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Using Vine Copulas to Generate Representative
System States for Machine Learning

Ioannis Konstantelos , Member, IEEE, Mingyang Sun , Member, IEEE, Simon H. Tindemans , Member, IEEE,
Samir Issad, Member, IEEE, Patrick Panciatici, Senior Member, IEEE, and Goran Strbac, Member, IEEE

Abstract—The increasing uncertainty that surrounds electricity
system operation renders security assessment a highly challenging
task; the range of possible operating states expands, rendering
traditional approaches based on heuristic practices and ad hoc
analysis obsolete. In turn, machine learning can be used to
construct surrogate models approximating the system’s security
boundary in the region of operation. To this end, past system
history can be useful for generating anticipated system states
suitable for training. However, inferring the underlying data
model, to allow high-density sampling, is problematic due to the
large number of variables, their complex marginal probability
distributions and the nonlinear dependence structure they exhibit.
In this paper, we adopt the C-Vine pair-copula decomposition
scheme; clustering and principal component transformation
stages are introduced, followed by a truncation to the pairwise
dependency modeling, enabling efficient fitting and sampling of
large datasets. Using measurements from the French grid, we
show that a machine learning training database sampled from
the proposed method can produce binary security classifiers with
superior predictive capability compared to other approaches.

Index Terms—Copulas, data clustering, machine learning,
Monte Carlo simulation, parametric statistics, principal compo-
nent analysis, risk assessment, stochastic dependence, uncertainty
analysis.

NOMENCLATURE

A. Data Sets and Distributions

Distributions and random vectors are denoted in bold script.
Z Random variable drawn from the ‘true’ joint distribution

we want to approximate.
Ze Random variable defined by the observations data set Z.
Ẑ Random variable that approximates Z i.e., the output of

the statistical model fitted to Z.
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Z Data set of historical observations.
Ẑ Sampled data set.
�z(t) A single observation of Z at some time t ∈ {1, . . . , N}.
Fe

Z i Empirical distribution of variable i in data set Z.

B. Scalars and Model Parameters

n Number of variables in Z.
N Number of observations in Z.
K Number of clusters.
Nc Number of observations of Z belonging to cluster c.
m Number of variables modelled using C-Vine copulas.
φ̂k,j Family of bivariate copula coupling variables Uk |j−1:1

and Uj |j−1:1 .

θ̂k ,j Parameters of bivariate copula coupling vari-
ables Uk |j−1:1 and Uj |j−1:1 .

Ns Number of realizations to be sampled from Ẑ.

I. INTRODUCTION

THE large-scale integration of intermittent generation
sources has led to a significant increase in the uncer-

tainty characterizing the operation of electricity systems [1].
This is exacerbated by the growing interconnection between
independently-operated markets and the advent of shiftable load
elements, such as electric vehicles. Existing security tools re-
lying on heuristic rules and ad hoc analysis close to real-time
are quickly becoming obsolete, in view of the expanding opera-
tion range and complexity of electricity systems. Another major
limitation of existing approaches is that they do not present a
scalable way for expanding the list of contingencies analyzed.
As such, they usually focus upon examining faults that are highly
probable or have occurred in the past. This way the system op-
erator remains blind to previously-unseen contingencies which
may turn out to be critical.

At the same time, instrumentation is increasing at all sys-
tem levels with the deployment of Phasor Measurement Units
(PMUs) and cross-exchange of information between operators
across borders and voltage levels [2]. Large-scale data collection
presents immense untapped potential for supporting the secure
operation of the grid. Data from the system’s past history can
be combined with high-fidelity simulations and be used to train
binary classifiers for determining whether a unseen operating
point is safe or unsafe after a specific contingency [3]. The use
of such classifiers foregoes the need to carry out simulations
near real-time that suffer from computational constraints. As
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such, data-driven security monitoring presents a scalable way
to accommodate the increasing uncertainties and an expanding
set of contingencies. In this paper we study the topic of efficient
database generation for constructing good quality predictors.

In the past, many authors have investigated the construction
of surrogate models of the security inference problem using ma-
chine learning techniques. In [3] and [4] the authors introduced
the concept of building proxies to the transient stability problem
using machine learning. The suitability of different training fea-
tures was assessed and decision trees were shown to be capable
of accurate predictions. Authors in [5] and [6] use decision trees
to configure preventive control schemes. The training database
for the dynamic security assessment is constructed by sampling
uncertain variables using independent Gaussian distributions
fitted to historical data and then iteratively refining the sam-
ple space using importance sampling principles. Authors in [7]
focus on identifying dynamic stability from PMU data using
decision trees; many different loading conditions are sampled
while the loading factor of each bus is assumed constant. Tests
carried out on a 68-bus system achieved high prediction accu-
racy. The author in [8] examined different classifiers such as
random trees and support vector machines.

