Hydrogen as seasonal energy storage for Floriade:
The implications of hydrogen in the built environment as part of an energy system
Introduction & the energy transition
Hydrogen

• the most abundant element in the universe
• estimated availability as long as the existence of humans
• non-toxic, colorless, odorless, tasteless gas
• Low volumetric weight
Hydrogen safety

Source: http://evworld.com/article.cfm?storyid=482
All the worlds’ energy:
556 EJ = 155,000 TWh

* Based on van Wijk, 2018
Energy mix in the Netherlands in 2016

* CBS, 2017
The energy mismatch

![Graph showing energy surplus, deficit, electrolysis, fuel cell, and renewable energy supply over time.](image)
The research

What does an energy system with hydrogen incorporated as seasonal buffer for a newly built residential area look like and what are the implications of the application of hydrogen in the built environment?
Lay out of the research
1 Case study: Floriade
Floriade impressions

Copyright Design(ed) by Erick van Egeraat
Floriade impressions

Copyright Design(ed) by Erick van Egeraat
Floriade impressions

Copyright Design(ed) by Erick van Egeraat
Floriade impressions
Energy system design
Design criteria

• Distribution of locally produced renewable energy
• Reduce load on national grid
• Subterranean infrastructure
• Display hydrogen technology in the context of the built environment
Hydrogen as seasonal energy storage for Floriade

J.P.W. Pollux
Energy system conclusions

• All-electric solution
• System components are highly dependent on each other
3 Energy modelling
Consumption
Energy consumption of Floriade reference house

- Light
- Equip
- DHW
- Cooling
- Heating

- kWh/year
- kWh/day

Outdoor temperature >30 °C
Energy consumption of Floriade house vs Dutch average

Average Dutch house
~17.660 kWh*

Floriade reference house
~6.050 kWh

* CBS, 2017
Energy consumption of Floriade

~1.550.000 kWh/year

3 MW wind turbine = 6.500.000 kWh/year

3 hectare solar field = 1.500.000 kWh/year
Annual energy production potential

• South oriented PV panels
• 80% of roofs of ground based houses covered
• ~16,000 m² of PV panels
• ~3200 kW system size
Annual hourly energy production

kWh/hour

![Graph showing annual hourly energy production with kWh/hour on the y-axis and months of the year on the x-axis.]
Energy production potential of Floriade

~2,590,000 kWh/year

380 Floriade houses
146 Traditional houses
4 Energy balance
Energy balance

Hydrogen as seasonal energy storage for Floriade

J.P.W. Pollux

Production season
Consumption season

kWh/day

Consumption
Production
Balance
Poly. (Balance)
Surplus
Energy surplus

~2,220,000 kWh
390,000 kWh = 100%

- Battery: 95%
- Electrolyser: 20%
- Storage: -57%
- Fuel cell: 20%

System efficiency
System efficiency

- Electric: 15%
- DHW for the hotel: 20%
- Total: 35%
Energy balance conclusions

• Energy consumption: 1.550.000 kWh
• Energy production: 2.580.000 kWh
• Energy surplus: 2.220.000 kWh

• The low energy consumption profiles and system size of the PV array result in the neighborhood being self sufficient for 12.5 days
Energy balance conclusions

• System efficiency: 35%
• High energy losses due to compression & conversions
Improvements

- Increase storage size
- Increase storage pressure
- Intermediate discharge of buffer
- Reduce amount of PV panels in the neighborhood
- Connect more users to the PV array
- Feed surplus energy to the national grid
- Mobility
Mobility

Hydrogen car
Toyota Mirai
1.19 kWh/km
460,000 km

Electric car
Tesla model S
0.19 kWh/km

Hydrogen bus
van Hool
9.37 kWh/km
42,000 km
Increase storage pressure

• Higher pressure = smaller volume per kg
• Higher pressure = more energy needed to store hydrogen
• 15% more energy = 2.5x more storage capacity in same volume
5 Energy hub design
Design boundaries

• Components size & connections
• Safety
• Visibility
Ventilation
Construction
Façade design

Sears headquarters in Alhambra, USA by Albert C. Martin

Delftse Poort in Rotterdam by Abe Bonnema
https://www.cityguiderotterdam.com/nl/er-op-uit/architectuur/delftse-poort-rotterdam/
Façade design

Hydrogen as seasonal energy storage for Floriade
J.P.W. Pollux
6 Conclusions and recommendations
Conclusions on the research

• Extensive research with a focus on four parts of an energy system design
• Every part is dependent on other parts
• The low energy consumption profiles and system size of the PV array result in the neighborhood being self sufficient for 12.5 days
Recommendation on the research

• Optimization of system components and configuration necessary with a dynamic model
Recommendation for the Floriade & the energy transition

• Don’t convert hydrogen into electricity
• The efficiency is too low to be feasible with the current state of technology and equipment investments
• Take compression out of the equation
Thank you

Hydrogen as seasonal energy storage for Floriade:
The implications of hydrogen in the built environment as part of an energy system

Jerry Pollux
January 25th 2019