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SUMMARY

A two-dimensional horizontal mathematical model of the flow and bed
topography in alluvial channel bends is presented. The applicability
of the model is restricted to channels of which the width-depth ratio
is large, the Froude number is small, bed load is dominant and grain

sorting effects are negligible,

First order analyses of the mathematical model, using both steady and
unsteady perturbations, are carried out, and an integration procedure
based on a CSFT finite difference approximation of the mathematical

model is outlined. Stability and accuracy of the numerical model are

investigated.

Computational results are compared with data from two laboratory flumes
and with data from a small natural river. The computed bed topographies
and flow distributions agree rather well with the measured data, if the

model is properly calibrated.







LIST OF SYMBOLS

a coefficient in the model for the direction of the bed shear
stress 1in a curved flow. See eq. (9).
exponent in the sediment transport model. See eq. (24).
characteristic grain size of the sediment.
or £(68), "coefficient” in the sediment transport direction
model. See eq. (8) and figure 1.

g gravitational acceleration.

water depth.

n curvelinear coordinate perpendicular to the river axis.
s curvelinear coordinate parellel to the river axis.

t time coordinate.

u depth averaged flow velocity in s-direction.

v depth averaged flow velocity'in n-direction.

B width of the channel.

C Chézy roughness coefficient.

Fl see eq. (36).

FZ see eq. (36).

I water surface slope,

LS wave length of bed deformation in s-direction (meander length).
P pressure at the water surface (rigid 1id).

Q discharge

R radius of curvature of s-coordinate line.

RS radius of curvature of streamline.

Sn volumetric sediment flux including pores in n-direction.
Ss volumetric sediment flux including pores in s-direction.
f or f(9)=f(3)/f(90). See eq. (17).

: s

=n/An . See eq. (31).
wave number in s-direction. See eq. (19),

J
k
kB wave number in n-direction. See eq. (19).
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p

=ZB/Ls
=s/As . See eq. (31).
=t/pat . See eq. (42).

iteration number. See eq. (28).

Italic symbols not found in this list are normalized variables of the

lower—-case symbols, e.g. h=h/h0.

@ 3

sf

P - - k- T TSR RN

An
As
At

coefficient in sediment transport model (diffusion coefficient).
See eq. (7).

numerical amplification factor. See eq. (41).

numerical amplification factor. See eq. (40).

numerical amplification factor. See eq. (39).

direction of the bed shear stress. See eq. (8).

angular difference between bed shear stress and depth averaged

_streamline in acurved flow. See eq,. (9).

=kBAn. See eq. (32).

Shields' parameter.

von Kirman's constant.

characteristic length scale of bed deformations. See eq. (17).
characteristic length scale of the main flow. See eq. (12).
characteristic length scale of the secondary flow. See eq. (10).
=kAs . See eq. (32).

density of the water.

amplification factor of linear analytical solution. See eq. (24).
amplification factor of linear numerical solution. See eq. (43).
direction of the sediment transport. See eq. (8).

relaxation coefficient. See eq. (28).

=1.65. Relative density of the sediment.
Step size in n-direction of the computational grid.
Step size in s-direction of the computational grid.

Time step in computational model.




Subscripts

0 e.g. hg equilibrium value of variable in a straight river with
the same width, roughness and discharge as the considered river.

N e.g, h' perturbation variable.

-~

- e.g. h complex amplitude of a variable in the linear analytical
solution
~ e.g. h complex amplitude of a variable in the linear numerical

solution







1. Introduction.

Bed level changes in straight as well as in curved alluvial rivers play
an important part in several aspects of river engineering such as
navigability, river regulation and bank protection. So far these
problems were mostly studied by means of often expensive hydraulic scale
models, even though the complex nature of the mutual interacting system
of water and sediment unavoidably gives rise to serious scale effects
(Struiksma et al., 1985). Therefore it is very attractive to attempt to
develop a mathematical model and a numerical integration procedure which
can replace or can be at least a valuable support for hydraulic scale

models,

The development of a mathematical model for forecasting time dependent
changes of flow and bed topography in curved alluvial rivers forms the
major research object of the river bend group of the joint hydraulic
research program TOW (“"Toegepast Onderzoek Waterstaat”), in which
Rijkswaterstaat (Governmental Water Control and Public Works
Department), the Delft Hydraulics Laboratory and the Delft University of
Technology participate. The present investigation 1s carried out at the
Laboratory of Fluid Mechanics at the Delft University of Technology
within the framework of the TOW river bend project. The investigation
deals with an efficient integration procedure for a mathematical model
for the time dependent flow and bed topography development in alluvial
channels with vertical side walls, constant width and arbitrary

alignment.

So far most attempts to predict the equilibrium bed topography in river
bends have been based on local cross-sectional mean values of water
depth, flow velocity and local radius of curvature (e.g. van Bendegom,
(1947)), which, according to Struiksma et al.(1985), in most cases is
not possible. The mathematical model developed by Engelund (1974) for
the equilibrium flow and bed topography in rivers of which the curvature

variation {s given by a sine-function, was the first model including




main flow inertia and continuity of the sediment transport (i.e. the
sediment transport direction does not coincide with the river axis). The

mainly analytical integration procedure suggested by Engelund is based
on a linearized versioan of the mathematical model. However,one
non-linear term is maintained and here numerical integration is applied.
In spite of this non-linear term superposition is possible. So, by means
of a Fourier series expansion, in principle the flow and bed level can

be predicted in rivers with arbitrary alignment.

Other important intermediate steps towards the present model have been
the extensive analysis of steady flow in curved rivers carried out by'De
Vriend (1981) and the development of a simplified mathematical model and
integration procedure for two-dimenslional horizontal flow by Kalkwijk &
De Vriend (1980). This flow model accounts for longitudinal main flow
convection, bottom friction, river curvature and, in case of mildly
sloping banks, transverse convection of momentum by the secondary flow.
Later, Olesen (1982 b) extended this model to account for the actual
curvature of the flow in stead of the curvature of the river. Several
scientists, among others van Bendegom (1947) and Engelund (1974 and
1981), have investigated the direction of the sediment transport on a
sloping bed (for a review, see Odgaard, 1981), which is of essential
influence on the bed topography in alluvial rivers. Finally, the linear
analysis of the mathematical model for the flow and bed topography in
straight rivers carried out by Olesen (1983), Struiksma (1983 a) and
Struiksma et al,(1985) contribute to the understanding of the bed level
development in (curved) rivers; and, in addition, it provides a

powerfull tool for calibration of numerical models as the present one.
The applicability of the present model is restricted to rivers of which:
1. The width-depth ratio is large (shallow water approximation).

2, The Froude number is small (rigid 1id approximation).

3. Bed load Is dominant (the sediment transport rate can be determined




by means of local parameters only).

4. Grain sorting effects are negligible (no spatial variation of the

sediment transport rate due to grain size variation),

Furthermore, in order to apply a uniform lateral step size in the
numerical intergration procedure and to avold curvature of the
coordinate lines normal to the river axls, the width of the considered
river must be approximately constant, However,this is not an essential

assumption.

In the following the mathematiéal model will be summarized, the model
will be linearized and the analytical solution of the linearized model
for a double harmonic perturbation of the bed in a straight river will
be derived. Next the integration procedure will be outlined and a von
Neumann analysis, also for a straight river, will be carried out.
Finally, the resuits of numerical computations are compared with data

from flume experiments and with data from a small natural river.




2. Mathematical model.

The basic assumption underlying a mathematical model for the flow and
bed topography in alluvial rivers is, that the flow can be considered
quasi steady, i.e. the flow is assumed to adapt much faster to changes
in bed level than the bed level changes itself, This permits a
convenient distinction between steady flow computation and bed level

computation.

The alignment of the rivers to be considered can be divided into curved
sections, so it is obvious to apply a curvilinear coordinate system.
This coordinate system has a s-axis coinciding with the channel axis and
positive in the flow direction, a n-axis straight horizontal and
perpendicular to the s—axis and a z-axis positive upwards. The local
radius of curvature, R, of the coordinate system is by definition
negative Lf the n-axis points towards the center of curvature. In this
coordinate system the depth-averaged flow can be described by (cf.

Kalkwijk & de Vriend, 1980)

o 3hv , h (0
u v v o_
3 " "r O
du . du uy 1 3P g u?
s " Von 'R “pasteZn 00 (2)
2
u2 1 3P
o 0 (3)
s
in which

g acceleration due to gravity

h depth of flow

u,v depth averaged flow veloecity in s- and n-direction, respectively
C Chezy roughness coefficient

P pressure at the water surface (rigid 1id approximation)

R local radius of curvature of s-line. R=Ra+n, with Ra radius of




curvature of river axis
Rg radius of curvature of streamline

P mass denéity of fluid.

According to de Vriend (1978) the streamline curvature can be

approximated by
J .1 13y (4)

Equation (1) is exact, whereas the momentum equations, eqs. (2) and (3),
are based on some assumptions, namely: transverse convection of momentum
by the secondary flow is negligible; the transverse main flow velocity
{s much smaller than the longitudinal one so terms with v2 can be

2; the pressure is hydrostatic, lateral

disregarded with respect to u
friction is negligible and the transverse bed shear stress component can

be disregarded.

