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Abstract

In many fields of structural engineering the behaviour of cables as structural
elements is essential. One can think of suspension bridges, tethering of auxil-
iary crafts, the tensioning of reflectors of satelites, etc., etc.. Because cables are
found in many engineering applications, the need arises for a (geometrically)
nonlinear cable element that can be used in finite element analysis.

In this report a cable element will be discussed that has been implemented into
the finite element code B2000. This element has only axial stiffness and can be
used as a first approximation to the simulation of static as well as transient cable
behaviour. A special difficulty with the simulation of this behaviour is that in
the absence of tension, the equilibrium configuration of a cable is undefined.
This peculiar characteristic is due tot the absence of bending stiffness and it
poses an obstacle in the static analysis of structures where cables are used.
This fundamental property, the degeneration of the stiffness of the structure as
soon as cables become tensionless, requires special approaches to the solution of
cable structures. Therefore, it is especially this problem that will be discussed
in this report.

The developed cable element can be used for quasi-static analysis and lin-
earized vibration analysis around stable states, but also for transient analysis.
Some applications of the cable element will be presented.




Samenvatting

Het gedrag van kabels als constructie elementen kan op veel gebieden binnen
de mechanica van constructies van essentieel belang zijn. Men kan denken aan
bruggen, het voorttrekken van hulp voertuigen, het aanspannen van satelliet
reflectoren, etc., etc.. Daar kabels in de techniek veel worden toegepast, is er
een behoefte aan een (geometrisch) niet-lineair kabel element ontstaan, dat ge-
bruikt kan worden voor eindige elementen berekeningen.

In dit afstudeerverslag wordt een kabel element besproken dat is geimplementeerd
in de eindige elementen code B2000. Dit element heeft alleen axiale stijfheid
en kan als een eerste benadering voor de simulatie van statisch alswel van tran-
sient kabel gedrag gebruikt worden. Een speciale moeilijkheid in de simulatie
van dit gedrag is dat wanneer de kabel niet onder spanning staat, de even-
wichts configuratie niet gedefiniéerd is. Dit speciale kenmerk is een gevolg van
het ontbreken van buigstijfheid en vormt een obstakel in de statische analyse
van constructies die gebruik maken van kabels. Deze fundamentele eigenschap,
de degeneratie van de stijfheid van de constructie zodra de kabels spanningsloos
worden, vraagt om speciale benaderingen voor de oplossing van kabel construc-
ties. Het is hierom dat in dit verslag met name dit probleem besproken zal
worden.

Het ontwikkelde kabel element kan gebruikt worden voor quasi-statische
berekeningen en voor de berekening van gelineariseerde trillingen om stabiele
evenwichtsstanden, maar ook voor transiente berekeningen. Tevens zullen enige
toepassingen van het kabel element besproken worden.
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Chapter 1

Introduction

Structural problems have long been analyzed by use of finite element methods.
Several finite element software packages have been developed since the intro-
duction of finite element approaches. Structural elements such as rods, beams
and shells have been widely represented in these packages, particularly for linear
analysis.

The cables in the structures analyzed are frequently modeled by (linear)
beam elements or rod elements, where for the beam elements small values are
specified for the bending stiffness. Although such approximations may work in
some cases, the need exists for an element which can represent the flexible be-
haviour of cables. Due to this flexibility large displacements are not uncommon
and the element must thus possess geometrically nonlinear properties.

Also, the unloaded cable can only resist (axial) tension loads and no bending,
shear or compression loads. These characteristics make the development of
a geometrically nonlinear cable element an interesting problem as alternative
formulations must be found for the cable in these conditions. The geometrically
nonlinear cable element with linear material properties will be developed within
the finite element software package of B2000.

This chapter will give a short review of some cable aspects as well as a
description of the data structure of the used software package B2000.

1.1 Introduction to cables

Cables as structural elements can be of essential importance to the stability
behaviour of (cable) structures. One can think of cable stayed bridges, television
towers, high voltage electricity cables and stabilization of masts. Many more
applications for cables can be found in various fields of structural engineering,
e.g. space technology, marine technology, civil engineering, etc.

Cables come in all variaties of cross-sectional area, number and cross sec-
tional area of guys, material properties etc. Cables built of multiple guys in
fact require an extensive separate investigation as the presence of the various
guys cause an anisotropic distribution of the stiffness parameters and internal
friction due to the interaction of the guys. However, such a consideration lies
beyond the framework of this assignment and is left as an option for further

19



20 CHAPTER 1. INTRODUCTION

investigation.

Instead, single guy cables with small thickness/length (4) ratio will be con-
sidered. For such cables a string element will be developed as a first approxima-
tion to a cable. The string will be referred to as a cable (element) throughout
the report.

The cable is assumed to have only tension stiffness and no bending, shear or
compression stiffness. Of course some transverse stiffness is introduced when the
cable is in a state of tension. The possibility that the cable loses its (pre)tension
in a specific situation presents potential numerical difficulties. The unloaded
cable can take on any arbitrary form as long as the total arc-length remains
unchanged. This means that the cable does not take on any definite equilibrium
form.

Literature study has learnt that extensive research has been performed on ca-
bles, however mainly on linear cable elements, cables submitted to tension or
cable dynamics. Few literature was found on solution approaches to the prob-
lems of singularities appearing for cables in a tensionless state.

The present code already provides an element routine for a cable with only
tangential (tension) stiffness. This element routine however, is not active for
specifically quasi-static analysis (B2CONT), and does not deal with the prob-
lem of singularity in a satisfying manner. The main objective of this report is
to provide an understanding of the physical aspects of the singular behaviour
of a cable due to zero or negative stress and to investigate some approaches
to this problem. Chapter 6 presents some options to approach the singularity
problem for quasi-static analysis.

In case of cable dynamics the singularity of the stiffness matrix is compen-
sated by the presence of a mass matrix. Dynamic problems will be solved by
transient analysis.

Finally, some suggestions are made how to approach the singularity problem
by combining the non-linear quasi-static solution procedure with the transient
solution procedure.

1.2 Introduction to B2000

The finite element package B2000 has been originated by SMR Corp. from
a need for a modular finite element code as a testbed. B2000 consists of
several program modules (macro-processors) which communicate independently
via the central database MEMCOM. The modular structure of B2000 makes
it suitable for adding new independent processors. Also users can easily add
new elements to the code. See also figure 1.1.

The Input Processor reads the model data and generates a B2000 data
base by creating the appropriate MEMCOM data sets. These data sets are
required for running several macro processors some of which are mentioned
below:
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Input Graphics Customized Eigenvalue
Processors Processors Processors Processors

L S

p
Element Assembly Eq. solver Output Gradient T
Processors Processors Processors Processors Processors )

.

(Non-)Linear Macro-Processor

Figure 1.1: The basic structure of B2000

B2LIN linear solver
B2CONT non-linear (quasi-static) solver

B2TRANS transient solver; recently modified and implemented

The programming language of the code is FORTRAN 77 and ANSI C. However
as the code has a modular design B2000 is not limited to these languages and
can easily be extended by modules written in other programming languages.

Finally, the results obtained from a numerical analysis can be post-processed
with the post processor B2BASPL. B2BASPL enables graphical visualiza-
tion of the results by colour plots and diagram plots. Additionally, it is possible
to transform a NASTRAN bulk data deck to a B2000 input deck and vice-
versa using the processor B2NAS.

The finite element code B2000 is currently used as a testbed by the Delft
University of Technology, the Twente University of Technology,the Swiss Federal
Institute of Technology (EPFL), the National Aerospace Laboratory, NLR, the

Deutches Zentrum fiir Luft- und Raumfahrt and the Centro Italiano Ricerche
Aerospaziale.
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Chapter 2

Cable mechanics

Nonlinear analysis generally involves geometric (strain-displacement) nonlinear-
ity and /or material (stress-strain ) nonlinearity, [17]. Taking into account large
displacements and assuming small strains, a cable element with nonlinear geo-
metric properties and linear material properties, satisfies the requirements for
most nonlinear analyses of cable-structures. Section 2.1 will illustrate the geo-
metric nonlinear aspects of a cable by showing the nonlinear load-displacement
relationship for a two-link cable construction.

Small-step incremental solution methods like the path following technique
can only be applied to solve the nonlinear equilibrium equations for the un-
known displacements at points where the tangential stiffness matrix is not sin-
gular, but the stiffness matrix becomes singular at the instant the cable becomes
tensionless. This means that procedures are necessary to remove the singular-
ity. Please note that the singularity pertains to all nodal values that belong to
the cable with no (pre) tension. The multiplicity of the singularity in the total
stiffness matrix is then usually larger than one.

Section 2.2 presents a qualitative approach to the physical aspects of a
singular cable. The main objective of this approach is to acquire a fundamen-
tal understanding of the physical cable behaviour in relation to the stability
behaviour of beams. Section 2.3 presents a brief discussion of singularities oc-
curring in a discretized cable. :

Finally, section 2.4 presents a description of the cable properties and be-
haviour in specific situations, illustrated by some simple examples. Section 2.4
sets the boundary conditions for the element that has to be developed.

2.1 Geometric nonlinearity

For a wide range of structural problems, both displacements and strains are
small. This means that during the loading and deformation process the geo-
metry of the structure remains basically the same, allowing the problem to be
solved by linear solution procedures.

However, cable-structures submitted to static (or dynamic) loading, may often
result in large displacements without actually causing large strains. This allows

D
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Figure 2.1: Two-link cable construction submitted to transverse loading to
illustrate the geometric stiffness effect

the discussion (in this report) to be specifically restricted to geometric nonlinea-
rity, leaving the material properties to be approximated by linear strain-stress
relations.

As most construction problems involve conservative loads, the discussion in
this report is also restricted to problems with conservative load systems. This
means that only problems are considered where forces themselves arc derivable
from a potential function. As a consequence, the final deformed configuration
or state of a structure submitted to such a load system is not dependent on
which load path has been followed. An example of this aspect is discussed in
more detail in section 2.4, part (v). For the analysis of structures submitted
to loads dependent on the deformations, proper consideration must be given to
the displacement-dependent load term.

This section discusses the geometric nonlinear aspects of cable behaviour
illustrated by a simple two-link structure as shown in figure 2.1. Obviously,
in this initial (straight) configuration the cable construction is incapable of
resisting the imposed transverse load P; no reaction forces can occur in the
cables such that (vertical) equilibrium is satisfied.

As a consequence we are initially dealing with a mechanism in the v-
direction The dashed lines in figure 2.1 represent a deformed configuration.
As the mid-node undergoes vertical displacement (v), the reaction forces in the
cable elements now acquire vertical components which can equilibrate the im-
posed external load P. Hence, the resistance to transverse loading is introduced
by a change of geometry and originates from axial straining.

To illustrate the nonlinear relationship between the external load P and the
transverse displacement v of the mid-node, consider figure 2.2. For this purpose
the nonlinear relationship between Au and v will be derived first by considering
the projection of the deformed configuration (dS) onto the undeformed config-
uration (ds).

This is achieved by considering a ’tensionless’ case, where node 3 is only
locked in the transverse direction and a displacement of the mid-node will result
in a horizontal displacement Au of node 3 such that the cable elements do not
undergo any elongation. The lengths of the cable elements in the deformed
state thus remain L. The projection onto the undeformed state is expressed by:

2Lcosp = 2L — Au (2.1)
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Figure 2.2: Illustration of geometric nonlinear deformation

or, rewritten:

Ay = 2L(1 — cos¢) (2.2)

The ’elongation’ of a cable element with respect to the projection onto the
undeformed state is:

AL=L-Leosp <=> (2.3)
AL = L(1 - cosg) = %Au 2.4)

This corresponds to the elongation of a cable element if node 3 were fixed at
z = 2L — Au. Hence, for the undeformed length one can write:

Lo=Ls—AL=L- %Au (2.5)

and the deformed length:

Li=Ly+AL=L (2.6)

Next, consider the real case in the lower right part of figure 2.2. All translational
degrees of freedom of node 3 are fixed and the undeformed cable length is now L.
Displacement of the mid-node over a distance v results in stretched cables with
deformed lengths L + AL,. It is easily recognized that consistent substitution
of these expressions into eqs.(2.5) and (2.6) yield the same relationship for the
elongation AL; and the longitudinal displacement Au, see eq. (2.4).
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Eq.(2.2) can be expressed in terms of the vertical displacement v by realizing
that

sing = (2.7)

e

This yields the following expression:

Au=2L (1 —J1- (%)2) (2.8)

As can be seen from eq.(2.4) the displacement Au is proportional to the elon-
gation AL which in turn is proportional to the strain;

=== (2.9)

For linear elastic material and constant cross-sectional area, the strain is pro-
portional to the cable stress by Hooke’s law:

o=Ee (2.10)

Having proven the nonlinear relationship between Au and v and stated that
Au is proportional to the reaction forces F, it has thus been proven that P is
a nonlinear function of v;

P=f(»")

Obviously, linear solution techniques cannot be used to solve the (nonlinear)
equilibrium equations, corresponding to the geometric nonlinearity. Contrary to
linear problems (unique solution situation), the solution obtained for a nonlinear
problem may not be the solution sought. As more solutions exist, one may find a
physically insignificant solution. The nonlinearity usually requires a small-step
incremental approach in order to follow the solution path and in this way gain
physically significant and accurate results. Without path following techniques
it is in general not possible to obtain the solution in a controlled way.

The finite element code of B2000 provides a quasi-static (nonlinear) solver
(B2CONT), which solves static nonlinear problems by a path following tech-
nique , (14], [15]. A short description of this path following technique is given
in section 3.2, followed by a description of the nonlinear solver B2CONT in
section 3.3.

2.2 An interpretation of (singular) cable behaviour

The behaviour of a cable under tension and in particular, in circumstances
where tension is lost, can be explained in the context of classical stability the-

ory [2].
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Consider a slender beam of the same dimension as the cable tethered be-
tween two supports of which one can only move in the axial direction. (See
figure 2.3). The beam has the same axial stiffness in tension and compression.
Compression can also be achieved in a cable if we prevent the cable from having
any lateral displacements. The only difference between the cable and beam is
that the beam has bending stiffness and the cable has not.

E,'
T

Figure 2.3: Column buckling example

beam under azial compression

The first most general situation to be discussed in the context of stability of
an element submitted to axial compression will be an imperfect beam-column
under axial compression, see figure 2.3. As the beam possesses both (axial)
compression and bending stiffness, the beam will compress a small axial distance
u and bend a given distance w (lateral displacement amplitude) determined by
the bending stiffness (EI) of the beam. See the dash-dot lines in figure 2.4.

In case of an ideal beam however, the beam will follow the primary equili-
brium path (w;(A) = 0) with only axial displacements, which becomes unstable
after the first bifurcation point. At this first bifurcation point a stable secondary
equilibrium path intersects the primary branch. The solid lines in figure 2.4
represent the stable equilibrium paths whereas the dashed lines indicate the
unstable paths.

The corresponding load-displacement curves are presented in figure 2.4,
where A represents the load parameter. The figure shows the first few secondary
branches (buckling) initiated at the bifurcation points. Obviously, specifically
the first bifurcation point is of interest for stability considerations as it initiates
the post-buckling behaviour.

Note that for a beam with high bending stiffness a larger compressive force
is required to initiate buckling, than for a beam with low bending stiffness.

cable under azial compression

The singular behaviour of a cable submitted to axial compression can be ex-
plained by replacing the column in figure 2.3 by a cable, using the concept of
a gradually diminishing bending stiffness of the beam so that in the limit of
ET approaching zero, the beam becomes a cable. When the bending stiffness
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Figure 2.4: Bifurcation into buckling modes of a beam under axial compres-
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of a beam in compression (figure 2.3) approaches zero, also the buckling loads
will approach zero. In other words the bifurcation point at the value of the

critical load A; will come closer and closer to the undeformed and unloaded
state (w = u = 0,\ =0).
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Figure 2.5: Bifurcation points approaching origin for a beam under axial

compression with gradually diminishing bending stiffness
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This is not only true for the first bifurcation point along the pre-buckling state
(wr = 0) at A, it is also true for all the (infinite) UNstable bifurcation points
that are located beyond this point. This means that in the limit of zero bending
stiffness, the undeformed state w = u = 0 at A = 0, becomes an accumulation of
stable and unstable bifurcation points of an (in principle) infinite multiplicity.
(See figure 2.5).
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Figure 2.6: Infinite buckling modes for a cable under axial compression with
unlocked transverse degrees of freedom

Because a cable cannot sustain compression, (unless it is completely restrained
in the transverse direction) the unstable bifurcations at A.=0 will take place in
the plane A, = 0 and the post-buckling paths in this plane are undetermined.
'Buckling’ can thus take place at A in any form that is compatible with the
cable, i.e. as long as the kinematic condition of unchanged total cable-length is
satisfied. (See figures 2.6 and 2.7).

stable region

presiress bifurcation
poini(s)

- -

unstable region

Figure 2.7: Bifurcation into the buckling modes of a cable under axial com-
pression
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prestress effect
Clearly, even when a positive load increment is imposed (tension), the com-
putation will meet difficulties at the start of the analysis. One way to avoid
this starting problem is to start from a given pre-stressed situation. Giving a
prestress means that the cable is brought into a stable state that is part of a
stable branch connected with the undeformed state. In this stable region dis-
placements in the transverse direction will not lead to instability, while from the
figure it becomes obvious that in the unstable region transverse displacements
will lead the cable into one of the many (unstable) paths (w # 0). The effect
of prestress is illustrated in figure 2.7.

However, as will be discussed in subsequent chapters, pre-stressing a cable
is not always a practical option in order to obtain the desired results and in
some cases it leads to modeling problems.

2.3 Transverse singularity

In the previous section attention was given to the physical stability aspects of a
continuous cable under compression. This section will extend on the singularity
aspects of the discretized cable.

Recall from the previous section the (continuous) cable submitted to com-
pression. Each point along this cable has transverse degrees of freedom. As
a continuous cable is considered here, we are dealing with an infinite number
of (transverse) degrees of freedom. Consequently, if the cable is not completely
restrained in the transverse directions the cable will become unstable due to
its negligible bending stiffness. (See section 2.2). By restraining all transverse
displacements along the cable, i.e. , by placing the cable in e.g. a 'tube’ the sys-
tem is entirely stabilized (!), meaning that the cable is then capable of resisting
the compressive load.

Figure 2.8: Discretized cable section

Next, consider the discretized cable, see figure 2.8. All nodes in between the
two outer nodes, which are connected to the 'fixed’ world, will be referred to as
’interior nodes’ in the sequel. Discretization of the cable into a finite number
of elements results in a finite number of nodes along the cable. The behaviour
of the cable is then described by determining the displacements of each node
by some numerical solution procedure. (See also chapter 3).
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This means that the infinite number of degrees of freedom of the continuous
cable has now been reduced to a finite number of degrees of freedom at the
nodes. Consequently, in order to stabilize the discretized cable when submit-
ted to compression, it is required to restrain the (finite number of) transverse
degrees of freedom of the interior nodes.

However, in many cable-structures these degrees of freedom are not or may
not be restrained resulting in a multiplicity of singular values equal to the
number of (un-restrained) degrees of freedom that represent the transverse de-
formation of the cable. These singular values appear in the stiffness matrix at
corresponding positions yielding a singular stiffness matrix.

The tensionless state of a cable, including the involved singularities as de-
scribed above, may occur in different situations. The situations most likely to
be encountered, will be described in section 2.4.

2.4 Cable properties

To set out the borders for the class of structural problems that have to be solved
by use of the cable element, an evaluation must first be made of the problems
that may be encountered. The following conditions must be satisfied:

(i) The load-displacement curve is nonlinear (geometric nonlinearity). This
requires proper evaluation of the required (nonlinear) equilibrium equa-
tions and tangential stiffness matrix. See also chapter 3.

(ii) The unstretched lengths of the cable members are initially unknown.
These must be obtained from the initial stresses if these are given.

(iii) The option must be available of applying the external loads by use of
prescribed force or prescribed displacement. Obviously, the results must
be consistent for either option.

(iv) Some cable members may become slack during the deformation process
as it assumes it’s deformed shape. The tensionless state of a cable is an
undefined configuration and hence a formulation must be found to enable
continuation of the computation.

(v) If there is no tension in the cable members in the initial state , the ini-
tial state may be undefined and can not be used as initial state in the
computation.

(vi) As many constructions consist of different components, another require-
ment is that the cable element must be compatible with other structural
elements such as beams and shells.

To enable proper analysis for the situations described above, methods must be
found to overcome these problems. In order to do so a more extensive evaluation
of these problems is discussed in this section.
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The implications involved with the actual implementation into the element
routine are discussed in detail in chapters 5 and 6.

(i)

(i)

provide B2CONT routine

Obviously, the most elementary condition the element (routine) must obey
is that it must provide the B2CONT routine with the expressions re-
quired to perform the continuation analysis, i.e. the tangential stiffness
matrix and the nonlinear equilibrium equations (see chapter 3). Most
importantly, the cable element must be implemented such that singular
situations are dealt with in a satisfying manner. The main aspects that
have to be taken into consideration for this purpose are described below.

Also, in order to enable dynamic analysis such as linearized vibrations
around stable states and transient analysis a mass matrix definition must
be provided.

pre-stress option

The importance of pre-stress as a very acceptable and obvious way to
avoid singularity problems at the start of an analysis has become clear
in the section 2.2. Therefore it is essential that a pre-stress option is
available. By Hooke’s law for linear elastic materials the following stress-
strain relationship holds in the pre-stressed state:

op = F (2.11)
where for the strain:
-1
go =22 (2.12)
lo

see also the strain definition in section 4.2. In the initial pre-stressed
state, [j represents the deformed length due to the pre-stress and I —
Iy the corresponding elongation. When performing an analysis with an
additional external load the analysis will start from this initial pre-stressed
state and the cable will deform to a total deformed length I, resulting in
a total stress of

o=E (l ;010) (2.13)

Comparing this to eq. (2.11) the additional term due to the applied
external load is seen to be:

oc—ocy=FE (l ;050) (2.14)
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(iii)

(iv)

Pre-stress can be applied to an element by defining an initial cable length
lp or directly by defining an initial (pre)stress og. To allow proper evalu-
ation of the deformed configuration of a cable construction submitted to
external loads, it is desirable to have the total stresses and displacements
computed explicitly. This means that independently of whether the pre-
stressed state is prescribed by Iy or directly by go, lo and [ have to be
available to enable computation of the total stress, see eq. (2.13).

The most convenient way to achieve this is to compute the initial (un-
stressed) length lp for both cases. Hence, when the pre-stressed state
is prescribed by ly, this value is stored directly for further computation.
However, when oy is given, lp is first determined from

Iy
+1

ly= (2.15)

tala

where-after it can be stored for further computation. The total deformed
length I can be computed from the given node co-ordinates and the com-
puted displacements, see section 4.5.

The equilibrium equations and the tangential stiffness can thus be de-
scribed unambiguously in the remainder of the analysis in terms of the
initial length lo.

Obviously, the results of identical models submitted to identical load-
cases must coincide whether initial stresses or their corresponding initial
lengths have been specified. A similar condition holds for the option of
applying load-cases by prescribed force or prescribed displacement, as will
be discussed in the next part.

prescribed loads versus prescribed displacements

Another essential option that must be available through the implemen-
tation of the cable element is the definition of load-cases by prescribed
forces and prescribed displacements. It needs no argumentation to re-
alize that similar to the pre-stress option described above, the results
must coincide for identical problems, independent of which choice has
been made to define the load-case. When the external force has been pre-
scribed, B2CONT will determine the corresponding nodal displacements
and vice-versa. The relationship between prescribed loads and prescribed
displacements will be treated in section 3.2.

cables as part of a construction

By quasi-static analysis of a multi-cable construction like the mast of a
sailing ship or a cable suspended bridge submitted to external forces, one
can determine the deformations and internal stresses. However, as these
constructions often consist of several cables discretized into several cable
elements, it is not unlikely that during the deformation process one or
more cable elements become tensionless (for a number of load-cycles) and
hence no longer contribute to the stiffness of the structure as a whole.
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To illustrate this, consider a simple cable construction as presented in
figure 2.9. The cables are all given a small prestress to initialize the
computation. During the deformation process the cables 1 and 2 are
stretched into a state of tension, while cable 3 becomes tensionless and
no longer contributes to the stiffness of the construction. This state is
represented by position 'II’ in the figure.

Figure 2.9: Cable construction illustrating negative stress in one cable du-

ring the deformation process

Hence:

I >,
12 > 102
I3 < 103,

where /; represent the deformed lengths, and Iy, the initial undeformed
(and tensionless !) lengths.

As long as the remaining parts of the structure can carry the loads, the
construction will not collapse. More precisely stated, the 'slack’ cables
merely carry their own weight due to the presence of gravity, adapting
a sagged configuration. As the weight of the cables is generally small
compared to the external loads involved, the effect of gravity and the
corresponding small tension in the slack cables can be neglected. This
is an acceptable simplification which reduces the required computation
time and the time required to define the model. Numerically however,
this leads to the singularity problems as described previously.

