
Delft University of Technology
Master of Science Thesis in Embedded System

Optimizing the Cost and Performance for
Batch jobs on HPC by Utilizing Swap Space

Hanzhang Lin

Optimizing the Cost and Performance for Batch

jobs on HPC by Utilizing Swap Space

Master of Science Thesis in Embedded Systems

Embedded Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands

Hanzhang Lin
H.Lin-13@student.tudelft.nl
linhanzhang 07@outlook.com

August 28th, 2023

Author
Hanzhang Lin (H.Lin-13@student.tudelft.nl)
(linhanzhang 07@outlook.com)

Title
Optimizing the Cost and Performance for Batch jobs on HPC by Utilizing Swap
Space

MSc Presentation Date
Monday August 28th, 2023

Graduation Committee
Prof. dr. Koen Langendoen (Chair) Delft University of Technology
Dr. Johan Pouwelse Delft University of Technology
Ir. Michel Roelofs NXP Semiconductors

Abstract

High Performance Computing (HPC) facilities play a crucial role in acceler-
ating Electronic Design Automation (EDA) procedures at NXP Semiconduct-
ors. The increasing number of job requests and workloads has led to a surge
in memory demand, which is a costly resource. To address this, we leverage
memory swap space on disk as a more affordable extension of main memory.
By employing a job submit-time parameter called memory reservation, we
can increase the cluster jobs’ parallelism, and control the memory swap space
usage.
The primary goal of this thesis is to find the optimal cost and performance

by optimizing the memory reservation parameter. To achieve this goal, we
created an effective parameter optimizer that employs a one-way search method
to determine the best memory reservation, focusing on scenarios with a large
homogeneous job set running on an overloaded system.
Our contributions include improving the memory utilization efficiency in HPC

by utilizing swap space. Previous work used Machine Learning models to predict
maximum memory usage and reduce over-reservation; and our work further
reduces memory usage per job.
The results demonstrate that the parameter optimizer effectively minimizes

the cost and performance at the same time, leading to up to 43% cost saving
for a job among our test cases.

iv

“Just because we can’t find a solution it doesn’t mean that there isn’t one.” –
Andrew Wiles

vi

Preface

The rapid growth of job requests and workloads in Electronic Design Automa-
tion (EDA) at NXP Semiconductors has intensified the demand for memory in
High Performance Computing (HPC) facilities. As memory is a costly resource,
there arises a need for innovative strategies to optimize its usage. In this work,
we explored the utilization of memory swap space on disk as a cost-effective
extension of main memory.
I would like to thank my supervisors Prof.dr.K.G. Langendoen and Michel

Roelofs for their invaluable guidance, unwavering support, and insightful feed-
back.
Besides, I am deeply grateful to my family for their unwavering love and

encouragement throughout my academic journey. Their belief in me has been a
constant source of motivation and inspiration.
I would also like to extend my heartfelt thanks to my friends who have always

been by my side and help me through the toughest period. Their camaraderie
and positivity have enriched my life.

Hanzhang Lin

Delft, The Netherlands
22nd August 2023

vii

viii

Contents

Preface vii

1 Introduction 1
1.1 Problem Statement . 3
1.2 Contribution . 4
1.3 Structure . 5

2 Background and Related Work 7
2.1 HPC Computing Environment 7

2.1.1 Job Scheduling Overview 8
2.1.2 Job Starter . 9
2.1.3 Job scheduler Resource Management 10

2.2 Memory Swapping . 10
2.2.1 Linux Paging and Memory Swap 10
2.2.2 Justification of Reconsidering Memory Swap 11

2.3 Delay Accounting . 12
2.3.1 What is Delay Accounting? 12
2.3.2 Break-Down of Delay Accounting 13

2.4 Cloud Servers’ Computer Architecture 14
2.4.1 Cloud Server Storage . 14

2.5 Related Works and Research Gaps 16
2.5.1 Resource Prediction in HPC 16
2.5.2 Optimize Cost and Performance 17
2.5.3 Memory Swap and Performance Optimization 17
2.5.4 Combined Results with another Team 17

3 Delay Accounting Measurements 19
3.1 Development of the Delay Accounting Tool 19

3.1.1 Build the Delay Accounting Tool 19
3.1.2 Verification of the Results 20
3.1.3 Deployment of the Tool 20

3.2 Evaluate the Performance Influence of Memory Swapping 21
3.2.1 Idea . 21
3.2.2 Test Set-ups . 22
3.2.3 Measurement Results . 24
3.2.4 Verification . 24
3.2.5 Job Sensitivity to Memory Swapping 26
3.2.6 SimulatorC Job . 28

ix

3.2.7 Compare Two Storage Types 28
3.3 Compare the Performance with and without Explicit Memory Limit 30

4 Parameter Optimizer for the Optimal Cost and Performance 35
4.1 How Different Parameter Combinations Influence Cost and Per-

formance . 36
4.1.1 Test Set-up . 37
4.1.2 Test Results and Explanation of Results 38

4.2 Method description . 39
4.2.1 Existing Parameter Search Methods 39
4.2.2 How Jobs Land in the System 40

4.3 Search Algorithm . 42
4.4 Test and Results . 43
4.5 Cost Saving Estimation . 45
4.6 Conclusions . 45

5 Conclusions and Future Works 47
5.1 Methods and Results . 47
5.2 Limitations and Future Works . 48

5.2.1 Explain the Non-linearity of Delay Curve 48
5.2.2 Identify the Bottlenecks in the System and Explore the

Solutions . 48
5.2.3 Relate the Features of the Simulation Job to the Delay

Output . 49
5.2.4 Optimize the Parameter Optimizer 49
5.2.5 Evaluate and compare the cost on network storage and

local NVMe . 49
5.2.6 Obtain more large-memory job cases 50
5.2.7 Implement the Combined System 50

A Simulator2 test results 55

x

Chapter 1

Introduction

This thesis is done in collaboration with the High Performance Computing
(HPC) team at NXP Semiconductors. HPC facilities are able to perform a vast
number of complex computations per second, at a relatively low cost. Hence,
it is widely used for computationally intensive tasks, including chip design and
EDA usage. Due to the increasingly intensive competition in the market, semi-
conductor manufacturers want to shorten the chip development period and ac-
celerate the time-to-market for new chips. Many semiconductor companies in-
cluding NXP use HPC to reduce the job wait time and run time so as to enable
faster delivery of products to the market. Besides, controlling the cost is also
a significant concern for the companies. With lower infrastructure costs, enter-
prises are able to allocate more resources to research and development, driving
innovation.

Currently, NXP primarily offers HPC solutions through on-premise facilities,
specifically computer clusters located in their data center. However, there is a
gradual shift by the HPC team towards migrating the HPC computing environ-
ment to the cloud [22]. This transition enables a more cost-effective, accessible,
efficient, and collaborative HPC ecosystem [14]. Unless explicitly stated, all
research, analysis, and experiments discussed in this work are conducted within
the cloud environment. Compared to on-premise servers, cloud computing offers
greater flexibility in resource pricing. HPC operators can rent hardware from
cloud service providers for a specified and adaptable duration, paying only for
the resources they rent. This flexibility allows for flexible scalability of the cloud
cluster based on demand, leading to enhanced resource utilization efficiency and
potential cost savings.

NXP’s HPC infrastructure is built on the foundation of the job scheduler,
a powerful workload management system that can manage and optimize the
execution of computing cluster jobs across NXP’s computing cluster. The HPC
job is the basic unit for the submission, scheduling, and execution of works.

Table 1.1: Server pricing.

Server Name Hourly Rate CPU cores Memory
serverA $ x 64 256GB
serverB $x+2.624 64 1024GB

1

The HPC team currently faces the challenge of managing a growing number
of job requests and heavier workloads, which significantly increases the pressure
on memory. However, memory is a resource that can incur substantial costs. As
depicted in Table 1.1, the serverA and serverB, which are two different types of
virtual servers provided by a cloud provider, have an identical number of cores.
Nevertheless, the additional 768 GB of memory space incurs an extra cost of
$2.624 per hour.
In our pursuit of cost-effective solutions, we have turned our attention to

memory swapping. Memory swapping is a memory reclamation technique in
which inactive memory contents are moved to the swap space on a disk, freeing
up memory for other processes or applications. Initially, there were concerns re-
garding the performance implications of memory swapping. However, with the
rapid advancements in storage speed and capacity, coupled with the relatively
low cost (as shown in Figure 1.1), it is worth reconsidering the potential benefits
of using swap space. Memory swapping can be viewed as an extension of lim-
ited memory resources, enabling the Operating System (OS) to accommodate
requests that would otherwise exceed the system’s capacity. By offloading the
least recently used data to the swap space, expensive high-performance physical
memory can be preserved for more computationally demanding operations [28].
To accurately assess the impact of memory swapping, we need to measure the
latency caused by memory swapping during job execution. Fortunately, Linux
provides a functionality named “delay accounting” for measuring the memory
swap delay, which represents the duration a job temporarily suspends its exe-
cution while waiting for the required memory to be swapped in.
Our HPC system operates on a preconfigured Linux setup, where the OS

handles memory-swapping operations transparently to users. Consequently,
manipulating the underlying memory-swapping behavior is challenging, given
the HPC environment’s black box nature. However, there are two cluster job
submit-time parameters that offer a controllable and quantifiable approach to
managing memory swap usage. The parameter R allows for the reservation of
a dedicated amount of memory within the system, effectively controlling the
maximum parallelism of cluster jobs running concurrently. When this memory
is reserved, it’s subtracted from the overall available memory in the system.
If there is no sufficient available memory for new job submissions, the system
determines how many jobs it can schedule simultaneously. By increasing cluster
job parallelism, the system can be moderately overloaded, permitting global
control over the total memory to be swapped out. The OS then decides which
jobs should undergo memory swapping. (NOTE: The term “parallelism” in this
report refers specifically to the number of cluster jobs concurrently running in
the system, as opposed to the number of threads operating in parallel within an
individual cluster job.)
The second parameter, M , empowers users to set an upper limit on the

total physical memory usage for each job throughout its entire execution. Any
memory usage exceeding this limit (total virtual memory usage minus physical
memory usage) gets automatically swapped to the disk’s swap space by the OS.
For a detailed introduction to these parameters, please refer to Section 2.1.
Based on all the investigations above, we aim to develop a tool capable of

automatically determining the best M and R that can lead to the best cost
and performance in real-world Research and Development (R&D) processes. To
streamline the problem, we concentrate on a scenario where the system memory

2

is fully utilized, and a substantial batch of jobs with homogeneous workloads
needs to be managed. This scenario mirrors a frequent situation in NXP’s actual
production environment, particularly during extensive parameter sweep tasks.
Here, engineers systematically explore a range of values for specific circuit design
parameters, a practice that aligns with the requirements of our research.

Figure 1.1: Memory hierarchy of the modern computer. Compared
to Dynamic Random Access Memory (DRAM), the disk (Persistent
Memory (PMEM), NAND Solid State Drive(SSD), Hard Drive Disk
(HDD)) has a larger capacity and lower cost. Traditional storage like
HDD has a millisecond latency. PMEM and NAND SSD which are
becoming popular these years can reach a microsecond latency, bring-
ing up the performance of storage by a notch. However, there is still
a significant speed gap between it and DRAM, which has nanosecond
latency [17].

1.1 Problem Statement

Optimizing resource utilization in HPC has long been a prominent research
area, with particular emphasis on memory utilization. Numerous studies have
focused on predicting maximum memory usage to optimize job scheduling and
enhance overall cluster resource utilization [30] [32] [18] [27] [21]. However,
conventional memory usage optimization has primarily concentrated on Random
Access Memory (RAM) itself, neglecting the potential benefits of utilizing swap
space—an economical extension to RAM.

The main problem statement of this thesis will therefore be as follows:

How to find a balance between using the RAM and the memory swap space
based on the delay accounting data collected in HPC environment so that one
can realize the optimal cost and performance?

To solve this problem, the problem statement is separated into the following
parts:

3

1. Build a delay accounting tool and deploy it to one of the HPC clusters to
collect delay accounting data over time. This tool will enable us to measure
the impact of memory swapping on job performance by collecting delay
accounting statistics for each completed job. Since a job may comprise
multiple processes, it is essential to construct a process tree for each job
and aggregate the delay data accordingly.