The mathematical model of. the flow has a mixed hyperbolic /elliptic
character (Olesen, 1982 b), which implies that conditions must be
imposed at all boundaries. Impermeable side walls (v=0) provide two of
the necessary conditions, a given inflow distribution the third one and
several possibllities exist for the down-stream one. Mostly this
condition is not known., The most simple solution is to prescribe 9v/3s=0
at the outflow section. The computational results, concerning the flow
and equilibrium bed level, are only influenced by the applied condition
at the outflow section within a distance of approximatly one time the

width of the channel.

Small Froude numbers permit the application of the rigid 1id
approximation. In that case the bed level can be replaced by the depth

of flow in the mass balance equation for the sediment; viz.

.a..ll=._s.+__.r_l.+_2 (5)

in which




t time coordinate

Se»S sediment transport rate in s- and n-direction, respectively.

$’'“n
By introducing the direction of the sediment transport,tan ¢ , the

transverse transport component can be eliminated, viz.

QSS SSStanw Sstanw

3t 35  Tan o T TR (6)

A number of (semi-) empirical sediment transport models are known from
the literature. In most of these models the sediment transport rate
depends on the magnitude of the bed shear stress, but, for simplicity
the transport rate is here considered to depend on the longitudinal flow
velocity. In addition, it is convenient to apply a sediment transport
formular that account for bed slope effects, if.e. the sediment transport
rate is larger in case of down-hill slope than in case of a flat bed or
up-hill slope. A sediment transport model with the slope effect included
can, in the most simple way, be expressed like

S, = S(w (1 + ol 7

in which S(u) is the transport rate in case of uniform depth and @ is a
coefficlent, probably depending on the sediment and flow properties. The
major reason why the slope effect is included in the sediment transport
model is that it provides some diffusion in eq. (6), which is very
convenient for the numerical integration of the mathematical model. So
far, the coefficient has not been experimental determined. Fortunately,
the computational results are insensitive to the numerical value of o,
if ais smaller than about 10, which is large enough to enable
application of an atractive time step in the numerical integration

procedure.

The boundary conditions for the bed level model are impermeable side
walls (S,=0) at n= B/2 and 9h/3t=0 at the upstream boundary. At the

outflow sectlion the slope effect is omitted, viz. S;=S(u).




Several models for the direction of the sediment transport are avallable
(cf. Odgaard, 1981). The models are all based on the assumption that the
gravitational force acting along an inclined bed causes a deviation of

the transport direction from the direction of the bed shear stress. Most

models have the form:
tany = tani + £(8) %% (8)

in which ¢ is the angle between the bed shear stress vector and the
river axis and £(9) is a weighing function of the Shields” parameter
(8). In figure 1 several suggested weighing functions are depicted.
Equation (8) has not yet been sufficiently experimentally verified, i.e.
independent measurements of all the quantities in the equation. So far
£(6) has mostly been obtained from curved flume experiments, in which it
has been assumed that the sediment transport is parallel to the flume
axis, (i.e. tan ¥=0) in combination with a model for the direction of

the bed shear stress in a curved flow. If the length of the arc of

6 T T 1

t{8) —— van Bendegom (1847)
—— Engelund (1974)
—-~ Kikkawa et al (1976)
S|- ---- Engelund (1981}

0 025 85 075 10

Figure 1. Models for the gravitational effect on the sediment.




the bend is much larger than the width then tan y=0 is a reasonable
assumption, however, in most of the cﬁrved flume experiments, which have
been used for verification of models for the gravitational effect, this
was not the case., Another implication of this procedure for verification
of £f(0) is that the reliability of £(8) is limited by the reliability of

the model for the direction of the bed shear stress.

The deviation angle between the bed shear stress vector and a depth
averaged streamline in a curved flow with fully developed secondary flow

is given by (Jansen, 1979)

tans® = - ag— ., a=-3 (1 - =& (9)

[
in which « is the Von Karman constant. This model does not apply close
to the side walls., Some flow velocity data from smooth bed experiment
show good resemblance with the theory reasonably close to the bottom.
However, in case of a dune covered bed, it is hardly feasible to measure
the direction of the flow close to the bottom sufficiently accurately,

so in case of rough bed the model is not verified .

Rozowskii (1957), de Vriend (1981) and others suggested to describe the
retarded adaption of the secondary flow to an abrupt change in its
source by a damped exponential function with a relaxation length Asf=
constant-clﬁg.he So, in case of a continous varying source, it is likely
to assume that the adaption of the secondary flow and the bed shear

stress due to the secondary flow can be described by

b4
dtané ranc® = - adb
sf s =8y Qo)

s

The numerical value of the constant in the relaxation length for the
secondary flow 1s encumbered with a great deal of uncertainty. The
proper value of the constant for the bed shear stress is probably about
0.5-1, whereas the adaption of the secondary flow profile (intensity)
demands a longer distance (cf. de Vriend, 1981 and Booij et al., 1982),

In most cases the computed bed level is insensitive to the adaption




length of the secondary flow, because the length scales of which main
flow and bed topography changes takes place are much larger than the

adaption length of the secondary flow (see Figure 2 and Strulksma et

al., 1985).

Finally, also accounting for the deviation angle between the coordinate
system and the streamlines, the direction of the sediment transport is

given by
A x dh
tany = i tand” + £(0) T (11)

x
in which tand must be obtained from eq. (10).

é.l. Normalization

In order to find out which parameters characterize the system of water
and sediment and to get an insight into the relative magnitude of the
various terms, the mathematical model described in the foregoing is

normalized.

It is not quite evident which scale factors are adequate for the
normalization of the whole model, however for the flow model it is
natural to use the equilibrium depth, hy (in the following subscript?®
refers to the equilibrium value of the variable in a straight river with
the same discharge, sediment transport and width as the river
considered) the relaxation length of the main flow, Aw =C2/(2g) hy, and
the width, B, in 2z-, s~ and n-direction, respectively. The flow velocity
is scaled with ug. Using these scale factors the mathematical model can,
after combination of eqs. (3) and (4), be expressed in dimensionless

form (italics) by
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in which Xs =(E9 E—ggjand, furthermore, the two following scale factors
are introduced:
t =t hokw/so
P = Pl;f p

The normalized equations, (12) through (18), show that the equilibrium
flow and bed topography depends on six quantities, viz.

A, A, oho A g
BT T T and
W

2
s W £(6o)

and, of course, the (spatial) variation of the sediment transport rate,

Ss(u), and the variation of the gravitational term, f(8).
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The normalization has an interesting implication for scale models of
rivers. Proper scale modelling requires that the six quantities are on
scale one. It is mostly impossible to reproduce the alluvial roughness
correctly in scale models. From XW/B on sca%s one gt then follows that
the model must be distorded; however, from Ggl) K'Kg')/(?igUT = ﬁl; it
actually follows that the model must not be distorded (a is only weakly
dependent on the roughness). Consequently, scale effects are unavoldable
in this kind of scale models, provided the roughness {s not on scale one
(cf. Struiksma et al., 1985). In addition, aho/xw and ksf/xw depend
strongly on the roughness coefficient, but the influence of these two

quantities is modest.

2.2, Linear analyses.

In the following the linear analytical solution of the mathe&atical
model, with B/R=0 (straight rivers), will be summarized. For a more
profound description of the first part of the linear analysis (a
‘stability analysis), see Olesen (1982 a). The linear solutlion can serve
as a standard of reference for a von Neumann analysis of the numerical
model and as standard of reference for computational results in case of

small amplitude disturbances.

The linear solution 1is obtained by introducing perturbed variables, i.e.
u=1+u' h=1+h' etc., into the normalized mathematical model neglecting
quadratic and higher order terms. Furthermore the perturbations are

assumed to be double harmonic, viz.

h! /

-

! =

v! 1

=

exp T (k s + kg = §t) (19)

in which 7, u and  are the dimensionless complex amplitudes of the
perturbations, k and kB are dimensionless wave numbers in s- and

n-direction, respectively, i=/=1 and ¢ is a complex celerity in which
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the real part is the propagation velocity and the imaginary part is the
exponential growth rate. The linear solution is unstable (growing) if

the imaginary part of ¢ is positive.

The boundary conditions, impermeable side walls, puts constraiats on kg;

viz,

kB =ng ,q=1,23... (20)

Inserting eq. (19) into the linearized version of eqs. (12), (13) and
(14) leads to a set of equations from which the complex amplitudes of

the flow velocities can be obtained. The amplitudes read

N P R Sy

u [2 A Te? TH7 _ [+ 2k o+ (kBAw/B)Z) (21)
~ __ kB 3, .| [ . k3 ] '

v o= kBAw [2 + 7 kJ / L] + 1(k + —————Z(kaw/B) (22)

The amplitude of the streamline curvature is given by

i _%, B *
-ﬁ-—zkrv (23)
s W
Finally inserting eqs. (21), (22) and (23) into the linearized version
of eqa. (15) through (18) yields an expression for the complex celerity;

viz.

