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SUMMARY

The present report describes an analytical approach to aircraft design opti-
mization, which can provide a useful alternative and/or supplement to complex
computer-aided and automated optimization programs. The emphasis is on con-
ceptual design optimization of medium- and long-range turbine-engine powered
transport aircraft. Consequently, the derived equations apply basically to
the case where engines are sized to balance the cruise drag at a specified
(constant) rating.

In all cases considered the design payload and the fuselage shape are consi-
dered to be specified and remain constant. The design variables are mainly
associated with wing design and powerplant sizing. Several figures of merit
are studied as a function of the design variables and analytical expressions
are derived for partial as well as combined ("absolute'") optima.

Merit functions considered are L/D-ratio, specific range (V/F), fuel plus
powerplant weight as a fraction of the take-off weight and of the design pay-
load, fuel plus powerplant plus wing weight fraction, payload weight fractiom,
fuel burned per seat-km, and Direct Operating Costs. The design variables stu-
died are: engine size, (mean) cruise wing loading (W/S), pressure altitude,
lift coefficient, Mach number and wing aspect ratio. In general the attention
is concentrated on unconstrained optima for.conventional aircraft configura-
tions, i.e. aircraft with non-integrated combinations of fuselage (with spe-
cified volume) and wings. The wing taper ratio, sweepback angle and spanwise
section shape variation are held constant.
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NOTATIONS AND ABBREVIATIONS
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wing aspect ratio (A = bz/S)

wing span

(specific) cost factor

drag coefficient (CD = D/(q/S))
zero-lift drag coefficient

lift-induced drag

profile drag coefficient

1lift coefficient (CL ='L/(qS))

specific fuel consumption (CT = F/T)
coefficient in expression for powerplant efficiency
drag (no index: total cruise drag)
Direct Operating Costs

fuel mass flow/unit time

powerplant merit functions

acceleration due to gravity

specific calorific value of fuel

lift

(cruise) Mach number

drag critical Mach number

Maximum Take-Off Weight

number of flights, seats

mass (component) (no index: all-up mass)
atmospheric pressure

p at sea level ISA

dynamic pressure (q = %YpMz)

q at sea level (qd = %YpOMz)

range , equivalent range

average sector distance
range-equivalence of}{(RH = H/g)

(wing) area

thrust (no index: cruise thrust)
take-off thrust, static conditions, SL/ISA
total aircraft utilization (hrs)

True Air Speed

block speed

weight (component)(no index: All-Up Weight)
mean weight during cruising flight

exponents of A and S in wing weight equation
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8 dcp, /dct |

Y ratio of specific heats of atmospheric air
A parasite drag area: A = Z(CDS)C =50

§ relative ambient pressure (8 = p/po)

n overall powerplant efficiency

My d log n/d log M

u mass or welght fraction

My power plant specific weight (wen/Tto)

T engine thrust lapse factor (T = T/GTto)
w non-dimensional wing weight sensitivity
Indices

a (fixed) airframe

en engine(s) plus nacelle(s)

f fuel

fix fixed aircraft components

f1 flight

h hourly

PR . payload

MD minimum drag condition for given aircraft
net relating to net thrust definition

s Seat(s)

to take—off

tot total

var variable weight components

w wing

symbols with =~ refer to a reference (baseline) aircraft design
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}. INTRODUCTION

Historically the conceptual design of aircraft relied on mission and economi-
cal analysis of a limited range of aircraft geometries in combination with ;
selected engine types. The advent of computer-based design systems has made
it possible to consider a much greater range of design alternatives for both -
the airframe and the powerplant cycle. Computer Aided Engineering (CAE) sys-
tems are now in use in design offices and laboratories which combine the ca-
pabilities of sophisticated computer graphics facilities with automated or
semi-automated multivariable aircraft sizing and optimization programs.
Certain issues in such a design enviromment, however, require continuous at-
tention from the developers and users of CAE systems to the following aspects:
a) The selection of suitable criteria to assess the quality of a design, the
so-called Merit Functions, and the art of balancing the aircraft so that
it is near-optimum with respect to all important Merit Functions. o
b) The proper representation of sensitivities to design variations, in parti- g
cular the interaction between the numerical routines and the geometrical
representation of the design.
c) Certain numerical problems of convergence in the case of weak or multiple
optima. :
d) The interpretation of results froma 'black-box' like approach such as Mul-
ti-Variate Optimization (MVO), cf. for example Ref. 10.
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The present report forms an alternative and systematic approach to conceptual
design optimization, which can provide useful testcases for comprehensive CAE B
programs and help the designers to understand and verify their results. The

analytical results presented are also useful to start an optimization process
with a first-order approximation of an unconstrained optimum design, result-
ing in a reduced number of iterations. 1y

Attention is paid mainly to the sizing of aircraft designs for optimum cruis-
ing. The emphasis of the present method is therefore on transport aircraft
designed for medium and long ranges. However, performance constraints such

as take-off and landing distances, buffet limits, fuel tank volume constraints,
etc., can be imposed afterwards, cf. for example Ref. 1. The derivations ap-
ply to turbojet and turbofan aircraft, but can be modified readily for turbo-
prop or propfan—powered aircraft. In that case particular attention must be
paid to derivations which involve the variation of engine thrust and efficien-
cy with speed. ‘

In all cases considered the design payload and the fuselage shape are consi-
dered to be specified and they remain constant. The design variables are
mainly associated with wing design and powerplant sizing. Several figures of
merit are studied as a function of the design variables, and analytical ex-
pressions are derived for partial as well as combined ("absolute") optima.
Merit functions ("Criteria") considered are lift-to-drag (L/D) ratio, speci-
fic range (V/F), fuel plus powerplant installation weight as a fraction of
both the take-off and the payload weight, fuel plus powerplant plus wing
weight fraction, payload weight fraction, fuel burned per seat-km, and Direct
Operating Costs. The design variables studied are: engine size, (mean) cruise
wing loading (W/S), cruise (pressure) altitude, lift coefficient (CL), Mach
number (M) and wing aspect ratio (A). The wing taper ratio, sweepback angle
and spanwise section shape variation are held constant. ‘



2. GENERAL ASPECTS OF THE OPTIMIZATION

The optimization of a conceptual design involves basically the sizing of the
aircraft for an assigned design-mission (payload/range) so that it achieves
the best yield with respect to a predefined objective (merit) function. The
following categories of properties will be distinguished:

a) Assigned characteristics: in the present case the combination of a design-
payload and a specified design-range. In addition to this, certain charac-
teristics will not be varied in this study, such as wing sweep angle,
thickness/chord ratio and taper ratio.

b)- Independent variables: the wing area (or wing loading), aspect ratio, de-
sign-cruise altitude, and Mach number.

c) Dependent variables: lift and drag coefficients, the mass distributions,
the Maximum Take-Off Weight (MTOW), engine take-off thrust (Tyo)» etc.
Several of these dependent variables will be used as merit functions; in
those cases they will be referred to as CRITERIA, according to which the
independent variables are optimized, so that these criteria achieve an ex-
tremal value.

d) Constraints: since this article deals basically with unconstrained optimi-
zation, the introduction of constraints is avoided, with the following ex-
ceptions:

1. There is a constraint on the fuselage size in the sense that when the
wing size is varied the fuselage geometry remains constant. The result of
this constraint is that only conventional wing/fuselage combinations are
considered. Configurations where a constraint is imposed on the total wing
plus fuselage volume, for example, result in generally lower optimum wing
loadings, hence larger wings or even all-wing configurations.

2. An essential constraint is the engine rating during cruise. Since it
will be assumed that engines are sized to balance the cruise drag, the
constraint on rating results in an engine rubberizing proces. An exception
is the case where the specific range.of a given aircraft is maximized for
constant altitude or Mach number.

3. A special case of aspect ratio optlmlzatlon will be treated where com-
binations of wing area and aspect ratio are considered resulting in con-
stant wing weight fraction.

The general approach to the design optimization is illustrated in Fig. | and
can be explained as follows.

In the present example wing loading and cruise altitude are independent vari-
ables. The Merit Function, which can be L/D, V/F or payload fraction, etc.,
is expressed in terms of these variables, bearing in mind that the condition
of vertical equilibrium in cruising flight is satisfied:

W
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Thls equation interrelates the four independent variables (8, C, M and W/S)
so that only three are left. In Fig. | the Mach number is held constant but
it is truly an independent variable and will be treated as such'in several
cases. Lines of constant €, are also indicated.

Contours of constant Merit Function are also indicated in Fig. 1. The partial
optimum of this "criterion" with respect to wing loading is the interconnect-
ing curve of the horizontal tangents to these "isomerit contours', curve I.
Curve II defines the partial optimum for the cruise altitude. Curves I and II
intersect in point A, referred to as an "absolute" or unconstrained optimum,
but this refers strictly to the case of M = constant only. Clearly, when
curves I and II are combined with a partial optimum of the Mach number, a more
general "absolute" optimum is found, defining the maximum (or minimum) of the
Merit Function with respect to all three variables. Again, this case may be
further generalized when other variables, such as the wing aspect ratlo, are
introduced.
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Instead of the wing loading, the cruise- C; may be considered as an indepen-
dent variable. In Fig. | lines of constant C; are drawn, satisfying eq. (I).
Line IIT indicates the points of tangency to the isomerit contours and defines
therefore the partial optimum of Cy,- Obviously, curve III intersects curves T
and II in point A. The equations for curves I, II and IIIwill be derived se-
parately in the following chapters, since they may be useful in cases where
constraints are imposed on any of these variables.