2. Conduct delay accounting measurements on the most typical circuit sim-
ulation jobs to comprehend the impact of swap usage on performance: In
order to understand the effects of memory swapping on performance across
different job types and validate the accuracy of our measurements, we will
focus on measuring the delay accounting of the most representative circuit
simulation jobs for each single and individual job and verify the measure-
ment results. In addition, comparison experiments will be conducted by
modifying certain configurations, such as storage type and job parallelism
in the system, to gain a comprehensive understanding of the impact.

3. Compare the performance on different parameter setting schemes on an
overloaded system: Since we are free to choose between the usage of R
and M at submit-time. We need to identify which combination leads to
the best cost and performance.

4. Design of an automated Tool to find the best submit-time parameter com-
bination of R and M : We will design and implement a user-friendly tool
capable of identifying the optimal R and M combination leading to the
lowest cost and best performance. This tool will employ a search algorithm
that iteratively evaluates the cost and adjusts M and R. It is crucial to in-
tegrate this tool seamlessly into the current R&D environment to facilitate
its practical application.

5. Evaluation of the benefits of parameter optimization: To quantitatively
evaluate the effectiveness of our parameter optimization tool, we will focus
on measuring the cost savings and performance improvement achieved
when applying the tool to common circuit simulation jobs. Specifically,
we will assess the reduction in expenses for every 1000 runs of these jobs.

1.2 Contribution

In this thesis, our objective is to develop an HPC job submit-time parameter
optimizer based on delay accounting statistics to optimize both cost and per-
formance in the context of HPC. To the best of our knowledge, no previous
work has focused on building a parameter optimizer for memory limit in HPC
environments. Our contributions can be summarized as follows:

• We design and prototype a delay accounting tool specifically tailored for
HPC. This tool accurately measures and accounts for job-wise delay ac-
counting data in various complex scenarios. It is a versatile tool that can
be effectively utilized in various HPC clusters and servers.

• We explore the potential of enhancing memory utilization efficiency in
HPC environments by intentionally allowing a moderate degree of over-

4

load and utilizing swap space. Prior research has primarily focused on op-
timizing resource management by preventing overestimation of resource
usage. However, these approaches always ensure that physical memory
resources are adequate for all jobs, and as a result, they lack the explor-
ation of intentionally overloading the system and utilizing swap space in
the context of HPC. Our work has filled this gap.

• We design and prototype an iterative parameter optimizer that effectively
searches for the best parameter setting. Unlike previous researchers who
predominantly employ machine learning techniques for predicting HPC
cluster parameters, our approach utilizes a simple yet effective search al-
gorithm for optimizing HPC cluster parameter settings.

• We make a contribution to the field by investigating the simultaneous op-
timization of cost and performance within a specialized chip-design con-
text, thereby creating a mutually beneficial scenario. Prior research has
largely overlooked the exploration of these dual objectives.

1.3 Structure

The following parts of this thesis report are organized as follows: we will first
briefly introduce the background knowledge and related work in depth (Chapter
2). Chapter 3 will introduce how we implement the delay accounting tool, as
well as the experiments and results for the delay accounting measurements of
some typical circuit simulation jobs. Then in Chapter 4, we show the experi-
mental setup and results for finding the Pareto front and optimal cost-efficiency
solution. how we build a tool to search for the optimal memory limit parameter
automatically as well as the evaluation of annual cost savings by applying the
parameter optimization tool. Finally, we will give our conclusions and future
work (Chapter 5).

5

6

Chapter 2

Background and Related
Work

This chapter provides background information to help readers understand the
basic concepts of the HPC computing environment, memory swap and delay
accounting, classification models, etc. It serves as a theoretical basis for the
following chapters.
The chapter is constructed as follows. It starts with introducing the basic work-
ing principle of job submission and execution on HPC in Section 2.1. In our
pursuit of optimizing memory swap space utilization in Linux systems, Sec-
tion 2.2 delves into the operational mechanisms of memory swapping in Linux
and highlights the reasons why a reevaluation of memory swapping is warran-
ted in modern times. To strike the ideal balance between cost and performance,
we employ delay accounting as a means to quantify the performance impact of
memory swapping. Section 2.3 provides an insightful exploration of how delay
accounting is measured in Linux and examines the distinct contributions of dif-
ferent delay fields to the overall performance degradation. Our research and
experiments revolve around the typical circuit simulation jobs executed by the
NXP design team. Furthermore, the influence of memory swapping is contin-
gent upon the storage type of the cloud provider servers. Section 2.4 conducts
a comparative analysis of two different storage types. Section 2.5 delves into
existing research endeavors focused on predicting resource usage and optimizing
the trade-off between cost and performance. We also highlight the innovative
aspects of our work.

2.1 HPC Computing Environment

HPC is a technology that uses clusters of powerful processors, working in paral-
lel, to process massive multi-dimensional datasets (big data) and solve complex
problems at extremely high speeds. HPC systems generally operate at signific-
antly higher speeds compared to commodity desktop, laptop, or server systems.
For decades the HPC system paradigm was the supercomputer, a purpose-

built computer that embodies millions of processors or processor cores [2].
HPC plays an important role in fields that requires high computing power

including financial services, chip designs.

7

HPC relies on resource management applications to manage available and
allocated resources, while batch scheduler systems manage user jobs according
to administrator policies and resource availability. This work was conducted on
a cluster running job scheduler.

2.1.1 Job Scheduling Overview

The job scheduler for HPC redefines cluster virtualization and workload manage-
ment by providing a tightly integrated solution that can increase both user pro-
ductivity and hardware utilization while decreasing system management costs.
The job scheduler is industry-leading enterprise-class software. Job scheduler

distributes work across existing heterogeneous IT resources to create a shared,
scalable, and fault-tolerant infrastructure, that delivers faster, more reliable
workload performance and reduces cost. Job scheduler balances load and alloc-
ates resources and provides access to those resources.
Job scheduler provides a resource management framework that takes the job

requirements (Figure ??), finds the best resources to run the job, and monitors
its progress. Jobs always run according to host load and site policies.
Some important concepts in the resource management framework are listed

below:

• Hosts Hosts in the cluster perform different functions.

• Master host Job scheduler server host that acts as the overall coordinator
for the cluster, doing all job scheduling and dispatch.

• Server host A host where jobs are submitted or run on.

• Client host A host where jobs are submitted into the job queue.

• Job A unit of work that is running in the Job scheduler system. Job
scheduler schedules, controls, and tracks the job according to configured
policies. In our experiments, an Job scheduler job is commonly known as a
circuit simulation job. To distinguish cluster job from the general concept
of a “job” in an OS, we will exclusively refer to them as ”cluster jobs”
in our discussions. Typically, a cluster job is submitted to a job queue
using the bsub command. Along with the command, we can specify the
following submit-time parameters:

– the Linux command for running the job script

– the number of job slots N reserved for this job. A job slot is the
basic unit of processor allocation in Job scheduler. Normally we
assign one job slot to a sequential job and N job slots to a parallel
job. Basically, the total number of job slots in a system equals the
number of physical cores,i.e. half of the number of coress.

– the memory limitMslot for each job slot (optional). The total memory
limit M for a job with N job slots is Mslot ·N

– the memory reservation value R (optional). When deciding whether
to schedule a job on a host, job scheduler considers the reserved
resources of jobs that have previously started on that host. For each
load index, the amount reserved by all jobs on that host is summed up

8

and subtracted (or added if the index is increasing) from the current
value of the resources as reported by the Load Information Manager
(LIM) to get the amount available for scheduling new jobs. The LIM
is capable of automatically collecting resource usage information on
the host.

• Queue A cluster-wide container for cluster jobs. All cluster jobs wait in
queues until they are scheduled and dispatched to hosts. Queues do not
correspond to individual hosts; each queue can use all server hosts in the
cluster or a configured subset of the server hosts. When you submit a
cluster job to a queue, you do not need to specify an execution host. The
job scheduler automatically dispatches the cluster job to an appropriate
execution host in the cluster based on the cluster job requirements and
administrator-defined preferences. Queues implement various cluster job
scheduling and control policies to facilitate efficient resource allocation
and workload management.

• Resources Resources are the objects in the cluster that are available to
run work. For example, resources include but are not limited to memory,
storage and CPU slots [4].

Figure 2.1: Job scheduler resource management framework. A cluster
job is submitted on a server host, with resources and the running
queue specified. The request is sent to the master host, where it is
assigned to the proper server host with sufficient resources to run
the cluster job. The cluster job then starts on that server after being
dispatched to it[4].

2.1.2 Job Starter

A cluster job starter is a specified wrapper script or executable program that
typically performs environment setup for the cluster job, then calls and starts

9

the cluster job itself, which inherits the execution environment created by the
cluster job starter. [3]. The cluster job starter is called when a cluster job is
dispatched to a certain server and is ready to start execution on it.

2.1.3 Job scheduler Resource Management

All cluster job processes are controlled by the Linux cgroup system so that
cgroup memory and swap limits cannot be exceeded. Job scheduler enforces
memory and swap limits for cluster jobs by periodically collecting cluster job
usage and comparing it with limits set by users. A simple example for setting
the physical and virtual memory limit at submission time is as below:

$ bsub -M 100 -v 50 ./mem_eater

In this example, after the application uses more than 100 MB of memory,
the cgroup will start to use swap for the cluster job process. The kernel will
page out some pages of the process, satisfying the limits defined in the cgroup
(which will be depicted detailedly in Section 2.2. The cluster job is not killed
until the application reaches 150 MB memory usage (100 MB memory + 50 MB
swap) [5].

2.2 Memory Swapping

Job scheduler runs on Linux servers. This section discusses the functioning of
memory swapping in Linux and provides justification for reevaluating its usage.

2.2.1 Linux Paging and Memory Swap

To facilitate efficient management of virtual memory and enhance data access
speed, paging is introduced as a logical concept in operating systems. Paging is a
storage mechanism that enables the operating system, including earlier versions
predating Linux, to retrieve processes from secondary storage (such as a hard
disk) into the main memory in the form of pages [34].
In a modern OS, the virtual memory is divided into fixed-length contiguous

blocks called a page, memory page, or virtual page, which is the smallest unit
of data for memory management in a virtual memory OS [9]. Similarly, in
the paging method, the main memory is divided into small fixed-size blocks of
physical memory, which are called frames. The size of a frame should be kept
the same as that of a page to have maximum utilization of the main memory
and to avoid external fragmentation [34].

Swap Space

Swapping is a memory management technique for swapping data between main
memory and secondary memory for better memory utilization [23]. As Fig-
ure 2.2 shows, When a page fault occurs, swap-in will happen, and a page or a
process will be moved from secondary storage to main memory (RAM). When
the physical memory is full, swap-out will happen, and a page or process will
be taken out from the main memory and placed in the secondary memory [23].
The advantage of memory swapping is remarkable. It is a critical compon-

ent of memory management, enabling an OS to handle requests that would

10

Figure 2.2: What is memory swap[28]?

otherwise overwhelm a system; application processes of lesser importance and
demand can be relegated to swap space, saving the higher-performance physical
memory for higher-value operations [28].

However, it is important to note that swap is not without its drawbacks and
the most important and obvious one is that the disk is significantly slower than
RAM, and if frequently addressing a large amount of memory, no amount of
swap or expensive high-performance disks will make it run within a reasonable
time, only RAM will help [1]. That is why we should always use memory
swapping in a careful manner. Another limitation is that memory swapping
is limited by the available swap space that has been allocated by an OS or
hypervisor [28].

2.2.2 Justification of Reconsidering Memory Swap

In the Linux community, “swapping” has traditionally been viewed negatively,
with efforts made to minimize its usage. Swapping refers to the process of
reclaiming memory by moving less frequently used data from RAM to the swap
device, usually a slower rotating storage medium. This practice has been avoided
due to the performance impact caused by scattered I/O operations and seek
times on rotating storage devices.

However, Linux developers suggest that recent advancements in hardware,
such as fast random I/O devices like SSDs and persistent memory, warrant a
reevaluation of swapping. Swapping can now be seen as more than just a last-
resort overflow mechanism, but rather as an extension of memory that optimizes
the balance between the page cache (file-backed pages) and the anonymous
working set (anonymous pages) even under moderate load.

