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Abstract

The Recurrent Inference Machine (RIM) has been developed as an alternative
to the clinically used Compressed Sensing (CS) algorithm, using Deep Learning
(DL). A common issue with DL networks is the generalization of the network to
features that have not been trained for. In this study we evaluate the robustness
of the RIM to white matter lesions in FLuid Attenuated Inversion Recovery
(FLAIR) brain MRI data. We are evaluating two pre-trained RIM networks, one
trained on T1 brain data and another trained on T2 knee data. This evaluation
was done by comparing the two networks to CS in terms of the average relative
Signal-to-Noise Ratio (SNR) and Contrast Resolution (CR) that is achieved on
15 datasets acquired from Multiple Sclerosis patients. From these comparisons
it shows that the network trained on T2 knee data performs similar to CS in
terms of the relative SNR, while having a higher CR. The network trained on
T1 brain data has both a lower relative SNR and CR, compared to CS. The
data suggest that the RIM trained on T2 knee data is robust to the inclusion
of lesions in an area that the network was not trained on.
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Acronyms

CR Contrast Resolution.

CS Compressed Sensing.

DL Deep Learning.

FLAIR FLuid Attenuated Inversion Recovery.

FOV field-of-view.

MPRAGE Magnetization Prepared RApid Gradient Echo.

MRI Magnetic Resonance Imaging.

MS Multiple Sclerosis.

RF Radio Frequency.

RIM Recurrent Inference Machine.

SNR Signal-to-Noise Ratio.
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Chapter 1

Introduction

Medical imaging is an important part of medical care, as it gives vital informa-
tion about the status of the patient. For the benefit of the patient, it is best that
the imaging is done in a non-invasive and non-damaging manner. One of the
most popular and frequently used non-invasive imaging technique in the clinical
setting today is Magnetic Resonance Imaging (MRI).

In MRI, as the name suggests, the signal is generated by the magnetic reso-
nance of hydrogen protons. These have a specific resonance frequency depending
on the magnetic field strength, making it possible to give them a magnetization
[1]. Slight deviations exist in resonance frequency depending on the configura-
tion in which a proton is embedded. Also, the magnetic susceptibility may be
different depending on the environment of the proton.

These differences affect the signal that will be measured with certain scan-
ning parameters. This is used to create different scanning sequences, that are
capable of giving anatomical or functional information, such as functional MRI
(fMRI) and Diffusion Weighted Imaging (DWI). In terms of anatomical vari-
ations, there are sequences like T1-weighted (which has bright fat signal) and
T2-weighed (which has lower fat and higher water signals). Furthermore, it is
possible to have sequences like FLuid Attenuated Inversion Recovery (FLAIR),
where the signal of fluids is nulled by only recording data after the magnetization
of the fluid signal has been cancelled out.

With MRI, it is not possible to directly get an image of the tissue, but it
is necessary to work through the frequency domain, known as k-space. The
k-space represents the Fourier-transformed MR-image, containing the harmonic
frequencies that describe it in image space. This information is received through
the radio frequency (RF)-receivers that can receive the frequency data of a
specific subsection of k-space when a subsection of the body is magnetized.

The process of acquiring data is, however, a slow process. With general
MRI only one line can be obtained at a time, with a repetition time (the time
between two lines) ranging from half a second to more than 5 seconds, depending
on the sequence type [25]. For 2-Dimensional imaging these acquisition times
are acceptable, but for 3-Dimensional imaging there is an increasing need for

1



Figure 1.1: Image showing a typical blurred image due to the use of random 2D
under-sampling, before reconstruction.

higher resolution and faster scanning times. The scanning times are constrained
due to hardware limitations, making the data acquisition process too much of a
burden for the patient.

In order to speed up the scanning times, different techniques have been
developed. The current state-of-the-art technique that is used in practice, is
Compressed Sensing (CS) [11]. CS makes use of the fact that when sampling
less in k-space, thus acquiring less data, in a random manner, the acquired image
will be evenly blurred; an example of such a blurred image can be seen in Fig.
1.1. This makes it possible to use iterative techniques for restoring an image
which will be a close approximation to the one acquired from a fully-sampled
k-space. As CS uses a subset of the fully sampled data, inherently the image will
contain more noise and less detail than a fully-sampled one, and will therefore
have a worse quality.

CS, however, is also computationally intensive and slow, regarding the im-
age reconstruction. For accelerating the reconstruction times and achieving high
quality images, research has branched out to Deep Learning (DL) [7, 18, 21].
These DL-networks focus on learning strong prior features learned from a train-
ing dataset, for the reconstruction of other datasets. The earliest models were
based on Convolutional Neural Networks [20, 26], while later models made use
of physics based models [17, 5]. For more information on these types of models,
see Appendix A.4.

An issue with DL networks is the generalization to different types of data[19].
For addressing these issues, evaluations need to be carried out, testing the ro-
bustness of such networks under various conditions, such as with different se-
quences and pathologies. It has been shown before that it is possible to train
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a network on one sequence type (for example T1) and use this model to recon-
struct data from another sequence type, and thus different contrast [6]. Another
important condition that networks need to be tested on, is on different patholo-
gies. For the diagnosis of diseases, it is vital that tissue that has been changed
due to disease can be differentiated from healthy tissue. Therefore, it is also
important to evaluate DL networks on the reconstruction of data containing
disease pathology.

In this thesis, we aim to show the robustness of the Recurrent Inference
Machine (RIM) network [17] to image features that have not been trained for, by
reconstructing prospectively under-sampled brain FLAIR image data containing
white matter lesions, visible as areas with higher signal values in the white
matter. For this evaluation, we will compare two pretrained RIMs to CS, where
each network was trained on a different sequence and anatomy, one on T2 knee
data and the other on T1 brain data.

These afforementioned lesions are an important part of the diagnosis, and
the tracking of, the progression of Multiple Sclerosis (MS) [8], a neurodegenera-
tive disease. For this purpose, it is important that the lesions are distinguishable
from the areas around them, as the size of the lesions can give important in-
formation on the progression of the disease. In order to test the reconstruction
quality, the lesions are segmented by a different deep learning network, and the
Contrast Resolution will be used to test for the distinction between the lesions
and the white matter.

As the knee data has structures in the data that have similar contrasts
and tissue variations, and has a similar contrast as the data that contains the
contrast rich lesion data, the expectation is that the network trained on the
knee data will better reconstruct the lesion contrast within the region of the
lesions.
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Chapter 2

Materials and methods

2.1 Datasets

2.1.1 MS patient data

For this study, under-sampled MRI data was available from subjects of an on-
going MS study.

MS is a neurodegenerative disease marked by inflammation of the central
nervous system, resulting in inflammation, or lesions, in the white and gray
matter and other areas of the brain [8]. These lesions are not a unique pathology,
but also develop with age [2]. That is why the diagnosis of MS done based on
the way the symptoms present themselves, in combination with the presence of
lesions.

The progression of MS generally happens in multiple stages. The stage that
most MS patients are in when they are diagnosed, is the Relapsing-Remitting
MS (RRMS) stage. In this stage, the disease is characterized by periods of worse
symptoms, with the symptoms mostly improving in between these periods. This
generally lasts for at least ten years, before it progresses into more aggressive
forms of the disease. The data used in this thesis are of patients being in the
RRMS stage of the disease.