Obviously, it is not desirable for the computation to stop due to one or
a few tensionless cables, while the construction as a whole is still capable
of resisting the external loads. If the incremental increase of the external
load F is continued, the structure will continue to deform accordingly
(position 'III’). As a consequent, cable 3 will re-adapt a state of tension
(I3 > ly,) for sufficiently large deformations, see figure 2.9. Naturally, such
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large deformations will only occur for cables with very low tension stiff-
ness. The example is merely intended to illustrate a possible deformation
process of a multi-cable construction.

To establish continuation of the computation for similar cases, several
options were considered. An evaluation of these options will be discussed
in the sequel of this report.

problem of initial unloaded condition

Consider a simple example of a cable suspended between two single sup-
ports submitted to gravity, resulting in cable sag (see figure 2.10). This
is the most elementary problem involving singularity that has to be sol-
vable. The initial length and mass distribution of the cable are given.
The distance between the supports is fixed and equal to the initial length
lp of the cable. This sagged position can be determined by incrementally
increasing the gravity load from zero to g (= 9.81 [m/s?)).

However, as was stated in section 2.3 this will result in singularity pro-
blems at the start of the computation as the cable is initially stress-
free. Therefore it is necessary to define a prestress prior to imposing the
external loads.

Figure 2.10: Cable submitted to gravity resulting in cable sag

With the available tools provided by the B2000 code and the present
element routine, this problem can be solved by defining an indirect load
path which results in the same end configuration. This is possible since
only conservative load-systems are considered.

See figure 2.11. To enable the computation to start, the cable is pre-
stressed by a small prescribed displacement Au. (Note that a prestress
can also be established by prescribed loads. In this case it is more con-
venient to use prescribed displacements). Transverse stiffness is now in-
troduced due to the pre-stress and thus the gravity load can be applied
incrementally. By finally reducing the initially introduced elongation Au
back to zero, the desired end configuration as defined in figure 2.10 is
obtained.
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Figure 2.11: Computation of cable sag using prescribed displacements for
initial elongation

Obviously, the described method is rather inconvenient and difficulties
arise as the model is defined. Also, in many cases the cables are part of a
larger structure and thus connected to other parts of the construction.

Executing an analysis with an initially pre-stressed state will thus result
in some practical geometry definition problems. For these reasons it is
desirable to enable direct superposition of the external loads to an initially
unstressed cable with given geometry. Several options to achieve this will
be discussed in the chapter 6.

(vi) compatibility with other elements
Finite element models of constructions generally consist of various diffe-
rent elements like rods beams and shells. Hence, it is essential that the
element to be implemented is compatible with the other elements present
in the B2000 code.

Note that contrary to the situations described in (v) and (iv), some properties
described above do not necessarily involve negative stress situations ((i), (i),
(#14), (vi)). The modifications required to establish proper cable behaviour for
tension cases will first be discussed in chapter 5. The tensionless states require
a more extensive evaluation. Chapter 6 will present several options to overcome
the problems involved, illustrated by example problems where necessary.




Chapter 3

Solution method

Typical phenomena occurring with the analysis of stability behaviour of struc-
tures are critical points and bifurcation points. The locations of these points
t in the solution sets have been of considerable interest for many years and so
several solution techniques have been developed to locate these special points
t on the solution curve.

One solution technique that is particularly interesting for the non-linear
. analysis of finite element methods is the path following technique, [14], [15].
This technique is based on continuation methods, which make use of predictor-
correction procedures. As the technique follows the solution curve, the limit

points and bifurcation points can be easily recognized.

In section 2.1 an illustration of the non-linear relationship between the
external force and the corresponding displacement was given. It was stated
that solving the non-linear equilibrium equations would require a small step
incremental solution technique to follow the path dependency. The nonlinear
solver B2CONT provided by the B2000 source code is based on the path fol-
lowing technique. The path following technigue is described in section 3.2 and
the B2CONT macro processor in section 3.3. A short description of the finite
element method will first be given in section 3.1.

3.1 The finite element method

Consider an arbitrary continuous elastic body submitted to some external con-
servative loading system, see figure 3.1. The external load F is a continuous
function of the position vector x. As a result of the imposed external loading,
the continuum will undergo some deformation u, which will also be a continuous
function of the position vector x.

Hence, the problem can be represented by the equilibrium equations and the
boundary conditions;

f(x;)\) =0 ++ boundary conditions (3.1)

The load can be imposed either by prescribed force or displacement by incre-
mentally increasing A:

=
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F(x)

Figure 3.1: Continuum submitted to conservative loading system

F = \F, (3.2)

u= Auo (3.3)

Note that if Fg and ug indicate the desired end values, A must be increased from
0.0 to 1.0. Both options must be available in the code. Prescribed displacements
are treated in subsection 3.2.5.

The possibilities of solving continuous problems in an exact way is usually
limited by the available mathematical techniques. With the introduction of
the digital computer, new possibilities to solve discrete problems were born
even for large numbers of degrees of freedom. For this purpose the continuous
body is discretized into a number of elements such that the discretized structure
approximates the continuous structure within acceptable margins. This requires
also discretization of the imposed external loads (F;) and the displacements (t),
see figure 3.2

Figure 3.2: Discretized body submitted to a conservative loading system

The method of finite elements is based on the principle of virtual work. Point-
wise equilibrium is replaced by a weak form. Equilibrium is then satisfied on
the average over a certain small domain of the body. Such a (small) domain can
now be seen as an element. It is sufficient to develop only one single element
capturing all the required properties.
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A discrete model of the body results from an assemblage of these elements.
This model has a finite number of degrees of freedom which are used to describe
the behaviour of the body.

The equilibrium equations of the elements are then assembled into one ma-
trix equation representing the set of equilibrium equations for the complete
structure [12]. The problem in its discretized state is thus defined by:

f(t;\) =0, feRy,teRy + boundary conditions (3.4)

These equilibrium equations form the basis for the solution technique discussed
in the following section.

3.2 Path following technique

3.2.1 Equilibrium equations

The deformation of the body is described by a set of N deformation parame-
ters. The equations governing this deformation are given by the (discretized)
equilibrium equations (recall section 3.1);

f(t;\) =0; (3.5)
where

f = [f1...fn]t = first variation
t = [t;...tn]¢ = computational degrees of freedom
A = generalized load factor

N = total number of unknowns t

The corresponding load-displacement curves can be obtained as curves in a
(N+1) dimensional space spanned by the (N) deformation parameters and the
load intensity factor A\. Assuming the undeformed configuration corresponds to
the condition

(t; ) = (0;0), (3.6)

the solution curve is described by eq. (3.5), see figure 3.3

3.2.2 Parameterization of solution curves

The equilibrium equations (3.5) represent N relations for N+1 unknowns, i.e.
[t1...tn] and A. Obviously, one extra relation is required in order to obtain a
solvable set of equations from which a specific point on the solution curve can be
determined. This auziliary surface is represented by fnx+1(t;A)=0. A specific
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equilibrium curve
f=0

el

Figure 3.3: Equilibrium curve

point on the solution curve can now be obtained by solving the following set of
equations:

f(t; ) =0

frs(t:X) =0 (37)

Several choices are possible for the auxiliary surface INs1:

(1)

(i)

The simplest choice is that of a horizontal auxiliary surface, i.e. parallel
to the deformation axis:

fNpr=2-n=0 (3.8)

where 7 is the prescribed value of the load. This is not always a convenient
choice, as can be seen from figure 3.4.

If the solution curve has a limit point L, the auxiliary surface does not
intersect the solution curves f(t;\) = 0 beyond the limit point. (i.e. if
A = ) represents a load level higher than the limit load level \ ). Conse-
quently, the part of the solution curve beyond the limit point cannot be
computed with this definition of the auxiliary surface.

A better choice would be to adapt the direction of the auxiliary surface
to the direction of the solution curve, see figure 3.5. The distance Ang
is an approximation for the path length AS between the points A and
B. The unit tangents at the points A and B on the solution curves are
represented by n’ and n% respectively.

For sufficiently small step-size it is now possible to follow the equilibrium
curve beyond the limit point. For this purpose the auxiliary surface is
defined as follows:
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A=1
(3]

0 equilibrium curve
L f=0

el

Figure 3.4: Limit point problem for auxiliary surface choice (i)

[n]_n. fIn*li=1
A A

equilibrium curve
f=0

el

Figure 3.5: Limit point problem for auxiliary surface choice (ii)

fver=nT(t—tg) +mA —Aa) — (n—n4) =0 (3.9)

The basic idea behind this continuation method, based on prediction-
correction principles is described in subsection 3.2.3.

3.2.3 Continuation procedure

Continuation methods generate a set of solutions representing points on the
solution curve of interest. Subsequently, the obtained information is used to
construct an approximation curve through these points. The main part of this
procedure is the generation of this sequence of solution points itself. The basic
procedure used by this method is illustrated in figure 3.6.
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equilibrium curve

k+1 =0

f
k=K-I; L N+1

N = path parameter

e

Figure 3.6: Continuation procedure

Some solution points k = 0,...,K are given on this solution curve. These points
are computed in a stepwise prediction-correction manner as will be described
in the sequel. For this purpose the following vector of unknowns is introduced
for convenience:

x = [ ; ] (3.10)

prediction

The first step is a prediction of a point P at a given solution point k. There are
various methods to make such a prediction. The most important methods will
be discussed briefly below.

* Euler prediction:
This prediction method requires the tangent to the path, which is obtained
by differentiation of eqs. (3.7) with respect to the path parameter 7,
yielding:

f’t{'.-l-f,)‘/'\ =0

. : . 3.11
Ivs b+ vt A= —fy (3.11)

with

The prediction P is then determined from the intersection of the auxiliary
surface with the chosen step of the path parameter in the direction of the
tangent.
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* Extrapolation methods:
The predictions constructed by extrapolation methods are based on pre-
viously obtained solutions. A prediction can be made by either linear
extrapolation based on the two previously obtained solution points or by
quadratic extrapolation based on the last three obtained solution points.
Note that the method of quadratic extrapolation tries to include the cur-
vature of the solution curve into the prediction.

correction

From figure 3.6 one can see that the prediction is generally not located on the
curve. Hence, the equations (3.7) are not satisfied by a small residual. This
situation can be represented by:

f(t,\)=r

Sy A7) =rv g (3.12)
By use of an iteration procedure the prediction will be corrected to the solution
curve. The successive corrections are forced to stay on the auxiliary surface.
When the point ¢ = I is converged to a point in the close vicinity of the so-
lution curve within a given error margin set by the convergence criteria, the
obtained point is accepted as the next solution point (k+1) and used for the
next prediction step, etc. The iteration method used for this purpose is the
Newton method. Basically, this method iterates until the residuals r and ry41
in egs. (3.12) approach zero and thereby indicates that eqs. (3.7) are solved.
A detailed description of this method can be found in ref.[15].

Thus in general, the path following technique requires the following expressions:

¢ the equilibrium equations,
f(t;\)=0 (3.13)
¢ an auxiliary surface,
It ) =0 (3.14)

e The prediction step requires the tangent to the path. This expression is
obtained by differentiation of (3.5) with respect to the path parameter
n. This introduces the term f¢ which represents the tangential stiffness
matriz. Hence, the following expression is also required:

fr Oe=5; (3.15)
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3.2.4 Special points

There are two distinctive types of equilibrium states along the solution curve
that have a special meaning; limit points and bifurcation points. These points
correspond to the instability phenomena as known from the classical elastic
stability theory. Both points will be discussed briefly in this subsection. Only
simple points will be considered, i.e. points at which only a single singularity
exists.

limit points
A limit point occurs whenever the load factor A reaches a maximum value. See
also figure 3.4. As can be seen from the figure the unit tangent n* in the limit

point L has no component in the direction of the load parameter A. From egs.
(3.11) this results in:

f,tc + f,)‘ -0=0 f’t =Kr (316)

As a consequence the stiffness matrix at the limit point becomes singular. But,
by choosing an appropriate auxiliary surface (3.14) this problem can be avoxded
and the system of equations can be solved.

bifurcation points

A simple bifurcation point occurs when two solution curves intersect. This
means that two unit tangents with different directions (n*; and n*;) exist at
such a point. See also figure 3.7.

equilibrium curve
f=0

Bifurcation point

e

Figure 3.7: Bifurcation point

Consequently, no unique solution for the tangent and other path derivatives
can be found at a bifurcation point. In practice, several methods have been
developed to follow the intersecting solution curve.(See refs. [14] and [15]) for
details).
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3.2.5 Prescribed displacements

It was mentioned in chapter 2.4 that the external loading on a body can be
prescribed by either force or displacement. For the method of prescribed dis-
placement the interesting issue arises of how to determine the vector f 5 in egs.
(3.11). The vector that represents the configuration space t* € Ry4,, can be
written as:

«_ | t _
t"T = [ tg ] yta=Ag (3.17)
with
t* e RN +m
t € Ry (3.18)
tg €R,

In (3.17) t represents the vector of non-prescribed displacements or computa-
tional degrees of freedom and t; represents the vector of prescribed displace-
ments.

The first of egs. (3.11) can now be written as:

£o(t*, NE+ At A =0 (3.19)
with
BE(t*,\) 8ty OF())
- Otd 2
=5, ar T o (3:20)
yielding
f’,\ = f,td (t*, )\)g + FO . (321)

In eq. (3.21) the component f¢(t*,)\) can be treated as the stiffness matrix
f£e(t,)) in egs. (3.11) and the term £, (t*, A\)g + Fo can be considered as the
vector £ in egs. (3.11). Notice the change in the stiffness matrix for prescribed
displacements.

3.3 B2CONT routine

The path following technique as described in the previous section is available
as the macro-processor B2CONT, which performs nonlinear static analysis by
calling a sequence of processors. An explanation of these processors can be
found in ref. [9].
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The prediction method, correction method, auxiliary surface etc, used for
the analysis can be selected by specifying some optional PCL-commands (PCL=
Processor Command Language), some of which will be described below.

auziliary surface
'The choice for the auxiliary surface can be specified by the PCL pathpar as
follows:

pathpar=0:
auxiliary surface parallel to the deformation axis, as described in 3.2.2,
part (i).

pathpar=1, 2:
auxiliary surface adjusted to the direction of the solution curve, using the
unit tangent n* to the solution curve.

actual prediction method that is used

The prediction method can be specified by the PCL command extrapolate.
Depending on the specified value the computation is executed by Euler predic-
tion, linear or quadratic extrapolation.

As long as one point on the solution curve is given, the first step will always
make use of an Euler prediction. The known point can either be the origin or
a solution point obtained from a previous computation (restart position). The
subsequent prediction steps will be performed in the following sequence:

extrapolate= 0 (linear interpolation)
As soon as two solution points are available, i.e. at the subsequent load-
steps, the prediction is performed by linear extrapolation as requested.

extrapolate= 1 (quadratic extrapolation 1)

As quadratic extrapolation requires three available solution points, the
prediction is continued by Euler-step prediction until three solution points
are known. As soon as three solution points are known, the subsequent
steps of the computation are made by quadratic extrapolation (method
1) as requested. The quadratic terms are ignored by this extrapolation
method [15].

extrapolate = 2 (quadratic extrapolation 2:default)

Similar to extrapolation= 1, the prediction will be performed by Euler-
step prediction until three solution points are known. At the next step,
when three solution points are available, the subsequent predictions will
be made by quadratic extrapolation (method 2) as requested.

extrapolate = 3 (Euler prediction)
All predictions are performed by Euler-step predictions as specified.
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step-size control

A proper control of the step-size An = 7 — 51* belongs to one of the crucial
aspects of continuation techniques. It is determinating for the rate of conver-
gence of the predictions and in fact essential to acquire an optimal usage of the
(available) computation time. The choice for step-size control as provided by
the B2CONT routine is based on the empirical formula:

_(1\* k_ k-1 . _ k-5
An—(z) (1] n ) with a = 1 (3.22)

Basically, this means that if more than 5 iterations are required for conver-
gence, the step-size will be reduced and if less than 5 iterations are required for
convergence, the step-size is increased. However, if the step-size becomes too
large and causes divergence, the step-size will be reduced to half its size and a
new prediction will be made. This reduction of step-size due to convergence is
not done at the first step. Consequently, the user must adjust the step-size if
divergence occurs at the first step.

The load-step can be specified by the user in the Analysis Directives Table
of the input-file (adir), by the parameter dpas for loadcase a and dpbs
for loadcase b. By giving the (optional) PCL command even, a constant
step-size will be used if allowed by the convergence criteria. A more detailed
description of the required input parameters and available options provided for
user-specification can be found in ref. [9].
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Chapter 4

Finite element formulation

In the previous chapter a short description was given of the path following tech-
nique and the corresponding nonlinear solver B2CONT available in the B2000
master code. For implementation of an element into the code the expressions for
the first and second variation are required, representing respectively the (non-
linear) equilibrium equations and the tangential stiffness matrix. Consequently,
the derivation of both the first and second variation of the potential energy of
a cable element will be treated in sections 4.5 and 4.6. For this purpose use
is made of the principle of stationary value of the potential energy. Prior to
determining these variations, the expressions are transformed to the discretized
finite element formulation.

4.1 Potential Energy Method

The total potential energy of a body generally consists of two parts; the internal
(elastic) potential energy or strain energy U and the external potential energy
V:

P=U+V (4.1)

The strain energy U can be represented by the following expression:

1
U= /@(sz,...,%y,...)dV = —/(ozex + oo+ Ty Yoy +..)dV
2 (4.2)

The strains are derivable from the displacement field u.

The second part of the total potential energy is the potential energy of the
external loads. The potential energy (V) of a given external force (i.e. with
given magnitude and direction) is determined by the opposite of the work W
performed by this force. By the theory of virtual work one can write:

6W=%%-5u=fg;t5u yU=X—X (4.3)
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with

Xp == original position

X = (current) position vector continuous case

fert = the vector of external forces

Any positive work done by the external force establishes a deformation of the
body. If the external force is taken away, the body strifes to resume it’s initial
natural (low potential energy) position. Accordingly, a positive work corre-
sponds to a negative change of external potential energy and vice-versa. Hence,
the external potential energy V is expressed by:

8V = —6W = —£T su ' (4.4)

With the external forces f.z; consisting of volume forces (f) and surface forces
(p), the external potential energy can be expressed by:

= - T — Tu .
V= /V (T u)dV /s (pTu)dS (4.5)

The total potential energy of an elastic body submitted to a conservative load
system can thus be written as a function of the displacement function u and
its derivatives with respect to the spatial coordinates, z,y, ..:

Ju

P= P(u, 5;, ...)

(4.6)
In these expressions, u represents the unknown (displacement) function, which
is a continuous function of the position vector x. By the theory of ref. [17] the
total potential energy P is stationary.

Consequently, according to the basic theory equilibrium is governed by a
stationary value of the total potential energy:

opP

JP_E-du—O (4.7)
Whenever such a variational principle exists, approximation functions can be
defined, such as is done by the finite element method. This involves discretiza-
tion of the continuous structure into a number of finite elements and conse-
quently, a discretization of the displacements and the external forces. This is
established through the definition of piecewise continuous displacement func-
tions (N(x)) as an approximation to the actual continuous deformation:

u = N(x)t (4.8)
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with t the unknown discretized displacements or generalized coordinates. Con-
sequently, the potential energy can be expressed in terms of t and the load
intensity parameter A, see also chapter 3:

P = P(t;\) (4.9)

After discretization, the equilibrium equations of the reduced form (4.9) can be
determined from eqs. (4.7) as follows:

IP(t, ) )
ot; '’

Substitution of (4.8) into (4.2) and (4.5) and subsequently into (4.1) and (4.10)
yields:

filt, ) = i=1,2,..N (4.10)

oP(t, \) 1%
filt,A) = /—_Bti v + o (4.11)
As the external forces f,;; are assumed not to depend on the deformations of
the structure, t, eq. (4.11) yields:

f(t, A) = fint(t, A) — fex (4.12)

Where f;,; represents the vector of internal forces. Note that the equilibrium
equations depend nonlinearly on the unknowns t and A. Recall also section 2.1
and chapter 3.

Next, the stiffness matrix is required in order to enable to solve the problem
by the path following technique as was discussed in chapter 3. Contrary to
the stiffness matrix used for solving linear problems, this stiffness matrix is
not constant but is dependent on the current configuration, t. The tangential
stiffness matrix can be obtained by differentiation of the equilibrium equations
(4.12) with respect to the discretized displacements t. The stiffness matrix is
useful in determining whether a solution t is stable or not. According to the

theory of stability of conservative systems a system is stable if the quadratic
form:

10%P(t; ))

1
== At: = = f; AtiAt; 0,5 =1,2,..N
2 2 6ti6tj AtlAtJ 2fl,] iLaby 2¥)

(4.13)
is positive definite. If (4.13) is semi positive definite, the configuration t isin a

critical state, else it is in an unstable state. The tangential stiffness matrix is
now identified as:

2 .
gy - PPN 06

f, i,j=1,2..N (4.14)

atiatj - Ot; ’
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In the cases discussed here, the stiffness matrix is a symmetric matrix:

O?P(t;))  8%2P(t;))
T = =

= 1 =1,2,...N .15
Ot;0t; Btjati i (4.15)

which is a useful property in further derivations.

4.2 Strain definition

Figure 4.1: Strain definition

Before working out the expression for the potential energy we require an expres-
sion for the strain of a one dimensional body, i.e with only tangential (tension)
stiffness. Figure 4.1 illustrates the deformation of a flexible cable from an arbi-
trary reference position (I) into a deformed position (II), where

r(s) represents the position vector of the undeformed state
R(s) represents the position vector of the deformed state
u(s) represents the deformation or displacement vector

s represents the arc length along the undeformed cable

S represents the arc length along the deformed cable.

Note that the position vectors are defined with respect to the global reference
system, E3. From the figure we have:
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R(s) = u(s) 4+ r(s) (4.16)
Hence
OR(s) _Or(s) , Ou(s)
ds ~  Os + Js (4.17)
where
r(s) =[z(s)er +y(s)ez + z(s)es]”, e € Ej (4.18)

The displacement vector u(s) is assumed to be a smooth function, which means
that u(s) can be differentiated with respect to the arc length s. The position
vector R(s) depends on the arc length, s, but can also depend on additional pa-
rameters like time, load or space. Note that in accordance with the Lagrangean
description, both position vectors R(s) and r(s) depend on the arc length s
along the undeformed cable.

As a measure of deformation (or elongation), the most commonly used def-
initions for strain are the Engineering strain and Green-Lagrange strain, both
according to the Lagrangean description. The Engineering strain ¢, is defined
as

dS —ds
€e = ds

(4.19)

and the Green-Lagrange definition as:

_ 1(ds) - (ds)?

5gl - 2 (d3)2 (4'20)

It is only for large strains that the two strain measures yield different results.
Large strains inevitably involve additional complications, e.g. plastic defor-
mations and will not be considered in this report. For small strains it is not
relevant which strain definition is used.

In the case of implementing a cable element with string properties, the math-
ematical implications are limited to a minimum, as we are in fact dealing with
a one dimensional problem.

The first and second variation in the present element routine are based on
the Engineering strain definition, so that this definition will be used through-
out this report. Figure 4.2 represents a partial enlargement of the deformed
state in figure 4.1. Taking dS infinitesimally small, the arc length dS can be
approximated by the length of the incremental position vector, dR. Hence:
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I

Figure 4.2: Unit tangent

(dS)2 =dR - dR
Similarly, for the undeformed state
(ds)? = dr - dr

Taking the partial derivatives to the undeformed arc length s and rewriting
yields:

JR R
(dS)? = (5= - ==)(ds)? (4.21)
and
(d)? = (5 - 20 (as)? (422)

Clearly, (4.22) is only true if r(s) obeys the following rule

or or ]

ds 0s
Any vector for which this property holds is called a unit tangent, in this report
represented by n;

(4.23)

=n(s) (4.24)

21

Rewriting (4.21) yields:

(dS)2 _OR R

G- % (4.25)
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Substitution of (4.25) into the Engineering strain definition (4.19) yields:

OR OR
Ee = E . E -1 (426)
Substituting (4.17) yields:
or Ju, ,0r Ou
Ee—\/(-a-;-i-%)'('a—;-l-a)—l (4.27)

Finally, working out the inner-product and substitution of egs. (4.23) and (4.24)
yields:

se:\/1+2n(s)--g—‘:+g—l:-g—z—'l (4.28)

4.3 Total Potential Energy of a cable element

For a perfectly flexible, one dimensional element like a cable (string) element
with linear material properties, possessing only tension stiffness and thus in-
capable of resisting compression, shear or bending forces, the total potential
energy is represented by:

P=%/Ee2dV—W e>0 (4.29)
v

Where W represents the work done by the external forces, if present. E repre-
sents Young’s modulus, € the strain and V the total volume of the body.

Implementation into a finite element software program requires the dis-
cretized equilibrium equations. Before substituting the expression for the strain
Ee , €q. (4.28), and working out the first and second variation, the total potential
energy expression will be discretized. '

4.4 Discretization

This section deals with the applied discretization, required to allow direct imple-
mentation of the discretized equilibrium equations and the tangential stiffness
matrix into the B2000 code.