For example, developer Johannes Weiner’s patch set proposes changes to op-
timize swapping and balance file-backed pages with anonymous working sets.
By tracking the cost of page reclamation and considering rotations and refaults,
the kernel can determine the best list to reclaim from. Initial benchmarks show
improved performance. Such practices suggest that memory swapping can now

11

be seen as an extension of memory, optimizing in-memory balance and poten-
tially enhancing system performance [10].

2.3 Delay Accounting

Delay accounting is a crucial tool for assessing the performance implications of
memory swapping. This section elucidates the measurement process employed
by the Linux kernel for delay accounting and provides an in-depth analysis of
the various fields involved in this accounting mechanism. Note that this is just
a theoretical example and in the real world normally swapping delay may only
take milliseconds.

2.3.1 What is Delay Accounting?

Delay accounting can be used as a metric for measuring the impact of memory
swap as well as finding the optimal Resident Set Size (RSS), i.e., the maximum
physical memory usage.

Figure 2.3: Delay accounting. The task first runs for 10 ms, then stops
for 5 ms to wait for the memory to swap in, and so and forth. In total,
the real execution time is 30 ms but the total elapsed time reaches
40 ms, which means 10 ms are spent in memory swapping.

Delay is the time period when a task temporarily stops its work and waits
for some kernel resource to become available during execution, e.g., wait for
memory to swap in (Figure 2.3). Delay accounting is pretty useful to identify
the resource bottlenecks in the system and optimize the resource allocation.
One of the most significant usage of delay accounting is that it can help us to
define the optimal RSS.
The Linux kernel provides delay measurement aggregated for all threads be-

longing to a thread group (process) through continuous monitoring.
The per-process delay accounting functionality measures the delays exper-

ienced by a process while it is waiting for the completion of block I/O, the
memory swap-in, and the memory claim (the memory swap-out delay) respect-
ively. These statistics are aggregated in a per-process manner and made avail-
able to userspace through the Taskstats interface after the completion of all

12

the threads of a thread group(process) [16]. Taskstats also involves other
process running-time information like process id, process elapsed time, and
accumulated core memory usage. Table 2.1 lists the main delay accounting
and running-time measurement fields in Taskstats. Blkio delay total rep-
resents the time the task waits for the completion of synchronous block I/O. It
shows the impact of I/O operations initiated by the task on overall perform-
ance. Swapin delay total indicates the time spent waiting for swapping in
pages synchronously. It demonstrates the impact of synchronous memory swap-
ping on system performance. Freepages delay total captures the time spent
waiting for memory reclaim, both synchronous and asynchronous. It shows the
impact of memory reclamation operations on system performance. These ac-
counting fields could all be affected by memory swapping to some extent and
thus help evaluate the impact of swapping delay accurately and divisibly. The
complete Taskstats fields list can be found in Linux delay accounting docu-
ment [19].

Table 2.1: Delay accounting and running-time measurement fields in
struct Taskstats [16].

Description Time Unit Field Name
waiting for completion of synchronous block I/O initiated by the task ns blkio delay total
waiting for swapping in pages (synchronous) ns swapin delay total
waiting for memory reclaim (both synchronous & asynchronous) ns freepages delay total
elapsed time us ac etime
user CPU time us ac utime
system CPU time us ac stime

Delay accounting can be obtained by creating a socket connection between
user space and kernel space using Netlink, which is a communication mechanism
in the Linux kernel.

2.3.2 Break-Down of Delay Accounting

Figure 2.4 illustrates the measurement of various delay accounting fields in the
Linux kernel. When the kernel encounters blocking I/O, the corresponding
time interval is recorded as either blkio delay or swap-in delay, depending on
the status of the page fault flag. On the other hand, the duration between the
occurrence of insufficient main memory and the subsequent cleanup of pages
from the main memory is categorized as freepage delay. Notably, freepage delay
involves non-blocking I/O operations and is significantly faster than blocking
I/O.
It is essential to note that the measurement of blocking and non-blocking I/O

delays is independent, although some overlap between them may occur. As a
result, we can establish that:

blkio delay + swapin delay + freepage delay > Total delay (2.1)

In terms of program execution, the user CPU time is expected to remain
constant and unaffected by environmental factors like system workloads. Ideally,
the elapsed time would be the sum of the total delay, user CPU time (ac utime),
and system CPU time (ac stime):

13

Figure 2.4: Measurement of delay accounting in Linux kernel [25].

Total delay + ac utime+ ac stime = ac etime (2.2)

However, due to potential overlap between system CPU time and delay, the
actual relationship is:

Total delay + ac utime+ ac stime > ac etime (2.3)

2.4 Cloud Servers’ Computer Architecture

NXP’s HPC facilities are currently undergoing a transition as they move to the
cloud. cloud provider offers a wide range of server types, allowing users to select
the most appropriate configuration based on their specific application require-
ments, performance needs, and budget constraints. cloud provider server types
refer to the different virtual machine configurations available for deployment on
cloud. A server type defines the hardware of the host computer used for the
virtual machine and determines the resources available to the server, including
the CPU, memory, storage, and networking capabilities.

2.4.1 Cloud Server Storage

The cloud provider offers two prominent storage services: network storage and
server storage. cloud provider provides these two options in different server
types. An example is that the server without local NVMe uses network storage
(Figure 2.5), while the server with local NVMe is similar to the former one but
includes additional local NVMe-based SSD block-level storage that is physically
connected to the host server.
The network storage is a block-level storage service provided by cloud pro-

vider. It allows users to create persistent block storage volumes and attach
them to the cloud servers. The network storage volumes are network-attached
storage devices that provide durable block-level storage, similar to traditional
hard drives. The network storage volumes are highly durable and maintain
data integrity. They can persist independently of the lifecycle of a cloud server,
allowing for data retention even after a server termination.

14

(a) Computer Architecture of server without local NVMe
storage.

(b) Computer Architecture of server with local NVMe stor-
age.

Figure 2.5: Server without and with local NVMe storage.

On the other hand, server storage volumes, also known as ephemeral storage,
are temporary block-level storage volumes that are physically attached to the
host server of a cloud server. These volumes provide temporary storage that
is ideal for applications and workloads that require high I/O performance or
temporary data storage. server Storage volumes offer high-performance storage
with low latency and high IOPS (Input/Output Operations Per Second). They
provide fast and direct access to the underlying hardware, making them suit-
able for applications that require high-speed data access and processing. server
Storage volumes are physically attached to the host server, offering low-latency
and high-bandwidth storage access. This proximity to the server can result in
better performance compared to network-attached storage solutions like net-
work storage. However, server storage is not persistent, meaning that the data
stored in it is lost if the server stops or terminates [7].
Regarding the impact on memory swap delay, it is important to note that

server Storage volumes, being physically attached to the host server, provide
faster access to data compared to network-attached storage. This can lead to

15

reduced latency in memory-swapping operations, as the data can be retrieved
and written at higher speeds. On the other hand, the network storage volumes,
being network-attached, may have slightly higher latency in memory swap op-
erations due to the additional network overhead involved.

2.5 Related Works and Research Gaps

This section presents the related literature works in four significant sub-topics
of the project, analyzing and comparing the goal and the scientific approaches
of the existing works with our project.

2.5.1 Resource Prediction in HPC

Predicting cluster job resource usage has been a significant area of research for
resource optimization of HPC in recent years and a lot of research work has
been done on not only memory usage prediction, but also CPU usage, job wall
time predictions, etc.
Almost all current works use Machine Learning to directly predict the value

of job resource usage. The predicted value then can be integrated by resource
managers to help users or administrators to reduce the over-reservation of re-
sources. Taghavi et al. [30] from Qualcomm introduces their work on predicting
job memory usage using various machine learning algorithms and tools, which
aims to ensure jobs do not under-request memory more than 5% of the time.
Their work shows the memory usage of prior historical job statistics can be a
good guess for the new jobs, and by applying a simple linear regression model,
the prediction accuracy has reached 90%, while the average pending time has
dropped by 27%˜34%. Tanash et al. [31] have performed similar work with De-
cision Tree Regressor (DTR), and proposed a detailed performance evaluation
test that assesses the performance improvement benefiting from the predictor
by different metrics. Their results also indicate that for larger jobs, the im-
provement of turnaround time and resource utilization is more substantial. Li
et al. [18] from the IBM research team target only predict job memory usage
for large memory jobs using a two-stage prediction method, which is more prac-
tical for production usage and promotes the prediction accuracy for those jobs
really cared by resource manager users. Rodrigues et al. [27] from another IBM
research team proposes an innovative tool that leverages the predictions of all
methods and selects the most promising ones in a given situation, which sig-
nificantly over-performs the single machine learning model method. They also
introduce the details of the implementation of the prediction tool and how it
was incorporated into the Job scheduler batch scheduler. Matsunaga et al. [21]
compares the advantages and disadvantages of several machine learning methods
in resource prediction. They also propose a novel method called PQR2, which
is an extension of an existing classification tree algorithm, and exhibits better
accuracy when compared to other algorithms, due to its ability to better adapt
to scenarios with different characteristics (linear and non-linear relationships,
high and low density of training data points) by choosing different models for
its nodes and leaves. Besides, some other researchers [26] [6] [32] [11] also use
similar machine learning approaches to predict the maximum memory usage.
Most of the previous work is aiming at finding the read-line of memory usage

16

saving. Their goal is mainly to ensure that the memory reservation is just
beyond the actual peak memory usage; so no considerable resource waste will
be caused, and no job crash will be caused by memory underestimation as well.
They regard the physical and virtual memory as a whole and do not consider
their usage separately. Our goal, however, is to further set an extra limit on
physical memory usage and make use of the swap space in a proper way.

2.5.2 Optimize Cost and Performance

A Myriad of studies to find the trade-offs between cost and performance in
HPC and cloud computing environments can be found in the literature. Inggs
et al. [15] treats the problem of finding the optimal cost-performance trade-offs
problem as a multi-objective optimization problem, in which they try to find the
Pareto optimal trade-offs. They also proposed a formal Mixed Integer Linear
Programming (MILP) technique, which produces a trade-off that is up to 110%
faster and over 50% cheaper than a simple heuristic approach. Nunez et al. [24]
focus on the impact of a high number of parameters and present a model that
computes a cost-per-performance metric using different combinations of hard-
ware configurations based on the simulation in a complex simulation platform.
They also employ a weighted-sum objective function to evaluate the trade-off
between different objectives. Singh et al. [29] present a multi-objective genetic
algorithm formulation for selecting the set of resources to be provisioned that
optimize the application performance while minimizing resource costs. They
use trace-based simulations to compare the application performance and cost
using the provisioned and the best-effort approach with a number of artificially
generated workflow-structured applications. However, we can still draw valu-
able insights from their approach. For server, we can adopt a weighted objective
function to effectively evaluate the trade-off between different objectives, namely
cost and performance. Additionally, the utilization of an iterative evaluation-
adjustment method can also be beneficial for our project.

2.5.3 Memory Swap and Performance Optimization

There is a very limited amount of related work in the area of using memory swap-
ping and cgroup configurations to improve the system performance. Though
there are various posts and blogs elaborating on how to use memory swapping,
we have not seen much similar work in literature that identify or address the rel-
evant problems. Here we list some works we have found so far. Zhuang et al. [35]
have published works that present the findings about memory-related perform-
ance issues of cgroups during certain scenarios. Specifically, (1) memory is not
reserved for cgroups (as with virtual machines); (2) both anonymous memory
and page cache are part of memory limit and the former can evict the latter;
(3) OS can steal page cache from any cgroups; (4) OS can swap any groups.
These issues can significantly affect the performance of the applications running
in cgroups.

2.5.4 Combined Results with another Team

Currently, the Data Analysis team at NXP is conducting work that aligns
well with our research. The team’s focus lies in addressing the issue of HPC

17

users over-requesting memory for certain jobs, resulting in significant resource
wastage, while underestimating memory requirements for other jobs, leading
to a higher risk of job crashes. Their work involves classifying jobs into two
distinct types: high-memory-wasting jobs and high-risk jobs. Based on these
classifications, they further predict the maximum memory usage (Rpredict) of a
job, which serves as a reference for user input settings. The memory predictor’s
output range is expressed in Inequality 2.4.

