
Finding Biomarkers for Schizophrenia
Can Machine Learning algorithms identify schizophrenia-related biomarkers within metagenomic data

derived from the human gut microbiome?

Timothy Bastow

Supervisors: Thomas Abeel, Eric van der Toorn, David Calderón Franco

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Timothy Bastow
Final project course: CSE3000 Research Project
Thesis committee: Thomas Abeel, Eric van der Toorn, David Calderon Franco



Abstract

There is mounting evidence indicating a relation-
ship between the gut microbiome composition and
the development of mental diseases but the mech-
anisms remain unclear. Shotgun sequenced data
from 90 schizophrenic patients and 81 sex, age,
weight, and location matched controls was used
for three machine learning models: Logistic Re-
gression, Random Forests, and XGBoost. The
20 most relevant species in the decision mak-
ing of each classifier was retained and the over-
lap between models recorded. There is a total
19 overlapping species between the models’ top
20 most relevant species, with 10 species over-
lapping on all three models. Bifidobacterium bi-
fidum, Akkermansia muciniphila, Eubacterium sir-
aeum, Alistipes finegoldii, Intestinibacter bartlet-
tii, Bifidobacterium pseudocatenulatum, and Strep-
tococcus thermophilus are of particular interest as
they are reported as enriched in schizophrenia sam-
ples in existing literatures. Phoceicola vulgatus has
been found to play a significant role in the classi-
fiers decisions and is enriched in healthy samples
in the literature. One species, Ruthenibacterium
lactatiformans, and one co-abundant gene group,
Eubacterium sp. CAG:180, consistently ranked as
the most important features across all three classi-
fiers, despite the absence of reporting in existing
literature. This study could be expanded by using
genus-level data. Further research should be done
to validate the species mentioned above as potential
biomarkers for schizophrenia.

1 Introduction
In recent years, increased research efforts have provided
mounting evidence that mental diseases crucially affect the
gut-brain axis (Appleton, 2018). A microbiome refers to a
collection of microorganisms that reside in a given environ-
ment, in the case of this particular study the human gut. The
gut microbiome plays a crucial role in human health and is
influenced by several factors such as diet, lifestyle, and en-
vironmental exposures (Ahn and Hayes, 2021). The compo-
sition and function of the gut microbiome has gained signifi-
cant scientific interest due to its potential implications for di-
agnosing, preventing, and treating various diseases (Shreiner
et al., 2015). There are several methods to obtain micro-
biome information, also referred to as metagenomic infor-
mation, from the human gut. One of the most common
methods is to extract DNA information from stool samples
and sequence it in order to determine the genetic informa-
tion. While several sequencing methodologies are available,
the current research focuses on samples that have undergone
shotgun metagenomic sequencing, given its capacity for de-
livering accurate taxonomic data (Ranjan et al., 2016). Shot-
gun sequencing has several advantages over other methods
such as 16S rRNA gene amplicon sequencing, namely en-
hanced detection of bacterial species, increased detection of

diversity and increased prediction of genes. The longer read
lengths in shotgun also improves the accuracy of species de-
tection (Ranjan et al., 2016). These advantages are particu-
larly important when leveraging taxonomic abundance data
in machine learning models.

Unfortunately, shotgun metagenomic data from treatment-
naive patients (patients without a history of prior treatment)
remain scarce thereby limiting our understanding of the com-
plex interactions between the gut microbiome and the brain
when it comes to mental diseases (Zhu et al., 2020). One
mental disorder that has received relatively limited atten-
tion in this field is Schizophrenia (Szeligowski et al., 2020).
Affecting approximately 21 million individuals worldwide,
schizophrenia remains a significant challenge in terms of
early diagnosis and intervention (Charlson et al., 2018).
Schizophrenia is a debilitating psychiatric condition, usu-
ally progressing gradually through various stages, character-
ized by hallucinations, delusions, and thought disorder and
thereby distorting perception and hampering social interac-
tion (Andreasen and Flaum, 1991). Diagnosis of schizophre-
nia predominantly relies on psychological assessments of pa-
tients, often leading to identification of the disorder only after
it has reached an advanced stage (Lee et al., 2021). This high-
lights the need for novel diagnostic approaches to facilitate
earlier detection and intervention. The extent to which the
gut microbiome contributes to schizophrenia remains unclear
and only a handful of studies have attempted to utilize ma-
chine learning to investigate schizophrenia-related biomark-
ers derived from shotgun sequenced data from the human gut
microbiome (Wang et al., 2023).