Of the available data of this study, 68 datasets have been taken into consid-
eration. Due to limitations that will be described later in this work (Sec. 2.1.1
and 3.2), only 15 datasets have been used for the analysis.

For each volume a T1 and a FLAIR scan is available, both being under-
sampled (Sec. A.2). The under-sampling pattern used in this study is 2D
and sampled as a Variable-density Poisson disk variety, in the phase and slice
encoding direction. An example of the type of under-sampling pattern used is
shown in Fig. 2.1. This is not the exact under-sampling pattern that was used
in this study, however it is similar to the one that was used.

The data was acquired on a 3.0T Philips Ingenia scanner (Philips Healthcare,
Best, The Netherlands), using a 32-channel head coil. For T1 the Magnetization
Prepared RApid Gradient Echo (MPRAGE) scheme was used. The T1 scans

4



Figure 2.1: Example of the type under-sampling pattern used in this study.
This under-sampling pattern is not the same as was used in this study, but it is
similar. The main difference is the depicted pattern has a fully sampled center,
while the center of k-space was sparsely sampled in the available data. Image
taken from [15].

had an isotropic voxel resolution of 1.0 mm, with a volume size of 252x240x256
voxels, and an under-sampling factor of 2.5. The FLAIR scans had an isotropic
voxel resolution of 1.12 mm, with a volume size of 163x223x224 voxels, and
an under-sampling factor of 7.5. Random under-sampling, using an under-
sampling pattern developed by Philips Healthcare, was applied to enable sparse
reconstruction. For most subjects a small and fully sampled reference scan
was also available. This reference scan was scanned in the same volume as the
larger datasets. During scanning, the reference scan used the same field-of-view
(FOV) and orientation as the other scans. The only difference in FOV was
over-sampling in the frontal axis, in the T1 datasets.

Based on the header information in the datasets, a preselection of the data
was made. When working with multi-coil data, the MRI-scanners generally
remove the data of individual coils that are too noisy. With the removal of
noisy coils, situations arise where some coil elements are removed in the under-
sampled data, but not in the reference scan, and vice versa (Fig. 2.2). This
mismatch of the amount of coils, or even of different coils being classified as
noisy between the under-sampled and reference scan, causes problems for the
reconstructions. However, these problems are outside of the scope of this study,
and thus the datasets with a mismatching number of coils have been excluded.
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Figure 2.2: Image showing an example of coil mismatch. The top row is the
under-sampled FLAIR data of a single slice for multiple coils, reconstructed
with the zero-filling method, while the bottom row are the coil sensitivity maps
that are calculated from the reference scan (see also Fig. 2.3). From left to right
are a subset of the coils in the same order. Outlined in blue are the two coils
of which the corresponding coil in the other dataset was removed. Outlined in
green are two coils that should be above each other, but are now mismatched.

After this exclusion 18 of the 68 datasets were left.

2.1.2 Training data

For the training of the DL-networks, two different datasets were used. A T2
knee dataset, described in [3] and a T1 brain dataset. The T1 brain data were
acquired using a 3D T1 MPRAGE acquisition, with a 1.0 mm isotropic voxel
resolution, an FOV of 256x256x240 mm, acceleration of 10.8, and contained 32
coils. For the under-sampling of the training data, 2D Gaussian under-sampling
was used with a full width at half maximum of 0.7, relative to the dimensions
of the k-space. The center was also fully sampled. The fully sampled region in
the center of k-space had the shape of an ellipse, with a width of the half-axes
that was 2% of the sampled Gaussian region.

2.2 Preprocessing

For the preprocessing of the data, several steps have to be taken. The data has
to be read from the raw data structure, a k-space mask has to be generated and
the read k-space has to be normalized and cropped. Furthermore, the sensitivity
maps have to be created from the smaller reference scan.

2.2.1 Data reader

The original format of the data was in .List/.Data, which is a raw data format
structure used in Philips Healthcare MRI Scanners. This means that the data
contain raw k-space values which need to be preprocessed. The loading is done
by first reading the header from the .List file. The header contains all the
necessary information for loading the data, such as the matrix size and which

6



bytes correspond to which k-space points. Once read, the header information is
used to load the binary data in the .Data file.

Out of this loaded k-space we can extract a binary mask representing the
sampling pattern, needed for the later steps. The under-sampled k-space con-
tains data that is zero where no acquisition was done. Thus, the mask was
created by including the points of a single 2D slice along the readout direction
that have a value higher than zero.

The used techniques benefit from normalization of the volumes. This nor-
malization needs to be performed in image space, in order to maintain a proper
range of values, between 0 and 1. Thus, the data were transformed from k-space
to image space, and back to k-space for two of the three dimensions, using the
following procedure. In the end this procedure is similar to a 1D inverse Fourier
transform along the readout direction, but with added normalization and crop-
ping.

The k-space volume is transformed to image-space by the 3-Dimensional
inverse Fourier transform. While the volume is in image space, the volume was
cropped if oversampling occurred in the readout direction. Whether a volume
has oversampling is determined from the header information in the .List file. The
oversampling was cropped only in the readout-direction, as cropping the volume
in the other directions would cause the k-space to change substantially, resulting
in a volume that cannot be reconstructed. The volume is then normalized by
dividing it by the maximum absolute value of the volume. Finally, we go back
to k-space by applying the 2D Fourier transform.

However, as the Fourier transform is incapable of keeping the under-sampling
pattern intact without introducing noise in k-space, the parts of k-space that
had zero values before, now have non-zero values. The Fourier transform is
not likely to give values of zero for frequency values when it encounters noisy
data, especially after the data is normalized. These non-zero values make the
reconstruction using CS impossible, since this technique makes use of the under-
sampling pattern contained within the k-space. Consequently, the mask that
was previously generated is used to conserve the under-sampling pattern. Hav-
ing the under-sampling pattern intact then provides better reconstruction.
One important difference in the k-space obtained from the normalized image
is that the 2D Fourier transform is used, rather than the 3D transform. This
allows for the data to be used as individual slices, instead of as a volume. Us-
ing image slices rather than 3D image volumes is important for the applied DL
method (Sec. A.5), as they were designed to operate on 2D data.

2.2.2 Coil sensitivity maps

Apart from normalizing the images, also the coil sensitivity maps needed to be
estimated. The coil sensitivity maps are necessary, as they allow those tech-
niques to reconstruct multi-coil data using localized information of the signals.
When using an RF coil array to do image acquisition, every coil has a certain
region where they are sensitive to signal. This sensitivity of each coil over the
volume can be saved in a coil sensitivity map.
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Figure 2.3: This image shows an example of the coil sensitivity maps generated
during the preprocessing. The bright regions are the areas where the coils have
a higher sensitivity, while the darker areas indicate a lower sensitivity.

The sensitivity map is estimated from the fully-sampled reference scan,
which is needed, as the under-sampling pattern does not contain a fully-sampled
center.

The sensitivity maps were estimated using the caldir method[14] of the
BART toolbox[24]. An example of the generated coil sensitivity maps is given
in Fig. 2.3. The reference scan is scanned using a lower resolution, but with
the same FOV, as a high resolution is not needed for this scan, and the smaller
size makes scanning times shorter. However, as the reference scan is smaller
than the scans that the sensitivity maps are needed for, the sensitivity maps
require resizing. Thus, the generated sensitivity maps are scaled up to the larger
under-sampled volumes.