In general, the predictive capability of classifiers is highly
dependent upon the data used for training. Machine learning
algorithms require a database that has a good representation of
all class values so that new instances can be accurately clas-
sified. For the security assessment problem, this translates to
having a training database that (i) has high diversity and cover-
age (ii) includes both secure and unsecure post-fault operation
(iii) is in close vicinity to the instances to be classified in the
future, thus exhibiting good generalization capability. Note that
the training database refers to pre-fault operating points and is
independent of the list of contingencies to be simulated (i.e.,
computing the post-fault operating points) which can include
faults that have never occurred in the past. Historical data con-
stitute a natural starting point for constructing a training dataset.
Thereafter, different approaches can be taken to enhance the
already-available information. For example, authors in [9] and
[10] use an entropy-based importance sampling method to iden-
tify informative stress directions for generating load scenarios.

In this paper we focus on fitting a statistical model to the
historical data and sampling at high densities. There are several
advantages to inferring a probabilistic model instead of direct
use of past measurements (empirical distribution). Most impor-
tantly, a model provides the ability to generate training databases
of arbitrarily large size. This is necessary for generating training
data sets of high variability for machine learning tasks. More-
over, probabilistic models can readily be combined with other
techniques, such as importance sampling, as proposed in [9].
A final aspect is the dramatic reduction of memory require-
ments which can be a problem with data-intensive applications.
Given that future transmission systems will be equipped with
thousands of sensors and millions of smart meters, the abil-
ity to compress large data volumes in concise models without
substantial information loss is highly desired.

In the past there have been several efforts towards build-
ing statistical models of high-dimensional stochastic variables.

Copula models, in particular, have become increasingly popular
in many fields of application from financial market modeling
[11] to weather-related research [12] and consumer profiling
[13]. Copulas have also been used in the past to capture the
relation between different stochastic attributes in the context
of electrical energy system operation [14] and planning [15].
Authors in [16] and [17] use vine copulas to capture the depen-
dency between the outputs of different wind farms. The same
principle is applied in [18] to electric vehicle usage data to gener-
ate loading scenarios. Other applications include multi-attribute
modeling, as in [19], which focuses on the effect of wind power
on hydro-dominated systems. Another approach to multivariate
modelling is the use of graphical models such as Bayesian net-
works (BNs). BNs can be hampered by a number of issues that
limit their modeling capability, such as the inability to control
the marginal distributions and the inability to capture complex
dependence structures. Authors in [20] show that BNs can be
viewed as a specific case of vine copulas, meaning that BNs
entail an inherently constrained structure while vine copulas, by
definition, are more flexible in modelling complex data sets.

Beyond fitting statistical models to a data set, it is also possible
to adopt a model-free approach. In particular, the use of Genera-
tive Adversarial Networks (GANs) has been proposed with great
success in the field of computer vision [21]. In the area of power
systems, researchers in [22] have recently used GANs to sample
wind farm and solar plan output time series. GANs have been
developed very recently and there are numerous open questions
regarding their interpretability, hyper-parameterization, conver-
gence [23], loss function definition and capability to actually
learn the underlying distribution [24]. For these reasons, in this
paper we focus primarily on statistical modelling techniques.

Despite the numerous applications, all existing approaches
deal with only a handful of variables; there has been little effort
to develop a unified framework for modeling high-dimensional
dependent stochastic variables. Recently, the authors in [25]
investigated the potential for combining data clustering, dimen-
sion reduction and vine copula techniques for high-dimensional
stochastic modeling along with examining different validation
methods. In this research we extend this work by giving specific
modeling details and investigating the suitability of this model as
a database generation tool for machine learning tasks in highly
stochastic multivariate electricity systems. Finally, note that the
main differences of this paper compared to [25] are: (i) showcase
of the full model formulation as well as extensive discussion on
critical modelling choices (ii) propose model truncation using a
multivariate Gaussian copula which results in severe model size
reduction (iii) comprehensive case study demonstrating the im-
portance of generating high densities of representative system
states for data-driven security assessment (iv) computationally-
efficient algorithms for model parameterization and sampling;
note the full source code has been made open source in [40].

The work presented here has been implemented in iTesla [26],
a platform for security analysis in very large grids that uses
machine learning to infer security rules. Given the huge com-
putational requirements of analyzing the security of national-
level systems [27], efficient database generation is of paramount
importance.
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Fig. 1. (a) Marginal probability distributions of 5-minute load measurements
over 3 months from a bus in the region of Nancy, France (March 2012). (b)
Non-linear dependence between load measurements of two other buses in the
same region.

The remaining paper is organized as follows. Section III de-
scribes the challenges to be overcome. Sections IV and V present
the different components of the proposed workflow. Section VI
presents a case study showing the superior performance of the
proposed method compared to existing approaches for gener-
ating training databases for the security assessment problem.
Section VII summarizes and concludes.

