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Microchannel flow5

The devices consist of two-layer graphene 
suspended over cavities. Lasers actuate the 
membrane thermally and detect its motion.
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We show a platform for 
studying nanoscale 
thermodynamics which 
can enable new types of 
permeation based gas sensors.  
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The two peaks in the response describe 
thermodynamic properties of the system:
      Gas permeation time constant τ
      Thermal equilibration time constant τ

gas

th

The frequency response of the drums 
shows two peaks in the imaginary part 
below the mechanical resonance.

The gas opens a new thermal pathway, 
decreasing the thermal equilibration 
time constant. 

The thermal equilibration time constant 
depends on the thermal contact of the 
membrane with the surrounding and 
the heat capacity of the membrane. 

6 Conclusion

The pore size, number of perforation and 
cumulative area can be adjusted to shift 
the permeation peak and investigate the 
transitional flow between molecular and 
continuum.

Here we show infuence of a permeation 
resistance by a channel connecting the 
cavity with the pore. 

The permeation time is 9 times longer 
through the 5 x 0.65 x 0.285 μm channel as 
compared to a direct connection. 

In the Knudsen regime, the permeation time 
depends linearly on the square root of the 
particle mass.

We have observed a gas specific response in 
pressures varying from 60 mbar to 1 bar 
and with poresizes from 10 to 400 nm. 
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