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Propositions 
accompanying the dissertation 

Value of information in closed-loop reservoir management 
by 

Eduardo Barros 

1. Very little research is done on the optimization of reservoir surveillance strategies. The design 
of smart surveillance strategies can contribute to the success of reservoir management as much 
as the optimization of production strategies. 

2. A (flexible) strategy only becomes a fixed plan to be put in action. The execution step is the one 
that allows us to use the closed-loop framework as a decision making environment. 

3. Common approaches to assess the usefulness of additional observations are based on the 
determination of their informativeness defined as either their ability to reduce uncertainty on 
the model predictions or the extent to which the model predictions are affected by them. 
However, the most informative observations are not always the most valuable ones. 

4. Value of information workflows rely on simulated data to evaluate the contribution of future 
measurements, i.e. before they are actually gathered. Yet, such a-priori evaluation represents an 
opportunity to gain insight also into the operations after the new measurements are available. 

5. An investment in additional information is one of the alternatives to mitigate the effects of 
uncertainty. Value of information assessment only has meaning with proper uncertainty 
quantification. 

6. Sometimes the main obstacle to seeing the truth is the choice to ignore the possibility of the 
wrong. Falsehood as the absence of truth and error as a deviation from the truth are not equal: 
an error does not necessarily lead to a mistake. 

7. A lot of effort is spent on deriving good quality approximations to accelerate computational 
workflows. However, the usefulness of an approximation depends more on our ability to assess 
its quality than on its quality itself. 

8. Even the most imaginative people are not always able to be creative. Creativity is inversely 
proportional to the abundance of resources, upper-bounded by hope and propagated through 
openness. 

9. Collaboration goes beyond the execution of tasks in a coordinated effort. It is not possible to 
have true collaboration without trust or involvement. 

10. Not even the most righteous contracts can produce virtue where there is not. The excessive 
proliferation of professional agreements and codes of conduct in combination with an extreme 
individualism is a threat to the future of work ethic in our societies. 

These propositions are regarded as opposable and defendable, and have been approved by the 
promotors, Prof. dr. ir. J.D. Jansen and Prof. dr. ir. P.M.J. Van den Hof. 
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Summary 

Efficiency is one of the keys to solve the current and future energy issues in our societies. 

Improvements in the use of the subsurface will become increasingly necessary to meet the 

predicted energy demand for the coming decades. According to projections, oil and gas 

will continue to occupy a large share in our energy mix. In this context, the efficiency with 

which we exploit our hydrocarbon reserves plays a very important role. 

Over the past decades, many technological advances have unlocked new opportunities to 

boost efficiency in the oil and gas industry (e.g., complex well drilling, injection of 

advanced chemicals, sophisticated instrumentation). The real engineering challenge is to 

apply these technologies in the best possible way for each particular case. This leads to 

very difficult decisions to be made, mainly because every oil and gas field is one of its kind 

and our knowledge of the subsurface is very limited. Many efforts have been made to 

develop tools to support these decisions by applying a more systematic approach to 

determine smart exploitation strategies, like, for example, in reservoir management 

practices. The focus of these developments has been mostly on production optimization, 

seeking to determine well settings that result in improved reservoir performance. Yet, very 

little has been done on the optimization of the reservoir surveillance plans to establish the 

best observations to monitor the field response to the exploitation strategies, which, in 

turn, can also contribute to a better exploitation of the reservoir. In this thesis we establish 

a methodology to assess the value of future measurements as a first step towards the 

development of a framework to optimize the design of reservoir surveillance plans. We 

also investigate alternatives to improve current reservoir management approaches by 

recommending strategies which anticipate the availability of future information and 

account for the impact of immediate actions on the decisions to be made in the future. 

This thesis focusses on applications to oil and gas reservoirs, but the topics addressed here 

are also of relevance to the management of sustainable resources (e.g., geothermal energy) 

and other uses of the subsurface (e.g., CO2 and energy storage). 