II. MODELLING CHALLENGES

Let the set of historical observations consists of N obser-
vations of n interdependent injections and loads z

(t)
i , where

i ∈ {1, . . . , n} is the nodal index and t ∈ {1, . . . , N} the obser-
vation index, usually associated with a snapshot time. We will
denote each snapshot as a vector �z(t) ∈ Rn , and the set of all
observations as

Z =
{
�z(t) |t ∈ {1, . . . , N}

}
. (1)

It is instructive to consider the random variable Ze that is
defined by the empirical observations Z. The empirical samples
are considered to be drawn from an unknown ‘true’ distribution,
represented by the continuous random variable Z. The objec-
tive of our work is the construction of an approximate random
variable Ẑ that approximates Z, by fitting it to the set of obser-
vations Z. Subsequently we compare the use of Ẑ and Ze for
machine learning applications.

First of all, one of the main challenges of the task at hand
is that almost all variables of interest, such as active/reactive
loads and renewables injections have highly non-standard dis-
tributions, complicating the use of purely parametric statistical
models. For reference, a typical marginal distribution of load
levels is shown in Fig. 1(a).

Secondly, the stochastic variables of interest exhibit non-
linear dependence rendering all traditional statistical methods
that assume independence or solely rely on Pearson’s correlation
coefficient inadequate. For example, a scatter plot displaying the
dependence between two load buses is shown in Fig. 1(b). The
plot suggests asymmetric dependence, which is beyond the ca-
pabilities of linear models.

Beyond the statistical properties of the variables, another as-
pect that renders the modeling task challenging is the dataset

size. The electricity system of a medium-sized country can in-
volve several thousand stochastic attributes including active and
reactive load levels, power injections due to intermittent sources
and uncontrollable cross-border flows. Such large multivari-
ate models can quickly encounter practical limitations due to
exponentially-increasing computation times for model parame-
terization. In this research we use Principal Component Analysis
(PCA) to project the high-dimensional stochastic signal onto an
‘information-ordered’ space so as to focus the subsequent com-
plex modeling tasks on a reduced subset of variables, rendering
the proposed approach tractable.

The final challenge is the large number of historical obser-
vations. For each stochastic variable, there can be thousands
of recorded measurements available, rendering the process of
identifying a single parametric model that fits the data a very
challenging task. To tackle this issue, appropriate techniques
can be used to partition the observations into groups so as to
differentiate between system modes that result in signals with
radically different statistical behavior. This paper proposes an
enhanced approach by considering a mixture of copula vines
using k-means clustering.

III. VARIABLE TRUNCATION C-VINE COPULA

Given the highly complex dependence between stochastic
variables in electricity systems, a suitable model must capture
not only linear correlations but also higher-order statistics such
as tail-to-tail dependencies. Copula-based methods are explic-
itly suitable for modeling such dependencies. We present here
a particular implementation of a copula-based model, the Vari-
able Truncation C-Vine method, which is adapted to modelling
complex dependencies in high-dimensional systems. It consists
of the following steps: (i) cluster the data (ii) apply Spearman’s
Principal Component Analysis to identify the most important
dimensions for detailed dependency modelling; (iii) use of the
C-Vine Pair Copula Construction to model the dependencies
between the m most important dimensions; (iv) use of a mul-
tivariate Gaussian copula to model the dependencies with and
between the remaining n−m dimensions.

A. Model Clustering

In general, networks operate across a range of qualitatively
different operating regimes. For example, electrical consump-
tion patterns during peak hours are determined by fundamentally
different drivers when compared to nighttime consumption. To
address this issue, historical observations can be assumed to not
come from a single underlying model, but from multiple distinct
models. K-means clustering is used to partition N observations
into K clusters, where each observation belongs to the cluster
with its nearest mean as defined below:

{
�μ1 , . . . , �μK

}
= argmin{−→̃

μ
1
,...,
−→̃
μ

K
}

{
k∑

c=1

∑
�z∈Zc

∥∥∥�z −−→̃μc
∥∥∥

2
}

(2)

where Zc is the set of points that is closer to point �μc than
to any other �μc′�=c (using a Euclidean metric). This operation
partitions the original population Z into k disjoint sets {Zc}Kc=1
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with a variable number of elements Nc = |Zc |. The optimal
choice for the number of clusters is data-dependent; the larger
the number of clusters, the simpler the structure of each cluster
becomes, but the model is more susceptible to overfitting. As
discussed in [28], there are various methods to determine the
optimal number of clusters. Note that hereafter we drop the
explicit dependence on the cluster index c, with the implicit
understanding that models are constructed independently for
each cluster.

B. Spearman’s Principal Component Analysis

The variable truncation C-vine model that is described below
has a hierarchical structure; the dependencies between dimen-
sions with a lower index are modelled with fewer transforma-
tions than those with higher indices. Using this structure to our
advantage, we place high-variance modes early in the cascade,
followed by those with lower variance. PCA can be used to
perform this variable ordering and reduce the computational
complexity of the proposed method. However, PCA is highly
sensitive to the skewness and magnitude of variables and as such,
it is good practice to transform data prior to PCA. In general, the
choice of transformation type is highly data-dependent. In this
case, the Probability Integral Transform (PIT) is applied to each
data cluster Z to construct Y = (Y1 , .., Yn ), where each vari-
able Yi has been transformed through its respective empirical
cumulative distribution function (ecdf) Fe

Z i as in (4). Applying
PCA to PIT-transformed data is known as Spearman’s PCA and
is equivalent to performing PCA in terms of the Spearman’s
correlation matrix [29]. After extensive testing, it was found
to perform better than conventional PCA on the French power
system data set, where variables follow non-Gaussian marginal
distributions and are highly dissimilar.