=_i(i‘rlk2+_ﬂ_b_7}2) +k 3“b+.(k+b k3 )
¢ S T R (k) TB)Z

s W
ah . 3 ~ (24)
N R T N A R I —
T kr /% 2 Tt t kA 7
Aw 1+7 Asf/xw 2 ( BAw B2’ |
ug
35S
in which b = S5 3u
Positive imaginary part of eq. (24), i.e. an unstable solution, is
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related to the occurrence of propagating alternate bars in straight
channels. Maximum instability mostly occurs for wave length of two times
the width in traansverse direction (i.é. g=1 in eq. 20) and 3 to 5 times
the width in loagitudinal direction. The following factors promote the
instability: increasing b and a hdxwand decreasing Aw/As, aho/xw,ki /A
and Aw/B(cf. Olesen, 1982 a and 1983). Numerical computation for a case

in the unstable region is of course excluded.

For some specific cases also the equilibrium solution can be obtained
from the linear approach. The equilibrium solution is characterized by
$=0 1in eq. (24). This leads to a sixth order polynomial in k. So, the
solution is formed by a sum of six complex exponential functions for

each possible value of kB' For instance for the depth the solution reads

-

6
Bt o= h itmgn) ] h ‘(ks) (25)
q exp N(;ﬁ pzl g ©XP z( pqs .

-8

q=1

recalling knsqn. From eq. (25) and v=0 at the walls the condition for
existence of a linear solution of this sort can easily be derived;
namely the boundary condition for the depth (and u , Ss) must be met by
a Fourier serie consisting of only odd (i.e. q odd) sine functions and
even cosine functions and vice ;ersa for the boundary condition on v
(and tan ¥ ). A sufficient condition herefore is that the boundary
conditions fulfil

R'(n) = -h'(-n)

v'(n) = v'(-n)

and similar for the remalning variables.

Four of the six roots of the polynomial are purely imaginary
characterizing four real exponential functions of which two are decaying
and two growing. The two remaining roots mostly have -the form: kéikp+ik£
which characterizes two identical exponential damping or growing
harmonic waves., In figure 2 the four imaginary roots and the real and

imaginary part of the two complex roots are depicted as a function of
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Figure 2. Wave numbers of the linear solution.

Xw//\skgz-l‘he absolute value of the four purely imaginary roots are

generally much larger than the absolute values of the imaginary part of

the two complex

roots. This implies that the real exponential damped

part of the solution only will be noticeable close to the upstream
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boundary, the exponential growing part close to the downstream boundary
and that the harmonic part will be dominant in the central region of the
considered area. Furthermore, generally the damping rate increases
considerably for increasing g; so the first element of the Fourier
series in eq. (25) will be dominant. Consequently, in a large part of

the considered area, the linear solutlon can be approximated by

-~

h' = h] sin(mn) exp(—kis) cos(kps+ phase) (26)

Equation (26) illustrates that the theory can be used for river planform
classification and meander length estimation; viz. a river will tend to
form meanders i{f a bed disturbance will grow (i.e.ki <0). The meander

(arc) length is thea gilven by LS=Aw2nkr (cf, Olesen, 1983).

Struiksma (1983 a) (see also de Vriend & Struiksma 1983) drew up a
simplified conceptual model in order to obtain a better insight fnto the
processes whlich form the equilibrium tqpography in river(bends). He
considered a straight river schematized into two parallel channels of
constant width B/2 which are laterally connected so that water and
sediment can be exchanged. In fact this model is more or less tantamount
to eqs. (12) through (18) with 1/R=0, 3v/39s=0 (no streamline curvature)
and a=0 (no secondary flow). A linear analysis of this model leads to a
quadratic polynomial reading

A - A
2 A b=3_Tw o2
(kA% + Gy 1[“‘2“ X, kb

=0 (27)
In figure 2 the roots of eq. (27) are also depicted. For a large range
of kw/ASszthis model agrees qualitative rather well with the far more
extensive analysis carried out above. Consequently, this simple model
seems to include the main feature (i.e. retarded redistribution of flow
-and sediment transport) causing the wavy bed topography in rivers.
Equation (27) demoanstrates the large influence of the factor b; namely
iacreasing b provides less damping, longer waves for small values of

A /XA k* and shorter waves for larger values of A /A k 2
w s B w 's B
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——3> bed disturbance

———abed disturbance

-0SF - =

——> distance /width ——> distonce/width

total solution
- - sum of two identical harmonics
-- exponential parts

Figure 3. Decay of a bed level disturbance.

The linear analysis can be used to describe the development of a
disturbance in any of the dependent variables. In figure 3 the decay
along a side wall of a sine-formed (g=1 1n eq. 20) disturbance at the
upstream boundary of the depth Is depicted for four different cases. The

same disturbance of the depth has been used, whereas the perturbation of
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the longitudinal flow velocity differs in the four cases. The remaining
dependent variables are undisturbed at the upstream boundary. The
hydraulic and geometrical parameters originate from the DHL curved flume
experiment described in chapter 4. In all four cases the solution
consists of the same "sub-solutions"”. The figure can be coasidered as a
schematized representation of the bed level immediately after the
entrance of a bend (#”=0 in the axial symmetric solution in the bend) or
after the exit of a bend (#”=0 in the equilibrium depth in the bend).
So, with this simple linear solution it can be seen in which way the bed
level in the first part of the bend (point bar height and pool depth)
can be influenced. The figure suggests that it is important to have an

accurate prediction of the flow field,

The wave lengths suggested by the analysis generally are much larger
than the width of the river. It secems reasonable to assume that these
long waves hardly are influenced by the magnitude of the two damping
elements in the model, 1{.e. the relaxation leagth of the secondary flow
(Xsf) and the "longitudinal diffusion coefficient"” ( @), which also
easily can be proved by means of the linear solution of the mathematical
model. This is very coanvenient as large Asfand a provide the
possibility to apply a large time step in the numerical integration

procedure.
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3. Integration procedure

In the present model, as in most morphological models, the bed level
computation is devided into small time steps in which the bed is kept
fixed and the flow considered steady. At each time step the steady flow
field is computed from which the sediment transport rate is calculated
and the bed configuration at the following time level is then obtained
with an explicit finite difference approximation of the equation of
continuity for the sediment., Stability requires application of a small
time step in the Integration procedure. This kind of model therefore
involves a large number of bed level and steady flow computationsso a

highly economical computation method iIs required.

In the following the integration procedure for the flow model and the
bed level model will be shortly outlined and analyzed,

3.1. Integration procedure for the flow model.

Mostly, numerical solution of elliptic problems results in high costs
because an, often large, matrix has to be inverted. In view of the mixed
hyperbolic/elliptic mathematlical character of the flow model high
computational costs could also be expected for the present model, but a
very economical integration procedure, which does not involve inversion

of any matrix, is applied.

This efficient integration procedure 1is in principle based on the method
suggested by Kalkwijk & de Vriend (1980). In this model, however, the
streamline curvature is approximated by the local curvature of the
coordinate lines resulting in a purely hyperbolic mathematical
character. This permits a straight forward marching integration
procedure with an implicit finite difference scheme, but Kalkwijk & de
Vriend suggested an iterative procedure with an explicit scheme, which

appears to be far more economical. The basic principle in this procedure
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is that terms with the tranverse main velocity 1is considered to be
known: with a first guess for the transverse flow velocity (e.g. v=0)
the longitudinal flow velocity can be obtained from eqs. (2) and (3)
with a constant discharge as boundary condition. Next, the continuity
equation (1) can be applied to obtain an improved estimate for the
transverse flow velocity; and as many iterations can be made as accuracy

requires. This integration procedure is unconditionally stable.

Later Olesen (1982 b) extended this model with an improved approximation
for the streamline curvature, i.e. eq. (4). In the integration procedure
the same basic principle is applied, but now also the streamline
curvature is improved in each ifteration step. In this case stability
problems require a underrelaxation, viz. only a certain part of the new
calculated streamline curvature is taken into account f{n the following
iteration step. For instance, the streamline curvature applied in

iteration number p is given by
1 9v

- ]_____
(ﬁz)p = X(E o Bs)p-l

L (28)

O Gy

In which ¥ is a relaxation coefficient. The relaxation coefficient which

ensures stability reads

« < 8k’ (29)
Experience with the model learns that the most efficient value is about
X = max [4 (9-55)2 H —;—] (30)

In view of eqs. (29) and (30), the integration procedure does not seem
practicable for variations taking place on length scales shorter than
the width of the river, as the relaxation coefficient then will become
inconvenient small and hence the computational costs will be high.
Fortunately, in the present case of alluvial rivers bed level and
curvature variation normaly take place on length scales larger than the

width.
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Figure 4. Computational grid and finite difference approximations.

A staggered computational grid is applied (cf. figure 4). This grid
allows a discretization of the equations with central differences and
relative short space steps. Eqs. (2) and (3) are discretized into simple
central differences from which the pressure is eliminated. This results
in a box-scheme (the pressure can also be eliminated directly from egs.
(2) and (3), but the elaboration is somewhat more comprehensive because
the succession of cross-differentiation is essential in the applied
coordinate system), Eq. (1) is discretized in a kind of Stone and Brian
scheme and eq. (4) 1s a simple central difference. The varlous finite
difference schemes are depicted in the computational grid in figure 4.
The discretization is outlined in details in Olesen (1982 b).