In this thesis, we use state-of-the-art research tools to create an environment for value of 

information (VOI) assessment for reservoir management applications. The main goal is to 
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develop a methodology to assess the value of future measurements during the field 

development planning (FDP) phase of a reservoir, before any actual measurement has 

been gathered. We propose a workflow to quantify the VOI in closed-loop reservoir 

management (CLRM), under the assumption that frequent life-cycle optimization will be 

performed using frequently updated reservoir models (Chapters 2 and 3). The procedure 

requires extreme amounts of simulations, which makes its application to real-field cases 

intractable. As a first step to make VOI assessment more practical, we investigate 

opportunities to apply clustering techniques to select a small subset of representative 

models and reduce the computational load of the workflow (Chapter 4). The reasoning 

behind the a-priori VOI analysis unveils an opportunity to improve our approach to 

reservoir engineering optimization problems by anticipating the fact that additional 

information will become available in the future. Therefore, we also investigate possible 

ways to integrate a VOI assessment tool in the optimization framework, with applications 

to production optimization (Chapter 5) and field development optimization (Chapter 6). 

As a result, this thesis covers various aspects to be considered when accounting for the 

value of future information in reservoir management workflows. Throughout the chapters, 

we discuss how to combine a variety of topics (e.g., model-based optimization, data 

assimilation, uncertainty quantification) with more unusual ingredients (e.g., plausible 

truths, clairvoyance, flexible plans) to develop a methodology which can be applied in 

many problems involving decision making and learning. Despite being motivated by a real 

application, this research addresses abstract concepts such as value and information, but 

always from a practical engineering perspective. This combination contributes to a new 

way of reasoning that can be useful to support decisions in reservoir management, which, 

we hope, will inspire innovative solutions in the future. 
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Introduction 

Energy plays a fundamental role in our modern societies. Our capacity of changing the 

world around us to make it a better place depends on its availability. In the pursue of a 

sustainable development, many efforts have been made to reduce our dependency on 

traditional energy resources and come up with technologies that allow us to do more with 

less energy. However, these advances can still not entirely solve all our energy issues: it is 

estimated that the global energy demand will continue to increase in the near future and 

the supply of renewable energy will not be able to keep up with it, at least not in the next 

few decades. In this context, the most sustainable approach is to introduce these emerging 

technologies while relying on a necessary transition period in which fossil fuels such as 

hydrocarbons will remain an important part of the energy mix (IEA, 2016). 

New technologies can also make the exploitation of hydrocarbon reserves more efficient 

and increase the recovery of oil and gas. For example, improvements in drilling create 

opportunities to design more complex wells with better contact to the reservoir 

formations and the injection of advanced chemicals reduces the residual volumes of 

hydrocarbons that would otherwise stay trapped in the reservoir. Other efforts are related 

to the so-called smart fields technologies, with the installation of control devices to 

regulate the flow of fluids in the wells, and instruments to obtain more information from 

the reservoir. Next to these and many other technical advances, numerical techniques for 

reservoir simulation and model-based optimization have developed rapidly over the past 

decades, providing support to design and operational decisions in order to benefit the 

most from all the technologies and maximize the recovery of hydrocarbons. 

Reservoir management is the set of practices adopted by oil and gas companies to 

optimize the performance of their reservoir assets. As reservoir engineers and 

geoscientists, we recognize our inability to fully characterize the reservoir due to our 
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limited knowledge of the subsurface. Despite the presence of uncertainties, important 

decisions on how to exploit the reservoir have to be made, such as the elaboration of a 

field development plan (i.e., where, when, which type and how many wells to drill) and a 

production strategy (i.e., how to operate the wells). The success of the exploitation of the 

reservoir is directly related to the quality of such decisions, which involve significant 

investments. This high-risk decision making process is supported by performance 

predictions (e.g., simulation forecasts) based on all the knowledge available. Other 

important decisions concern the design of a reservoir surveillance plan (i.e., where, when, 

what, with which frequency and precision to measure) to guide the deployment of sensors, 

which is also costly. As the development of the field starts, the deployed sensors gather 

measurements that are used to monitor the response of the reservoir and to determine 

whether the implemented actions (i.e., field development plan and production strategy) 

have the expected effect in the reservoir performance. When there is a discrepancy 

between the actual response of the reservoir and the predictions, there is an opportunity 

for learning and improving the knowledge of the reservoir to make better decisions in the 

future. 

