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Dr. Marco Antonio Zúñiga Zamalloa (direct supervisor) Delft University of Technology
Dr. Lydia Y. Chen Delft University of Technology

mailto:bernardbekker@student.tudelft.nl
mailto:Bernard@BernardBekker.nl


Abstract

Large cities in the Netherlands, like Rotterdam, have hundreds of playgrounds,
but local governments have little information on how children and adults use
them. Usage data can help create playgrounds that better fit with the residents’
needs by identifying what elements of a playground are the most popular, and
which do not get used. The AMS Institute and municipality of Rotterdam have
asked us to develop a system to collect usage information of playgrounds without
recording personally identifiable information. The system requirements are to
record the locations of individual users and to estimate if a user is a child or an
adult. It must do this without requiring an external power source and without
a broadband internet connection.

After considering different types of sensors (including computer vision, radio,
sound, and mechanical acoustic signals), We decided to use a mmWave radar
sensor due to its ability to provide accurate localization, easy installation, and
low energy usage without recording identifiable information. We use a commer-
cially available mmWave radar sensor that we configure to localize people in a
30m by 20m area when placed at the perimeter. We use the radar point cloud
output from the device for classification by calculating statistics that we use
as features for our classifier. We evaluate classifiers based on SVM, Random
Forrest, fully connected and recurrent neural nets. We also analyze different
methods for combining radar point clouds captured over time from the same
person.

We collected 100.000 radar point clouds of adults, children, and bicyclists at
real playgrounds, split into a training and validation data set. We show that
our SVM classifier achieves an accuracy of 79% on single radar frames, and 93%
on the combined results of 10 second long sequences of our validation dataset.
The classifier requires < 1KB of memory and little processing power. Meaning
it can execute on an embedded platform powered by a solar panel.
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Chapter 1

Introduction

In this report, we detail the design of a privacy-preserving system for moni-
toring the usage of playgrounds. We started this project in cooperation with
the municipality of Rotterdam, which has 1319 playgrounds within its borders.
These playgrounds provide significant public benefits as places for exercise and
meeting each other, improving the social cohesion and the health of residents
in the city. However, since space in the city is scarce, and the upkeep of the
playgrounds is expensive, the investments in these playgrounds must be efficient
and fit the residents’ needs. To be able to make these investments efficiently, the
municipality requires information on how the playgrounds are currently used,
and how the needs of the residents change over time.

Currently, the municipality has little information available about how children
and adults use their playgrounds and what playground elements are popular. To
provide this information, we want to design a system for automated, continuous
measurement of the usage patterns in a playground.

The municipality is not able to use existing methods using cameras since their
local and national rules prevent the use of privacy-invasive methods unless there
is a pressing security need. If our method is a success, it could lead the way to
a broader use throughout the city, replacing the cameras currently in place.

1.1 Problem description

The system must be able to detect the presence of individual people, how long
they stay at the playground, and what parts of the playground they use. Also,
we want to be able to estimate if someone is a child or an adult. This data needs
to be usable for statistical purposes to determine which playground designs drive
the most usage.

Gemeente Rotterdam selected four reference sites that are part of the ”move-
fit” and ”plug&play” initiatives. Both these initiatives feature interchangeable
elements on the playground. For instance, equipment like the slide in figure
1.1a can be replaced by a swing. The goal of the sensor deployment at these
locations is to determine which elements are the most popular.

Compared to general crowd monitoring, monitoring at these playgrounds has
a unique set of problems. Children are an extra privacy-sensitive group, and for
this reason, using cameras is prohibited. Since it’s a public space, we can’t ask
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(a) The plug and play playgrounds
have interchangable pieces of play
equipment that have a standard-
ized footprint. Equipment can be
changed while keeping the same
foundations. These parks have
large open spaces in between the
large, wooden pieces of equipment.

(b) Movefit are temporary public
fitness equipment. It consists of
prefabricated pieces that can be
quickly placed and removed in one
piece. The area is small and well
defined, with open areas surround-
ing it.

the users to carry a device or self-report. The reference locations don’t have
power or data infrastructure for electronic sensors. Furthermore, the system
needs to be able to withstand the environmental conditions at a playground:
harsh weather, curious children, and the occasional soccer ball. And to be able
to install the system widely, it must be affordable for a municipality.

In this work, we focus on developing the core technology of the system that
gathers the location data, and performs a classification of the type of user.
Developing the casing and statistical analysis tools is future work.

We converted the basic description from the municipality into a set of tech-
nical requirements:

1. The system has to perform two functions:

(a) It has to track the location of individual users with an accuracy of
1m.

(b) It has to detect if a person is a child or an adult. Extended goals
include detecting specific classes of users such as bicyclists, wheelchair
users, baby strollers, and pets.

2. The system needs to work with the constraints of a playground and should
be easy to deploy for it to be worth the effort for the municipality.

(a) It must operate on a playground of at least 20 m × 20 m

(b) It must work without a wired external power supply. It can use a
long-lasting battery, or a small solar panel to gather its energy.

(c) It must transmit results over a wireless data communication network.

(d) It must be able to be integrated in a casing that is robust, weather-
proof, and aesthetically pleasing.

(e) It must not require extensive modifications to the play equipment.
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(f) It must not require the user to adjust their behavior or carry a device.

3. To do this, we need to conform to regulations and constraints:

(a) The device must adhere to Dutch radio emission regulations.

(b) The device must adhere to the GDPR Privacy regulations.

4. The system should be affordable in order to be widely deployed. (<e2000
per unit material cost)

Privacy requirements

The goal of this project is to create a privacy-preserving system. To do this,
we should define what we mean with privacy-preserving, as there are many
different interpretations of privacy. We use the interpretation of the authors
of [49], which consider privacy to concern both the collection, processing and
the use of information about a data subject. Some existing methods that are
widely deployed in public, measure, but do not record sensitive information.
These systems do not fulfill our requirements, as the act of measurement itself
is considered a privacy invasion under this definition.

However, every system that collects information about an area can be (ab)used
to extract some identifying information about the persons in that area [56]. So
rather than privacy-preserving being a binary property, we should consider the
degree of privacy provided based on a set of metrics. One of these metrics is
between how many people can be distinguished: a system that can distinguish
between people in a large group is less privacy-preserving that a system that
can only distinguish between two (groups of) people. Our goal is to build a
system that physically can only sense the data needed to distinguish between
the groups we are interested in. At a minimum, the data collected should not
be able to be used to uniquely identify a general member of the population in
order to qualify as privacy-preserving.

1.2 Contributions

The contributions in this report are:

1. We present an analysis of sensors based on different physical signals. We
identify mmWave radar as the type of sensor best fitting our requirements.

2. An analysis of how to use mmWave data for classification. We analyze
data representations, features, and machine learning methods. We design
a classifier using radar point clouds and an LSTM neural network.

3. We collected real-world data at playgrounds. We use the data to show that
our classifier achieves a 91% accuracy at distinguishing between children,
adults, and bicyclists.

The problem of playground monitoring is approached from a first-principles
perspective taking into account our design requirements. An analysis of all
person-sensing methods is given from which mmWave radar is chosen for our
design. This is presented in chapter 2.1.
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Localization using mmwave FMCW radar is a mostly solved problem, but the
classification of objects is not, especially on hardware with limited resources.
In chapter 2.3 we consider the state of the art in classification used in the
application of self-driving cars. We develop our own method based on point
cloud features and an LSTM neural network, this work is presented in chapter 4.

We have worked on the design of a system that can be deployed at public
playgrounds, and had conversations with lawyers and government employees to
work towards a real-world application. This has resulted in significant progress
towards a broader implementation at playgrounds in Amsterdam and Rotter-
dam. This work is presented in chapter 3. However, doing all the work required
for a public deployment took longer than the time available in this project, and
finishing it is future work.

1.3 Terminology

In this report, we often refer to planes, directions and angles. These always
refer to the coordinate system in figure 1.2.

XY-plane

YZ-plane

X

Y

Z

θ

φ

d

Figure 1.2: The coordinate system and angles used in this report. We
always use the reference frame of the sensor, unless specified other-
wise. A location in the coordinate system can be defined by both the
carthesian coordinates (xyz), or by the polar coordinates of distance
(d), Azimuth (Φ) and Elevation (θ).
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Chapter 2

State of the art and
Background

Our assignment does not specify what technology to use, and we did not find
previous work on our exact topic. However, similar work has been done on per-
son detection and classification using many different sensing techniques. To find
the most suitable sensor technology for our application, we considered what sig-
nals could be used for detection, localization, and classification, and performed
a literature study of how these signals have been used for person detection. This
work is presented in section 2.1. In section 2.2, the chosen sensor technology,
mmWave radar, is explained in more detail. In section 2.3, we show the state
of the art in the area of object detection using mmWave radar data.

2.1 Person sensing methods

In this section, we present methods for detecting persons in the area of a play-
ground. We present a broad overview of all methods, and we explore the most
promising techniques that match our requirements in more detail.

Before considering specific sensors, we identify what signals can be used to
detect people. We have identified three usable types of signals: Electromagnetic
radiation, sound waves, and mechanical pressure waves. For each signal, we
consider by which methods they can be measured, and how these methods fit
our requirements.