Generally the accuracy of a non-linear numerical model as the present
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one is not predictable; however, an analysis of the linearized model
gives a good estimate of the order of magnitude of the accuracy of the
non-linear model. Such a linear numerical analysis (von Neumann
analysis) is quite similar to the linear analysis outlined in the
previous chapter, The difference 1is that a discrete wave, defined in the
grid points, is considered in stead of a continuous one. The von Neumann
analysis 1s also carried out for a straight channel which formally
implies that the analysis informs about the accuracy due to depth

variatioans but not due to curvature variation.

The steady perturbation considered in the numerical analysis of the flow

model reads

4"
h=h expi(mbsagk-jin kB) (31)
4"
in which A is the amplitude of the depth perturbation, As and An are
step lenghts In the computational grid and m=s/ As and j=/ An. The
perturbations of the remaining variables have a similar form. The

variables are normalized as outlined in chapter 2.

Discreﬁization of eqs. (13) and (14) In the box scheme (cf figure 4) in
combination with eq. (31) yields an expression for the complex amplitude
of the longitudinal flow velocity, viz.

tan &/2 17

T | _1: tan ~>/2 1 g [ L %
Y, = - 4 [(Rs)pAntan 2y As] [z can /2 + 4 as | ¥ (32)

in which g=kas and n=kBAn.

Equation (12) and the expresslon for the streamline curvature eqs. (28)
discretized in the Stone and Brian scheme and in the simple central
difference, vrespectively, gives expressions for the complex amplitudes

of the remaining dependent variables, namely

a B A An . E cosn +2
=-2.205 7y 4n § cosn *2
v? 3 A (uP *h as '™ 7 Sion (33)
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I B 2% g b
o) =X gz sin2 v+ (1-x (&) (34)
B Tp+l }w As 2°p R,p
Combining the eqs. (32) through (34) gives a difference equation for the
complex amplitude of the streamline curvature. The corresponding

differential equation reads

s m -
F @ x[nE, <] %)
with
27 2 ] -4
_ 1 B An E . » E cosn+2 . £ As
Fy = L 2 gin¢ & cosn*Z g, 85
1 1+ 3 ()\WAS) [tan 5 sin 3 STom _l [L tan 5 + 7 (36)
2 1 2 34s Ey o 2 g cosn+2 E  As T !
F = [Prnshall ——— 2 4o
F2 Asz[( *+ 27tan I)sin 3 STon | }. itan 2+ ] (37)

The solution of the differential equation, eq. (34), with J/RS=O as
initial condition reads

F
= .2 N
E;JP =T [1 ~ exp(- X Flp)~ h (38)
Similar expressions can be obtained for ; and 3. A neceséary condition
for stability of the integration procedure 1s Re[F ]>0, which, according
to eq. (36), allways applies.

According to eq., (38) numerical inaccuracy can have two causes; namely,
the exponential function still has a finite value, i.e. an insufficient
aumber of iteration is carried out, and the end value of the iteration
process, F,/F;, differs from the analytical solution (eq. (23)) due to a
too rough discretization. As a measure for the accuracy the following

quantities are introduced:

-
7’ (39)
8

~
}

v /0
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Yo = 1 - exp (xF,p)

(41)
f.e. vy gives the numerical error due to the discretization and Yp the

error Jdge to the number of iterationms,

The magnitude of the amplitude error appears to play a larger role than
the magnitude of the phase error for the over-all accuracy of the model.
Consequently, design of a computational grid and choice of the number of

iterations must be based on considerations about the magnitude ofIYA]

and lYpl, respectively.

In figure 5 the varlations of vy, with the discretization in transverse
and longitudinal direction.are depicted. The wave length in transverse
direction is assumed two times the width,i.e. ¢=1 in eq.(20),which is the
relevant wave length in most meandering alluvial rivers. The parameter [
gives the ratio between the wave length in traverse and longitudinal

direction, i.e. Z=ZB/LS. Furthermore, B/Xw=0.6, which is a

10 16
"1s40 ' ‘
[p ! =20
4 IPA, B/Aw =06
B/AS ~»
08 B Tyﬁ-
=10
=05
06 210 B/Aw =06 _ 12 =025
- B/An— o
04 1 L L L
1 2 5 10 20 101 2

—»B/As

Figure 5. Discretization error.
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representative value (the result of the analysis depends slightly on the
value of B/Aw). The figure shows that a finite discretization in
transverse direction tends to overestimate the amplitude of the
perturbation, whereas a finite discretization in longitudinal direction
tends to underestimate it. Consequently, the discretization error in
longitudinal and transverse direction will to some extent compensate

each other.

In figure 6 a diagram is worked out, which indicates the necessary
number of iterations to obtain an accuracy of 2 Z as a function of the
discretization in longitudinal direction; i.e. for given B/ps the
quantity Ya is calculated and the number of iterations for which
|1'YAYpl=0.02 is determined. The figure shows that neither short waves
nor long waves cause much problems, whereas waves in longitudinal
direction of the same length as the transverse waves demand a large
number of iterations. Furthermore, 1f both short and long waves must be

computed accurately then the number of necessary iterations i{s large. In

200 2000
t=" a1 24 L=" a1 2L
P p
100t B 1000}
S0 b 500 V.
g v
20} - 2001 § .
\
i o . 100t h
51 - saf- .
B /A, =06 B/Awz=06
B/An —» B/An —»
2 ! 1 i : R :
1 2 S 10 20 202 5 10 20
e B/ AS et B /NS

Figure 6. Discretization and iteration error (left: 2%, right: 0.27).
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figure 6 also a similar diagram for an accuracy of 0,2 % {s depicted.
Comparing this diagram with the one for am accuracy of 2% it appears
that for I=1 an increase of the accuracy with a factor 10 demands a
computational effort which is about 45 times larger. (p=21 and B/ ls=5
for an accuracy of 2 %Z and p=280 and B/ fs=17 for O.i %Z). It should be
emphasized that figure 6 gives a conservative estimate of the accuracy
of the model as the compensation due to the discretization in transverse

direction is neglected.

Generally, the large scale bed forms in alluvial rivers have wave
lengths which are considerably longer than the width of the river (cf.
figure 2). Consequently, the numerical flow model is rather efficient
for this case and therefore well suited for incorporation in a model
for the bed topography in alluvial rivers. In case of rivers with short
wave (non-alluvial) disturbances the flow velocity rather than the
streamline curvature is mostly of interest and therefofe, as the flow
velocity is rather insensitive to the streamline curvature (cf Olesen,
1982 b), only few iterations are required. So the numerical model may

also be sufficiently efficient for this kind of problems.

3.2. Integration procedure for the bed level model

The numerical solution of the bed level model is straightforward, {.e. a
central space-forward time (CSFT)~-difference approximation is applied.
In appendix A the discretization is outlined in detail and the various
finite difference schemes are depicted in the computational grid in

figure 4.

A von Neumann analysis of the bed level model follows the same procedure
as mentioned before, except in this case also time dependence of the
variables must be considered. For instance the perturbation of the depth

of flow reads
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a "
hm,j =h exp i(k m As + kBJ An - ¢N 0At) (42)

in which ¢N is the numerical amplification factor and t=o0At.
Discretizing the linearized bed level model as described in appendix A,

yields an expression for the numerical amplification factor, reading

exp(~ 7 oy At)=1 o N
A% S Xas o3
W h
. v (43)
+ E%ﬁ cos % (1 + a )sin %
A .~% A A8/2 cotd A
sf w 2

20 2£(8)
+ TXW (cosE - 1) +-(—B—A—r-sz (cosn - 1)

in which aand 3can be obtained from the analysis of the flow model,
i.e. eqs. (32) and (33) in combination with eq. (38). In the following
it will be assumed that so many iterations in the flow model are carried
out that the significant part of the error in the flow solution is due
to the discretization. In practice, however, only one iteration, except
in the first flow computation, is carried out, i.e. the streamline
curvature belonging to the bed level and flow at t-At is used to

calculate the flow at t.

Stability of the integration procedure requires
Im [¢N:|<o (44)

Equation (43) is not very transparant and it is not easy to derive a
stability criterion from this expression. It appears that three kinds of
wave patterns can cause stability problems, viz: short waves in
transverse direction; short waves in longitudinal direction and waves,
in longitudinal direction, of the length 2 to 5 times the width.
Combinations of these waves can also occur. The short wave instability
is probably related to a sort of CFL-criterion, i.e. 4 s/At < CS(..) and
An/ At < Cn(..) where CS and Cn are celereties. This kind of instability
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Figure 7. Comparison of unsteady linear numerical and linear analytical

solution.

can be avoided by increasing the space step or decreasing the time step.
In some cases short waves in longitudinal direction can also be damped
by increasing the longitudinal diffusion coefficient o . The last kind
of instability is not entirely a numerical problem; it is partly caused
by instability of the mathematical model (alternate bars, cf. eq. (24),
Olesen, 1982 a and 1983). This kind of instability can be avoided to
some extent by increasing the diffusion coefficient a and reducing the
time step. This is illustrated in figure 7 where the linear mathematical
and linear numerical solution for a specific case (discretization and

hydraulic parameters as in the computation for the DHL curved flume, see
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chapter 4) is compared for different o« and At. The figure also shows
that the agreement, concerning decay/growth of a bed disturbance, is
relative poor especially for short waves., Accurate numerical treatment
of these short waves demands a finer computational grid. A quite similar

result applies for the propagation velocity of bed disturbances.

