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Abstract

Indoor localisation is a growing field of interest in recent studies. While GPS (global po-
sitioning system) is a standard for outdoor localisation, no such solution exists for indoor
applications. The literature provides several methods to obtain the location of indoor sys-
tems, often using optical sensors. A small number of recent studies use the indoor magnetic
field for localisation. Ferromagnetic materials in the structure of buildings cause magnetic
anomalies that are distinct enough to use for localisation. To use the magnetic field for lo-
calisation, a map has to be created.

In this thesis, a sensor setup different from other studies is used. This sensor setup consists
of a inertial HMTS (human motion tracking suit), containing seventeen IMUs (inertial mea-
surement units) with magnetometers. This suit uses advanced techniques to obtain a better
pose estimate than a single IMU can achieve. The combination of an inertial motion track-
ing suit with a magnetic localisation approach has not been studied before. Inspired by the
state of the art approaches, a SLAM (simultatenous localistation and mapping) algorithm
is proposed that is able to use information from the inertial HMTS. The algorithm consists
of a reduced rank GP (Gaussian process) to create a map of the magnetic field. A RBPF
(Rao-Blackwellized particle filter) is used to localise the HMTS. The algorithm allows for the
use of multiple magnetometers to create the magnetic field map instead of a single one, which
is a novelty.

The proposed method is tested with real-life data. Live odometry obtained from the HMTS
can be post-processed for improved inertial odometry. Both the live and post-processed odom-
etry data from the HMTS is used in the proposed algorithm and the results are compared.
Additionally, the differences between a magnetic field map constructed with a single magne-
tometer and a map constructed with multiple magnetometers is investigated. The trajectory
estimated by the RBPF is compared to a groundtruth, obtained by an optical tracking system.
The RBPF shows higher performance for trajectories longer than 250 seconds compared to
the inertial odometry. The use of multiple magnetometers does not improve the performance
of the algorithm.
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Chapter 1

Introduction

In this thesis, the combination of inertial HMTSs (human motion tracking suits) and magnetic
field SLAM (simultatenous localistation and mapping) is researched. The inertial HMTS used
in this thesis is the commercially available MVN Link [1, 2|, provided by Xsens (Enschede,
The Netherlands). The first section discusses the relevant background on both topics. In the
second section the research questions are formulated. The chapter ends with an overview of
the structure of this thesis.

1-1 Background

Localisation is a field of study that has seen growing interest over the last decades. A more
specific topic within localisation is human pose estimation, with a wide variety of applications
like healthcare [3], sports [4] and animation [5]. To obtain the positions and orientation of
the parts of an human body, devices like an HMTS can be used.

A motion tracking suit is a wearable for the entire body, capable of estimating the pose of the
wearer. One approach is to use an OTS (optical tracking system). Markers are placed upon
different parts of the suit and several cameras track these markers, capturing the motion of
the human body. This approach, while accurate, has several downsides. Since the sensors
are optical, they require a line of sight to the marker. Additionally, the motion can only be
tracked in a specified space inside the field of view of the cameras.

These downsides have given rise to inertial tracking suits. These suits contain several IMUs
(inertial measurement units), giving an location and orientation estimate of the body part
they are attached to. The IMU is small enough to be placed on microelectronics and can
be found in all modern smartphones. Modern IMUs are equipped with an accelerometer, a
gyroscope and a magnetometer. Since no part of the sensor setup is not on the suit, the
suit can be used outside of prepared locations. Tracking the pose of humans with inertial
sensors is commonly called inertial human motion tracking. While inertial tracking does not
suffer from spatial restrictions like the OTS, it is subject to drift. This drift is caused by
integrating the accelerometer and gyroscope measurements twice to obtain the position and
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2 Introduction

orientation [6]. To compensate for this drift, the inertial HMTSs use multiple IMUs. These
IMUs, placed on different body parts, allow for the use of kinematic constraints and the zero-
velocity update. A overview of inertial motion tracking methods is presented in [7], and a
summary of commonly used methods is given in [§].

Several studies [i.e. 9-11] have been done to overcome the downsides of the inertial sensors for
motion tracking suits. Attempts to use accelerometers to measure the movement of human
bodies go back as far as 1953 [12], although the accelerometers were found lacking. Morris
claimed that, with the proper accelerometers, only six independent measurements are required
to determine the movement of the human body [13]. Furthermore, the claim is made that
gyroscopes are not required, because rotational movement is large, and can be sufficiently
determined by the acceleration.