Many efforts have been made to automate the reservoir management process as much as 

possible so that a more systematic approach can be used to continuously optimize all the 

decisions throughout the reservoir life-cycle (i.e., closed-loop reservoir management, real-

time reservoir management, integrated operations, etc.); see references in section 1.1. 

However, the focus of these developments has been mostly on production optimization, 

seeking to determine production strategies that result in improved performance. Very little 

has been done on the optimization of reservoir surveillance to establish the best 

observations to monitor the performance of the production strategies, which in turn also 

contribute to a better reservoir management. Such an optimization requires the ability to 

quantify the contribution of surveillance plans to the success of the reservoir management 

before any measurements are gathered. The challenge is on how to estimate the 

incremental performance that the future measurements (i.e., yet to be gathered) will 

enable, or, in other words, to assess their value. This thesis addresses this challenge. 
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1.1. Closed-loop reservoir management 

Closed-loop reservoir management (CLRM) is a combination of frequent life-cycle 

production optimization and data assimilation (also known as computer-assisted history 

matching). Life-cycle optimization aims at maximizing a financial measure, typically net 

present value (NPV), over the producing life of the reservoir by optimizing the production 

strategy. This may involve well location optimization, or, in a more restricted setting, 

optimization of well rates and pressures for a given configuration of wells, on the basis of 

one or more numerical reservoir models. Data assimilation involves modifying the 

parameters of one or more reservoir models, or the underlying geological models, with the 

aim to improve their predictive capacity, using measured data from a potentially wide 

variety of sources such as production data or time-lapse seismic. For further information 

on CLRM see, e.g., Jansen et al. (2005, 2008, 2009), Naevdal et al. (2006), Sarma et al. 

(2008); Chen et al. (2009); Wang et al. (2009), Foss and Jensen (2011) and Hou et al. 

(2015). 

 

Figure 1.1: Closed-loop reservoir management as a combination of life-cycle optimization and data 
assimilation. 

Figure 1.1 depicts the CLRM framework in a block-diagram representation often used in 

systems and control theory. We recognize two distinct loops connecting the system 

predictive models to the real system: the optimization loop shown in blue and the data 

assimilation loop in red. The idea behind the CLRM framework is to use computer-
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where p indicates the probability density, and d is a vector of measured data (e.g., oil and 

water flow rates or saturation estimates from time-lapse seismic). In equation (1.3) the 

terms p(m) and p(m|d) represent the prior and posterior probability densities of the 

model parameters m, which are, in our setting, represented by the prior and posterior 

ensembles respectively. The underlying assumption in data assimilation is that the 

assimilation of measured (historical) data leads to an improved (future) predictive capacity 

of the models, which, in turn, leads to improved decisions. In our CLRM setting, decisions 

take the form of control vectors u, aimed at maximizing the objective function J. 

1.3. Previous work 

In order to situate the objectives of this research, we review very briefly in this section 

some of the previous work related to the topic addressed in this thesis. A more extensive 

literature review will be presented in Chapter 2. 

Previous work on information valuation in reservoir engineering focused on analyzing 

how additional information impacts the model predictions. Krymskaya et al. (2010) use 

the concept of observation impact, which provides a measure of the information content 

in the observations. Le and Reynolds (2014a, 2014b) quantify the usefulness of 

information as how much the assimilation of an observation contributes to reducing the 

uncertainty of a variable of interest (e.g., NPV). Both approaches are based on data 

assimilation, and Figure 1.3 schematically represents how measured data are used to 

update a prior ensemble of reservoir models, resulting in a posterior ensemble which 

forms the basis to compute various measures of information valuation. Note that these 

two studies only measure the effect of additional information on model predictions and do 

not explicitly take into account how the improved model predictions are used to make 

better decisions. 
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Figure 1.3: Data assimilation and information valuation. 

Another way to quantify the value of future information originates from the field of 

decision theory. Howard (1966) was one of the first to formalize the idea that information 

could be economically valued within a context of decision making under uncertainties. 

