyk, M.

Hutter, and R. Siegwart, “Collaborative navigation for flying and walking robots,” in 2016 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South): IEEE,

Dec. 2016, pages 2859–2866 (cited on pages 1, 33, 36, 37, 39, 52).

[5] G.-J. M. Kruijff, F. Pirri, M. Gianni, P. Papadakis, M. Pizzoli, A. Sinha, V. Tretyakov, T. Linder, E.

Pianese, S. Corrao, F. Priori, S. Febrini, and S. Angeletti, “Rescue robots at earthquake-hit mirandola,

italy: A field report,” in 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics

(SSRR), College Station, TX, USA: IEEE, Nov. 2012, pages 1–8 (cited on page 1).

[6] S. Hood, K. Benson, P. Hamod, D. Madison, J. M. O’Kane, and I. Rekleitis, “Bird’s eye view:

Cooperative exploration by ugv and uav,” in 2017 International Conference on Unmanned Aircraft

Systems (ICUAS), Miami, FL, USA: IEEE, Jun. 2017, pages 247–255 (cited on page 1).

[7] R. T. Newkirk, “The increasing cost of disasters in developed countries: A challenge to local planning

and government,” Journal of Contingencies and Crisis Management, volume 9, number 3, pages 159–

170, Dec. 2001 (cited on pages 1, 26).

[8] M. Zorn, Natural Disasters and Less Developed Countries, S. Pelc and M. Koderman, Eds. Springer

International Publishing, Aug. 2018, pages 59–78 (cited on pages 2, 26).

[9] J. P. Zelten, “Digital photography and the dynamics of technology innovation,” Ph.D. dissertation,

Feb. 2002 (cited on page 2).

[10] I. C. Condotta, T. M. Brown-Brandl, S. K. Pitla, J. P. Stinn, and K. O. Silva-Miranda, “Evaluation

of low-cost depth cameras for agricultural applications,” Computers and Electronics in Agriculture,

volume 173, page 105394, Jun. 2020 (cited on page 2).

[11] A. P. Hill, P. Prince, J. L. Snaddon, C. P. Doncaster, and A. Rogers, “Audiomoth: A low-cost acoustic

device for monitoring biodiversity and the environment,” HardwareX, volume 6, e00073, Oct. 2019

(cited on page 2).

[12] H. H. Titi, Feasibility Study for a Freeway Corridor Infrastructure Health Monitoring (HM) Instrumen-

tation Testbed. Wisconsin DOT Research & Library Unit, Jul. 2012 (cited on page 2).

[13] L. Zhaohua and G. Bochao, “Radar sensors in automatic driving cars,” in 2020 5th International

Conference on Electromechanical Control Technology and Transportation (ICECTT), Nanchang,

China: IEEE, Oct. 2020, pages 239–242 (cited on page 2).

58

References 59

[14] S. Hummel, A. Hudak, E. Uebler, M. Falkowski, and K. Megown, “A comparison of accuracy and

cost of lidar versus stand exam data for landscape management on the malheur national forest,”

Journal of Forestry, volume 109, pages 267–273, Jul. 2011 (cited on page 2).

[15] D. Van Nam and K. Gon-Woo, “Solid-state lidar based-slam: A concise review and application,” in

2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island,

Korea (South): IEEE, Jan. 2021, pages 302–305 (cited on page 2).

[16] R. R. Murphy, S. Tadokoro, and A. Kleiner, Disaster Robotics, B. Siciliano and O. Khatib, Eds.

Springer International Publishing, Jan. 2016, pages 1577–1604 (cited on page 26).

[17] J. Qi, D. Song, H. Shang, N. Wang, C. Hua, C. Wu, X. Qi, and J. Han, “Search and rescue rotary-wing

uav and its application to the lushan ms 7.0 earthquake,” Journal of Field Robotics, volume 33,

number 3, pages 290–321, Jul. 2016 (cited on page 26).