There was a difference in FOV for the T1 MPRAGE datasets, which had a
larger over-sampling factor in the frontal axis. However, this change in FOV
only changed the amount of background around the images, keeping the center
of the image in the same place. In order to make the sensitivity maps the
same size as the under-sampled volumes, the sensitivity maps are padded with
zeros in k-space, which increases the volume size, without changing the FOV.
For the added background regions along the frontal axis of the T1 datasets,
the sensitivity maps are also padded with zeros in image-space, in order to not
distort the geometry of the sensitivity map.

2.3 Reconstruction methods

For the reconstruction of data in this study, two different methods were applied.
The first was the CS, and the latter the RIM, which is a DL network. For a
brief overview on these methods the reader is referred to section A.3 and A.5
and the references therein. Both techniques have been used with the option to
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reconstruct using a GPU (NVIDIA V100 32GB).

2.3.1 Compressed Sensing

For the CS method, the Parallel Imaging and Compressed Sensing (PICS) op-
tion of the BART toolbox was used. This technique can be used both in a
slice-wise and volume-wise manner. For this study, the slice-wise manner was
applied. The `1-wavelet was used (see equation A.3), with a regularization of
0.005 and a maximum number of iterations set to 60 (empirically optimized).
In order to make use of the GPU, instead of the conventional CPU, the -g flag
was turned on.

2.3.2 Recurrent Inference Machine

The data were also reconstructed using the RIM. The RIM network was used
in a modified version of the DIRECT toolbox [23].
With the reconstruction of data using DL networks, there is always the choice
between changing the data, in order to work in the model, or training a model
on data that has the same characteristics as the data that is to be reconstructed,
with each having their own benefit. As the point of this thesis is to assess the
robustness of the RIM to unseen data during training, the choice has fallen on
bringing the data to the model and to use two different pretrained networks
for the comparison. In this case it is less complicated to bring the data to the
model, as the available models have already been trained on data with a specific
preprocessing pipeline.

The models presented in this work, make use of the Independently Recurrent
Neural Network (IndRNN) as choice of the recurrent layers [9]. The motivation
for choosing this recurrent variant was the faster reconstruction time it has
compared to the Gated Recurrent Unit (GRU) [6], which was originally in this
paper [10]. Furthermore, this variant achieves equivalent reconstruction quality
to the GRU.

The two networks were trained on different data. One was trained on T2
knee data from a public data repository [3] (an example of the data is given in
Fig. 2.4), while the other was trained on T1 brain data(an example of the data
is given in Fig. 2.5). Both models were trained, and reconstructed using 64 filter
channels and 8 time-steps, and the ADAM optimizer [13]. The implementation
of the neural networks was done in Python and using the Pytorch framework
[16].

2.4 Evaluation

Evaluation was done by comparing the signal level between the white matter
and the lesions as they appear in the 3D-FLAIR scans of the MS patient study.
These were used to calculate the relative Signal-to-Noise Ratio (SNR) and the
Contrast Resolution (CR). The SNR can give an indication of how easy it is to

9



Figure 2.4: Example image of the data in the knee dataset. Image taken from
[3].

Figure 2.5: Example image of the data in the T1 dataset
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discern the signal from the noise in the background. We would therefore prefer
the SNR to be as high as possible. However, there are cases where the SNR
fails to give a good estimate of the reconstruction quality. This is, for example,
when an image is blurred. In the case of blurring, the SNR can still be high,
while also not being useful for medical evaluation. In order to give a better
approach for the quality of the reconstructions we also look at the CR, which
gives a meassure of the contrast between two different tissue types. The higher
this is, the better they are discernable.

The lesion segmentations were performed at the Vrije Universiteit Medical
Center (VUMC), using a Convolutional Neural Network (CNN) created for the
segmentation of lesions in MS patients [22].

For the segmentation of the white matter, the SPM toolbox was used [4].
Contrary to the rest of the project, which was done in Python, these segmen-
tations were made using the Matlab toolbox. For these segmentations, the first
step was to create a registration of the T1 data to the FLAIR data. Then,
using the built-in brain segment function in SPM, the T1 data could be used to
create probability masks of the white-matter, gray-matter and CerebroSpinal
Fluid (CSF) regions in the brain. Once the different probability masks were
created, the white-matter probability mask could be resliced using the earlier
done T1 to FLAIR data registration, while the other masks were not used.

A comparison between the different reconstruction methods was made by
calculating the relative SNR and the CR.

For the calculation of the relative SNR, the white matter was used as signal
region, as the segmentations were already available to determine the contrast.
The white matter was used, as it should have a similar signal value for all three
reconstruction methods. The noise was calculated by selecting a patch from a
region-of-interest in k-space. This patch was taken in one of the corners near
the top of the head. In order to get reasonable noise values from the k-space
measurement, the k-space was also normalized to have a similar value range as
the image-space data.
Although, usually data are normalized to the maximum value of the data, the
center of k-space generally has a value that is magnitudes larger than the rest
of k-space. Thus, normalizing by the maximum value gives noise values that
are unreasonably low, e.g., if the value in the center of k-space is 4 magnitudes
higher than the rest of k-space, the noise values will be 4 magnitudes smaller
when normalizing by this highest value, and the SNR will be 4 magnitudes
larger. Therefore, the maximum value of the k-space was estimated by the
median value. When data is normally distributed, the median and mean value
of a dataset are roughly the same, but for data that is not normally distributed
this is not the case. When data is not normally distributed, the median value
gives a better representation of the average [12]. Therefore, the median value is
better capable of handling the outlier values that might be very small, or very
large, compared to the rest of the data, leading to a better estimation of the
scaling.

The CR can give a measure of the amount of contrast between two tissue
types, based on the difference of the mean signals. In order to compare the
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(a) (b) (c)

Figure 2.6: Image showing the dilation of the lesion for the calculation of the
CR. Shown are the complete FLAIR image (a), the segmented lesions (b), and
the complete image overlaid with the lesion segmentation in red and the used
border region in the white matter in yellow(c).

signal of the lesion only with the surrounding white matter area, the lesion
masks were dilated by 4 voxels, and the dilated areas that have overlap with
the white matter mask were used as border region. An example of this border
region is given in Fig. 2.6. As the segmented white matter is not necessarily
homogenous, this gives a comparison that focuses more on the border region
that is important for the segmentation of lesions. In this case, the CR is defined
as

CR =
SA − SB
SA + SB

, (2.1)

where SA is the signal of the lesion and SB is the signal in the white matter
surrounding the lesion.
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Chapter 3

Results

3.1 Visual assessment

A direct comparison of one slice for the three different reconstruction methods
can be seen in Fig. 3.1. In this figure the root-sum-of-squares image is also
shown, which is a representation of the under-sampled image using the zero-
filling method, i.e., unsampled values in k-space are taken as zero. In this
comparison it can be seen that the CS reconstruction contains the least amount
of visible noise in the background regions. Furthermore, the two reconstructions
that are the most similar, on visual inspection, are the CS reconstruction and
the brain model reconstruction, as they look similar in the white matter areas
next to the ventricles. On the other hand, the boundaries of the same darker
colored area looks less aliased in the reconstruction using the knee model. The
brain model reconstruction and CS reconstruction also look more blurred in this
same area. However, the reconstruction using the knee model does have some
blurred areas of its own, which can be seen in the right frontal lobe of the brain
at the boundary between white and gray matter.