Bratvold et al. (2009) produce an extensive literature review on VOI analysis in the oil 

industry, but none of the applications reported by them seems to address reservoir 

management problems. Their main point is that “one cannot value information outside of 

a particular decision context”. In this context, VOI is defined as the difference between 

the value achieved by the decision made with the additional information and the value 

achieved by the decision made without it. 

1.4. Research objectives 

The main goal of this PhD work is to answer two key questions: 

Q1. How to quantify the contribution of future measurements to the success of CLRM? 

Finding an answer to this first question has been the object of recent research studies in 

the reservoir engineering community; see section 1.3. However, these studies were 

restricted to the use of the data assimilation scheme to quantify the effect of 

measurements on the model predictions, which was then assumed to be a measure of their 

usefulness in the view of the inherent geological uncertainties. On the other hand, 

previous work in decision theory (section 1.3) showed that the value (or usefulness) of 

additional information depends on the decision context. Inspired by the VOI concepts of 

decision theory, in this thesis, we investigate opportunities to use the CLRM environment 
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as a tool to quantify how much future measurements will contribute to better decision 

making. The improvement in decision making results in incremental performance (or 

additional value, expressed in terms of the selected performance metric), allowing us to 

assess the VOI in CLRM. Thus, the VOI should be ultimately understood as a function of 

the assessed future measurements, the decisions of interest (and the corresponding 

performance metric) and the (initial) state of uncertainty. 

VOI assessment is the first step towards the development of a framework to optimize the 

design of reservoir surveillance plans. The ability of assessing the value of future 

measurements is relevant to determine the economic feasibility and support investment 

decisions on reservoir surveillance. It can be used to establish whether the expected 

additional value of specific observations is worth the cost to obtain them or to determine 

how much one should be willing to pay for them. Besides that, improved designs of 

monitoring strategies represent an opportunity to reduce project expenses on costly 

observations by allowing us to invest only on the deployment of the measurements that 

are expected to add the most value. Some of these measurements may be gathered only 

once or a couple of times (e.g., a repeat seismic survey or a production test) whereas 

others may be gathered multiple times or even continuously once the sensors are installed 

(e.g., production data from permanent downhole gauges). In this thesis, we seek a 

methodology that can be applied in both situations, for single and multiple observation 

times. 

An additional complexity arises when it is attempted to quantify the VOI for CLRM, i.e., 

under the assumption that frequent life-cycle optimization will be performed using 

frequently updated reservoir models. Therefore, the objective of the first part of this 

research is to: 

Obj.1: Develop a methodology to assess the VOI in such a CLRM context. 

The optimal reservoir surveillance plan is the one that delivers the most valuable 

measurements throughout the reservoir life-cycle, providing the most useful information 

for reservoir management purposes. However, it is important to realize that these 

measurements are observations of the response of the reservoir to the implemented 

production and development strategies, which therefore have also an impact on the 
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outcome and value of the measurements. This brings us to the second question that 

motivates this PhD research: 

Q2. How to determine production strategies that, besides optimizing production, can 

also deliver the most useful information? 

The ability of assessing the value of future measurements constitutes an opportunity to 

reformulate the production optimization problem, allowing us to account for the 

contribution of future information to optimize production. The current approach for life-

cycle optimization under uncertainty (section 1.2.1) assumes that the (geological) 

uncertainties are static. However, we know that additional measurements will become 

available throughout the reservoir life-cycle. When we consider only the initial state of 

uncertainty to optimize the production strategy for the entire reservoir life-cycle, we do 

not take advantage of the fact that we control when to gather and assimilate the future 

information. To circumvent this limitation, in the second part of this work we investigate 

possible approaches to: 

Obj.2: Integrate a VOI assessment tool in the CLRM optimization framework. 

1.5. Thesis outline 

This thesis has two parts corresponding to the two main research objectives described in 

section 1.4. In the first part (Chapters 2, 3 and 4) we focus on the development of the 

methodology for VOI assessment in CLRM. In the second part (Chapters 5 and 6), we 

discuss the use of VOI considerations in the optimization of exploitation strategies. 