Rreal <= Rpredict < max(Rreal + 2 + 0.5 ∗ Rreal

ln(max(Rreal, 3))
, 4) (2.4)

In our research, we extend their approach by introducing a constraint on memory
usage (Ropt) that effectively utilizes swap space on the disk. As seen in Inequal-
ity 2.5, our memory limit Ropt is typically set to be no greater than the actual
memory usage of a job, allowing for enhanced cost savings and achieving an
optimal weighted tradeoff between cost and performance. This improvement
builds upon their work by considering additional factors such as disk and swap
space utilization, enhancing the overall efficiency and effectiveness of memory
management in the HPC environment.

Ropt <= Rreal <= Rpredict (2.5)

Figure 2.6 illustrates the comprehensive workflow that combines the two
pieces of work. Initially, users submit their job sets to Job scheduler. These
jobs are then classified as either high-risk or high-memory-wasting jobs using a
machine learning model. For jobs classified as high-memory-wasting, the ma-
chine learning model predicts their memory usage (Rpredict). Subsequently, the
parameter optimizer utilizes Rpredict as the initial upper bound of the search
space and iteratively determines an optimal memory usage (Ropt) that achieves
an optimal weighted sum trade-off between cost and performance. Upon ob-
taining Ropt, the jobs are updated accordingly and subsequently submitted to
the job queue, from where they are dispatched to different servers within the
Job scheduler cluster.

Figure 2.6: Workflow diagram of the combined model.

18

Chapter 3

Delay Accounting
Measurements

This chapter presents the development of the delay accounting tool, the methods
employed for conducting delay accounting measurements, along with an analysis
of the obtained results.

3.1 Development of the Delay Accounting Tool

This section presents the development process of the delay accounting tool, the
verification of its results, and its subsequent deployment on the cluster.

3.1.1 Build the Delay Accounting Tool

a cluster job can comprise multiple processes, while we are particularly in-
terested in obtaining cluster job-level delay accounting results; however, the
Linux kernel only provides per-process delay accounting statistics through its
Taskstat interface. Therefore, we need to develop a delay accounting tool to
aggregate these statistics for each cluster job and obtain the per-cluster job delay
accounting results. In order to establish the relationship between processes and
build a process tree, we can utilize the process event connector utility provided
by Linux, which reports fork, exec, and exit events to user space. To collect per-
process measurement results and accumulate the results for each cluster job, we
create two sockets: one for receiving taskstat messages and another for listen-
ing to process events. Upon receiving the event message “process (id=x) fork
process (id=y)”, we record the PID of the new process in a process tree. When
receiving taskstat data for process y, we accumulate the results in the total
result and remove PID y from the process tree. When all processes are removed
from the process tree, it signifies the completion of cluster job accounting, and
we can output the result.

However, managing processes is not always as straightforward as summing up
subresults; it can be highly complex. We may encounter various scenarios, such
as very short-lived processes that pose challenges in capturing accounting data,
orphan processes where a child process exits later than its parent, and multi-
threading. The most challenging problem arises from the asynchrony between

19

the two sockets, leading to potential race conditions, where a process’s taskstat
data may be received before the fork event x. In this case, the taskstat might
just be discarded since the PID is not recorded in the process tree yet, resulting
in missed delays in the final results.

To address the race condition, we propose a three-event algorithm. We intro-
duce a structure to store the three events that indicate the complete lifecycle
of a process: fork, exec, and exit, along with the corresponding taskstat data.
Only when a cluster job receives all three events can we conclude that it has
truly finished, enabling us to remove it from the process tree. This approach
resolves the race condition issue.

Additionally, it is important to note that due to the resource constraints in
HPC systems, the tool should be lightweight, consuming minimal memory and
CPU resources.

3.1.2 Verification of the Results

To validate the accuracy and robustness of the delay accounting tool in complex
scenarios involving multiple processes and threads, we have devised a compre-
hensive test case. Within the taskstat structure, there exists a field called
“readchar”, which corresponds to the cumulative number of bytes passed to the
read() and ppread() system calls. This value is expected to remain constant
across different runs of the same cluster job. To verify the accuracy of the
delay accounting tool in collecting data from all processes, we execute the same
command in all the threads of a cluster job. By comparing the total “readchar”
measurement of the entire cluster job with the product of the number of threads
and the per-thread “readchar”, we can ascertain whether the measurement res-
ults of all subprocesses are accurately collected.

For the following dd command, the “readchar” measurement value is 1,048,576.

dd if=/dev/zero bs=1k count=1k

We devised a cluster job script that employs a recursive process forking ap-
proach, generating a total of 2n − 1 processes (n=6). Within each process, five
threads are created. By measuring the ”read char” metric of this cluster job,
we obtained a value of 398,131,968. This quantity corresponds precisely to the
product of 1048576, 63, and 6. Thus, our findings serve as a validation demon-
strating the accuracy of the delay accounting tool in scenarios involving multiple
processes and threads.

3.1.3 Deployment of the Tool

Figure 3.1 illustrates the process of collecting and aggregating delay accounting
data within the HPC cluster. The deployed delay accounting tools are distrib-
uted across all worker servers, generating accounting results. These results are
subsequently transmitted to a central log collector for consolidation.

20

Figure 3.1: Deployment of delay accounting tool on a cluster.

3.2 Evaluate the Performance Influence of Memory
Swapping

3.2.1 Idea

Measuring delay accounting is of utmost importance in gaining a comprehensive
understanding of the impact of memory swapping on cluster job performance.
This methodology involves adjusting the memory limit (M) during cluster job
submission and meticulously documenting the delay accounting data. By sys-
tematically varying the memory limit, we can analyze the impact on cluster job
performance metrics and identify the specific delay accounting fields responsible
for these changes.

We measure the cluster job performance using elapsed time, which represents
its execution duration. To understand the impact of memory limits, we analyze
various delay accounting fields, including blkio, swap-in delay, and freepage
delay. By examining these fields individually, we can identify the specific factors
contributing to the increase in elapsed time.

Memory limits can affect different delay accounting fields differently. Memory
swapping, for example, results in elevated swap-in delay and swap-out delay
(freepage delay). Notably, swap-in delay, characterized by blocking I/O opera-
tions, is more significant as it suspends process execution until the I/O operation
completes.

To quantify the influence of each delay accounting field, we use the Linux
kernel’s measurement capabilities to obtain absolute swap-in, blkio, and freepage
delay data. Additionally, we calculate the relative delay for each field with the

21

following equation,

Relative delaydelay field =
Absolute delaydelay field

Elapsed time of the job without memory limit set
·100%

which provides insights into their respective contributions to the overall per-
formance change.

3.2.2 Test Set-ups

Table 3.1 presents the specifications of the cloud provider the cloud servers used
in our experiments, namely serverA. Such large servers are commonly used in
R&D processes. To investigate the influence of storage type on performance,
we conducted a controlled experiment using serverA disk as well.

Table 3.1: The cloud server for delay accounting measurement.
“4x1900 NVMe SSD” means 4 NVMe SSDs, each with a capacity
of 1900 GB. Generally, cloud provider provided a pool of NVMe
SSDs that the coress can access. Thus the 4 NVMe SSDs are shared
between all the cores.

server Type cores Memory
(GB)

server
Storage
(GB)

Network
Band-
width

(Gbps)

network
storage
Band-
width

(Gbps)
serverA 128 256 network

storage-Only
50 40

serverA disk 128 256 4x1900
NVMe SSD

50 40

The measurements were conducted for three distinct simulation tests, each
representing a different stage in the analog design process. And they are all
characterized by a substantial memory footprint. These tests were executed us-
ing the SimulatorA simulator, which accurately emulates the memory-intensive
workloads typically conducted by the NXP design team.

Our original intention was to primarily investigate relatively large cluster
jobs, specifically those with memory usage larger than 50GB, as they have more
potential for cost-saving optimizations. However, we have faced the challenge
of limited availability from some colleagues to provide help, currently, we were
unable to obtain these large cluster job test cases. Nonetheless, the available
SimulatorA tests still provide valuable insights and understanding of the sys-
tem’s behavior.

Table 3.2 provides detailed descriptions of the simulation jobs along with
their corresponding memory usage and the number of cluster job slots they
use. Typically, when engineers submit a simulation job, they have the option
to specify two parameters: the number of threads the job will utilize and the
number of job slots the cluster job will occupy. The number of threads and
job slots does impact job performance by influencing the parallelism within the

22

Table 3.2: Representative circuit simulation jobs. The memory usage
statistics are provided by NXP analog design team. Normally, we
have the flexibility to change the number of job slots when submitting
the simulation job. While the number of threads that we can spawn
is also adjustable, for most of the simulation jobs, we typically use 8
threads. The parameters listed in this table are the ones we utilized
in the delay accounting measurement in Section 3.2.3.

Simulation Job
Name

Description Memory
Usage
(GB)

Number
of Job
Slots

Number of
Threads

TC4-
hb SimulatorA

Phase Locked Loop (PLL) using
CLN28HPC technology. Uses
Cyclostationary noise analysis to
account for frequency folding ef-
fects due to the harmonic content
of the periodic steady state.

2.2 2 8

TC4-
ChirpPLLpnoisejitter

Phase Locked Loop (PLL) using
CLN28HPC technology. Meas-
uring circuit jitter using a
combination of STEADY and
PNOISE analysis.

8.8 8 8

SimulatorA–test3 Analog Digital Converter de-
veloped using SMOS10 techno-
logy. Measures calibration using
transient analysis.

26 8 8

23

cluster job. However, this impact has a relatively minor effect on overall memory
usage.
Additionally, measurements were carried out on seven benchmark tests using

the SimulatorB simulator, with relatively smaller memory usage.
For each job, we selected a range of memory limits, M, based on our prior

knowledge of the estimated memory usage range. A suitable increment step,
denoted as Mstep, was selected to ensure clear observation of the curve’s change
trend. Subsequently, for each memory limit M , the measurement process was
repeated N times to account for potential experimental errors in individual runs.
In each iteration, a cluster job with the memory limit set to M was submitted,

and upon its completion, the delay accounting results were recorded. Relative
delays were computed for each delay accounting field by dividing the job’s ab-
solute delay by its elapsed time. The average value and standard error were
calculated to provide a comprehensive evaluation.

3.2.3 Measurement Results

Figure 3.2 presents the results of the delay accounting measurements conducted
on three circuit simulation test cases with substantial memory requirements.
The experimental results reveal a consistent reduction in both the elapsed time
and swap-in delay as the memory limit is increased. Additionally, it is note-
worthy that the relationship between elapsed time, swap-in delay, and memory
limit is non-linear. Particularly, as the memory limit approaches smaller values,
both the elapsed time and swap-in delay curves become steeper, indicating more
rapid changes in performance.
Meanwhile, the graph clearly demonstrates that the swap-in delay is signi-

ficantly higher than the blkio delay and freepage delay, indicating that the
performance impact is primarily governed by the swap-in delay, in line with
our expectations specified in Section 3.2. Additionally, the user CPU time
remains constant regardless of changes in the memory limit, which aligns with
our expectations as the user CPU time for a program should remain unchanged.
Furthermore, we also notice that the line representing the elapsed time remains
parallel to the line representing the absolute swap-in delay, suggesting that the
difference between them is constant and attributable to the user CPU time.
Moreover, it is observed that the memory limit at which the absolute swap-in
delay reaches zero corresponds to the maximum memory usage of the cluster
job provided by the NXP analog design team.
The measurement results for the seven small-memory usage test cases run by

SimulatorB can be found in Appendix A.

3.2.4 Verification

In Section 3.2.3, we discussed our observation that the memory limit where
the absolute swap-in delay reaches zero corresponds to the maximum memory
usage of the job, as provided by the analog design team. To further support
this finding, we conducted a comparison between the maximum memory usage
measured by the delay accounting method and the memory usage measured by
The job scheduler.
The job scheduler obtains memory usage information for a cluster job by

leveraging the Linux cgroup system when cgroup is enabled. This system enables

24

(a) SimulatorA-test1 test

(b) SimulatorA-test2 test

(c) SimulatorA -test3 test

Figure 3.2: Delay accounting measurement results by SimulatorA. The
area around the line represents the standard error bar.

25

Table 3.3: Memory usage measured by delay accounting vs. by The
job scheduler.