In light of the potential role of the gut microbiome in men-
tal disorders and the current limitations in early diagnosis of
schizophrenia, there is a pressing need for novel methods to
identify and validate biomarkers. The present research aims
to combine the precision of shotgun sequencing with machine
learning in order to identify schizophrenia-related biomarkers
within metagenomic data derived from the human gut micro-
biome. To achieve this, three machine learning models will
attempt to identify biomarkers with the same data. The struc-
ture of the paper is as follows: Section 2 details how the ex-
periments were set up and the implementation process. Sec-
tion 3 presents the results and then analyses and compares
them to existing literature. Finally, Section 4 summarises
the findings and provides suggestions on what future research
could be done to find and verify biomarkers for schizophre-
nia.

2 Methodology
2.1 Language and Frameworks
The entirety of the data was procured through the Curated-
MetagenomicData R package distributed through the Bio-
conductor ExperimentHub platform SOURCE, made avail-
able by Pasolli et al., (2017). The R programming frame-
work 4.3.0 (R Core Team, 2021) was used to extract the rela-
tive taxonomic abundance of species data from the study per-
formed by Zhu et al., (2020). The data was represented as a
TreeSummarizedExperiment and further manipulations using
R commands were done in order to extract the relative taxo-



nomic abundance and convert into table format. The metadata
was also extracted in a similar fashion.

The implementation of the machine learning process was
done in Python 3.10 (Van Rossum and Drake, 2009), sup-
plemented by a suite of additional libraries. These included
the sci-kit learn 1.2.2 package (Pedregosa et al., 2011) as the
main machine learning library, pandas 2.0.2 for manipulating
the data tables (team, 2023), seaborn 0.12.2 for visualising
data (Waskom, 2021), matplotlib 3.7.1 for generating graphs
(Hunter, 2007), and numpy 1.24.3 for arithmetic operations
(Harris et al., 2020).

2.2 Data Processing and Feature Extraction
The dataset created by Zhu et al., (2020) was used and made
available through the CuratedMetagenomicData R package.
This dataset encompassed gene families, marker abundance,
marker presence, pathway abundance, pathway coverage, and
relative abundance for each sample in the collection. Tax-
onomic abundance of bacteria, fungi, and archea in each
sample were determined using MetaPhlAn3, while metabolic
functional potential was calculated with HUMAnN3. All col-
lected samples were sourced from various cities within the
Shaaxi province, China, amassing a total of 171 samples,
including 81 control samples. Each sample was accompa-
nied by associated metadata features including gender, age,
and Body Mass Index (BMI). Exploratory data anlaysis of
the metadata revealed a balanced distribution across both the
control and schizophrenia cohorts. In terms of gender, both
cohorts exhibited an equal distribution between male and fe-
male participants. The age of the majority of the patients was
bracketed within the 20-40 year range, and most recorded
BMI values fell within the 18 to 24 range, considered as
the healthy bracket. This data was used exclusively to verify
whether the data was well balanced and did not have any in-
consistencies and was not used for model training. This study
focused exclusively on extracting relative species abundance
information.

Regarding relative abundance data, each sample was rep-
resented by 481 features, each expressing the relative abun-
dance of a particular species as a percentage value between 0
and 100. Features where 90% or more of the samples had a
value of 0, and the remaining samples had a value of 0.01 or
less, were discarded due to their negligible predictive utility,
reducing the number of features from 476 to 179. The data
was scaled using the Z-score normalization scaling method,
implemented through Sci-kit’s standardScaler function. The
target labels, initially classified as ”control”, ”first-episode
schizophrenia”, and ”repeated-episode schizophrenia”, were
first simplified to either ”control” or ”schizophrenia” (merg-
ing first-episode and repeated-episode patients into one cate-
gory) and then encoded into binary categories (0 for ”control”
and 1 for ”schizophrenia”).

2.3 Model Training
This sub-section describes the methodology employed to col-
lect results using the preprocessed data with the feature ex-
tracted, as detailed in the preceding segment. The specific
parameters and random states implemented throughout the

Figure 1: Diagram describing the overall process used in this study.
The goal is to find the most important features across three classi-
fiers. In order to avoid overfitting and to obtain accurate values for
feature importance, the main process is bootstrapped (repeated 10
times with a different random state for each iteration). The feature
importances are then averaged across all iterations.

process are documented in Appendix A. The relative abun-
dance of species table post-feature extraction was divided
into a training and validation set following a 80/20 split with
stratification. This ensured uniform representation of each
class in both sets. Three pipelines were initialized with
sklearn’s pipeline package to implement three classification
algorithms: Logistic Regression (LR), Random Forests (RF),
and XGBoost (XGB). The sklearn’s StandardScaler was
utilized in every pipeline for Z-score normalization scaling. A
set of hyperparameters for each model (outlined in Appendix
A) was then created for subsequent hyperparameters tuning
processes.