2.1.1 Sound waves

People produce, absorb, and reflect sound waves when talking, walking, and
playing. Prior research has shown methods that can locate people[31] and clas-
sify their activities [29] based on generated sounds. However, these methods
record sound in the human speech range, and since speech can be identifiable
and confidential, this violates the privacy requirement. To avoid privacy con-
cerns, we could use a method that works outside the frequency range used for
human speech of 100 Hz to 8 kHz. Low-frequency signals (< 100 Hz) are lim-
ited in use for localization: The range resolution is limited by the bandwidth

5



(BW ) of the signal according to resolution = vsoundinair/BW , limiting us to a
best-case accuracy of 3 m at 100 Hz.

Ultrasonic echolocation (> 20 kHz) has widespread use for the detection of
objects underwater by boats and submarines, and imaging of human organs.
By using an array of transducers, the range and azimuth of objects can be
determined. This technique is popular underwater, but the use in air is lim-
ited because the propagation properties of sound in air reduce the range and
accuracy. Commercial ranging sensors are limited to a 6m range in open air
[25]. Academic machine learning-based techniques do not measure range di-
rectly but make location estimations by monitoring the acoustic properties of
complex reflections [48, 19]. However, these papers focus on relatively small
indoor environments, and the technique may not scale to a large playground.

Based on this research, it seems that using an ultrasonic sensor approach
might be possible, the range will likely be too limited for the size of the area
of interest in our application, and require multiple sensors. A system using
machine learning for localization will likely require extensive calibration for each
playground, making the installation more difficult.

2.1.2 Mechanical waves

When a person makes contact with the ground or any play equipment at the
playground, they cause vibrations in the ground and the structures. By in-
strumenting the playground with vibration sensors, we could detect when play
equipment is used. We hypothesize that amplitude, frequency, and phase of
the vibrations can carry extra information about the person and the activity.
For instance, the natural resonance frequency of a structure will change based
on the added weight of the person using it. However, placing a sensor on a
structure will only monitor that single structure, potentially requiring a large
number of sensors to instrument each piece of play equipment. This violates
the requirements of easy installation and to not modify the play structures. In
addition, such a system does not monitor open spaces such as football fields.

In order to detect people in open areas, footsteps could be detected by seismic
waves [52]. However, typical playground design uses impact absorbing materials
for children’s safety, which would reduce the signal.

In conclusion, using mechanical waves for usage monitoring would likely result
in an incomplete overview of the usage patterns, or require many sensors to
instrument every aspect of the playground.

2.1.3 Electro magnetic radiation

EM radiation, either in the form of (visible) light or radio waves, offers many
methods of detecting objects at a distance. Every person emits Ifra red (IR)
radiation from their body heat and can reflect external visible or radio signals.
We will first look at systems using light, and then evaluate systems using radio.
Both signals have intrinsic advantages and disadvantages. Light-based systems
require a line of sight between the sensor and the person, while RF signals can
pass through some obstacles. But RF suffers from signal reflections known as
multipath, which can cause severe detection errors.
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For light-based systems, we identified three types of sensors, with many dif-
ferent implementations:

• visible light cameras.

• IR sensors: IR cameras, PIR sensors, and Thermopile arrays.

• Depth sensors: LIDAR and Time of flight (TOF) cameras.

Many academic and commercial camera-based area monitoring systems ex-
ist. However, these systems do not fit our privacy requirements. The captured
image will contain not only the data we are interested in but also other infor-
mation that may infringe on people’s privacy. In addition, a camera mounted
on the perimeter of the playground can only view the Y/Z plane while we are
interested in localization in the X/Y plane as shown in figure 1.2. Depth in
the Y direction can only be estimated, based on perspective, or a stereovision
system. This translation means we need a lot of information in a dimension we
are not interested in, in order to estimate the dimension we are interested in.
Placing a camera above the play area is not feasible for an area of 20 m × 20 m,
as such a camera would have to be mounted several meters above the ground
to contain the entire area in its field of view. Although camera systems can be
modified to be more privacy-preserving by reducing their resolution, this will
always come at the cost of localization performance.

IR sensors can detect the presence of people based on radiated body heat.
Compared to visible light cameras, this offers two advantages: IR cameras work
during the night and, because the objects of interest can be separated from the
background based on heat, less identifiable information needs to be gathered [6].
There are three types of IR sensors in common use: IR cameras, Thermopile
arrays, and PIR sensors. IR cameras are high-resolution cameras working in the
thermal IR spectrum. Besides the advantages listed earlier, the disadvantage
compared to visible light cameras is a reduced resolution and higher cost.

Thermopile arrays are a lower cost, lower power alternative, but are currently
limited to a 32x24 pixel resolution [32]. But research has shown that this can
be enough to classify people [34]. PIR sensors are simple sensors with a single
sensing element. These sensors only detect the presence of movement.

Although IR sensors offer an improvement over visible-light cameras for the
detection of people, they suffer from the same localization issue. They can not
accurately determine the distance from the sensor without an additional sensor.

Time of flight (TOF) sensors are light-based distance sensors that send a
light pulse and measure the time of flight of the reflection [43]. The different
implementations of this technique can be clustered into two groups: TOF Cam-
eras and LIDARS. TOF cameras use a wide-angle illuminator to illuminate the
entire scene and use camera-like optics to determine the angle of arrival. The
camera detects the time delay between when the illuminator is turned on, and
the light is received at the image sensor. These types of sensors have a limited
range and are susceptible to ambient light, limiting them to indoor use. LI-
DARs use or one or multiple modulated LASERs and sensor elements that scan
an area using mirrors. The focused beam of light makes them less susceptible
to ambient light. High-quality LIDARs have a superior range, accuracy, and
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Figure 2.1: Operating principle of Radio Tomographic Imaging. Every
node measures the RSS of radio transmissions from every other node.
Radio links that are obstructed by an object in its fresnel zone (in
red) have a reduced RSS. By using a model of the radio channel, the
locations of obstructions can be estimated. In this example, we use
the average signal strength of all links passing over a pixel to color it.

resolution compared to any other sensor. The downsides of LIDARs are their
cost and fragility due to delicate moving parts. This makes LIDARs infeasible
for widespread adoption in playgrounds. However, ongoing development into
solid-state lidars might lower the cost and complexity in the near future [43].

Radio systems

There are passive and active methods for people detection using radio sensors.
Passive radio systems that do not transmit their own signals are commonly used
for crowd monitoring in cities or stores, for instance, by monitoring WiFi or
Bluetooth broadcast messages sent by smartphones as shown in [44]. However,
since our target audience includes young children, we cannot assume that those
will carry a smartphone.

For active systems, we identify two main types of systems:

• Tomography (Radio attenuation)

• RADAR (Radio reflection)

Radio tomography uses the attenuation of radio signals between many transceivers
to detect objects inside an area. This technique is explained in figure 2.1. The
achieved accuracy and resolution scales with the number of transmitters and
receivers. Over 200 nodes may be required to achieve the required localization
accuracy on a 20 m × 20 m field [57] making a tomographic system unfeasible in
our situation.
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Radar systems use reflections of signals rather than attenuation. By mea-
suring differences between the transmitted signal and the received reflections, a
determination of the location, velocity, and size of objects in the field of view
is made. RADAR technology is a large field of research with many types of
radars. Differences exist based on the type of signal they emit and the different
topologies of antennas. Exploring all combinations is outside the scope of this
project. Instead, we focus on three methods that have been used previously
in short-range person detection contexts. These methods are continuous wave
(CW) radar, pulse-doppler, and frequency modulated continuous wave (FMCW)
radar.

Continuous-wave radar measures the signal strength and Doppler shift of
radar reflections. This allows it to do detailed measurements of the movements
of the body parts of a person. It is commonly used for movement detection,
identification based on gait [9, 42, 27], fall detection [30] and vital sign (heart
rate and breathing) monitoring [13]. However, a continuous wave radar can not
measure range and can not separate the returns from multiple people. This
makes a CW radar not useful for us, unless in combination with other sensors.

Pulse-doppler and FMCW radars have similar capabilities: both can sense the
distance and velocity of an object. By using a MIMO (Multiple Input Multiple
Output) antenna array, the angle of arrival of the reflections can be measured.
The range and azimuth angles map directly to the X/Y plane, making them well
suited to our use case. Pulse doppler radars can have a long-range but have a
dead-zone near the radar, while FMCW radars are well suited to short ranges
[39]. Therefore, for our range and power requirements, an FMCW radar offers
a better trade-off .

FMCW radars are popular for use in driver assistance systems in cars where
they are used to detect and localize moving objects, including pedestrians and
bicyclists. Stationary objects can be filtered as a method to remove reflections
from the ground and background objects. A specific type of FMCW radars is
the mmWave radar. These radars use signals with a frequency range between 30
GHz and 100 GHz. The high frequency allows for a large bandwidth, resulting
in sub-meter accuracy and small antennas. Within this frequency range, two
bands have internationally been assigned to license-free use. This has lead
semiconductor manufacturers to create affordable, integrated sensors for these
frequency bands.

Radar is not without downsides. The high-frequency radar pulse only works
in line of sight, an object can be hidden behind another object in front of it.
Radars also suffer from multipath; the signal can be reflected by more than one
object before returning to the sensor. This means that even after filtering all
stationary objects, the signal can still contain a lot of noise that are reflections
of the moving object.

2.1.4 Tradeoff

Out of the methods considered, we consider radar the most promising. A radar
sensor can perform detection, localization, and tracking from a single vantage
point. Camera systems have the same property but offer a worse privacy trade-
off. All other systems require multiple sensors to be placed throughout the
playground.