The first step in discretization is to mesh the continuous cable element into
n elements, see figure 4.3. Each element is considered separately to determine
its tangential stiffness matrix and the equilibrium equations. To obtain the
expressions for the complete structure, the contributions of each element are
assembled by B2000 in the conventional manner, see also ref. [12].

Consider a single straight two-node cable element with corresponding dis-
placements as presented in figure 4.4, placed in the global reference system in
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isl

Figure 4.3: Discretization of a cable

an arbitrary direction. The deformed element is also considered to be straight.
Obviously, many other options for the deformed shape are possible, but con-
sidering a straight element offers a simple mathematical derivation and direct
implementation into the code, without essentially affecting the reliability or
accuracy of the results.

2 global

X global

Figure 4.4: Discretization of one cable element

The global displacements are represented by U; and the local displacements by
u,v,w. The projections of the cable length on the global axes are subsequently
lzy ly, and I,. Furthermore the initial length of the cable element is /; and the
deformed length is I. The position vector r(s) can be expressed in terms of the
position angles ay, as and as:

!
s €os o 7
r=| s cos ap =g % (4.30)
8 Cos « L
¢ 3 global lo global
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where

Iy =20~y
| ly=y2—1m
i L =2 — 2 (4.31)

lo = \/l%'{"l!z/—i-lg

The deformation of the cable element in the directions of the local reference
i system is approximated by a linear shape or interpolation function. This func-

tion depends on the position parameter of the undeformed cable s, see figure
4.5, and expresses the deformation in terms of the nodal displacements.

Conventionally, the displacement functions are defined with respect to the
local element system and expressed in terms of the local nodal displacements
a. The linear interpolation functions of an element ¢ are determined from:

or, in matrix notation:

uld(s) = (1 - %)a?) + %aﬁ?l (4.32)
where
u(s) \ , )
uds) =1 v(s) and a® = ( {i’ ) (4.33)
’LU(S) ai+1
with
| ui(s) \ ¥ | uipa(s) | @
agl)(s) = 'Ui(S) , ag?l(s) = ’Ui+1(8)
w; (8) Wi+1 (S) (4.34)
| yielding '
u(s) \ @ 1-¢ 0 0 ¢ 00 vi
u@(s) = ( v(s) = 0 1-¢ 0 0¢ O i
w(s) 0 0 1-¢ 00 ¢ :j'i: 4.35)
Wi+1
with s
¢= T
0

u®(s) = N(s)al (4.36)

o
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Figure 4.5: Linear interpolation of the deformed cable element

However, as we are dealing with a straight, two-node, one-dimensional element
with linear displacement functions, it is obvious that these local displacements a
can be directly transformed to their global equivalents U, while conserving the
same interpolation functions. The interpolation functions can then be directly
determined from:

. s s .
UP(s) = (1~ E)U,(-’) + EUEQI (4.37)
where
Ul (1)
U e
‘ U @) U2 . U(S) %)
U(’)=(U’ ) = U3 and  UW(s) = v(s)
i+1 4
Us W(s) / (4.38)
Us
yielding:
U\ @
| us)\? f1-¢ 0 0 ¢ oo g?
UG = v(s) = 0 1-¢ 0 0¢ 0 03
W(s) 0 0 1-¢ 00 ¢ U“ 4.39)
5
Us
or, in matrix notation:
U@(s) = N(s)U®D (4.40)

Having applied the above described discretization, the strain expression, eq.
(4.28) can be rewritten in a discretized form;
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ge = V1+2r'TN'U + UTNTN'U - 1 (4.41)

Where ' indicates (partial) differentiation with respect to the position param-
eter s. Consequently,

COs 1 %
r'=| cosa | = % (4.42)
cos a3 Lz
lo
and
1 -1 0 0 100
N'=l— 0 -1 0 010 (4.43)
°\' o 0 -1001

Note that for convenience the super-index () indicating the element id. is
omitted as will be done in the sequel of this report. Substituting eqs. (4.42)
and (4.43) into eq. (4.41) and working out the details, yields an expression for
the strain in terms of the discretized global displacements U:

Ee = \/1 + -127 [lz(Us — Uh) + Ly (Us — Ua) + 1.(Us — Us))
0 (4.44)

+'l‘1§ [(U4 — Ul)2 + (U5 - U2)2 + (Us — U3)2] -1
0

Note that for the case of a straight cable element as discussed in this section the
position parameter s corresponds with the local x-axis along the undeformed
cable, as can be clearly seen in figure 4.4.

4.5 First variation

Recall from section 4.3, eq. (4.29), that the total potential energy for a cable
element is given by

P=1/E52dV—W
2 )y

Taking the first variation of the potential energy, according to egs. (4.11) and
(4.12) of section 4.1, with respect to the discretized displacements U, yields

0P [ e a4 (4.45)

f=av=), "0 au

with
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oW
‘bTJ-‘ = lext
where f.;: represents the vector of external forces.

Hence, the nonlinear equilibrium equations for the cable with only axial (ten-
sion) stiffness are now represented by:

(4.46)

. EE(,?—IEJAds - fezt'= 0 (4.47)
Implementation of the element routine within the B2000 code requires only
the first term of the equilibrium equations, representing the vector of internal
forces f;¢. Consistent to the terminology used in B2000, the first term of the
equilibrium equations shall be referred to as the first variation in the sequel.
The vector of external forces is directly constructed by B2000 from the defined
load-cases in the input-file.
As the modulus of elasticity ,F, and the cross sectional area, A, were both
assumed constant and also the strain is independent of s (see eq. (4.44)), the
integrand is clearly not a function of s and can be computed separately as

/ ds=1Ip (4.48)
lo

resulting in

Oe
fint = EAlOeB_I—J- (449)
to represent the first variation. Recalling the discretized strain expression,
(4.44) and differentiating with respect to the discretized displacements, yields

the following derivatives

=t (Fewrfev-men) e
=5 B (%(—ly) + (U - B)-1) s
@t (R pet-tn) e

20)+ 7 0 - U)) (459
0

1
FARE A 2'(10
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5?255_ - %( B) i (%(zy) + ilg (2(Us - Uz)(l))) (4.54)
6_‘9U€; — %(B)"% . (-l%(l,) + l—lg (2(Us — Us)(l))) | (4.55)

where

2
B=1+ Z [l(Us - Th) + ly(U5 —U) +1,(Us — Us)] +
0

7 0=V + - 0P+ G-t (a59

Back-substitution into eq. (4.49) yields:

—(lz + (Us = Uy))

—(ly + (Us — 1))

—(:+Us-U3)) | 1
(:+({Us—W)) | 12vB
(Iy + (Us — U3))
(lz + (UG - U3))

Rewriting VB as {0— and working out the details, yields for the first variation
vector

fint = el fvar(i) = EAely
(4.57)

el fvar(l) I

el fvar(2) ~ly

elfvar(3) |  EAe | -L;

elfvar(4) |~ 1 [ (4.58)
el fvar(5) o

el fvar(6) [

where

l;=$2—1'1+U4—U1
ly=y2~y+Us—Us (4.59)
l;=22—Z1+U6—U3

represent the projections of the deformed cable length I:

L=/ + ()7 + (1) (4.60)

The above obtained first variation vector is as such implemented into the orig-
inal element routine of 52ep39.F. (see app B). Note that the internal nodal
reaction forces due to the stress in the cable are easily recognized in the first
variation vector (force = stress - cross sectional area); decomposed in the
global directions by the direction cosines, see also figure 4.6.
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Yelobal

Xelobal

Figure 4.6: First variation

4.6 Second variation

As stated in the previous sections, the tangential stiffness matrix, Kt is repre-
sented by the second variation of the total potential energy, eq. (4.14).

The second variation is obtained by taking the derivatives of the components
of the first variation vector with respect to each of the discretized displacements
Ui, yielding a 6x6 tangential stiffness matrix in the case of a two node cable
element placed in a 3-dimensional space and thus possessing a total of 6 de-
grees of freedom. Recall eq. (4.14). Hence, the tangential stiffness matrix is
determined as follows:

o o ok
Kr=| 0 5U§ LG (4.61)
9Fs 9Fs  OF
auy aUs Bus
Where for the diagonal components:
OF, 0F; EA ([ /[1z\?
— T e—— T er— evad "‘A A .
30, oUs - 1o ((z (1-4A)+ (462)
OF, OF; EA l;)2
el Rl Nl N ) —A)+A X
a0, ~ U5~ Iy ((l (1-4A)+ (4.63)

OFy _ 0F; _EA
AU;  dUs ~— 1

(fl—)z (1-A)+ A) (4.64)




.37_7‘ - 3Uj+3 - oU; - _C')Uj+3
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and for the lower off-diagonal components:

where

o __OR_ 0R_0R_FA((%) () _u)
U, oU, aU, oUs 1o \\1/)\1 (465)
OF;  OF;  0Fy _9Fs _EA ((l_,) (1_) a _A)>
au, aU;  aUs oUy I \\1/)\!I (4.66)
OFs _ OF
-'a—U—l = 8U1 (467)
OF; _OF, _ OF; 98F; _EA ((l_y) (l_> (I—A))
U, 0U, 08Us dUs lop \\ 1)\ (468)
OF;s __OF,
0 = A (4.69)
OF; _ OF;
T = "5 (4.70)
A=zl (4.71)

l

The components of the tangential stiffness matrix can also be written in index
notation as follows:

and

with

OF;
au;

oF,
aU;

*\ 2
=§lﬁ((%> (1——A)+A> i=j i,7=1,23
0 (4.72)

=SB F)u-0) 145 - (@)

OF, OFys _ OFys _ OF,

(4.74)
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These components are as such implemented in the element routine 52ep39.F,
see appendix B. Take notice of the fact that the matrix is symmetric and hence
only the upper or lower triangle components need to be specified.

Summarizing, the following assumptions have been made in order to determine
the first and second variation components:

- The stress-strain relationship obeys Hooke’s law for linear elastic defor-
mations, i.e. 0 = Ek.

- The deformations remain within the linear elastic range during the whole
nonlinear computation.

- The cross-section, A, and Young’s modulus, E, are constant throughout
the element and remain unchanged during the deformation process.

- Only conservative load systems are considered, see also section 2.1.
- The external loads are not a function of the displacements.

- Linear and smooth interpolation functions are used to describe the defor-
mation of the (cable) element. Note that this is also the exact solution
for a cable submitted to tension in quasi-static analysis.

Both the equilibrium equations and the tangential stiffness matrix are imple-
mented into the element routine (b2ep39.F).

The expressions for the first and second variation derived in this chapter are
valid for compression and tension states and can be used for the modeling of e.g.
pin-jointed trusses. However, these expressions may only be used to describe
the behaviour of the cable element for tension cases; i.e. o > 0. This is due
to the fact that a cable has zero compression stiffness and thus its behaviour
under compression cannot be described by the same expressions as for tension.

Setting the stiffness matrix equal to zero for compression will inevitably yield
a singular matrix and consequently the equilibrium equations cannot be solved
for the unknown displacements. Alternative formulations for these required
expressions must be found for the case of negative stress. See also chapters 5
and 6.




Chapter 5

Present formulation

It was stated in chapter 1 that the B2000 software package already provides a
nonlinear cable element. This chapter will discuss a selection of desired proper-
ties that are to be checked, modified (activated) and/or implemented into the
existing element routine. This requires a proper evaluation of the possibilities
offered by the present cable element. Section 5.1.2 gives an extensive evaluation
of the present element routine.

The first elementary modifications to the element routine are discussed in
section 5.2. These modifications involve corrections to guarantee correct im-
plementation of the first and second variation definitions as derived in sections
4.5 and 4.6. The corrections only affect positive stress computations. Some ex-
ample problems are treated to test the behaviour of the cable in positive stress
situations. Recall section 2.4.

The negative stress states require a new approach to the definitions of the
first and second variation. Aspects involving these singularity problems and
possible options to approach these problems will be discussed in the next chapter
(chapter 6).

5.1 Validation of existing element routine

5.1.1 Validation of b2epv39.F

The pre-variational element routine 52epv39.F, (see appendix A) computes the
pre-variational data for a two-node cable element. These data define the initial
geometry of the cable element and are required for computation of the first
and second variation in 52ep39.F. As the pre-variational data are constant,
b2epv39.F need only be called once at the start of the quasi-static computation.

The final values of the pre-variational data are stacked in the array elprev(i) as
follows:

elprev(1) = initial length in global x-direction, I,
elprev(2) = initial length in global y-direction, I,
elprev(3) = initial length in global z-direction, I,

65
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elprev(}) = initial (i.e. un-stressed) length, [,
elprev(5) = initial cable cross sectional area, A

The current formulation does not offer any possibility to start the computation
from a zero-stress configuration and thus a prestress must always be defined.
Appendix C presents the algorithm part of the pre-variational routine which is
essential for the prestress option. The node co-ordinates with respect to the
global reference system are represented by x; and x, for respectively node 1 and
node 2. The components of the length in the global directions are obtained by
x2—x). The directive ecckern(1) is given a negative value to indicate prescribed
initial length lp and a positive value to indicate prescribed "prestress’.

The deformed length [ at zero load-increment, I(0), will be referred to as Ths
in the sequel of this report. This is the (initial) length which follows from the
given node co-ordinates as defined by eq. (4.31) in section 4.4. Notice that for
zero prestress the initial length Iy equals the length at zero load-increment, I§,
yielding Iy = [§.

Prestress can be imposed by prescribing an initial length Iy smaller than the
length determined from the initial node positions, l3, or by directly prescribing
a ’prestress’ value. It must be remarked that in the input-file the parameter
prestress must be given as a force, i.e. in Newtons, to be compatible with the
definitions used in the original pre-variational element routine b2epv39.F. Only
either value must be passed on to the element routine b2ep39.F, to allow an
unambiguous algorithm definition of the first and second variation.

As the total stress and strain are expressed in terms of the initial length, ,
and the deformed length, [, the most convenient choice for this purpose would
be to use the initial length ly. 82epv39.F computes the initial length for either
prescribed initial length or prescribed initial stress and stores this value in the
array component elprev(4), ready to be read by the element routine b2ep39.F.

It must be remarked in this context that the different meanings of the word
'prestress’ as used here, may lead to confusion. It has been attempted through-
out the remainder of this report to limit this confusion as much as possible by
using different fonts: In general the input parameters are printed in boldface
type (e.g. prestress, 10, mass, etc) and variables in the element routine are
printed in italics (e.g. ae, itens, etc.).

Notice that a rod element is implicitly defined in these routines and distin-
guished from the cable element by adding a minus sign to certain variables.

5.1.2 Validation of b2ep39.F

Similar to the pre-variational routine a flow-diagram is presented of the existing
element routine, see appendix D. Contrary to b2epv39.F, which is called only
once at the start of each quasi-static computation, the element routine b2ep39.F
is called by B2ZCONT after each load-step. Recall also chapter 3. The per-
formed analysis depends on the values of the directives dirkern(1), dirkern(2)
and dirkern(3).
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These directives direct the computation as follows:

dirkern(1) : executes nonlinear analysis if set to 1 and
linear analysis if set to 0

dirkern(2) : computes first variation if set to 1

dirkern(8) : computes second variation if set to 1

First the items common to first and second variation are computed, e.g. I, lj
and r’ (direction cosines; see eq. (4.42)). For linear analysis the pre-variational
routine needs to be called explicitly, whereas for nonlinear analysis it is called
implicitly by the B2CONT routine. If both directives dirkern(3) and dir-
kern(1) are set to 1, the element routine computes the second variation for the
geometric nonlinear case, as specified in section 4.6. Before actually computing
the second variation the element is checked for negative stress.

It was explained in chapter 2 that if the cable is in a state of tension it is in a
stable condition. By reducing the tension to zero the cable becomes unstable.
The cable can then take on any arbitrary configuration as long as it satisfies
the kinematic condition of unchanged total arc length (¢ = 0). The tensionless
state sets the lower bound of possible conditions for the cable; a state of negative
stress does simply not exist. Obviously, alternative formulations must be found
for computations with £ < 0.

First, let us consider the tensionless state, i.e. the transition between tension
and compression. The condition of the stiffness matrix for the tensionless case
will be illustrated by two simple 2-dimensional examples. See figure 5.1. Both
figures represent a simply supported cable modeled by two cable elements. In
the left figure the mid-node is 'free’ yielding a total of 3 (computational) degrees
of freedom. In the right figure the lateral degree of freedom at the mid-node is
removed.

In accordance with sections 2.2 and 2.3 the stiffness matrix of the problem

'presented in the left figure will be singular and in the right problem the stiffness

matrix is definite as the degree of freedom causing the singularity is eliminated.
These situations will be illustrated by considering the tangential stiffness ma-
trix as derived in section 4.6.

U,=0
Uy=0 Uy . Us=0 Uy=0 Us=0
11 U=0 I R 51 us e 1l uy=o 2% v il oy F,d
th T iii i
(a) Singular stiffness matrix (b) Definite stiffness matrix

Figure 5.1: Simple cable problem to illustrate singularity at mid-node




68 CHAPTER 5. PRESENT FORMULATION

At the instant the initial elongation is reduced to zero, the deformed length [
becomes equal to the initial length l. Recalling the expressions in section 4.6,
this means:

l=1
e=0
A=Ehk =9
=1,
=1,
=1,

This yields the following assembled stiffness matrix (with the third degree of
freedom at each node omitted), see eqs.(4.62) to (4.70):

-
0
2y
0
-y
0

l 2
-2

Clearly, if only Uy, U and Us are eliminated, (figure 5.1(a)) the stiffness matrix
is singular for Uy. Eliminating Uy as a freedom restores the regualrity. Note
also that defining a prestress means that [ > Iy, yielding non-zero A resulting
in non-zero values at the diagonal of the stiffness matrix; the singularity is then
eliminated.

(5.1)

cocococoo
ocoococoo
| =
o2 ol o
cococoo

with

The existing element routine establishes this by setting A equal to zero for the
second variation computation. As negative stress conditions do not exist, the
stress in the cable remains equal to zero for further compression (¢ < 0). This is
established in the element routine by treating the cable at zero stress for values
€ < 0. This is conform the physical reality, but does not allow computation of
situations involving tensionless states as described in section 2.4.

Additionally, the computation of the first variation in the existing element
routine is continued with negative stress values. Obviously, this is intolerable
for a cable with no bending stiffness and thus requires some modifications. The
modifications required for the proper computation of the cable in tension is
discussed in the following subsection. Modifications with respect to tensionless
states requires a more extensive evaluation. This will be discussed in chapter
6.
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5.2 Modification to present element routine

modifications with respect to a proper evaluation of the first variation
Recall the directives dirkern(i) described in section 5.1.2. These directives are
alternately set to 1 and 0 in subsequent calls as indicated below.

dirkern(1) 1 1 1 1 1
dirkern(2) 1 0 1 0 1
dirkern(3) 1 1 0 1 0

Clearly, all directives are set to 1 only at the first call to b2ep39.F. This sit-
uation only occurs at the first call of b2fact, [9],(8], requesting computation
of both first and second variation for non-linear analysis. Only at this call an
error occurs in the computation of the first variation. See the flow-diagram in
appendix D.

The stiffness parameter ae = AE is assigned a new value ae = ATOQ prior
to second variation computation. Although the second variation is computed
correctly with this new value, ae has an incorrect value for first variation com-
putation. In order to guarantee correct computation of the first variation if the
directives dirkern(3) and dirkern(2) are both set equal to one the value of the
stiffness parameter ae must be restored to A - E.

The first variation in the origin is now computed correctly. In database
terms: the data sets VECTOR FVAR.GLOB.0 and FVAR.i.0 are now cor-
rect (i indicates the load-cycle number). See refs. [9] and [8] for a more detailed
declaration of these data sets.

modifications with respect to negative stress check

As can be seen from appendix D a negative stress check is performed only prior
to second variation computation. Obviously, such a check is also required prior
to first variation computation to avoid that the computation continues with
negative values for the first variation in case of negative stress.

Some basic test examples which comprise testing the prestress option and the
prescribed load/displacement options will be discused in section 5.3

5.3 Test examples

5.3.1 UN-symmetric triangular cable construction (testing present

example problem)

In the B2000 Processors Reference Manual, see ref. [9], an example problem is
given of static analysis of a simple cable construction. The construction consists
of two branches; each consisting of two cable elements. The cables are given
a prestress by prescribing the initial length lo (< I3) of the elements. Due to
the prestress in the cables a reaction force needs to be defined at the top-node,
to guarantee equilibrium of the pre-stressed state. The external load on the
construction is applied by superposition of an incremental load, or directly by
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incrementally increasing the value of the ’reaction’ force by a given increment
to a desired end value. The direct method can be applied anytime as long as the
imposed external load has the same direction as the reaction force. A separate
analysis is executed for the first three load increments after which a restart is
executed to increase the load to a large value (1000 N in this example).

The main purpose of this test example is in the first place to regenerate
the results obtained by the Modified Newton Raphson Method B2MNR in
the B2000 Processors reference manual using the B2CONT solver with the
element routine modified for tension. As stated in section 5.2, the correction
to the stiffness parameter ae for the initial prediction is not expected to affect
the numerical results much. ‘

Xg

Figure 5.2: Geometry of un-symmetric cable construction

model definition

Figure 5.2 shows the geometry of the model, specifying the applied co-ordinate
systems and the definition of the elements and nodes. The figure shows the
global-global system (g-g), the branch-global systems (b-g) and one node-local
system (n-1), [9] and [8]. The model data are given in table 5.1

branch 1 branch 2
prestress | 3.726779963 N | 4.714045208 N

l 79.0450030 m | 50.0 m

A 1.00 m? 1.00 m?

E 100.0 N/m? 100.0 N/m?
a 26.56505118°

B 45°

Table 5.1: Model parameters

Starting with a given reaction force R= 5.0 [IV], the prestresses in the cables
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Figure 5.3: Reaction force due to prestress in cables

can be determined from figure 5.3 by solving the following set of equations for
F; and Fs:

{ Fisina+FosinG =R

Ficosa = Facosf (5.2)

Substitution of the numerical values for a, 8 and R, (see also table 5.1) yields
the following cable forces:

F, = 3.726779963 N (5.3)
F, = 4.714045208 N (5.4)

As in this example the cross-sectional area of the cables is 1.0 [m?), the (pre-)
stresses in the cables have the same values (see table 5.1). Next, the corre-
sponding initial length can be computed from eq. (2.15):

-
0= T
a5 +1
yielding for branch 1:
79.0450030
Ip = 3756?—7959—63— = 76.20500996 m (5.5)
100.0 +1
and for branch 2:
0
i = mé%ﬁs——« = 47.74908648 m (5.6)
“ooo  +1 v

These model definition data are finally defined in an input-file (see ref. 9], p.
144-149). For completeness a more descriptive input-file is presented in ap-
pendix F, to offer a clearer picture of how a model can be defined by defining
different branches and reference system rotations and translations.

results before and after restart
The results of the original model obtained by the Modified Newton Raphson
Method are presented in table 5.2.
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VECTOR DISP.GLOB.2
Node id. U [m] V [m] W [m]
1 0.00000E4-00 0.00000E+00 0.00000E+-00
2 2.2209 9.8339 0.00000E+00
3 4.4416 19.668 0.00000E+00
Element id. | cable force F; [N] stress ¢[N/m?] strain ¢
1 8.896 8.896 8.8964E-02
2 8.896 8.896 8.8964E-02

Table 5.2: Results branch 1 (pa=0.15000E+02) according to example in

Processors Reference Manual

VECTOR DISP.GLOB.2
Node id. U [m] V [m] W [m]
1 0.00000E+00 0.00000E+00 0.00000E+-00
2 2.2208 9.8339 0.00000E4-00
3 4.4417 19.668 0.00000E4-00
Element id. | cable force F; [N] stress o[N/m?] strain ¢
1 8.89687 8.89687 8.89687E-02
2 8.89687 8.89687 8.89687E-02

Table 5.3: Results branch 1 (pa=0.15000E+02) by B2CONT

The data set containing the global displacements (DISP.GLOB.2) of branch
1 at the final load-step (pa=15) are given. Also the internal cable forces F;,
stresses o and strains € are given. The corresponding numerical results obtained
from the B2CONT analysis are given in table 5.3.

Comparing the results presented in the tables 5.2 and 5.3 one can see that
these coincide within an acceptable margin of approximately 0.0005%. Next,
the computation is restarted from the last load-increment, i.e load increment 2.
The force on the top-node is increased incrementally in this restart computation
from pa =15.0 to pa = 1000 [N]. The script-file used for this purpose is given
in appendix F.