[18] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, “Deep learning for smart manufacturing: Methods

and applications,” Journal of manufacturing systems, volume 48, pages 144–156, Jul. 2018 (cited

on page 28).

[19] R. Thendral, A. Suhasini, and N. Senthil, “A comparative analysis of edge and color based segmen-

tation for orange fruit recognition,” in 2014 International Conference on Communication and Signal

Processing, Melmaruvathur, India: IEEE, Apr. 2014, pages 463–466 (cited on page 29).

[20] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-cooper: Feature based cooperative

perception for autonomous vehicle edge computing system using 3d point clouds,” in Proceedings of

the 4th ACM/IEEE Symposium on Edge Computing, Arlington, VA, USA: Association for Computing

Machinery, Nov. 2019, pages 88–100 (cited on page 29).

[21] J. Gautham, A. Sharma, S. Dhanalakshmi, and K. Ramamoorthy, “3d scene reconstruction and map-

ping with real time human detection for search and rescue robotics,” in AIP Conference Proceedings,

volume 2427, Address to be determined: AIP Publishing LLC, Feb. 2023, page 020002 (cited on

page 29).

[22] E. Karami, M. Shehata, and A. Smith, “Image identification using sift algorithm: Performance analysis

against different image deformations,” Oct. 2017 (cited on page 29).

[23] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust features,” in Computer Vision–

ECCV 2006: 9th European Conference on Computer Vision, volume 3951, Graz, Austria: Springer,

May 2006, pages 404–417 (cited on page 29).

[24] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” in Computer

Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria: Springer, May

2006, pages 430–443 (cited on page 29).

[25] A. Reiter, P. K. Allen, and T. Zhao, “Articulated surgical tool detection using virtually-rendered

templates,” in Computer assisted radiology and surgery (CARS), Pisa, Italy: Springer, Jun. 2012,

pages 1–8 (cited on page 29).

[26] S. Xu, T. Fang, D. Li, and S. Wang, “Object classification of aerial images with bag-of-visual words,”

IEEE Geoscience and Remote Sensing Letters, volume 7, number 2, pages 366–370, Dec. 2010

(cited on page 29).

[27] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, volume 20, pages 273–297,

Sep. 1995 (cited on page 29).

[28] J. Kavitha and A. Suruliandi, “Texture and color feature extraction for classification of melanoma using

svm,” in 2016 International conference on computing technologies and intelligent data engineering

(ICCTIDE’16), Kovilpatti, India: IEEE, Jan. 2016, pages 1–6 (cited on page 30).

[29] J.-j. Wang, D.-a. Zhao, W. Ji, J.-j. Tu, and Y. Zhang, “Application of support vector machine to apple

recognition using in apple harvesting robot,” in 2009 International Conference on Information and

Automation, Zhuhai/Macau, China: IEEE, Aug. 2009, pages 1110–1115 (cited on page 30).

References 60

[30] Y. Liu, X. Wang, L. Li, S. Cheng, and Z. Chen, “A novel lane change decision-making model of

autonomous vehicle based on support vector machine,” IEEE Access, volume 7, pages 26543–

26550, Feb. 2019 (cited on page 30).

[31] J. Kober and R. Babuška, Knowledge-Based Control Systems. Jul. 2017 (cited on pages 30, 31,

40–42, 45).

[32] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” Nov. 2015 (cited on

page 31).

[33] A. Dhillon and G. K. Verma, “Convolutional neural network: A review of models, methodologies and

applications to object detection,” Progress in Artificial Intelligence, volume 9, number 2, pages 85–

112, Dec. 2020 (cited on page 31).

[34] A. G. Villa, A. Salazar, and F. Vargas, “Towards automatic wild animal monitoring: Identification of

animal species in camera-trap images using very deep convolutional neural networks,” Ecological

informatics, volume 41, pages 24–32, Sep. 2017 (cited on page 31).