It should be mentioned that an absolute optimum cannot always be found. In
cases where the partial optima are incompatible with each other, they do not
intersect. In that case only a constrained optimum yields a useful condition.
In Fig. 1 an example of a constrained optimum is point B, deflnlng an optimum
combination of wing loading, altitude and C;, for a given engine at specified
cruise rating.

The relevance of partial, constrained or "absolute" optima depends entirely
on the design case considered. Therefore a unique answer to the general opt1—
mization problem of aircraft can never be found. In the present report the
attention will be focussed to partial and absolute optima, since they result
in ultimate goals for the design. Constrained optima can be very useful and
practical, but are more specific in character. They apply in particular to
short-range aircraft, where limitations on low-speed performances dominate
the specification.

With respect to the definition of thrust and drag the convention will be adop-
ted that the installed propulsive thrust is the engine's standard net thrust
reduced by the drag of the engine plus nacelle (en) installation:

T=T -D (2)

Accordingly, the airframe drag (D) is the total aircraft drag minus the engine
plus nacelle installation drag:

D=0D -D ' (3)

This subdivision has been adopted in order to take account of the influence
of the airflow variation associated with the rubberizing process on the size
of the engine, and hence on nacelle size, drag and weight. All values of en-
gine efficiency, specific weight, etc. are therefore referred to the podded
propulsion system installation.

4
In the following sections several different design cr1ter1a (merit functions)
will be considered in order to investigate the main differences between air-
craft designed for different merit functions. Such generalized results can
help the designer to interprete the optimization process.
The results will be illustrated for a long- haul passenger aircraft, with de-
sign data summarized in Table 1.




3. CRITERION 1: CRUISE LIFT/DRAG RATIO

3.1. Drag polar representation for subcritical speeds

For a given low-speed Mach number the drag area of the airplane is represented,
within a range of practical cruise lift coefficients, as a.linear function of
the wing area and the cruise lift coefficient squared:

CpS = Z(C8) Loy * P_ g+ i C S (4)
L ds d(cL)
Introducing the notations:
A . ,
A = Z(CDS)CL=S=O (parasite drag area) }
. d(Cp_S)
CD = ——EEB——- (profile drag coefficient) ? (5)
p .
dCp,
A i . )
g = 3 (induced drag factor) -
dCL

the airframe drag coefficient is, referred to the wing area,

2 A 2 6)

The profile drag coefficient Cp represents mainly the wing contribution; a

contribution of the horizontal Eail can be included to allow for the propor-
tional variation of its area with wing area variation. The parasite drag area
A represents mainly the fuselage plus vertical tail contributions. The indu-
ced drag factor £ is equal to (TA)~!, multiplied by a suitable factor to ac-
count for a non-elliptic 'lift distribution, wing/fuselage interference, trim
drag, etc. It is assumed that variations in design Cy, are matched by wing
shape (camber) and wing/fuselage angle variation, so that for each Cp, the
fuselage has approximately its minimum drag. All drag contributions include
roughness effects.

3.2, Lift/drag ratio for given Mach number

The airframe L/D ratio according to (6) can be rewritten as:

1 1

= (Cp /cL + A/cLs + BCL) 7

|%

Assuming steady horizontal cruising flight (eq. 1) the wing loading W/S and
pressure altitude § are introduced explicitely into (7), as follows:

L/D = (Cp /Cp + B C)”
[0}

_),+_—

A B wW/S
oW § q } (8)

/ 0
L/D = 16(Cyp =7z + q
l DP Wis 0

Setting the derivatives with respect to the wing loading and §, representing
the cruise altitude, equal to zero, yields two partial optima for given Mach
number, in terms of optimum lift coefficients: -
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opt. W/S - C (9a)

L v CDp/B (1) 1

Mcrit
J (9)

opt. altitude » C Y Cp,/B  (ID)

L
The first condition (I) defines the maximum L/D for the wing (plus hor. tail-’
plane) alone, since for constant altitude and Mach number qA/W is constant in
eq. (8). The second condition (II) defines the altitude for max. L/D of the
whole aircraft. Clearly, these two partial optima are incompatible for non-
zero values of A (the all-wing configuration) or the wing loading (not prac-
tical). The example on Fig. 2 shows indeed that an unconstrained maximum of
L/D w.r.t. altitude and wing loading is not obtained, provided Reynolds num-
ber effects on CDp due to altitude and wing chord variation are ignored.

A constrained optimum is obtained when the condition of horizontal equilibrium
is introduced:

T D )

== = = _quoMzc g = CquoS + qOA P BV ' (10)

D

For constant engine cruise rating T/§ can be taken as an approximately con-
stant value. For flight in the standard stratosphere, which is isothermal,
T/8 is theoretically constant, provided Reynolds number effects are ignored.
For given T/§ the maximum of L/D is obtained for

1 (T/8 \ W/S 20
Cp S = —-(———-- A or: = — (11a)
P 2 \q, ) CquO T/8 - q 8
§ A (11b)
VBCDP T/5—qu
while CL is given by eq. (9a). Correspondingly, the maximum L/D is:
wo =1 (1 -a2) vET (12)
max 2 T/5/ DP .
In Fig. 2 this condition is denoted as point A, for T/§ = 0.30 W.
3.3. Effects of Mach number variation
Equation (12) shows that increasing the Mach number (hence qoz;lly'poMz) re-

sults in a decreasing (L/D)_,., provided the wing area is reduceg according

to (lla). High values of (L?D)max can be obtained for low Mach numbers and

low wing loadings, but for turbofan aircraft this is not in the interest of
good engine efficiency, low structural weight and high productivity.

Increasing the cruising speed to high-subsonic Mach numbers results in compres-
sibility effects on the aerodynamic characteristics as illustrated in Fig. 3,
which shows drag polars for subcritical speeds (M < M. it) and high-subsonic
Mach numbers. An alternative representation (Fig. 4) shows CL/Cy (= L/D) inm

the C; - M plane, for a given aircraft (constant S). Compressibility effects
(drag rise) are apparent for M > M.,;., which is a function of C;.Point C is
the cricital Mach number for C; = Cp,.; the corresponding altitude is defined

by (W/G)C. Curves of constant W/§ are characterized by CLM2 = constant, ac-
cording to eq. (1). For W/$§ < (W/6)C variation of altitude and Mach number in-
dependently results in the same value (CLMD) for max L/D.



For W/§ > (W/8)¢ optimization (w.r.t. L/D). for given Mach number or given W/$
results in different C;-values, as indicated by the two diverging curves for
CLM and the curve for constant W/8. A constraint on engine rating, character-
izeB simply by T/§ = constant (hence CDM2 = constant), results in a constrain-
ed maximum L/D in point B. It is therefore that, as opposed to flying at -sub-
critical Mach numbers, the maximum L/d-condition at high speeds must be. de-
fined for specified M, altitude (W/§) or engine.rating (T/S).

3.4. Conclusions

a) Maximum values of L/D at given subcritical Mach numbers result in a use-
ful optimum condition for wing loading only in the case when constraints
are imposed on the engine thrust or the altitude. Both cases indicate an
optimum Cj, equal to the C; for maximum wing-alone L/D.

b) For given aircraft design (S constant) maximum values of L/D for .subcriti-
cal Mach numbers are identical for Mach number and altitude variation. For
M > M. ;¢ different contrained maxima are obtained, which -are all below the
subcritical value.

c) For given operating conditions (altitude .and speed) the optimum wing load-
ing is defined by the wing-alone optimum C;» according to:

— W/S $
CL = \/CDP/B s or = (]3)

CquO VB CDp

Hence, the optimum C; is independent of the operating conditions.

d) Since high L/D-values are obtained for low Mach numbers and high altitudes,
it is obvious that powerplant characteristics (efficiency and weight) will
have to be included in all optimizations where the operating conditions
are not specified.

f
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4. CRITERION 2: SPECIFIC RANGE

4.1, Engine characteristics

In all considerations where operational conditions (altitude and speed or =
Mach number) are varied, attention should be paid to the variation of engine 1
characteristics. Specifically the overall powerplant efficiency is an impor- |
tant variable. It is defined as follows:

did

n= fuel heat input T FH (14)

propulsive thrust power v %

I

In the case of turbojet or turbofan powered aircraft the engine fuel consump-
tion is usually expressed in terms of Thrust Specific Fuel Consumption (TSFC):

C =%—=—. (]5)

In the case of propeller-powered aircraft the overall efficiency is the pro-
duct of the engine efficiency and the propeller efficiency:

P P
n=n ) br - TV br (16)

prop FH Pbr FH

In many classical theories the aircraft flight performance is optimized either
for constant n (propeller aircraft) or for n = M (pure jet aircraft). A more
general approach in Ref. 12 will be summarized here, since it is valid for
both propeller- and jet-powered aircraft, and takes into account compressibi-
lity effects as well.

The distance travelled per unit fuel mass consumed is denoted "specific range"
and is given by (Ref. 12): -

(17)

=1l
==

v.
=N

In this expression the non-dimensional parameter n L/D is a useful non-dimen-
sional quantity, defining the specific range for a given All-Up Weight. The
overall efficiency is affected by engine rating (r.p.m.), altitude and speed
(or Mach number). In the case of turbojet and turbofan aircraft the variation
of n with Mach number is most significant, although it is also affected by en-
gine rating and altitude. The analysis in Ref. 12 involves the logarithmic
derivative of n with respect to M,

n

«dlogn‘ M d ‘

T n AT (18)
M d log M /5 N d T/8

The numerical value of n  for subsonic speeds is normally between 0 and 1. It

depends to a high degree on the specific engine thrust, and is generally of
the order of 0.8 fur pure jets, 0.5 to 0.6 for high bypass engines and close
to zero for turboprops.