In Fig. 3.2, 3.3 and 3.4, the reconstructions of data from three different
patients are shown. For each reconstruction method multiple different images
are shown. These images are the reconstructed FLAIR image, an enlarged
portion of this image showing more detail, a colored image showing the white
matter and lesion segmentations in the original image, and the cutouts of both
the white matter and lesion segmentations. Important to note in these figures
is the enlarged portion in column B. In the images in this column, it can be
seen that the T2 knee model gives reconstructions that appear sharper, with
less aliased boundaries between the different tissue types. In figure 3.2 this can
be seen at the boundary between the lesion and the white matter, for example,
as well as at the boundary with the CSF on the right side of the image. In Fig.
3.3 this is clearly visible from the boundary of the lesion on the right, however
in this case there is a blurred region in the top left of this image in row 2, at
the white and gray matter boundary. This is most apparent when comparing
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(a) (b)

(c) (d)

Figure 3.1: Image showing the aliased starting image (a) obtained using the
root-sum-of-squares method on the multi-coil undersampled data, together with
the reconstruction using CS (b), and the knee T2 model (c) the brain T1 model
(d).
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Figure 3.2: Figure showing the reconstruction of a single slice using CS (1), the
knee model (2) and the brain model(3). Shown are the reconstructed image (A),
a higehr resolution part of the image (B), the image with white matter (teal)
and lesions (purple) colorized (C), the white matter segmentation (D) and the
lesion segmentation (E).

this region to the same area in the CS reconstruction.

3.2 Quantitative analysis

The numerical analysis of the reconstructions using the CS technique and the
RIMs trained either on T1 brain data or T2 knee data has been done using
the relative SNR and the CR (as defined in Sec. 2.4). Due to problems with
the SPM segmentations, where white matter was not segmented correctly from
the datasets, 3 datasets were excluded. This left a total of 15 datasets per
reconstruction method for the analysis.

One-way repeated measures ANOVA were used to examine the effect of the
reconstruction methods. Figure 3.5 shows the relative SNR between the three
methods. The type of reconstruction method lead to statistically significant
differences in the relative SNR (F(2,28)=3.9667, p=.0304). Further paired-
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Figure 3.3: Figure showing the reconstruction of a single slice using CS (1), the
knee model (2) and the brain model(3). Shown are the reconstructed image (A),
a higher resolution part of the image (B), the image with white matter (teal)
and lesions (purple) colorized (C), the white matter segmentation (D) and the
lesion segmentation (E).
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Figure 3.4: Figure showing the reconstruction of a single slice using CS (1), the
knee model (2) and the brain model(3). Shown are the reconstructed image (A),
a higher resolution part of the image (B), the image with white matter (teal)
and lesions (purple) colorized (C), the white matter segmentation (D) and the
lesion segmentation (E).
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Figure 3.5: Box plot showing the difference in relative SNR between the three
different reconstruction methods.

Relations t p
RIM Brain → RIM Knee -9.348 <.001
RIM Brain → CS -7.083 <.001
RIM Knee → CS 5.535 <.001

Table 3.1: Outcome of the paired samples t-tests for the CR.

samples t-tests showed that there was a significant difference between the RIM
trained on brains (M = 1.323, SD = 0.241) and the CS reconstruction (M =
1.407, SD = 0.228) (t=-5.452, p<.001). No significant difference was found
between the RIM trained on brain data and the RIM trained on knee data
(M = 1.427, SD = 0.266) (t=-2.051, p=.0595), as well as between the RIM
trained on knee data and the CS reconstruction (t=0.3178, p=.755).

Figure 3.6 shows the CR between the lesions and the area around the lesion.
A visual example of the area around the lesion can be seen in Fig. 2.6. The use
of different reconstructions methods led to a statistically significant difference in
the CR (F(2,28)=61.1229, p<.001). Further paired-samples t-tests were done
to examine the statistical significance between each dataset pair. There was
a statistically significant difference in the CR between all the comparisons of
reconstructions (Table 3.1). This means that the T2 knee model (M = 0.192,
SD = 0.022) had the highest CR, followed by CS (M = 0.184, SD = 0.20) and
the T1 brain model (M = 0.174, SD = 0.022).

A different point that is important for the reconstruction in clinical use, is
the inference time, or the reconstruction time of the data. For the CS technique,
the average reconstruction time on the data was 533 ms per slice, while using
the GPU for reconstructing. Meanwhile, the reconstruction times using the T2
knee and T1 brain models were 132 ms and 135 ms respectively. An overview
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Figure 3.6: Box plot showing the difference in CR between the three different
reconstruction methods.

Reconstruction method
Reconstruction time
(ms per slice)

Compressed Sensing 533
T1 brain model 135
T2 knee model 131

Table 3.2: Table showing the reconstruction time per slice of the different re-
construction methods.

is also given in Table 3.2.
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Chapter 4

Discussion

In chapter 3 it was shown that the relative SNR does not have a meaningful
difference between most reconstruction methods, it is only between the T1 brain
network and the CS reconstruction that there is a statistically significant differ-
ence. The T1 brain network has a lower relative SNR in the white matter in the
FLAIR dataset than the CS reconstructions. In terms of CR, more techniques
have a statistically significant difference between them, than is the case for the
relative SNR. From the box plot in Fig. 3.6 it can be seen that the contast
between the average white matter signal and the average lesion signal is highest
when reconstructed using the T2 knee model, and lowest when reconstructed
using the T1 brain model. There are multiple factors that may aid in this
difference in performance.

One factor is the contrast inherent in the data that the models were trained
on. The T1 brain model was trained on T1-weighted datasets, that contain
an inherently different contrast than T2-weighted datasets, such as the FLAIR
dataset. The T2 weighted knee dataset was trained on T2-weighted datasets,
and although it was trained on a different region of the body, might still contain
valuable contrast information for the training of the network. However, in previ-
ous work the T1 brain model did perform, on average, better on cross-modality
reconstruction than the T2 knee dataset, while performing slightly worse on
the reconstruction of T2 knee data, when looking at the peak signal-to-noise
ratio (PSNR) and the structural similarity index (SSIM) [6]. The better cross-
modality performance of the T1 brain model in other studies makes it unlikely
for the inherent contrast in the training data to be the only relevant factor.

A different factor that can also play a role in the contrast between white
matter and lesion, is whether the model has seen similar boundaries between
regions and similar intensity differences. In the T2 knee data, of which an ex-
ample image can be seen in Fig. 2.4, there are more boundaries with a large
contrast difference, such as between fatty tissue and muscle tissue, and between
the joint fluid and the adjacent muscles. Compared to the brain model recon-
structions, and in lesser extent also to the CS reconstructions, the knee model
reconstructions also seems to be less aliased when inspecting the B columns of
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figure 3.2, 3.3 and 3.4. This might be a result of the numerous adjacent regions,
i.e., regions that have a lot of variations in voxel values, due to the structures of
the muscles and more numerous tissue boundaries in the knee region, compared
to the brain region.