For a chosen grid spacing the stability analysis ylelds a maximum time
step, however, if non-linear effects or spatial variation of the
zero-order solution are significant (as in a river bend), then a time
step of about the half of the step-size suggested by the stability

analysis proved to be necessary in order to ensure stability.
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Figure 8. Comparison of numerical and analytical steady solution (czarse
grid).
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The accuracy of the integration procedure for time dependent processes
can, as illustrated in figure 7, be obtained by cémparing the linear
mathematical solution with the result of the von Neumann analysis. Often
only the equilibrium solution is of major interest. In this case the von
Neumann analysis is not applicable as predictor for the accuracy, but
the steady linear analytical solution can be compared with numerical
computation of a small amplitude perturbation of the boundary condition
in a straight river. In figures 8 and 9 the results of such comparisons

are depicted.

The disturbance of the depth at the upstream boundary is sineous-formed
with a wave length of two times the width (g=1 in eq. 20) aad an
amplitude of 1 %Z of the mean depth., The longltudinal flow velocity at

i i T

\ numericol solution o As=B/2,4n=8/4
+ As=B/2,An=B/6

g
fed

tinear solution :m total
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bed disturbance (% h,)
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Figure 9. Comparison of numerical and analytical steady solution

(fine grid).
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the upstream boundary is distributed according to Chezy”s law, f.e.
sineous-formed with an amplitude of about 0.5 % of the mean flow

velocity. The remaining variables are uniform at the boundaries. Due to
the staggered computational grid the upstream boundary condition for the
transverse main flow velocity and the magnitude of the secondary flow
are imposed at s=-As/2. This implies that the numerical and analytical
solution will differ slightly for different longitudinal space steps.
The downstream boundary conditions for the analytical model are 3h/3s=0
and 1/Rs=0 for s=«, In the numerical computations this is simulated by
taking 32 h/3s2=0 and B(I/RS)/35=0 at some distance downstream of the

considered area.

In figure 8 the linear analytical and the computational results in the
form of the development of the perturbation of the depth of flow along
one of the banks are depicted. The analytical solution is clearly
dominated by the harmonic part; but the purely exponential parts of the
solution 1s not insignificant as it provides an initial amplitude of the
harmonic part (phase) which is larger than the amplitude of the total
disturbance (cf. figure 3). The numerical computation with As=3/4B and

An=B/4 provides a rather good accuracy.

In figure 9 it is attempted to improve the accuracy by reducing the
longitudinal space to B/2 (note that the analytical solution is slightly
altered), using the same transverse space step, but this leads to a more
inaccurate numerical result. If, in addition, also the transverse space
step is decreased then the accuracy is again improving. This i{llustrates
that the accuracy is not only influenced by the individual magnitude of
the space steps but also by the ratio between the two space steps. This
phenomena corresponds well with the result of the von Neumann analysis

of the flow model (cf. figure 5).

Quite a lot of computational effort can be saved by taking this
phenomena into account. For instance, the costs of the numerical
computation 16 figure 8 is only about 40 % of the costs of the
computation with the fine grid i{n figure 9.
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Figure 8 indicates that a surprisingly low number of computational grid
points is necessary ih order to obtain a good accuracy. Usually, a space
step of B/4 to B/6 in transverse direction and B/2 to B in longitudinal
direction provides excellent accuracy of the equilibrium solution. The
final choice of a grid spacing, time step and diffusion coefficient must

depend on a balance between computational expenses and required

accuracy.
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4. Computational results.

In the following results of numerical computations will be compared with
results of bed topography measurements in two different flume
experiments with well-defined steady flow conditions and with data from
a small natural river. The comparison will only concern the equilibrium
bed topography. In table 1 the measured hydraulic and geometrical
properties for the three cases are summarized. The computational
"details” such as time steps, space steps and model parameters, which

have not been measured, are summarized in Appendix B.

The flume experiments have been selected for their distinct mutual
differences in planform. The first case concerns a flume experiment
carried out in a sineous-formed flume. This case provides the
possibility to compare the computational results with both the measured
data and with the solution of a simplified model suggested by Engelund
(1974). The second case concerns an experiment carried out in a flume
consisting of a short straight in-flow section followed by a long mildly

curved bend and a short straight out-flow section. The final

Hooke's DHL the
flume curved river
exp. flume Domme 1
Discharge Q (mjls) 0.055 0,047 1.65
Width B (m) 1.0 1.5 5.0
Water depth h (m) 0,095 0.08 0.60
Flow velocity u (m/s) 0.37 0.39 0.55
Water surface slope I (%) 2.21 2.36 ©0.56
Chézy coefficient C (m*/s) 25.4 28,4 30.0
Medium grain size dSO {mm}) 0.30 0.45 0.47
Gradation parameter ag (=) 1,23 1.19 ?
Bend radius (min) R (m) 1.46 12,0 i1.0
Froude number F (=) 0.38 0.44 0.43
Shields' parameter 8 (=) 0.42 0.26 0.43

Table 1. Hydraulic and geometrical properties.
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case, a natural river, will illustrate some of the additional problems

occurring when the model is applied to prototype cases.

4.1, Meandering flume

The first case concerns an experiment carried out at the University of
Uppsala, Sweden, by Hooke (1974) in a meandering flume (cf. figure 10).
The planform of the flume, the depth width ratio and Shields” parameter
in the experiments were designed according to a large number of
observations of natural rivers. A rather uniform sand was applied in

order to avoid grain sorting effects (cf. table 1).

The bed topography was obtained from a single sounding after smoothing
out the bed forms by hand. This may have introduced some uncertainéy
into the measured data. Hooke presented the bed topography in the form
of a contour map; in the present report, however, it will be presented
as longitudinal bed profiles, which have been obtained from the contour
maps. This may have introduced some additional uncertainty into the
data. In the experiment also the angular difference between flow at
surface and flow near ;he bottom, the sediment transport distribution
and the bed shear stress (magnitude) distribution were measured.
According to Engelund (1974) the sediment transport and bed shear stress
distribution suggest that the sediment transport is proportional to ut,
This sediment transport model will be maintained in the following.

No abrupt change of curvature takes place and therefore no steady bed
deformations with short wave length occur. Consequently, a coarse
computational grid in combination with a large diffusion coefficient
(@), which permits large time steps, would provide sufficient accuracy.
Nevertheless, a rather fine computational grid is applied in the
numerical computations (cf. Appendix B), as it is convenient to have a

large density of data for the preparation of figures,.
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4.1.1. Comparison with Engelund”s model

Allready in 1974 Engelund presented results of an integrated
mathematical model for the equilibrium flow and bed topography in rivers
of which the curvature variation is harmonic. The main difference
between Engelund”s mathematical model and the present one is that the
streamline curvature is approximated by the local channel curvature
whereas equation (4) is used in this model. The remaining difference is
that secondary flow inertia, slope dependence of the longitudinal
transport rate and some small (second order) inertia terms in the flow
model are neglected in the Engelund-model, The integration procedure
suggested by Engelund is partly linear, but he maintains the probably
most important non-linear variation., As an auxiliary condition for the
integration procedure Engelund suggested to apply a coastant
cross-sectional mean depth along the channel. The appropriate condition
at that point of the integration is that the sediment transport

integrated over the width Is constant along the river.

In figure 10 results of the measurements are compared with results of
the numerical model and the Engelund model. The trend in the two
computations is the same, i.e. the point bar and pool are situated
downstream of the apex of the flume, however a distinct lag is observed.
The position of the pool and point bar is rather good predicted by the
Engelund model, whereas the point bar height and pool depth are slightly
underestimated. The result of the Engelund model exhibits the best
agreement with the measured data, however, this must to some extent be
attributed to the choice of model parameters, that have been calibrated

on the measured data with the Engelund model.

In order to attempt to isolate the cause of the distinct difference
between the two computational results in figure 10 a numerical
computation with the streamline curvature approximated by the local

channel curvature and without secondary flow inertia was carried out.
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with the measured data.

In figure 11 the result of this computation is compared with the
Engelund model showing that the point bars are in phase and only a small
distance lag between the pools., The Engelund model results in the most
pronounced bed deformation. The difference between the two models in
figure 11 is much smaller than the difference in figure 10. Computations
with different relaxation length of the secondary flow showed that the
bed topography is nearly independent of the relaxation length of the
secondary flow so the streamline curvature approximation in the Engelund
model is the major reason for the quantitative difference between the
two models. The streamline curvature approximation used in the present

model, i.e. eq. (4), can easily be incorporated in the Engelund model.
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approximated by the channel curvature with model "Engelund”.

The difference between the results of the two models in figure 11 must
be attributed to two causes, viz, - the application of the auxiliary
condition in the Engelund model and to non-linear effects. In order to
estimate the influence of the auxiliary condition the cross-sectional
mean depth, as computed by the non-linear model, is also depicted in
figure 11. Applying this varlation in stead of a constant mean depth as
auxiliary condition in the Engelund model would lead to a slight shift
upstream of the point bar and the pool, resulting in a better over-all
agreement between the two models. Surprisingly the influence of the

non-linearity is seen to moderate the bed deformations.