4.2. Maximum specific range for M < Meric

Partial optima derived in Ref. 12, which can be simplified for the case of a

-7-



parabolic drag polar and when n is a function of the Mach number only. In this
case constrained optima are obtained for specified altitude or engine rating.

a) Given altitude (W/S): The speed for max n L/D is obtained from Ref. 12:

1
b

2 -n
- M
LT (2 * ”M> v

For the classical case of pure jet aircraft,.when Ct is assumed’ constant
(i.e. independent of M), it is found that n % M, hence My =" 1. This results
in: :

c, = cLMD//§ (Cp

For the classical case of propeller aircraft, we get Cp = CLM ».Since n is
assumed constant. : D

Eq. (19) may be combined with the optimum Cy, defining the wing loading for
max. L/D. This makes sense, because the engine characteristics are not di-
rectly related to the aircraft L/D. From eqs. (13) and. (19) we obtain an
optimum wing area:

= constant) (19a)

2 - nM
Cp S =——— A 20
Dp ZnM (20a)

and an optimum Mach number:

Nob—

AT T L Ay ——
M2 (5 T ™ VBCp, ) <M, (20b)

Although ny is a function of M, it does usually not vary strongly in the
range of Mach numbers of interest, and eq. (20) is therefore an explicit
solution of remarkable simplicity. It says that for < 1 (C,. =-constant)
and ny > 0 (propeller a/c) the.optimum wing profile drag area should be be-
tween 507 and 1007 of the parasite drag area, resp., dependent on My (type
of engine). However, this case. has limited validity, since the engine
rating is also variable and a check should be made to varify that M accor-
ding to (20b) is not greater than the max. Mach number in-horizontal flight.

b) Given engine rating (T/S): The optimum altitude and speed. are obtained. from
Ref. 12 in terms of an optimum CL:

r—

(21)

C.=¢C. (1 +n)
LT Ly My

Again this can be combined with eq. (13) to find an optimum wing area:

CDpS = A/nM (22a)
The corresponding optimum wing loading, altitude, Mach number and L/D ratio
are:

WIS _ a4y A - (22b)

Cquo M° T/§




= (2 + nM) W ' (22¢)

A2 vy © Merit (22d)

-1
L/D = {(2 +ny) VB CDP} (22e)

and the range parameter is obtained from the overall efficiency which cor-
responds to eq. (22d).

4.3. Maximum Specific Range for M > M

crit

The general case of aircraft performance at Mach numbers above the critical
value is significant for high-speed turbojet and turbofan aircraft because
their optimum cruise conditions are found in the drag rise (Ref. 12). This is
illustrated in Fig. 5, which shows curves of constant range parameters in a
Cp vs- M plane. The various partial optima (curves I through IV) as derived
in Ref. 12 are defined as follows:

1 : optimum Cp, given M

II : optimum M, given Cy )
ITTI : optimum C; and M, constant W/§ (hence C M%)
IV : optimum C;, and M, constant T/6 (hence CDMZ)

Point A denotes the unconstrained optimum flight condition, while points B and
C refer to optima with constraints on the altitude (W/§) and engine rating
(T/S). Approximate expressions for curves I and II are:

acD CD y
I @@ == == or C. =¢C = Cn (M)/B(M) (23a)
9C, . L Lvp D, |
M
oC C
D D
II @ —— = — (23b)
M o LYY,

where it is to be noted that CLMD is a function of M: it decreases significant-
ly in the drag rise.

In addition to the case of constant wing area, a condition can be derived for
the optimum wing loading. Similar to eq. (13) we get for each Mach number and
altitude:

¢, = VG GD7ECD (24)

This result is again incompatible with eq. (23a) and therefore we have to con-
sider either a constrained optimum condition, or the effect of altitude on the
engine size required. The latter case will be treated in the following chapter.

4.4, Conclusions

a) Conditions for maximum specific range result in high Mach numbers for jet
aircraft due to the favourable effect of Mach number increase on the over-
all efficiency. Unconstrained optimum flight conditions are found in the
drag rise.

|
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b) For subcritical speeds a combination of optimum wing loading and optimum

c)

|
:

flight conditions can only be obtained by constrained optimization. The
optimum wing profile drag area appears to be proportional to the parasite
drag area. The factor of proportionality, which depends mainly on the term
Nys varies widely for the different cases of W/§ or T/§ constant. Only the
constraint on T/§ ensures flight within available thrust limitations.

The optimum Mach number and altitude increase with growing engine size
(T/8), resulting in a steadily increasing V/F. Compressibility effects
will ultimately reverse this trend.

..10_



5. CRITERION 3: FUEL PLUS POWERPLANT WEIGHT FRACTION

5.1. Derivation of the powerplant function F_

In the previous paragraph it was concluded that for subcritical speeds the
specific range increases with engine size, provided wing loading, altitude
and Mach number are optimized. However, engine weight, nacelle size and drag
also increase with increasing engine size and it becomes desirable to account
prorerly for the engine(s) plus nacelle(s) installations penalties. In this
paragraph the simple case will be considered of the combined fuel plus power-—
plant installation weight (including nacelle structure) as a fraction of the
mean All-Up Weight (W) during cruising flight.

Matching the powerplant to the airframe drag is effected by 'rubberizing' the
engines, assuming a constant thermodynamic cycle (rating) and variable air
mass flow. The variation of the engine and nacelle size are taken into account
by subdividing the aircraft drag into airframe drag and installed engine na-
celle drag as discussed in chapter 2.

A non~dimensional thrust lapse parameter T is introduced to allow for the rub-
berizing process:

T = %ié (25)
to

In accordance with eq. (2) this parameter can be calculated from the net engine
thrust and the installation drag, as follows:

T = net/6 _ (CDS)en : (26)
T % T
to to

For an isothermal atmosphere (e.g. the standard stratosphere) T /8, and hence
T, are independent of the pressure altitude. Therefore, when the pressure alti-
tude is varied at constant Mach number d7/d§ = 0 for the rubberized engines.

The weight of fuel and engine/nacelle installation are as follows:

a) Fuel weight fraction: a good approximation is found by taking the specific
range according to eq. (17) for the mean aircraft weight. The fuel weight
fraction is thus approximately:

¢ R/RyCp .
e, ®®
W nooby

oo |

& 4300 km for jet engine fuel) (27)

b) Powerplant/nacelle weight fraction: this is determined by the specific
weight Moyt

~ engine plus nacelle weight _ wen (28)
1 7 take-off thrust (ISA, S.L.) T __
Hence, for engines sized for the steady cruising condition:
e LTS T,

W

The factor W is assumed independent of the engine size, and eq.(29) indi-
cates clearly the increase of the powerplant weight factor with increasing
altitude (decreasing §) associated with the thrust lapse of the turbine
engine.
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Summation of egs. (27) and (29) yields:

- ~ f en D w A
H f—— = F, = Fp i
f,en a P CL P \C

fa]

W_+ W C /CD
+
\

) oo

Z||

L

where the powerplant function FP is defined as follows:

+ — (31)
and the wing drag-to-1lift ratio is:
CDw/CL = CDP(M)/CL + B CL : (32)

For a specified flight condition the function Fp can be used as a figure of
merit for weighing the relative importance of the overall efficiency n (or Cp)
specific weight (UT),'thrust lapse with altitude and speed, and engine instal-
lation drag. If, for example, a study is made of bypass.ratio variation ef-
fects on aircraft propulsion, the minimum value of F_ can be useful as a first
indication of an 'optimum' bypass ratio, independent of the application of the
engines in a particular aircraft design. This criterion does apply only when
the engines are sized for cruising flight.

5.2. Optimum conditions for given Mach number

Fig. 6 gives an example of 'isomerit' contours for U versus reduced wing
loading and pressure altitude, calculated according géegqs. (30) through (32).
Optimum values of wing loading, pressure altitude and Mach number, resulting
in minimum Mf eps Can be found by setting the respective partial derivatives
equal to zero. The results are as follows:

a) Optimum wing loading. Since for a given flight condition F
partial optimum is identical to eq. (9a):

is fixed, this

P

o
“f,en _ N _ R
3CH/S) |5y 0~ Cp =VCp /8 (Curve 1) (33a)

b
The wing loading is obtained from multiplication by the dynamic pressure q.

b) Optimum altitude. Differentiation of eq. (30) w.r.t. &, after substitution
of C; = W/qS yields:

aL_lf en ( / -4
i =0 -> C, =¢C 1 + 2 W W.) (33b)
- L
38 M,ii/s L D en f
The pressutre altitude can be obtained from this equation:
M {
- 2. T _1n 42
§ = GMD (1 + 5 T R/RH) (Curve 1II) (33¢)
with GWD 2 qWéS = N/S
L
0 qo\/CDO/B
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c)

d)

The solution of this equatlon can be speeded up by means of a first- order ¢
approximation:

(SN(SMD"'O.7—T' m— | (33(1)
The result of the present partial optimization (for given Mach number and
wing loading) is essentially similar to the criterion of Kuchemann and

Weber derived in Ref. 8. It applies to subcritical speeds as well as in the
drag rise, provided CDO and B are adapted to each Mach number.

Optimum altitude and wing loading for given C; - Differentiation of eq. (30)

w.r.t. §, for given C ylelds

3u ~ U 1
f,en : W T 2
Len {_ = T (o, + scL>} (33e)

(Curve 1III)

and the corresponding wing loading is obtained. from eq. (1).