With the improvement in CR from the T2 knee model and the comparable
relative SNR overall, the RIM models were also faster in terms of reconstruction
time (table 3.2), with a reconstruction time that was roughly 4 times faster.
This can take the reconstruction time of a regular dataset with 256 slices, from
2 minutes and 16 seconds to 33 seconds. This also means that less computative
power is needed at hospitals for the reconstruction of data, as more data can be
reconstructed in a smaller time-frame.

4.1 Future work

In order to know whether the earlier made assumptions are valid or not, more
research needs to be done. One suggestion would be to train a brain model
containing T2 FLAIR data, and compare this model with the T1 brain model.
Other experiments that could be done are to train models containing varying
amounts of patients with lesion data, and see if there is an effect on the recon-
struction quality of the lesions, and whether there needs to be a certain amount
of lesion data in a brain model for reconstruction to be better.

For the comparison of the networks it would be useful if a fully sampled set
of lesion rich data was available. This would make it possible to compare the
reconstruction using the conventional PSNR and SSIM metrics.

There are other branches of future research that the data could be taken into.
We have shown that the networks have shown comparable performance to the
clinically accepted CS technique in terms of the relative SNR, and even giving a
higher CR in the case of the knee model. One thing that could be looked in to
is to use this data to train networks, where the acceleration through the under-
sampling is increased by removing sampling points. This would give more insight
into which technique, CS or the RIM, is more robust to high accelerations.

For future work, one thing that will need to be added in the preprocessing
timeline is a way to deal with the coil problems. These coil problems were a main
drawback in this study, as it made a large portion of the datasets unusable. In
general, the scanner examines the SNR of the different coils, and decides to not
save the data from certain coils if the SNR is too low. This process should help
with the quality of the images. However, as the sensitivity maps are generated
from a second smaller scan, the removal of coils with a low SNR can create
a mismatch between the under-sampled data and the reference scan, when the
data of different coils is thrown out, as can also be seen in Fig. 2.2. This was the
main reason for most of the subject data dropping out in this study. Thus, it is
necessary to implement a pipeline for recognizing these mismatched coils, and
removing the coils that correspond to the thrown-out coils in the other dataset.

In the analysis of the reconstructions, three datasets were excluded. These
exclusions were all due to problems with the segmentation of the white matter.
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For two of the datasets, the reconstructions failed completely for all three re-
construction methods. In these reconstructions, the white matter segmentations
contained most of the skull and gray matter as well, and also had one side of the
head missing. In the third excluded dataset, the dark area inside the ventricles
was also segmented as white matter, which then came up as an outlier in the
CR estimation, as the contrast between CSF and the lesions is larger than the
contrast between white matter and the lesions.

22



Chapter 5

Conclusion

In this work we have shown that the RIM trained on T2 knee data outperforms
the CS technique in terms of CR, and the technique gives comparable results
when looking at the relative SNR. The T1 brain model performed worse than
the CS technique on both the relative SNR and the CR. The RIM managed to
reconstruct the data 4 times faster than the CS technique. The data suggest
that the RIM trained on T2 knee data is robust to the inclusion of lesions in an
area that the network was not trained on.

23



Bibliography

[1] R. W. Brown, Y. C. N. Cheng, E. M. Haacke, M. R. Thompson, and
R. Venkatesan. Magnetic Resonance Imaging: Physical Principles and
Sequence Design: Second Edition, volume 9780471720. John Wiley &
Sons Ltd, Chichester, UK, 4 2014. ISBN 9781118633953. doi: 10.1002/
9781118633953.

[2] F. E. de Leeuw, J. C. de Groot, E. Achten, M. Oudkerk, L. M. Ramos,
R. Heijboer, A. Hofman, J. Jolles, J. van Gijn, and M. M. Breteler. Preva-
lence of cerebral white matter lesions in elderly people: a population based
magnetic resonance imaging study. The Rotterdam Scan Study. Journal of
neurology, neurosurgery, and psychiatry, 70(1):9–14, 1 2001. ISSN 0022-
3050 (Print). doi: 10.1136/jnnp.70.1.9.

[3] K. Epperson, R. Rt, A. M. Sawyer, R. Rt, M. Lustig, M. Alley, M. Uecker,
P. Virtue, P. Lai, and S. Vasanawala. Creation of Fully Sampled MR Data
Repository for Compressed Sensing of the Knee. SMRT Conference, 2013:
1, 2013.

[4] K. J. Friston, J. T. Ashburner, S. Kiebel, T. E. Nichols, and W. D. Penny.
Statistical Parametric Mapping: The Analysis of Functional Brain Images,
2007.

[5] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson,
T. Pock, and F. Knoll. Learning a variational network for reconstruc-
tion of accelerated MRI data. Magnetic Resonance in Medicine, 79(6):
3055–3071, 6 2018. ISSN 07403194. doi: 10.1002/mrm.26977. URL
http://doi.wiley.com/10.1002/mrm.26977.

[6] D. Karkalousos, K. Lønning, H. E. Hulst, S. O. Dumoulin, J.-J. Sonke,
F. M. Vos, and M. W. A. Caan. Reconstructing unseen modalities and
pathology with an efficient Recurrent Inference Machine. pages 1–26, 12
2020. URL http://arxiv.org/abs/2012.07819.

[7] F. Knoll, T. Murrell, A. Sriram, N. Yakubova, J. Zbontar, M. Rabbat,
A. Defazio, M. J. Muckley, D. K. Sodickson, C. L. Zitnick, and M. P.
Recht. Advancing machine learning for MR image reconstruction with an

24

http://doi.wiley.com/10.1002/mrm.26977
http://arxiv.org/abs/2012.07819


open competition: Overview of the 2019 fastMRI challenge. pages 1–18,
2020. URL http://arxiv.org/abs/2001.02518.

[8] H. Lassmann. Multiple sclerosis pathology. Cold Spring Harbor Per-
spectives in Medicine, 8(3):a028936, 3 2018. ISSN 21571422. doi:
10.1101/cshperspect.a028936. URL http://perspectivesinmedicine.

cshlp.org/lookup/doi/10.1101/cshperspect.a028936.

[9] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao. Independently Recurrent Neural
Network (IndRNN): Building A Longer and Deeper RNN. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 5457–5466, 3 2018. ISBN 9781538664209. doi: 10.1109/
CVPR.2018.00572. URL https://arxiv.org/abs/1803.04831.

[10] K. Lønning, P. Putzky, J. J. Sonke, L. Reneman, M. W. Caan, and
M. Welling. Recurrent inference machines for reconstructing heterogeneous
MRI data. Medical Image Analysis, 53:64–78, 2019. ISSN 13618423. doi:
10.1016/j.media.2019.01.005.

[11] M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application
of compressed sensing for rapid MR imaging. Magnetic Resonance in
Medicine, 58(6):1182–1195, 2007. ISSN 07403194. doi: 10.1002/mrm.21391.

[12] S. Manikandan. Measures of central tendency: Median and mode. Journal
of pharmacology & pharmacotherapeutics, 2(3):214–215, 7 2011. ISSN 0976-
5018 (Electronic). doi: 10.4103/0976-500X.83300.