[35] K. Shan, J. Guo, W. You, D. Lu, and R. Bie, “Automatic facial expression recognition based on a deep

convolutional-neural-network structure,” in 2017 IEEE 15th International Conference on Software

Engineering Research, Management and Applications (SERA), London, United Kingdom: IEEE, Jun.

2017, pages 123–128 (cited on page 31).

[36] N. O’Mahony, S. Campbell, A. Carvalho, S. Harapanahalli, G. V. Hernandez, L. Krpalkova, D.

Riordan, and J. Walsh, “Deep learning vs. traditional computer vision,” in Advances in Computer

Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Las Vegas, NV, USA: Springer,

Apr. 2020, pages 128–144 (cited on pages 31, 32, 52).

[37] J. Du, “Understanding of object detection based on cnn family and yolo,” in Journal of Physics:

Conference Series, volume 1004, Hong Kong, China: IOP Publishing, Feb. 2018, page 012029

(cited on page 33).

[38] I. Melekhov, J. Kannala, and E. Rahtu, “Siamese network features for image matching,” in 2016

23rd international conference on pattern recognition (ICPR), Cancun, Mexico: IEEE, Dec. 2016,

pages 378–383 (cited on page 33).

[39] M. Marques, M. Stošić, and J. Costeira, “Subspace matching: Unique solution to point matching

with geometric constraints,” in 2009 IEEE 12th International Conference on Computer Vision, Kyoto,

Japan: IEEE, Oct. 2009, pages 1288–1294 (cited on page 33).

[40] R. Lagisetty, N. K. Philip, R. Padhi, and M. S. Bhat, “Object detection and obstacle avoidance for

mobile robot using stereo camera,” in 2013 IEEE International Conference on Control Applications

(CCA), Hyderabad, India: IEEE, Aug. 2013, pages 605–610 (cited on page 34).

[41] P. Kuhad, A. Yassine, and S. Shimohammadi, “Using distance estimation and deep learning to simplify

calibration in food calorie measurement,” in 2015 IEEE International Conference on Computational

Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA),

Shenzhen, China: IEEE, Jun. 2015, pages 1–6 (cited on page 34).

[42] D. R. I. M. Setiadi, “Psnr vs ssim: Imperceptibility quality assessment for image steganography,”

Multimedia Tools and Applications, volume 80, number 6, pages 8423–8444, Nov. 2021 (cited on

page 34).

[43] W. Ding, Y. Tong, Q. Zhang, and D. Yang, “Image and video quality assessment using neural network

and svm,” Tsinghua Science and Technology, volume 13, number 1, pages 112–116, Feb. 2008

(cited on page 34).

[44] J. Delmerico, E. Mueggler, J. Nitsch, and D. Scaramuzza, “Active autonomous aerial exploration for

ground robot path planning,” IEEE Robotics and Automation Letters, volume 2, number 2, pages 664–

671, Jan. 2017 (cited on page 36).

[45] P. De Petris, S. Khattak, M. Dharmadhikari, G. Waibel, H. Nguyen, M. Montenegro, N. Khedekar, K.

Alexis, and M. Hutter, “Marsupial walking-and-flying robotic deployment for collaborative exploration

of unknown environments,” arXiv preprint arXiv:2205.05477, May 2022 (cited on page 36).

References 61

[46] Z. Wang, Z. Hu, Y. Man, and M. Fjeld, “A collaborative system of flying and ground robots with uni-

versal physical coupling interface (pci), and the potential interactive applications,” in CHI Conference

on Human Factors in Computing Systems Extended Abstracts, New Orleans, LA, USA: Association

for Computing Machinery, Apr. 2022, pages 1–7 (cited on page 37).

[47] T. Miki, P. Khrapchenkov, and K. Hori, “Uav/ugv autonomous cooperation: Uav assists ugv to climb

a cliff by attaching a tether,” in 2019 International Conference on Robotics and Automation (ICRA),

Montreal, QC, Canada: IEEE, May 2019, pages 8041–8047 (cited on pages 37, 38).