The deformed structure is presented in figure 5.4 and the corresponding
load-displacement diagram in figure 5.5. The displacements of node 3 (branch
1) in the x-direction (u(3)) and y-direction (v(3)) are given with respect to the
branch-global system by respectively graph 1 and graph 2. (See also figure 5.2)
As expected this diagram is near to identical to the load-displacement diagram
obtained by Modified Newton Raphson analysis.
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Figure 5.4: Deformed position TriaCable example

5.3.2 Simple example problem to test prestress option

model definition

For the purpose of testing the prestress option offered in the element routine a
line cable model consisting of two cable elements is created. See figure 5.6.
The cable elements are pre-stressed by different values of prestress, requiring
reaction forces at nodes 2 and 3 to guarantee equilibrium of the pre-stressed
state. As two cable elements with different prestress are connected to each
other, an interaction between the two elements can be expected. The model
data are presented in table 5.4 below. The pre-stresses can be computed directly
from F; by dividing by the cross-sectional area, A.

element 1 (i=1) | element 2 (i=2)
Fo, |02 N 01N
lo, |40m 6.0 m
I3, 144m 6.3 m
E | 1.0 N/m? 1.0 N/m?
A |20m? 2.0 m?

Table 5.4: Model data

The initial lengths and pre-stresses of the cable are given. Note that the cable
data do not represent realistic values and are purely chosen to illustrate and test
specific cable properties. By considering node equilibrium the reaction forces
R; and R; can be determined. This yields:

R;=01N

Ry=01N (5.7)
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force [N]
1000. _

800. L

600. |-
I=u(3)

400. | 2=v(3)
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displacements u(3) and v(3) [m], branch 1

Figure 5.5: Load-displacement diagram of node 3 branch 1, TriaCable ex-
ample

lo, g,

K.
A

Ry

F‘L = $
P
Fy Fy F, F;

Figure 5.6: Simple line model to test prestress option

The deformed lengths can be determined from eq. (2.15), yielding for the pre-
stressed lengths [ = 4.4 m and [§, = 6.3 m respectively, see table 5.4. To test
the pre-stress option, the computation is executed twice; once with prescribed
‘initial stress’ prestress and once with prescribed ’initial length’, 10. The re-
sults must coincide and are tested analytically.

results prescribed ’prestress’
The input-file of the example problem described above is given in appendix F.

The reaction forces are defined in loadcase b and kept constant. An external
force P (loadcase a) is superposed incrementally from 0.0 N (pas) to 0.4 [N]
(pamax). This yields internal cable forces of 0.6 [N] (F*) for element 1 and
0.5 N (F3) for element 2, see also figure 5.6. Substituting the obtained and
given values in eq. (2.15) and solving for the deformed length 1 yields:
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1
= = 9. 8
I lo(EA+1) 5.2 m (5.8)
for element 1 and
— F3 —
l2—lo<EA+1)—7.5’m (5.9)

for element 2. The corresponding horizontal nodal displacements u with respect
to the node positions defined in the input-file are given in table 5.5:

node id. | displ. (u)
2 0.8
3 2.0

Table 5.5: Model parameters

The obtained numerical results are given in table 5.6. As can be seen from
table 5.6 the obtained displacements of the nodes 2 and 3 correspond with the
analytical results in table 5.5. Note that the load is increased in two load steps.

displacements u in branch-global
Node id. | DISP.1.1 [m] DISP.1.2 [m]

1 0.0000E+00 0.0000E+00
2 4.0000E-01 8.0000E-01
3 1.0000E+4-00 2.0000E+00

Table 5.6: Nodal displacements per load step

results prescribed initial length ly
Having tested the prestress parameter, remains to test the results obtained
by prescribing the initial length /g (10 parameter).

Again executing quasi-static analysis with B2ZCONT does indeed yield re-
sults identical to the previously obtained results given in table 5.6. Clearly, the
results correspond with the results obtained by prescribed prestress.

5.3.3 Simple example problem to test prescribed displacement
option

The next element property we expect to work correctly after having activated
the code for the existing cable element and having applied the ae correction
to the element routine, is the prescribed displacement option. The relationship
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between prescribing displacements and prescribing forces was explained in sec-
tions 3.2.5 and 2.4. For identical problems the results obtained by prescribed
displacements must coincide with the results obtained using prescribed forces
(loads).

For this purpose use is made of the same model as was used in the previous
subsection, see figure 5.6.

model definition; input file for prescribed displacements

Displacements are prescribed by using type D for the force parameter. This
incremental (displacement) load is defined in loadcase a. The definition of the
reaction forces remains unchanged.. The end-value of the prescribed displace-
ment is 2.0 [m]. This is the horizontal displacement u of node 3 computed in
the previous subsection 5.3.2 for prescribed force 0.4 [N]. Executing the same
problem with prescribed displacement should thus result in a (total)reaction
force of magnitude 0.5 [N] on node 3 and cable forces of 0.5 [N] in cable 1 and
0.6 [N] in cable element 2.

evaluation/validation of obtained results
The computed results are stored in datasets in the computational data base, b.
The results of interest are presented in table 5.7.

VECTOR FVAR.1.i
node id. | FVAR.1.0 [N] FVAR.1.2 [N]

1 0.0000000E+4-00  0.0000000E+00
2 1.0000000E-01  1.0000000E-01
3 1.0000000E-01  0.5000000

Table 5.7: Results prescribed displacement

By considering node equilibrium the internal cable forces are found to be 0.6 [V]
for element 1 and 0.5 [N] for element 2, corresponding to the findings in subsec-
tion 5.3.2. Consequently, the consistency of the prescribed displacement option
is proven.

5.3.4 Simple cable sag problem

model definition

Recall from section 2.4 the case of a suspended cable with given geometry for
the unloaded state. This subsection will test the method described in section
2.4 by a simple example problem.

Consider a cable with initial length ly = 4.0 [m}, submitted to a uniformly
distributed transverse loading. The cable is discretized into 4 elements, each
with equal lengths and properties. The load is discretized accordingly, see figure
5.7




5.3. TEST EXAMPLES 77

OuxXx X

.........

2

P T
’
,
.
’
,
To— @\,
-—",“
¢
LIS T}
'{7

Figure 5.7: Simple cable example to illustrate cable sag computation by
methods avoiding negative stress

The span of the requested deformed state is given and equal to the undeformed
cable length ly. However, as was pointed out in the previous sections, problems
will arise at the initial step of the computation if the computation is started
from an unloaded state. Therefore the cable is given a pre-stress with total
cable length Ij of 4.4 [m], corresponding to an initial stress of gp = 106 [N/m?]
or ’prestress’ (given in [N]) of 100 [N]. These and further data are presented
in table 5.8.

data per element or node

F 100N
lspan | 4.0 m

lo‘. . 1.0m

I3, 1.1m

E 106 N/m?
A 0.0001 m?

Table 5.8: Model data for cable sag example

Note that the data in table 5.8 are again chosen for illustrative means. To
obtain the desired end configuration the initial elongation Au is reduced incre-
mentally back to zero as the forces F are incrementally increased from zero to
the prescribed end value (10.0 [V]). The pre-stressed state must be equilibrated
by reaction forces equal to the value of ’prestress’ (100 [N]). However, as use
is made of prescribed displacements the reaction forces will change each load
increment and thus need not and may not be prescribed separately.

Both F and Au can be prescribed within one loadcase, loadcase a (lca),
from start values pas with load-steps dpas*loadfactor to end values pa-
max*loadfactor. See appendix F for the corresponding input file.

validation of obtained results

The results obtained by B2CONT for the problem described above are pre-
sented in table 5.9:
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node id. 2-disp y-disp

1 0.0000E+00 m | 0.0000E+00 m
2 -2.1316E-01 m | -8.3590E-01 m
3 -2.0000E-01 m | -1.1856E+00 m
4 -1.8684E-01 m | -8.3590E-01 m
5 -4.0000E-01 m | 0.0000E+00 m

Table 5.9: Results cable sag example

The obtained final position corresponds to that of a cable suspended between
two hinges a distance Iy apart and submitted to a prescribed transverse loading.
As mentioned in section 2.4 part (v) direct computation of the deformed state
is desirable. Methods to enable this direct computation will be discussed in the
next chapters. The results must of course correspond to the results obtained in
this example.




Chapter 6

Approaches to singularity
problem

In the previous chapter example problems were treated to illustrate the be-
haviour of the cable under prestress. This chapter treats the options that were
considered to remove the singularity when the cable stresses become negative.
The advantages and disadvantages of the various options are discussed briefly
and illustrated by example problems where necessary.

The options discussed in the subsequent sections involve an interpretation
of the negative stress conditions, an evaluation of mechanical formulation, im-
plementation (modifications to the element routine) and finally an evaluation
and explanation of the results. An approach which is physically correct does
not necessarily lead to problem-free computations as will become clear in this
chapter.

The approach that is finally implemented into the element routine involves
an adjustment of both the initial length of the tensionless cable and the mod-
ulus of elasticity. Full details of this method are discussed in section 6.5

6.1 AE (=0) method

6.1.1 Solution procedure for AE-method

The most obvious and simple approach to negative stress is to eliminate the
contribution of cables with negative stress to the stiffness of the total cable
construction. This can be achieved by setting the stiffness parameter AE equal
to zero for negative stress, resulting in zero contribution to the first and sccond
variation and hence in fact eliminating the ’presence’ of the concerned cables.

When the stress in the cables becomes positive again at some point of the
deformation process the contribution of these cables to the total stiffness must
of course be taken into account again. Recall also section 2.4.

79
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6.1.2 Modifications to element routine

In case of negative stress the parameter itens is set to 1. This parameter thus
functions as a directive for modifications to the first and second variation. For
elements with negative stress the stiffness parameter ae is set equal to zero. If
the cable element resumes its state of tension ae is restored to its original value.

Next, this method is tested on some example problems representing the
negative stress situations described in section 2.4, parts (i) and (v).

6.1.3 Example problems

ezample problem 1: cable as part of a construction

The first property that will be tested is the behaviour of a (temporary) 'tension-
less’ cable as part of a construction as described in section 2.4, part (vi). The
cables are discretized into two cable elements each, yielding one interior-node
per cable, see figure 6.1.

3373-3

Figure 6.1: Cable construction illustrating negative stress in one cable dur-
ing the deformation process

All three cables have length 100 [m], stiffness parameter (ae=AE) 100.0 [N]
and prestress 5 [N] to make sure that the initial state does not contain any
tensionless cables resulting in singularities at the start of the computation. See
appendix F for the used inputfile. As all three angles a are equal to 45° the
reaction forces of cable branches 2 and 3 compensate each other so that the
total reaction force is 5 [N] in the (longitudinal) x-direction of branch1-global.

The initial equilibrium state can be verified by checking the values of the
VECTOR FVAR.i.0, representing the (internal) reaction forces at the first
load step (pa=0). The same material properties are chosen as for example
problem 5.3.1. An incremental load F is superposed at the center node in the
horizontal direction, such that branch 2 will become tensionless at some stage
of the computation. As before, this load is incrementally increased to a final
value of 995 [N].
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Figure 6.2: Deformed state at last computed load-step

A requirement of the method is to guarantee continuation of the computation
during the stages with tensionless cable 2. However, as the cable elements con-
nected to the interior node of cable 2 become tensionless, singularities occur at
this node in accordance with the explanation in section 2.3. As a consequence,
the stiffness matrix becomes singular and the computation stops prematurely
at cycle 12, pa = 219.4975 [N]. See figure 6.2, representing the deformation of
the cable structure at the last computed load step.

Notice the somewhat awkward position of the interior node of branch 2. As
node 1 is joined with the center node it’s displacement is prescribed. Also node
3 of branch 2 has a prescribed displacement (equal to zero), as it is fixed in all
directions. The interior node however is not constrained and has no prescribed
displacements. Hence, the displacement of this node is undefined when both
cable elements connected to it become tensionless.

alternative: omit interior node
Obviously, one way to avoid this singularity problem eliminate the interior node
in branch 2 and repeat the computation. Indeed, the computation is now not
interfered by occurring singularities. The cable in branch 2 yields negative
stress for load cycles 4 to 10, corresponding to pa values of 22.07107 [N] to
191.0660 [N].

The corresponding load-displacement diagram of the center-node (node 3 of
branch 3) is presented in figure 6.3 and the corresponding numerical values of
the final load-step are given in table 6.1.

VECTOR DISP.3.16
Nodeid. | u v w
1 0.0000E+00 0.0000E+00 0.0000E+400
2 1.4411E+4+02 1.2987E+02 0.0000E400
3 2.8822E+402 2.5975E+402 0.0000E+00

Table 6.1: Results branch 3 (pa= 995.0 [N]) in branch3-global
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Figure 6.3: Load-displacement diagram of node 3, branch3-global

The displacements are given in branch3-global. A plot of the final deformation
of the cable structure is given in figure 6.4. The shown disconnection of node
1 of branch 2 at the center-node is due to a deficiency in the B2BASPL post-
processor. This is verified by comparing the load displacement diagrams of the
center node for each branch. These coincide. Also notice the small difference
between the curves 1 and 2 due to the presence of branch 2 and its contribution
to the stiffness of the construction.

Figure 6.4: Deformation of cable structure without interior node in branch
2. Baspl view: disconnection
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ezample problem 2: direct computation of cable sag; start problem

Another requirement the method must satisfy is to enable direct computation
of e.g. a cable sag. Recall section 2.4, (part (v)). Obviously, the AE-method
must also be tested for this property. For this purpose, consider the example
problem of a cable submitted to transverse loading as discussed in section 5.3.4.
The computation is now started directly from the initial unstressed state with
cable length [, see figure 6.5 and appendix F for the used input-file.

1 2 3 4 5
Q, - . - ;;
s*yL"... l --"‘L,o
....'."""

F F F

Figure 6.5: Simple cable example to illustrate cable sag computation by
methods avoiding negative stress

Obviously, as the initial state is a tensionless state, the first and second variation
are set equal to zero by the A E-method at initial load-cycle (A = 0). This results
in a singular stiffness matrix causing the computation to stop. Hence, the AE-
method fails to solve the problem of an initially tensionless state.

6.1.4 Evaluation of results obtained by AE-method

The first example problem testing the method for a temporary tensionless
(slack) cable as part of a construction shows that the AE-method enables con-
tinuation of the computation through these stages. However, the possibilities
are limited, as singularities can still occur, causing the computation to stop or
yielding un-realistic results.

Also nodes at which singularities can occur are hard to avoid if one wants to
obtain somewhat accurate results from a finite element model. The AE-method
thus solves the problem only partially. The last example which tests the start
of the computation from initially unloaded states shows that the AE-method
offers no solution in any way to this problem.

As an alternative the stiffness parameter can be assigned some small value
for tensionless cables instead of being set equal to zero. This may solve the
problem of singularities as discussed in example problem 1, but will obviously
still fail to satisfy the requirement of direct computation from an initially un-
loaded state. Other methods need to be considered in order to find a satisfying
approach to this problem.

6.2 Gravity or perturbation force method

6.2.1 Solution procedure for gravity-method

In addition to the AE-method another option is to make sure that all cable
“elements have tension stress at all times to avoid singularities. Contrary to
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previous sections stating that the effects of gravity can well be neglected, the
presence of gravity can also be exploited to ensure that tension due to cable
sag is always present in each cable element. The stretched cable possesses some
resistance to transverse loads due to the induced transverse stiffness. Starting
from the sagged configuration it is thus possible to incrementally apply an
additional external load, without causing singularity problems.

In order to solve a problem by this method the computation needs to be
split up in two parts. The first part computes the sagged configuration and
corresponding reaction forces. These data are used to define the initial (de-
formed and loaded) state for the second part of the computation. Basically,
the initial stresses are introduced in this second part with the definition of the
new node coordinates from which the stretched cable lengths I§ (# lo) are de-
termined. The reaction forces required for equilibrium and the gravity forces
are defined in loadcase b (constant values). Additionally, the external loads
can be superposed incrementally by loadcase a.

The method described above does require some effort to define the model
and create a second input-file. The issue raised by this method is whether it
is possible to execute a computation by the above method and if it is, whether
there are possibilities to compute the coordinates of the sagged equilibrium state
implicitly by some implementations into the source code. This is desirable as
obviously the creation of a second input-file is a time consuming and tedious
work.

The next subsection will illustrate the procedure described in this subsection
in more detail by some example problems.

6.2.2 Example problems to illustrate the gravity method

example problem, part 1: sagged equilibrium state

The first part is required to determine the initial (sagged) equilibrium state for
the second part. The example used for this purpose is the symmetric triangular
cable construction obtained by omitting branch 3 in example problem 1 of
subsection 6.1.3. In this example the number of interior nodes is increased to

obtain a geometric better approximation of the sagged configuration, see figure
6.6.

Figure 6.6: Symmetric triangular cable structure in sagged equilibrium state




6.2. GRAVITY OR PERTURBATION FORCE METHOD 85

In the first computation the initial elongation (prestress) is reduced to zero by
use of prescribed displacements. The distributed forces F are applied simulta-
neously (see section 5.3.4). The data used in this example are given in table
6.2.

property value

F; 0.1 N

by, 25,0 m

Au 50m

lo 24.13230876 m
E 100.0 N/m?

A 1.0 m?2

Table 6.2: Model data per element

The prestressed length If and corresponding displacement Au are chosen for
a given (total) initial length Iy (= 96.52923505 [m]). Note that lj and Au
are free to choose, as long as removal of Au results in an initially unstrained
configuration if gravity forces are absent. The initial length is easily obtained
as follows:

lo= \/(la - cosa)? + (I§ - sina — Au)? (6.1)

The reaction force R required for equilibrium of the prestressed state is obtained
from:

R=2. EA’O—;ﬂ sina (6.2)
0

Substitution of the corresponding values yields:

R = 5.084887352 [N] : (6.3)

However, as use has already been made of prescribed displacements for the top-
node, a reaction force need not and can not be prescribed on the same node.
The input-file is presented in appendix F.

Before actually applying the gravity forces, a test run is executed to test
whether the unsagged end position does indeed correspond to the unloaded
state. This means that all reaction forces must approach zero as the computa-
tion approaches the final state. Indeed, the VECTOR FVAR.i.n approaches
zero and the computation encounters singularity problems at the last loadstep.

Next, this computation is repeated with the gravity loads. The nodal posi-
tions are determined from the obtained results, see table 6.3. From these results
a new equilibrium state can be defined in loadcase b. See part two for this
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VECTOR DISP.1.10

Node id. { u v w

1 0.0000E+00 0.0000E+00  0.0000E+00

2 -1.2311E4+00 -4.9446E+00 0.0000E+00

3 -2.0138E+00 -6.8513E+00 0.0000E+00

4 -2.7129E+00 -6.2303E+00 0.0000E+00

5 -3.5355E4+00 -3.5355E4+00 0.0000E+00
VECTOR FVAR.1.10

Node id. [ u v w

1 0.0000E+00  0.0000E4+00  0.0000E-+00

2 -7.0711E-02  -7.0711E-02  0.0000E+00

3 -7.0711E-02  -7.0711E-02  0.0000E+00

4 -T.0711E-02  -7.0711E-02  0.0000E+00

5 8.9151E-01 8.9151E-01 0.0000E+00

Table 6.3: Results branch 1 (pa= 10.0 ) in branchl-global

second part of the analysis.

ezample problem, part 2: superposition of external load

From table 6.3 the new node coordinates are determined and defined in a new
input-file (2). (See appendix F). The gravity loads F and corresponding reac-
tion force R on the top-node are defined as constants in loadcase b. From the
table one can see from the VECTOR FVAR.1.10 that (the opposite of) the
reaction forces on the interior nodes correspond to the imposed external loads
F and that the reaction force at the top-node is equal to

R = /2 (0.89151)7 = 1.260785533 [N]

Figure 6.7: Sagged equilibrium position used as initial stressed state

Recall from chapter 3 that either load or displacement may be defined on one
single node. Hence, with the sagged state defined as the initial equilibrium state,
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one can now superpose an external load P on the top-node in loadcase a of the
new input-file. The direction of P is determined by the angle § = 22.5°. See
figure 6.7. The load P is increased incrementally to an end value of 995.0 [N]
by executing a restart after the conventional run with B2CONT.

AN A% A

(a) cycle 0 (b) cycle 5 (c) cycle 9
m /
(d) cycle 22 (e) cycle 36 |

Figure 6.8: Deformation process of sagged cable structure submitted to force
P

The deformation process is illustrated by figure 6.8 and the corresponding load
displacement diagram of the top node in branch2-global is presented in figure
6.9.

As explained above, no negative stresses will be expected due to the presence
of the constant loads F. Accordingly, the sagged structure deformes without
singularities appearing at the nodes. However, it must be remarked that cable
element 4 of branch 2 does get negative stress warnings for load-cycles 9 to 22,
corresponding to pa 40.9 [N] to 84.65 [N].

6.2.3 Evaluation of results obtained by g-method

example problem part 1

For a simple cable construction the first part of the computation does not yield
much problems. The definition of the model can be checked by omitting the
external loads and reducing the initial elongations to zero to approach the un-
loaded state. The corresponding reaction forces are expected to approach zero
(unloaded state).
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force [N]
1000. _ 1
800. |
I=u(l)
600. | 2=v(I)
400. |
200. |_
0. ] ! ! | l J
0. 100. 200. 300. 400. 500. 600.

displacements u(1) and v(1) [m], branch 2

Figure 6.9: Load-displacement diagram of top node in branch2-global

example problem part 2

As expected, the second part of the computation does not yield any singularities.
However, negative stress warnings are given for element 4 of branch 2 for a
number of cycles. This was not predicted as the cables were expected to be
in a state of tension throughout the computation due to the gravity forces.
The lower cable element becomes tensionless due to a combination of the linear
interpolation function used and the deformation or ’translation’ of the upper
elements.

Obviously, due to the linear interpolation the length of the lower cable
element is directly determined by the distance between nodes 4 and 5. As node
5 is fixed to the earth and node 4 undergoes some displacement, this distance
becomes smaller than the initial length Iy of the element at certain stages of
the deformation process.

Next, the translation part of the deformation process as shown in figure 6.8 can
be explained as follows:

(A) Consider the situation as presented in figure 6.10. As long as node 3 is
situated left of node 4, the load F can be carried by both cables, resulting
in tension in both cable elements.

This can be explained by imagining what happens if element 4 is 'cut’.
Obviously, node 4 will tend to move to the left, resulting in a pendulum
mechanism. The presence of element 4 thus prevents such a mechanism to
occur and is thereby submitted to tension. Consequently, the (tangential)
stifiness matrix does not become singular.
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F (kb)

Figure 6.10: Situation A: both cables submitted to tension; equilibrium sa-
tisfied

(B) Consider the second part of the deformation process as presented in figure
6.11. From the instant that the position of node 3 is vertically above node
4, element 4 becomes tensionless and node 4 tends to move to the right.
In fact a pendulum mechanism tends to appear As no equilibrium can
be found for state II, the cable elements will translate one by one in the
horizontal direction, see also figure 6.8, cycles 9 to 22. In accordance with
part (A) element 4 has negative stress warnings for these cycles. However,
as node 5 is fixed to the earth and the other element connected to node
4 is in tension, no singularities will occur.

pmmmmm— ==

Figure 6.11: Situation B: the appearance of a pendulum mechanism

Apparantly, it is possible to compute the sagged equilibrium state prior to the
computation with the actual external load, if the data for the unloaded state
are given. However, the first part of the computation rapidly becomes more
complicated as the number of cables increases and the definition of the input-
file for the second part becomes an increasingly time consuming and tedious
amount of work.
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options to automize the transition from part 1 to part 2

Clearly, the most time consuming part of this method is the creation of a new
input-file for the second part of the computation. It is thus desirable to inves-
tigate possibilities to automize this step, such that the new node coordinates
and reaction forces are read in automatically and the gravity loads are auto-
matically redefined in loadcase b. This allows the user to define one input-file
only and to define the external loads directly in the automatically generated
second input-file.

However, it must be stated that the first part of the computation does in fact
not offer any solution for the ’start’ problem as described in section 2.4, part
(v). Also, determining the value and direction of Au for a more complex cable
structure would still involve a large amount of work. Unless this is simplified
or automized, it may be recommendable to first consider some other options,
see sections 6.3 and 6.4.

6.3 lp-method

6.3.1 Solution procedure for l-method

Another method that is worth investigating follows the same principle as the
g-method, i.e. ensure that a small tensile strain remains as a lower bound for
each cable element that becomes tensionless during the deformation process in
such a way that the disturbance to the total stiffness of the construction is
negligible. In other words, the tension must be small enough not to interfere
with the behaviour of the structure as a whole, but large enough to guarantee
continuation of the computation through the positions that physically exist.

As before, the element must follow the conventional computation at the
instant it regains a state of tension. The method presented in this subsec-
tion satisfies these requirements. Contrary to the g-method, this method can
be implemented directly into the element routine and thus does not involve
complicated modeling procedures.

The procedure involves adjustment of the initial length Iy for elements with
zero or negative stress such that these elements are provided with a small ten-
sion. This occurs whenever the deformed length [ becomes equal or smaller
than the initial length .

Please notice that this method ensures that the tangent to the solution curve
at the singular freedoms corresponds to the direction of this tangent as soon as
a state of tension arises again in the tensionless cables.