[13] M. Mardani, E. Gong, J. Y. Cheng, S. S. Vasanawala, G. Zaharchuk,
L. Xing, and J. M. Pauly. Deep generative adversarial neural networks
for compressive sensing MRI. IEEE Transactions on Medical Imaging, 38
(1):167–179, 1 2019. ISSN 1558254X. doi: 10.1109/TMI.2018.2858752.

[14] C. A. McKenzie, E. N. Yeh, M. A. Ohliger, M. D. Price, and D. K. Sod-
ickson. Self-calibrating parallel imaging with automatic coil sensitivity ex-
traction. Magnetic Resonance in Medicine, 47(3):529–538, 2002. ISSN
07403194. doi: 10.1002/mrm.10087.

[15] M. H. Moghari, M. Uecker, S. Roujol, M. Sabbagh, T. Geva, and A. J.
Powell. Accelerated whole-heart MR angiography using a variable-density
poisson-disc undersampling pattern and compressed sensing reconstruction.
Magnetic Resonance in Medicine, 79(2):761–769, 2018. doi: https://doi.
org/10.1002/mrm.26730. URL https://onlinelibrary.wiley.com/doi/

abs/10.1002/mrm.26730.

[16] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In

25

http://arxiv.org/abs/2001.02518
http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a028936
http://perspectivesinmedicine.cshlp.org/lookup/doi/10.1101/cshperspect.a028936
https://arxiv.org/abs/1803.04831
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.26730
https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.26730


H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle
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Appendix A

Theory

A.1 Introduction

The major problem with MRI acquisition is that it is a lengthy process, taking
multiple minutes to acquire a single dataset, with the time demand increasing
when the spatial resolution of the acquired images is increased. Several tech-
niques, such as parallel imaging [15], SENSE [12], and GRAPPA [5], exist with
the capability of acquiring high quality images in low acceleration factors from
multiple receiver coils. The state-of-the-art parallel-imaging technique is Com-
pressed Sensing (CS) [10], where data are compressed through a sparsifying
transform for achieving high-resolution estimations. The problem with CS is
that it can be computationally expensive. In order to further reduce the recon-
struction times, several techniques have been proposed facilitated by power of
deep learning on learning strong prior features and having fast inference times.
Such state-of-the-art techniques are the U-net [14] and the Recurrent Inference
Machine [13].

A.2 Background on MRI

MRI is a technique that uses a magnetic field to magnetize protons in the tissue
that is to be imaged. This magnetization is done by positioning a subject in
a magnetic field. With the magnetization, the protons will get a net magnetic
moment in the direction of the main magnetic field (B0), and will start to
precess around the direction of the field. This precession happens at the Larmor
frequency, which is dependent on the magnetic field strength (chapter 2 in [1]).
Thus, by placing a subject in the magnetic field, the protons will try to rotate
around the magnetic field. This gives the protons an oscillating magnetization.

Then by giving a radio frequency (RF) pulse in a direction perpendicular
to the magnetic field, it is possible to flip the direction of the magnetization
of the protons by 90 degrees (chapter 3 in [1]). After a 90 degree RF pulse,
the protons have been flipped to a direction perpendicular to the magnetic field
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Figure A.1: Visualization of the Free Induction Decay shown as the induced
voltage against time. The FID has a slope of the extremes that diminishes over
time.

of the scanner, and will over time relax to their initial magnetization. Going
back to the initial magnetization happens in two different ways. The directional
component in the direction of the magnetic field starts growing (T1), since the
protons get a net magnetization from the magnetic field. The protons that are
excited in this manner each have slightly different Larmor frequencies, as the
environment the protons are in is not homogenous. Due to the slightly different
Larmor frequencies, the flipped magnetization in the direction perpendicular
to the magnetic field will start to diminish, due to the magnetic field of the
individual protons going out of phase with each other, giving the transverse
decay (T2) (chapter 4 in [1]). The precession around the magnetic field, creates
a small signal, due to the changing magnetic field of this precession. After the
flipping of the magnetic moment of the protons, the precession will create a
signal, due to the larger directional component of the induced magnetic field
perpendicular to the B0 direction. When the flipped magnetic moment then
relaxes back, the free induction decay (FID) can be seen (Fig. A.1). The FID
signal can be measured and processed in different ways to get meaningful data,
so that it can be used in further analyses.

The aim of measuring these signals is to reconstruct an image of the subject.
However, the FID signal of a whole volume is not useful, but different methods
have to be used to get more meaningful results. In order to obtain image
data, the signals need to be encoded before being acquired by the scanner.
The magnetization is encoded by giving the magnetic field a gradient in one
direction, with a slightly lower magnetic field strength at one end (chapter 10 in
[1]). Using this gradient it is possible to select only one slice, or a smaller region,
for the flipping of the magnetic field. It is required to use gradients in different
directions to create a 3D acquisition, where specific lines in k-space are imaged
and stored as a volume. This volume is acquired in the frequency domain, known

28



as k-space, containing the individual frequency and phase components necessary
for obtaining the image. In order to go from the k-space in the Fourier domain,
to the image in the image domain, the inverse Fourier transform is used. With
the use of multiple gradients in different directions, it is then possible to scan a
whole volume over time. However, these gradients are limited in their strength
and in how quickly they can be at their maximum strength, due to limitations
in hardware and the adverse effects they can have on the body at high field
strengths.

With MRI, it is possible to get different contrasts, depending on the setup
of the acquisition (chapter 15 in [1]). Examples of these different MRI image
types are T1, T2 and Fluid Attenuation Inversion Recovery (FLAIR). For the
difference between T1 and T2, a different relaxation mechanism of protons is
used. These properties result in inherently different contrasts, such as a brighter
signal from fat in T1 images. On the other hand, the difference between T2 and
FLAIR is that FLAIR is a T2 type sequence, where an RF pulse is used to first
flip the signal by 180 degrees. After this initial flip there is a delay until the
parallel magnetic component of fluids is non-existent. At this point, another
RF pulse flips the magnetic moment by 90 degrees. Due to the inversion pulse,
there will be almost no signal from fluids, giving better contrast between the
fluids and the surrounding tissues.

The composition of the k-space, and thus the scanning parameters, is a direct
result of the desired image quality, such as the resolution and the amount of
noise, and the volume it should encapsulate (chapter 12 in [1]). For example,
making the size of the k-space larger will result in a more detailed image with
higher resolution, while having less distance between k-space points will result
in a larger field-of-view (FOV). For medical diagnosis, it is always the desire to
have data that is as detailed as possible. The time it takes to acquire the data,
however, limits the possibility to obtain high resolution images.

A.2.1 The Inverse Problem

In order to understand the reconstruction of corrupted MRI data, it is important
to understand the inverse problem. Let us denote x as the true image signal,
and y the corrupted signal that is obtained from the scanner, we can define the
model

y = a(x) + n, (A.1)

where n is normally distributed noise in the image, and a is the function that
takes the data from x and corrupts the data. This process of going from the
true image signal to the corrupted signal is known as the forward model, as all
the parameters for going from x to y are available. Solving the equation for
x, on the other hand, requires knowledge on the parameters of a, which are
not always available. In the case of not knowing the parameters, they have to
be approximated, in order to find x. This is known as the inverse problem,
where, given a set of observations, a model needs to be constructed that explain
the parameters that caused these observations. One way of solving the inverse
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problem is through iterations, as is done in the case of Compressed Sensing for
under-sampled MRI data.