[48] N. Lissandrini, C. K. Verginis, P. Roque, A. Cenedese, and D. V. Dimarogonas, “Decentralized

nonlinear mpc for robust cooperative manipulation by heterogeneous aerial-ground robots,” in 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA:

IEEE, Feb. 2020, pages 1531–1536 (cited on page 38).

[49] B. Zhou, H. Xu, and S. Shen, “Racer: Rapid collaborative exploration with a decentralized multi-uav

system,” arXiv preprint arXiv:2209.08533, Feb. 2022 (cited on page 38).

[50] S. Ren, Y. Chen, L. Xiong, Z. Chen, and M. Chen, “Path planning for the marsupial double-uavs

system in air-ground collaborative application,” in 2018 37th Chinese Control Conference (CCC),

Wuhan, China: IEEE, Oct. 2018, pages 5420–5425 (cited on page 38).

[51] M. Mukhandi, D. Portugal, S. Pereira, and M. S. Couceiro, “A novel solution for securing robot

communications based on the mqtt protocol and ros,” in 2019 IEEE/SICE International Symposium

on System Integration (SII), Paris, France: IEEE, Jan. 2019, pages 608–613 (cited on page 38).

[52] S. Bendel, T. Springer, D. Schuster, A. Schill, R. Ackermann, and M. Ameling, “A service infrastructure

for the internet of things based on xmpp,” in 2013 IEEE International Conference on Pervasive

Computing and Communications Workshops (PERCOM Workshops), San Diego, CA, USA: IEEE,

Mar. 2013, pages 385–388 (cited on page 38).

[53] D.-I. Curiac, “Towards wireless sensor, actuator and robot networks: Conceptual framework, chal-

lenges and perspectives,” Journal of Network and Computer Applications, volume 63, pages 14–23,

Mar. 2016 (cited on page 38).

[54] A. Ohta, “Sky magic: Drone entertainment show,” in ACM SIGGRAPH 2017 Emerging Technologies,

Los Angeles, CA, USA: Association for Computing Machinery, Jul. 2017 (cited on page 40).

[55] L. A. Zadeh, “Fuzzy sets,” Information and Control, volume 8, number 3, pages 338–353, Jun. 1965

(cited on page 40).

[56] T. Vasconcelos Cabanas Ramos Ascensão, “Adaptive fuzzy logic control applied to socially assistive

drones: A case study,” Nov. 2021 (cited on pages 41, 44).

[57] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and con-

trol,” IEEE Transactions on Systems, Man, and Cybernetics, volume SMC-15, number 1, pages 116–

132, Feb. 1985 (cited on page 43).

[58] P. Albertos, A. Sala, and M. Olivares, “Fuzzy logic controllers. methodology. advantages and

drawbacks,” in Congreso Español sobre Tecnologı́as y Lógica Fuzzy, Seville, Spain: Publisher not

specified, Sep. 2000, pages 1–11 (cited on page 43).

[59] H. Seraji and A. Howard, “Behavior-based robot navigation on challenging terrain: A fuzzy logic

approach,” IEEE transactions on robotics and automation, volume 18, number 3, pages 308–321,

Jun. 2002 (cited on page 44).

[60] A. Pandey, R. K. Sonkar, K. K. Pandey, and D. R. Parhi, “Path planning navigation of mobile robot

with obstacles avoidance using fuzzy logic controller,” in 2014 IEEE 8th International Conference on

Intelligent Systems and Control (ISCO), Coimbatore, India: IEEE, May 2014, pages 39–41 (cited on

page 44).

[61] V. Ciobanu and N. Popescu, “Tactile controller using fuzzy logic for robot inhand manipulation,” in

2015 19th International Conference on System Theory, Control and Computing (ICSTCC), Cheile

Gradistei, Romania: IEEE, Nov. 2015, pages 435–440 (cited on page 44).

References 62

[62] T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic-based controller for

wheeled mobile robots,” IEEE Transactions on Control Systems Technology, volume 14, number 3,

pages 501–510, May 2006 (cited on page 44).