The subsequent two paragraphs describe the bootstrapping
technique used in the implementation. This technique was
performed 10 times, each iteration using a unique random



state for the cross-validation process to minimize overfitting
and achieve a more precise representation of each model’s
feature importance. The classifier’s random state remained
constant throughout to ensure consistency across iterations.

The first step of the bootstrapping process consisted of per-
forming stratified 5-fold cross-validation with MRMR fea-
ture selection and hyparameter-tuning. Stratification ensures
preservation of the sample proportion for each class within
the folds. For each fold’s training segment, MRMR feature
selection was independently applied to identify 50 relevant
features. A random search was then conducted to fit 5 folds
across 50 candidates, totalling 250 fits per model. The best
parameters returned by the random search were applied to the
model and the MRMR-selected 50 features were used for pre-
dictions on the validation fold. The accuracy, precision, and
ROC-AUC scores as well as the confusion matrix of each fold
were recorded. For features selected via MRMR, their impor-
tance was directly extracted for the RF and XGB models. In
the case of LR, the absolute value of each feature’s coeffi-
cient was recorded. Features not selected during the MRMR
process were assigned an importance of zero for that specific
fold. Upon completion of all folds, the metric scores and the
feature importances were averaged, and the confusion matri-
ces were cumulatively summed.

Following the completion of the cross-validation process,
and the recording of the metric scores in global dictionar-
ies, rankings for each classifier’s most important features
were compiled using the averaged feature importances cal-
culated during the cross-validation process. Each ranking
contained the 20 most important features for the given clas-
sifier. Each ranking was recorded to a global dictionary as to
record the rankings of every bootstrap iteration. The classi-
fiers were trained again on the updated training set contain-
ing only the overlapping features between the classifier’s top
20 rankings — features appearing in at least two classifier
rankings. Hyperparameter-tuning was performed once again
for each classifier using the updated training set. Predictions
were then made on the validation set using parameters re-
turned by the random search for each model. The results of
the predictions were recorded, marking the end of the boot-
strap iteration. This entire sequence was repeated 10 times,
each iteration using a different random state for the cross-
validation process.

Upon completion of the bootstrapping loop, two separate
rankings were generated for each classifier: one detailing the
top 20 features across all cross-validation runs and another
highlighting the 10 most important features across all valida-
tion set predictions. Similarly, two metric sets were devel-
oped for each model: one encompassing the average metrics
across all cross-validation runs and another encompassing the
average metrics from all validation set predictions. An Analy-
sis of Variance (ANOVA) and a Tukey’s Test were performed
with the three classifiers to identify performance differences
among the models. The ROC curve was plotted for each clas-
sifier using the predictions made across all bootstrap itera-
tions in order to compare the models’ ability to distinguish
between classes.

2.4 Model Validation and Evaluation
Model validation and evaluation were done using an iterative
cross-validation strategy, ensuring robust evaluation of pre-
dictive performance. A bootstrap process was implemented
with different random states for each iteration, creating a de-
gree of randomness that still permitted reproducibility. In
each iteration, the three models - Logistic Regression, Ran-
dom Forests, and XGBoost - underwent a stratified 5-fold
cross-validation with feature selection on the training data.
This stratified cross-validation strategy was used to optimise
model hyperparameters and gather preliminary performance
metrics. Additionally, confusion matrices were generated for
each model. Post cross-validation, feature importance was
computed for each model. The top 20 features were identi-
fied and selected for each model. Models were then retrained
using these selected features, offering an opportunity for each
model to learn from the most influential features. This feature
selection process was consistently applied across all cross-
validation iterations. The models were used to predict the
outcomes on an validation set. These predictions permitted
the evaluation of the models’ ability to generalise to unseen
data. ROC curves were plotted for each model using these
predictions.

Finally, a statistical comparison between the models was
conducted using an Analysis of Variance (ANOVA) and
Tukey’s post-hoc test. These tests offered a statistical per-
spective on the differences in the performance of the models.
ROC curve plots were also generated for each model in order
to further observe the difference in performance. The fea-
ture importance of each model were visualised using Venn
diagrams, providing an overview of the comparative perfor-
mance and feature utilisation of each model.