Unconstrained optimum wing loading and altitude. The partial optima derived

above can be combined in several ways. A useful result is obtained when
eqs. (33a) and (33c) or (33e) are combined. The resulting optimum wing
loading and altitude for minimum Mg o, are:

: b4

W/s _ 8

L /\/Bch> (34a)

(it MRy >
Cp,S \2Aq “T — VBGp | (34b)

and the engine sized to this condition has the following thrust:

T q A | q.A R/R 3
to (/6 _ Do (2 o i VB Cp_ Cp > (34¢)
7 Mp N P

Finally, the corresponding minimum uf on is:

W, + W R/RH !
- _f en \ /
(uf,en) in {(2 VESCDP/ \

min o

, :
—~ ) } (344d)
W W

.—1|,_3

In Fig. 6 this optimum is denoted point A.

This elegant closed-form analytical solution is characterized by a pronounced
sensitivity of the design characteristics to the design range. For long range
aircraft the result is a high cruise altitude, low wing loading and large
engines. For example, pont A in Flg 6 is characterized by a mean altitude

of

14.200 m, (8§ = 0.14) a mean wing loading of 3067 N/m2 and a thrust-to-

weight ratio T, /w = 0.425, or Teo /Wto = 0.36. It will be clear that more
realistic results are nbtalned when wing structural weight variation is also

..]3_



taken into consideration. From Fig. 6 it is also clear, however, that eq. (34d)
gives a rather good approximation of actual values.for g ep Within a fairly
wide range of wing loadings and altitudes away from the optimum values. This
result is therefore useful for a first approximation of Mg ., even if ulti-
mately the design parameters will be different from eq. (34).

It is worth noting that in all the equations defining the optimum conditions,

except (34d), the combination n/T occurs. Since both the installed overall v
efficiency and the cruise thrust are reduced by the same percentage installa-

tion (drag) losses, these losses cancel in N/T and therefore in most formulae

n and the thrust may be obtained directly from the uninstalled engine perform-—
ances. Obviously, losses have to be accounted for in the final result for

Uf,en’ eq. (34d).

:

5.3. Effects of Mach number variation

Mach number variation has the following major effects:

a) The aerodynamic characteristics of the airframe are modified above M
see section 3.3.

b) The engine efficiency n varies with Mach number. For jet-propelled a/c it
increases steadily at.subsonic speeds. As a consequence, the fuel burned
generally reaches a minimum near the drag-critical Mach number.

c) The engine size required attains a minimum value for L/D-max, provided
thrust does not vary with speed. For most turbofan engines thrust does

- not vary much at high subsonic speeds, and we will therefore assume
dt/dM = 0. A more general solution can be found in Ref. 1.

crit?

a) Constant wing loading and C_, or comstant q. In this case variation in Mach
number is accompanied by altitude_variation, so that 6MZ = constant.

The airframe L/D is constant and He en has a minimum value for FP minimal:
’

3 JOF W
f,en P en 1
—_— = [E— = = =N
oM 0 - 7x 0~ 5 7 M (352)
W/S,CL q f

This remarkably simple result is in accordance with Pearson's criterion
(Ref. 4), stating that for pure jets (i.e. n, = 1) the optimum engine weight
equals half the optimum fuel weight. The optimum cruise altitude is obtained
from substitution of (35a) into (31):

U
el
Y H
and for given CL the optimum Mach number is:
|
= R/R
(s ™M et
M= \'Yp C n 1,1_) < Mcrit (35C)

T
Obviously the last equation must be solved iteratively, since n = £(M).

b) Constant altitude and wing loading. For parabolic drag polars and subcriti-
cal speeds the following result is found (Ref. 1):

1
2

BUf,en

1
/1 7 MM * wen/wf
oM -vp \ 1 (35d)
§,W/S 1 + 7Nyt wen/wf

_]4_



where

- v T8 =L _n_
CLap = VOp, /8 and W, /W = 5 R/R,

i
|
i
2
!

Comparing this result with eq. (19) reveals that the optimum flight condi-
tion is now closer to the minimum drag condition.

il i

c) Optimum Mach number, wing area and altitude. Combination of eqs. (34) and
(35) results in an unconstrained optimgm for M <'M ric However, an expli-
cit solution for M is only possible when n is explicitly expressed as
f(M). Assuming, for example, an exponential relationship:

n = CnMnM (36)

the following unconstrained optimum is found:

CDpS = A/HM (37&)
)
Do MRy, T :
M=<——————n \/BCD> M. (37b)
\Y pOA UT Cn M P crit
Correspondingly the optimum L/D ratio and mass fraction are:
-1
L/D = {(2 + nM) VB CDP} (37¢)
W. + W R/R
- _ £ en _ H 1 2 e
uf,en N = =2 n (o 2 nM) Ve CDP (37d)

where n is obtained from eqs. (36) and (37b). The optimum cruise altitude
is given by eq. (35b) and finally, the optimum engine thrust is:

R/
to T/8 1 —
W W " Z2 MU P ' '

5.4. Conclusions

a) All optimum values are sensitive to the design range. For long ranges the
optimum altitude and Mach number are high, the wing loading is low, and big
engines are required.

b) As opposed to the case of max. V/F an unconstrained optimum Mach number is
found also if the results of section 5.3 are strictly valid for subcritical
Mach numbers and a check should always be made whether eq. (37b) results in
a subcritical Mach number. On the other hand, numerical examples have shown
that the optimization of altitude and wing loading for given Mach number
(Section 5.2) remains essentially valid in the drag rise, on the provision
that the drag polar is also varied with Mach number.

c) The example on Fig. 6 shows that low wing loadings are found in the abso-

lute optimum. It becomes therefore logical to take into account the weight
penalty of a large wing structure; this will be done in the next chapter.

_]5_



d)

e)

There is obviously an important effect of Mach number variation on the air-
craft's productivity and therefore on its economic performance. In addition
the aerodynamic design of the wing is very sensitive to the cruise Mach num-
ber and parameters such as wing section relative thickness and sweep angle
will be affected. In practical design the selection of a cruise Mach number
is therefore based on considerations which have not been taken into account
in this chapter.

The sensitivity for deviations from the optimum given by eqs. (34) is not
very large. In particular eq. (34d) appears to be a useful first approxi-
mation for the fuel and engine mass fraction, for given M, if no decision
has been taken as regards wing loading and altitude.
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6. CRITERION 4: WING, FUEL PLUS POWERPLANT WEIGHT FRACTION

In view of the effect of wing area variation on wing structural weight, it ap-
pears desirable to consider a case where the wing weight fraction has been ad-
ded to those of the fuel and powerplant installation:

= ww * wf * wen =
“w,f,en = = = ww/w + Fp CD/CL (38)

where ﬂf on = FP CD/CL'is defined by egs. (30) through (32).

6.1. The wing weight fraction

The wing weight fraction is a complex function of many variables - mainly wing-

related - and cannot be calculated accurately in the conceptual design stage,
since many details of the structural design have to be settled downstream in
the design process. In the present chapter only variations of the wing area
are considered and it will be assumed that within a reasonable range of wing
areas the wing structural weight can be linearized around a baseline design,
denoted by an "~": :

. AW
Ww = ww + ———-(S - S) (39a)
and hence:
_ Ww dww/dS
pw=-t— = uw + — (39b)
W ref W/S
where [ = T?’ ——E-/(Q/S) (39c¢)
ref W

The order of magnitude of dw /dS can be obtained by assuming an exponential
relationship:

Xg
Ww = constant x § : _ (40)
Differentiation yields:
v Mo @ Yooow
¥=XS——_—S— %XST.': (413)
R W w S
- W, '
hence: q o — (1 - x.) (41b)
w = S
ref W

Theoretically the exponent of S for the primary structure is 4}, for constant
wing shape and stress levels. In practice it is somewhat- higher when secondary
weight terms are included. The w1ng weight for a modern airliner is typically
10 Z of the MTOW. If we assume: Ww = 0.12 W, and Xg = 0.6, then we obtain:

dW _/dS =~ 0.072 #/S, and Uy of ~ 0.048 as typical numbers.

6.2, Optlmum wing loading and altitude for given M

The weight fraction under consideration becomes, after subsitution of eq. {(39):

_17_
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_ dw_/ds -
=p  +——— +F_C/C (42)
w,f,en wref W/s P DL

u

a) Optimum wing loading for constant altitude.
The optimum wing loading is expressed in terms of an optimum lift coeffi-
cient as follows:

U, dW /dS\y 2
_w,fyen) _ o . _[L{f w \} |
a(W/S) 5 =0 CL = 18 \CDPV + —6qui'P: / . (Curve 1) (43)

The wing loading is obtained. by multiplying CL with 6qo.

b) Optimum altitude for constant wing loading.
Since for given wing loading the wing weight fraction is .constant, the same
optimum altitude is obtained as for criterion 3: eq. (33b), curve. II.

c) Optimum altitude and wing loading for given. C.
Eliminating the wing.loading in eq. (42) with eq. (1) and differentiation
results in the optimum altitude:

; - C dW /dSyq2
uw,f,en 0o 8 = [_EL__JL_.IEI./—ER + RC ) + —~31——}] (44)
36| . le A-R/R, LT \Cp L 1,8y, /]
L

(Curve IIT)

d) Unconstrained ("absolute') optimum wing loading and altitude.
Combination of the partial optima derived above into an absolute (uncon-
strained) optimum results in unwieldly expressions. However, a good approxi-
mation is found by substituting Cy = VCp /B 1into eq. .(44), with the fol-
lowing result: P

i
2
/V BCp } (45)
o “p P .
(point A)

dw /dS
— o)
VBC 0 H
Dp
If necessary a second approximation can be obtained by substituting this

relative ambient pressure into eqs. (33) and (43), and. the resultlng C
is substituted into eq. (44). The optimum wing loading is given by:

wn|=)

= q 8 CL : (46)

Substitution of these optima for W/S, C. and.§ into eq. (42) yields the
minimum value of u .» which is approximately:

wyf,en
(Uw,f,en)min = Hy * (uf,en)min
ref
1
dw /dS ,q A R/ :
+0.5 5 hd ( 2 T?H - vBCp_ ) (47)
Dpds Ny My

where (ﬁf én>mi is the minimum fuel plus engine weight fraction, defined
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by eq. (344d).