Yi = Fe
Zi

(Zi), for i ∈ {1, . . . , n} (3)

Here and throughout the paper, whenever a mapping is applied
to a set, it implies application to each element, i.e., every z

(t)
i ∈

Zi . The n× n covariance matrix of Y can be factorized as:

cov (Y) = ΨΛΨT (4)

The matrix ΨT defines an orthogonal mapping onto the prin-
cipal component (PC) domain, in which dimensions are sorted
in order of decreasing variance. If the variables are significantly
correlated, it is possible to focus the modelling effort on a small
number m of principal components (i.e., m,� n) while losing
only a fraction of the full attribute information. We transform the
original data from cluster c into its principal component space
as follows

X =
{
�x|�x = ΨT �y, �y ∈ Y}

(5)

From here on we use x to denote coordinates in the PC space.

C. Copulas and the C-Vine Construction

The basic concept of copulas follows from Sklar’s theo-
rem [41]. Consider n random variables X1 , X2 , . . . , Xn with
marginal density functions fi(xi) and associated distribution

functions Fi(xi). The joint density function is given by

f (x1:n ) = c12...n (F1 (x1) , . . . , Fn (xn ))

× f1 (x1) . . . fn (xn ) (6)

where we use the notation x1:n as a shorthand for the sequence
x1 , x2 , . . . , xn . The copula density c12...n : [0, 1]n → R de-
scribes the dependence between uniform random variables
{U1 , . . . , Un} = {F1(X1), . . . , Fn (Xn )}. The copula repre-
sentation provides a convenient way to separate the marginal
distributions of Xi from their dependency structure. The copula
connecting all variables is unique if all marginal distribution
functions are continuous; for independent variables c12...n = 1.
The practical problem of interest is the identification of the best-
fitting parametric copula to the transformed empirical data X ,
represented by the random vector X .

For the bivariate case, there is a well-investigated and rich
variety of copula families [30]. However, in the case of higher
dimensions, the dependency patterns that may exist between
large numbers of variables are far more complex than for the bi-
variate case. Attempting to capture this dependency structure us-
ing a single multivariate parametric copula can be restrictive and
lack the flexibility required. The pair-copula construction (PCC)
approach represents a way of constructing high-dimensional
complex models of multivariate dependence, by extending the
bivariate theory to an arbitrary number of dimensions [31]. It
was first introduced by Joe in [30] and developed in more detail
in [32], [33] and [34]. The main idea of PCC is to decompose
a multivariate distribution into a product of bivariate copulas
by using recursive conditioning. A joint probability density is
recursively factorized as follows:

f (x1:n ) = f1 (x1) · f2|1 (x2 |x1) · f3|21 (x3 |x2 , x1) · . . .
· fm |m−1:1 (xm |xm−1:1)

· fn :m+1|m :1 (xn :m+1 |xm :1) . (7)

Each of the univariate conditional probability distributions
can be decomposed into (conditional) pairwise copulas using

fj+i|j :1 (xj+i |xj :1) =
fj+i,j |j−1:1 (xj+i , xj |xj−1:1)

fj |j−1:1 (xj |xj−1:1)

= cj+i,j |j−1:1
(
Fj+i|j−1:1 , Fj |j−1:1

)
fj+i|j−1:1(xj+i |xj−1:1)

(8)

where the second equality follows by expanding the bivariate
function fj+i,j |j−1:1(xj+i , xj |xj−1:1) using (7)- an operation
that is not affected by conditioning on xj−1:1 . For clarity we
have used the shorthand notation Fj+i|j−1:1 to represent the
conditional distribution function Fj+i|j−1:1(xj+i |xj−1:1). This
equation is used recursively to express all conditional densities
for dimensions 1, . . . , m in (7) as products of bivariate copula
densities and the corresponding marginal densities, resulting in
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the decomposition

f (x1:n ) =
m−1∏
j=1

m−j∏
i=1

cj+i,j |j−1:1
(
Fj+i|j−1:1 , Fj |j−1:1

)

·
(

m∏
k=1

fk (xk )

)
· fn :m+1|m :1 (xn :m+1 |xm :1) .

(9)

Note that the distribution in dimensions m + 1, . . . , n is left
unspecified for now. Through this decomposition it becomes
possible to retain the separation between marginals and depen-
dency modeling, while permitting the use of arbitrary bivariate
copula families, capturing wide range of different dependency
structures. It is important to remark that the order of pairwise
conditioning in (7) and (8) is not unique. In fact, there are 2m!
ways to decompose an m-dimensional joint probability func-
tion [33]. The specific recursive conditioning structure defined
above is known as the Canonical Vine (C-Vine) 0. Although
in theory all 2m! decompositions are valid and equivalent, in
practical applications parametric fits are performed and the or-
der does matter. This is because any inaccuracy due to an ill-
fitting copula can propagate ‘downstream’, affecting parameter
choice of all recursively-defined copulas. The C-Vine structure
is well-suited to our application because PCA assigns a crude
importance ordering to the variables X1 , . . . , Xn .