More recent methods, however, do use more than just the accelerometers for inertial motion
tracking suits. In [9], Roetenberg uses inertial and optical sensor with a KF (Kalman filter).
Additionally, a combination of inertial sensors and magnetometers, which measure the local
magnetic field, to obtain estimates about human motion is investigated. The obtained results
were promising and opened the way for self-contained motion tracking suits, meaning that
no equipment is placed outside of the suit. Magnetometers are often part of modern IMUs,
increasing their use in motion tracking suits [14, 15].

The parts of the human body can be represented by a kinematic constraint model. Since the
IMUs are placed on the human body, this model can be used to constrain the relative posi-
tions and orientations of these IMUs. The constraint model can be used in an optimisation
framework, so that the different body parts stay connected and do not suffer as much from
drift [11].

An additional approach to improve the inertial human motion tracker is the zero velocity
update [16—20]. This uses the knowledge that the foot of the stance leg has zero velocity. The
literature provides several methods to detect the moment there is a stance leg in the gait [e.g.
21, 22]. This further reduces the drift and improves the position estimate.

Inertial HMTS require a sensor-to-segment calibration before use. The segments represent
different body parts. The calibration aligns the segments with the IMUs. The Xsens MVN
Link uses several length measures of the wearer to determine the position of the IMUs with
respect to the body segment it is attached to. Additionally, it requires the user to stand in
a known pose, such as the N- or T-pose, followed by a short walk and a turn-around before
recording any data [1].

The Xsens MVN suit uses a motion capture engine that requires ‘warming up’ [2, Section
3.5.5]. The recommended practice is to move slowly for the first 30 seconds after calibration.
The motion capture engine aims to overcome major sources of errors, like those caused by
anomalies in the magnetic field, disturbing the magnetometers [2, Section 23.8].

To measure the performance of an inertial motion suit, it can be compared to a optical track-
ing suit, or with global navigation satellite system (GNSS). The commercially available Xsens
MVN [1] is a inertial motion suit using seventeen IMUs. Several studies have validated the
accuracy of the suit.

Supej uses the Xsens MVN to capture the motions of a alpine skier [23]. The study shows a
drift of 6.3 cm at the neck after a 15 m walk back and forth, with a single turn. Although
the drift is rather low, the researches expect a trajectory with more turns will introduce a
larger error. Such a trajectory is likely to occur in an indoor environment. The performance
of the suit in a skiing experiment was only validated by visually comparing the video with the
3D animation. No high amount of drift was observed. A more extensive accuracy analysis
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1-2 Research goal 3

was done by Zhang et al. [24]. The study presented very small differences with a optical
tracking system for flexion and extension. The rotation around the other two rotational axis
performed significantly worse.

The drift that is still present in the inertial HMTS causes growing errors over time. To further
improve the pose estimates of the inertial HMTS, the Earth’s ambient magnetic field can be
used.

The Earth’s ambient magnetic field is uniform, with its direction the magnetic north pole.
This allows magnetometers that are part of the IMUs to provide heading information, without
drift. Due to ferromagnetic materials present in buildings, the Earth’s ambient magnetic field
is disturbed. This creates anomalies in the otherwise uniform field, preventing the IMUs from
accurately obtaining its heading. Some inertial tracking approaches try to filter the distur-
bances present in indoor environments [18, 20, 25|, while others try to use those disturbances
for localisation [26].

Recent studies have used these anomalies in the magnetic field to tackle the SLAM problem
[see e.g. 27-29]. In this problem, the location is estimated using a map. In magnetic field
SLAM, the ambient magnetic field is mapped. Cross referencing a magnetometer measure-
ment with this map yields the locations where the sensor can be.

However, this still relies on an accurate map that has been constructed beforehand. In SLAM
there is no map available and the map has to be constructed while navigating the environ-
ment. This is a chicken and egg problem, since a map is required for localisation, and the
locations are needed to construct a map.

To overcome this problem some estimation of movement, the odometry, is required. Aside
from the HMTS, the odometry can be obtained for example from the wheels of a robot [see
e.g. 30, 31] or an optical sensor [see e.g. 28]. Additionally, some distinct features that can be
mapped are needed to tackle SLAM. For indoor environments, this can be magnetic field [27].
Since the indoor magnetic field is disturbed by the ferromagnetic materials used in buildings,
it becomes distinct enough to be used for localisation [32].

1-2 Research goal

The goal of this research is to establish a method to improve the position estimates provided
by the inertial HMTS. This method uses a SLAM approach that uses the inertial odometry
provided by the HMTS. An improvement to these estimates would lead to better performance
in the fields where these suits are applied.