A.3 Compressed Sensing

A.3.1 Theory

When data are sparse in a certain domain, it is possible to compress them by
keeping only the most important parts they contain. This sparsity in a certain
domain means that in a representation of the data, the bulk of the information
is comprised in a small chunk of the data. One example of such sparsity is
having a vector in which there are groups of likewise values, allowing the vector
to be reduced to the value, and how many times it occurs. With this example,
it is beneficial to treat values close enough to each other as the same value. By
treating data in that manner, it is possible to reduce the amount of data needed
to store.
For MRI, the domain that is generally sparse, and thus compressible, is the
wavelet domain. The wavelet domain contains the contrast of the image at
different levels. In Fig. A.2 it is shown that in the wavelet domain, most of
the contrast is stored at the lowest level, while the higher levels contain only
little information. The sparsity in the wavelet domain allows the data to be
under-sampled in k-space, while still being reconstructable. For under-sampling
k-space data it is important that the under-sampling pattern is incoherent or
random. If equally spaced coherent under-sampling is used, the Nyquist cri-
terion is not adhered to, which results in the highest measurable frequency
decreasing. The consequences of this are a large reduction in quality and intro-
duction of aliasing.
Aliasing is still a problem with random under-sampling. However, in this case

aliasing behaves in a noise-like manner. Pseudo-randomness can be achieved in
several ways, such as skipping random lines in 2D slices and in 3D image space,
and creating radial and spiral patterns (Fig. A.3). One method to quantify the
incoherence of an under-sampling pattern is through the point spread function
(PSF) (bottom row in Fig. A.3). From these PSF visualizations, it follows
that out of four under-sampling techniques, the trajectory with the most con-
trast between the peak and the underlying noise is the ”Random lines in 3D”
method, making it the most incoherent. The limitation is that it is not random
over multiple slices, as each slice will have the same under-sampling pattern.
However, the sampling patterns that are possible are constrained by hardware
limitations. For example, it is not possible to have too large RF gradient changes
in the scanner, as these are constrained to the gradient speed and by unwanted
tissue effects with too strong gradients, making it difficult to sample random
points of k-space in 3D acquisition, instead of lines. Another constraint is that
the distance between sequential lines needs to be minimal in order to prevent
detrimental effects due to eddy currents — electrical currents due to changing
magnetic fields.
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Figure A.2: Example of a brain MR image (a) and the representation of the
same image in the wavelet domain (b). The wavelet transformed image (b)
shows the contrast gradients at different scales. From this it is also visible that
the contrast within the brain image is mostly contained at a smaller scale (top
left image in b). Image taken from [17].

In k-space the center is most important for defining the contrast level of the
image, while the outer regions are more responsible for the level of the spatial
details. Thus, it is important to create under-sampling patterns that are denser
in the center of k-space than from the outer regions. If an appropriate sub-
sampling pattern has been chosen, with enough incoherence and more density
in the center, the image associated with the sub-sampled k-space will have diffuse
aliasing artifacts. These artifacts will then manifest as noise, from which the
image can be reconstructed.

A.3.2 Compressed Sensing for MRI Reconstruction

Compressed Sensing reconstruction is an optimization problem, in which a lin-
ear operator ψ is used to transform a fully-sampled image m into a sparse
representation. This can be denoted as

minimize ||ψm||1, (A.2)

such that ||Fum− y||2 < ε.

Here, Fu is the Fourier transform combined with the under-sampling pattern
corresponding to the minimized linear operator, y are the k-space data from the
scanner and ε is the threshold parameter, with a value lower than the expected
noise level [10]. The second condition needs to be true, since then the frequency
spectrum of the approximation and the measured data will be as similar as
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Figure A.3: Example trajectories with the resulting k-space pattern and the
point spread function underneath. a) random lines in 2D, b) random lines in
3D, c) radial, and d) uniform spirals. Image taken from [11].

possible, enforcing data consistency. The function to be minimized uses the
`1-norm, which is defined as

||x||1 =
∑
i

|xi|, (A.3)

where x represents the ψm part of the equation. Minimization of the `1-norm
has been shown to promote sparsity [2]. An example of a sparse representation
for reconstructing the data through ψ is the wavelet transform.

The general way to solve this problem is iterating over the reconstructions
until the optimization criteria are satisfied. This iterative approach is based
on removing the interferences in small steps until the threshold is reached. In
the case of accelerated-MRI, the interferences are the added noise from the
under-sampling. General MRI acquisition schemes lead to images where the
main contrast is contained in the tissue boundaries, and signal being mostly
homogenous between voxels of the same tissue. Because of these properties
of the contrast, the volume will have a sparse representation in the wavelet
domain. When MRI data are under-sampled incoherently, the contrast will
still be confined to these boundaries, except for added noise. By iteratively
thresholding the wavelet domain, and testing the result against the threshold, it
is possible to reconstruct the data, removing the interference. For this, a balance
is needed between transform sparsity and data consistency, which is reflected in
the second part of eq. A.2. Both the cases of minimizing the transform sparsity
too much and weighting high the data consistency, will result in adverse effects,
such as blurring. Therefore, by going through iterations, sparsity is minimized,
while keeping adequate data consistency.
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A.4 Machine Learning

A problem with the iterative procedure of CS is that it can be time-consuming,
requiring a lot of processing power. In order to mitigate this, several deep
learning techniques have been proposed, with the aim of achieving fast and
accurate reconstructions.

A.4.1 Supervised & Unsupervised Learning

Machine learning algorithms can be categorized regarding their learning proce-
dure as supervised or unsupervised. Supervised algorithms learn to infer and
make connections based on fully-sampled, and often labeled, training data. Fa-
cilitating the information learned from the training data, this knowledge can be
applied for inference on data out of the training distribution. For reconstructing
accelerated-MR images, the algorithm learns how to make connections between
fully-sampled and under-sampled images, for applying this knowledge to unseen
under-sampled images.

In contrary, unsupervised algorithms learn how to infer from unclassified
and unlabeled data, requiring more data to learn the best approximation than
supervised algorithms.This is because unsupervised learning in principle requires
the algorithm to predict the right connections without a reference. In terms of
accelerated-MRI reconstruction, this can be seen as an algorithm that has fully-
sampled data as input in the case of supervised learning, and under-sampled
data as input in the unsupervised learning case. Most networks are trained in
a supervised manner, with unsupervised networks only being used when a large
quantity of data is available. Especially in medical imaging, the amount of data
is often limited. Because of the limited amount of data, almost all networks that
are used for reconstructing under-sampled MRI data are based on supervised
networks.

A.4.2 Convolutional Neural Networks

Initially, the techniques developed for the purpose of reconstructing under-
sampled MRI data relied on Convolutional Neural Networks (CNN). These are
networks that train on subsets of image data that are created with the use of
convolution matrices on image data. Through convolutions, to the size of the
selected kernels’ size, and multiple hidden layers, feature maps are extracted.
Those feature maps help the network to identify useful information on the image,
such as edges and adjacent regions, for achieving high level of detail.