6.3.2 Modifications to element routine

Negative stress in cable elements manifests itself by a deformation resulting
in a length I smaller than the initial length [y. To provide a small tension
proportional to the deformations, the initial length lp will be assigned a value
slightly smaller than the deformed length I. This new initial length shall be
referred to as Iy, , .
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With the knowledge that the first and second variation are computed alter-
nately in subsequent calls (recall subsection 5.1.2), it is obvious that prior to
each first and second variation computation the initial length must be reset to
it’s original value.

Hence, Implementation of this method also requires a negative stress check
prior to each first and second variation computation.

6.3.3 Property evaluation

This subsection will extend on the possibilities offered by this method. The
adjustment of the initial length Iy to ly,,, allows direct computation with an
initial unloaded state without the necessity of imposing a prestress. Obviously,
it is desirable that both prescribed displacements and prescribed forces can be
used to impose the external loads. The fact that this is indeed possible is ex-
plained in the sequel.

initializing the computation

Consider a cable construction with given geometry of the initial unloaded state
submitted to external loading that will stretch the cables. See figure 6.12. The
first cycle of the computation will obviously yield zero stress, as [y is initially
equal to (I =) 5. Consequently, the initial length /o will be redefined as

lo,.., = (1 —small)-1 (6.4)

This yields an elongation of

Al=1~1y=small-1> 0.0 (6.5)

resulting in a small positive strain € of:

small

(6.6)

Enew = 1 — small
As soon as the cable stretches sufficiently in one of the subsequent load cycles
(in this example the next load-cycle) the deformed length [ will be found larger
than the initial length [, and the computation continues the conventional route
of positive stress for the remainder of the analysis using the original initial cable
length ly. Obviously, the results must coincide with the results obtained using
prestress. This is illustrated in subsection 6.3.4 for the example of direct sag
computation.

prescribed displacements

As a result of the first computation cycle (unloaded state), a small tension ex-
ists in the cables, see the explanation above. Consequently, a small reaction
force (data set FVAR.i.0) is introduced to satisfy the equilibrium conditions.
However, as the corresponding displacement w is equal to zero (!), a prescribed



92 CHAPTER 6. APPROACHES TO SINGULARITY PROBLEM

displacement can be superposed incrementally from zero to the desired value
without any problems. See also figure 6.12.

reaction force
Jor w=0

small  ___
stresses

Figure 6.12: Prescribed displacement superposed on unloaded structure

prescribed forces

In case of prescribed force the problem arises of an initial reaction force at
the top-node (FVAR.i.0), which is unequal to zero due to the small tension
introduced (see above). For a correct computation the external load must be
incremented from an initial value equal to this reaction force to the desired end
value. The initial value is easily obtained from FVAR.i.0 by executing a run
prior to the actual computation. In most cases however, the initial reaction force
will be small enough for the computation to converge to a state of equilibrium.

6.3.4 Example problems

ezample problem 1: cable as part of a construction
Consider the example problem defined in section 6.1. The analysis is now
repeated with the element routine modified for the lp-method.

Against expectations, the computation encounters some convergence prob-
lems and is forced to reduce the step-size to (very) small values causing the
computation to stagnate at approximately pa = 16.7 [N]. By then the step-
size is reduced so much that it is inpractical to continue because it becomes too
time consuming.

The same problem occurs if the interior node in branch 2 is omitted. Again
the computation stagnates at approximately pa = 16.7 [N]. Notice that this is
sooner than the example in section 6.1.3, where negative stress occurs at pa =
22.07017 [N].

ezample problem 2: direct computation of cable sag: start problem

Consider the example problem described in section 5.3.4 of a cable submitted
to transverse loading. The same data are used as mentioned in table 5.8, For
direct computation of the cable sag the initial length [y is set equal to the length
defined from the node coordinates; I§ = lp. As expected, the computation is
initialized and the results coincide with the results obtained in section 5.3.4,
see table 6.4.
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node id. z-disp y-disp

1 0.0000E+00 m | 0.0000E+00 m
2 -1.1316E-01 m | -8.3590E-01 m
3 6.1736E-17 m | -1.1856E+00 m
4 1.1316E-01 m | -8.3590E-01 m
5 0.0000E+00 m | 0.0000E+00 m

Table 6.4: Results direct cable sag computation

Comparing these results with the results obtained in section 5.3.4 by the dis-
placement method and thus accounting for the prescribed horizontal displace-
ments for the nodes 2, 3, 4, and 5 of respectively, 0.1, 0.2, 0.3 and 0.4 [m] shows
that the same deformed state has been found.

6.3.5 Evaluation of results obtained by 1 method

Clearly, the lg — method satisfies the requirements for direct computation of
a deformed state with an initially unloaded configuration. Generally, the ini-
tial length will only require modification during the first load cycle to enable
initialization of the computation.

However, for situations where negative stress occurs during a period of sub-
sequent load cycles, the computation stagnates due to a strong reduction of the
step-size. This can be explained by the following process:

The Iy — method introduces a small artificial positive strain. As a result we
have:

(1) Small transverse stiffness

(2) A still large axial stiffness

Recall also the expressions for the second variation, egs. (4.62) to (4.70). Point
(1) is desirable. However, point (2) is completely wrong; the axial stiffness in-
terferes severely with the structure, whereas the physical reality dictates that
the tensionless cable becomes invisible for the rest of the structure. Hence, the
Iy — method has actually changed the behaviour of the structure completely as
soon as negative stresses occur with obviously adverse consequences.

The lp-method solves the initialization problem but introduces a problem for
continuation of the computation for multi-cable structures involving cables be-
coming tensionless during the deformation process (for a number of load cycles).
Thus further investigation is required. Section 6.4 combines the benefits of the
AE-method with the benefits of the lo-method.



94 CHAPTER 6. APPROACHES TO SINGULARITY PROBLEM
6.4 Combined ly-E method

6.4.1 Solution procedure for combined 1yE method

Combining the benefits of both the Iy and AE method, another approach to
the negative stress problems can be extracted. The procedure of this method
is set out below.

ly method

The method of ly described and tested in section 6.3 offers a solution to the ini-
tialization problem. However, continuation of the computation for a temporary
tensionless cable as part of a construction turned out to be a problem. Recall
example 1 of subsection 6.3.4. The idea behind the method is comparable with
the method provided by the original element routine. In the original element
routine, Al = [—Ij was set equal to zero for negative stress. Obviously, this does
not offer possibilities to solve the start problem. By setting Al equal to some
small value instead, it is possible to start the computation from an unloaded
state. However, in both cases the cable still has a considerable axial stiffness
left, as can be seen from the expressions for the second variation, (4.62) to (4.70).

AE-method

The AE-method described and tested in section 6.1 on the contrary, does not
solve the initialization problem (example 1), but it does offer some possibilities
for continuation of the computation (example 2). As was described in this sec-
tion, singularities may occur at the instant that the cable elements connected
to a node become tensionless and ae is set to zero for these elements yielding a
singular stiffness matrix. Similar to the lp method, the stiffness parameter ae
can be assigned a small value instead. This way the stiffness matrix does not
become singular.

Both methods described in the above are incomplete. The methods do however
offer complementary solutions to the problem as a whole:

Multiplying the components of the element stiffness matrix by some small value
by assigning ae some small value, in fact corresponds to providing the tension-
less cable elements with a small axial (compression) stiffness. Consequently, the
tensionless cables will behave like rubber elastics and mainly just adapt to the
geometry of the remaining structural elements without significantly interfering
with the deformation process.

When prescribed forces are used, the small stiffness may result in large
displacements. As soon as negative stress occurs, the Iy — method ensures a
small positive strain (as lower bound of possible strains). To eliminate the
still large axial stiffness, a small value for AE is also introduced. Now the
tensionless cable behaves like a very soft (rubber-like) structural element that
no longer interferes with the structure. However, all degrees of freedom remain
non-singular.
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6.4.2 Modifications to element routine

As before, implementation of the method requires a negative stress check prior
to each first and prior to each second variation computation. In case of negative
stress the initial length is redefined and the stiffness parameter ae is multiplied
by a small factor. To ensure that the correct values are read in each cycle,
both ly and AF are reset to their original values prior to each first and second
variation computation.

6.4.3 Example problems

ezample problem 1: cable as part of a construction (1)

The new element routine is tested on example problem 1 of section 6.1, see also
figure 6.1. With interior nodes in each branch the computation continues with-
out any problems and stops at the final value of pa = 995.0 [V], as prescribed.
Negative stress warnings are given for load-cycles 4 to 10 corresponding to pa
22.07107 [N] to 191.0660 [N]. This corresponds to the same region of negative
stress as was found in subsection 6.1.3. The corresponding load-displacement
diagram is given in figure 6.13 and the numerical results are presented in table
6.5.

force [N]
1000. _ 1

800. |
I1=u(3)

600. | 2=v(3)

400. L.

200. L

0. ! l l 1 ] J
0. 100. 200. 300. 400. 500. 600.

displacements u(3) and v(3) [m], branch 3

Figure 6.13: Load-displacement diagram of node 3 branch 3

Repeating the computation on the same model with omission of the interior
node in branch 2 yields the exact same deformed state.

From the results in table 6.1 and the load-displacement diagram in figure
6.13 one can see that the results coincide and that the presence of the interior
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VECTOR DISP.3.16
Node id. | u v w
1 0.0000E+00 0.0000E4+00 0.0000E+00
2 - | 1.4411E4+02 1.2987E+02 0.0000E+00
3 2.8822E+02 2.5975E+02 0.0000E+00

Table 6.5: Results branch 3 (pa= 995.0 [N]) in branch3-global

node in branch 2 is no longer a problem.

ezample problem 2: direct computation of cable sag: start problem

Finally, the modified element routine is required to enable direct computation
of e.g. a cable sag. For this purpose example problem 3 of subsection 6.1.3
is used. As expected, no problems are now encountered at the start of the
computation. The results presentéd in table 6.6 correspond to the cable sag
obtained in subsections 5.3.4 (using prescribed displacements) and 6.3.4 (lo-
method).

node id. z-disp y-disp

1 0.0000E+400 m | 0.0000E+00 m’
2 -1.1316E-01 m | -8.3590E-01 m
3 1.6783E-16 m | -1.1856E+00 m
4 1.1316E-01 m | -8.3590E-01 m
5 0.0000E+400 m | 0.0000E+00 m

Table 6.6: Results direct cable sag computation by loE method

6.4.4 Evaluation of results obtained by combined I,E method

The combination of the ly-method and the ae = small-method appears to
satisfy the requirements set on the cable in section 2.4. By this method it is
possible to compute a deformed state directly from an initial unloaded state.
This may be very convenient, especially where structures consisting of several
cables are to be analyzed.

Additionally, as tensionless cables will behave like rubber elastics the prob-
lem of singularities has been eliminated as well. As a consequence, the effect of
these cables on the deformation process is negligible and the computation con-
tinues until the deformed state, corresponding to the final value of the imposed
external load, has been obtained.

Although the start problem seems to be solved, it must be remarked that in the
first iteration cycles the displacements become excessively large when prescribed
forces are used. This is because in addition to the I modification, the (axial)
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stiffness parameter ae is given a small value resulting in a small axial stiffness,
i.e. small resistance in the axial direction. As a consequence, a large number of
iterations is required for convergence of the first load-step, i.e, if convergence is
achieved at all. A new strategy to combine the l—method and the AE—method
such that this problem does not occur will be explained in section 6.5.

6.5 Refined I,E method

6.5.1 Solution procedure for refined 1oE method

From the previous section it has become clear that the combined lyE — method
does not provide a complete solution to the problem. The small (total) stiffness
at the start of the computation results in excessively large displacements such
that a large number of iterations is required for convergence of the first step.

Also, taking into account the findings in sections 6.1 and 6.3 it becomes
obvious that there are two situations that need to be regarded separately; the
continuation problem and the start problem (recall section 2.4 parts (iv) and
(v) respectively). This means that in order to solve both problems effectively
both solution methods need to be implemented separately as well.

It must be realized that a combination of both problems is also possible: To
illustrate this, consider again the (multi-)cable construction from section 6.1.
(See figure 6.14).

Ib3-g

Figure 6.14: Cable construction used to illustrate combination of two solu-
tion methods

Assume all cables to be initially tensionless. By incrementally increasing the
external force F, the cables in branches 1 and 3 will assume a state of tension,
but the cable in branch 2 will (at first) remain tensionless. The start situation
of the cables in branches 1 and 3 is similar to the example problem discussed
in section 6.3 (example 2). The desirable solution method to this problem was
shown to be the lg — method.
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However, applying the Iy — method also for branch 2 would be incorrect;
branch 2 would conserve a relatively large axial stiffness and thus interfere
with the deformation of the other structural elements. If only the AE(=
small) — method would be applied, the presence of interior nodes in branch
2 would cause singularities (due to A = 0 components, see eq.(4.71)), which is
also not desirable. This problem is avoided by superposition of the lo — method,
ensuring a small transverse stiffness and so avoiding singularities.

The example described above illustrates that it is desirable to enable specifica-
tion of the solution method for each cable (branch) separately. To achieve this
the following two options must be made available:

(A) The first load-step is executed by the ly method. The tensionless cable
assumes a state of tension after this first load-step and the computation is
continued with the original value of the initial length [,. Obviously, this
way large displacements at the first load-step due to a low axial stiffness
are prevented. If the cable becomes tensjonless again at some point of the
computation the combined loE—method is applied to ensure continuation
of the computation.

(B) (Default method). This second option becomes the default method, which
applies the combined loF — method as described in section 6.4 for ten-
sionless cables. This method is suitable for most other problems excluded
the problems described in (A).

6.5.2 Modifications to element routine

The two methods (A) and (B) as described in the previous subsection, are both
made available to the user by enabling the user to request the suitable method
per cable element according to the user’s own insight.

The default method can be requested by defining an initial length 0 <10 < [}
or initial stress prestress > 0 as usual. Specification of initial length 10= 0.0
is (obviously) not possible and will result in an error message.

By specifying an (arbitrary) negative value for either the initial length 10
or the initial stress prestress the user requests the Iy — method for the first
load-step (start), after which the computation will be continued by its default
method. Proper use of both options will be explained in more detail in subsec-
tion 6.5.3.

The second component of the array of directives ecckern(i), i.e. ecckern(2) has
been activated for the purpose of recognizing the selected method. For values
of initial length 10 > 0.0 and for values of initial stress prestress > 0.0, the
directive ecckern(2) is given a positive value (> +1.0), indicating the default
method. If a negative value is given for 10 or prestress, ecckern(2) is given
a negative value (< —1.0), requesting to start with the lo — method. If a rod
element is specified, ecckern(2) is set equal to zero.
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The array of pre-variational values, elprev(i) is extended by one component
elprev(6) used for recognition of the ly — start — method (elprev(6)=-1.0) in
the element routine b2ep39.F. For the default method elprev(6) is assigned the
value 1.0.

The modified (pre-variational) element routines b2epv39.F and b2ep39.F are

presented in appendix E. Notice that after the first load-step all values are
reset for the default method.

6.5.3 New user specified options

With the implementation of the separation of the two methods, it is left up to
the user to specify the desired method per cable. The selected method depends
on the values specified for 10 and/or prestress according to table 6.7.

1o prestress
<00 =00 >00 <00 =00 > 0.0

lo-start Error Default | [g-start Default Default

Table 6.7: User specified method

The user must take into account some directions when using the available op-
tions.

- The ly — method is suitable for computations with initially tensionless
cables, which assume a state of tension after the first load-cycle.

- If a cable is initially tensionless and will (at first) remain tensionless during
the deformation process the default method is most suitable. (Specify
prestress = 0).

In both cases the user must take care to define the node coordinates consistent
with the initial length l;. This is because for these cases the value used for
the initial length Iy is equal to the cable lengths following from the given node

coordinates (elprev(4)). Obviously, for most other cases the default method will
be suitable.

6.5.4 Example problems

example problem 1: combined (multi-)cable construction

To illustrate the use of the implemented options, an example problem will be
considered which combines the ’continuation’ problem and the initialization
problem. See figure 6.14. All cables are taken to be tensionless in the initial
configuration. By inspection one can see that the cables in branches 1 and 3
will assume a state of tension after the first load-increment, and that the cable

in branch 2 is initially tensionless, but will remain tensionless during the first
load-cycles.
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Consistent with the directions given in subsection 6.5.3 the Iy — start —
method will be requested for the cables in branches 1 and 3 and for the cable in
branch 2 the default method. The force F is increased incrementally to a value
of 1000.0 [N] in 16 load-steps. The corresponding load-displacement diagram
of node 3 of branch 3 is presented in figure 6.15.

force [N]
1000. F 1
800. |
r

1=u(3)

600. |_ C 2=v(3)

400. |_

200. |

0. 1 l l ! 1 ]
0. 100. 200. 300. 400. 500. 600.

displacements u(3) and v(3) [m], branch 3

Figure 6.15: Load-displacement diagram of node 3, branch 3 in branchs-
global

As can be seen clearly from the figure, the cable in branch 2 initially has negli-
gible interference with the other cables; the displacement curves 1 and 2 practi-
cally coincide, indicating the symmetric problem which is obtained if branch 2 is
omitted. The computation starts without any problems and continues problem-
free through the cycles with tensionless cable in branch 2. As F continues to
increase, branch 2 assumes a state of tension and contributes to the stiffness of
the cable structure, see figure 6.15.

Also notice that the load-displacement diagram in figure 6.15 shows that
node 3 of branch 3 ends with slightly larger displacements than the load-
displacement diagram in example 1 of section 6.4. Obviously, this is because in
section 6.4 the computation is started with prestressed cables.

ezample problem 2: direct computation of cable sag; start problem

For completeness the method is also tested on the example of direct cable sag
computation. For this purpose a negative value is specified for the initial length
10 or initial stress prestress. The obtained results coincide with the numerical
results presented in section 6.3, table 6.4. This comes as no surprise as in
both examples the first load-step uses the ly — method after which the cable
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is in tension and the computation is continued by the conventional procedure
(o >0).

6.5.5 Evaluation of results obtained by refined 1)E method

The new approach to treat the two problems of continuation of the computation
and the start problem separately yields satisfying results. Both options can be
specified by the user per cable as desired. This way a large variety of problems
involving cable structures can be solved. Combination of the two methods was
illustrated in subsection 6.5.4. It was found that no large displacements will
occur at the start of the computation and convergence requires only a small
number of iterations. Also the default method (combined loE — method) does
not result in any problems during the cycles with tensionless cable in branch 2.

The method presented in this section can thus be regarded as a workable
approach to the singularity problems in quasi-static analysis. The approach is
consistent with the actual mechanical behaviour of the cable and allows a broad
variety of problems to be solved.

One important remark remains to be made:

For the cable subjected to compression alternative formulations are used for the
first and second variations. Hence, it is important for the user to realize that
in situations where all transverse degrees of freedom of the cable are locked,
the cable is stabilized. (Recall sections 2.2 and 2.3). The element to be used in
such cases will thus be a rod instead of a cable.
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Chapter 7

(NLR) Mast example: a
practical application

Construction problems may be defined in various ways. Depending on the
given data certain problems may arise within the definition of the finite element
model required for the desired structural analysis. This may be a continuation,
dynamic, buckling (failure) or optimization analysis. It has been attempted to
bring in cable properties useful to situations expected to be most commonly
encountered with the definition of a finite element model. Recall section 2.4
and chapter 6.

This chapter treats the problems occurring with the definition of a mast
model as an illustrative example of a practical application of the developed
non-linear cable element. For this purpose a simple model is extracted from a
composite mast of a sailing yacht [10].

7.1 Introduction (to the Mast problem)

The example used is a 57 m long composite mast of a sailing yacht. The design
and fabrication technology was developed by the 'Structures Technology’ de-
partment of the National Aerospace Laboratory (NLR) under contract of Royal
Huisman Shipyard. The development of the design and fabrication technolo-
gies involve several aspects. In this chapter the attention will be focused on the
problems arising with the definition of a mast model for executing a (buckling)
failure analysis.

The development of the design and fabrication process of the mast in con-
sideration consists of four building blocks:

a) A selection of fabrication processes and materials
b) Numerical design of the structure

¢) Actual fabrication of the mast

d) Testing

103
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Fabrication of a composite mast, as was designed by the NLR, instead of a
conventional aluminium one, has lead to a total weight saving of approximately
800 kg.

Obviously, this chapter will focus on block b); ’Numerical design of the struc-
ture’. The numerical analysis required, comprises an optimization analysis and
a buckling failure analysis. In order to perform these analyses a proper insight
to the procedure of mast loading needs to be acquired. The loading aspects of
the mast will be treated in section 7.2. For this purpose an illustrative simple
mast model will be considered, see figure 7.1.

1777

Figure 7.1: Simplified mast model

For the numerical optimization analysis the design constraints are the buckling
loads and stresses. The design variables are the ply thicknesses of the composite
mast skin. Again, attention shall not be focused on the optimization of the ply-
thicknesses. Instead, some attention will be given to the implications involved
with the optimization of the initial cable lengths and/or pre-stresses required
to obtain the desired *harbour condition’. This condition is described in section
7.2.

7.2 Loading conditions of the mast |

The total loading on the mast consists of two parts: the harbour condition and
the sailing loads.

harbour condition

In the ’harbour condition’ the mast is in a state of pre-compression and the
cables are in a state of pre-tension. The pre-tension in the cables must be suffi-
ciently large to avoid compressive loads in the cables at any time during sailing
conditions.

In practice the mast is brought into harbour condition as follows:

First the rigging is attached to the mast. The mast is then Jjacked upwards by a
hydraulic mechanism. As a consequence, tension loads are introduced into the
cables. However, the tension loads in the cables obtained by this procedure gen-
erally do not correspond with the tension loads required for the desired harbour
condition. Therefore the cables are 'tuned’ by changing the cable lengths. The
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oot a;

o LY

(a) jacking of the mast introducing tension (b) tuning of cables by changing cable
in cables lengths

Figure 7.2: Establishing the harbour condition by respectively jacking up
the mast a) and tuning the cables b)

final shape that is obtained by this method is known as the harbour condition’.
The two stages described above to obtain the harbour condition are illustrated

in figure 7.2.

Figure 7.3: Superposition of sailing loads

sailing loads

Obviously, the sailing loads are the loads to which the mast is submitted during
sailing. The determined worst case resulted in a compressive load of approxi-
mately 200 tons at the foot of the mast. The (total) deformation of the mast
due to the sailing loads is obtained by considering the harbour condition as
initially loaded and deformed state and superposing the sailing loads onto this
harbour condition, see figure 7.3.
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7.3 Problem definition

The main problems of the numerical analysis that were encountered by the NLR
were:

(1) The cables were modeled by linear beam elements. Obviously, a better nu-
merical approximation to the problem is achieved by using (geometrically)
non-linear cable elements instead. Additionally, the present formulation
of the cable element will save computation time. With the introduction
of the developed non-linear cable element the possibility of pre-loading in
the form of pre-stress has been introduced. See also chapter 2.2. This
offers a range of new possibilities to approach the problem.

(#1) Another problem encountered with the definition of the finite element
model was the definition of the harbour condition. As the initial unloaded
geometry of the mast-structure is not known, the loaded and deformed
harbour condition must in fact be used as initial condition for the analysis.
However, for the definition of the finite element model the problem arised
of the B2000 code failing to provide the option of prescribing a pre-load
on the used linear beam elements.

Instead, a deformed unloaded condition was used as initial state for the
analysis. However, as stated in (i) the use of cable elements does allow
for the definition of a pre-loading (pre-tension).

(iti) The tuning of the cables after the jacking of the mast introduces a mode-
ling problem as well. As the cables are tuned afterwards the cable lengths
are changed to obtain the desired configuration. However, within the
optimization procedure it is not feasible to include this change of cable
lengths into the analysis, see also ref. [10].

Figure 7.4: Interpretation of mast tuning

The change in cable lengths due to the tuning of the mast can be inter-
preted as illustrated in figure 7.4. The initial (unknown) unloaded cable
length is represented by [y as usual. The length of the cable after jacking
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up the mast is [j and the 'virtual cable length’ due to the tuning of the
cable (see also figure 7.2) is given by l§, = [§ + Alp. The elongation Al is
brought into the cable by using prescribed displacements or corresponding
prescribed force. The final (pre-)stress in the cable can be represented by

_bi=h Bl =l
lo lo lo

(7.1)

or

op, = Acg + og (7-2)

Clearly, the change of pre-stress is dependent on Aly.

One of the problems arising is the definition of the boundary conditions
on node A. As the deformed length of a cable element is conventionally
computed from the node positions it may become problematic to compute
the deformed length [ in combination with the boundary conditions at
node A. A sliding support could be introduced as boundary condition at
node A. However, as the mast and cables deform, the boundary condition
no longer holds at the connection level (represented by ’level (), see also
figure 7.5.

F,d
F,d
(a) locking transverse degree of freedom (b) discrepancy at connection cable-ship
at node A due to cable/mast deformation

Figure 7.5: Boundary condition on connection node A

As can be seen from the figure, the connection point B and the element
node A do not coincide after deformation by a discrepancy 4.
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(iv) Also the sailing loads must be superposed properly for the (buckling)
failure analysis, i.e. superposition onto the harbour condition. This also
involves some modeling implications as will be discussed in section 7.4.