Consequently, the Engelund model, extended with equation (4) for the
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streamline curvature, will in many cases provide a sufficlient accurate
solution of the mathematical model. Application of this model is very

attractive because the computational costs are much smaller than the
costs with the non-linear time dependent numerical model. As the
Engelund model permits superposition of different harmonics any river
planform with constant width can be considered with this model;
however, in case of a complex planform or an abrupt change of curvature
of the considered river, extremely many harmonics must be considered and
in this case the numerical model will probably appear to be most
efficient. In addition, the Engelund model has the important

disadvantage that it cannot treat unsteady conditions.

4,1.2. Calibration of the model

From the normalized equations, egqs. (12) through (16), it followed that
the solution of the mathematical model only depends on six quantities
and on the spatial variation of the sediment transport and of the term
accounting for the bed slope effect on the sediment transport direction
(cf. p. 10). In the present case only a few of these quantities are
available for calibration purpose as the remaining quantities have been
either directly or indirectly measured. Actually, only i (L.e. £y in
eq. 8) and the spatial variation of f£(8) (figure 1) can be used for

calibration.

The influence on the bed topography of the spatial variation of the term
accounting for the bed slope effect on the sediment transport direction
can easily be investigated. Assuming that £(8) = constant 7P (1.e. p=0
Engelund, 1974, p=1/2 Kikkawa et al., 1976 and p=1 Van Bendegem, 1947)
then the transverse depth variation in a fully developed bend (i.e. v=0
and tan ¥ =0 in eq. (11), which does not occur in the present case), can

be approximated with a Taylor serie expansion into
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Whe Tt Teey @ +l’-;’lf—(-g-‘5T oy - l><%>2+---- : (45)
Consequently, the influence of the spatial variation of £(8) is only of
significant importance in case of sharply curved bends. Equation (45)
also i{llustrates the influence of a/f(89) on the fully developed bed
topography, viz. the transverse bed slope is approximately proportional
with a/f£(6y). The linear analysis (cf. figure 2) shows the influence of
£(8g) in case of developing bed deformations, namely the wave length of
the bed deformation increasing and the damping decrease for decreasing

£(eg).

In figure 12 results of computations with p=0 and p=1, but the same
value of £(8g) are depicted. On first sight the difference between the
two curves is not in accordance with equation (45). This is because the
depths in the axis of the two computations are not equal and furthermore
upstream effects which is not included in equation (45) also play an
important role in the present case where v#0 and tany #0. The remaining
models for the influence of the bed slope on the sediment transport
direction would yield results in between the two curves in figure 12.
The figure illustrates that even in the present case of a sharply curved
bend the influence of the spatial variation of £(8)is relative small.
However, the averaged value of this term has a very large influence on
both the fully developed bed topography, i.e. zero-order solution, and
on the developing bed topography (first order solution, cf. figure 2).
Only few experiments from which the value of £Bpcan be obtained
directly have been carried out. In most experiments the quantity a/f(8p)
has been measured and, regarding the reliability of a (i.e. the
magnitude of the secondary flow), the value of £(891is poorly determined.
This makes £(8pan obvious tool for calibration of the model.

Also the angular difference between the velocity vector near the surface
and near the bed was measured. Based on a logarithmic distribution of
the longitudinal flow velocity and a parabolic distribution of the eddy

viscosity de Vrignd (1976) obtained an expression for the vertical
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distribution of the secondary flow. According to de Vriend (1976) the
direction of the flow near the bottom is given by eq.(9) and the

direction of the surface flow by

s

1.2899 ~ 2,404 X8 + 2 B
21 ‘ «C xC2 h
tan§ .= s = (46)
] + =
kC s

The maximum measured angle was in between 30° and 35°, measured at a
location in the flume where the depth was about 0.16 m., The radius of
curvature of the streamlines at this specific location have been
estimated from a numerical computation to about 2 m . Inserting these
values for h and l/Rs in the theoretical expressions for the flow
direction yield tan(‘5+5sur2=1.3; whereas the measurements suggest
tan@+%urg=0.65. Consequently, the theoretical model seems to

overestimate the magnitude of the secondary flow with a factor two.




40

Hence, in the numerical computations for the experiment a=4.3 (1,e.
tand=4.3h/R) will be applied.

Actually, it is quite surprising that the theoretical model
overestimates the magnitude of the secondary flow as recent measurements
of the secondary flow in flumes with hydraulic smooth bed indicates that
the theoretic model underestimates the secondary flow (cf de Vriend,
1981). This discrepancy may be attributed to difference in vertical
distribution of the longitudinal flow velocity and of the eddy viscosity
in case of hydraulic smooth and alluvial (rough) bed.

In figure 13 a computation, with the measured magnitude of the secondary
flow (a=4.3) and the value of £(85) (1.35) which gives the best agreement
with the measured data, is depicted. A larger value of f(8ythan 1.35
will cause a slight upstream shift of the point bar and pool, i.e. an
improved phase, but at the same time the transverse slope will decrease
resulting in an inferior over-all agreement. For a value smaller than
1.35 there is no solution of the mathematical model, because, in the
flow model above the point bar the energy-line descends below the water
surface. Physically, it probably means that the point bar will emerge

through the water surface, i.e. the width will locally decrease.

The agreement between the measured and (the best) calculated bed
topography in figure 13 could be better. Comparison of the measured and
computed sediment transport distribution shows that the theoretical
model underestimates the transverse gradient of the longitudinal
sediment transport rate and that the location where the sediment
transport maximum crosses from the convex to the concave banks of the
flume is situated too far downstream (measured 1/4B downstream of the
apex, computed 1 1/2B). This, of course, results in large differences
in distribution of transverse sediment transport, which is so essential
for the bed topography (cf. Struiksma et al, 1985).
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The cause of the inferlor sediment transport distribution may partially
be attributed to a bad sediment transport model; but, in view of the bad
prediction of the position of the sediment transport crossing, it is
likely to assume that also the flow velocity distribution is incorrectly
predicted. A flow model, that includes the effect of secondary flow
convection, would lead to a larger flow velocity near the concave bank;
so, the velocity maximum would shift from the convex to the concave bank
further upstream and in most cross-sections the transverse gradient of
the longitudinal flow velocity would increase. Both effects would lead
to an improved sediment transport distribution and therefore probably

also a better bed topography prediction.

The effect of secondary flow convection can be simulated in a rough way

by manipulations with the alluvial roughness coefficient. However, as
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the flow velocity distribution was not measured in the experiment, such

excercises have not been carried out in this case.

The main features of the bed topography, viz. the position of the point
bar downstream of the apex of the flume is qualitativly correctly
reproduced by the computational model, but the distance lag is
overestimated. For the present case of a sharply curved bend the flow
model seems to be insufficiently refined, namely the influence of the
spiral (secondary) flow on the main flow distribution is not

incorporated.

4.2, Experiment in the DHL curved flume

The experiment is carried out at the Delft Hydraulics Laboratory in a
1.5 m wide flume consisting of 2 7 m long straight inflow section
preceeded by a 140° bend with a centerline radius of curvature of 12 m
and an 11 m long straight outflow section. The bed level data are based
on the mean value of 25 soundings carried out during the equilibrium
state, that was obtained after flowing two weeks, so the measured bed
topography can be considered unconditional stationary. During the
equilibrium state also the flow velocity was measured in some selected
cross-sections. These measurements were carried out with current meters
of the micro-propeller type. The monitoring period was 1000 s and each
measurement was carried out four times in order to improve the accuracy.
Still, it is not certain that the mean value of the measurements
actually represent the mean flow velocity, because of the "noise" of the

slowly propagating bed forms.

A rather uniform sediment with a geometrical mean value of 0.45 mm was
used in the experiment. Sediment transport measurements in this
experiment and in a few others in which the same sediment was used

exhibit a good agreement with the Engelund-Hansen (1967) sediment
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transport formula (i.e. b=5). An Impression of the bed form height can
be obtained from the standard deviation of the bed soundings. It appears
that the bed form height - water depth ratio is approximately constant
implying that the bed roughness is constant (i.e. no spatial variation).

For a detailed outline of the model features, measuring procedures and
results see Struiksma (1983 b). The relevant hydraulic and geometric
data for the experiment are summarized in table 1. In figure 14 the
measured bed topography and, due to the scatter in the flow velocity
ﬁeasurements, the mean value of the depth averaged flow velocity left

and right of the flume axis are depicted.

4,2.1. Calibration of the model

The relative large wave length of the measured bed deformations (cf.
figure 14) indicates that computational results will be insensitive to
the numerical value of the slope coefficient in the model for the
longitudinal sediment transport rate and insensitive to the magnitude of
the adaption length of the secondary flow. This can be verified by the
linear analysis and it has also been verified with some preliminary
computations (not depicted). Therefore, in order to enable a large time
step in the computations, a relative large longitudinal slope
coefficient and adaption length of the secondary flow has been applied

(cf. appendix B).

Struiksma et al (1985) show that it is necessary to apply Aw/Aanz =0.68
in order to obtain a realistic wave length of the bed deformations., This
value is obtained with £(8g)=1.25. By estimating the axial symmetric bed
slope from the measured data the quantity a/f(8;)can be obtained from
equation (45). In figure 14 results of a computation with a/f(8,)=2.7,
i.e. a=3.4 which is only about 40 % of the theoretical value, is
depicted. The transverse bed slope in the first say 2/3 of the bend is

underestimated whereas the transverse slope in the last part of the bend
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is very well predicted. The transverse gradient of the flow velocity is
systematically underestimated, probably due to the omisson of secondary
flow convection in the flow model. The distance lag between the flow and

bed deformation seems reasonably well predicted.