2.5 Responsible Research
Data Authenticity
The set used in this paper was initially created by Zhu et al.
(2020) for their study titled ”Metagenome-wide association
of gut microbiome features for schizophrenia”. The study
was supported by the Clinical Research Award of the First
Affiliated Hospital of Xi’an Jiaotong University, Shenzhen
Municipal Government of China, Innovation Team Project
of Natural Science Fund of Shanxi Province, and Key Pro-
gram of Natural Science Fund of Shanxi Province (Zhu et al.,
2020). The raw data is publicly accessible and has been di-
posited in the China National Gene Bank (CNGB) and the
European Nucleotide Archive (ENA). Furthermore, the pro-
cessed data used in their study can be directly accessed from
the published paper. The authors also provide an inventory
of the software and tools employed throughout their research.
Moreover, their publication underwent peer-review prior to
being published. It is reasonable to assume that the legiti-
macy of the data due to the author’s transparency regarding
data availability, supporting institutions, and the peer-review
process. However, the original publication offers limited in-
sight into the specific procedures of data collection. The only
detail provided is that shotgun sequencing was performed on
fecal samples. Further data about the samples, such as demo-
graphic and clinical characteristics, can be found in the ac-
companying metadata.Additionally, the data was procured via



the CuratedMetagenomicData package (Pasolli et al., 2017),
designed to offer uniformly processed human microbiome
data to users possessing minimal bioinformatic knowledge,
implying that were was an external validation of the data.
Even though it remains impossible to ascertain the integrity
of the sample collection process, the aforementioned reasons
permit a reasonable level of confidence in the data’s authen-
ticity.

Reproducibility of Methods
The present paper aims for transparency by using publicly
accessible data and providing comprehensive documentation
of the conducted experiments. Nevertheless, certain experi-
ments that did not yield any contribution to the results fea-
tured in this paper have been excluded. This primarily in-
cludes discarded experiments that neither improved the mod-
els’ performances nor yielded conclusive results. Ideally,
these experiments would be documented as well, but con-
straints related to the paper’s length made this impossible.
Regardless, all experiments that did contribute in any way to
the presented results are documented in this paper.

3 Results & Discussion
3.1 Feature Importance
Two rankings were created for each classifier, one listing the
20 most important features for each model across all cross-
validation runs and another across predictions made on the
validation set. The classifiers do not use the same set of fea-
tures for training during the cross-validation runs and the pre-
dictions on the validation set and therefore the rankings are
not directly comparable. During the cross-validation process,
the set of features used for training is obtained by applying
MRMR feature selection individually for each fold and fea-
ture importance is extracted from the selected features. For
the predictions on the validation set, the feature set is obtained
by merging the sets of overlapping features between the top
20 most important features of each classifier found during the
cross-validation process. More details about the calculation
of feature importance can be found in section 2.3.

Table 1 presents the combined rankings of each classifier
across all cross-validation runs, indicating the most impor-
tant features in the overall decision making process of each
model. he Venn diagram in Figure 2 illustrates the overlap
between the top 20 overall rankings of each model, revealing
the most relevant features for all three classifiers. During the
bootstrapping process, the cross-validation ranking is used to
create a new set of training features for the models. Con-
sequently, the features listed in Figure 2 are most relevant
for the subsequent prediction on the validation set. There is
a total of 19 overlapping features out of 31 distinct features
present across all rankings. . A substantial overlap can be
seen between the Random Forests and XGBoost rankings as
they share 16 features out of their respective top 20. The Lo-
gistic Regression ranking diverges the most with at least 8
unique features not present in any other ranking. It also has
the least individual overlap with other rankings.

For the Logistic Regression ranking across cross-validation
runs, Phocaeicola vulgatus is the feature with the highest

Table 1: Table listing the most important species for the Logis-
tic Regression (LR), Random Forests (RF), and XGBoost (XGB)
classifiers across all cross-validation runs. For each model, the 20
most important species were retained (based on the methodology
described in section 2.3). Overlapping species between rankings are
highlighted in bold. The table is organised by overlapping group and
alphabetical ordering of the species. LR uses coefficients to calcu-
late a feature’s importance whereas RF and XGB use feature impor-
tance. For each model, the scores of the 3 most important species
are highlighted in bold.

Species LR RF XGB
Alistipes finegoldii 0.044 0.032 0.017
Anaerostipes hadrus 0.049 0.033 0.02
Bifidobacterium bifidum 0.047 0.032 0.023
Eggerthella lenta 0.025 0.02 0.018
Eubacterium sp. CAG:180 0.072 0.079 0.056
Flavonifractor plautii 0.06 0.032 0.023
Intestinibacter bartlettii 0.051 0.021 0.019
Phocaeicola vulgatus 0.094 0.036 0.02
Ruthenibacterium lactatiformans 0.034 0.052 0.04
Streptococcus thermophilus 0.033 0.019 0.031
Akkermansia muciniphila - 0.03 0.031
Clostridium innocuum - 0.012 0.024
Eubacterium rectale - 0.028 0.019
Eubacterium siraeum - 0.019 0.021
Fusicatenibacter saccharivorans - 0.025 0.014
Ruminococcus lactaris - 0.015 0.024
Hungatella hathewayi 0.027 - 0.016
Roseburia sp. CAG:471 0.032 - 0.013
Bifidobacterium pseudocatenula-
tum