(v) Finally, the large number of cables connected to the mast must be taken
into account.

The transverse loads are introduced into the mast at the spreaders, the sail
attachment points and the pulleys. The analysis as has currently been done
by the National Aerospace Laboratory (NLR) was performed on a simplified
analysis model. The following assumptions were made to obtain this model:

e The difference in deformation due to the application of the harbour con-
dition as an unloaded geometry in the finite element model instead of a
loaded geometry was assumed to be tolerable.

e The rigging keeps the mast in its place at the rigging attachment points,
allowing the rigging to be replaced by sliding supports at these locations.
This way a simplified model was constructed for the buckling analysis
instead of dealing with the problem of changing cable lengths while tuning
the rigging.

Taking into account the stated model definition problems an attempt shall be
made to propose a solution strategy which will make the above assumptions
abundant.

7.4 Proposed problem approach

First of all, it can be stated that replacing the beam elements by cable ele-
ments introduces the option of pre-loading in the form of prestress. In order
to investigate the possibilities offered by this option with respect to the mast
definition, a proper interpretation of the prestress option is required.

prestress
The prestress option as has been implemented into the code can be interpreted
as follows:

It is not sufficient to simply define the prestress(es) belonging to the desired
deformation of the mast (harbour condition). One must work towards this de-
formed position of the mast from an initially undeformed, but prestressed state.
The reaction forces required to equilibrate the prestressed condition should be
delivered by the mast.

problem approach

In order to obtain the deformed structure using this pre-stress definition some
"tricks’ must be applied.

Consider the simplified mast-structure presented in figure 7.6. The proposed
method will be illustrated by the tuning procedure of one (single) cable.
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/ Ry fica)
/ Ry (lcby
b

Figure 7.6: Proposed method to obtain deformed and loaded harbour con-
dition

With the prestress option being available, a prestress can be defined on the cable
in question by specifying either prestress or 10 in the input-file. The reaction
force required to equilibrate the pre-stress, Ry, will be defined in loadcase b
and is held constant. As stated above, this will not result in a deformation
of the structure. By defining an incremental force opposite to this reaction
force in loadcase a, the reaction force in loadcase b can be reduced to zero
incrementally. As Ry is reduced, reaction forces appear in the mast at the
attachment points, taking over the task of equilibrating the pre-stress in the
cable. See also figure 7.7.

The result is a deformed and loaded configuration which represents the har-
bour condition and can be used as initial state for the finite element (buckling)
analysis. The method does however introduce a few other problems. These
problems and some suggestions to approach these problems will be discussed in
the next section.

Figure 7.7: Reaction forces on mast

7.5 Validation of the proposed method

Due to the change in loadcase a the whole structure takes on a deformed
state. One can vary these values until the desired harbour condition is obtained.
However, two problems may arise using this method.

1) The pre-stress 0§ finally obtained in the cable, (i.e. after tuning) will
possibly not coincide with the prescribed stress o, (equilibrated by Rg =
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0o - A) due to the deformation of the mast. From the results it can be
easily checked whether this discrepancy can be considered negligible.

2) Another consequence of the mast deformation, is that the cable changes
direction and does not remain co-linear with the defined reaction force
Ry. Hence, the approach is only partially true if Rg is not completely
compensated by loadcase a. See also figure 7.8. Apparantly we are deal-
ing with a live load problem. Hence, in order to perform this procedure
accurately one needs to define the loads as ’live loads’. Unfortunately,
this option is currently not available in B2CONT.

Ry (lch)

Figure 7.8: Discrepancy due to mast deformation

The discrepancies described in part (2) can be expected to be negligible. How-
ever, it is possible to avoid these discrepancies by the method described below,
based on the fact that the directions of the forces are no longer significant once
the total equilibrating reaction force Rg on the node has been reduced to zero.
The pre-stress in the cable and the corresponding reaction force are specified
in the input file.

One can decrease the reaction force by use of loadcase a as described in
the previous section, until the desired cable tension and/or deformation are
obtained. The corresponding value of pa (loadcase a) is then used to redefine
the problem, such that lca and Icb compensate each other, i.e. pa+ pb =
0. This means that both loadcases can be removed from the computational
database, without affecting the equilibrium state. For incremental superposi-
tion of the sailing loads one can now prescribe the sailing loads in the VECTOR
FRCA.GLOB (loadcase a. This VECTOR can be obtained from a ’blanc
analysis run’,

Finally, by performing a B2CONT analysis for this model the deforma-
tions due to sailing loads are obtained. By varying the values of the pre-stress
in the cable, one can generate a 09 — Fpast dependency.
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multi-cable construction problem

The method described above can in principle be used to perform the optimiza-
tion and buckling failure analysis described in ref. [10]. However, the method
requires some interactive steps, which complicates the analysis and is time con-
suming. This is specifically the case if a large number of cables are involved.
If one or few cables have been tuned by the procedure, again one or few cables
need to be tuned. This is still a complicated problem for optimization analysis.
One cannot simultaneously reduce several reaction loads to zero by defining
incremental forces in loadcase a, due to the non-linear load-displacement dis-
tribution along the mast.

~

~N NN N

“/ [/

Figure 7.9: Tuning with prescribed displacements

Another option is to tune the cables using prescribed displacements assuming
that the required displacements are small, see figure 7.9. The sailing loads can
be superposed in the same manner as described before.

7.6 ) Recommendations

To facilitate the model definition and the computation for the method described
in section 7.4 the following recommendations can be made:

1) Automize the required steps, such that the user only needs to define the
desired pre-tensions and sailing loads.

3) Check whether the discrepancies described in section 7.5 can be considered
negligible.
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Chapter 8

Linearized vibrations around
stable states

The second part of the assignment is to activate the code for linearized vibra-
tions of cables around stable equilibrium states. Such analyses are performed
by use of linear solution procedures, provided by the macro processor B2LIN
in the B2000 master code.

Linearized dynamic analysis requires a mass matrix for the element and its
linearized stiffness matrix, i.e. the tangential stiffness matrix computed in the
origin. An evaluation of the present formulation of the stiffness matrix will be
given in section 8.2. The required modifications to the code are discussed in
section 8.3. As an illustration to linearized vibration analysis around stable
states, a numerical example problem is presented in section 8.4.

8.1 Linear dynamic analysis

8.1.1 Linearized vibrations around stable states

The (nonlinear) equations of motion in their discretized form can be derived by
Newton’s second law and are expressed by:

MU + CU +£(U;t) =0 (8.1)
with
. o . 52
0=z 0=72g

In the above equations (8.1) M and C represent the discretized mass and dam-
ping matrices respectively. The total force vector £ (U;t) is a function of the
(discretized) displacements U and the time ¢.

Notice that for the static case (U = U = 0) and (U = Uy), f becomes a
function of the load parameter X instead of time. Hence,

£ = £(Uy()),A) =0 (8.2)
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Next, consider vibrations around an arbitrary stable equilibrium state deter-
mined by the displacements Ug(A). This situation can be illustrated in a load-
displacement diagram as presented in figure 8.1.

A

equilibrium curve
f=0

e Ug

nou

Figure 8.1: Linearized vibration around stable state

The (total) displacements U can be written as:

U=Up+u (8.3)
where u; represents small changes of displacements with respect to the stable
equilibrium state under consideration. Substitution into egs. (8.1) and taking

into account that Uy = 0 and Uy = 0, as it belongs to a stable equilibrium
state, yields:

Mii; + Ciy +f(Ug + uj, A+ AX) =0 (8.4)
Linearization of the above equations yields:
Mi, + Cuy + f(Uo()\), A) + f,u; (Uo(A),A)u1 + f,)‘A)\(t) =0
(8.5)

with

0
()Ul =
’ 0
E- (8.6)

0a= 33
From eq.(8.2) one can see that f(Ug(\),\) = 0. Rewriting f,(Ug()), ) as
K(Ug(N), A), the egs. 8.5 become:
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Mii; + Cuay + K(Up(A), Mur +£,AM(¢) =0 (8.7)

Clearly, the (linear) stiffness matrix K = f,, is a function of the displacements
Uy, representing the (initial) stable equilibrium state considered and the load
parameter J;

K = K(Us(}), )

The consequences of the dependency of the stiffness matrix on the initial state
will be illustrated by considering the effects of prestress on the stiffness matrix,
see the subsequent (sub)section. The egs. (8.7) are solved in the usual manner
using linear solution procedures.

Notice that for undamped free vibration analysis, the terms Cu; and £y AM(¢)
in eq.(8.7) cancel, yielding:

Mi,; + Ku; =0 (88)

Conventionally, these expressions can be solved for the Eigen frequencies by
assuming periodic functions for the displacements u; as follows:

u; = ﬁleiwt (8.9)

Substitution into egs. (8.8) with the knowledge that e™* s 0 yields:

(K-wM)i, =0 (8.10)

This set of equations can be solved by standard Eigenvalue analysis for the
Eigen frequencies w from which the corresponding Eigenmodes for the displace-
ments, 0, can be determined.

8.1.2 B2LIN

Linear static and dynamic (Eigenmode) analysis can be performed by the
B2000 macro-processor B2LIN by calling a sequence of processors. See for a
more detailed description ref. [9].

The linear solution technique requires the linearized stiffness matrix and for
dynamic analysis also the element mass matrix. The mass parameters can be
specified in the input-file by using the mass command. With the parameters
one can specify the elements, nodes and mass type [9] of the element. The mass
type (mt) parameter specifies the mass generation to be selected; LD speci-
fies lumped diagonal mass, CD consistent diagonal mass and CO generates
consistent mass matrix.

The stiffness matrix will be treated in section 8.1.3.
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8.1.3 Linearized stiffness matrix

Consider the nonlinear equilibrium path as was shown in chapter 3, figure 3.3.
The stiffness matrix used for linear analysis is the linearization of the actual
(tangential) stiffness matrix in the origin. This means that the stiffness matrix
is a function of the initial geometry only. Hence, if loadcase b is used for the
initial equilibrium state, pa=0 (zero displacements) in the origin. See figure
8.2. :

equilibrium curve
f=0
K (linear)

PA=0

el

Figure 8.2: Linearized stiffness matrix used to compute the tangent at the
origin

In linear analysis the linearized path that follows from linearization in the origin
represents the equilibrium path considered in B2LIN. Obviously, as the dis-
placements grow larger, the deviation between the linearized equilibrium path
and the actual (nonlinear) equilibrium path increases.

Hence, linear analysis is only justified within a given region of small dis-
placements. The corresponding stiffness matrix can be obtained directly from
the nonlinear stiffnes matrix derived in section 4.6 by taking the values in the
origin, i.e. setting the displacements equal to zero. This yields the following
expressions for the linearized stiffness matrix:

OF, OF,3  0Fy; EA (z,»)“’ L
= = — = — P (1—A)+A 1=353=12,3

OF, 0F.,; 0F4; EA ( ( z,-) (z,-) ) - L
= = - =—([=](Z)Q-A ,7=1,2,3 i
;s au, -~ \\ip) i) 1A 7 (g‘f;)

with

L=I
L=l (8.13)
13 = lz
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and

(8.14)

s = /(1) + (1) + ()

See also section 4.4, egs. (4.30) and section 4.5 for a further explanation of
these expressions. Clearly, from the above expressions the presence of prestress
results in an additional component A # 0.

8.2 Validation of existing formulation

For linear analysis the directive dirkern(3)=1 and the other directives are set
to zero. The current element routine then calls the following expressions for
the stiffness matrix:

9U; ~ jys  OU;

OF;, OF,s;  OFy; EA (z;
!

2
—) i=j=1,23
(8.15)

l

OF; _ 0Fys _ 0Fy; _ EA (l:) (l;

= = - _— 'y i,j=17273 i#J

with

i=l
=1 (8.17)
I5=1;

Note that for zero displacements (U = 0) I} = l;. Obviously, as the stiffness
matrix is symmetric, only the lower triangle components are required for the
computation. In the existing element routine these equations ((8.15), (8.16)) are
obtained from eqgs. (4.62) to (4.70) of section 4.6 by setting A = 0. However,
by doing so, no additional terms appear that comprise the effect of a given
prestress.

Consequently, no transverse stiffness is induced and an Eigenvalue analysis
will only result in longitudinal modes instead of transversal modes. It requires
no further explanation to see that a prestressed cable should yield transverse
Eigenmodes due to the induced transverse stiffness.

Furthermore in the current formulation no negative stress or cable-rod
checks are performed for linear analysis. Also no mass matrix is available in
the current B2000 code.
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8.3 Modifications to existing formulation

modifications to stiffness matriz

Obviously, the existing formulation does not enable Eigenmode analysis of a
pre-stressed cable. The linear stiffness matrix in 2ep39.F is modified for its
correct formulation as presented in subsection 8.1.3. For linear analysis the
second variation is computed only once at the beginning of the analysis, i.e. at
the origin. Hence, the displacements are zero and thus the same expressions
derived in section 4.6, egs.(4.62) to (4.70) can be used for linear analysis. See
appendix E for the modified element routine.

mass matriz definition ,

The element mass matrix is defined in the element mass routine 42mp39.F, see
appendix I. This routine generates mass lumped diagonal, consistent diagonal
mass or consistent mass according to the specified parameters. For the lumped
mass generation the total mass of an element is computed and equally dis-
tributed over the two nodes. Note that the mass definition for the 2-node cable
element can be determined directly from the rod-element mass matrix routine
(62mp35.F).

8.4 Numerical example problem

FEigenmode analysis

Finally, a numerical example will be presented to illustrate the Eigen frequency
analysis of a cable. For this purpose use is made of the cable example in ref.
[4], see figure 8.3.

This example involves a cable of (stretched) length 20 [m], prestress op =
500 [N], density po = 0.3 [kg/m), and stiffness parameter EAg = 2.2 - 10% [N],
discretized into 20 cable elements. To enable definition of the input-file the area
A is chosen to be 2.2 - 1075 [m?), yielding for the density py = 1.3636 [kg/m?]
and for Young’s modulus F = 1.0 * 10!1 [N/m?]. See appendix G for the used
input-file.

pe 7Y —_—

7 7

| L=20m |

!

¥

Figure 8.3: Stretched cable supported by two simple supports

The obtained converged Eigen frequencies are presented in table 8.1. The cor-
responding first three Eigenmodes are given in figure 8.4.

Analytical verification
The Eigen frequencies of a cable under prestress can also easily be determined
analytically by the following expressions [1]:
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Figure 8.4: First three Eigenmodes for cable with length 20 [m] and prestress

500 [N]
Mode | Frequency | Omega | FEigval | Rel. Error Status
1 1.01957 6.40615 | 41.0388 | 1.731394E-15 | CONVERGED
2 2.03285 12.7728 | 163.145 | 2.929669E-10 { CONVERGED
3 3.03361 19.0607 | 363.311 | 2.992535E-08 | CONVERGED
4 4.01565 25.2311 | 636.608 | 6.035404E-06 | CONVERGED
5 4.97295 31.2460 | 976.311 | 6.133633E-05 | CONVERGED

Table 8.1: Results Eigenmode analysis: converged Eigenmodes

fo=5;

2c
fi=5 (8.18)

, o

LY

with for the case of a pre-stressed cable:

c=,Z (8.19)

p

Substitution of op = 500 [N], I = 20 [m] and p = 1.3636 * 10* [kg/m?] yields:

fo=1.02 [Hz]
f1=2.04 [HZ]

f2 =3.06 [Hz (8.20)

As can be seen from table 8.1, these results coincide within acceptable error
margins.
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Chapter 9

Transient analysis with cable
element |

The last part of the assignment is to activate the code for transient analysis
of cable elements. As the macro processor for transient analysis B2ZTRANS
has recently been rewritten and modified [13], the modified cable element can
also be tested for transient analysis. For this purpose use is made of the same
literature example as used in chapter 8 [4].

9.1 Transient analysis

Recall the discretized equations of motion eq.(8.1) presented in chapter 8, sub-
section 8.1.1. These equations can be solved by implicit time integration meth-
ods provided in B2000 by the macro-processor B2TRANS.

The default method used is a linear multistep method algorithm devised by
Park. A more detailed description of B2TRANS, the used solution methods
and the required parameters can be found in ref. [13].

Recall from the previous chapters that the stiffness matrix becomes singular in
quasi-static analysis, causing an unsolvable set of equations. In dynamic anal-
ysis however, the presence of the mass matrix compensates this. For example,
when using the Jensen formulation (as is done in B2TRANS), the mass matrix
and the stiffness matrix are combined resulting in the dynamic stiffness matriz.
This matrix no longer becomes singular and can be factorized.

An important option with respect to quasi-static analysis with B2ZCONT,
is that B2TRANS offers the possibility to restart the computation with the
transient solver after running a quasi-static analysis with B2CONT. Obviously,
the initial conditions (velocity, acceleration) in that case will be equal to zero
for such a restart.
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9.2 Example problems

9.2.1 Stretched cable submitted to transverse loading

Consider the example problem of a cable stretched between two horizontal
supports and submitted to a transverse dynamic loading p(t) = pgt. See also
ref. [4]. The cable has (stretched length) L = 20 [m], *prestress’ o = 500 [N],
extensional rigidity EAg = 2.2 * 10° [N] and mass per unit length pgdy =
0.3 [kg/m]. (See figure 9.1).

y

t p =2 10° kgss p(t)
ﬁ%lllllllllﬂéﬁ_ﬂ‘ .

Figure 9.1: Stretched cable submitted to transverse loading

The cable is discretized into 20 elements and the dynamic load is applied with
time increments of 0.001 [s]. The corresponding input-file can be found in
appendix H. The prescribed end-time of 0.12 [s] is reached after 120 time-
steps. Figure 9.2 shows a sequence of displays of the cable configurations.

(4

be \/
(a) cycle 25: t = 0.025 s (b) cycle 35; t = 0.035 s
4
gx \/
(¢) cycle 55; t = 0.055 s (d) cycle 75; t = 0.075 s

Figure 9.2: Dynamic response of cable submitted to transverse loading

The dynamic response of the cable is shown by the time-displacement diagram
for the midspan-node (i.e. node 11). See figure 9.3. The transverse displacement
v is plotted along the vertical axis and the time ¢ in seconds along the horizontal
axis .

The peak values obtained by this transient computation are compared with
the values presented in ref. [4] (see table 9.1).
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transverse displacement midspan node , v {m]
-10.000 _

-8.000 |

-6.000

-4.000 |

-2.000 |

0.000 I | ! | 1. |
0000 0.020 0.040 0.060 0080 0.100 0.120

time, t [s]

Figure 9.3: Transverse displacement versus time for the cable midspan node

The deviation in the numerical results are largest for the values of the transverse
displacements. This deviation increases with increasing time. The deviation is
probably caused by use of different solution techniques and a different form of
discretization.

9.2.2 ’Plucking’ of guitar string

As a real life musical example consider a string of an acoustic guitar of scale
length 648 [mm)]. For the finite element model the length is taken to be
500 [mm)]. The type of the string considered is EJ15 Extra Light for E — 1st.
The diameter D of the string is 0.0254 [cm], yielding a cross sectional area A
of 5.06707e — 02 [mm?]. The corresponding prestress og * A is 72.0 [N].

Furthermore, the string is assumed to be made of steel with Young’s mod-
ulus E = 0.2 + 10'2 [N/m?] and density p = 7.8 * 103 [kg/m3]. For the finite
element model the string is discretized into 13 elements of 5.0 [mm]. See ap-
pendix H for the used input-file. The plucking of the string is simulated at
d = 15.0 [em]. (See figure 9.4).

—
k ! ;Y
Py
A [ %
Lo

Figure 9.4: Plucking of an acoustic guitar string
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Geradin B2TRANS
Peak no. | time [s] | displacement v [m] | time [s] | displacement v [m] | Error(v)
1 0.036 -4.134 0.036 -4.406 0.066
2 0.069 -4.759 0.072 -5.081 0.068
3 0.098 -5.00 0.102 -5.378 0.076

Table 9.1: Peak values obtained from resp. ref. [4] and B2TRANS com-
putation

Recall from section 9.1 the possibility to restart a B2CONT computation with
B2TRANS. This option makes it possible to simulate the plucking of the string
as follows:

(1) The first part of the analysis consists of giving the string a small dis-
pacement of 10.0 [mm] at d = 15.0 [mm] (node 4). This process can
be simulated by quasi-static analysis (B2CONT), using prescribed dis-
placement.

(2) In the second part of the analysis the string is released and the dynamic
response is simulated. To achieve this, the computation is restarted from
the last load-step (i.e. loadstep 11) from the static analysis, using ebv
B2TRANS.

The dynamic responses of node 7 at distance 30 [mm)] from the point A and
node 4 (’plucking’ node) are given in figure 9.5.

displacement, v [m] displacement, v {m]

€0.300 . 0.100 _
00680 | -0.080 |
0060 | 0060 [
0040 | 0040 [
-0.020 [ 0.020 [

P \NVA WA Yo VI AN NITA NZA ¥

- SN/

0.000 0002 0003~ 0005 0.00 0008 0010 0.000 002  0.003 005 0.00° 0008 0010

time, t {s] time, t [s]

(a) node 4 (b) node 7

Figure 9.5: Time-displacement diagrams for respectively node 4 and node
7: E-1st
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From the figure one can see that the displacement in the longitudinal direction
(curve 1) is negligible, yielding only transverse modes. The corresponding fre-
quency can be determined from the figure and is equal to 625 [Hz]. Figure 9.6
shows a sequence of displays of the cable configuration.

Ex #
(a) cycle 11; t = 0.0 s (b) cycle 25; t = 1.400E-03 s
Ly by
(c) cycle 50; t = 3.900E-03 s (d) cycle 100; t = 8.900E-03 s

Figure 9.6: Dynamic response of guitar-string due to ’plucking’

The Eigenfrequencies can be determined from linear vibration analysis (B2LIN),
yielding for the lowest two Eigen frequencies 327.522 [Hz] and 650.267 [Hz].
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Chapter 10

Conclusions and
recommendations

10.1 Conclusions

The main objective of this assignment was to develop, implement and/or acti-
vate a geometrically nonlinear cable element which is suitable for applications
in quasi-static analysis, linearized vibration analysis and transient (dynamic)
analysis. As a first approximation the cable is assumed to behave like a string.
This means that the element only has tangential stiffness. As a consequence
the cable is completely unstable in the unloaded (tensionless) state, i.e. be-
comes singular. This aspect required an extensive evaluation particularly for
quasi-static analysis, as this could happen in a variety of situations.

From the visits to the National Aerospace Laboratory or NLR, the interest
for the (cable-supported) mast of a sailing yacht arised as an example of a prac-
tical application problem for the developed cable element with its implemented
properties. Finding interpretations for this mast example and investigating
modeling strategies became one of the sub-objectives of this assignment.

The singular behaviour of a tensionless cable can well be explained in the con-
text of classical stability theory applied to a slender beam submitted to com-
pression. A tensionless cable is completely unstable. This singular behaviour
causes computational problems, specifically for quasi-static analysis (executed
by running B2CONT), as it results in a singular stiffness matrix.

The original code presented a nonlinear cable element which did not sa-
tisfy the conditions required to enable some elementary applications involving
tensionless cables. Also the formulations for the first and second variation for
positive stress as well as the linearized stiffness matrix used for linear (vibra-
tion) analysis, required some corrections.

quasi-static analysis

Several methods to satisfy the specified conditions were investigated. These
methods are all based on the principle to find ways to stabilize the cable such
that continuation of the computation is assured. This can be achieved by either
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defining a small positive strain in the cable or by defining a low modulus of
elasticity E (Young’s modulus):

* Treating the (tensionless) cable as an elastic rubber band by defining
small values for the stiffness parameter (AE) enables quasi-static analysis
of cable structures of which one or more cables become tensionless during
the deformation process. These cables have negligible interference with
the rest of the structure as they will behave like rubber elastics. However,
this method does not enable computation with initially tensionless cables.

The problem of initially tensionless cables was approached by giving the
cable a small positive strain by re-definition of the initial (unstretched)
length in the first load-cycle. This initializes the computation, after which
the computation is continued in the conventional way with positive stress
formulations. This method however does not provide the correct formu-
lations for the condition described above.

. Investigation of both methods has lead to the conclusion that an elegant solution
strategy capturing both conditions could be extracted by proper combination
of these two methods. This resulted in the refined Iy E-method as described in
section 6.5. This method is implemented such that the user can specify the
required method, i.e. the default method or the default method after initial-
ization of the computation by the Iy — method. The method offers solution
possibilities for a broad variety of problems involving tensionless cables.

dynamic analysis: Linearized vibrations around stable states

The original formulation for the linearized stiffness matrix did not comprise the
components responsible for transverse stiffness. Consequently, the effect of pre-
stress was not present and no transverse Eigen modes were found. To activate
the code for linearized vibrations around stable equilibrium states a correction
of the second variation was required. The modified formulations were tested
by Eigenmode analysis and verified analytically. It must be remarked that no
'negative stress’ provisions are implemented for this type of analysis.

dynamic analysis: Transient analysis

Transient analysis offers a whole new perspective to cable applications. Singu-
larities in the stiffness matrix are no longer problematic due to the presence of
a mass matrix. From the test examples it was found that the developed cable
element can be used for transient analysis without any problems.