According to Kalkwijk & de Vriend (1980) and de Vriend & Struiksma
(1983) the influence of secondary flow convection depends on two
different length scales, viz. on C2/2g h and on BR/h . The first length
scale equals A‘J i.e, the length scale from the main flow model, so this
effect can adequately be accounted for by introducing a transverse
variation of the bed roughness coefficient. The second length scale is
very large, in the present case about 180 m., so this effect can be

neglected.

It is assumed that the transverse variation of the roughness coefficient
is linearvand proportional with h/R in the channel axis. The aim of the
tuning is to obtain the correct order of magnitude of the transverse
gradient of the longitudinal main flow velocity, and for this purpose
this approach is assumed sufficient refined. The order of magnitude of
the variation of the rougness coefficient is obtained from Chezy”s law
using the measured flow velocity and bed topography data. In figure 15
the result of a computation with the calibrated coefficient and the '
tuned flow model is depicted. Compared with figure 15 it is seen that
the prediction of the point bar height and pool depth are improved. Also
the flow field is in better agreement with the measured data. However,
the wave length is shorter, the point bar/pool is shifted upstream and
there is a significant lag between the predicted and calculated point
bar/pool. Furthermore, the damping of the oscillating bed deformation is

far too small.

According to the linear analysis an improved prediction of the wave
length of the bed deformation requires a reduction of £f(8;), but this
will inevitably cause less damping of the bed deformation resulting in a
greater disagreement with the measured data around s=13 B, The only way

to obtain significant further decay of the bed deformation is to reduce
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the power, b, in the sediment transport formula. In figure 16 results of
a computation with a=4, b=4, f(09g)=1 and the tuned flow model is
depicted. The result now agrees much better with the measured data.
However, in view of the sediment transport measurements in the present
experiments and in other experiments with the same sand (all indicating
that - on the average - b=5), it does not seem likely to assume that
b=4. On the other hand, the variation of the sediment transport rate in
trnsverse direction is very large (larger than the range of sediment
transport rate in the above mentioned experiments), so b may not be
constant over the width. The influnce of such a spatial variation of b

on the bed topography is not clear yet.

Due to the many (physical plausible) calibration possibilities, it will
almost always be possible to obtain a reasonable agreement with the
measured data. Even without a reasonable flow field prediction a good
agreement with the measured bed topography can.be obtained by
manipulation with the model parameters a, b and f£(8y ). Consequently, for
an integral verification of the mathematical model a rather exteasive
measuring programme has to be carried out. Besides bed topography,
roughness, discharge and sediment transport measurements, a flume
experiment well suited for calibration of the model, should involve flow
measurements., Furthermore, it is also very attractive to have a good
estimate of at least one of the three model parameters: a, b or £(8qg)
Even in case of straight uniform flow it is difficult to obtain an
unambiguous functional relationship between the flow and sediment
properties (i.e, b; cf. the large number of existing sediment transport
formulas) and the direction of the bed shear stress in a curved flow
with moveable bed is hardly feasible to measure accurately so
experimental verification of £( 89 1is probably the option which often
the best prospects. Ikeda (1981), Fredsoe (1976) and Zhaohui (1976) have
attempted to measure f(®y ) in a straight flow, i.e. they did not have to
assume a model for the direction of the bed shear stress. In the
experiment they began with a transverse slope in a long straight flume.
In this case all derivatives in longitudinal direction and the

transverse velocity can be assumed to vanish so the mathematical model
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transforms into Chezy”s law and
dh _ d , 3h
3~ i (Sx £(8) 33) (47)

By measuring the sediment transport rate and the transverse slope as a
function of time £(8y) can be obtained. So far this method probably
offers the best prospects, but a large number of experiments still have

to be carried out before an unambiguous relation can be determined.

4.3, The river Dommel

The last test case concerns the small Dutch-Belgium river Dommel, a
contributor to the Meuse. Bed geometry and flow velocity measurements
were carried out in May 1980 in a 285 m long section of the river. All
relevant data concerning bed topography, main flow velocity and water
surface level have been reported by de Vriend & Geldof (1983). Data
concerning sécondary flow and sediment properties have been reported by

van Alphen, Bloks and Hoekstra (1985).

The geometry of the river bed was surveyed twice, in the periods 1-5 May
and 27-28 May 1980, by levelling along 52 traverses. Only small
differences were found between the two levellings. In the present
investigation the first series of measurements is used. The influence of
bed forms (mostly ripples, locally dunes), with a maximum height

estimated to about 0.1 m., were not eliminated by averaging a large

number of levellings at each point.

Extensive flow measurements were performed. The main flow velocity was
measured with a propeller type current meter in 14 to 25 points in 23

cross-sections. The secondary flow was measured in some selected
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cross-sections by simultaneous measuring two horizontal velocity
components in a vertical with an electro-magnetic current meter.

The water level was measured twice a day at four point gauge stations
along the considered area. Furthermore, 150 m upstream of the
considered area a Rijkswaterstaat float gauge station is situated which

registrates the waterlevel each quarter of an hour.

In addition, extensive measurements of the sediment propertles were

carried out.

4.,3.1. River schematization

Several problems arise when the numerical model is applied to a natural

river such as the Dommel, viz.

- The abcense of well defined steady flow conditlions requires a choice
of a dominant discharge and water surface level. Especially, it is
important to choose a representative water surface level as the depth
width ratio has a large influence on the predicted bed topography. The
discharge, or rather, the overall mean flow velocity has only influence
on the equilibrium bed topography through the terms £(8;5) (cf. equations
(12) through (18)), which anyway 1s used as a calibration quantity.
Furthermore, the flow velocity (through the sediment transport model)
has a large influence on the time scale on which the bed level changes

take place (cf., equation 5).

- The planform of the river is difficult to schematize. The width varies
along the river and with the water surface level, e.g. in case of low
flow, the situation in which the survey took place, the point bars will
not be submerged. This implies that the position of the river axis is
poorly defined and therefore also the curvature of the river.

Furthermore, the river does not have vertical banks.
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- Vegetation at the banks and in the river bed and other non-alluvial
roughness elements influence the flow distribution and hence the

sedimentation stuctures.
- The river has rather graded sediment.

Pilot computation with the model indicated that the time needed for
establishment of equilibrium starting from horizontal bed is of the
order of magnitude 20 m2/s,.

»+ The sediment transport rate in the river

was measured by means of dune tracking about a year after the data used
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in this report were sampled. During the sediment transport measurements
the flow situation was quite similar to the one used here. The result of
the measurements indicates a transport rate of about 0.5 mZ/day which
corresponds to a real time to obtain equilibrium of about 40 days. In
figure 17 the variation of the water surface level at the
Rijkswaterstaat float gauge station prior and during the survey period
has been depicted. The representative (dominant) water surface is
probably larger than the averaged water level as large flow velocities
and hence sediment transport rates occur during high stages. On the
other hand the water level in the period short before and during the
survey period has larger influence on the observed bed topography so
these data should be attached more weight. Based on these considerations
a water surface level of 26950 mm is (somehow arbitrary) chosen. This
water surface level corresponds to a mean depth of about 0.6 m and a

mean flow velocity of about 0.55 m/s.

The local width of the river and the coordinates of the river axis were
determined by means of the bed profile diagrammes depicted in de Vriend
& Geldof (1983). For each of the bed profiles the part of the river bed
which does not seem influenced by the banks were estimated. The width of
the river, estimated in this way, varied from 4.1 m. until 6.1 m. with a
mean value of about 5 m which will be used in the computations. The
deviation from the mean width is not unsystematical; there was a
significant trend that the width is inreasing in the flow direction. It
is not quite clear whether the applied procedure yields the optimal

width of the river for the computationms.

The centerline curvature of the river was obtained from the river axis
by constructing circles through the axis of three successive
cross-sections. The curvature obtained in this way exhibited a relative
large scatter and was not equaly spaced, so the data were interpolated
into a regular grid and smoothed by applying a moving average. In figure
18 the centerline curvature before and after the smoothing and spacing

are depicted.
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Longitudinal bed profiles at 1/4 B from the banks were estimated from
the bed diagramms in de Vriend & Geldof (1983) and are depicted in
figure 19. Longitudinal profiles closer to the banks would exhibit an
even larger scatter than the profile depicted in figure 19 due to for
instance banks vegetation and local bank failure. At s=20 B vegetation
was found in the bed which locally, but also downstream of the pool/point

bar influences the bed considerably.