In the next section, we will inspect mmWave radar systems in more detail.
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2.2 mmWave radar background

mmWave radars use FMCW (Frequency modulated continuous wave) technol-
ogy in the millimeter wavelength frequency band (30 - 300 GHz). The radar
can measure distance, radial velocity, and azimuth angle of multiple objects in
view. The sensor chosen uses the 60Ghz band, which is a free to use frequency
band in the Netherlands [2] and many other countries.

Due to the architecture of the sensor, many parameters of the radar sig-
nal transmitted are software configurable. When selecting these parameters, a
tradeoff needs to be made between the range and resolution of the measure-
ments. In order to understand the output of the radar, and how to configure
the radar, an understanding of its working principles is needed.

2.2.1 Operating principle

Figure 2.2: A FMCW radar uses a chirp of increasing frequency to
determine the range to a target. Due to the signal travel time, The
frequency of the transmitted signal and received reflection will be
shifted by an amount linearly related to the distance of the object.

An FMCW (Frequency modulating continuous wave) radar measures distance
to objects based on the time taken for a radio reflection to travel from the sensor
to the object and back. The radar transmits a radio signal called a chirp, which
increases in radio frequency at a constant rate S. This signal travels distance
d to the detected object and back. Due to the round trip time, the received
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signal will have a frequency that lags by ∆f = S 2d
c . By recording the frequency

difference between the transmitted and received signal, the sensor calculates the
distance.

Chirp processing

To determine the frequency difference ∆f , the sensor uses a hardware circuit
that subtracts the frequency currently being transmitted ft from the received
signal fr. The circuit outputs a much lower frequency IF (intermediate fre-
quency) signal, with a constant tone for each object detected. The frequency of
these tones is related to the distance according to equation 2.1.

d =
∆f · c

2S
(2.1)

In a real-world scenario, the IF signal will be a composition of many tones
from all the objects in the scene and background noise. A Fourier frequency
decomposition is used to determine the frequencies present. The IF signal is
digitized by sampling it with ADCs and converted to the frequency domain
by a complex FFT (Fast Fourier Transform) operation. The FFT operation
outputs complex numbers, with the absolute value representing the amplitude
of a frequency, and the angle the starting phase of the signal.

The radar’s range resolution is limited by its ability to accurately determine
the frequency components of the signal, and the frequency ramp speed S. Based
on Fourier theory, the maximum resolution achievable in the frequency decom-
position is limited by the time duration of a chirp. Since the duration and
ramp together determine the bandwidth, the range resolution is directly pro-
portional to the transmitter’s frequency bandwidth. The frequency ramp and
duration can be configured for an implementation, but bandwidth is limited by
the hardware and frequency usage regulations.

The phase value (φ) calculated by the FFT transformation, is the same as the
phase shift between the transmitted and the received signal. The phase shift is
caused by the distance of the object, but since the wavelength (λ) is only about
2.5 mm, this can only be used to measure small changes in distance of less than
one wavelength. The phase shift is related to the distance according to equation
2.2.

φ =
4πd

λ
mod 2π (2.2)

2.2.2 Calculating the velocity and angle of objects

An FMCW radar doesn’t only sense the distance of objects, but also velocity and
angle of arrival. It does this by sending multiple chirps from multiple antennas
in one frame.

In order to estimate velocity, the sensor performs multiple chirps in quick
succession in a radar frame, as seen in figure 2.3. The radar data is from each
chirp is stored in a 3-dimensional data structure with the range data in the
first dimension, chirps in the second, and antennas in the third dimension. This
data structure called the radar cube is shown in figure 2.4. If an object at
distance d is moving, the small change in distance in each chirp changes the
phase of the complex value at the range bin corresponding to d. The values in
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Figure 2.3: The radar transmits multiple chirps in a frame. Multiple
frames follow each other after a delay. The chirps are transmitted
from multiple antennas and received by multiple antennas.

the chirp dimension can be used as samples of a signal with its own frequency,
the frequency of this signal (fchirps) is related to the object’s velocity according
to 2.3.

v =
λfchirps

2
(2.3)

Since there might be multiple objects at different velocities at the same dis-
tance range, we again use an FFT to determine the constituent frequencies for
the entire chirp/velocity dimension of the radarcube. The duration of the frame
determines the resolution of the velocity measurement. Using the phase places
a limit on the maximum speed that can be detected: If an object moves more
than half a wavelength between two chirps, the direction of movement will be
determined incorrectly. The velocity where an object moves more than half a
wavelength between two chirps is considered the maximum unambiguous ve-
locity for the chirp configuration. Velocity estimation is used to help with the
tracking of objects, and to reject static objects. The sensor can only measure
radial velocity, the velocity vector moving towards or away from the sensor.

The sensor captures data from multiple antennas spaced half a wavelength
apart to determine the angle of arrival. The distance from the antennas to the
object will be slightly different for each antenna. Assuming that the object is
far away, this results in a difference in the phase of the range-FFT output (φ)
described by equation 2.4.

∆φ =
2πl sin θ

λ
(2.4)

Where θ is the angle of arrival. This phase difference can then be used to
perform an FFT on the antenna dimension in the same way as described for
the velocity measurement. The radar can have multiple transmitter antennas
to increase the effective amount of antennas. Every transmitter/receiver pair
forms a virtual antenna, improving the resolution. The transmitters have to
take turns transmitting, as shown in figure 2.3.

Our sensor can measure both the Azimuth angle and the Elevation angle
because one antenna is placed higher than the others. The azimuth is calculated
with 12 (virtual) antennas, while the elevation has only two antennas. The
azimuth angle is used to generate the radar cube, and the elevation can be
calculated for specific points of interest.
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The final result after processing range, velocity, and azimuth is a 3-d radar
cube in these dimensions, where each position has a signal strength value associ-
ated with it (see figure 2.4). The computations are performed on a DSP (Digital
signal processor). The first processing step, the range calculation, is performed
on the ADC samples directly after the chirp. The FFT result is stored in a
piece of memory reserved for the radar data. Once all chirps are processed, the
velocity and angle calculations can be performed in between two frames.

Figure 2.4: Capturing a chirp on a system with 2 TX and 3 RX an-
tennas. The two TX (Transmitter) antennas chirp after eachother.
Every RX (Receiver) antenna receives the chirp simultaneously. The
DSP performs a range FFT whose results are stored in the radar
cube before the next chirp. The angle of arrival and object velocities
can be calculated by performing an FFT in the antennas and chirp
dimensions respectively.

2.2.3 Pointcloud calculation

For many applications, we are most interested in the positions in the radarcube
with the highest signal strength. These locations represent the location of ob-
jects in the detection area. A data structure representing only these points is
a point cloud. A point cloud is a list of tuples containing a distance, azimuth
angle, radial velocity, received signal strength and optionally the elevation an-
gle. The points are selected with a peak detector, that returns positions in the
radar cube with a signal to noise value exceeding a threshold. A visual example
of a point cloud is given in figure 4.2.

Generating a point cloud is more efficient than calculating values for the
radarcube. By performing peak detection directly after the distance FFT op-
eration, the velocity and angle processing steps only need to be performed on
the areas of interest, reducing the memory and processing requirements. The
measurements from all chirps are combined before the peak finding step to im-
prove the signal to noise ratio and to filter out stationary objects. Beamforming
algorithms can be used to find the angle and velocity with a higher resolution
than by detecting peaks in the radarcube [55]. These algorithms don’t return
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Guard bands

Threshold

Training cells

Cell under test

Figure 2.5: CA-CFAR peak detector. The value of the cell under test
is compared to the average value of the training cells plus a threshold
value. Guard bands are excluded from the training cells to avoid
the sidelobes of the peak from affecting the average. The number
of training cells, guard bands and the height of the threshold can be
modified.

accurate signal strength values but have a narrower peak.
In our sensor, points are extracted using a CA-CFAR (Constant False Alarm

Rate) peak detector [23]. This detector is shown in figure 2.5. Signals originating
from the environment are filtered by ignoring objects with no velocity.
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2.3 Object classification methodologies

In this section, we analyze the current state of the art in object detection using
mmWave data. We included papers performing all types of object detection,
even if the classes are different from those we are interested in, as person detec-
tion is a subset of object detection. mmWave radar data can be represented at
different abstraction levels. The classification methods found use the radar cube
or point cloud representations. How these are created is described in section
2.2.3. Here we describe the state of the art using both abstraction levels.

2.3.1 Classification methods based on radar cube data

The radar cube has many features similar to an image. It is a fixed size grid in
multiple dimensions. The structure has locality: features belonging to the same
object are close together. And the shape of an object will stay the same when
it is moved in the radar cube. Because of these similarities to an image, many
image classification methods are used on them.

Most of these methods have a common starting point. They start with finding
an area of interest and taking a 2d slice from the radar cube, for instance, by
using distance and velocity dimensions of a single azimuth bin. Effectively,
this results in a regular image. They then classify the object in the slice with
machine vision techniques. These techniques use manually derived features [38],
automatically derived features [37] or neural networks.

The current state of the art for image classification is convolutional neural
networks [8]. These networks scan the image with multiple filters to find the
presence of patterns. By using consecutive layers that combine the simple pat-
terns into more and more complex shapes the network can detect the presence
of objects. During the training step, the network learns the optimal filters to
use. These networks have enabled the current machine vision revolution, and
are used in the current best performing radar systems. [35] uses a 2-d convolu-
tional neural network on radar cube slices to classify objects and is the current
best performing system using 2d slices.

2.3.2 Classification methods based on point clouds

Research into point cloud classification has not been limited to radar data.
Instead, most research has been done with a depth camera or LIDAR data [18].
Some of these techniques have been transferred to radar point clouds.