An interesting option provided by B2TRANS is the possibility to restart
with B2TRANS after a quasi-static analysis with B2CONT. This option
was used in the example of the 'plucking of a guitar string’ for the case of the
'E — 1st.

10.2 Recommendations

Although the developed cable element appears to be applicable for a wide range
of problems involving tensionless cables as well as stretched cables, some recom-
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mendations for further research are mentioned below;

o One recommendation can be made about fixing the deficiency in BASPL
encountered in section 6.1. This deficiency results in an incorrect dis-

play of the deformation of the cable structure when no interior nodes are
defined.

e As was explained in chapter 2, section 2.2, the cable can be interpreted as
a beam with negligible bending stiffness. The effect of actually defining a
(nonlinear) beam element with small bending stiffness instead of a cable
can be investigated and compared to the results obtained by the cable
element. Care must be taken to define the problems with the beam and
the cable consistently and take into account that a prestressed cable has
some transverse stiffness.

e The option to restart from a B2CONT analysis with a B2ZTRANS
analysis also offers some further investigation perspectives. One can in-
vestigate the possibilities to restart with a B2CONT analysis after run-
ning B2TRANS. If this is possible it may be interesting to investigate
another strategy to approach the singularity problems without actually
modifying the first and second variations. The following procedure is also
worth investigating: When in B2CONT the cable becomes tensionless
the computation can be switched to a transient analysis. By implementa-
tion of a velocity and acceleration test the computation is switched back
to a B2CONT analysis when the velocity and acceleration become suf-
ficiently small. Recall that a singular stiffness matrix (of a tensionless
cable) does not cause computation problems for transient analysis.

e Presently, the initial length and the stiffness parameter AE are adjusted
for ’negative stress’ cases by multiplying these values with a factor con-
taining a ’small’ value (see b2ep39.F). This 'small’ value can be varied to
investigate the minimum value by which the correct results are obtained.

e The NLR mast problem requires further investigation as well. More mod-
eling strategies can be investigated as well as possibilities to include the
initial cable lengths into the optimization procedure.

e An interesting problem that can be tested using B2TRANS is the pen-
dulum problem, i.e. a cable fixed at the upper end with a mass connected
to the lower end (node).

e As alternative formulations are used for the first and second variations
in case of ’negative stress’, also the transient solver B2TRANS uses
these adjusted values. Although no problems are to be expected, it is
recommended to investigate the effect of these modifications in transient
analysis involving (temporary) tensionless cables.
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Appendix A

Original pre-variational
element routine b2epv39.F

subfoutine b2epv39(coor, eprop,

*
*

O 0O 0 0 060 00 0 0 0 00

epropall, elaminates,
elprev, work, irad, istat)

Compute prevariational data for 2-noded cables and rods
B2000 version 1.77

prev contains the following items:

prev(1) - dx (initial length in x)

prev(2) - dy

prev(3) - dz

prev(4) - initial cable/rod length. >0.0 cable_ident

<0.0 rod_ident

prev(5) - initial cable cross section area

implicit none

real*8 coor(3,x*)

real*8 eprop(*),epropall(*)
real*8 elaminates(4,x*)
real*8 elprev(x)

real*8 work(x)

integer irad(*)

integer istat

c
#include
#include
#include
#include
c

"b2constants.ins"
"b2limits.ins"
"b2kernel.ins"
"b2test.ins"

integer LSCONST
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O

C
C

parameter (LSCONST=20)
integer i

real*8 sconst (LSCONST)

1100 format(’ cable prevar=’,5e15.7)

istat=0
elprev(1i)=coorkern(1,2)-coorkern(1,1)
elprev(2)=coorkern(2,2)-coorkern(2,1)
elprev(3)=coorkern(3,2)-coorkern(3,1)
elprev(4)=sqrt(elprev(1)*+2 + elprev(2)**2 + elprev(3)**2)

Compute section sconst (area)

¢ sconst = [ A Tconst Sy Sz Jy Jz Wy Wz ]
¢ here only A=sconst(1) is needed.

call b2epropbsect(thkern,sconst,istat)
if(istat.1t.0) return
elprev(5)=sconst(1)

cable: compute initial_length for given prestress 1 = 10 ( 1 + p/ae )

if (ecckern(1).gt.0.0) then
elprev(4) = elprev(4) /
* (1.0 + ecckern(1)/(eprop(MATPOSE1)*sconst (1)) )

cable: initial_length given in eccentricty array ecckern

else if(ecckern(1).1t.0.0) then
elprev(4)=abs(ecckern(1))

rod: insert initial_length given and set to - to identify rod

else
elprev(4)=-elprev(4)
endif

write(outkern,1100) (elprev(i),i=1,5)
istat=0

return

end




Appendix B

Original element routine
b2ep39.F

subroutine b2ep39(coor, disp, etranms,
eprop, epropall, elaminates,
elprev, elurf, elfvar, elsvar, elstab,
eltfor,ellfor, plasold, plasnew,
work, irad, istat)

#* ¥ ® *

B2000 subprogram to compute the first and the second variation of
2 noded cable and rod elements.

B2000 version 1.8
The output from b2epropbsect is
sconst = [ A Tconst Sy Sz Jy Jz Wy Wz ]

modified 950315 sme section introduced
modified 961104 sme b2epropbsect moved to b2epv. elprev(5)=Aread

O 0O 0O 0 0 0 0 0 0 0 00 0

implicit none

(eI ¢

Arguments

real*8 coor(3,*), disp(x)

real*8 etrans(x*)

real*8 eprop(*),epropall(x)

real*8 elaminates(4,*)

real*8 elprev(*),elurf(*),elfvar(*),elsvar(*),elstab(*)
real*8 eltfor(x),ellfor(*), plasold(*), plasnew(*), work(*)
integer irad(*)

integer istat
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#include "b2constants.ins"
#include "b2limits.ins"
#include "b2kernel.ins"
#include "b2io.ins"
#include "b2test.ins"

C
Cc
C

Cc

aO o o0 oon

Local data

integer LSCONST
parameter (LSCONST=20)

integer itens,irod,i,j

real*8 zero,one,oldval

real*8 rlen,dircos(3),rl0,ae,p,deltal,eps,delml,scab(3,3)
real*8 sconst (LSCONST)

data zero/0.0/, one/1.0/

1200 format(’ cable var2 (scab)=’/(3e12.4))
1300 format (’***WARNING Cable element ’,i4,

1 ’ has negative prestress p=’,1pel5.7)

********************************************************************

linear? if so, compute prevariational data elprev
********************************************************************

if(dirkern(1).eq.0) then
call b2epv39(coor, eprop, epropall, elaminates,
* elprev, work, irad, istat)

¢ printx,’elprev’, (elprev(i),i=1,5)

O 0 a0 0 00000600000

if(istat.1t.0) return
endif

*******************************************************#************

compute items common to first and second variation
********************************************************************

if(ktest.gt.0) then
write(outkern,*) ’EPN11 cable el=’,elikern
if(ktest.gt.2) then
vrite (outkern, *) ’elprev=",(elprev(i),i=1,4)
write(outkern,*) ’disp(1)=’,(disp(i),i=1,3)
write(outkern,*) ’disp(2)=’,(disp(i),i=4,6)
endif
endif




O 0O 0 0 00 0 00

o o o o o0

compute volume
volkerno=abs(elprev(4)+*elprev(5))

rlen=zero

do 10 i=1,3

dircos(i)=elprev(i)+disp(i+3)~-disp(i)
10 rlen=rlen+dircos(i)**2

if (rlen.eq.zero) then
vrite(ioerr,’(A,I8)’)

* > **x+ERROR (b2ep39): Length equal to zero. Element =

goto 900
endif
rlen=sqrt(rlen)

do 20 i=1,3
20 dircos(i)=dircos(i)/rlen
rl0=abs(elprev(4))
ae=eprop (MATPOSE1) *elprev(5)
if(ktest.gt.0) then

write(outkern,*) ’cur_length=’,rlen,’ ae=’,ae
write(outkern,*) ’dircos=’,(dircos(i),i=1,3)

endif
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compute var?2

22223222 222222222222 22223222222 222222222 22222222222 R s

if (dirkern(3).eq.0) goto 100
if(ktest.gt.0) write(outkern,*) ’EPN11 compute VAR2’
geometric nonlinear

if(dirkern(1) .ne.0) then
itens=0
check if rod element (elprev(4)<0.)

if (elprev(4).1t.zero) then
irod=1

else
irod=0 1!t cable
p=ae*(rlen-rl0)/rl0
if(p.le.zero) itens=1

endif
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deltal=(rlen-rl0)/rlen
if(itens.eq.1.and.irod.eq.0) then
deltal=zero
write(outkern,1300) elikern,p
endif
if(ktest.gt.0) write(outkern,*) ’rlen=’,rlen,’ deltal=’,deltal

compute stress

O 0O 00

eps=(rlen-r10)/rl0
if (matbkern.gt.0.and.abs(eps).gt.1.e~12) then
if(iprop(18).eq.4) then !! deformation theory
call epplb4d(pltab,1,eps,sig)
ae=elprev(4)*abs(sig/eps)
printx*,’**var2 ae=’,ae
else
write(outkern,*) ’*xfatal** plasticity not impl., mthbv=’,
1 mtbhv
call mdump(sname,90)
endif
endif

O 0000 0000000

delmi=one-deltal
do 60 i=1,3
60 scab(i,i)= dircos(i)*#*2xdelml +deltal

c linear

else
delmli=one
do 61 i=1,3
61 scab(i,i)= dircos(i)*>=*2
endif

ae=ae/rl0
scab(1,2)=dircos(1)*dircos(2)*delmi
scab(2,1)=scab(1,2)
scab(1,3)=dircos(1)*dircos(3)*delmi
scab(3,1)=scab(1,3) _
scab(2,3)=dircos(2)*dircos(3)*delml
scab(3,2)=scab(2,3)
do 70 i=1,3
do 70 j=1,3
70 scab(i,j)=scab(i,j)*ae
c
¢ the var2 matrix is stored in packed symmetric lower triangle.




a0 o0 o0 o000

(¢}

o 0 00

O 0O 0 00
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elsvar( 1)= scab(i,1)

elsvar( 2)= scab(1,2)
elsvar( 3)= scab(2,2)

elsvar( 4)= scab(1,3)
elsvar( 5)= scab(2,3)
elsvar( 6)= scab(3,3) .

elsvar( 7)=-scab(1,1)
elsvar( 8)=-scab(2,1)
elsvar( 9)=-scab(3,1)
elsvar(10)= scab(1,1)

elsvar(11)=-scab(1,2)
elsvar(12)=-scab(2,2)
elsvar(13)=-scab(3,2)
elsvar(14)= scab(1,2)
elsvar(15)= scab(2,2)

elsvar(16)=-scab(1,3)
elsvar(17)=-scab(2,3)
elsvar(18)=-scab(3,3)
elsvar(19)= scab(1,3)
elsvar(20)= scab(2,3)
elsvar(21)= scab(3,3)

if (ktest.gt.2) write(outkern,1200) ((scab(j,1),j=1,3),i=1,3)

*********************#**********************************************

compute first variation
e ok ke 3 o 3 o ok 2 o o ok ko ok o o ok ko 3 3k ok 3k oK 3K 3 e ke ok R ok o ok 3K ok ok ok ke ok ok ke ol o o ke ok s ok ok ok koK Kok K F

100 if(dirkern(2).eq.0) goto 200
eps=(rlen-r10)/rl0
compute stress

if (matbkern.le.0) then
ae=ae*eps
else
if (iprop(18).eq.4) then !! deformation theory
call epplb4d(pltab,1,eps,sig)
a=elprev(4)*sig
else
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c write(outkern,*) ’*x*FATAL plasticity not impl., mthbv=’

c 1 matbkern

c istat=-1

c return

C endif

c endif

c

¢ compute varl (node forces)

c
do 110 j=1,3

110 dircos(j)=dircos(j)*ae

c if (ktest.gt.1) write(outkern,*) ’vari=’,(dircos(i),i=1,3)

do 120 j=1,3

elfvar(j) =-dircos(j)
120 elfvar(j+3)= dircos(j)

200 istat=0
return

900 istat=-1

end




Appendix C

Flow diagram for b2epv39.F

Call from
B2CONT

lo given?

ecckern(1):=prestress
(>0.0)

ecckern(1):=—lp
(> 0.0)

gcckern(1)> 0.07>10

elprev(4):= lo

elprev(4):=| ecckern(1) |

‘ Return
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input error
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Appendix D

Flow diagram for b2ep39.F
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Call from

B2CONT

Compute items common
to elfver and elsvar

dirkern(3)=0 ?

dirkern(1)=07>Y€S

no

non-linear linear

Redefine variable

ae=A4E

Compute elsvar(i)
lo

compute elsvar(i)

dirkern(2)=07

(B)

compute elfvar(i)

Return




Appendix E

Modified element routines
b2epv39.F and b2ep39.F

E.1 Modified b2epv39.F

subroutine b2epv39(coor, eprop,

prev(l)
prev(2)
prev(3)
prev(4)

prev(5)
-PS
prev(6)

-PS

O 0O 0 00 000000 0 0000000000000

epropall, elaminates,
elprev, work, irad, istat)

Compute prevariational data for 2-noded cables and rods
B2000 version 1.77

modified 981211 ps Activated ecckern(2) and used to identify rod

element. Negative values of ecckern(2) identify

the 10-start method for the cable element,

Positive values indicate default method. recognition
of the requested method in b2ep39.F is established
by using positive value of elprev(6) for the

default method and negative value for the

10-start method.

prev contains the following items:

dx (initial length in x)

dy

dz

initial cable/rod length. >0.0 cable_ident
<0.0 rod_ident

initial cable cross section area

<0 for 10-method at start
>0 default method (10-E method)




146APPENDIX E. MODIFIED ELEMENT ROUTINES B2EPV39.F AND B2EP39.F

implicit none

real*8 coor(3,*)
real*8 eprop(#),epropall (*)
real*8 elaminates(4,*)
real*8 elprev(*)
real*8 work(*) .
integer irad(*)
integer istat

c

#include "b2constants.ins"

#include "b2limits.ins"

#include "b2kernel.ins"

#include "b2test.ins"

c
integer LSCONST
parameter (LSCONST=20)

c integer i
real*8 sconst (LSCONST)

c

¢ 1100 format(’ cable prevar=’,5e15.7)

c
istat=0
elprev(1)=coorkern(1,2)-coorkern(1,1)
elprev(2)=coorkern(2,2)-coorkern(2,1)
elprev(3)=coorkern(3,2)-coorkern(3,1)
elprev(4)=sqrt(elprev(1)+*2 + elprev(2)**2 + elprev(3)**2)

c

¢ Compute section sconst (area)
¢ sconst = [ A Tconst Sy Sz Jy Jz Wy Wz ]
¢ here only A=sconst(1) is needed.

call b2epropbsect(thkern,sconst,istat)
if(istat.1t.0) return
elprev(5)=sconst (1)

Covun. default method; set default value for elprev(6)

elprev(6)=1.0
if (ecckern(2).gt.0.5) then
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¢ cable: compute initial_length for given prestress 1 = 10 ( 1 + p/ae )

if (ecckern(1).gt.0.0) then
elprev(4) = elprev(4) /
* ( 1.0 + ecckern(1)/(eprop(MATPOSE1)*sconst(1)) )

¢ cable: initial_length given in eccentricity array ecckern

else if(ecckern(1).1t.0.0) then -
elprev(4)=abs(ecckern(1))
c .
¢ rod: insert initial_length given and set to - to identify rod
c

c-PS else
c-PS elprev(4)=-elprev(4)
endif
c-PS
Covunn elprev(6) set to negative value for 10-method at start

elseif (ecckern(2).1t.-0.5) then
elprev(6)=-1.0

c-PS else

c

¢ rod: insert initial_length given and set to - to identify rod
c

else
elprev(4)=-elprev(4)

endif
c-PS
¢ .
c write(outkern,1100) (elprev(i),i=1,6)
c-PS
c write(errkern,*) ’ecckern(2) = ’,ecckern(2)
c-PS

istat=0

return

end
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E.2 Modified b2ep39.F

subroutine b2ep39(coor, disp, etrans,

* X ¥ »

(2 T o T

modified
modified
modified

modified
modified

modified

modified

modified

OO000GnO000OOOOOOOOOGOOOOOOOOOOOO

B2000 version 1.8

eprop, epropall, elaminates,

elprev, elurf, elfvar, elsvar, elstab,
eltfor,ellfor, plasold, plasnew,

work, irad, istat)

B2000 subprogram to compute the first and the second variation of
2 noded cable and rod elements.

The output from b2epropbsect is

sconst = [ A Tconst Sy Sz Jy Jz Wy Wz ]

950315 sme section introduced
961104 sme b2epropbsect moved to b2epv. elprev(5)=Aread

980327 ps

980406 ps
980501 ps

980613 ps

980731 ps

981211 ps

implicit none

O 0

Arguments

Value of ae restored to EA before first
variation computation. This is vital if b2ep39
is called with dirkern(3)=1 and dirkern(2)=1. In
such a case ae is changed for second variation
computation and the changed (incorrect) value is
then used to compute the first variation without
this bugfix.

write negative stress warning to screen

Negative stress check introduced prior to

first variation computation. This is essential
to avoid first variation computation with negative
values of strain and to allow implementation

of alternative formulation for such cases.
Implementation of 10-E method for negative
stress case: adjustment of 10 and ae for

first and second variation computation.
Correction second variation computation for
linear analysis. This is necessary for

correct computation of the tangential stiffness

matrix at the origin used for linear analysis.

Option to start with the 10 method implemented,
indicated by the value of elprev(6). Default method
is 10-E method.
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real*8 coor(3,*), disp(*)
real*8 etrans(*)
real*8 eprop(*),epropall(*)
real*8 elaminates(4,*)
real*8 elprev(*),elurf(*),elfvar(*),elsvar(*),elstab(*)
real*8 eltfor(*),ellfor(*), plasold(*), plasnew(*), work(*)
integer irad(x)
integer istat -
c
#include "b2constants.ins"
#include "b2limits.ins"
#include "b2kernel.ins"
#include "b2io.ins"
#include "b2test.ins"

c
¢ Local data
c
integer LSCONST
parameter (LSCONST=20)
integer itens,irod,i,j
real*8 zero,one,oldval,small
real*8 rlen,dircos(3),rl0,ae,p,deltal,eps,delml,scab(3,3)
real*8 sconst (LSCONST)
[
c-PS
[ define ’small’ for 10-E method purposes. Value can be
Covrwn changed according to personal notion.
c-PS
data zero/0.0/, one/1.d+00/, small/1.d-4/
c

1200 format(’ cable var2 (scab)=’/(3e12.4))
1300 format (’**xWARNING Cable element ’,i4,
1 ’ has negative prestress p=’,1pel5.7)

3ok 3 o o ok 3 o e o o e ok ok ok 3 ok ok ok 3k 3k 3k ok dk ok 3 3k ok ok ok sk 3 ok sk 3 3k 3 3K ok ok ke s e e e s o 3 3 3k ok oK ok ko K oK oK oK oK 3 ok oK ok

linear? if so, compute prevariational data elprev
3300 2 o o 3K K o oK 0 0 3 3K K 3K ok 3k 3k 3k kol s ok ok o o ok e o o Sk o ko ok ok ok sk ok ok ok oK ok 3k K 3K oK o 3k ok ok 3k o ok ok ok ok ok ok ok o ok

O o o0 o0

if(dirkern(1).eq.0) then
call b2epv39(coor, eprop, epropall, elaminates,
* elprev, work, irad, istat)
c print*,’elprev’, (elprev(i),i=1,5)
if(istat.1t.0) return
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endif
c
[od ******************************#*************************************
¢ compute items common to first and second variation
C ********************************************************************
c
c if(ktest.gt.0) then
C write (outkern,*) ’EPN11 cable el=’,elikern
c if(ktest.gt.2) then
c write(outkern,*) ’elprev=’,(elprev(i),i=1,4)
c vrite(outkern,*) ’disp(1)=’,(disp(i),i=1,3)
c wvrite(outkern,*) ’disp(2)=’,(disp(i),i=4,6)
c endif
c endif
c
¢ compute volume
c
volkerno=abs(elprev(4)*elprev(5))
c
rlen=zero
do 10 i=1,3
dircos(i)=elprev(i)+disp(i+3)-disp(i)
10 rlen=rlen+dircos(i)**2
c
if (rlen.eq.zero) then
write(ioerr,’(A,18)7)
* > *»+ERROR (b2ep39): Length equal to zero. Element = ’,elikern
goto 900
endif
rlen=sqrt(rlen)
c
do 20 i=1,3
20 dircos(i)=dircos(i)/rlen
rl0=abs(elprev(4))
ae=eprop (MATPOSE1) *elprev(5)
c
c~PS
Covrnn print current values of rl0 and rlen
c

write(errkern,*) ’init_length orig.=’,rl0
write(errkern,*) ’cur_length=’,rlen

C
C
c if(ktest.gt.0) then

c write (outkern,x) ’cur_length=’,rlen,’ ae=’,ae
c write(outkern,*) ’dircos=’,(dircos(i),i=1,3)
c endif
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c
C ***********#*******#************************************************
c compute var2
C **************##***********#****************************************
c
if (dirkern(3).eq.0) goto 100
c
c if (ktest.gt.0) write(outkern,*) ’EPN11 compute VAR2’
c -
¢ geometric nonlinear
c
if (dirkern(1).ne.0) then
itens=0
¢ check if rod element (elprev(4)<0.)
c
write(errkern,*) ’elprev(4) = ’,elprev(4)
if (elprev(4).1t.zero) then
irod=1
else
irod=0 11 cable
p=aex*(rlen-rl0)/rl0
if(p.le.zero) itens=1
c-PS
write(errkern,*) ’p = ’,p
c-PS
endif
c
deltal=(rlen-rl0)/rlen
c
c-PS
Counne New formulation for case of negative stress. (10-method for start)
Covrnn When the deformed length rlen becomes smaller (or equal)
Covvwn to the original initial length rl0, the stress becomes negative.
Covuns The initial length rl0 is then redefined such that the new value is
Covvnn slightly smaller than the deformed length rlen, hence conserving a
Covunn small value for the stress in the cable at all times.
c
if (itens.eq.1.and.irod.eq.0) then
c-PS deltal=zero
c
c-PS
Covens write negative stress warning to screen
c-PS write (outkern,1300) elikern,p
write(errkern,1300) elikern,p
c

r10= (one-small)*rlen
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c
Covun print current value of rl0
c
write(errkern,*) ’init_length new=’,rl0

c
Covnnn deltal for new value of rl0 (negative stress case)
c

deltal=(rlen-rl0)/rlen )
c~PS
C.....Assign small value to E (Young’s modulus) in the
Covers case of negative stress...’elastic effect’ (default)
c

if (elprev(6).gt.0.0) then

ae=small*ae

endif
c-PS
Covuun alternative
c-PS deltal=small

endif

c-PS
Counn end of changes to second variation computation
c
c if(ktest.gt.0) write(outkern,*) ’rlen=’,rlen,’ deltal=’,deltal
c
c compute stress
c
c-PS eps=(rlen-rl0)/rl0
c if (matbkern.gt.0.and.abs(eps).gt.1.e~12) then
c if(iprop(18).eq.4) then !! deformation theory
c call epplb4d(pltab,1,eps,sig)
c ae=elprev(4)*abs(sig/eps)
c print*,’**var2 ae=’,ae
c else
c write(outkern,*) ’*xfatal** plasticity not impl., mthbv=’,
c 1 mtbhv
c call mdump(sname,90)
c endif
c endif
c

delmi=one-deltal
do 60 i=1,3
60 scab(i,i)= dircos(i)#**2*delmi +deltal
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c
c linear
c

c~-PS
Covunn Correction to definition linear stiffness matrix in origin:
Covunn corresponds to tangential stiffness matrix in the origin.
else
c-PS delml=one
deltal=(rlen-rl0)/rlen
delmi=one-deltal
do 61 i=1,3
61  scab(i,i)=dircos(i)**2*delmi+deltal
endif
c-PS 61 scab(i,i)= dircos(i)**2
c-PS endif
c-PS
Covuns end of corrections to linear stiffness matrix
C
ae=ae/rl0

scab(1,2)=dircos(1)*dircos(2)*delm1
scab(2,1)=scab(1,2)
scab(1,3)=dircos(1)*dircos(3) *delm1
scab(3,1)=scab(1,3)
scab(2,3)=dircos(2)*dircos(3) *delmi
scab(3,2)=scab(2,3)

do 70 i=1,3
do 70 j=1,3
70 scab(i,j)=scab(i,j)*ae
c
¢ the var2 matrix is stored in packed symmetric lower triangle.
c
elsvar( 1)= scab(1,1)
c
elsvar( 2)= scab(1,2)
elsvar( 3)= scab(2,2)
c
elsvar( 4)= scab(1,3)
elsvar( 5)= scab(2,3)
elsvar( 6)= scab(3,3)
c
elsvar( 7)=-scab(1,1)
elsvar( 8)=-scab(2,1)
elsvar( 9)=-scab(3,1)
elsvar(10)= scab(1,1)
c

elsvar(11)=-scab(1,2)
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elsvar(12)=-scab(2,2)
elsvar(13)=-scab(3,2)
elsvar(14)= scab(1,2)
elsvar(15)= scab(2,2)

elsvar(16)=-scab(1,3)
elsvar(17)=-~scab(2,3)
elsvar(18)=-scab(3,3)
elsvar(19)= scab(1,3)
elsvar(20)= scab(2,3)
elsvar(21)= scab(3,3)

if (ktest.gt.2) write(outkern,1200) ((scab(j,i),j=1,3),i=1,3)

compute first variation

C

(o4

C

C ***********#**#***************t*************************************
[

C ********************************************************************
[

100 if(dirkern(2).eq.0) goto 200

c
c-PS
Covr.. Restore values of rl0 (=10) and ae (=AE). This is needed
Covnnnn since a call to b2ep39 with dirkern(3)=1 will change the
Covinnn values of ae and rl0 (in case of negative stress) to a
Covvnn. value that is incorrect for first variation computation.
c

itens=0

rl0=abs(elprev(4))

ae=eprop (MATPOSE1) *elprev(5)

eps=(rlen-r1l0)/rl0
c-PS
C....print current value of rl0
c

write(errkern,*) ’init_length orig.=’,r10
c
¢ compute stress
c
c if (matbkern.le.0) then
c
c-PS
Covunn Check (again) for Rod element and negative stress
Covunn prior to first variation computation
c

if (elprev(4).1t.zero) then
irod=1
else

c-PS if (elprev(4).ge.zero) then
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irod=0
p=aexeps
if(p.le.zero) then
itens=1
write(errkern,1300) elikern,p

r10=(one-small)*rlen

c-PS
Covvn Default method: superpose AE-method
if (elprev(6).gt.0.0) then
ae=small*ae
endif
c-PS
eps=(rlen~rl0)/rl0
c-PS
C.vnn. end of rod and negative stress check
Covunn print current value of rl0
write(errkern,*) ’init_length new=’,rl0
c .
endif
endif
c
ae=ae*eps
c else
c if (iprop(18).eq.4) then !! deformation theory
c call epplb4d(pltab,1,eps,sig)
c a=elprev(4)*sig
c else
. C write(outkern,*) ’**xFATAL plasticity not impl., mthbv=’,
c 1 matbkern
c istat=-1
c return
c endif
c endif
c
¢ compute varl (node forces)
c
do 110 j=1,3
110 dircos(j)=dircos(j)*ae
c if(ktest.gt.1) write(outkern,*) ’varl=’,(dircos(i),i=1,3)
do 120 j=1,3

elfvar(j) =-dircos(j)
120 elfvar(j+3)= dircos(j)
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c
200 istat=0