Benchmark test Memory usage per
cluster job when swap-
ping delay begins to
happen

Maximum memory
usage per cluster job
measured by The job
scheduler (with no
limit)

SimulatorB-test1 65MB 65MB
SimulatorB-test2 840MB 843MB
SimulatorB-test2 4thread 840MB 843MB
SimulatorB-test3 90MB 88MB
SimulatorB-test4 70MB 66MB
SimulatorB-test5 160MB 154MB
SimulatorD 70MB 73MB
SimulatorA-test2 9.7GB 9.7GB
SimulatorA-test1 2.2GB 2.2GB
SimulatorA–test3 26GB 26GB

accurate control and monitoring of processes within cluster job environments.
Through the utilization of cgroups, The job scheduler effectively captures all
cluster job processes, ensuring precise and reliable memory usage data [20].
This data plays a critical role in NXP’s analysis and decision-making processes
regarding cluster job memory management.

Table 3.3 presents the comparison results for all ten test cases. Evidently,
the maximum memory usage measured by the delay accounting test closely
aligns with the measurements obtained by The job scheduler. This observation
provides strong evidence supporting our findings.

3.2.5 Job Sensitivity to Memory Swapping

The experiment revealed that the impact of decreasing physical memory usage
varied among different simulation jobs. Table 3.4 summarizes the relative swap-
in delay, which serves as a rough indicator of performance penalty, observed
when applying different memory limits to the three simulation jobs.

It was observed that the “SimulatorA-test1 SimulatorA” test exhibited the
least sensitivity to memory limit, with a 40% memory saving resulting in only a
13% performance loss. On the other hand, the “SimulatorA-test2” test showed
the highest sensitivity, where a mere 10% memory saving caused a 378% per-
formance loss. The “SimulatorA -test3” test demonstrated sensitivity levels
between the two aforementioned cases.

Based on these preliminary findings, it appears more worthwhile to impose
memory limits on insensitive jobs such as the “SimulatorA-test1” test.

Given the diverse range of job types and our current limitation in perform-
ing delay-accounting measurements on a substantial number of jobs, accurately
estimating the percentage of insensitive jobs poses a challenge. However, based
on our analysis, it is highly likely that a significant number of such jobs exist.

26

Table 3.4: Relative memory saving vs. performance penalty.

Simulation Job
Name

Memory limit M
(GB)

Relative
Memory
saving

Absolute
Memory
Saving (GB)

Relative
swap delay

SimulatorA-
test1 test

2.22 (no limit) 0% 0 0%

2.00 10% 0.22 2%
1.75 20% 0.44 5%
1.50 30% 0.66 7%
1.25 40% 0.88 13%
1.00 50% 1.10 41%
0.75 60% 1.32 70%
0.50 70% 1.54 78%

SimulatorA-
test2 test

9 (no limit) 0% 0 0%

8.5 5% 0.5 100%
8 10% 1 378%
7.5 16% 1.5 450%
7 22% 2.0 651%

SimulatorA
-test3 test

26 (no limit) 0% 0 0%

24 7% 2 20%
22 14% 4 86%
20 21% 6 216%
18 28% 8 457%

27

3.2.6 SimulatorC Job

Given the complexity of SimulatorA tests and our limited access to the source
code, we pursued a supplementary analysis on a specific job performed with
the SimulatorC tool, for which we do have access to the source code. This
experiment aims to pinpoint scenarios in which memory swapping has a lesser
impact.

The results of delay accounting measurements for this job are depicted in Fig-
ure 3.3. We observe that the job is relatively insensitive to memory swapping,
indicating a potential high benefit from leveraging memory swapping strategies.
This behavior can be attributed to the specific data manipulations performed
by the tool. Initially, the tool loads file(s) into dataset 1, followed by a trans-
formation into dataset 2, and finally, the simulation of dataset 2 is conducted
independently of dataset 1. Consequently, dataset 1 can be safely swapped out
with minimal impact on performance.

Figure 3.3: Deployment of delay accounting tool on a cluster.

3.2.7 Compare Two Storage Types

As discussed in section 2.4.1, local NVMe storage typically exhibits lower swap
delay compared to network storage storage. However, servers equipped with
local NVMe may come at a slightly higher cost than network storage-only serv-
ers. For server, the serverA server costs 5.44 $/h, while the serverA disk server,
which includes additional local NVMe storage, costs 6.45 $/h. To aid in decision-
making between these storage types, we aim to quantify the difference in swap
delay between them.

Table 3.5, Table 3.6, and Table 3.7 compare the swap delay and elapsed time
for three SimulatorA jobs using both storage types. The results demonstrate a
significant 4.5 times difference in absolute swap delay between the two storages.

28

Table 3.5: SimulatorA-TC4-hb: Compare delay on NVMe and network
storage

Total
memory
limit (MB)

network storage-only (serverA) Local NVMe (serverA disk)

Absolute
swap-in
delay(s)

Relative
swap-in
delay

Elapsed
time(s)

Absolute
swap-in
delay(s)

Relative
swap-in
delay

Elapsed
time(s)

2200(no
limit)

0 0.0% 871 0 0% 865

1000 173 19.8% 1189 24 2.7% 1153
800 280 32.1% 1255 54 6.2% 1172
600 377 43.3% 1325 104 12.2% 1285

Table 3.6: SimulatorA–test3: Compare delay on NVMe and network
storage

Total
memory
limit (GB)

network storage-only (serverA) Local NVMe (serverA disk)

Absolute
swap-in
delay(s)

Relative
swap-in
delay

Elapsed
time(s)

Absolute
swap-in
delay(s)

Relative
swap-in
delay

Elapsed
time(s)

28 (no limit) 0 0% 1098 0 0% 1072
26 1.5 0.2% 1135 2 0.2% 1081
24 223 20.3% 1358 62 5.8% 1227
22 940 85.6% 2154 213 19.9% 1512
20 2378 216.8% 3576 473 44.1% 2019
18 5020 457.3% 6289 871 81.3% 2643

Table 3.7: SimulatorA TC4- ChirpPLLpnoisejitter: Compare delay on
NVMe and network storage

Total
memory
limit (GB)

network storage-only (serverA) Local NVMe (serverA disk)

Absolute
swap-in
delay(s)

Relative
swap-in
delay

Elapsed
time(s)

Absolute
swap-in
delay(s)

Relative
swap-in
delay

Elapsed
time(s)

9 (no limit) 0 0% 538 0 0% 529
8 2036 378% 2781 69 13% 632
7 3503 651% 4592 718 135.7% 1763
6 10220 1899% 11810 2205 416.8% 3759

29

3.3 Compare the Performance with and without
Explicit Memory Limit

(NOTE: In this section, the term “parallelism” refers specifically to the number
of cluster jobs concurrently running in the system, as opposed to the number of
threads operating in parallel within an individual cluster job.)

As mentioned in Chapter 1, bothR andM serve as quantifiable parameters for
managing memory swapping in the system. Since we must enforce constraints
on job parallelism to prevent over-commitment in the system, utilizing R is
essential. We have two fundamental options for their application. The first
approach involves using R exclusively to regulate system parallelism, allowing
the OS to determine which jobs require more memory swapping. The second
approach employs identical values for both R and M , enabling us to explicitly
set memory limits, thereby defining parallelism and imposing restrictions on
each job’s maximum memory usage.

To determine which scheme offers superior performance, we designed an ex-
periment to compare their respective swapping delays.

Table 3.8 showcases the outcomes of cluster job parallelism experiments con-
ducted with and without explicitly set memory limits (M) on two distinct storage
types: network storage (performed on serverA server) and local NVMe (conduc-
ted on serverA disk server).

An explicit memory limit indicates that we set both M and R to the average
of the total available system memory, based on the desired parallelism. For
example, if the system has 160GB memory and we aim for parallelism=4, then
we explicitly assign a memory limit of 40GB to all 4 jobs. Conversely, the
absence of an explicit limit implies that we solely set R to that average memory
value.

Both serverA and serverA disk servers offer a total memory of 256 GB, with
22 GB reserved for the operating system. This allocation results in 234 GB
of available memory for running cluster jobs. The experiments were conducted
with varying parallel cluster job counts (9, 10, and 11). We selected a parallel-
ism level of 9 as it marks the threshold where jobs begin utilizing swap space.
The results reveal that the presence of explicit memory limits notably increases
memory swap delay (both time and count) and elapsed time, especially evident
in the cases with network storage storage.

To elucidate why better performance is achieved without explicit memory lim-
its, we conducted experiments measuring memory usage over time by recording
per-job memory usage collected by cgroup. We compared two setups showing
the most significant gap in swap delay: parallelism=11 on network storage, with
and without explicit memory limits. Figure 3.4a illustrates that without expli-
cit limits, maximum memory usage can reach 26GB, while Figure 3.4b shows
explicit limits restrict it to 21.27GB. Figure 3.4c. 3.4d shows the contribution
of the 11 jobs to the total memory usage in the system. And we can observe
that in both cases the peak system memory usage reaches 234GB.

We also observed a delay in memory usage phases among different jobs, stem-
ming from slight variations in start times. Jobs that start earlier obtain pri-
ority for physical memory, while those lagging behind experience more swap-
ping delays. These observations collectively suggest that jobs without explicit
memory limits can use available memory from lower usage jobs, reducing the

30

Table 3.8: cluster job parallelism experiments with or without expli-
citly set M. All measurements in the table are average statistics for
each cluster job in the parallel cluster job set. Swap count in this
table means the number of swap-in operations. On a given type of
storage device, each swap operation takes the same amount of time.

Memory limit Storage type Parallelism Swap count Swap delay(s) Elapsed time (s)
explicit M network storage 9 4,929 2 1,651

10 1,593,705 2,395 4,100
11 6,122,192 9,827 11,711

explicit M local NVMe 9 5,451 1 1,647
10 2,351,574 284 2,013
11 5,819,554 676 2,505

non-explicit M network storage 9 0 0 1,640
10 143,661 242 1,917
11 223,679 366 2,078

non-explicit M local NVMe 9 0 0 1,651
10 210,524 25 1,705
11 518,287 59 1,740

need for memory swapping. In contrast, explicit memory limits prompt imme-
diate data swapping to disk upon reaching the limit, leading to performance
slowdowns. Frequent memory swapping can contend for disk I/O bandwidth,
diminishing effective bandwidth for all system jobs. Consequently, explicitly set
memory limits may cause larger memory swap delays and potentially decrease
overall system performance.
Figure 3.5 illustrates the impact of increasing parallelism beyond 11 on cluster

job performance. We observe a sharp decline in performance when parallelism
reaches 12; however, this decline is still significantly more favorable compared
to the scenario of applying explicit memory limits.

31

(a) Without explicit memory limit - line plot

(b) With explicit memory limit - line plot

(c) Without explicit memory limit - stacked-line plot

(d) With explicit memory limit - stacked-line plot

Figure 3.4: Memory usage graph of all the jobs when parallelism=11.
Both experiments are done on an server with network storage storage.

32

Figure 3.5: Boxplot with very large cluster job parallelism and system
overload, done on network storage and no explicit memory limit set.

33

34

Chapter 4

Parameter Optimizer for
the Optimal Cost and
Performance

In the context of the job scheduler system, users typically interact with the
system through job inputs and outputs, often without complete knowledge of
how their chosen parameters, specifically the values of M and R, influence the
overall cost and performance on a dedicated server. To bridge this gap and
empower users with the ability to make better decisions, we are developing a
parameter optimizer. This optimizer will automate the process of identifying
the most suitable parameter settings to achieve optimal cost and performance,
based on specific job requirements and system conditions.
In our evaluation of performance, we commonly use the reciprocal of job

execution time [12] as a metric. Given our emphasis on batch jobs, we use the
total execution time of a set of jobs, measured from the start of the first job until
the completion of all jobs, to represent the system’s performance. This allows
us to make meaningful comparisons and optimizations in a batch job context.
In real production environments, users have the flexibility to submit diverse

types of jobs at any given time, which can make estimating the cost for each in-
dividual job challenging. To simplify the cost estimation, we make the following
assumption:

1. We are working with a substantial simulation job set comprising jobs from
a shared parametric sweep analysis. A parametric sweep is a widely ad-
opted circuit simulation technique that involves sweeping a specific para-
meter (e.g., voltage, temperature) through a range of values. This analysis
is typically performed for transient, AC, or DC sweep simulations [13]. In
that case, all the individual jobs in the job set use a similar amount of
memory. This assumption greatly simplifies the task of estimating the
cost for each job, as we can straightforwardly compute the average cost
across all jobs in the set.