Chapter 2 presents the base of the methodology by introducing our workflow to 

determine the VOI given a single observation time in the future. In this chapter, we start 

by reviewing more extensively the previous work on information valuation with 

applications in reservoir engineering. We then describe our methodology that uses the 

entire CLRM framework to include the decision making in the VOI assessment instead of 

relying only on the data assimilation step to quantify the value of future measurements. 

Chapter 3 discusses the extension of the methodology to cases with multiple observation 

times. In this chapter, we describe how a slight modification can enable the original 

workflow from Chapter 2 to assess the value of a series of measurements without a 



1. Introduction 
 

10 

1

prohibitive increase in computational costs. Next, with the help of a simple illustrative 

example we show that the results obtained are consistent with our previous findings. 

Chapter 4 is dedicated to making our proposed methodology more practical. For that, we 

use clustering techniques to select subsets of representative models and significantly 

reduce the computational costs of the original workflow. We repeat the numerical 

experiments from the previous chapters and we obtain similar results with a reduction of 

the number of reservoir simulations by approximately two orders of magnitude. After 

that, we apply the same measures to make the VOI assessment possible in a larger 

example as a first step towards large-scale applications. 

Chapter 5 presents a new approach for production optimization in the context of CLRM 

by considering the impact of future measurements within the optimization framework. We 

integrate the reasoning behind the a priori VOI analysis to modify the optimization 

problem so that it anticipates the fact that additional information (e.g., production 

measurements) will become available in the future. We illustrate the concept with the 

simple example from the previous chapters and the results obtained confirm that this new 

approach can lead to better decisions and increased VOI. 

Chapter 6 expands the ideas introduced in Chapter 5 to the field development 

optimization problem. We combine VOI assessment and well-location optimization in a 

nested approach which delivers flexible development plans that consider the effect of 

time-dependent uncertainties. This allows the optimization to benefit of the sequential 

nature of the drilling activities and to be informed of the impact of current decisions (i.e., 

the drilling of the first next wells) and future information on subsequent decisions (i.e., the 

drilling locations of future wells), resulting in better development strategies. 

Finally, this thesis is concluded in Chapter 7. This chapter provides an overview of the 

conclusions of this research, highlighting the main findings of each chapter, followed by a 

list of recommendations for future research on topics related to VOI assessment in 

CLRM. 

 



 

 
1 This chapter is based on Barros, E.G.D., Van den Hof, P.M.J. and Jansen, J.D. (2016). Value of 

information in closed-loop reservoir management. Computational Geosciences, 20 (3), 737-749. 
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Value of information for a single 
observation time 

This chapter 1 presents our methodology to perform value of information (VOI) analysis within a closed-

loop reservoir management (CLRM) framework. The workflow combines tools such as robust 

optimization and history matching in an environment of uncertainty characterization. The approach is 

illustrated with two simple examples: an analytical reservoir toy model based on decline curves and a water 

flooding problem in a two-dimensional five-spot reservoir. The results are compared with previous work on 

other measures of information valuation, and we show that our method is a more complete, although also 

more computationally intensive, approach to VOI analysis in a CLRM framework. 

2.1. Introduction 

Over the past decades, numerical techniques for reservoir model-based optimization and 

history matching have developed rapidly, while it also has become possible to obtain 

increasingly detailed reservoir information by deploying different types of well-based 

sensors and field-wide sensing methods. Many of these technologies come at significant 

costs, and an assessment of the associated value of information (VOI) becomes therefore 

increasingly important (Kikani, 2013). In particular assessing the value of future 

measurements during the field development planning (FDP) phase of an oil field requires 

techniques to quantify the VOI under geological uncertainty. An additional complexity 

arises when it is attempted to quantify the VOI for closed-loop reservoir management 

(CLRM), i.e., under the assumption that frequent life-cycle optimization will be performed 
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industry. Bratvold et al. (2009) produce an extensive literature review on VOI in the oil 

industry. Their main message is that “one cannot value information outside of a particular 

decision context”. Thus, reducing uncertainty in a model prediction has no value by itself, 

and VOI is decision-dependent. 