For notational clarity, we define the conditioned random
variables Uj+i|j :1 ≡ Fj+i|j :1(Xj+i |Xj :1). Each is a uniform
variable on the unit domain, and, by construction, the fully
conditioned unit variables Vj ≡ Uj |j−1:1 are mutually indepen-
dent. Furthermore, we will make use of the h-function notation
introduced in [33] to denote conditional distribution functions

Fj+i|j :1 (xj+i |xj :1) =
∫ xj + i

−∞

fj+i,j |j−1:1 (x′, xj |xj−1:1)
fj |j−1:1 (xj |xj−1:1)

dx′

= hj+i,j

(
Fj+i|j−1:1(xj+i |xj−1:1), Fj |j−1:1(xj |xj−1:1)

)
(10)

with

hj+i,j (u, v) ≡
∫ u

0
cj+i,j |j−1:1 (w, v) dw (11)

The h-functions therefore define the recursive relation be-
tween the conditioned unit random variables as

Uj+i|j :1 = hj+i,j

(
Uj+i|j−1:1 , Uj |j−1:1

)
. (12)

Expressions for the h-functions of common copula functions
are available in [33]. The process of fitting a C-Vine model to
the data is summarized in Algorithm 1. Data is successively con-
ditioned on variables 1, . . . m− 1, by fitting bivariate copulas
ĉk ,j |j−1:1 and transforming observations using the correspond-
ing h-functions. The fitting of a single copula function consists
of determining an appropriate copula family and corresponding
parameters; the latter are determined via the Maximum Likeli-
hood Estimation (MLE) method [33]. There are different crite-
ria that can be used to select the best-fitting family such as the
Vuong test, goodness-of-fit (GOF) test, the Akaike information

Algorithm 1: Construction of Variable Truncation C-Vine.
for i← 1, . . . ,n
Ui =Fe

Xi
(Xi) (transform all observations to unit domain)

for j← 1, . . . ,m− 1
for k ← j + 1, . . . , m

φ̂k,j , θ̂k ,j ← bivariate copula fit on
(Uk |j−1:1 ,Uj |j−1:1)
Uk |j :1 = ĥ(Uk |j−1:1 ,Uj |j−1:1 ; φ̂k,j , θ̂k ,j )

for i← 1, . . . ,m
Wi = Ui|i−1:1 (select m conditioned variables)

for i← m + 1, . . . ,n
Wi = Ui (augment with n−m unconditioned variables)

R̂← n−dimensional Gaussian copula fit onW

criterion (AIC), and the Bayesian inference criterion (BIC) 0.
Authors in [11] showed AIC to be the best-performing criterion
and as such we adopt it in this research. The selected copula fam-
ily and parameters associated with the transformation ĥj+i,j are
denoted by φ̂j+i,j and θ̂j+i,j , respectively.

D. Truncation With Gaussian Copula

The C-Vine structure is used to model the dependencies be-
tween the first m dimensions in principal component space.
Although it is a very flexible modelling technique, it is computa-
tionally intensive, because it requires the fitting of m(m− 1)/2
bivariate copulas, each involving the evaluation of d copula
families. For this reason we truncate the C-Vine construction at
m� n and use a less accurate but more computationally effi-
cient Gaussian multivariate copula to model the dependencies
in remaining dimensions, represented by the conditional PDF
fn :m+1|m :1(xn :m+1 |xm :1) in Eq. (9).

Let us consider the coordinate transformation X → U → V
implied by the C-Vine for the first m dimensions. Because this
mapping is one-to-one, we may replace the conditioning on xm :1
by an equivalent conditioning on vm :1 . This change enables us to
express the conditional PDF using an n-dimensional copula as
follows, invoking Sklar’s theorem and the mutual independence
of Vi :

fn :m+1|m :1 (xn :m+1 |xm :1) =
f ′n :m+1,m :1 (xn :m+1 , vm :1)

f ′m :1 (vm :1)
=

c′n :m+1,m :1
(
Fn , . . . , Fm+1 , Fm |m−1:1 , . . . , F1

)×
n∏

i=m+1

fi (xi)

(13)

We find that the dependency structure is described by a single
copula that relates the dependent unit variables Um+1 , . . . , Un

and the mutually independent unit variables V1 , . . . , Vn .
A simple approximation would be to assume independence,

which equates to setting c′n :m+1|m :1 = 1, so that the PDF of
Xn :m+1 is a simple product of the marginal distributions. Nu-
merical experiments show that this requires the inclusion of a
significant number of dimensions m in the C-Vine to achieve a
good fit (result not shown). Instead we propose to explicitly take
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Fig. 2. Variable truncation C-Vine procedure (for a single cluster). The suc-
cessive transformations are indicated by both their ‘true’ and ‘approximate’ or
empirical versions.

linear correlations into account by approximating c′n :m+1|m :1
with a single n-dimensional Gaussian copula, parameterized by
the correlation matrix R̂.