2. We make the assumption that the job set is submitted and executed in
batches, and in each batch, we submit as many jobs as the available
memory resources can accommodate. This simplification allows for easier

35

cost calculation and closely emulates the conditions of a fully utilized sys-
tem in real-world scenarios.

3. Considering the impact of the cloud provider server type on the optimal
value of parameter M, we assume that all servers within the cluster are
of the same server type. Specifically, we focus on the widely used serverA
and serverA disk server types, which are prevalent in HPC environments
at NXP. We make this assumption because different systems may have
distinct optimal parameters. Therefore, it is essential to ensure that the
evaluation system used to determine the optimal parameters matches the
system to which these parameters will be applied.

4. We consider the absence of any concurrent jobs running on our cluster,
apart from our dedicated parametric sweep analysis job set. By assuming
no interference from other jobs, we can mitigate resource competition and
potential performance variations introduced by unrelated tasks.

Our first task is to experimentally investigate how parameters R and M in-
fluences cost and performance, aiming to find the parameter combination that
brings the best performance (section 4.1). Building upon these findings, we will
propose one or more solutions for the parameter optimizer (section 4.2.1) as
well as design how the parameter optimizer fit in real cluster (section 4.2.2).
Subsequently, we will implement the parametric optimizer (section 4.3) and as-
sess the accuracy of the results and the optimizer’s performance, including the
cost of the search process (section 4.4). Finally, we will also evaluate the cost-
saving benefits resulting from the implementation of the parameter optimizer
(section 4.5) and draw relevant and concise conclusions based on our findings
(section 4.6).

4.1 How Different Parameter Combinations In-
fluence Cost and Performance

This section presents an experimental study conducted to gain an understand-
ing of how each combination scheme of M and R influences both cost and per-
formance. This study serves as the foundation for the design of our parameter
optimizer.

Based on the aforementioned assumption, we can derive the following equation
to describe the relationship between cost and performance:

Costavg =
Total execution time(h)× Pricing($/h)

Number of Jobs
(4.1)

We have observed that, for a job set of a specific size, the total execution
time exhibits a linear relationship with the average cost per job. This finding
implies that optimizing the cost is equivalent to optimizing the performance of
the job set. To simplify matters, we will henceforth use the average cost as the
sole metric.

36

Table 4.1: Hardware and software configuration. The system has a
total of 64 job slots, with each job utilizing 2 slots. Therefore, the
maximum achievable parallelism in the system is 32.

Input Parameter System Configuration
M1 768 MB the cloud server Type serverA
M2 3072 MB Storage Type network storage-only
Mstep 256 MB Maximum Available Memory 30 GB
N 5 Maximum parallelism 32
Jobtest SimulatorA-test1 SimulatorA test

4.1.1 Test Set-up

We propose two parameter combination schemes. One involves setting both
M and R to the same value. This ensures that the memory usage of each
individual job is limited to a specific range. The other scheme involves only
setting R and omitting M . In this case, we solely control the job parallelism
in the system, allowing the operating system to dynaSimulatorAlly determine
which jobs require more memory swapping.

The results presented in Chapter 3.3 suggest that the latter scheme may offer
better performance. However, we need to substantiate this through quantitative
evaluations.

Table 4.1 provides an overview of the software and hardware configuration
utilized in the experiment. The SimulatorA-test1 SimulatorA test case was
chosen as the focus of the study due to its significant potential for memory
saving. Based on the findings presented in Table 3.4, where it is observed
that the job has a total memory usage of 2304 MB and experiences a 70%
performance loss when the memory limit (M) is set to 768 MB, we selected
a range of memory usages from 768 MB to 3072 MB. This range allows for a
significant variation in parallelism, ranging from 10 to 32, and demonstrates
noticeable changes in performance.

The system employed in this experiment was the cloud server of type serverA,
which is widely utilized within NXP. The system’s native memory capacity
was 234GB; however, for the purpose of this study, a deliberate limitation was
imposed, reducing the available memory of the entire system to 30GB.

Algorithm 1 outlines the procedure for conducting this experiment. In this
algorithm, the variable U represents the memory usage value that is set either
when both M and R are specified or when only R is specified.

For each memory usage U , we conduct N measurements of the total execution
time for a set of p jobs. This approach helps mitigate the impact of measurement
result variability. Following the N repetitions, we compute the average cost per
job for that specific U .

37

Algorithm 1: Evaluate cost with different memory usage

Input: Number of measurement repetitions N , memory usage
lowerbound M1, memory usage upperbound M2, memory usage
increment step MStep, pricing per hour P , test case Jobtest,
total available memory in the system m

Output: Average cost per job
for U = M1 to M2 by MStep do

p = ⌊mU ⌋ ;
for i = 1 to N do

Submit p identical jobs Jobtest with memory usage U to job
queue;
while not all jobs are finished do

continue;

Write total execution time ETi(U) to log;

Calculate average cost cost(U) =
∑N

i=1 ETi(U)·P
N ·p

4.1.2 Test Results and Explanation of Results

Figure 4.1 displays two curves depicting the average cost associated with setting
both the memory reservation parameter (R) and the job’s memory limit (M)
to the same value, and the scenario where only R is set. Both curves exhibit a
distinctive V-shaped pattern.

The V-shape results from two opposing influences. As R decreases, parallel-
ism increases, which tends to reduce total execution time and cost. Conversely,
more intensive swapping occurs with lower R, which leads to an increase in exe-
cution time and cost. The varying rates at which these factors change together
create a convex curve (a V-shape), initially declining steadily and then rising
consistently.

In addition to these curves, we establish a baseline case, which represents
the existing practice in NXP’s real production environment. In this baseline,
users are required to set a certain memory reservation parameter, denoted as R,
when submitting jobs to the job queue. This reservation can be either greater
than or lower than the actual memory usage. Since we lack precise statistics
on the distribution of user reservation values, we empirically assume that the
average user input is equal to the real memory usage. By comparing the baseline
to the two curves, we observe that both methods can reduce the average cost.
However, it’s evident that without an explicit memory limit (M), we can achieve
even lower costs. This advantage becomes increasingly pronounced when the
average memory usage is smaller. This observation aligns with the findings
discussed in Chapter 3.3, where we discovered that when the memory limit M
for each job is not explicitly specified, the operating system (OS) is able to make
more effective swapping decisions. In conclusion, employing only parameter R
tends to result in better performance. We will incorporate this conclusion into
the design of our parameter optimizer.

38

Figure 4.1: How average cost per job is influenced by memory usage
for SimulatorA-TC4-hb respectively. The light blue curve represents
the scenario where both R and M are set to the memory usage value
on the x-axis. The dark blue curve represents the scenario where
only R is set to the value on the x-axis. All the solutions together
form a V-shape. The blue vertical dashed line indicates the maximum
memory usage of 2304 MB, whereas the gray horizontal dashed line
represents the average cost for the baseline.

4.2 Method description

This section describes the algorithms we employ in the parameter search method
as well as the test results.

4.2.1 Existing Parameter Search Methods

From the conclusion in section 4.1.2, it is evident that each R can be associated
with a value cost(R), represented by a V-shaped function. This indicates the
presence of a unique local minimum (and likely a global minimum) within the
search space, implying it is a unimodal function. Therefore, our optimization
problem is simplified to finding the minimum of this 1-D unimodal function.
Besides, we lack the explicit expression of cost(R) and cannot calculate its de-
rivative. Moreover, since each evaluation can take a considerable amount of
time, we need an efficient search method with minimal function evaluations.

Among the available iterative search methods, the golden-section search al-
gorithm and the ternary search algorithm fulfill our requirements. Both al-
gorithms enable efficient search in an unimodal function and are derivative-free.
Table 4.2 presents a comparison between the two methods. Notably, the golden-
section search demonstrates a higher convergence rate, necessitating fewer it-
erations to reach the solution. Moreover, leveraging the unique properties of
the golden-section ratio, we can reuse probes across iterations, significantly re-
ducing the overall function evaluation cost. Consequently, the golden-section
search emerges as the most suitable unimodal search method for our case.

39

Table 4.2: Compare two unimodal search methods [8].

Search Algorithm Name Interval Converge
rate

Re-usage
probes
acrosses iter-
ations

Number of func-
tion evaluations

Golden-section search Golden ratio 0.382 yes ⌈log0.618
(

t
w

)
⌉+ 1

Ternary search Equally
divided in
three parts

0.333 no 2 · ⌈log0.666
(

t
w

)
⌉

4.2.2 How Jobs Land in the System

We propose a two-stage method to search for the optimal R and apply it to
a job set containing a large number of jobs, e.g. 1000 jobs. Figure 4.2 shows
the workflow of this method. In stage 1, we conduct an iterative parameter
search on a single server. The search begins with R set to Rpredict, which
represents the maximummemory usage predicted by the machine learning model
(as described in Chapter 2.5.2). During each iteration, we evaluate the cost of
the current R. Jobs are dispatched in a controlled manner, with the number of
dispatched jobs determined by the maximum parallelism achievable under the
current configuration.

However, the parallelism is not solely constrained by the memory usage per
job; it is also limited by the total available job slots in the system. To address
this, We use

p = min(
total job slots

jobs slots per job
,
total memory resource in system

memory reservation per job
) (4.2)

to calculate the maximum parallelism. After completing all the jobs, we record
the total execution time, and then calculate the average cost using equation 4.1.
By comparing the current cost with previous ones, we determine whether we
have found the optimal value and should terminate the search or proceed to
evaluate the next M (determined by the search algorithm) in the next itera-
tion. It is worth noting that in stage 1, each batch of jobs must be executed
sequentially, leading to some evaluation time cost.

Upon concluding that we have found the optimal M, we transition to stage
2. Here, we can dispatch the remaining jobs to all other worker servers in
the cluster, applying the Ropt obtained from stage 1. This allows the jobs to
run in parallel, further optimizing the system’s resource utilization and overall
performance.

Additionally, to prevent unnecessary re-evaluation of Ropt for jobs we have
previously assessed, we employ a map to store the mapping relationship between
job information, system information, and the corresponding Ropt that was iden-
tified. When initiating a new job set, we initially check if the recorded Ropt for
the given job and system information is already available. If it is, we retrieve
the previously determined Ropt and directly proceed to stage 2 with this value.
Conversely, if it has not yet been established, we perform stage 1 to ascertain
it.

40

Figure 4.2: Two-stage method for finding the optimal Ropt and apply
it in use.

41

4.3 Search Algorithm

Based on the analysis presented in section 4.2.1, we have identified the golden-
section search algorithm as a potential optimal solution. The Golden Section
Search algorithm is an iterative optimization method used to find the minimum
of a unimodal function within a given interval. It operates by repeatedly di-
viding the search interval based on the golden ratio (approximately 0.618) and
evaluating the function at two interior points.

Algorithm 2 describes the working principle. The algorithm starts with an
initial interval [a, b] and calculates two interior points, c and d, using the golden
ratio. It then compares the function values at c and d. If the function value
at c is smaller, the interval is updated by setting b to d; otherwise, a is set to
c. This process continues until the difference between c and d becomes smaller
than the specified tolerance.

By iteratively updating the interval boundaries, the algorithm effectively nar-
rows down the search region and converges towards the minimum of the unim-
odal function. Finally, it returns the average of the final interval boundaries as
the estimated minimum value.

Algorithm 2: Golden Section Search Algorithm [33]

Function GoldenSectionSearch(cost(R), a, b, tol):

ϕ← (1 +
√
5)/2

c← b− (b− a)/ϕ
d← a+ (b− a)/ϕ
while |c− d| > tol do

if f(c) < f(d) then
b← d

else
a← c

c← b− (b− a)/ϕ
d← a+ (b− a)/ϕ

return (a+ b)/2

Input : cost function cost(R), lower bound a = 0, upper bound
b = Rpredict, tolerance tol

Output: Estimated minimum value
GoldenSectionSearch(cost(R), a, b, tol)

However, we have observed that searching in different regions of the function
cost(R) incurs varying time costs. In particular, due to the non-linearlity of
the relation between performance and memory reservation R , searching in the
left-half of the V-shape in cost(R) function (as presented in Figure 4.1) can lead
to significantly higher time costs. Considering that users desire their jobs to
be completed in a reasonably short time and cannot afford excessive waiting
for the parameter searching, we propose a new algorithm called one-way search
(Algorithm 3). This algorithm operates by adjusting the parallelism level and
recalculating the predicted memory until an optimal solution is found.