Using a point cloud as input is problematic for traditional machine learning
methods. Most methods have a fixed vector of input features where each value
has a fixed meaning or with a fixed relationship between the inputs [8]. For
instance, in an image, the relationship between pixels is determined by their
position in the 2d grid. If all pixels in an image are randomly shuffled, it is
impossible to determine the subject of the picture. But point clouds don’t
have a fixed amount of points, nor is there a fixed ordering that captures the
relationship between the points. An ordering based on the location of the points
is unstable, small changes in the location of the points will cause big changes in
a 1-d ordering [10].

To make a feature vector for the classifier, we need to create a fixed set of
features independent of the ordering and number of points. Several methods
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have been proposed to create a fixed set of features for radar point clouds:

• Use symmetric functions to generate features. [47, 45]

• Direct feature learning from point clouds. [46, 16]

• Voxel coloring/rasterization. [58]

Symmetric functions are mathematical functions whose output are indepen-
dent of the ordering and amount of inputs. They can operate on all points in
the point cloud. These features are typically statistical properties such as min,
max, mean, variance, et cetera. The most common method is to hand-select a
list of functions and to create a classifier based on the output of these functions
as features. This has been used in [47, 45]. The classifier architecture can be
any type of classifier that operates on a feature vector such as SVM, decision
trees, or fully connected neural networks [8].

The most influential works have been Pointnet [10] and Pointnet++ [41].
Pointnet uses a method for learning symmetrical functions to apply on the
point cloud while training the network. The pointnet architecture applies a
multilayer perceptron network to each point in the point cloud. This network
maps the 4 dimensions of a point to a much larger embedding space. It uses the
same weights for each point. It then applies a symmetrical function featurewise
to all outputs, creating a single 1d feature vector. The authors use the max
function but show that any symmetrical function can be used if the multilayer
perceptron and embedding space is large enough. This results in a single feature
vector representing the entire point cloud. After generating the final feature
vector, a multilayer perceptron performs the final classification. Pointnet++
hierarchically applies the feature vector generation process to groups of nearby
points (based on spatial distance) and repeats this process on a larger distance
scale on the outputs until a single feature vector remains.

The authors of [46, 16] transfer the technique of pointnet++ to radar point
clouds for use in automotive applications. The authors did not release their code,
but since the pointnet++ source code is available online, we tried to replicate
the results found in [46]. By replicating the steps described in the paper, using
our data, we found that the network overfits to our data. We expect that our
dataset was too small for the size of the network. And that our relatively sparse
point cloud does not have many shape features. The network size is also far
beyond what can be executed on an embedded platform, requiring a GPU with
gigabytes of memory.

Voxel coloring has been used in mID [58] for unique person identification
using a mmWave sensor. A fixed-size bounding box is placed around a tracked
object, and voxels are colored when a point from the point cloud is inside the
voxel. This creates a rough outline of the person. The voxels are flattened using
a fixed ordering, and an LSTM network identifies the person by using multiple
frames. The authors show that this works at a range of up to 5 meters.

2.3.3 Classification methods using both point and radar
cube data

In [33], the authors combine both point clouds and radar cube data. The algo-
rithm selects a smaller 3-D section of the radar cube of 5 range bins, 5 width
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bins, and 32 velocity bins for each point in the point cloud. A series of 3d and
1d convolutional and pooling layers extract features from the section. These
features describe the velocity distribution of the radar cube around the point.
These features are combined with the features from the point cloud tuple (loca-
tion, velocity, RCS) in a fully connected neural net to calculate output scores.
Finally, the points are clustered, taking into account the class predictions, to
arrive at the final classification. The authors show it outperforms [38] which
is discussed above, and [47] which uses only point clouds. The authors use a
high-end automotive radar sensor to generate the radar cube and point cloud.
A high-end PC with an Nvidia TITAN V GPU is used to perform the predic-
tions in 0.04 seconds per frame. We consider this method state of the art for
radar-based object detection without resource constraints, but out of range for
our power budget.

2.3.4 Takeaways

Most of the previous work in object classification with mmWave radars have
been in the context of road user detection for cars. The best results in this field
have been achieved with high-resolution radars and complex models executed
on powerful hardware [33, 46]. Our contribution will be to develop a system
that classifies using limited resources, using the properties of static surveillance
to our advantage: Our sensor is static, and people stay in the field of view of the
sensor for a time in the order of minutes rather than seconds. In [58], we have
seen the use of an LSTM network to combine sparse data from multiple frames
into better features. We plan to use such a technique to improve our prediction
when using sparse or low-resolution data. While using the radar cube offers more
information and the best classification results, it also has higher computational
requirements than using the point cloud. It might not be possible to use the
radar cube with our hardware. Using point cloud features is a computationally
efficient way to use point clouds for classification.
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Chapter 3

System design

In this chapter, we describe the implementation of our measurement and data
capture system. We describe the used sensor and its configuration in section 3.1.
To process the radar data, we wrote software tools that can store, visualize, and
modify the radar data. These tools are described in section 3.2. Our method
of data collection, and what datasets we used for the design of our classifier is
described in section 3.3.

We performed a conceptual design of a standalone capture system to be used
in playgrounds to show that this system can operate without external power,
use wireless connectivity, and with costs below the limits set in the requirements
in section 1.1. This is described in section 5.1.

3.1 Sensor hardware

We have chosen to design the system around a Texas Instruments mmWave
sensor for the reason that the sensors in this series have both the analog RF
circuitry and a digital signal processor integrated into one Integrated Circuit
[53]. The integration of these components makes it easier and less expensive to
design a PCB compared to other systems using separate parts.

We evaluated two sensors ICs: the Texas instruments IWR1642 and IWR6843.
Both devices have the same basic layout shown in figure 3.1, but differ in the used
frequency band and number of antennas. The IWR1642 uses the 76 GHz band,
which is license-free for use in automotive and traffic control applications. Our
application does not fall under that definition. Furthermore, we found in testing
that the IWR1642 had an effective range for detecting persons of only 16m, and
could only separate people in azimuth at least 2m apart. During the project,
Texas instruments released the IWR6843 for evaluation, which improves on
these aspects. It uses the 60 Ghz band, which is free to use at less than 10 dBm
transmit power and 13 dBm/MHz spectral density [2]. The IWR6843 has an
additional TX antenna, increasing the azimuth separation ability by 50%. And
the range was measured at over 50 m.

To get started quickly, we used the IWR6843ISK dev kit with onboard an-
tennas. The IWR6843ISK also can measure the elevation of a radar return by
having one antenna placed higher than the others, as seen in figure 3.2. The
configuration of the antennas results in a field of view of 110◦ azimuth and 44◦
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Figure 3.2:
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elevation.

3.1.1 Radar configuration

To process the ADC values to point clouds, we use a code example by Texas
Instruments [1]. It processes the raw data into point clouds on the DSP as
described in chapters 2.2. The processing chain is parameterized, meaning we
can configure the radar for our use case.

We configured the radar chirp to have an unambiguous range of 43.7 m and a
maximum velocity of 21.6 m/s with a range resolution of 0.085 m and a doppler
resolution of 0.9 m/s. The range is selected to reach an effective 30m range. The
additional range is to prevent objects further way to show up as ghost images
in the area due to the range unambiguity. The velocity limit is chosen to reflect
the maximum speed of fast bicyclists and mopeds inside cities.

The device can separate up to 3 returns in azimuth and measure the elevation
of a return, but not separate multiple returns in height. Thus, two objects at the
same range and velocity, but at a different azimuth can be detected separately.
But two objects above each other at the same distance, velocity and azimuth
can’t be detected separately, and instead an average value will be resolved.

The parameters for this configuration are a chirp that starts at 60 GHz and
sweeps 1.7 GHz at a slope of 42.8 MHz/µs. This results in a chirp length of 40
us. Every frame consists of 48 chirps that are alternatingly sent by the TX
antennas. 10 frames are recorded per second.

The parameters for the CFAR peak detection have been tuned to result in
a high number of points for one person by increasing the number of sidebands
and lowering the threshold. The parameters were determined experimentally to
an averaging window of 8 bins, 4 bin guard bands, and a threshold of 9 dB.

To be able to track and classify the objects in the scene, the individual radar
reflections are clustered into objects. We use the DBSCAN [14] clustering al-
gorithm. DBSCAN creates clusters in two steps: First, it searches for a core
point that is surrounded by a minimum number of other close points. Then, it
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Figure 3.3: A schematic overview of the test setup.

recursively adds nearby points within a distance threshold. A cluster is made
when the cluster’s size and density exceeds a threshold value.

In order to track objects over time, a location prediction is made for each point
by assuming a constant-acceleration. The location prediction is used as the
core point for the new cluster. Texas instruments includes an implementation
of DBSCAN with Kalman filter motion prediction. Rather than writing a new
implementation, we choose to use this system and only tweak its parameters. To
tune the clustering algorithm, a repeatable process to evaluate the performance
is required. We modified and compiled the algorithm for use on a desktop pc
and iterated on the parameters on prerecorded radar data. We tuned it to be
slightly oversensitive, creating too many clusters, with a post-processing step
that filters out false positives. The updated parameters are loaded onto the
embedded hardware.

3.2 Tools and Processing

To use the radar output, we need a method of capturing, processing, storing,
and visualizing the data. The tools need to store the radar point clouds together
with ground truth labels so that they can be used to train the classifier. The
overall structure of how these tools work in the complete system is depicted
in figure 3.3. We developed two applications on a shared base: A capture
application, and an analysis application. We used a separate script for model
training.