The bed material is quite graded. In the straight reaches the mean
diameter varies from 0.37 mm to 0.51 mm. In the bends the mean diameter
varies from about 0.2 mm close to the inner (convex) banks to 1.4 mm
close to the concave banks. The overall mean value is about 0.47 mm. The
rather pronounced spatial variation of the mean grain size has a large
influence on the sediment transport rate, so significant influence on

the bed topography can be expected.
4.3,2, Calibration of the model

The flow field in a river as the present one is to a large exteat

controled by the bed friction. Consequently, the flow field is stage
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dependent which makes the profound flow measurements carried out in the
Dommel at a lower stage less suitable for direct calibration of the flow
model in the present case. de Vriend & Geldof (1983) find, using in
principle the same flow model as the one used here, that secondary flow
convection only has influence on the flow field near the exit of the
relative short bends in the Dommel. This is supposed to apply in the

present case as well,

The secondary flow measurements can be used to check the theoretical
model for the magnitude of the secondary flow. The measurements indicate
a maximum angular difference of 30° (tan30 =0.58) between the flow
vector at the surface and the bed whereas the theoretical model,i.e.
equations (9) and (46), suggest an angle of about 50° (tan50°=1.2). So,
also in this case the theoretical model for the secoadary flow seems to
overestimate the actual value with a factor of about two. In view of

this a=4.6 is applied in the computations.

No analysis of the sediment transport rate data has been carried out in
order to facilitate the choice of a sediment tramsport formula. It is
simply assumed that the Engelund-Hansen transport formula applies in
the Dommel. Several computations with different f(6;) have been carried
out, It appeared that computations with f(8p)<1.3 failed because the
water depth above the point bars in the bends tends towards zero, 1i.e.
the point bars emerge through the water surface. This implies that the
width locally decreases; a trend, which, - especially in the first bend

- can be detected in the measured data as well.

In figure 19 the measured data and results of a computation with
f(By)=1.3 are depicted. The agreement is not very good. The point bar
height/pool depth in the first bend is underestimated whereas it is
overestimated in the second bend. Actually it is not possible to choose
a parameter combination resulting in a larger transverse bed gradient in
the first bend than in the second bend. This discrepancy with the
measured data may be attributed to variation of the width and on the bed
vegetation in the second bend. The width, estimated by means of the bed
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profile diagramme in de Vriend & Geldof (1983), is smaller around the
point bar in the first bend than in the second bend which may be the
reason for the iarger transverse bed gradient in the first bend. The
vegetation in the bed forms an additional roughness element and in this
way it influences the flow distribution. This will have considerable
influence on the sediment movement and therefore also on the bed
topography. In the last part of the reach, say s>28 B, the measured
depth is systematically larger than the computated. This is caused by a
larger width (smaller mean depth) in that reach of the river.
Consequently, a model with variable width is necessary in order to

improve the computation results at that point.

The position of the crossings are rather well predicted by the model.
Furthermore, as the measured longitudinal bed profiles are based on only
one sounding, the deviation between the measured and computated bed
topography may to some extend be attributed to the bed form (i.e. random

scatter).

So far most attemps to compute the bed topography in river bends have
been based on the assumption that the sediment transport is parallel to
the river axis.This is more or less tantamount to the present model with

b=0, i.e. the sediment transport is coanstant. According to the linear
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analysis (equation 28) this is mostly a very bad approximation, except
maybe in a strongly damped system, l.e. rivers with a small width~-depth
ratio. In the Dommel this ratio is relative small. In order to

investigate whether bed level prediction with the simplified model

(sediment transport parallel to the river axis) yields a realistic

result a computation with constant longitudinal sediment transport was
carried out. The remaining variables were as in the computation depicted
in figure 19. In figure 20 the result of this computation is depicted.
The difference with figure 19 is very significant. Consequently, even in
case of a very small width-depth ratio, the spatial variation of the

sediment transport cannot be neglected.




-57~

5. Discussion and conclusions.

The equilibrium bed topography in an alluvial river bend is,in the mathe-
matical model,governed by mutual 1ﬁteraction between the bed shear

stress distribution and the sediment transport distribution. In view of
the relatively good agreement between measured and computed bed
topography in the cases discussed, it can be concluded that the
mathematical model includes the fundamental aspects of the system of
flowing water and moving sediment, and also that the interaction between
the components are adequately desribed. However, the necessary
calibration of the model {llustrates that the model contains some

shortcomings.

Two aspects are of particular importance for a good bed shear stress
description, viz. an adequate flow model and a good description of the
roughness distribution. The theoretical model for the bed shear stress
direction in a curved flow, which is based on the assumption of a
parabolic eddy viscosity distribution and uniform flow, seems to
overestimate the direction of the bed shear stress vector in the three
cases considered. It appears that in large natural rivers the model
works well (Struiksma, personal communication). Generally, a
characteristic difference between an experimental flume and a large
natural river is the water depth dune height ratio, which is much
smaller in the flume. It is likely that the assumption of a parabolic
eddy viscosity distribution becomes less valid when the relative bed
form height becomes larger. Furthermore, the flow will become less
uniform. Consequently, it is not surprising that the theoretical model
is less reliable in a shallow flume. Further research on the secondary
flow over an alluvial bed is necessary; possibly experimental by
measuring the shear stress distribution in the flow around a bed form.
Another possibility to improve the bed shear stress direction model is
to make a numerical investigation using a 2-dimensional (vertical)
model, or perhaps a fully 3-dimensional model, with a more

sophisticated eddy viscosity model than the parabolic one.
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The flow model applied in the mathematical model neglects the influence
of secondary flow convection, which at least in some cases, has
significant influence on the main flow distribution. It appears that the
effect of secondary flow convection can be approximated in the
computational model by introducing a lateral varying roughness
coefficient, but the degree of variation is still a matter of

calibration.

Ever if the bed shear stress distribution is well known, the sediment
transport magnitude and distribution are difficult to determine. The
computation with different sediment transport predictors (different "b",
see figures 15 and 16) underlines the importance of reliable sediment
transport formulas. In the past few decades much effort has been put in
the investigation of the sediment transport mechanisms, without any
spectacular improvement of the reliability of the sediment transport
predictors. So it is inevitable that the choice of a sediment transport

formula for the mathematical model will remain a matter of calibration.

The model describing the influence of (transverse) bed slope on the
sediment transport direction is very important. In combination with the
model for the bed shear stress direction it determines the
axial-symmetric (average) bed slope in a bend and it has a large
influence on the "overshoot" phenomena in areas of transient curvature,
i.e. the model determines the response of the equilibrium bed to angular
differences between the sediment transport and the bed shear stress. The
above mentioned comments on the sediment transport rate predictors also
apply to the model for the slope dependence of the sediment transport
direction., In view of the dominant influence of this model on the bed
topography in rivers it is essential to attempt to obtain more knowledge
about it. As mentioned in Chapter 3 independent (not in corporation with
a model for the transverse bed shear stress in acurved flow)
determination of this term can (so far) only be done using unsteady
experiments. In spite of the experimental difficulties involved much
more experiments of this kind should be carried out in order to improve

the reliability of the prediction of the sediment transport direction.
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Summarizing, it can be concluded that the mathematical model coantains
the essential components for a proper description of the bed topography
in rivers. However, the insufficilent reliability of the models for -(1)
the bed shear stress direction in a curved flow, -(2) secondary flow
convection in channels with vertical banks, -(3) the sediment tranmsport
rate and -(4) the sediment transport direction on a sloping bed make

calibration of the model necessary.
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Appendix A. Discretization of the bed level model

In the numerical integration procedure for the bed level model central
space differences are applied (except at the boundaries) and the time

derivative is approximated with an explicit first order difference.

The finite difference approximation of the equation of continuity can
be obtained by formal integration over a box around the point (m,j) in

the computational grid. The result is

& b - 6 brhd- 5, B b o
| (A1)
+ (s 09 g + 1= (s389) [md - I

At the boundaries this scheme does not apply. Therefore, at the inflow
section the depth is kept constant and at the inner wall the following

non-central difference approximation is applied
dh
Gro)m 0 = (s m+ 3,0 - s fm- 1, ]an - 25 [n,]] (a2)

recalling thﬁ,l:|= 0. At the outer wall a similar scheme is used. At
the outflow boundary the following finite difference approximation is

applied

B sy @, fen = 2¢s, M4 - s, - 4,4])en

+ (s, as) (M, + 12-]- snAs[Zw,j - 4] (A3)

The longitudinal transport rate has to be calculated in the staggered

grid, viz.

s b+ 1.3 = (el + 1,4+ ulmd)/2y’

{t+athmet, ) -nm,g))/as [m+ 4, 71} (A%)
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The direction of the sediment transport is obtained from

tan tbL_{n,j +fE ={(VE71+%,J:] + vEn—-‘zL,j__J)/uEn,Jj

Cl s bvi] + 9B i D/ 1
+ tandtm-*é-,i]‘rtanéx EM-%—,J:]-r-tanch [+ L5+ J+tans™ [ — _i—,j+ 1}/4
+ £0[m J+ I+ - n md])/an (A5)

in which the direction of the bed shear stress in a curved flow,

tanéx, is obtained from
* by T x s s
tand” [m+ %,J_J{()\s £/88) m,g] + 12-} = tans” [m- %,J]{(Asf/As)En -3
h -
- a -ﬁ—s_ En,g] (A6)
Last, the transverse sediment transport rate is approximated by
s [md+4 =tany [+ 116 [m+ 4,5+ 1]+ s, [m+ 1,5]
5, (-1, 5+ 10+ s [m- 5,570/ (A7)

The various finite difference approximations are depicted in the

computational grid in Figure 4.
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