This choice is included in Algorithm 1, as a final step of pa-
rameter estimation. The full model construction process (trans-
formations and parameters) is illustrated in Fig. 2. We note that
the proposed Variable Truncation C-Vine method differs from
the ‘Truncated C-Vine’ described in [11], which conditions all
n features on the m first variables, instead of only the first m. In
the case where m
 n, this requires ≈2n/m times the number
of copula evaluations.

IV. MODEL SAMPLING ALGORITHM

The model consists of a sequence of steps: k-means clus-
tering, PCA, C-Vine copula construction and multivariate
Gaussian copula fitting. Stochastic random variables can be gen-
erated by traversing the modules in reverse order. Approaches
on how to simulate from vine copulas were first proposed in
[20] and presented in detail in [33]. A computationally efficient
algorithm for sampling from the Variable Truncation C-Vine
model is shown in Algorithm 2.

First, a random vector
−→̂
w ∈ [0, 1]n is generated according

to the multivariate Gaussian distribution parameterized by R̂.
The first m components are the starting point for the C-Vine
sampling procedure. The first coordinate, v̂1 , which in a C-
Vine is the ‘governing’ variable, is considered independent to
all other variables. The other coordinates are transformed to the
dependent unit coordinates ûi by recursive un-conditioning us-
ing ĥ−1 (inverse of ĥ with respect to the first parameter). The
resulting unit coordinates û1:m are combined with the remain-
ing coordinates ûm+1:n = ŵm+1:n and they are transformed
back to the principal component domain through the inverse
empirical distribution functions {F−1

X i }ni=1 . The transformation
of the resulting vector by the matrix Ψ results in a single ran-
dom realization {ŷi}ni=1 . Each dimension must be subsequently
transformed through the inverse empirical distribution function
F−1

Z i .

Algorithm 2: Truncated C-Vine Sampling Algorithm (for a
Single Sample).

Sample {ŵi}ni=1 ∼ multivariate Gaussian (R̂).
v̂1:m = ŵ1:m
û1 = v̂1
for k← 2, . . . ,m

ûk = v̂k

for j ← k− 1, . . . , 1
ûk = ĥ−1(ûk , v̂j ; φ̂k,j , θ̂k ,j )

ûm+1:n = ŵm+1:n
for i← 1, . . . ,n

x̂i = (Fe
Xi

)−1(ûi)−→̂
y ← Ψ

−→̂
x , truncated to [0, 1]n

for i← 1, . . . ,n
ẑi = (Fe

Zi
)−1(ŷi)

Algorithm 2 presents the process for generating a single sam-
ple. In practice, the user will want to generate a large number
of samples Ns . This requires sampling all K C-Vine cluster-
models. Note that each cluster model has an associated prob-
ability πc which depends on Nc, the number of historical
observations grouped in cluster c i.e., πc = Nc/N . As such,
stratified sampling can be used, where each cluster-model is
sampled to generate Nc

s = Nsπ
c samples. If Ns is sufficiently

large (as would be the case for security monitoring), then it can
be rounded up or down to the nearest integer variable with neg-
ligible accuracy loss. The sampled data set Ẑ is constructed by
appending the output of all K cluster models.

Note that all parameterization and sampling methods de-
scribed in Sections IV and V were developed in MATLAB and
the code has been made available at [40].

V. CASE STUDY

A. Historical and Sampled Dataset

In this case study we use a modified version of the IEEE 118-
bus system to study the use of surrogate models for identifying
the security boundary. The original system consisting of 54 gen-
erators and 186 lines has been modified to also include 10 wind
farms of size 100 MW each. To create a historical database Z

of sufficient complexity, we use a dataset provided by RTE, the
French system operator. The dataset contains high-voltage ac-
tive load and wind generation 5-minute measurements between
January and March 2012; 14,250 observations spanning over
7,000 nodes.

From this set, 118 demand buses and 10 wind generators from
the area of Nancy were chosen at random and ‘mapped’ (i.e.,
scaled according to the maximum value defined in the coincident
peak snapshot) to the 118-bus test system [36]. Note that the case
study uses a DC power flow approximation and thus only active
loads were considered in the model construction and sampling.
If required, the presented method could accommodate reactive
loads as additional variables in a straightforward way.
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Fig. 3. Marginal and scatter plots of the historical dataset Z.

A sample population of 40,000 realizations was generated
using the proposed method. The number of clusters was set to 10,
as determined by various clustering validity indicators, while an
97.5% variance criterion was used to determine m, the number
of variables selected for C-Vine modeling. The copula families
modelled were Clayton, Frank, Gaussian, Gumbel, Student-t as
well as their 90°, 180° and 270° rotated versions. The algorithm
was implemented in MATLAB and run on an Intel Xeon PC
with 8 cores. C-Vine model parameterization and sampling was
carried out in parallel for each cluster and took 34 minutes. CPU
times are shown in Table I.