The capture application connects to the radar, configures it, and captures the
radar data. It then visualizes the point clouds in 3d, shows the clusters they
are assigned to, and shows the location and classes of the detected clusters.
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Figure 3.4: The monitoring and labeling application.

The user can label the clusters with a class in real-time by using the mouse
and using keyboard shortcuts. Since the clustering algorithm does not always
cluster correctly, we have given the user the option to correct these mistakes by
breaking clusters up into sections or labeling them as background noise to be
ignored. When the cluster is no longer tracked, a trace containing the entire
history of that cluster is stored on the hard drive. The application also saves
the raw radar data and can replay these raw data files. This has proven useful
when iterating on configurations.

The analysis tool can playback the point cloud traces to inspect the data and
labels visually. The user can ”scroll” through the data to find a specific point
of interest. The user can update the labels by comparing them to a reference
video. The analysis application is shown in figure 3.4.

The capture application is written in Python. The USB connection to the
sensor exposes two virtual UART ports for commands and data. The application
configures the sensor with text commands over the command port and receives
binary data via the data port.

The GUI is created using the QT framework [54]. QT’s Asynchronous pro-
cessing support is used for simultaneous data capture and presentation. The
application is split up into asynchronous parts that communicate with signals:
Parsing, visualizing, storage and classification.

The radar data arrives in the form of a binary data structure. The data
structure arrives in packages, when a complete package is received, it is parsed
using the Construct library [5], which parses a raw binary stream from a data
structure definition. Point clouds are shown in a GPU accelerated 3d view using
Pyqtgraph [40]. Points are given colors to signify their cluster. Users can pan,
rotate, and zoom the viewing area to inspect the point cloud. Labels, point
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cloud data, a position trace, the creation/deletion time and other metadata
of a cluster is stored together in a point of interest data structure. When no
information for a cluster is received for 5 seconds, the data is stored to disk. The
data is written in the msgpack format, a format similar to the commonly used
JSON, but which stores data in a binary format to be more storage efficient. We
run the classifier in a separate thread to give live output in the visualization.

Training the classifier happens offline using the msgpack files stored by the
capture application. We use scikit-learn, a machine learning library, to imple-
ment the single-frame machine learning algorithms. For the neural network
algorithms, we use Tensorflow [15]. Tensorflow models can be exported to C
code for inference on embedded systems using Tensorflow lite. To train these
models, we used a server with a GPU using Google Colab.

The tool source code is available on GitHub: https://github.com/BBekker/
mmWavePOI

3.3 Data collection

The classification system requires a large training dataset to learn to differentiate
the classes. Our classifier is a supervised learning architecture. Meaning that
it learns how to identify a class based on a lot of examples. Every example
has both the recorded data, and a label of the correct class. To achieve the
best performance, the dataset should contain examples of all the situations that
are expected when deployed. We collected datasets for training and validation
on location at playgrounds and other public locations. For this, we used the
IWR6843 sensor mounted on a tripod and powered by a battery. To compensate
for differences in sensor location, the sensor height and angle were measured
when deploying the sensor. Points are mapped from the radar reference frame
to a global reference frame, taking into account the sensor height and angle. To
be able to perform data collection on location, the data capture method needs
to fulfill radio emission regulations. We chose the IWR6843 because it uses a
free to use frequency band. The IWR6843ISK dev kit has been certified to fulfill
the radio emission requirements for limited deployment.

3.3.1 Datasets

We collected 5 datasets at the TU Delft campus and a school playground.
Datasets that include children, were collected in a closed playground with small
group of children whose parents were informed and consented. These datasets
contain 4 different adults and 5 different children. Data collected at the TU
Delft contains many different Adults and Bicyclists.

Dataset 1: Adults and children on a school playground without giving them any in-
struction on what action to perform, other than to stay in the roughly 20m
x 30m area. This most closely mimics a real-world scenario and includes
behavioral features.

Dataset 2: Adults and children playing together in a small area.

Dataset 3: Adults and children stand at the exact same location 5m in front of the
sensor while moving in place.
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Dataset 4: Bicyclists moving in a zig-zag pattern inside a 20m x 30m area.

Dataset 5: People walking and bicycling at the TU Delft campus. This dataset con-
sists of over a hundred bicyclists and pedestrians but no children.

When analyzing the datasets one big issue stood out: In the first dataset of
people acting without instructions we found that peoples behavior is influenced
by the physical design of the area. Children will play near the play equipment,
while adults stand on the side and bicyclists only move in open spaces. The
classifiers will learn where on the playground each class is most common and
uses this information in the classification. But this does not generalize to other
playgrounds with a different layout. To overcome this issue we need to either
test at a lot of different playgrounds, dont use the location information in the
classifier, or create datasets that force the classes to move everywhere. Since we
cant test at a large amount of playgrounds due to required permissions and time
constraints, and we want to preserve the potential benefits of including location
data, we restricted dataset 2 to a smaller 10m x 10m area where subjects are
asked to use the entire space equally. The high density of use reduces the
clustering algorithm’s performance, resulting in worse input for the classifier.

Dataset three removes all variations in location and clustering quality, guar-
anteeing a high signal to noise ratio and no features based on location or move-
ment. But, these datasets may not generalize to other activities or locations.
Therefore, we only use this dataset for validation. Dataset four is added to
increase the amount of bicyclist data, in the same conditions as dataset one,
two and three. Dataset five is a large dataset with many different people, but
does not exactly capture the type of users and activities we are interested in.
This dataset is only used in training.

Data split

The captured data is combined and split into a training and classification
dataset. The training dataset is used to train the classifier, and the validation
set is used to evaluate the classifier’s performance. The typical way of creating
a machine learning experiment would be to shuffle the dataset and split based
on a fixed ratio [8]. Multiple splits can be used to perform cross-validation [8].
However, we found that in our situation we achieved an unreasonably high ac-
curacy due to data leaking [26]. Because ten samples are taken every second,
two samples taken directly after each other will be very similar. If the dataset
is split randomly, these very similar samples will be in both the training and
validation dataset.

To prevent this issue, our datasets are recorded separately. Every dataset
mentioned earlier consists of multiple captures, and we use some captures for
training and some for validation. We aimed for a 9:1 split between training and
validation data. The amount of data in our training and validation datasets is
shown in table 3.1.

3.4 Playground sensing sytem hardware design

Testing and training the classifier uses a laptop to process the data. But, when
deployed in playgrounds, the system needs to be standalone. To show that this
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Dataset Adult Child Bicycle

Training 38 701 37 573 15 714
Validation 3 903 4 063 1 355

Table 3.1: Number of individual pointclouds captured for each class.
The total dataset represents 2.7 Hours of data.
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Figure 3.5: Schematic design of the inference system that can be de-
ployed at playgrounds.

is possible, we conceptually designed the electrical system of the playground
sensing system. In order to fit our requirements, the system should be able
to operate without an external power supply, should be affordable and small
enough to be easily deployed.

To supply our system with power, we can use a solar panel. But, to keep
the system reasonably sized and easy to deploy, we should strive to have the
smallest possible solar panel. To determine the required solar panel, we analyzed
the energy usage requirements of the system.

The radar sensor is measured to use 1.7 W when operational. To reduce the
energy consumption, a PIR sensor can be used that only enables the radar
when movement is detected in the area. Any processing will need to happen
on a device with either a very low power sleep state or fast power on, such
that it can be kept in a low power state when not active. To achieve this,
we use a cortex-m7 microprocessor with a <100 mW power usage when active
and <1 mW when in standby. After the data is processed, the location and
classification data is sent to a server periodically. Transmitting x/y location
and class every second requires approximately 15KB per person hour. This
usage pattern fits best with LTE-M. LTE-M can transmit at up to 375Kbps
when active while having a standby current of less than 20 µA [24]. This means
that the data can be transmitted once per hour with insignificant additional
power usage. The total power usage is a maximum of 1.8 Watt when active and
<1 mW when in standby.

To provide the required energy, we choose a 10 Wp (Watt-peak) solar panel
as the power source. The solar panel has a size of 355 mm × 255 mm [3]. The
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amount of energy provided by the solar panel will change during the year with
the seasons. The energy generated when placed in Rotterdam is estimated using
PVGIS [22]. It generates 10 Wh per day during the winter and 40 Wh per day
during the summer. An 40 Wh battery can be used to buffer energy during
nights and periods of low energy.

This enables 5 hours of active operation during the winter and 20 hours during
the summer. We expect that in most cases, this should be sufficient energy. As
during the dark winter nights, we also expect less activity at the playgrounds.
But in a high traffic location, a larger solar panel can be used.

The antennas are placed 2m above the ground surface with a slight tilt down-
wards. A sensor placed too low to the ground is at risk of being completely
blocked by the body of a nearby person, while a sensor too far above head
height has a blindspot nearby. The sensor can be placed on a pole or attached
to an existing pole, such as a streetlight. The casing can be opaque in the visual
spectrum but should have low attenuation and minimal refraction of radar sig-
nals to not affect the measurement. Non-polar polymers are a suitable material,
for instance polypropylene [4].

Cost estimate

As stated in our requirements in the introduction, the system needs to be af-
fordable for broad adoption. We set a limit of e2000 material costs per device.
In table 3.2 we show the costs for the electrical components at e439.70, leaving
over e1500.- for the mechanical components.