Examples of such techniques using CNNs for MRI reconstruction are the
U-net [14], consisting of a series of convolutional layers, and the General Adver-
sarial Networks (GAN) [16], where two networks are trained at the same time
aiming to achieve high-resolution reconstructions by discriminating the noise
from the images.
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A.4.3 Physics-based models

A more sophisticated approach for reconstructing accelerated-MR images is to
formulate physical properties of the problem at hand and include them into the
learning procedure of the network. Therefore, the formulation of the forward
model is necessary for finding the inverse transformation of mapping sparsely-
sampled k-space measurements to the target image. The so-called physics-based
models make use of having a target image and knowing the forward transfor-
mation to sub-sample it. We try to estimate the closest approximation with
the principles of probability theory and statistics, and the Bayes Theorem for
updating the network.

The Bayes’ Theorem is defined by

P (A | B) =
P (B | A)P (A)

P (B)
, (A.4)

where A is a given hypothesis and B is some observed evidence and states that
the posterior probability of having the hypothesis A be true given that evidence
B is true. This is related to the conditional probability of B given A, as well
as the probabilities of A and B themselves. In general, the probability of B
being true is not relevant for the models. It is, therefore, possible to simplify
the equation to

P (A | B) = P (B | A)P (A). (A.5)

Equation A.5 does not give a probability, but can lead to an estimation of the
distribution through minimization of this equation. In order to maximize the
performance of models for finding a solution for P (A|B), it is possible to max-
imize the conditional probability P (B|A)P (A), where usually B is the model
and A the data. This maximization is called the Maximum a Posteriori (MAP)
estimation.

Some examples of network that can be thought as Bayesian estimators are
the Recurrent Inference Machine (RIM) [13] and the Variational Network [6].
Of these two, in this work we focus on the RIM.

A.5 Recurrent Inference Machine

The Recurrent Inference Machine was originally proposed as a general inverse
problem solver [13], and later extended to reconstructing accelerated-MRI data
[9]. The RIM is a supervised network that is optimized over t time-steps.

In order to find the best approximation that solves the inverse problem, the
RIM makes use of the forward model. The forward model describes how data
can be transformed from fully-sampled to sparsely sampled. The forward model
for multi-coil under-sampling can be defined using eq. A.1 as

yi = PFSHi x + ni, i = 1, ..., c. (A.6)

Where x is the true image, y are the under-sampled data, c is the total number
of coils, P is the sampling mask, F is the Fourier transform, Si is the sensitivity
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map of coil i, with H denoting the Hermitian adjoint operator, and ni represents
normally distributed noise.
The quality of the approximation needs to be defined by the prior information
and the fit of the approximation to the data. This is done using the MAP esti-
mation (i.e. maximization of equation A.5), and can be defined in logarithmic
space as

xMAP =argmax
x {log p(y|x) + log p(x)}. (A.7)

The second part of eq. A.7 can be seen as a regularizer that depends on the
model. Meanwhile, the first part can be rewritten to the log-likelihood and,
given independent data that follows a Gaussian distribution, can be formulated
as

log p(y|x) =
1

σ2

c∑
i=1

||PFSHi x− yi||22, (A.8)

where σ2 is the variance of the data.
The RIM uses the log-likelihood gradient (llg) for updating itself at time-step

τ , and perform gradient descent. The llg (∇y|xτ
) is defined as

∇y|xτ
:=

1

σ2

C∑
i=1

SHi F−1PT (PFSixτ − yi), (A.9)

where xτ is the current estimation. The iterative scheme is shaped by the
following functions,

s0 = 0 x0 = F−1y

sτ+1 = gφ(∇y|xτ
,xτ , sτ ) xτ+1 = xτ + hφ(∇y|xτ

,xτ , sτ+1), (A.10)

where s is the internal state at time-step τ . h is the update function, containing
the core part of the network (as shown in Fig. A.4), and g is the part of the
network responsible for updating the internal states. The internal states keep
track of iterations, guiding the network’s gradient to the right direction for
achieving convergence. One hyperparameter that needs to be fixed in advance
is the number of time steps that need to be unrolled during training. The same
number of time steps is applied when using a trained network.

s can be thought as the result of updating the network two times, s1τ and
s2τ , though the recurrent layers (Fig. A.4). As can be seen in this figure, s is
dependent on the type of the recurrent layer, denoted as g in eq. A.10.

The RIM does the training with the help of the recurrent layer (Fig. A.4).
These recurrent layers allow the network to have a notion of memory over the
time-steps taken so far. This gives the network the ability to use this memory to
steer the network in more favorable directions. The complexity of the network
is dependent on the type of the chosen recurrent unit. With the effect on the
complexity, the inference time of the network will also change. However, having
a loss in complexity does not necessarily mean that the performance will also
become less [7].
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Figure A.4: Schematic view of the Recurrent Inference Machine. Image adapted
from [7].
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For the recurrent layers a few options have been explored, such as the Gated
Recurrent Unit (GRU) and the Independently Recurrent Neural Network (In-
dRNN) [7].

The GRU [3] is a technique that is used in order to combat the problem
that regular RNN structures have, which is the tendency for gradients to either
explode or diminish over time. The gated unit solves this problem by having the
ability to forget part of the previously stored memory, notably the parts of the
gradient that are less useful to the performance of the network. This keeps the
gradients from exploding and diminishing, and is done by introducing hyperbolic
tangents and sigmoid functions, which are used in the RNN structure.

Another recurrent unit that was created to solve this problem of RNNs is
the IndRNN, which also tried to solve different problems with RNN structures
like the GRU [8]. These structures can have a tendency to have gradient decay
over the different neuron layers because of the hyperbolic tangent and sigmoid
functions that they contain. Instead of this approach, the IndRNN uses inde-
pendent neurons that are connected only across layers, due to which the network
is capable of processing longer sequences, tested up to 5000 time-steps. This
has the effect of defeating the problem of regular RNNs, where gradients either
explode or vanish, while also avoiding the gradient decay over different layers.

The convolutional layers are activated by rectifiers. The rectifier is an ac-
tivation function used to saturate the output within a range. One of the most
commonly used is the rectified linear unit (ReLu) [4], taking the input of the
neuron and returning zero if the neuron has a value below zero, or the value of
the neuron itself in the other cases.

Finally, the network aims to minimize the loss function for calculating the
error between the estimation and the target image. In this work, the chosen
loss function is the `1-norm, which uses the absolute difference (Eq. A.3).

A.6 The future of the RIM

The RIM is a deep learning network implementing the physics of accelerated-
MRI for reconstructing the under-sampled MRI data. It has been shown that
the RIM is capable of doing these reconstructions with a higher performance,
while being faster, than the state-of-the-art CS technique [7]. At the same time,
more research needs to be done that explores the generalizability of the RIM
network to different modalities, sampling patterns, and pathologies. The CS
technique is capable of handling these variations in data, as it is generalized
by design. Thus, it is necessary to also explore the generalizability of the deep
learning techniques that are proposed as alternatives of CS, as it would require
fewer trained networks to be used in the general workflow. Having a network
that is generalized to different pathologies is also better for the treatment of
patients, as it makes it less likely to miss unexpected details in the data.
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