B. Visual Exploration of Transformation Stages

We first focus on a small example dataset where five vari-
ables were chosen at random (from Z). Our aim is to illus-
trate the different transformation steps and provide justification
for modelling choices involved in the proposed workflow; the
small number of dimensions enables us to validate the approach
through graphical exploration (note that no clustering has been
used here). Fig. 3 presents the dataset by using a matrix of
scatter plots where each plot shows the dependency structure
between two variables. For example, the top-left scatter plot
shows concordance between the first and second variable. His-
tograms of the five variables appear along the diagonal. The
upper triangular matrix shows Pearson’s correlation for each
bivariate combination. As can be seen below, the marginal and
bivariate distributions are highly non-Gaussian and complex.
The first step is to apply the PIT on Z. The resulting dataset,
Y , is shown in Fig. 4; all variables have uniformly distributed
marginal pdf’s and scatter plots are in the unit square. The sec-
ond step is PCA. The resulting dataset X is shown in Fig. 5
where variables are ordered from highest to lowest eigenvalue.

As can be seen above, the dependence structure between
the first and second PCs is clearly non-Gaussian. However, the
concordance between lower-ranked PCs is increasingly more
Gaussian (i.e., elliptical). The fact that the bivariate relations
between lower-ranked PCs are highly Gaussian was also ver-
ified by performing the Doornick-Hansen test [39]. The same
pattern holds true for the marginal pdf’s; the first PC follows a

Fig. 4. Marginal and scatter plots of the dataset Y after applying the PIT.

Fig. 5. Marginal and scatter plots of the dataset X , after PCA.

bimodal distribution, while the subsequent PCs are increasingly
Gaussian. The Shapiro-Wilk normality test [42] was used to
verify the increasing univariate normality of lower-ranked PCs.
These observations validate the modelling choices described in
this paper; a series of transformation steps successfully concen-
trate non-Gaussian dependencies in the higher-ranked variables
which are then fitted with a C-Vine model. The residual depen-
dency structure, which is less complex, is fitted with a simpler
Gaussian copula model.

C. Two-Sample Test Validation

We proceed with model validation via two-sample tests on
the full 128–variable dataset Z. Three different methods are
compared; the proposed C-Vine method, Multivariate Gaussian
Distribution (MGD) and Multivariate Gaussian Copula (MGC).
The Kolmogorov-Smirnov (K-S) test [43] is used to examine
the reconstruction of marginal distributions, while the multi-
variate energy test [44] is used to examine whether the original
dependency structure and marginals are well captured.

The historical database was randomly split into one training
and one test set that comprise 80% and 20% of the original
population respectively. Three models (MGD, MGC and the
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Fig. 6. Cumulative distribution of p-values. (a) For K–S. (b) For energy tests.

proposed C-Vine) were trained on this training set and 40,000 re-
alizations were sampled from each model. Subsequently, 1,000
sets of 200 observations were drawn at random from each sam-
pled population and compared to 200 observations randomly
drawn from the historical data test set. This process resulted in
a total of 1,000 energy tests and 128,000 K-S tests (one for each
variable). Results of these tests are shown in Fig. 6.

For both tests, the p-values should be uniformly distributed
under the null hypothesis (i.e., historical and sampled popula-
tions have been drawn from the same model). Note that this is
the case when the historical database is compared against itself
(i.e., we compare the train and the test partitions of the historical
data); the cumulative distribution of p-values lies on the diago-
nal indicating a high degree of similarity of the underlying joint
distributions, as expected. As can be seen above, the proposed
C-Vine method outperforms both MGD and MGC methods by
a large margin due to the combination of its superior ability
to model marginals (shared with MGC) and its flexibility in
modeling the data dependence structure.

D. Security Analysis Results

In this section we demonstrate the suitability of the proposed
C-Vine method for generating training databases for machine
learning a system’s security boundary. We focus on a set of
contingencies C, consisting of four line outages; lines 54, 71,
148, and 154 (denoted L54 etc.) which are the most highly-
utilized lines in the 118-bus system. Note that, in principle,
the user is free to choose an arbitrarily large/complex set of
contingencies for analysis. Our aim in this case study is to
compare the performance of four training database construction
approaches; the proposed C-Vine method, MGD, MGC and the
historical dataset Z itself. A 10-fold validation scheme was used,
where 10 sub-populations {Zk}10

k=1 , each containing 90% of N
observations, were randomly drawn without replacement from
the original dataset Z. The remaining 10% of each Zk , denoted
ZV

k , was held out as a corresponding testing set. No effort was

TABLE I
COMPUTATION TIMES FOR PARAMETERIZATION AND SAMPLING

TABLE II
AVERAGE DT TEST ERRORS FOR DIFFERENT TRAINING DATABASES

Fig. 7. F-score boxplots for contingencies. (a) L148. (b) L139. (c) L54. (d)
L71.

made to reduce temporal correlations between training and test
sets, because these affect all methods equally.