Component Part number Cost

Sensor module IWR6843ISK e125.-
Solar panel Phaesun sun plus 10 e36.40
Battery Enerpower 12V 4.5Ah - LiFePo4 e52.95
Solar charge controller estimate e50.-
LTE-M Modem XB3-C-A2-UT-001 e64.35
Microcontroller NXP IMXRT1064 e11.00
PCB and power regulation estimate e100.-

total e439.70

Table 3.2: Cost estimate for the electrical parts in the sensor design.
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Chapter 4
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Figure 4.1: Schematic overview of the steps taken to classify a person.

In this chapter, we explain how we classify the three classes we are inter-
ested in: adults, children, and bicyclists. We do this by detecting the unique
differences in the radar output for each class.

The processing pipeline has multiple steps to go from the person to a classifica-
tion, as shown in figure 4.1. To determine how we can differentiate between the
classes, we will first consider what measurable physical differences exist between
the classes, and how they could affect the radar reflection. This is reported in
section 4.1. Based on these differences, we set out to design a classifier. The
first step is to determine what data representation we can use from our radar.
We decide to use point cloud output, the reasoning for this choice is explained
in section 4.2.

We analyzed multiple methods for classification using pointclouds in chapter
2.3. Based on our hardware limitations, we chose to use a feature based method.
These features have to describe the physical differences identified before. We
review multiple features in section 4.3, and decide on a feature vector to describe
the point cloud. Finally, a machine learning classifier uses the feature vector to
make a classification. We created classifiers based on multiple machine learning
methods and evaluated their performance in section 4.4.
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4.1 Identification hypothesis

We hypothesize that we can detect if someone is a child, adult, or bicyclist of
any age, based on the physical and behavioral differences between these classes.
There is one exception: there is no perfect way to define a hard cutoff between
adolescent children and adults based on apearance. Therefor, our child class
encompasses prepuberecent children, and the adult class is post-puberty. For
adolescents we accept both classes, and they are not included in our datasets.
The physical differences have to result in differences in the radar reflection for
them to be measurable. We have identified four properties that can be measured:

Height Height is the main difference between adults and children. An adult
will be taller than a child, but bicyclists might not be recognizable based
on height. Taller people will have a larger extent and higher maximum
height of the pointcloud. We can calculate the height of a radar reflection
by converting the measured elevation and distance to cartesian cordinates.

Radar cross-section The radar cross-section (RCS) is the amount of radio
energy reflected by an object. The RCS scales with the size of the object,
but also changes due to the different reflectivities of materials. An adult
should have a larger radar cross-section than a child. And a bicyclist on a
metal bike should also have a significantly larger radar cross-section than
a person walking.

Limb movement An adult, child, or bicyclist will have periodic limb move-
ment when moving. The frequency of this movement is related to the
limb length and the movement speed. We hypothesize that a child’s limb
movements will oscillate at a higher frequency than an adult to achieve
the same body velocity. And the limb movements of a bicyclist will be
completely different. These oscillations might be visible in doppler, posi-
tion, and even signal strength measurements. Oscillations in the doppler
dimension are often used for classification with CW radar [9, 42, 27].

Macro movement We expect that the different classes will have different
movement patterns. For instance, a bicyclist moving more quickly and
children having more erratic movements than adults. These large scale
movement patterns can give behavioral clues to the subjects class.

4.2 Radar data representation

To classify our subjects, we need to extract the information from the radar
reflection that represents the features of our three classes. There are two levels
of abstraction that we can use as inputs for our classifier: either the radar cube
or a point cloud.

As described in chapter 2.2, the radar cube is a direct representation of
FMCW radar data. The radar cube represents all data that was captured
by the ADC’s, converted into distance, velocity, and azimuth dimensions. The
point cloud does not represent all data but instead is a sparse representation
of only the reflections with the highest signal to noise ratio. Because the radar
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cube contains more information than a point cloud, it is the preferred represen-
tation to use for classification, but it might not be possible to generate it on our
hardware. We face three hardware limitations to using the radarcube:

• The available RAM on our device.

• The available processing time for each frame.

• The data transfer rate to the next stage of processing.

The IWR6843 has 768KB RAM for radar data. The ADC captures 512 samples∗
12 antennas ∗ 24 chirps ∗ 4 bytes = 576KB of data each frame. A radar cube
using 16-bit RSSI values would use an additional 288KB, exceeding the avail-
able memory. In order to send this data at 10hz, an average data transfer rate
of 23Mbps is required. Moreover, since the data cannot be double-buffered, it
needs to be sent in bursts after the radar cube is calculated. The IWR6843
has a high-speed LVDS peripheral for this use case, but LVDS is generally not
supported on microcontrollers or mobile processors. In conclusion, calculat-
ing and using the whole radar cube is not a feasible path, given our hardware
constraints.

Figure 4.2: Point clouds of four children playing. The grid size is 1
meter. Brightness represents signal strength, velocity is not shown.

Instead of using the radar cube we have to use point clouds. We can configure
the radar to generate a point cloud with more details. When only using the point
cloud for localization, we might configure the CFAR algorithm to return only
a single point. But because our goal is to use information about the shape and
movement of individual body parts, we have configured the CFAR algorithm
to return multiple points for one person. The points represent different spots
on the person’s body. An example of these point clouds can be seen in figure
4.2. The number of points depends on the distance, and if other people are
nearby. The distribution of the number of points in one sample of a person in
our dataset can be seen in figure 4.3.
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Figure 4.3: Distribution of number of points in a pointcloud. Most
pointclouds used for classification are between 5-10 points.

A hybrid solution would be to use CFAR processing and clustering to detect
areas of interest and generate a small radar cube around the area of interest from
the ADC samples. Texas instruments does not support this method at this time.
We explored the possibility of implementing this ourselves but concluded that
the amount of mathematics and engineering effort required was out of scope for
this project.

4.3 Feature selection

Description symbol Importance

Mean distance µd 13%
Mean azimuth angle µφ 16%
Mean radial velocity µv 6.4%
Mean height µz 3.2%
Mean SNR µSNR 2.0%
std x location σx 7.9%
std y location σy 9.6%
std radial velocity σv 2.1%
std SNR σSNR 1.3%
var distance σ2

d 11%
var azimuth σ2

φ 2.8%

var radial velocity σ2
v 2.4%

var SNR σ2
SNR 0%

95th percentile Height P 95(z) 8%
5th percentile Height P 5(z) 3%
RCS estimate RCS 2%
sum SNR

∑
SNR 3%

Number of points #Points 5%

Table 4.1: Evaluated features. Selected features in bold. The im-
portance column is the normalized importance in a trained random
forrest classifier. This may not reflect the importance in the final
model.
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We created a list of features that might have some importance based on the
physical differences we identified in section 4.1 and our literature study. The
evaluated features are listed in table 4.1.

As described in section 2.3.2, the features derived from a point cloud must
be based on symmetrical functions. Symmetrical functions do not depend on
the order of inputs and operate on any number of inputs. Before applying the
symmetrical functions, we can apply transformations on the individual point
tuples, for instance, to convert the polar coordinates to cartesian cordinates.

The symmetrical functions we use are mean, standard deviation, variance,
and percentile. Mean values are important for relationships between variables.
For instance, distance and RCS.

Standard deviation and variance show the size of the object in one dimension
for the x and y location. We opted not to use the total extend because all our
classes are narrow compared to the resolution of the sensor. If the measurements
have Gaussian noise, the expected measured total extent will be larger when
increasing the number of samples due to the outliers, but the variance and
standard deviation stay the same.

We use variance in the velocity dimension to detect limb movement. During
a walking cycle, the left and right arms and legs move in opposite directions
in a cyclical pattern. This results in a maximum amount of variance when the
limbs are moving at their highest speed, and a low variance when slowing down
at their maximum extent.

We evaluated features by testing if they are significantly different for each
class, the importance assigned in a classifier, and by the effect on the network
accuracy when the feature is included.

We found that the height of a person to be a robust feature. To determine the
height of the person, we use the height of the individual point cloud points. Be-
cause the height of the points is influenced by random noise, using the maximum
height of all points in a pointcloud is very noisy. The density of a point cloud
for a person matches the distribution of a person’s body mass. Using the 95th
percentile height of the individual points is a good tradeoff between resistance
to outlier points and maximizing the difference in height. The 95th percentile
returns the n ∗ 0.95th value in a vector of n values that are sorted from lowest
to highest. When n ∗ 0.95 is not an integer number, the result is interpolated.
In figure 4.4, we show boxplots of the 95th percentile of the height of each point
in a point cloud. These boxplots show that there is a clear separation between
the heights of the classes. When multiple recorded point clouds of the same
person are combined, the 95th percentile becomes more accurate, increasing the
predictive power.

Counterintuitively, we found very little separation of the SNR values of chil-
dren and adults. Due to the difference in size between the classes, we expected
a difference in signal strength. Even after compensating for distance, angle,
and velocity, we can’t create a good RCS estimate from the SNR, and can’t
separate the two classes based on SNR. An example can be seen in figure 4.5.
We hypothesize that this is because our point cloud returns only small peaks
inside the reflection of a person, while the true RCS of a person should be cal-
culated by taking the sum of the entire reflection. We did see a higher SNR for
bicyclists.

For limb movement, we could not find a noticeable signal in any real-world
datasets. We plotted the mean and variance of all dimensions in the point cloud
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Figure 4.4: Boxplot of the 95th
percentile height of the point-
cloud for clusters of each class.
There is a clear difference in the
height of each class.
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Figure 4.5: The SNR of a clus-
ter vs distance from sensor. To
avoid differences due to azimuth
and velocity, we only show de-
tections straight ahead and over
1m/s velocity. There is a clear
difference for the bicyclist vs
other classes. But not between
adults and children.

over time but could not find an oscillating signal at the frequencies that would
relate to walking or bicycling.