Over the last years, the number of publications on VOI in reservoir engineering 

applications has been growing, along with new approaches which tend to include decision 

making in the analysis. Bhattacharjya et al. (2010), Trainor-Guitton et al. (2013) and 

Nakayasu et al. (2016) have proposed methodologies to quantify the value of spatial 

information to assist in the exploration and development of reservoirs. Sato (2011) has 

discussed the use of VOI analysis for the design of monitoring strategies in geological 

CO2 storage. Bailey et al. (2011) have addressed the problem of valuing future 

measurements in the context of the optimization of well completions to maximize 

production. More recently, He et al. (2016) and Chen et al. (2016) have studied the a-priori 

evaluation of pilot and surveillance programs. For a more complete review of the recent 

developments on VOI in Earth science related topics, we refer to Eidsvik et al. (2015). 

2.3. Methodology 

In our setting, the decision is the use of an optimized production strategy as obtained in 

the CLRM framework (section 1.1). We intend to not only quantify how information 

changes knowledge (through data assimilation), but also how it influences the results of 

decision making (through optimization). We express the optimized production strategy in 

the form of a control vector u which typically has tens to hundreds of elements (e.g. 

bottom-hole pressures, injection rates or valve settings at different moments in time) and 

which needs to be updated when new information becomes available. The proposed 

workflow is depicted in Figure 2.1. The procedure consists of a sort of twin experiment on 

a large scale, because the analysis is performed in the design phase – when no real data are 

yet available. Note that classical CLRM is performed during the operation of the field 

whereas we are considering here an a-priori evaluation of the value of CLRM (i.e. in the 

design phase). The workflow starts with an ensemble Mtruth of Ntruth realizations which 

characterizes the initial uncertainty associated with the model parameters. From this 

ensemble, one realization is selected to be the synthetic truth mtruth . Thereafter, a new 
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In a similar fashion, Figure 2.4 (top right), Figure 2.4 (bottom left) and Figure 2.4 (bottom 

right) display the VOI, the uncertainty reduction in NPV and the observation impact as a 

function of observation time tdata . In Figure 2.4 (bottom right), the peak in the observation 

impact indicates that production data is most informative around tdata = 30; in Figure 2.4 

(bottom left), the uncertainty reduction follows the same trend; and, in Figure 2.4 (top 

right), the VOI also increases at the same time. This suggests that, in this example, 

measurements with a higher observation impact also result in a larger uncertainty 

reduction in NPV and a higher VOI. However, whereas the observation impact and the 

uncertainty reduction both peak around tdata = 30 and gently decrease afterwards, the VOI 

exhibits a more abrupt decrease, similar to what is observed for the VOC. This indicates 

that the VOI depends not only on the information content of the observations but also on 

their timing, just as was discussed for the VOC. Moreover, these results illustrate that the 

proposed workflow allows to take both information content and timing into account and, 

therefore, results in a VOI assessment more complete than the analyses proposed in 

previous works related to reservoir management applications. 

Figure 2.5 (left) shows the same results, but focusing on the expected (or mean) values of 

VOC (black) and VOI (blue). This plot clearly illustrates that the expected VOC is always 

an upper bound to the expected VOI, which is an anticipated result provided that the 

same set of plausible truths is considered in both VOI and VOC analyses. Indeed, 

production data, no matter how accurate, can never reveal all uncertainties. After water 

breakthrough, production data is more informative and it is more likely that the 

uncertainties influencing the optimization of the production strategy be revealed; thus, 

information more closely approaches clairvoyance. Figure 2.5 (right) illustrates this in a 

different way by displaying the chance of knowing (COK), defined as the ratio VOI/VOC 

(Bhattacharjya et al., 2010). 

The different information measures suggest in this case that the most valuable 

measurements are the ones around tdata = 30. We conclude that a decision maker analyzing 

when to obtain a production test to optimally operate this reservoir should take a 

measurement around this time and should be willing to pay at most approximately $ 80 – 

and not $ 4,000 as the uncertainty reduction analysis would suggest (Figure 2.4 (bottom 

left)). Note that the model we used in this example is very simple. The optimal strategies 














































































































































































































































































