The one-way search algorithm starts with an initial predicted memory value
(R) and parallelism level (p) based on the available system memory (m). In
each iteration, it evaluates the cost of the current predicted memory. If the cost

42

increases compared to the previous iteration, indicating a deteriorating solution,
the algorithm terminates and returns the previously predicted memory (Rprev).

On the other hand, if the cost decreases or remains the same, the algorithm
updates the parallelism level by incrementing with 1. It then recalculates the
predicted memory by dividing the system memory (m) by the updated paral-
lelism (p). This process continues until a deteriorating solution is encountered.

By employing the one-way search algorithm, we aim to find an optimal solu-
tion more efficiently, avoiding extensive searches in regions that are likely to lead
to higher time costs and focusing on areas that show potential for performance
improvements.

Algorithm 3: One-way Search Algorithm

Function oneway(cost(R), Rpredict):
R← Rpredict

costprev ←∞
Rprev ←∞
while True do

p← ⌊m/R⌋
if cost(R) > costprev then

return Rprev

costprev ← cost(R)
Rprev ← R
p← p+ 1
R← m/p

Input : cost function cost(R), predicted memory Rpredict, available
system memory m

Output: Final predicted memory
oneway(cost(R), Rpredict)

4.4 Test and Results

In order to evaluate the practicability of the two parameter search algorithms
and compare their time cost for the evaluation stage, we designed five groups of
configurations to represent different simulation job scenarios, storage types, and
job slots, encompassing various potential environment variables encountered in
real production environments.

Table 4.3 presents the configuration details of the 5 groups of tests. For the
initial search space, we chose a number within the possible interval of Rpredict, as
represented by inequality 2.4. The experiments using the storage type “network
storage” were conducted on serverA servers, while those with “local NVMe”
were performed on serverA disk servers, both having 234GB available memory
in total.

To compensate for the unavailability of large-memory jobs, which have more
value and potential for cost saving, we artificially reduced the total available
memory size in the system. This ensured that the memory usage per job re-
mained sufficiently large compared to the total system memory.

Additionally, we tested different job slots requests for a specific job to as-
sess whether the parameter optimizer could still function effectively when the

43

Table 4.3: Test set-up to validate the parameter search tool. The tests
show that the tool can work for different types of jobs and storage
types. The total number of available job slots in the system is 64.

id Job name Search space Storage
type

Available
memory
in sys-
tem
(GB)

Slot per job

1 SimulatorA-
test1

[0, 2500] (MB) network
storage

30 2

2 SimulatorA-
Chirpllpnoisejitter

[0, 9] (GB) Local
NVMe

50 8

3 SimulatorA-
TC6-ADC

[0, 28] (GB) network
storage

100 8

4 SimulatorA-
TC6-ADC

[0, 28] (GB) Local
NVMe

100 8

5 SimulatorA-
TC6-ADC

[0, 28] (GB) Local
NVMe

100 2

parallelism is constrained by the number of job slots.

Table 4.4 displays the optimal parameter R found by the two algorithms
and the time cost of evaluation in 5 tests, which is the average result of three
repetitive runs. Overall, the results demonstrate that both algorithms yield
similar outcomes in terms of the optimal parameter R, accompanied by the
same parallelism. This serves as a mutual verification and proves that both
algorithms should be able to give correct results. However, the one-way search
algorithm shows a notable advantage in the evaluation stage, requiring less time
to reach the optimal solution.

Table 4.4: Compare the results and performance of golden section
search and one-way search.

Golden section search One way search

id
Ropt

Found
Extra time cost Eval (s)

Ropt

Found
Extra time cost Eval (s)

1 1216 (MB) 7,283 1229 (MB) 2,109
2 8.19 (GB) 52,934 8.33 (GB) 18,098
3 23.91 (GB) 13,808 25.00 (GB) 5,767
4 19.78 (GB) 7,234 20.00(GB) 4,503
5 23.91 (GB) 13,218 25.00(GB) 5,655

In addition, we notice that for test 1, the Ropt value of 1216GB matches the
results shown in Figure 4.1. Furthermore, comparing the Ropt values found in
tests 3 and 4, we notice that using local NVMe storage allows for more memory
saving compared to network storage. Moreover, tests 3 and 5 demonstrate that
the parameter search results are not influenced by the per-job job slots setting,
provided that the maximum job slots in the system are not the primary resource

44

constraint.
We also conducted experiments based on the original system memory size

(234GB), where we did not notice obvious memory usage saving after optimiz-
ation due to the fact that the job memory usage is quite small compared to the
overall system memory. The results are thus omitted.

4.5 Cost Saving Estimation

Based on the before and after optimization cost values derived from the 5 test
cases and the pricing of cloud provider servers in Table 4.5, we calculated the
cost savings for each test case over 1000 runs, as shown in Table 4.6. Although
we artificially reduced the total memory resources in the system, we assumed
that the pricing remained the same.

Table 4.5: server types and pricing

server Type Pricing ($/h)
serverA x
serverA disk x+1.01

By comparing the three SimulatorA jobs, we can conclude that overall, the
SimulatorA-test1 job has the most potential for cost saving, which is around
43%. The cost saving for SimulatorA-TC6-ADC is slightly less, ranging from
6.5% to 24%. In comparison, we observed the least cost saving from SimulatorA-
Chirpllpnoisejitter, with a cost saving of only 0.9%. This discovery aligns with
our summary of job sensitivity in section 3.2.5. Additionally, comparing tests 3
and 4, we noticed that using local NVMe can potentially result in higher cost
savings.

Table 4.6: Cost saving for each test case.

id Job Name original
cost/job ($)

optimized
cost/job ($)

cost saving per
1000 runs ($)

1 SimulatorA-test1 0.313 0.178 135
2 SimulatorA-

Chirpllpnoisejitter
1.322 1.310 12

3 SimulatorA-TC6-ADC 1.175 1.098 77
4 1.401 1.055 346
5 1.175 1.097 78

4.6 Conclusions

Based on all the experimental results above, we can conclude that only using R
as the submit-time parameter leads to better performance than using both R
and M . Besides, we can conclude that the one-way search algorithm is better
than the golden-section search algorithm considered for our case. It is simple,
with relatively low evaluation time-cost, and consistently yields correct optimal
parameters.

45

Furthermore, we observed that the number of per-job slots does not signific-
antly impact the parameter search result.
Regarding cost saving, we achieved the highest cost saving with the most

memory swap-insensitive job, SimulatorA-test1, reaching 43%. For each 1000
runs, we can save up to $135. On the other hand, with the most memory-
sensitive job, SimulatorA-Chirpllpnoisejitter, we only achieved 0.5% cost saving.
The experiments conducted on the original system memory size showed that

if the memory usage of a job is too small compared to the total system memory
size, then we cannot obtain significant memory cost savings.

46

Chapter 5

Conclusions and Future
Works

In this chapter, we present the method employed to address the problem, show-
case our results, and address the central research question. Additionally, we
provide suggestions for future research. Currently, NXP is engaged in predict-
ing the maximum memory usage of HPC jobs with the aim of reducing over-
reservation of memory resources and achieving cost savings. Building on their
efforts, our goal is to further optimize memory usage and cost by exploring the
potential of swap space.
The primary objective of this thesis is to identify the most appropriate bal-

ance between memory and swap space utilization in HPC systems, ultimately
achieving the optimal cost and performance for a homogeneous work set in an
overloaded system. By striking this balance, we aim to enhance the efficiency
and cost-effectiveness of HPC operations, paving the way for more resource-
efficient computing.

5.1 Methods and Results

In this thesis, we pursue three primary objectives. The first objective focuses
on comprehensively understanding the impact of memory swapping on HPC
system performance. To achieve this, we developed a delay accounting tool to
measure various delay fields and conducted extensive measurements using more
than ten circuit simulation jobs and two different storage types. The results
indicate that the primary contributor to performance degradation when memory
swapping occurs is the memory swapping-in delay. Moreover, the sensitivities of
different circuit simulation jobs to memory swapping vary, depending on their
specific data manipulation methods. A comparison between network storage and
local NVMe storage suggests that local NVMe demonstrates superior swapping
performance, serving as a useful reference for future server-type selection in
cloud providers.
In the second part, we propose two approaches for controlling swap space

utilization: one involves setting both R and M (defining the parallelism level
and setting explicit memory limits for individual jobs), and the other employs
only R (specifying the parallelism level while allowing the OS to determine

47

swapping priorities). By comparing the performance of these two schemes, the
results highlight that using only R leads to better performance. This outcome
can be attributed to the OS’s ability to optimize memory usage and make more
effective swapping decisions in this configuration.
The third part of our thesis aims to develop a practical tool capable of auto-

matically determining the optimal memory reservation parameter R, leading
to the best balance between cost and performance. We focus our research on a
scenario featuring overloaded systems, a homogeneous work set, identical servers
on the cluster, and the absence of irrelevant jobs. These assumptions allow us to
derive that the optimal cost and performance can be simultaneously achieved.
Drawing on our insights from the investigations, we propose a parameter optim-
izer that utilizes a one-way search method. This optimizer employs an iterative
evaluation and adjustment approach to gradually increase parallelism and min-
imize the cost (maximize the performance). Our results demonstrate that this
parameter optimizer efficiently achieves its objectives with relatively low time
costs, resulting in significant cost savings of up to 43%.

5.2 Limitations and Future Works

This section analyzes the limitations in the current works and proposes potential
areas for future investigation that could add value to our findings.

5.2.1 Explain the Non-linearity of Delay Curve

We have observed that the delay curve concerning memory limits is not linear.
In our measurements so far, we have noticed that as the memory limit decreases,
the impact of memory swapping increases more rapidly. Further investigation
is required to explain this phenomenon in detail.

5.2.2 Identify the Bottlenecks in the System and Explore
the Solutions

The job parallelism experiments have shed light on potential bottlenecks in the
system, such as thermal and power constraints, and disk I/O bandwidth limita-
tions. To validate these assumptions, additional experiments can be conducted
to specifically assess the impact of these factors on the system’s performance.

Conducting experiments with different levels of job parallelism and observing
their impact on the system’s thermal and power behavior, along with monitoring
disk I/O throughput, can provide valuable insights to verify the hypothesized
constraints in the system.
Regarding possible solutions, the following approaches can be considered:

• server Type Selection: Choose cloud provider server types that better
match your workload requirements. Opting for servers with faster storage
options like local NVMe or provisioned IOPS on network storage volumes
can help tackle the disk bandwidth bottleneck.

• Parallelism and Resource Management: Optimize the parallelism and re-
source allocation for your jobs. Fine-tune the number of parallel jobs run-
ning on each server to avoid overloading the system. Implementing job

48

scheduling policies and resource limits can also help to prevent memory
overcommitment and unnecessary swapping.

• Caching and Data Prefetching: Utilize caching mechanisms and prefetch-
ing strategies to reduce the need for frequent disk I/O. Storing frequently
accessed data in memory or caching results can help minimize disk access.

5.2.3 Relate the Features of the Simulation Job to the
Delay Output

Currently, we have observed that different jobs exhibit varying sensitivity to
memory swap. Unfortunately, due to the lack of access to the source code
of these jobs, we are unable to gain deep insights into their specific memory
usage patterns at each stage. However, valuable information was obtained from
discussions with the SimulatorA team developers. They highlighted that analog
simulation jobs are influenced by numerous factors such as circuit size, number
of saved signals, and analysis type, making it challenging to identify a common
pattern among them. On the other hand, for digital simulations, the situation
might be more straightforward, and we could potentially use features like circuit
size and simulation length to predict the impact of memory limits. In the
future, we plan to conduct additional digital simulation jobs, extract relevant
features, and explore the possibility of building a machine learning model to
predict sensitivity for these types of jobs. This model can also offer guidance for
optimizing the code, making it less sensitive to memory swapping, and thereby
improving the potential for cost savings.

5.2.4 Optimize the Parameter Optimizer

Currently, the parameter optimizer incurs significant time costs during the eval-
uation of obj(M). In the future, we can refine the optimizer to further reduce
this time overhead. Possible solutions include improving the search algorithm’s
efficiency, optimizing the evaluation process to reduce computation time, or
leveraging parallel computing by running evaluations on multiple servers simul-
taneously. Moreover, the current method has certain limitations, such as being
restricted to dedicated premises where all servers are uniform, and no other jobs
run concurrently. To enhance its versatility and applicability, we can work to-
wards adapting the method to more complex environments that closely resemble
real-world scenarios.