As an initial test of the predictive performance of these features in a classi-
fier, the features are used to train a random forest classifier, and the feature
importance is determined using impurity decrease [51]. This technique is not
perfect, as it overestimates the performance of highly variable features and can
underestimate the importance of features when two features always change to-
gether [51]. Therefore, it was only used as a guideline. The final set of features
was determined by recursively leaving out features to find the optimal set. By
this process, we arrived at the features selected in bold in table 4.1.

We found that we can improve many features by grouping multiple, consecu-
tive point clouds in a larger point cloud. Thus increasing the number of points,
and improving the estimation of the statistics that stay constant over time.
However, combining too many point clouds removes the descriptive power of
features that change over time, for instance, the mean x and y location becomes
meaningless when a child has visited every point in the playground. And we lose
the ability to use some of the higher frequency time-varying features. However,
classifiers that work on a single frame are not able to use those features anyway.

4.4 Classifier design

We consider multiple classifier designs that use our selected features to predict
the class of a subject. The classifiers are rated on multiple criteria. The first
being the overall classification performance in terms of accuracy. Accuracy is
defined as the percentage of correct classifications in the complete dataset. The
secondary criteria is the required computational resources of the classifier. Com-
putational resources are the required storage memory, random access memory
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Figure 4.6: Accuracy of the SVM classifier for different amounts of
merged pointclouds.

and processor operations. Using more of these resources make the classifier less
energy-efficient, increasing the size and cost of the overall system to be deployed
in playgrounds.

First, we consider classifiers that only use a single feature vector. Then we
consider methods of using information from multiple feature vectors over time
by averaging results and using recurrent neural networks. Finally, we summarize
the results of the classifier with the best performance.

4.4.1 Clasification methods using a single feature vector

We evaluated SVM, random forest, and fully connected neural network classifiers
for single feature vectors. All evaluations were made using implementations from
the Scikit-learn python library [36]. Default values are used unless listed. For
all methods, we use features derived from 10 combined point clouds. We found
that merging point clouds was required for all methods to achieve good results,
but using more than 10 point clouds had diminishing returns. A comparison
can be seen in figure 4.6.

Support Vector Machine

We used support vector machines (SVM) [8] as a baseline machine learning
method. Classifications are made by separating the feature space with a mul-
tidimensional plane that separates the classes. The plane has two parameters,
a weights vector w and bias vector b. The hyperplane is defined by the set of
points x where:

~wx−~b = 0

If we substitute x for our input vector, the sign of the result is the classification.
Since our problem is a multiclass classification, we construct a classifier for
each combination of classes and add all results for the final classification. An
SVM classifier can only classify linearly separable classes, but our dataset is not
linearly separable. The solution to this is called the kernel trick, which replaces
the dot product with a nonlinear kernel [8]. We use an RBF kernel, which
projects our feature vector onto an infinite-dimensional space, allowing it to
form to any shape. The training process finds a set of weights that result in the
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highest margin between the hyperplane and the training samples. The model
can be tuned by the hyperparameters C, which controls how much outliers affect
the training, and γ, which limits the effect of the RBF kernel. In practice, a low
C and γ generalize better, while higher values fit the training data more closely.
We use C = 1 and γ = 0.1.

Before classifying, we standardize our input data by scaling and adding a bias
to each feature such that the mean of the distribution is zero, and the variance
is 1. Without scaling, features with larger values have a higher importance,
resulting in reduced performance. The scaling factors are based on the training
dataset and are also applied to the validation data. We found that using nor-
malization improved the performance of the classifier from 74% to 79%. The
resulting confusion matrix is shown in figure 4.7.

SVM’s have considerable secondary benefits as classifiers. Calculating the
classification requires the least cycles of the techniques discussed here, and the
model only requires to store w, b, γ, and the formula itself in memory.

Figure 4.7: The confusion matrix for our SVM classifier.

Random Forrest Classifier

In a decision tree-based system, every node of the tree examins a feature of the
feature set and splits the data based on a threshold value. The final leaf of
the tree gives a classification to the feature vector. The random forest classifier
builds many trees by adding a small random variation to the training data for
each tree [7]. The final result is calculated by averaging the results from all
trees. This has been shown to improve the generalization of the decision tree.

34



We’ve seen in [38] that these models can be very successful with radar point
cloud features.

We use scikit-learn’s ”RandomForestClassifier”. New branches are made
when they exceed an information gain threshold. The threshold is experimen-
tally chosen at 0.01, and we generate 50 random trees. The resulting confusion
matrix is shown in figure 4.8.

In order to make a classification, all trees need to be followed, and the results
averaged. To store all trees, we require trees ∗ nodes ∗ size of node bytes of
memory. Our model has a total of 1388 nodes, using at least 22KB of memory.
The performance of the classifier is slightly lower than that of the random forrest
classifier, with much higher computational requirements.

Figure 4.8: The confusion matrix for our Random Forrest classifier.

Fully connected neural net

Fully connected neural nets, also refered to as dense neural nets or multilayer
perceptrons, consist of multiple layers of neurons, with connections between all
neurons in adjecent layers [8]. The mathematical transformation in each layer
is:

y = f(Wx + b)

Where x is the input vector, W and b are weights and biases and f() is a
nonlinear activation function.

Our design uses two hidden layers of size 50. The hidden layers use the ReLu
activation function. The output layers use softmax activation [17], which takes
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the exponent of each output and scales them equally such that they sum to one.
The model loss is evaluated using categorical cross-entropy [17]. The network
is trained using the Adam [28] optimizer.

To limit overfitting, we used early stopping and L2 regularisation [8]. L2
regularisation adds a cost in the loss function to high weights and bias values.
This tends to give a less complex model that generalizes better. Early stopping
stops the training when performance on the validation set no longer improves.

We used standardisation of the input in the same way as with SVM and ran-
dom forrest. We found that adding an additional layer to the network without
a standardisation step had a similar performance, but since a neural network
layer is a matrix operation, and standardisation a vector operation, using stan-
dardisation is more resource efficient. The result is shown in figure 4.9.

We found that the fully connected neural network achieved high accuracy,
but did not transfer well to samples outside the distribution of the training set.
For instance, when some background clutter gets clustered with a person’s point
cloud, the classifier will give a high confidence, but possibly wrong, prediction.
This is known to be especially problematic for neural networks using ReLu
activation functions [20]. We tried to avoid this by including an additional
”clutter” class, trained on radar reflections of anything outside our classes, and
adding randomly generated feature vectors, but neither resulted in a statistically
significant improvement.

To store our model in memory, we need to store the code for the model and
parameters. For the first layer, 50 ∗ 9 + 50 parameters are required, 50 ∗ 50 + 50
for the second, and 50∗3 + 3 for the output layer. Assuming 32-bit float values,
this requires 12.5KB of memory.

Of single feature vector methods, the SVM network performs best on our
primary and secondary criteria of accuracy and network size.

4.4.2 Classification methods using multiple feature vec-
tors

All methods presented until now only use the features from a single point cloud
to perform a classification. However, we record the complete stay of a person
in a playground, and try to track it continuously. We call this longer duration
recording of a person we call a ”trace”. We can use these traces to create
better predictions by either combining multiple predictions, or by using machine
learning methods that can extract temporal features such as oscillating limb
movement and macro movements described in section 4.3.

It is not always possible to create only one trace for a person. The system
may lose tracking when someone moves out of range, line of sight is obstructed,
or two people move too close together such that pointclouds merge. The average
trace length in our training dataset is 46 samples, and there are 311 traces with
a length over 100 samples.

Averaging predictions

If (a part of) the errors made by the classifier are uncorrelated, combining
the probabilities from multiple predictions will create a better prediction. As
more predictions are combined, the prediction will asymptotically become more
accurate, with only systematic errors remaining.
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Figure 4.9: The confusion matrix for our Fully Connected Neural Net-
work.

The algorithm selects a sequence of consecutive feature vectors from the same
trace, and calculates the predictions for each feature vector. The output from
the single feature vector classifier does not only contain a predicted label, but
also probability values for each class. By using these probability values, predic-
tions with a higher certainty wil have a larger contribution to the final result.
It then averages the probabilities for each class of all the predictions.

An important note is that traces shorter than the sequence length are dropped.
This changes the distribution of the dataset, giving an accuracy advantage as
longer traces tend to have a better signal quality and larger point clouds.

In figure 4.10, we can see that the accuracy does increase when averaging
more results with up to 98% accuracy for traces over 200 frames, or 20 seconds
of data.

Besides evaluating traces with a fixed length, we also evaluated the result
when averaging all predictions for traces on our dataset. By combining all data
for a trace into one, our validation dataset is reduced to only 27 predictions.
With such a low number of predictions, it becomes less likely that our accuracy
value represents the true accuracy when tested on a different, larger dataset. We
can model the uncertainty in the accuracy as a binomial proportion confidence
interval. We use the Wilson method [12] to calculate confidence intervals for the
true accuracy value. This method assumes that the probability of any prediction
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Figure 4.10: Results when averaging the results from the SVM with
increasing window, with 95% confidence interval.
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Figure 4.11: Basic structure of a recurrent layer. The output of the
previous time step is fed back into the same layer in the current time
step.

to be correct is equal to the true accuracy of the model. When combining all
estimations for a trace, the accuracy is 88% on the validation set, with a 95%
confidence interval of (72%, 96%).