6.3. Conclusions

a)

b)

For the case under consideration the optimum CL and § are both noticeably

higher than for the case of minimum fuel plus engine weight. The difference.

between the two cases varies between 207 and 50%, typically, dependent on
the range. Since for short-range aircraft the wing weight dominates, the

unconstrained optimum wing loadlng is higher than for long-range aircraft.
Relative to the case of minimum fuel plus engine installation weight the

optimum wing loading increases by 80 to 120 Z, typically.

For large aircraft dw /dS 1is considerably larger than for small aircraft.
As a result of this there is a size effect, resulting in higher optlmum
wing loading for large aircraft, as compared to small aircraft cruising at
the same Mach number. This effect is counteracted by the Reynolds number
effect on CDp’ which reduces the optimum C; for large aircraft somewhat.
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7. CRITERION 5: PAYLOAD WEIGHT FRACTION

The ratio of payload weight to take-off weight is used frequently to optimize
aircraft designs. Apart from the weight contributions considered in the.pre-
vious criteria, which are directly affected by changes.in the .design variables,
certain other components must also be considered which vary indirectly as a
consequence of take-off weight variation. Typical structural items with weights
dependent on the All-Up Weight are, for example, the undercarriage,the wing
box, and wing/fuselage connections. The All-Up Weight at take-off (MTOW) is
therefore written. as:

'wto = Weiw * wvar * wen * wf * wpl (48)

W.. denotes the summation of weight components, which are considered indepen-—
défit of the variables considered and of the MTOW. For specific payload this
could be the major part of the fuselage structure, systems, equipment, servi-
ces and operational items.

wva denotes the summation of all weight components that are considered pro-
porgional to the MTOW, and dependent on wing size and shape.

For cruise-sized engines the fuel plus powerplant weight is written analogous-
ly to eq. (30) as follows:

(“py

L

wto * qA) (49)

In this case the cruise altitude, wing loading and Mach number are to be de-
fined at the initiation of the cruising flight, when AUW s~ MTOW. The function
F_ is consequently defined as:

P
=—Re—-q/_}i[——1_+lj—’:[—‘
n

=z (50)

Fp

Since the fuel and engine installation weight are now expressed as fractions

of the MTOW, instead of the mean cruising weight (W), an equivalent range is

now used instead of the actual range. Its value can be calculated with Appen-—
dix A of Ref. 1.

Combination of (48) and (49) yields the payload fraction:

_
"o _ 1T WarMeo * FR(Cp/CL)y
wto b+ wfix/wpi * FP q A/wpl

(51)

On the basis of eqs. (50) and (51) the effects of varying wing size and shape,
initial cruise altitude and Mach number can be studied analytically or numeri-
cally, provided suitable data for W___/W__ and W_. /W __ are available. Fig. 7
shows an example of a typical resul%??int%he for&lgf B diagram with contours

of constant payload fraction. Such a diagram can be enriched by plotting prac-

tical design constraints, such as buffet limits or wing tank volume constraints.

Moreover, it clearly illustrates the sensitivity of a design w.r.t. the design
variables.

7.1. Optimum wing loading and altitude for given M

Analytically derived optima for &, CI and wto/s’ resulting in minimum MTOW,

=20~
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can be found in Refs. 1 and 2. .They appear to be almost identical to the ex-

pressions derived in Chapter 6, with the following exceptions:

a) Instead of the wing weight sensitivity (dW,/dS) the variable weight sensi-
tivity must now be used: AW, p /dS This term also includes tailplane weight
variation. If this is limited to the horizontal tailplane only, we have:

W ar/dS = dww/dS + Sh/S dwh/dSh (52)

b) In all expressions derived in Chapter 6 W must be replaced by w and § re-
fers to the initial instead of the mean cruise altitude.

7.2. Range for a given payload and MTOW

A closed form expression for the range obtainable with a given payload and
MTOW (hence: payload fraction) is obtainable from eq. (51), using the optimum
wing loading and cruise altitude. The result is as follows:

1
: H ’ W.. 2
R T I
— W
eq ? VBCDP var pQ\ o
12
N A 2
M{x“lii&}]
2 T wpg/pO J
W W
. ~ var ~ P
with Uvar =5 and U 1} T (53)
to to
The variable weight fraction u consists of contributions of items not di—v

rectly related to the wing weight such as the landing gear weight fraction,
and an optimized wing weight term. The latter is obtained in a similar fashion
as discussed in par. 6.2, replacing dW_/dS, W and R by dWy,,/dS, Wto and Req’
resp.

7.3. Conclusions

a) All optimum conditions for maximum payload fraction are sensitive to the
design range. The results are very similar to the case of minimum M
and knowledge of w /wp and W, /wto are not required, except the
weight sen31t1v1ty %d ’

w,f,en

b) The simple closed-form expression derived for the payload fraction is very
useful for a first estimate of the MTOW for given payload. This first esti-
mate is in fact required for app11cat10n of all design criteria optimiza-
tion used heretofore.
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8. CRITERION 6: MEAN FUEL BURNOFF PER SEAT-KM

8.1. Basic equations

In the previous chapters a number of weight fractions has been used to compare
different optima. Although these fractions give useful first-order results,
they have the disadvantage that the mean All-Up Weight (W) or - the MTOW (wto)
are both not fixed for given payload. In the present and following chapters
we will therefore relate certain cost-related items directly to the design-—
payload, since this is normally a specified quantity. |

One of the quality indices used frequently for comparing the efficiency of
transport aircraft is the fuel weight consumed per unit distance flown by the
aircraft. According to eq. (17) this is, for the mean All-Up Weight:

Fg W
8. N (R, = H/g ~ 4300 km for (54)
v n L/D RH RH jet fuel)

Alternatively, in terms of the mean fuel burnoff per seat km:

— = W
Fg _ W 1 pl (55)
VNG W ML/D N Ry

Hence, for given design payload and number of seats, the minimum fuel per seat-—
km produced corresponds to the maximum value of the parameter n L/D * W__/W.

On the basis of eq. (51) the payload fraction related to the mean AUW cBH be
written alternatively,

wpﬁ - b (wvar/w * FP CD/CL) (56)
- 1 + W_.. /W
W fix’ "pl

where the CD/CL ratio refers to the whole airframe.

We are therefore interested in the maximum value of:

C W C W T U
L / var _ L / _ _vary _ (R T
R \] - — > -n FP =n o \1 — > (E; +n s ) (57)

D W D

n

The optima of this term will be derived for constant Mach number, and since n
is assumed independent of the altitude (for an isothermal atmosphere), the
maximum 1s to be found of the following term:

C W 3 :
L / var\ T
=11 - =) - = (58)
CD \ T / 16

8.2. Optimim wing loading and altitude

The derivation of optimum conditions appears to be simplified by introducing
a non-dimensional term for the wing weight sensitivity to variations in the
wing area:
dwvar/ds

(59)

qOCDp(l - anr/W)

1
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Although W ___/W is not precisely constant due to variation in the wing weight,
this is not objectionable, since w can be found by means of iteration once a
value for W/S has been found. )

a) Optimum wing loading for constant altitude. -
In this case only the first term of eq. (58) is varying. The following re-
sult is found: '

— Sl _o5sc =4"p D
(W/S) 5 0->cC e (l + SEZ @>} (Curve 1) (60)

This is not a solution in closed form, but a generally satisfactory first
approx1mat10n is found by assumlng that CD/CL is equal to the value for

BC /C = 1. Series expansion results in
P
- q A % .
CW/S = 6 (l + —%— w) + W (60a)

If necessary this wing loading can be used to find a new value
for C and a second approximation is than obtained with eq. (60).

b) Optimum altitude for constant wing loading
In this case the term W va /W is essentlally constant and maximization of
expression (58) results' an:

2 1
d(Fg/VNg) _ . I UT CD q, l2
3% e e AU L cae — [ (oD
" WS Lip Cp Ws (0 -w /W)
‘ (o] var

(Curve 1II)

If required a first-order solution of this implicit equation can be used
by assuming CD ~ 1.8 CDO,'with the following result:

Moy VBCp _ ,
§ ~ & + 1.7 — (61a)
(1 - anr/W)

where § is defined by eq. (33d). Comparing this result with eq. (33d) it
is founthhat the-design range is not involved in this optimum condition.

c) Optimum altitude and wing loading for given C,
For given C. the wing loading and altitude are directly coupled by means of
eq. (1). The maximum of expression (58) occurs when:

d(Fg/VN )

= C C u 3
Y -0+ —— - {qu > {‘*’ o — H (62)
C \/Bch o” BC_ Dp (=W, /W) _

(Curve III)

d) Unconstrained optimum altitude and wing loading.
Intersection of eq. (60) with (61) or (62) defines the unconstrained opti-
mum. The solution is not readily obtained in a closed-form analytical. ex-
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e)

pression. Moreover, it is generally found that a very hlgh "optimum' cruise
altitude is obtained, similar to the case of minimum uf

Optimum altitude and wing loading with constraint on thrust.