0.038 0.013 -

Actinomyces sp. ICM47 0.028 - -
Anaerotruncus colihominis 0.026 - -
Bacteroides salyersiae 0.021 - -
Citrobacter portucalensis 0.026 - -
Coprobacillus cateniformis 0.053 - -
Firmicutes bacterium CAG: 110 0.054 - -
Enterocloster asparagiformis 0.031 - -
Blautia wexlerae - 0.017 -
Ruminococcus bicirculans - 0.009 -
Roseburia intestinalis - 0.007 -
Citrobacter youngae - - 0.01
Parabacteroides goldsteinii - - 0.011
Mean Score 0.042 0.027 0.026



absolute coefficient by a clear margin. The co-abundant
gene group Eubacterium sp. CAG:180 and the species
Flavonifractor plautii both have significantly higher coeffi-
cient values compared to the rest of the ranking. In the Ran-
dom Forests ranking, Eubacterium sp. CAG:180 is the fea-
ture with the highest importance. Ruthenibacterium lactati-
formans also displays a considerably higher importance value
relative to the rest of the ranking. Finally, in the XGBoost
ranking, Eubacterium sp. CAG:180 again leads as the feature
with the highest importance score, although not as dominant
as in the Random Forests ranking. Ruthenibacterium lactat-
iformans is also a high-ranking feature. Thus, Eubacterium
sp. CAG:180 and Ruthenibacterium lactatiformans appear to
be crucial features during the cross-validation process.

Table 2 displays the combined rankings of each classifier
across all predictions made on the validation set, revealing
the most important features for each model after combining
each model’s most important features found during the cross-
validation process. Since the set of training features consists
of the overlapping features in the model’s top 20 feature im-
portance rankings, the pool of available features for predic-
tion is significantly reduced. Therefore, only the top 10 most
important features are retained for each model. Figure 3 is a
Venn diagram representing the overlap between each model’s
overall top 10 ranking, showing a total of 10 overlapping fea-
tures out of 15 unique features present across all rankings.

Comparing Table 1 with Table 2, we can observe that each
classifier ranks feature importance for predictions on the val-
idation set similarly to how they rank feature importance dur-

Table 2: Table listing the most important species for the Logistic
Regression (LR), Random Forests (RF), and XGBoost (XGB) clas-
sifiers across all predictions on the validation set. For each model,
the 10 most important species were retained (based on the method-
ology described in section 2.3). Overlapping species between rank-
ings are highlighted in bold. The table is organised by overlapping
group and alphabetical ordering of the species. LR uses coefficients
to calculate a feature’s importance whereas RF and XGB use fea-
ture importance. For each model, the scores of the 3 most important
species are highlighted in bold.

Species LR RF XGB
Alistipes finegoldii 0.061 0.066 0.046
Eubacterium sp. CAG:180 0.069 0.122 0.083
Flavonifractor plautii 0.07 0.064 0.047
Phocaeicola vulgatus 0.084 0.056 0.042
Ruthenibacterium lactatiformans 0.051 0.097 0.073
Akkermansia muciniphila - 0.057 0.061
Streptococcus thermophilus 0.045 - 0.081
Anaerostipes hadrus 0.057 0.057 -
Bifidobacterium bifidum 0.054 0.054 -
Eggerthella lenta 0.046 - -
Intestinibacter bartlettii 0.053 - -
Eubacterium rectale - 0.046 -
Fusicatenibacter saccharivorans - 0.052 -
Clostridium innocuum - - 0.044
Eubacterium siraeum - - 0.046
Ruminococcus lactaris - - 0.048

Figure 2: Venn Diagram showing the sets of overlapping features be-
tween the Logistic Regression (LR), Random Forests (RF), and XG-
Boost (XGB) classifiers’ top 20 features across all cross-validation
runs. Only the names of overlapping features are displayed, features
that do not overlap between models are represented by their count.

ing the cross-validation process. The top three most impor-
tant features for each classifier remain the same across the
two tables. For the Random Forests and XGBoost classi-
fiers, all the features listed in Table 2 also appear in the top
10 from Table 1. For the Logistic Regression classifier, only
seven features listed in Table 2 are in the top 10 from Table
1. This inconsistency in the Logistic Regression’s rankings
could further suggest that using only features present in every
classifier’s top 20 most important feature rankings increases
the performance of the Logistic Regression classifier.