The inertial HMTS combines naturally with magnetic field SLAM, since the suit provides
both the odometry and the magnetic field measurements that can be used to construct the
map. There are two major novelties in the research on this combination. The first novelty is
the use of an inertial HMTS for magnetic field SLAM. This leads to first research question:
What are the improvements to the position estimate of an inertial human motion tracking
suit when combined with magnetic field simultatenous localistation and mapping?

Since an inertial HMTS uses multiple IMUs, multiple magnetometers can be used to construct
the magnetic field map. This is the second novelty and leads to the following research question:
How does using multiple magnetometers to construct a magnetic field map in a magnetic field
simultatenous localistation and mapping approach differ compared to a map constructed with
a single magnetometers?

Master of Science Thesis Thijs Veen



4 Introduction

1-3 Organisation

The goal of this this thesis is to propose and test a method to obtain the position of the wearer
of the inertial tracking suit, whilst creating a map of the local magnetic field and using this
map for localisation.

In Section 2-1 different approaches to modelling the magnetic field are presented. Section 2-2
discusses the methods used in the literature for localisation and mapping.

In Chapter 3, a method is derived to combine the HMTS with magnetic field SLAM. It
starts with the notation used throughout the thesis. The available data from the inertial
HMTS is presented in Section 3-2. Section 3-3 presents the odometry model used in the
SLAM algorithm. The measurement model is described in Section 3-5. Section 3-6 presents
the adjustments to the algorithm when large spaces need to be mapped. Finally, the full
algorithm is summarised in Section 3-7.

Multiple experiments are performed to evaluate the performance of the proposed algorithm.
The results are presented in Chapter 4. The chapter starts with a verification of the method in
Section 4-1. In Section 4-2, the algorithm is run with only a single magnetometer to construct
the magnetic field map, while multiple magnetometers are used in Section 4-3. Chapter 5
presents the conclusion from the results, and answers the research question. The glossary at
the end of the thesis contains all used abbreviations and symbols. The appendix contains
preliminary knowledge about coordinate frames and quaternions. It also includes additional
information on Gaussian processes.
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Chapter 2

Related work

In this chapter, the existing literature is reviewed. The first section discusses the different
models used to model the magnetic field. The second section presents the localisation methods
found in the literature that use the magnetic field.

2-1 Magnetic field representation

Earth’s outer core is the most influential source of the magnetic field on its surface. This
field is dominant enough for traditional navigation, since it causes a compass needle to point
to magnetic north. However, close to ferromagnetic materials, the field changes noticeably.
These disturbances are seen as a cause for errors in some literature [e.g. 33], but Suksakulchai
et al. were one of the first to show that these distortions can be used as distinctive and recog-
nisable features in a localisation framework [32].

2-1-1 Spatial and temporal stability

Although the Earth’s magnetic field fluctuates over a time span of one day, for localisation
purposes it is often assumed to be temporally stable. If the field would change significantly
over time, the map of the magnetic field could become useless after some time. An example
of the temporal stability is given by Frassl et al. Daily fluctuations are less than 0.1% of
the average magnitude [34]. Further study in to the stability of the field is done in [35]. A
massive moving metal object, like an elevator cart, also changes the ambient magnetic field.
Several studies show that this effect is only significant very close, up to approximately one
meter [35-37]. This validates the use of the magnetic field for localisation, even when large
moving ferromagnetic objects are present.

In [38], Vallivaara measures the spatial variation of an indoor magnetic field for different
representations of the field. More spatial variation results in more distinct magnetic field,
improving the localisation accuracy. The results show a high deviation in the plane parallel
to the Earth’s surface, the xy-plane, and less in the direction of gravity, or z-direction.
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2-1-2 Magnitude and full vector representation

The magnetic field can be represented by a three dimensional vector . In this representation,
both the magnitude and the direction of the field are captured. It requires the orientation
of the magnetometer to be known. Studies with an IMU often use the full vector, since the
orientation is known [see e.g 28, 39-41].

When the orientation is not available, the full vector cannot be used. For mobile robots that
move across the floor, a yaw independent representation can be used [35].

If no orientation information is available, the magnitude of the field can still be used [see e.g
42-44], since the observed magnitude is independent of the orientation of the magnetometer.
Studies comparing the performance of these representation conclude that the full vector is
most desirable if the orientation is known, while the magnitude representation suffers from
the lack of information on the direction of the field [34, 45-47].

2-1-3 Magnetic field models

Unlike cameras or range-lasers, magnetometers and Wi-Fi receivers can only make observa-
tions at their current location. This either means that every location needs to be visited to
map it, or that the map of the unvisited areas has to be estimated using the observations
made elsewhere. Another method would be to map landmarks, and recognise those after
revisiting.