For each method, a sampled dataset Ẑk was generated. For
each loading-wind scenario s in Ẑk the DC Optimal Power Flow
(DC OPF) problem was solved for the optimal dispatch sched-
ule us . Note that, as in typical DC OPF problems, all generators
were assumed to be available and their generation cost to be
fully known. The use of a more sophisticated market simulation
layer to increase sample diversity, such as sampling unit avail-
ability, is possible in a straightforward manner. Subsequently,
each schedule was checked for post-fault feasibility under each
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Fig. 8. Decision boundaries for DTs trained. (a) On historical data. (b) On MGD. (c) On MGC. (d) C-Vine datasets for contingency L71.

contingency c in C; conventional generators were allowed to
deviate by ±10% from their pre-fault schedule to simulate cor-
rective response action. As such, each system post-fault state
was associated with an unsafe/safe label denoting post-fault
load curtailment or not respectively.

Subsequently, for each contingency c and fold k, a decision
tree (DT) was trained on tuples of pre-fault bus angles and
post-fault stable/unstable labels and then tested on its ability
to predict the labels corresponding to the test set ZV

k . Matlab
2017a default parameters were used for decision tree training.

For each contingency the Negative Predictive Value (NPV),
Positive Predictive Value (PPV), and Accuracy (ACC) of the
constructed DTs, averaged across the 10 folds, are listed in
Table II (best performers are underlined). Accuracy is defined
as the ratio of correctly-classified operating points, while PPV
and NPV indicate the proportions of correctly-predicted unsafe
and safe scenarios respectively. In Fig. 7 we show box plots of
the DTs’ f-scores (harmonic mean of recall and precision) for
the four contingencies analyzed.

The proposed C-Vine method outperforms both MGC, MGD
and historical data in the vast majority of cases. Although the

average difference in terms of accuracy and NPV is modest,
the difference in terms of PPV is very substantial. Note that
PPV is of particularly high interest in the context of security
assessment. The same pattern is observed in the case of f-scores;
the proposed method has higher mean values and lower variance
under all contingencies, indicating the C-Vine model results in
superiorly-trained classifiers.

In general, MGD and MGC underperform because the fitted
models do not capture well the characteristics of Z, resulting
in training databases that are much less relevant for inferring
the post-fault security of ZV

k . In contrast, the original dataset
and the proposed method generate more relevant samples. This
point is illustrated in Fig. 8 where we show the training domain
and corresponding predictions for DTs trained on four different
datasets stemming from the same cross-validation fold of Z.
Plots are shown in two dimensions; total load and total wind. A
grayscale density denotes each DT’s training domain; as shown
in the bottom legend, white color signifies areas where about
300 samples were used in the training dataset, whereas dark
areas correspond to fewer training points. Small green and red
dots denote correctly-classified safe and unsafe operating points
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respectively. In contrast, larger-sized blue and pink dots denote
type I (false hits) and type II (missed alarms) errors.

From the four plots it is clear that (a) is limited to a small
learning database compared to the other three parametric meth-
ods. Despite their larger size, the training databases produced
via MGC an MGD do not follow well the characteristics of the
original historical data, thus excluding from the DT training pro-
cess, areas of the state-space that do arise during testing. This
leads to classification errors and a deterioration of predictive
performance. The C-Vine-trained

DT covers well the test domain while also extrapolating the
dependence structure and leading to exploration of the state-
space at high density. A characteristic example of this is the
high density of error in the yellow circle area for methods (a),
(b) and (c) due to lack of training. On the other hand, the DT
trained on C-Vine data has been trained in this area (hence the
‘whiter’ background) and carries out successful predictions. It
is clear that an important advantage of the proposed model is
that it can be sampled at arbitrarily high densities. For example,
Zk contains 0.9N observations, while a parametric model fitted
to Zk generates in our case 40,000 samples resulting in a higher
concentration of points in the vicinity of the target decision
boundary. In general, a larger training set can result in better
classifier performance if over-fitting is avoided [38].

VII. CONCLUSION

In this research we show the potential for using data-driven
proxies to complex problems and highlight the impact of the
training database on proxy quality. To this end, we propose
a general-purpose high-dimensional data modelling workflow
comprising of clustering, dimension reduction and vine copu-
las. Using visual and statistical tests, the proposed copula model
is shown to capture highly-complex dependence structures more
accurately than conventional approaches. Through a case study
on the 118-bus system we demonstrate that high-density sam-
pling of the proposed model can result in superior proxies to
describe the system’s security boundary by improving diversity
of the training set and moving beyond the limits of methods that
rely exclusively on past observations.

The presented research contributes in enabling the shift from
the current deterministic analysis paradigm to Monte Carlo
frameworks. Future work will focus on developing intelligent
sampling strategies that build on the identified model to im-
prove learning rates of surrogate models. In addition, we aim to
examine the potential for using model-free approaches such as
Generative Adversarial Networks.
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