3.2 Model Comparison
Statistical Tests
An Analysis of Variance (ANOVA) and a Tukey’s Test were
performed for the accuracy, precision, and ROC-AUC metrics
with the three classifiers to identify performance differences
among the models (ANOVA ). For each of the three metrics,
the ANOVA test has a p-value of 1.7e−3 or less, therefore the
null hypothesis that all classifiers perform equally is rejected.
A set of Tukey’s tests was then used to enable pairwise com-
parisons between models. The statistical tests suggest that the
Logistic Regression classifier outperforms both the Random
Forests and XGBoost classifiers in terms of accuracy, preci-
sion, and ROC-AUC. However, there is no significant differ-
ence in the performance of the Random Forests and XGBoost
classifiers according to these metrics. This could mean that
either Random Forests or XGBoost is redundant, however,
the objective is identify relevant features in the data. Thus,
even if models perform similarly, it is beneficial to explore
their decision making process. The ANOVA scores and the
Tukey tests tables can be found in appendix B.



Figure 3: Venn Diagram showing the sets of overlapping features
between the Logistic Regression (LR), Random Forests (RF), and
XGBoost (XGB) classifiers’ top 10 features across all predictions
on the validation set. Only the names of overlapping features are
displayed, features that do not overlap between models are repre-
sented by their count.

ROC Curves
The ROC curves for each of the classifiers - Logistic Regres-
sion, Random Forest, and XGBoost - are displayed in Figure
4. These curves serve as a graphical representation of sen-
sitivity (true positive rate) and specificity (1 - false positive
rate) at varying threshold levels. The curves in the Logis-
tic Regression plot, though more varied in shape, generally
approach the top left of the graph. This reflects a superior
trade-off between sensitivity and specificity compared to the
other classifiers. Despite the observable disparity among the
Logistic Regression curves, suggesting a higher level of in-
stability, this classifier’s potential for high true positive rates
at low false positive hints at a good overall performance. The
overall performance of the models is discussed in the next
sub-section.

On the other hand, the Random Forest and XGBoost clas-
sifiers demonstrate consistency across bootstrap iterations, as
showed by their similar ROC curves. However, these curves
approach the diagonal more compared to Logistic Regres-
sion, which suggests a less favorable trade-off between sensi-
tivity and specificity. This observation implies that for these
classifiers, an increase in sensitivity might coincide with a
less acceptable increase in false positives, potentially making
them less optimal for predicting schizophrenia where mini-
mizing false positives is critical.

Metrics Discussion
This sub-section provides a comparison of the performance
metrics of cross-validation runs and predictions made on the
validation set for each model. Table 3 presents the aver-
age accuracy, precision, and ROC-AUC scores with their re-

Figure 4: Receiver Operating Characteristic curve plots for every
classifier across the ten predictions on the validation data set. The
ten predictions are the result of the bootstrapping process, where the
selected features for training the models vary from one iteration to
the next.



Table 3: Averaged accuracy, precision, and ROC-AUC scores with
their respective standard deviation values across ten 5-fold strati-
fied cross-validation runs for each model, Logistic Regression (LR),
Random Forests (RF), XGBoost (XGB).

LR RF XGB
Accuracy 0.54 ± 0.03 0.67 ± 0.05 0.67 ± 0.02
Precision 0.58 ± 0.03 0.69 ± 0.04 0.71 ± 0.03

AUC-ROC 0.57 ± 0.02 0.74 ± 0.03 0.74 ± 0.02

Table 4: Averaged accuracy, precision, and ROC-AUC scores with
their respective standard deviation values obtained from ten predic-
tions on the validation set for each model, Logistic Regression (LR),
Random Forests (RF), XGBoost (XGB).

LR RF XGB
Accuracy 0.73 ± 0.06 0.63 ± 0.04 0.64 ± 0.03
Precision 0.7 ± 0.07 0.62 ± 0.03 0.62 ± 0.03

AUC-ROC 0.73 ± 0.06 0.62 ± 0.04 0.64 ± 0.03

spective standard deviations across ten 5-fold stratified cross-
validation runs with feature selection and hyperparameter
tuning. Table 4 displays the same metric scores averaged
from ten predictions made on the validation set. These predic-
tions, for each model, are made utilizing the 20 most relevant
features identified during the cross-validation process.

Table 4 reveals a significant increase in the Logistic Re-
gression (LR) classifier’s performance on the validation set
compared to its cross-validation performance. Although the
standard deviation of the mean metrics is higher in com-
parison to the standard deviation of other models or of the
cross-validation process, the performance boost remains sig-
nificant. On the other hand, both Random Forests (RF) and
XGBoost (XGB) models show a slight performance dip on
the validation set. Given that the training feature set is up-
dated after the cross-validation process, this could imply that
the LR classifier benefits from using features deemed impor-
tant by the RF and XGB classifiers, while RF and XGB are
negatively impacted by the omission of features not listed in
the LR’s top 20 features. The fact that the LR classifier’s
ranking differs on at least 8 features with the other classifiers’
rankings, while RF and XGB’s rankings only disagree on 4
features, could be an indication that the LR classifier benefits
from utilizing features considered important by the other two
models.