Coviewe ’reset’ to default values

if (elprev(6).1t.0.0) then
elprev(6) = 1.0
modpkerno=1
endif
c-PS
return

900 istat=-1

end




Appendix F

Input-files test-examples
quasi-static analysis

F.1 UN-symmetric triangular cable contruction

#
# Triangular cable
#

adir
analysis collapse
lca 1 pas 0.0 dpas 5.0 pamax 10.0
1cb 2 pbs 5.0 dpbs 0.0 pbmax 5.0
ncut 8 nfact 20 nstrat O maxit 15 maxstp 2
epsdis 0.0000005
epsr 0.0000005
end
branch 1
btran
trans 0.0 0.0 0.0
rotx 0.0
roty 0.0
rotz 26.56505118
end
local
1sid 1
rotz 0.0
endlsid
1sid 2
rotz -26.56505118
endlsid
end
bdir

157
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deform NONLIN
material LIN
end
nodes
local 1
1 0.0000000 0.0000000 0.0000000
2 79.0450030 0.0000000 0.0000000
local 2
3  158.0900060 0.0000000 0.0000000
end
elem
type c2 area 1.0 mid 1 prestress 3.7268
1 12
2 23
end
bound
lock LLL 1
lock FFL 2 3
end
force
case 2
type F dof 2 p 1.0000 3
end
endbranch
branch 2
btran
trans 141.4 70.7 0.0
rotx 0.0
roty 0.0
rotz -45.0
end
local
1sid 1
rotz 0.0
endlsid
1sid 2
rotz 45.0
endlsid
end
bdir
deform NONLIN
material LIN
end
nodes
local 2
1 0.0000000 0.0000000 0.0000000
local 1
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2 50.0000000 0.0000000 0.0000000
3 100.0000000 0.0000000 0.0000000
end
elem
type c2 area 1.0 mid 1 prestress 4.7140
1 12
2 23
end
bound
lock LLL 3
lock FFL 1 2
end
force
case 1
type F dof 2 p 1.0 1
end
endbranch
join
node 1 3 21
end
emat
mid 1
type BEAM e 100.0 p 0.3
endmid
end
topology
renumber
run

F.2 Simple example problem to test prestress option

#
# Line cable
#

adir
analysis collapse
lca 1 pas 0.0 dpas 0.2 pamax 0.4
lcb 2 pbs 0.2 dpbs 0.0 pbmax 0.2
ncut 8 nfact 2000 nstrat O maxit 15 maxstp 2
epsdis 0.0001
epsr 0.0001
end
branch 1
bdir
deform nonlinear
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end
nodes '
1. 0.0000000 0.0000000 0.0000000
2 4.4000000 0.0000000 0.0000000
3 10.7000000 0.0000000 0.0000000
end
elem
type C2 area 2.0 mid 1 prestress 0.2
1 12
type C2 area 2.0 mid 1 prestress 0.1
2 23
end
bound
LOCK LLL 1
LOCK FLL 2 3
end
force
case 1
type F dof 1 p 1.0 3
case 2
type F dof 1 p 0.5 2 3
end
endbranch
emat
mid 1
type BEAM e 1.0 p 0.3
endmid
end
run

To test the 10 option replace element definition part by:

elem
type C2 area 2.0 mid 1 10 4.0
1 12
type C2 area 2.0 mid 1 10 6.0
2 23
end

To test the prescribed displacements option replace the force definition part
by:

force
case 1
type D dof 1 p 6.0 3
case 2
type F dof 1 p 0.5 23
end




F.3. SIMPLE CABLE SAG PROBLEM

F.3 Simple cable sag problem

lca 1 pas 0.0 dpas 1.0 pamax 10

ncut 8 nfact 2000 nstrat O maxit 15 maxstp 10

type C2 area 0.0001 mid 1 10 1.0

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000

#
# Line cable sag
#
adir
analysis collapse
1cb O
epsdis 0.0001
epsr 0.0001
end
branch 1
bdir
deform nonlinear
end
nodes
1 0.0000000
2 1.1000000
3 2.2000000
4 3.3000000
5 4.4000000
end
elem
1 12
2 23
3 34
4 45
end
bound
LOCK LLL 1
LOCK FLL 5
LOCK FFL 2 3 4
end
force
case 1
type F dof 2 p -1.0 23 4
type D dof 1 p -0.04 5
end
endbranch
emat
mid 1

type BEAM e 1.e6 p 0.3

endmid

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
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end
run

F.4 Cable as part of construction

#

# Triangular cable: one midnode per cable (/branch)
#

adir
analysis collapse '
lca 1 pas 0.0 dpas 5.0 pamax 10.0
lcb 2 pbs 5.0 dpbs 0.0 pbmax 5.0
ncut 8 nfact 20 nstrat 0 maxit 15 maxstp 2
epsdis 0.0000005
epsr  0.0000005
end

branch 1
btran
trans 0.0 0.0 0.0
rotx 0.0
roty 0.0
rotz 45.0
end
local
1sid 1
rotz 0.0
endlsid
end
bdir
deform NONLIN
material LIN
end
nodes
local 1
1 0.0000000 0.0000000 0.0000000
2 50.0000000 0.0000000 0.0000000
3  100.0000000 0.0000000 0.0000000
end
elem
type c2 area 1.0 mid 1 prestress 5.0
1 12
2 23
end




F.4. CABLE AS PART OF CONSTRUCTION

bound
lock LLL 1
lock FFL 2 3
end
force
case 2
type F dof 1 p 1.0000 3
end
endbranch
branch 2
btran
trans 70.71067812 70.71067812 0.0
rotx 0.0
roty 0.0
rotz -45.0
end
local
1sid 1
rotz 0.0
endlsid
1sid 2
rotz 45.0
endlsid
end
bdir
deform NONLIN
material LIN
end
nodes
local 2
1 0.0000000 0.0000000
local 1
2 50.0000000 0.0000000
3 100.0000000 0.0000000
end
elem
type c2 area 1.0 mid 1 prestress 5.0
1 12
2 23
end
bound
lock LLL 3
lock FFL 1 2
end
force
case 1
type F dof 1 p 1.0 1

0.0000000

0.0000000
0.0000000
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end
endbranch
branch 3
btran
trans 0.0 141.4213562 0.0
rotx 0.0
roty 0.0
rotz -45.0
end
local
1sid 1
rotz 0.0
endlsid
1sid 2
rotz 45.0
endlsid
end
bdir
deform NONLIN
material LIN
end
nodes
local 1
1 0.0000000 0.0000000 0.0000000
2 50.0000000 0.0000000 0.0000000
3 100.0000000 0.0000000 0.0000000
end
elem
type c2 area 1.0 mid 1 prestress 5.0
1 12
2 23
end
bound
lock FFL 2 3
lock LLL 1
end
endbranch
join
node 1 3 2 1
node 1 3 3 3
end
emat
mid 1
type BEAM e 100.0 p 0.3
endmid
end
topology
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renumber
run

F.5 Direct computation of cable sag; start problem

#
# Line cable sag
¥
adir
analysis collapse
lca 1 pas 0.0 dpas 1.0 pamax 10
lcb O
ncut 8 nfact 2000 nstrat O maxit 15 maxstp 10
epsdis 0.0001
epsr 0.0001
end
branch 1
bdir
deform nonlinear
end
# nodes corresponding to initial length 10
nodes
1 0.0000000 0.0000000 0.0000000
2 1.0000000 0.0000000 0.0000000
3 2.0000000 0.0000000 0.0000000
4 3.0000000 0.0000000 0.0000000
5 4.0000000 0.0000000 0.0000000
end
elem
type C2 area 0.0001 mid 1 10 1.0
1 12
2 23
3 34
4 45
end
bound
LOCK LLL 1

# no prescribed displacements, such that node 5 must be locked
# now in all directionms .
LOCK LLL §
LOCK FFL 2 3 4
end
force
case 1
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type F dof 2 p -1.023 4
end
endbranch
emat
mid 1
type BEAM e 1.e6 p 0.3
endmid
end
run

F.6 Sagged equilibrium state; part 1

#

# Triangular cable , g-method part 1
#

adir
analysis collapse
lca 1 pas 0.0 dpas 1.0 pamax 10.0
ncut 8 nfact 20 nstrat O maxit 50 maxstp 10
epsdis 0.0000005
epsr  0.0000005
end
branch 1
btran
trans 0.0 0.0 0.0
rotx 0.0
roty 0.0
rotz 45.0
end
local
1sid 1
rotz 0.0
endlsid
1sid 2
rotz -45.0
endlsid
end
bdir
deform NONLIN
material LIN
end
nodes
local 2




F.6. SAGGED EQUILIBRIUM STATE; PART 1

0.0000000
25.0000000
50.0000000
4 75.0000000
local 2
5 100.0000000

w N

0.0000000
0.0000000
0.0000000
0.0000000

0.0000000

0.0000000
0.0000000
0.0000000
0.0000000

0.0000000
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end
elem
type c2 area 1.0 mid 1 10 24.13230876
1 12

o= wN
o> W N
bW

end
bound
lock LLL 1
lock FFL 2 34 5
end
force
case 1
type F dof 2 p -0.01000 2 3 4
type D dof 2 p -0.5000 5
end
endbranch
branch 2
btran
trans 70.71067812 70.71067812 0.0
rotx 0.0
roty 0.0
rotz -45.0
end
local
1sid 1
rotz 0.0
endlsid
1sid 2
rotz 45.0
endlsid
end
bdir
deform NONLIN
material LIN
end
nodes
local 2
1 0.0000000 0.0000000 0.0000000
local 2 i
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2 25.0000000 0.0000000 0.0000000
3  50.0000000 0.0000000 0.0000000
4 75.0000000 0.0000000 0.0000000
5 100.0000000 0.0000000 0.0000000
end
elem
type ¢2 area 1.0 mid 1 10 24.13230876
1 12
2 23
3 34
4 45
end
bound
lock LLL 5
lock FFL 1 2 3 4
end
force
case 1
type F dof 2 p -0.01000 2 3 4
end
endbranch
join
node 1 521
end
emat
mid 1
type BEAM e 100.0 p 0.3
endmid
end
topology
renumber
run

F.7 Sagged equilibrium state; part 2

#
# Triangular cable , g-method part 2
#

adir
analysis collapse
lca 1 pas 0.0 dpas 5.0 pamax 10.0
lcb 2 pbs 1.0 dpbs 0.0 pbmax 1.0
ncut 8 nfact 20 nstrat O maxit 50 maxstp 10




F.7. SAGGED EQUILIBRIUM STATE; PART 2

epsdis 0.0000005
epsr  0.0000005
end
branch 1
btran
trans 0.0 0.0 0.0
rotx 0.0
roty 0.0
rotz 45.0
end
local
1sid 1
rotz 0.0
endlsid
1sid 2
rotz -45.0
endlsid
end
bdir
deform NONLIN
material LIN
end
nodes
local 2
1 0.0000000
2 23.7689000
3 47 .9862000
4 72.2871000
local 2
5 96.4645000
end
elem

type c2 area 1.0 mid 1 10 24.13230876

1 12
2 23
3 34
4 45
end
bound
lock LLL 1
lock FFL 2 3 4 5
end

force
case 2

0.00000000
~4.9446E+00
-6.8513E+00
-6.2303E+00

-3.5355E+00

type F dof 2 p ~0.1000 2 3 4
type F dof 2 p 1.260785533 &

end

0.0000000
0.0000000
0.0000000
0.0000000

.0000000

169




170APPENDIX F. INPUT-FILES TEST-EXAMPLES QUASI-STATIC ANALYSIS

endbranch
branch 2
btran
trans 70.71067812 70.71067812 0.0
rotx 0.0
roty 0.0
rotz -45.0
end
local
1sid 1
rotz -22.5
endlsid
1sid 2
rotz 45.0
\ endlsid
| end
‘ bdir
deform NONLIN
material LIN
end
.nodes
local 1
1 3.5355E+00 ~-3.5355E+00 0.0000000
local 2
2 27.T7129E+00 -6.2303E+00 0.0000000
3  52.0138E+00 -6.8513E+00 0.0000000
4 76.2311E+00 -4 .9446E+00 0.0000000
5 100.0000000 0.00000000 0.0000000
end
elem
type c2 area 1.0 mid 1 10 24.13230876
1 12 T
2 23
3 34
4 45
end
bound
lock LLL 5§
lock FFL 1 2 3 4
end
force
case 1
type F dof 2 p 1.0 1
case 2
type F dof 2 p -0.100 2 3 4
end
endbranch




F.7. SAGGED EQUILIBRIUM STATE; PART 2

join
node 15 21
end
emat
mid 1
type BEAM e 100.0 p 0.3
endmid
end
topology
renumber
run

Corresponding scriptfiles for quasi-static B2ZCONT analysis:

cpab
b2cont<< /

ar a

cob

test 0
extrapolate 3
newmod 1
pathpar 0
fullnewton
even

felippa
output b2cont.out

go

Used B2CONT restart scriptfile :

#

b2cont << /
ar a

cob

adir

step 2
currcy 2
maxstp 50
nfact 200
pamax 995.0

epsdis 0.0000005
epsr  0.0000005
end

restartfac 1.0
newmod 1

pathpar 0
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lutol 1.0e-09

lutol 1.0e-09
fullnewton
extrapolate 3
output b2contre.out
felippa

go




Appendix G

adir

epsr
end

branch 1
bdir

MATERIAL ELASTIC
deform nonlinear

end

=}
[o]
%
O 0N O W+

L T e N S = S
N OO W N O

e
o0}

O 00 N WN RO

L S S S S N S G S s
N O W RO

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
-0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000

C O O OO0 O OO0 OO0 OO0OO OO

lca 1 pas 0.0 dpas 0.01 pamax 1.0
ncut 8 nfact 2000 nstrat 0 maxit 15 maxstp 250
epsdis 0.0001
0.0001

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
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OO O OO OO OO0 O0OO0O OO0 OCCOCOo

Input-file test-example
Eigenmode analysis

.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
.0000000
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19 18.0000000 0.0000000 0.0000000
20 19.0000000 0.0000000 0.0000000
21 20.0000000 0.0000000 0.0000000

end
elem
type C2 area 2.2e-05 mid 1 prestress 500
1 12
2 23
3 34
4 45
| 5 56
| 6 67
7 7 8
8 89
| 9 9 10
| 10 10 11
11 11 12
12 12 13
13 13 14
14 14 15
15 15 16
| 16 16 17
| 17 17 18
18 18 19
19 19 20
20 20 21
end
MASS
TYPE CO
| ELEMENTS 1/20
| END

| bound
| LOCK LLL 1 21
LOCK FFL 2/20
end
force
case 1
DOF 2 P -2.0 2/20
end
endbranch
emat
mid 1
type BEAM e 1.0ell p 0.3
DENS 1.36364e04
endmid
end
run
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Appendix H

Input-files test-examples
transient analysis

H.1 Stretched cable submitted to transverse loading

#

# Stretched cable submitted to transverse loading
#

adir
analysis nonlinear
lca 0
1cb 0
ncut 8 nfact 2000 nstrat O maxit 15 maxstp 240
epsdis 0.0001
epsr 0.0001
end

DYNA
TIME_S 0.0
TIME_E 0.12
DT 0.001
LOAD 1 SLOPE 0. 0.12 24000.0
END
branch 1
bdir
MATERIAL ELASTIC
deform nonlinear

end
nodes
1 0.0000000 0.0000000 0.0000000
2 1.0000000 0.0000000 0.0000000

3 2.0000000 0.0000000 0.0000000
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4 3.0000000 0.0000000 0.0000000
5 4.,0000000 0.0000000 0.0000000
6 5.0000000 0.0000000 0.0000000
7 6.0000000 0.0000000 0.0000000
8 7.0000000 0.0000000 0.0000000
9 8.0000000 0.0000000 0.0000000
10 9.0000000 0.0000000 0.0000000
11 10.0000000 0.0000000 0.0000000
12 11.0000000 0.0000000 0.0000000
13 12.0000000 0.0000000 0.0000000
14 13.0000000 0.0000000 0.0000000
15 14.0000000 0.0000000 0.0000000
16 15.0000000 0.0000000 0.0000000
17 16.0000000 0.0000000 0.0000000
18 17.0000000 0.0000000 0.0000000
19 18.0000000 0.0000000 0.0000000
20 19.0000000 0.0000000 0.0000000
21 20.0000000 0.0000000 0.0000000
end
elem
type C2 area 2.2e-05 mid 1 p 500
1 12
2 23
3 34
4 45
5 56
6 67
7 7 8
8 8 9
9 9 10
10 10 11
11 11 12
12 12 13
13 13 14
14 14 15
15 15 16
16 16 17
17 17 18
18 18 19
19 19 20
20 20 21
end
MASS
TYPE CO
ELEMENTS 1/20
END

bound




H.2. 'PLUCKING’ OF AN ACOUSTIC GUITAR STRING

LOCK LLL 1 21
LOCK FFL 2/20
end
force
case 1
DOF 2 P -1.0 2/20
end
endbranch
emat
mid 1
type BEAM e 1.0ell p 0.3
DENS 1.36364e04
endmid
end
run

H.2 ’Plucking’ of an acoustic guitar string

#
# Guitar string
#
adir
analysis nonlinear
# define in case 2 as B2TRANS only reads case 1
# (no load for B2TRANS computation)
lca 2 pas 0.0 dpas 0.1 pamax 1.0
1lcb O
ncut 8 nfact 2000 nstrat O maxit 15 maxstp 240
epsdis 0.0001
~ epsr 0.0001
end

DYNA
TIME_S 0.0
TIME_E 0.01
DT 0.0001
INIT_DISP
END
branch 1
bdir
MATERIAL ELASTIC
deform nonlinear
end
nodes
1 0.0000000 0.0000000 0.0000000
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2 0.0500000 0.0000000 0.0000000
3 0.1000000 0.0000000 0.0000000
4 0.1500000 0.0000000 0.0000000
5 0.2000000 0.0000000 0.0000000
6 0.2500000 0.0000000 0.0000000
7 0.3000000 0.0000000 0.0000000
8 0.3500000 0.0000000 0.0000000
9 0.4000000 0.0000000 0.0000000
10 0.4500000 0.0000000 0.0000000
11 0.5000000 0.0000000 0.0000000
12 0.5500000 0.0000000 0.0000000
13 0.6000000 0.0000000 0.0000000
14 0.6500000 0.0000000 0.0000000
end
elem
type C2 area 5.06707¢-08 mid 1 prestress 72.0
1 12
2 23
3 3 4
4 45
5 56
6 67
7 78
8 89
9 9 10
10 10 11
11 11 12
12 12 13
13 13 14
end
MASS
TYPE CO
ELEMENTS 1/13
END
bound

LOCK LLL 1 14
LOCK FFL 2/13
end
force
case 2
type D DOF 2 P -0.01 4
end
endbranch
emat
mid 1
type BEAM e 0.2e12 p 0.3
DENS 7.8e3




H.2. 'PLUCKING’ OF AN ACOUSTIC GUITAR STRING

endmid
end
run

Used PCL commands for transient analysis (B2TRANS):

>ar a

>co b
>adir
>step 11
>currcy 11
>end

>go
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Appendix 1

Element mass routine
b2mp39.F

c-PS

¢ subroutine copied from b2mp35.F (rod-2 element).
c-PS
c ,
subroutine b2mp39(xyz, eprop, epropall, elaminates, elprev,
* sme, work, irad, istat)

Compute element mass, cable-2 element

91-02-07 Transformation of local el-mass to global
mass matrix added.
ADB

bmtypkern - type of mass gen. =1d lumped diag.
=cd consistent diag.
=co consistent

nodkern - el. nodes
nnekern - n. of nodes
coorkern - branch cartesian coord.
eprop(MATPOSDENS) - mass density
thkern - thkern(2)=area [m2]

thkern(3)=polar inertia moment [m4]
sme - mass vector/matrix (o)
istat - status (o)

=0 ok

>0 cannot compute

<0 ko

O 00 0 0 000 000000000000 00.0

implicit none
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C

APPENDIX I. ELEMENT MASS ROUTINE B2MP39.F

#include "b2limits.ins"
#include "b2constants.ins”
#include "b2kernel.ins"
#include "b2test.ins"

c

1000

integer irad(*), istat

real*8 xyz(3,*), eprop(*), epropall(*)
real*8 elaminates(4,x*)

real*8 elprev(*), sme(*), work(*)
integer i

real*8 a,al,alen

real*8 =zero,five,etol

integer LSCONST
parameter (LSCONST=20)

real*8 sconst (LSCONST)
data zero/0.0/, five/0.5/, etol/1.d-20/
format(’ #*+MP-ERROR*** Rod element has length 0. el=’,i6)

istat=0

¢ Compute section sconst (area)

sconst = [ A Tconst Sy Sz Jy Jz Wy Wz ]

here only A=sconst(1) is needed.

5

call b2epropbsect(thkern,sconst,istat)
if(istat.1t.0) return

alen=0.

Check length (alen) of element

do 5 i=1,3
alen=alen+(coorkern(i,2)-coorkern(i,1))**2
continue

alen=sqrt(alen)

if(alen.lt.etol) then
write(errkern,1000) elikern
istat=-1
return

endif




O 0 0o

Calculate mass of element and divide it over the 2 nodes
m(node) = .5*length*dens*area

al=alen*eprop(MATPOSDENS)
a=five*sconst(1)#*al
masskerno=sconst (1) *al

if (bmtypkern.eq.BMTYPCD.or.bmtypkern.eq.BMTYPLD) then
call b2setfloat(zero,sme,6)
do 11 i=1,3
sme(i)=a
sme (i+3)=a
11 continue
elseif (bmtypkern.eq.BMTYPCO) then

Simulate consistent mass by lumped diagomnal

call b2setfloat(zero,sme,21)

sme(1l) =a
sme(3) =a
sme(6) =a
sme (10)=a
sme(15)=a
sme(21)=a
endif
return

end
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