Landmark Based Maps

The earliest work on magnetic field navigation use maps based on landmarks. Suksakulchai
et al. extracted signatures based on electronic compass readings in a one dimensional environ-
ment [32]. The system was able to recognise different parts of a hallway. Taking inspiration
from speech recognition, where sequences of measurements at different rates are matched,
Subbu, Gozick, and Dantu expand on the hallway localisation with DTW (dynamic time
warping) [48]. This system enabled pedestrian localisation in a hallway using a smartphone,
and was capable of dealing with different walking speeds. Another example of landmark based
maps is proposed in [49]. The map consists of large structures that disturb the magnetic field,
like steel pillars. The authors also use guideposts, strategically placed by architects for addi-
tional landmarks. This would mean that one of the advantages of using the magnetic field as
map, that it does not require additional infrastructure, is no longer valid. More recent work
use techniques from machine learning to extract features of the magnetic field [50, 51].

Interpolation Maps

An intuitive way to fill the magnetic field map is to interpolate between measurements,
creating an estimation for unvisited locations [see e.g. 52]. These maps are often used with a
RBPF (Rao-Blackwellized particle filter) for localisation. Examples of this combination are
[40, 43, 45], where linear interpolation was used. More sophisticated interpolation techniques
can improve the localisation performance, as shown in [53], where bicubic interpolation was
compared to bilinear interpolation.
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2-1 Magnetic field representation 7

In [54], Vallivaara et al. use a local interpolant using the polygonal neighbourhood. The
proposed interpolation method share desirable properties with the Sibson interpolant. The
authors show improved performance compared to the Sibson interpolant when the data is
sparse, and worse performance when data is dense. While this might seem undesirable, it is
crucial when considering the initial stages of SLAM.

Gaussian Processes

Another option to model the magnetic field is GPR (Gaussian process regression). GPR
was introduced by O’Hagan in 1978 [55]. GPs (Gaussian processes) provide a probabilistic
approach to learning in kernel machines [56]. In machine learning, GPR is used to learn the
input-output mapping from measurements. In the case of modelling the magnetic field, the
input could be the state with position, and the output would be an estimate of the magnetic
field at that location.

Mean function and kernel GPs are build using a mean function and a kernel, which are
parametrised by hyperparameters. Within these functions, a priori knowledge about the
magnetic field can be used to improve the magnetic field map. For instance, the magnetic
field is continuous. A kernel that guarantees smoothness in the output, is the SE (squared
exponential) kernel. Most studies where the magnetic field is mapped by a GP choose the SE
as kernel [see e.g 27, 30, 57-59).

In [60], Wahlstrom et al. use the Maxwell equations by adapting covariance function, using
the SE kernel as a basis. While this extended kernel performed only slightly better in esti-
mation perfomance compared to the approaches using the SE kernel, it allows for modelling
the magnetic sources. The kernel proposed by Wahlstrom et al., was used for navigation and
SLAM in [61] and [28] respectively. While the curl-free property of the magnetic field was
used, the divergence-free property, as proposed in [60], was not used in [61] and [28].

Hyperparameters An advantage of GPR is that it does not rely on tuning parameters, since
the hyperparameters in the mean function and kernel can be learned from the data. A com-
mon way to obtain the hyperparameters is to maximise the log likelihood of the observations
[57, 60, 62]. In [27, 30], the hyperparameters are learned, although it is not specified how.
In the case of sequential updating, learning the hyperparameters from data is not practical.
Maximising the log likelihood requires batches of data, which are unavailable at the start.
Therefore in the studies where the magnetic field was used with SLAM, the hyperparameters
are considered tuning parameters [28, 59]. While recursive updating of the hyperparameters
is possible, Solin et al. suggest to optimise the hyperparameters with an intitial batch of data,
and re-optimise later if required [61].

Computational complexity One of the challenges when using GPR is the computational
complexity. In standard form, GPR computes the inverse of a n x n matrix, where n is the
number of measurements. This makes GPR scale as O (n3) per regression step. Considering
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8 Related work

magnetometers can take hundreds of measurement every second, the computation becomes
infeasible fast. An easy method to reduce the number of required computations is to reduce
the number of measurements provided to the GP. In early work, Vallivaara et al. use a grid
map, with 5em x 5cm cells [27]. Each cell has a maximum number measurements, trading
accuracy for computational speed.