[63] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control—part i. the basic algorithm,”

Automatica, volume 23, number 2, pages 137–148, Mar. 1987 (cited on page 44).

[64] C. de Koning, “Hierarchical cooperative mission planning of non-homogeneous autonomous search-

and-rescue robots,” Jan. 2022 (cited on page 44).

[65] A. Carron, E. Arcari, M. Wermelinger, L. Hewing, M. Hutter, and M. N. Zeilinger, “Data-driven model

predictive control for trajectory tracking with a robotic arm,” IEEE Robotics and Automation Letters,

volume 4, number 4, pages 3758–3765, Jul. 2019 (cited on page 46).

[66] H. Lim, Y. Kang, C. Kim, J. Kim, and B.-J. You, “Nonlinear model predictive controller design with

obstacle avoidance for a mobile robot,” in 2008 IEEE/ASME International Conference on Mechtronic

and Embedded Systems and Applications, Beijing, China: IEEE, Oct. 2008, pages 494–499 (cited

on page 46).

[67] B. Cho, S.-W. Kim, S. Shin, J.-H. Oh, H.-S. Park, and H.-W. Park, “Energy-efficient hydraulic pump

control for legged robots using model predictive control,” IEEE/ASME Transactions on Mechatronics,

volume 28, number 1, pages 3–14, Aug. 2023 (cited on page 47).

[68] L. Fu, D. Sun, and L. Rilett, “Heuristic shortest path algorithms for transportation applications: State

of the art,” Computers & Operations Research, volume 33, number 11, pages 3324–3343, Nov. 2006

(cited on page 47).

[69] E. A. Silver, R. Victor, V. Vidal, and D. de Werra, “A tutorial on heuristic methods,” European Journal

of Operational Research, volume 5, number 3, pages 153–162, Sep. 1980 (cited on page 47).

[70] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path

planning in high-dimensional configuration spaces,” IEEE transactions on Robotics and Automation,

volume 12, number 4, pages 566–580, Aug. 1996 (cited on page 51).

[71] Y. Bouzid, Y. Bestaoui, and H. Siguerdidjane, “Quadrotor-uav optimal coverage path planning in

cluttered environment with a limited onboard energy,” in 2017 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), Vancouver, BC, Canada: IEEE, Dec. 2017, pages 979–984

(cited on page 51).

[72] Y. Guo and L. Parker, “A distributed and optimal motion planning approach for multiple mobile

robots,” in Proceedings 2002 IEEE International Conference on Robotics and Automation, volume 3,

Washington, DC, USA: IEEE, Aug. 2002, pages 2612–2619 (cited on page 51).

[73] L. Fan, “Revisit fuzzy neural network: Bridging the gap between fuzzy logic and deep learning,” Nov.

2017 (cited on pages 51, 53).

[74] Y.-G. XI, D. Li, and S. Lin, “Model predictive control — status and challenges,” Acta Automatica

Sinica, volume 39, pages 222–236, Mar. 2013 (cited on pages 51, 53).

[75] M. Sitti, “Microscale and nanoscale robotics systems [grand challenges of robotics],” IEEE Robotics

& Automation Magazine, volume 14, number 1, pages 53–60, Mar. 2007 (cited on page 53).

	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Flying and Ground Robots Collaboration
	Search and Rescue
	Research Formulation
	Report Structure

	I Scientific Article
	Flying and Ground Robot Collaboration for Camera-based Search and Rescue
	Introduction
	Literature Review
	Main Contributions & Structure of the Paper
	Methodology
	Case Studies
	Results & Discussion
	Limitations & Topics for Future Work
	Conclusions

	II Preliminary Analysis
	Literature Review
	Introduction
	Image Processing
	Communication Protocols
	Control Strategies and Path Planning
	Conclusion

	III Closure
	Conclusion
	Revisiting Research Formulation
	Closing Remarks

	References