Recurrent neural nets

Recurrent Neural Networks (RNN) can classify sequences of data, where a se-
quence is a list of data points. Typically, these data points represent temporal
data, such as audio samples or words in a sentence, but can be any feature
vector. Rather than simply averaging the results from classifying the samples
individually, an RNN can extract features from the temporal data itself. For
instance, determine the frequencies of an oscillating signal. Data can be fed
into the network one sample at the time. The network can consist of normal
layers and at least one recurrent layer. A recurrent layer receives two inputs,
the output of the previous layer, and its own output at timestep t − 1. The
output from the last step is stored in memory, and called the hidden state.The
problem with this model is that the input from the last timestep has the most
contribution to the hidden state, and earlier timesteps have exponentially less
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contribution. All previous information gets ”squeezed” into a fixed range by the
activation function. This limits the ability to remember long sequences of this
type of network [8].

This problem has been overcome by gated RNNs, the most successful versions
being the LSTM [21] (Long short term memory) and GRU [11] (Gated Recurrent
Unit) cells. These gated cells both introduce a new type of memory called the
cell state. The cell state is designed to accumulate information over a longer
time scale. It is only changed with multiplications and additions in every time
step, without an activation function. The cell state is only updated selectively
by the input vector based on some activation function. The GRU is a simpler
implementation of a gated RNN compared to the LSTM. This means that an
LSTM generally outperforms a GRU, but this comes at the cost of a higher
complexity.

Recurrent layer Softmax
3

input layer
9 FC layerstep n

step n-1

Batch norm 
+

10% dropout
20% dropout

Figure 4.12: The recurrent network design. We evaluated the network
with both a LSTM and GRU recurrent layer. Layers sizes are a
tradeoff between performance and network size. Batch normalization
and dropout are used to improve generalisation.

Our network is shown in figure 4.12. It uses one additional fully connected
layer before the recurrent layer to map the input vector to a larger embedding
space and add some nonlinearity. We use batch normalization and dropout be-
fore the first hidden layer, and another dropout layer after the first FC layer.
The network is trained in batches of 64 sequences. Batch normalization nor-
malizes the input data in the same way as the normalization step used with our
SVM/Random Forrest classifier, but normalizes one batch at the time such that
the entire dataset is not needed to be in memory at the same time. Dropout
sets some of the values in a vector to zero with a given probability. This is an
effective method to make the model more general [50].

We experimented with both GRU and LSTM recurrent layers of different
sizes to make a tradeoff between computational resources and performance. We
found that even minimal networks have a similar performance to larger networks.
Using larger networks leads to more overfitting where the training set accuracy
keeps increasing, but the accuracy on the validation set does not improve, as
seen in figure 4.13. The performance of the different types and sizes of the layers
is shown in table 4.2.

To prepare the input data, we use a moving window over each track of a person
to create sequences of a fixed length. For a track of 500 samples with a window
size of 100 samples, we create 401 sequences of size 100. Since grouping mul-
tiple point clouds together into one point cloud before extracting features was
effective in single feature vector methods, we also used this technique with an
LSTM network. Since grouping more point clouds reduces the sequence length
for a fixed amount of radar frames, we have to find the combined optimal point
of grouped point clouds and sequence length. The tradeoff between grouping
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Figure 4.13: Training and validation accuracy for a lstm of size 16 and
of size 128. The larger network has a accuracy approaching 1 on the
training set, but does not have a significantly higher accuracy on the
validation set.

Method/ size 16 32 50 64 100 128
GRU 0.87 0.89 0.88 0.90 0.91 0.93
LSTM 0.91 0.90 0.90 0.91 0.88 0.89

Table 4.2: Classification accuracy of LSTM and GRU networks of dif-
ferent sizes on the validation set. We found no significant improve-
ment in the LSTM performance when using networks larger than 16
cells. The GRU network improves with larger network sizes, but re-
quires a much larger network to match the LSTM performance. The
values can vary slightly based on the randomized initial conditions of
the training process.

and sequence length can be seen in figure 4.15. Compared to the single feature
vector methods, the optimal amount of grouped point clouds is reduced from 10
to 2. Our hypothesis is that the LSTM can take advantage of the time-domain
data preserved when only grouping two point clouds.

The confusion matrix of the size 16 network can be seen in figure 4.14. The
model with layers of size 16 has 2379 parameters. If those are stored as 32-bit
float, it requires 9kb of memory for storage. The model can be implemented on
embedded hardware using Tensorflow lite.

4.5 Summary

Model SVM RF FC NN averaged SVM averaged SVM LSTM
Accuracy 0.79 0.78 0.78 0.93 0.88 0.91
Size <1KB 22KB 12.5KB <1KB <1KB 9KB
Frames 10 10 10 100 all 100

Table 4.3: Accuracy and networks size of methods tested.

In this chapter, we have shown a complete data processing pipeline to gen-
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Figure 4.14: Confusion matrix for the 16-cell LSTM network.

erate classifications from radar data generated by the IWR6843. We use radar
point clouds because our radar does not have the ability to calculate, store, and
communicate a complete radar cube. We use the point cloud to extract features
that represent the physical differences of our classes. We combine up to 10 point
clouds to improve the accuracy of these features.

We have evaluated four different types of machine learning methods to clas-
sify based on the extracted features, in table 4.3 we show the results of these
methods. We found that all single frame methods hit a limit at close to 80%.
By combining all predictions for a person, we achieve 88% accuracy using an
SVM. By using only sequences of 100 frames, we achieve an accuracy of 93%.
By using an LSTM network, we achieve an accuracy of 91% using sequences of
100 frames.

Based on these results, the time averaging SVM classifier performs best on
both or primary criteria of accuracy, and our secondary criteria of minimizing
processing resources. However, the accuracy of both methods using multiple
feature vectors have overlapping confidence intervals. A larger dataset is needed
to conclusively state which method performs better.

41



Figure 4.15: LSTM accuracy when using different sequence lengths and
point cloud groupings before feature extraction. The highest accuracy
is achived with 2 grouped pointclouds and a sequence length of 50.
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Chapter 5

Conclusions

In this thesis, we have developed a measurement system for measuring play-
ground usage using a mmWave radar sensor. In particular, we focused on the
problem of predicting if a user is a child, adult, or bicyclist.

Together with the municipality of Rotterdam, we formulated a set of require-
ments for a system. By evaluating many different types of person detecting
sensors, we conclude that the mmWave radar sensor best fits our requirements.
It can detect and localize people in a 30m x 20m area with a single sensor, while
powered by only a solar panel. Furthermore, it protects people’s privacy as its
output can not be used to identify persons uniquely.

Then, we show a classification system for predicting if a playground user is
an adult or child, or if either is riding a bike. We have compared methods
for representing the radar data and found that due to memory and processing
requirements, point clouds are the best for our resource-constrained system. We
considered what features could be extracted from the point cloud and evaluated
their performance. We found that height and the size of the point cloud are the
most important features for classifying children and adults. Bicyclists show a
larger radar cross-section and more movement than the other classes.

To train the classifier, we have collected datasets outside the lab at a school
playground and grass fields. While dividing the data into a training and val-
idation dataset, we found that splitting the datasets randomly results in data
leaking, where the same information is present in both the training and vali-
dation sets. In order to prevent this, used different data sets for training and
validation.

We have compared SVM, Random Forrest, and Dense neural networks and
found that all of these networks achieve an accuracy close to 80%. Then, we
trained neural networks with recurrent layers with sequences of feature vectors
and found that LSTM networks achieved a performance of 91% accuracy on a 10
second sequence of 100 point clouds. By averaging all classifications of a person
by an SVM classifier over time, we reach an accuracy of 88% on our validation
dataset, and it reaches over 97% accuracy when more than 200 pointclouds
are captured for a person. The model is less than 1KB in size, and can be
implemented on embedded hardware.

We conclude that the averaging SVM classifier is the best option to use for
classifying children, adults and bicyclists based on radar point cloud data. We
also conclude that our measurement system works in the small scale but real-

43



world situations we have tested the system. And that this technique can be
used by municipalities to measure the usage of their playgrounds.

The tools, scripts and data used in this report is available at the project’s
github page: https://github.com/BBekker/mmWavePOI.

5.1 Future work

The main improvement on this work is to increase the size of the dataset used.
Future work should focus on gathering a larger dataset with more participants.
With a larger dataset, the network can be trained more accurately and can
be evaluated with more confidence, removing biases due to our limited set of
samples. A specific gap in our dataset is the lack of a third dataset as a test set.
We evaluated multiple models based on the performance of the validation set
and chose the best performing as our final model. Meaning that our model is
cherrypicked for this dataset, and its performance on the validation dataset may
not represent its performance on different datasets or a general deployment.

We worked with the municipality of Rotterdam and the AMS institute to
organize a pilot project at a public playground to generate a much larger dataset,
but were not able to finish this within the timeframe of this thesis. To set up a
test at a public location, both the sensor and a method for measuring the ground
truth need to be accepted to fulfill all local and national rules and regulations.
We were not able to get approval in time, and for that reason, did not produce
the hardware as described in section . We suggest that future work should
first secure approval for a broader deployment at public playgrounds, before
proceeding with the technical work. Our work lays the groundwork for that
more extensive study.

A potential improvement in the classifier is to use information from the radar
cube. We were not able to use this data because of the hardware restrictions
of the IWR6843. If in future work, this information can be extracted, it opens
the possibility for more advanced machine learning methods explored in section
2.3.2 such as 3-d convolutional neural networks.
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