It is important to note that the LR classifier is a linear clas-
sifier whereas the Random Forests and XGBoost models are
decision-tree based classifiers, which could explain why these
two models share similar rankings. LR assumes linear rela-
tionship between the input variables and the log odds of the
output variable. If the relationship is non-linear in the data,
it could explain why Logistic Regression performs worse.
However, it does outperform the other two classifiers when
trained on overlapping features, suggesting that the linearity
of the relationship between input and output variables may
not be the predominant factor influencing the classifier’s per-
formance.

3.3 Comparison with Existing Literature

From the data presented in Table 1 and Table 2, Eubacterium
sp. CAG:180 plays the most significant role. It consis-
tently ranks first for both the Random Forests and XGBoost
classifiers, and consistently within the top three features for
the Logistic Regression classifier. Other notably significant
species include Phocaicola vulgatus and Ruthenibacterium
lactatiformans, both of which demonstrate exceptionally high
importance or coefficient values for at least two classifiers.
Other important species include species that are deemed im-
portant by all three classifiers across cross-validation runs
and on predictions on the validation set. These include Al-
istipes finegoldii, Akkermansia muciniphila, Streptococcus
thermophilus, Anaerostipes hadrus, and Bifidobacterium bi-
fidum.

The study by Zhu et al. (2020), from which the data
was obtained and which also implements machine learning
methodologies, did not report Ruthenibacterium lactatifor-
mans nor Eubacterium sp. CAG:180 as significantly enriched
in schizophrenia. However, the bacterial presence of Pho-
ceicola vulgatus was significantly higher in healthy samples.
This could indicate that the lack of Phoceicola vulgatus could
be a potential indicator for schizophrenia (Zhu et al., 2020).
Bifidobacterium bifidum, Akkermansia muciniphila, and Eu-
bacterium siraeum were also reported as being enriched in
schizophrenia. Alistipes finegoldii and Intestinibacter bartlet-
tii were noted as being slightly enriched in healthy guts. All
these species are recurrent across the Random Forests and
XGBoost rankings. The Logistic Regression ranking does not
include Akkermansia muciniphila and Eubacterium siraeum.
Overall, the Random Forests and XGBoost rankings show
greater correspondence with the findings presented by Zhu
et al. (2020) compared to the Logistic Regression ranking.
This correspondence is to be expected given that the study
also used Random Forests as its main classifier.

The study by Castro-Nallar et al., (2015), which conducted
a statistical shotgun metagenomic analysis on 16 individuals
with schizophrenia and 16 controls, presented different find-
ings. They noted a remarkably high abundance of Streptococ-
cus thermophilus and Bifidobacterium pseudocatenulatum in
schizophrenia samples, with Streptococcus thermophilus es-
pecially enriched. However, there is minimal overlap be-
tween this study’s findings and those from Castro-Nallar et
al., (2015) as the other eight species deemed relevant in their
study are absent from any of the classifiers’ rankings in the
present study. This divergence could stem from numerous
factors. Firstly, the studies originate from different loca-
tions, the data used in the present study originates from China
whilst Castro-Nallar et al. (2015) conducted their study in
the United States. The disparities in lifestyle, diet, or genet-
ics could influence the composition of the gut microbiome.
Secondly, the majority of the schizophrenia patients in the
Castro-Nallar et al. (2015) study were smokers, which may
potentially influence gut microbiome composition (Castro-
Nallar et al., 2015). Finally, fundamentally different analyses
methods were used between the two studies, one uses ma-
chine learning and the other statistical tools.



4 Conclusion and Future Work
The objective of this study was to validate potential biomark-
ers for schizophrenia, using data obtained from the human gut
microbiome and processed via shotgun sequencing. Three
machine learning classifiers, namely Logistic Regression,
Random Forests, and XGBoost, were employed to analyze
the relative species abundance using data sourced from Zhu
et al. (2020). The importance of features was extracted from
each classifier and subsequently combined with each other
and compared to existing literature. In total, eight species
that had high importance value across according to all three
classifiers corresponded with findings documented in pub-
lished literature. These species are: Phoceicola vulgatus,
Bifidobacterium bifidum, Akkermansia muciniphila, Eubac-
terium siraeum, Alistipes finegoldii, Intestinibacter bartlettii,
Bifidobacterium pseudocatenulatum, and Streptococcus ther-
mophilus. One species, Ruthenibacterium lactatiformans,
and one co-abundant gene group, Eubacterium sp. CAG:180,
consistently ranked as the most important features across all
three classifiers, despite the absence of reporting in existing
literature.