5.2.5 Evaluate and compare the cost on network storage
and local NVMe

In our initial comparison, we evaluated the swap efficiency of network storage
and local NVMe when a single job is running in the system. However, it is
important to investigate how the efficiency difference scales with increasing par-
allelism. Further research can be conducted to quantify the relationship between
parallelism levels and the divergence in swap efficiency between the two stor-
age types. Additionally, considering that servers with local NVMe storage may
come at a slightly higher cost, it is crucial to explore the trade-off between cost

49

and swap delay. Quantifying this relationship will provide valuable insights to
make informed decisions when choosing between servers.

5.2.6 Obtain more large-memory job cases

Our original intention was to primarily investigate relatively large jobs, specific-
ally those with memory usage larger than 50GB, as they have more potential
for cost-saving optimizations. However, due to the time limitation and some
other constraints, currently, we were unable to obtain these large job test cases.
In the future, we can try to get more large-memory job cases, with which we
can do delay-accounting measurements and evaluate if we can save more cost
on them with the parameter optimizer.

5.2.7 Implement the Combined System

During our discussions with the Data Analysis team, we collaborated on design-
ing documents to integrate our results with theirs effectively. Unfortunately, due
to time constraints, we were unable to implement the complete system. Thus,
this remains a potential avenue for future work.

50

Bibliography

[1] Swap management. https://www.kernel.org/doc/gorman/html/

understand/understand014.html.

[2] what is hpc? introduction to high-performance computing.

[3] About job starters. https://www.ibm.com/docs/en/spectrum-lsf/10.

1.0?topic=starters-about-job, Jan 2023.

[4] Introduction to ibm spectrum lsf, Jan 2023.

[5] Memory enforcement based on linux cgroup memory subsystem.
https://www.bsc.es/support/LSF/9.1.2/lsf_admin/index.htm?

cgroup_mem_enforce9111.html~main, 2023.

[6] Dan Andresen, William Hsu, Huichen Yang, and Adedolapo Okanlawon.
Machine learning for predictive analytics of compute cluster jobs. arXiv
preprint arXiv:1806.01116, 2018.

[7] aws. Amazon ec2 instance store. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/InstanceStorage.html.

[8] Eric Cai. The golden section search method: Modifying the bi-
section method with the golden ratio for numerical optimiza-
tion. https://chemicalstatistician.wordpress.com/2013/04/22/

using-the-bisection-method-with-the-golden-ratio-for-numerical-optimization/.

[9] Wikipedia Contributors. Page (computer memory). https://en.

wikipedia.org/wiki/Page_(computer_memory), May 2021.

[10] Jonathan Corbet. Reconsidering swapping. https://lwn.net/Articles/
690079/.

[11] Brandon Dunn. Optimizing high performance computing system’s, resource
utilization and throughput by leveraging machine learning. PhD thesis,
2021.

[12] Sumathy Eswaran. Performance measurements and issues: Computer
architecture. https://witscad.com/course/computer-architecture/

chapter/performance-measurements-and-issues, Nov 2020.

[13] Dennis Fitzpatrick. Analog design and simulation using OrCAD Capture
and PSpice. Newnes, 2017.

51

https://www.kernel.org/doc/gorman/html/understand/understand014.html
https://www.kernel.org/doc/gorman/html/understand/understand014.html
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=starters-about-job
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=starters-about-job
https://www.bsc.es/support/LSF/9.1.2/lsf_admin/index.htm?cgroup_mem_enforce9111.html~main
https://www.bsc.es/support/LSF/9.1.2/lsf_admin/index.htm?cgroup_mem_enforce9111.html~main
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://chemicalstatistician.wordpress.com/2013/04/22/using-the-bisection-method-with-the-golden-ratio-for-numerical-optimization/
https://chemicalstatistician.wordpress.com/2013/04/22/using-the-bisection-method-with-the-golden-ratio-for-numerical-optimization/
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://en.wikipedia.org/wiki/Page_(computer_memory)
https://lwn.net/Articles/690079/
https://lwn.net/Articles/690079/
https://witscad.com/course/computer-architecture/chapter/performance-measurements-and-issues
https://witscad.com/course/computer-architecture/chapter/performance-measurements-and-issues

[14] Todd Hoff. Moving hpc to the cloud: A guide for 2020 - high scalability -,
Sep 2020.

[15] Gordon Inggs, David B Thomas, George Constantinides, and Wayne Luk.
Seeing shapes in clouds: On the performance-cost trade-off for heterogen-
eous infrastructure-as-a-service. arXiv preprint arXiv:1506.06684, 2015.

[16] The kernel development community. Delay accounting — the linux kernel
documentation. https://www.kernel.org/doc/html/v5.4/accounting/
delay-accounting.html.

[17] Nathan Kirsch. Samsung 860 qvo ssd review - 1tb/2tb drives tested, Nov
2018.

[18] Xiuqiao Li, Nan Qi, Yuanyuan He, and Bill McMillan. Practical resource
usage prediction method for large memory jobs in hpc clusters. In Super-
computing Frontiers: 5th Asian Conference, SCFA 2019, Singapore, March
11–14, 2019, Proceedings 5, pages 1–18. Springer, 2019.

[19] linux kernel contributor. Linux delay accounting. https://www.kernel.

org/doc/html/v5.4/accounting/taskstats-struct.html.

[20] LSF. How lsf collects memory usage? https://www.ibm.com/support/

pages/how-lsf-collects-memory-usage, Oct 2018.

[21] Andréa Matsunaga and José AB Fortes. On the use of machine learning
to predict the time and resources consumed by applications. In 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting, pages 495–504. IEEE, 2010.

[22] Javy de Koning Matt Morris and Maarten Kelderman. How nxp is mov-
ing chip design to aws. https://aws.amazon.com/blogs/industries/

nxp-semiconductors-selects-aws-as-its-preferred-cloud-provider-to-power-silicon-design-in-the-cloud/.

[23] Mohita Narang. Swapping in operating system. https://www.naukri.

com/learning/articles/swapping-in-operating-system, Nov 2022.

[24] Alberto Núñez, César Andrés, and Mercedes G Merayomg. Optimizing the
trade-offs between cost and performance in scientific computing. Procedia
Computer Science, 9:498–507, 2012.

[25] Jemalo Qiu. Netlink communication between ker-
nel and user space. https://dev.to/jemaloqiu/

netlink-communication-between-kernel-and-user-space-2mg1,
Jan 2022.

[26] M Rezaei, A Salnikov, and A Shiryaev. Developing a toolkit for task charac-
teristics prediction based on analysis of queue’s history of a supercomputer.
2021.

[27] Eduardo R Rodrigues, Renato LF Cunha, Marco AS Netto, and Michael
Spriggs. Helping hpc users specify job memory requirements via machine
learning. In 2016 Third International Workshop on HPC User Support
Tools (HUST), pages 6–13. IEEE, 2016.

52

https://www.kernel.org/doc/html/v5.4/accounting/delay-accounting.html
https://www.kernel.org/doc/html/v5.4/accounting/delay-accounting.html
https://www.kernel.org/doc/html/v5.4/accounting/taskstats-struct.html
https://www.kernel.org/doc/html/v5.4/accounting/taskstats-struct.html
https://www.ibm.com/support/pages/how-lsf-collects-memory-usage
https://www.ibm.com/support/pages/how-lsf-collects-memory-usage
https://aws.amazon.com/blogs/industries/nxp-semiconductors-selects-aws-as-its-preferred-cloud-provider-to-power-silicon-design-in-the-cloud/
https://aws.amazon.com/blogs/industries/nxp-semiconductors-selects-aws-as-its-preferred-cloud-provider-to-power-silicon-design-in-the-cloud/
https://www.naukri.com/learning/articles/swapping-in-operating-system
https://www.naukri.com/learning/articles/swapping-in-operating-system
https://dev.to/jemaloqiu/netlink-communication-between-kernel-and-user-space-2mg1
https://dev.to/jemaloqiu/netlink-communication-between-kernel-and-user-space-2mg1

[28] Sean Michael Kerner. What is memory swapping? https://www.

enterprisestorageforum.com/hardware/what-is-memory-swapping/,
2019. Last accessed: Jan. 25, 2023.

[29] Gurmeet Singh, Carl Kesselman, and Ewa Deelman. A provisioning model
and its comparison with best-effort for performance-cost optimization in
grids. In Proceedings of the 16th international symposium on High per-
formance distributed computing, pages 117–126, 2007.

[30] Taraneh Taghavi, Maria Lupetini, and Yaron Kretchmer. Compute job
memory recommender system using machine learning. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 609–616, 2016.

[31] Mohammed Tanash. Improving HPC system performance by predicting job
resources for submitted jobs using machine learning techniques. Kansas
State University, 2021.

[32] Mohammed Tanash, Daniel Andresen, and William Hsu. Ampro-hpcc: A
machine-learning tool for predicting resources on slurm hpc clusters. In The
Fifteenth International Conference on Advanced Engineering Computing
and Applications in Sciences ADVCOMP, pages 20–27, 2021.

[33] wiki contributor. Golden-section search. https://en.wikipedia.org/

wiki/Golden-section_search.

[34] Lawrence Williams. Paging in operating system (os). https://www.

guru99.com/paging-in-operating-system.html, Dec 2022.

[35] Zhenyun Zhuang, Cuong Tran, Jerry Weng, Haricharan Ramachandra, and
Badri Sridharan. Taming memory related performance pitfalls in linux
cgroups. In 2017 International Conference on Computing, Networking and
Communications (ICNC), pages 531–535. IEEE, 2017.

53

https://www.enterprisestorageforum.com/hardware/what-is-memory-swapping/
https://www.enterprisestorageforum.com/hardware/what-is-memory-swapping/
https://en.wikipedia.org/wiki/Golden-section_search
https://en.wikipedia.org/wiki/Golden-section_search
https://www.guru99.com/paging-in-operating-system.html
https://www.guru99.com/paging-in-operating-system.html

54

Appendix A

Simulator2 test results

(a) Simulator2-1 (b) Simulator2-2

(c) Simulator2-2 4threads (d) Simulator2-3

(e) Simulator2-4 (f) Simulator2-5

Figure A.1: Delay accounting measurement results for benchmark tests
by Simulator2.

55

(a) Simulator4

Figure A.2: Delay accounting measurement results for benchmark tests
by Simulator4.

56

	Preface
	Introduction
	Problem Statement
	Contribution
	Structure

	Background and Related Work
	HPC Computing Environment
	Job Scheduling Overview
	Job Starter
	Job scheduler Resource Management

	Memory Swapping
	Linux Paging and Memory Swap
	Justification of Reconsidering Memory Swap

	Delay Accounting
	What is Delay Accounting?
	Break-Down of Delay Accounting

	Cloud Servers' Computer Architecture
	Cloud Server Storage

	Related Works and Research Gaps
	Resource Prediction in HPC
	Optimize Cost and Performance
	Memory Swap and Performance Optimization
	Combined Results with another Team

	Delay Accounting Measurements
	Development of the Delay Accounting Tool
	Build the Delay Accounting Tool
	Verification of the Results
	Deployment of the Tool

	Evaluate the Performance Influence of Memory Swapping
	Idea
	Test Set-ups
	Measurement Results
	Verification
	Job Sensitivity to Memory Swapping
	SimulatorC Job
	Compare Two Storage Types

	Compare the Performance with and without Explicit Memory Limit

	Parameter Optimizer for the Optimal Cost and Performance
	How Different Parameter Combinations Influence Cost and Performance
	Test Set-up
	Test Results and Explanation of Results

	Method description
	Existing Parameter Search Methods
	How Jobs Land in the System

	Search Algorithm
	Test and Results
	Cost Saving Estimation
	Conclusions

	Conclusions and Future Works
	Methods and Results
	Limitations and Future Works
	Explain the Non-linearity of Delay Curve
	Identify the Bottlenecks in the System and Explore the Solutions
	Relate the Features of the Simulation Job to the Delay Output
	Optimize the Parameter Optimizer
	Evaluate and compare the cost on network storage and local NVMe
	Obtain more large-memory job cases
	Implement the Combined System

	Simulator2 test results