‘Since the present criterion does not consider the consequences of -flying

at very high altitudes for the installed engine size, it is logical to-de-
rive a constrained optimum for .the .case of .a given powerplant installation

-(hence thrust).. For this case the altitude to be obtained is-approximately

equal to the case considered in-par. 3.2.:

8 - 2W (63)
VBCDP

T/8 -‘qOA

Here -it has been assumed .that the optimum L/D-ratio, correspondlng ‘to eq.
(59), deviates only slightly from the maximum value, given by- eq. (12).
Substitution of eq. (63) into the optimum wing loading (eq. 60) results in:

ot RS V7
CL \/B/CDP = \] + W i/_J / ' (64)

and the wing loading is obtained by multiplication of (63)with q, -and (64)
This result can be compared with eq. (lla), which shows that the optlmum
wing loading has increased relative .to the value for L/D-max by a value of
about 187, typically (for w=1.3 and T/6w 0.3).

8.3. Conclusions

a)

b)

c)

d)

The optimum wing loading for given altitude is, according to eq. (59), al-
ways between the values.for maximum .L/D (eq. 9b) and for maximum payload
fraction (eq. 43).

As opposed to most previous cases the various optima for minimum fuel burn-
off per seat-km are not affected by the design range.

The most significant optimum condition is one with a constraint on the
thrust, i.e. minimum fuel burnoff per seat-km for given engine.

It can be shown that, for given Mach number, the unconstrained optimum is
identical to the case of minimum drag and thrust per unit payload.
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9. CRITERION 7: FUEL PLUS ENGINE WEIGHT IN RELATION TO PAYLOAD

In the previous chapter it was concluded that the fuel burnoff in relation to
payload should be optimized with a constraint on the engine thrust. It is
therefore a logical next step to consider the fuel plus engine weight for gi-
ven payload, when the engines are '"rubberized", so that for each drag level
the thrust balances the drag, at a constant engine rating. This case is ana-
loguous to criterion 3 (Chapter 5), but here we relate the fuel plus engine
installation weight to the payload, which is a fixed and specified quantity,
as opposed to the All-Up Weight. '

For a specified design payload the fuel plus engine installation weight is ob-
tained from:

wf * wen - W _ b+ wfix/wp2 (65)
wpz f,en ng (1 ] w&ar> CL/CD L,
\ W Fp

The minimum value of this term can be obtained by maximizing the expression:

CL _
-— (1 - wvar/w)/FP ‘ ' (66)

CD
For specified (constant) Mach number the results are as follows:
a) Optimum wing loading for given altitude.

For this case the value of F, is constant and eq. (60) applies to this case
as well (Curve I).

b) Optimum altitude for given wing loading.
In this case W r/W is constant and the same expression is found as for
criterion 3: eqs. (33b) and (33c), (Curve 11).

c) Optimum altitude and wing loading for given C;
Minimization of expression (65) gives:

|
. C. ,u./T o 2
o . W p/["T D\
AW, + W /W =O—><S=I — + w—"F 67
f \en) p& c, lqo CL \ Fp CL /3 (67)

(Curve III)

d) Unconstrained optimum altitude and wing loading (point A).
"~ The combination of cases a), b) and c) above can be approximated by intro-

ducing a new term f(R):
1.9
sl (%0 P —)}
£(R) 11 + \zﬁ - R/RH / \/BCDp (68a)

The resulting approximations are:

§ _fa2w (Mt
\/ﬁ , lqol-\ \t R/R,

1
: 3
/ VBep + f(R)w)} (68b)

where w is defined according eq. (59). The optimum wing loading is obtained
by substitution of (68b) into eq. (60): '
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a)

b)

e (s IR
Cquo 12 \qu = R/RH /VBCD + f(R) + W ( _c)

From this result it appears that due to addition of the terms,.which -are
proportional to w, the optimum relative pressure and wing loading are con-
siderably higher than for the case of minimum fuel plus engine weight frac-
tion, but lower than for the case of maximum payload fraction (minimum wto).

Conclusions.

The optimum conditions are much more realistic as compared to the case of
minimum U » and probably also more significant than for maximum payload
fraction.™’

The presence of the w-related term makes the optimum altitude and wing
loading less sensitive to the design range as compared to Mg ‘Practical
application to long-range aircraft learns that eqs. (68) resd?? in quite
realistic values for optimum & and Ww/s.

An objection against the present criterion is that fuel and engine installa-
tion weight are simply added, whereas in practical design optimization the
significance of fuel consumption and engine size variations should be expres-
sed in terms of an economical criterion. This will be worked out in the next
chapter.

...26._




10. CRITERION 8: DIRECT OPERATING COSTS (DOC)

10.1. Derivation of the basic expression to be minimized

The DOC are very often used as a means to compare the qualities of different
designs, designed for the same mission. As such, they are a useful tool to
weigh the relative differences in fuel consumption, empty weight and cost of I
production, engine costs, etc. !
There is no generally accepted method for defining DOC, nor for its computa- L
tion. The relationship used is therefore a very general and basic expression, 1
featuring a number of statistical factors which are assumed to be known, at
least approximately. '

The Direct Operating Costs (DOC) during the useful service life (U hours) of’
a transport aircraft can be expressed as follows:

IR ¢ 1 sCc U+cC.. N (69)

boc = Ca N * Cf & V/F en to h f1 'f1

where it has been assumed that the mean value of V/F is a fixed proportion of
the cruise value.at the cruise design point for which the engines are sized.
The following symbols have been used:

Ca : airframe cost ($/seat), including spare parts, insurance and in-’
terest.

Cf : average specific fuel price ($/unit weight)divided by the reduction
in mean V/F relative to the design value

Cen : SpelelC engine installation costs ($/unit thrust), including spares,
insurance and interest

Ng : number of seats _

IR : total distance travelled (IR = U Vb)

Vi : mean block speed

Ch : maintenance, flight crew and other hourly costs ($/hour)

Cey : trip-related costs for landing, maintenance, etc. ($/flight)

Ney : total number of flights (Nfl = ZR/Rb)

Ry, ¢ average sector distance

It is to be noted that eq. (69) considers the aircraft cost as a fixed cost,
proportional to the number of seats installed, plus a variable cost which is
porportional to the installed thrust. In a more accurate analysis one might
also take into account variations of the aircraft cost due to variations in
the airframe geometry, noticeably variations in wing design.

Per seat-km the DOC according to (69) can be rewritten as,

poc | Moo Cp Wog Ch Ce ‘
Nk o Cat® Tqo W Tt s (70)
s uv s L to V. N R, N

b b s b s

where the powerplant cost function FQ is defined as:
9] V Cf Tto

FQ - n RH * Cen T 7n

Substitution of the payload fractlon according to eq. (56) into eq. (70)
yields:
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poc _ 1 [, 'pr " Vrix e . _n “f1
NoIR g La Ny (- y Lo F Vv N ' RN
b uVar D P b s b s
(72)
. _ wvar
with Llvar T W
to

Equation (72) indicates that with respect to the DOC associated with fuel and
engine installation the following penalty function appears to be a useful ba-
sis for assessing different engine types:

F

Q
C (73)

(1 - uvar) L/D - Fy

r-rj
in

For a given class of (long-range) aircraft, the airframe lift/drag ratio and
the variable weight fraction are approximately known and F, can be used to
compare different powerplant options with regard to the cost and weight fac-
tors involved in Fp (eq. 31) and FQ (eq. 71), provided their maintenance cost
properties are equal.

Using the methods derived in this report the derivation of conditions for mini-
mun DOC is straightforward, provided suitable cost factors are available. If
certain approximations are accepted, analytical results can be obtained as
demonstrated hereafter. The optimization of eq. (69) is equivalent to minimi-
zation of (73), provided the Mach number is fixed.

10.2. Optimum altitude and wing loading for constant M

Fig. 8 gives an example of an unconstrained optimization w.r.t. DOC, resulting
in an unconstrained optimum (point A) between those for criteria 3 and 5.

a) Optimum wing loading (constant altitude).
Although the airframe acquisition cost per seat Cy will be to a certaln ex—
tent a function of the airframe weight, this is a minor effect and probably
insignificant in preliminary design optimization. Therefore the maximum
value of (1 - Uvar) L/D minimizes the DOC with respect to wing area varia-
tion. This partial optimum is identical to the case of minimum fuel used
per seat-km and minimum engine plus fuel weight per unit payload, eq. (60)
(Curve 1).

b) Optimum altitude (constant wing loading).
For given wing loading and M the wing weight fraction is approximately con-
stant. The altitude for minimum cost will therefore be located between the
two altitudes where Fp C,/C; and F /C_ have their minimum values.
Analoguous to eq. (33b) one would expect the solution to be approximately:

) .
f en engine costl
c. =¢C |+ —— + ——— (74)
L _LMD 1 wf fuel cost [
The altitude 1s then to be solved from:
n C R \1
§ = (SMD ll + m \UT + -—C—— ’J (Curve II) (74b)
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Practical application of this result shows that the magnitude of engine
cost/fuel cost is similar to wen/wf.

¢) Optimum altitude and wing loading combined (point A).
Exact solution of the combined optimum for § and W/S is not feasible. How-
ever, a reasonable accurate approximation is, analoguous to eq. (68):

1
2

W n R 8} C . \
S = [2 tZ { ZTH <RT + en_ ) / \/BCD + f(R)wH (75a)
1
W /s q A2 ,
tg—=w+——_6_<l+wﬁo—> . (75b)
qo D V/B CD to
dwvar/ds
with w = - (750)
quDp( 1 - wvar/wt )

where § according to (75a) is to be substituted into eq. (75b) to find an’
explicit solution.