During the cross-validation process, Logistic Regression
notably underperformed relative to the other classifiers. Nev-
ertheless, it excelled in its performance on the validation set
in contrast to the other classifiers. Given that the feature
set employed for training the classifiers is refined post-cross-
validation to include only features considered significant by
every classifier, it could be suggested that Logistic Regression
benefits from the features selected based on their importance
by the Random Forests and XGBoost classifiers. Despite this,
the performance of Random Forests and XGBoost did not im-
prove as a consequence of the updated feature set. Analyses
via ANOVA and Tukey tests indicate a considerable similar-
ity in the performance of both classifiers for given metrics.

Relatively few studies use the relative species abundance in
the gut microbiome derived from shotgun metagenomic data,
to analyze schizophrenia samples. To verify the relevance
of the species identified in this study and those highlighted
in Zhu et al. (2020) and Castor-Nallar et al. (2015), fur-
ther research using the relative species abundance should be
conducted. Moreover, further work should be undertaken to
examine the importance of Ruthenibacterium lactatiformans
and Eubacterium sp. CAG:180, given their absence in cur-
rent literature. This study should be expanded to include more
comprehensive statistical testing and analysis of results, in or-
der to understand the classifiers’ performance and to explain
the correlation between species presence and schizophrenia.
Furthermore, obtaining results using the genus level would
offer a more robust basis for comparison with other studies, as
the majority focus on the genus level in the gut microbiome.
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A Parameter Settings
A.1 Random States Set
[42, 1, 1006, 1998, 106, 111117, 1902, 2903, 209, 360]

A.2 Logistic Regression Hyperparameters
• C: np.logspace(−3, 3.7)

• penaly: [”l1”, ”l2”]
• solver: [”newton− cg”, ”lbfgs”, ”liblinear”, ”sag”]

• l1 ratio: np.linspace(0, 1, 5)

A.3 Random Forests Hyperparameters
• n estimators: [50, 100, 200, 500, 1000]
• max depth: [None, 10, 20, 30, 50]

• min samples split: [2, 5, 10, 12]
• min samples leaf: [1, 2, 4, 10]
• max features: [”auto”, ”sqrt”, ”log2”]

A.4 XGBoost Hyperparameters
• learning rate’: [0.01, 0.1, 0.2, 0.3]
• n estimators’: [50, 100, 200, 500]
• max depth’: [None, 3, 10]

• min child weight’: [0.5, 0.7, 1.0]
• gamma’: [0, 0.1, 0.2]
• subsample’: [0.5, 0.7, 1.0]
• colsample bytree’: [0.5, 0.7, 1.0]



B ANOVA and Tukey’s Test
B.1 ANOVA and Tukey’s HSD Test for accuracy
ANOVA test for accuracy: F = 12.45, p = 0.00015

Tukey’s HSD test for accuracy
G1 G2 MeanDiff p-adj lower upper
LR RF -0.0886 0.0004 -0.1378 -0.0393
LR XGB -0.0829 0.0008 -0.1321 -0.0336
RF XGB 0.0057 0.9555 -0.0436 0.055

B.2 ANOVA and Tukey’s HSD Test for precision
ANOVA test for precision: F = 8.2, p = 0.0016

Tukey’s HSD test for precision
G1 G2 MeanDiff p-adj lower upper
LR RF -0.0759 0.0052 -0.1306 -0.0213
LR XGB -0.0785 0.0038 -0.1331 -0.0239
RF XGB 0.0026 0.9925 -0.0572 0.052

B.3 ANOVA and Tukey’s HSD Test for ROC-AUC
ANOVA test for ROC-AUC: F = 12.1, p = 0.00018

Tukey’s HSD test for ROC-AUC
G1 G2 MeanDiff p-adj lower upper
LR RF -0.0879 0.0005 -0.1377 -0.0381
LR XGB -0.0832 0.0009 -0.133 -0.0333
RF XGB 0.0047 0.9699 -0.0451 0.0546


	Introduction
	Methodology
	Language and Frameworks
	Data Processing and Feature Extraction
	Model Training
	Model Validation and Evaluation
	Responsible Research
	Data Authenticity
	Reproducibility of Methods 


	Results & Discussion
	Feature Importance
	Model Comparison
	Statistical Tests
	ROC Curves
	Metrics Discussion

	Comparison with Existing Literature

	Conclusion and Future Work
	Parameter Settings
	Random States Set
	Logistic Regression Hyperparameters
	Random Forests Hyperparameters
	XGBoost Hyperparameters

	ANOVA and Tukey's Test
	ANOVA and Tukey's HSD Test for accuracy
	ANOVA and Tukey's HSD Test for precision
	ANOVA and Tukey's HSD Test for ROC-AUC