10.3. Optimum Mach number

The occurrence of the block speed in the denominator of all terms of eq. (72),
except the fuel cost contribution and the last term, results in a much higher
cruising speed as compared to all previously considered criteria. For a given
design the following optimum block speed for minimum DOC is derived in Ref. 1.

d log W, V. dw

£ _ b f _ DOC/trip  _ | (76)
d log Vb wf dVb fuel cost/trip
This can be converted into an optimum value of the drag rise:
d log C .
D - . DOC/trip -1 (77)
d log M c ¥ fuel cost/trip

L

For a given aircraft the optimum cruise Mach number is therefore in the drag
rise, provided the engine thrust available allows this to be achieved. For
example, if the fuel costs are 407 of the DOC, and nM = 0.6 (turbofans), the
optimum cruise M is the value for which dC./dM =~ 2.1 C_/M.

The shape of the drag rise is determined primarily by the detailed wing design,
such as the thickness/chord .ratio progression, sweepback angle and applied
supercritical wing technology. Variations in the design-Mach number should

be accompanied by variations in these parameters and will therefore result in
variations in wing weight. The selection of an optimum cruise Mach number is
therefore considerably more complicated than simply finding a minimum of one
of the criteria considered in this report. :

10.4. Conclusions

a) Since we have assumed the aircraft price to be insensitive to variations in
the wing size, the optimum lift coefficient for minimum DOC is insensitive
to cost terms (Ca, Cf and C n). It is therefore possible to optimize this
important coefficient on a Basis of purely technical considerations. The
wing loading and altitude, however, are sensi-
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b)

o

SO N

tive to variations in. C_ and C .

f en
The optimum altitude according to both equations (74) and (75) is much
less sensitive to the design range compared to the optimum values based. on
weight fractions. Therefore, as regards DOC, long-range aircraft with dif-
ferent design ranges, but similar speeds, have more similar optimum condi-
tions' as compared to the previous criteria.

Optimum conditions for altitude and wing loading, resulting in minimum DOC,
are. between  the optima.for minimum.uf en and those for maximum payload frac-
tion, criteria 3. and 5, resp.. >
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11. OPTIMUM ASPECT RATIO

11.1. Basic equations

Inspection of the expressions found for the maximum L/D-ratio, the specific
range and the fuel plus engine installation weight ratio (criteria ] through
3) indicates that in all cases reduction of B 2 dCDi/d c2 continues to improve
these figures. Since for a near-elliptic lift distribution we have B = factor/
mA, it is clear that on the basis of these criteria there is no optimum aspect
ratio. Inclusion of the effects of wing weight variation due to variation of

A is therefore essential.

For given wing tapes, section shape, sweep angle and load factor, the wing
weight fraction may be written generally as follows:

X XS
ww ~ A A S :
2.0 (8) (@ | (78)
W A S v

Actually, there may be other wing weight terms, which are insensitive to A

and S, which do not effect the optimization and are not included in eq. (78).
The term 0 denotes the wing weight fraction for a baseline design with aspect
ratio A and wing area S. The exponents x, and Xg can be theoretically or em-
pirically derived quantities. For example, for bending material it can be
shown that xp = 3/2 and x, = 1/2, provided stress levels remain constant. For
other structural members, such as shear webs, ribs, leading edges, flaps and
controls, other exponents are found. For the total wing weight it is general-
ly found that xA’is close to | and xg is close to 1/2.

The induced drag factor variation with aspect ratio is written as follows:

>

(79)

where B and A refer to a baseline design.

11.2. Minimum wing plus fuel plus engine weight fraction

Substitution of eqs. (78) and (79) in eq. (38) and differentiation w.r.t. A,
for constant wing area, results in: '

X 1

- B

] Uw,f,en _ é= I’ FP /?_L_ XA+ 1

— i 0 -» .= L = BCL\A (80)
A XA My Cy

If it is also assumed that the wing area is optimized, so that CL/EL =

Vlé/B = VA/A, while the optimum C;, is approximately 1207 of the value for
L/D-max, the following result is found for the unconstrained optimum aspect °
ratio:

F
- P [~ \ 2
A=A (1.2 — BCDP/ exp (———————:fT> (81)

2X, X
XA U A 7B

w

~

Realistic values for é, u s Xy and x. can be obtained from a weight di§tri-
bution for an existing aircraft or project, with specified aspect ratio A. If,
for example, the following typical values are used:
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A= 83 é = 0.045; ﬁw =.0.10; Xp = 1.2. and Xg = 0.6, a first approximation is

found
0.714

opt U n 6 Dpf %
It is' obvious that this result is sensitive to the design range and, to. a
lesser extent, the cruise altitude.
11.3. Effect of a constraint on the wing weight fraction ;

.

It can be argued that a simple addition of wing weight and fuel plus engine ;

weight does not result in a realistic criterion, since the effects of struc-

tural weight variation are quite different from fuel weight and engine thrust 5
variation. It then makes sense to minimize the payload fraction with a con-

straint on the variable wing weight fraction. This implies that-

X x x, [x
Ahs S e constant, or CL/(A A S) =-constant (82)

From eq. (38) it appears that simply the ratio CD/C must be minimized, simul-

taneously satisfying eq. (82). The result is L

9 uw,f,en

-2
_(, _Xs\ B
3A (83)

A
=O"’='—\l —"X— C—
W /W A A7 “Dp
W
and correspondingly the optimum aspect ratio can be obtained from eq. (79).
Eq. (83) can be written alternatively as follows:

1

p : |
CL = 1 B / (1 = xs/xA)} (83a)

This remarkably simple result is to be compared with eq.- (43), for:example.
Although the two results are comparable in magnitude, equation (83) does not
exhibit any dependence from the design range and altitude.

Since eq. (83) contains C; and A, it must be combined with_eq. (78) to solve
the individual optima of %L and with the constraint on ww/w.

11.4. Aspect Ratio for minimum DOC

A first approximation for the optimum aspect ratio can be obtained by assuming
that for given wing area. the sensitivity of Hyar tO aspect ratio variationms.
can be written similar to eq. (78) as follows:

X

A
-5 [A
Hyar-~ My \2 T Hret (84)

For given cruise altitude the DOC are minimum if, according to eq. (73) the

term (1 - uvar)L/D reaches a maximum. As a result it.1is found that
1/x
A [ Llref ] A
A 0e1 +x (I + o)}
w A\ 2
BCL
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This is an implicit equation, since B is inversely proportional to A. As a
first-order approximation we may take CDO/BCL2 N 2CDp/BCL2_m 1.5. Hence,

1/x
1 - u A .
% _ { ref } . (85a)
a, (1 + 2.5 xA)
Tf, for example, y, = Uref = 0.1 for A=8 and X, = 1.2, we find an optimum

aspect ratio of 15.7.

It should be noted that, although Cp /(BC 2) is strictly speaklng a function
of the range, the sensitivity of Agpe to the design range is very weak. On

the other hand, the sen51t1v1ty to Xp, and therefore to the method of calcula-
ting the wing weight, is very strong. Practical constraints will therefore
have to be imposed on A in order to avoid aspect ratios that result in too
flexible, flutter-prone wings. In particular a constraint on the aspect ratio
may be imposed by the fuel volume available in a wing.

1.5. Conclusions

a) All cases considered, except the case of minimum DOC, indicate that high
values of cruise-C; require high aspect ratios. Incidentally, the reverse
has been found to %e also true.

b) Substantial differences between optimum aspect ratios are found when dif-
ferent ‘design criteria are used. In the cases of minimum My, £,en and maxi-
mum payload fraction as design criteria, the optimum aspect ratio is sensi-
tive to the range. In the case of a constraint on the wing weight fraction
and for minimum DOC very simple results are found, which are not sensitive

to the design range.

c) In all cases the results are very sensitive to the expressions used for
the wing weight fraction, in particular the exponent of A.

d) The optimization of aspect ratiowith a constraint on wing
weight is considered as a useful procedure, since
- for constant wing weight the production cost of the wing can be consi-
dered as constant,
- the optimization is limited to maximization of L/D, for specified flying
conditions (altitude, Mach number). This is a well-defined problem.

e) Since the selection of the aspect ratio has many consequences outside the
field of weight considerations, it is recommendable to bias the results
of any optimization by practical constraints.

£) It is likely that in many cases low-speed performance requirements, in

particular climb performances after engine failure, will have a profound
influence on the selection of A. This subject is treated in Ref. 1.

-33-




12. SUMMARY OF RESULTS

In the previous chapters eight different figures of merit ("criteria) have
been evaluated with regard to their effect on optimum wing loading, cruise
altitude, lift coefficient, Mach number and engine thrust required. In most
cases analytical closed-form expressions have been derived for partial optima
as well as for unconstrained ("absolute") optima. From these.results some
significant conclusions can be drawn.

12.1. Optimum wing loading and. altitude

Figures 2 through 7 show examples of iso-meritcontours for various criteria,
as well as partial optima, defined as follows:

Curve I : optimum wing loading, constant § and M

Curve II : optimum altitude, constant W/S and M

Curve III: optimum wing loading and altitude, constant C; and M.

Effects of Mach number and aspect ratio variations have been considered sepa-
rately. Combined optima are indicated as "point A". Figure 9 summarizes the
various partial and unconstrained optima for a given Mach number and aspect
ratio. For example, curve II-3 refers to the optimum altitude for given W/S,
according to criterion 3 (minimum fuel plus engine installation weight frac-

tion, M n). From inspection of the equations it was concluded that the in-
dependent “Yariables involved are preferably generalized as follows:
wing loading : __EéE_
q, Dp

(pressure) altitude : 6/\/6CDp
1ift coefficient : Cp \/B/CDp

Since the DOC-criterion (mo. 8) is rather. sensitive to specific cost data,
such as fuel price and specific engine cost, these optima have been deleted
in Fig. 9. However, for the special case of:

Cen eq

f U Vb

they are identical to criterion 7: cf. egs. (74) and (75), compared with eqs.
(33a) and (68).

a) Partial optimum wing loading (Curve I)
This optimum is consistently characterized by an expression for the lift
coefficient of the following appearance:

CL VS/CDP = V1 + factor

For max. L/D, V/F and p the factor is zero. The factor is generally high-
est when the payload fracElon and U, are maximized, because then the ef-
fect of wing weight is large, in partléuTar for short ranges. Intermediate
values for C; are found for minimum fuel per seat-km, fuel plus engine weight
as a fraction of the payload, and DOC. Fig. 9 shows that points A for criteria
4 through 7 have quite similar C -values, and it is felt that the most useful
result appears to be eq. (60) for minimum engine plus fuel weight, rewritten
as follows:

2\/BCD q A |
()

Ay
. \/B/ch ~ 11 + 5



For the present example this becomes approximately 1.175. Assuming
B=1.1/TA and Cp_ = 0.009, we find CL ~ 0.19 VA; hence a high-aspect-
ratio wing requireés a high cruise lift Boeff1c1ent However, constraints
on C must be observed.

b) Partial optimum altitude (Curve II)
Application of criterion 3 results in a useful expression for the optimum
altitude (eq. 23), which applies to both low and high Mach numbers, pro-
vided the drag polar for each Mach number can be approximated by a para-
bola. It is even more general if Cp is derived numerically or graphical-
ly from a general drag polar representation. Equation (33) appears to be
valid for criteria 3, 4, 5 and 7, while criterion 6 results in a considera-
bly higher altitude. However, it has been argued that the fuel used per
seat-km ignores a thrust limitation, which will generally result in a con-
strained optimum. It is thus concluded thdt the following equatlon can
be used to define the optimum altitude:

3 (i i Bl

il

_ ( 25T n )7 _W/s
§=6_ {1+ =) ;6 =212
MD \ § T R/R,/ MD aQ v65;7é

This result is relatively sensitive to the design range.

c) Optimum altitude and wing loading for given C; (Curve III)
Fig. 8 shows that the various criteria result in different equations. For
Cy, VB/CD‘ > 1 these curves generally define an almost invariable altitude
level fof each criterion. Since criterion 7 results in an itermediate al-
titude, which takes the design not too far from other optima, we obtain
from eq. (67) for Cp \/B/CDp = 1

-1 %
_ r‘< o i) {(.T_ BRu , 1) —-H
L6'+2V8q5<%A THE ty)  reveey

From this equation § can be solved by iteration.

d) Unconstrained optimum altitude and wing loading (point A)
From the previous considerations it can be concluded that this point should
be defined by criterion 7 or, if data are available, by criterion 8 (DOC).
For the case of minimum fuel plus engine weight the solution can be found
either by intersection of the equations found for cases a), b) and c) above,
or by eqs. (68), which give a direct, closed form solution. A simplified
result is found by assuming f(R) =~ 2: ’

Bol—

5§ _ [aw /“
\/—BT%) 1qu T R/RH

/ VBCD + 2w>

+

WS /_V_J_ )/”T .
Co, 9 { \a, \1 R/Ry / VB,

%
2w>} + W
e) Optimum wing loading with a constraint on the thrust.
For the case of given thrust level (T/§ = constant and specified) the alti-
tude is generally constrained according to eq. (63):

s 2
C
VB Dp

T T/8 - q A
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In this case an optimum wing loading is defined by:

e _ [ T/6>
C Chn =11 ==
L VB/_DP \ + W -

Again this result complies with the observations made in par. a) of this
section.

12.2. Optimum Mach number

This appears to be the most fundamental parameter in all cases considerd. The
effect of Mach number is evident in all optima considered in the previous sec-
tions, either explicitly in the term q, = by Po M2, or implicitly in the de-
pendence of n upon Mach number.

For a jet aircraft of given design the optimum cruise Mach number-can be ana-
lyzed consistently, either numerically or analytically (Ref. 12). For maximum
specific range (V/F) an unconstrained optimum is found in the drag rise, cha-
racterized by:

“p

acD|
W T W

For minimum DOC a somewhat higher Mach number in the drag rise is found (eq.
77). '

The maximum L/D-ratio as a criterion for aircraft design optimization contra-
dicts the above observations, and points in the direction of low speeds. The
obvious reason is that low Mach numbers are not in favour of a good overall
engine efficiency. The isolated factor L/D is therefore not useful to opti-
mize M.

Simple criteria for the combination of

- optimum Mach number for given W/S and altitude

- optimum W/S and altitude for given M

can be obtained using V/F and U as criteria, and ignoring compressibility
effects. These equations are derived in section 4.2 and 5. 3, resp. In both
cases the optimum wing area is simply:

T/$

_en _ 1 P £ _n_

Ve 2 n, T R/R

This extremely simple result is not very realistic since it results in very
low wing loadings and high thrust levels. In Fig. 9 it represents point A-3,
although at another Mach number. As a result, the "optimum" Mach number is
found in the medium to high subsonic speed bracket, dependent on the cruise
range. Generally speaking this is not in the interest of low DOC, which is
improved by increasing the productivity of the aircraft through high speeds.
More interesting is therefore the simultaneous optimization of cruise Mach
number, wing loading and altitude for the criterion fuel used per seat-km
with a constraint on T/§ (given engine). This results in eq. (22) for a given
wing loading and eq. (69) for the optimum wing loading. Combination of these
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two equations yields:

T/6
o s - A . s . 2(2 + nM) 1 +w —a—
Dp” ~ T/6 O — T/§
p T
My *w=— 0 +ny) VBCp T 9 4 o LIS
W , W i
for an optimum Mach number:
T/§ -1 4
2 + — 2
we [228 ] ° g 1w
) A T/ | crit
¥ Po Ny + W= (1+n)
M 7 M

These equations have to be solved by iteration, since w = f(M)
In view of the effects of Mach number on the wing aerodynamic deSLgn which
are outside the scope of the present report, all conclusions drawn in this

section should be considered to be of limited value ‘only.

12.3. Powerplant selection

a) Selection of an engine cycle.
Engine cycle studies have not been carried out in this report. However,
several criteria have been derived which can be useful for selecting an
engine cycle: The powerplant function FP

C My T
P n T T

is, for given altitude and speed, a figure of merit for the aircraft AUW.
A minimum value of F, results in a maximum payload fraction, or in minimum
AUW for given payloag As such it provides a method of weighing the rela-
tive importance of overall powerplant efficiency, thrust lapse, specific
engine weight and installation drag.

The powerplant cost function F, provides a different method of weighing
these quantities: Q

UV, C T
F o= b f +C to

Q I]RH en T

The following combined function is a useful basis for assessing powerplant
cycles on a basis of DOC, for equal maintenance cost properties:

; FQ

1 - anr/W)L/D - FP

*ry
1))

For a given class of aircraft typical value of W __ /W, U, Gb and L/D can
be used to provide a useful criterion to assist 1n the powerplant cycle
selection.

12.4, Thrust level required and MTOW

Since for most cases considered it was found that the optimum wing L/D is
nearly equal to the maximum L/D, we can write:

. Tto _T/8 _ 2 vech . Aq,
W W 8 W
to to "to
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The MTOW can be obtained from the payload fraction:

- +
W 1 (uvar uf,en)

to L+ wfix/pr

*

A first approximation for Hf op Can be obtained by using the minimum value
of this function: ’

/R i i A 2
_f(RH——Z T 9552
(Uf,en)min B 1 2 n VBCDp * ‘fF-*€_

An increment of about 4 percent will generally be adequate to find the ac-
tual weight fraction. For given payload the MTOW is than obtained and the
corrected cruise thrust level is found. For a known value of T this results
in a take-off thrust level required. Once the engine has been selected, op-
timization of the altitude and wing loading may be carried out according

to Section 12.1, par. e).
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Table 1: Design data of a long-haul passenger aircraft

Number of seats

Equivalent design range

Cruise Mach number

Profile 'drag coefficient

(incl. hor. tail)

Aspect ratio (baseline)

Induced drag factor (baseline)

Parasite drag area — excluding nacelles
- including nacelles

Powerplant specific weight

Thrust lapse factor

Installed overall powerplant efficiency

Design payload

Fixed empty weight

Variable empty weight fraction

Wing weight sensitivity

Generalized weight sensitivity factor

N_ = 180
R = 8600 km
M = 0.80
-CD = ;009
p
A = 8.50
8 = 0.045
A= 2.0m2
A= 2.20 m?
“T =.0.25
T'= '0.85
n = 0.32
W = 170 kN
W.. = 210 kN
fix
W /W, = 0.20

dw_/ds = 350 N/m?
w'=1.30
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Fig. 1: Partial, absolute and constrained optima.
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Fig. 2: Lift/Drag ratio vs. wing loading and pressure altitude.
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Fig. 5: Contours of constant range parameter,
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Fig. 6: Fuel plus powerplant fractions vs. wing loading and pressure

altitude.

W/S
9

Fig. 7: Payload fraction vs. wing loading and pressure altitude.
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Fig. 9: Partial and unconstrained optima for various Merit Functions.
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