An alternative is Local GPR [63]. A GP model is trained for several local regions, into which
the measurements are divided. The training data is clustered by a distance measure, given by
the same covariance function as used in the local GP models. New model centres are created
if the distance measure to all other centres exceeds some boundary. Means are predicted by
a weighted average over all the local models. The algorithm showed promising result, being
significantly faster than standard GPR, with slightly higher errors in the estimation. The
experiments were done by learning the dynamics of different robot arms. The complexity
scales O (N 3) at best, where N is the number of observation for the local model. For large
data sets, this could still be too complex for real-time application. The authors suggest to
replace older data with new data, after comparing the information gain of the data points.
Akai and Ozaki only use the points nearby for learning [57]. The aim of the study was large
scale indoor localisation using GP. Building the map from more than six thousand data points
took about one hour. Since this is not fast enough for SLAM, a different approach is needed
if GPR is used.

The complexity can also be reduced by using an approximation. Solin and Sérkké proposes a
reduced-rank GPR [64], which has been used in [28, 61] for magnetic fields. This approach uses
basisfunctions to approximate a full GP. The complexity scales O (N,,) per regression step,
where N, is the number of basis functions used, thus not with total number of measurements.

2-2 Magnetic field localisation and mapping

The disturbed indoor magnetic field can be used for localisation. Suksakulchai et al. were
the first to use these disturbances as distinctive, recognisable signatures [32]. The authors
were able to localise a robot when it returned to such a signature, proving that the disturbed
indoor magnetic field is distinct enough for localisation. Several studies exploiting magnetic
field anomalies for indoor localisation have followed. Some use robot odometry [34, 45, 52,
65, 66], others use inertial sensors [34, 40, 41, 67] and some approaches just use the magnetic
field [36, 39, 45, 51].

These methods first create a map with the same device that is later to be localised. A
more recent field of interest is SLAM. In the SLAM problem, a system has to localise itself,
without a known map. The map is created and updated during operation time, and the
system localises itself within this map. A solution to SLAM would enable localisation relative
to the created map in unvisited areas. Indoor SLAM can be done with i.e. WiFi or Bluetooth
[see e.g. 68], requiring the necessary infrastructure to be in place. Magnetic Field SLAM relies
on anomalies in Earth’s magnetic field, therefore no infrastructure is required. Consequently
magnetic field SLAM has an advantage over other indoor SLAM methods.
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2-2 Magnetic field localisation and mapping 9

2-2-1 Particle filter based magnetic field SLAM

The first to use the particle filter for magnetic field SLAM were Vallivaara et al. [27]. A
RBPF estimates the pose distribution, and GPR is used to model and map the magnetic
field. A grid map with limited number of measurements per cell is used. This was done
to keep the GPR complexity feasible. The proposal distribution is drawn from the motion
model, and resampling is done as suggested in [69]. The GP provides an uncertainty measure
of the predicted observation. Predictions with low confidence were discarded. The authors
implemented the algorithm for a floor cleaning robot [30], achieving sub decimetre accuracy
with a low cost sensor setup.

In their study the authors noticed that their hash-map data structure for storing the map
was limiting the number of particles they could use, due to computational demand. In their
more recent work [54], they use quadtree-based ancestry trees, based upon distibuted particle
SLAM proposed in [70]. The obtained results were better than in their earlier work [27].
They were able to increase the particles from 200 to more than a thousand, while remaining
realtime processing time.

In [71], Robertson et al. use the magnetic field to improve their earlier work FootSLAM [16,
17]. FootSLAM localises a pedestrian wearing a foot mounted IMU, using the zero velocity
update to make a map of transitions. The approach achieved an accuracy of 1-2m. The au-
thors use layers of hexagonal cells for the magnetic field map, where each layer has differently
sized cells. This is done to prevent sparsity in the map, while maintaining the benefits of the
smaller cells when they are eventually populated. Adding the magnetic field to FootSLAM
improved the accuracy to 10-20cm. Interestingly, the magnetic field SLAM part of the new
algorithm performed better without incorporating FootSLAM.

In [72], Vallivaara et al. introduce an extension named Monty Hall Particle Filter. The idea is
to group particles based upon their uncertainty. This naturally complements the use of GPR,
since it provides a measure of uncertainty. The extension was compared to fixed-deviation
particle filters for both simulated as real world magnetic field data. The authors expect it to
be well suited for SLAM , because of its implicit loop closing abilities.

In more recent work, magnetic field SLAM has also found its application in outdoor envi-
ronments like for aviation, where the magnetic field is weak, and lacking the disturbances
of indoor environments [59]. The authors use an algorithm similar to [27], resampling only
particles that had returned to a location near the trajectory. Kok and Solin use a hexagonal
grid map with GPR [28]. The GPR is kept feasible by the reduced-rank GPR from [64],
circumventing the cubic complexity of GPR. The method uses a visual-inertial pedestrian
dead reckoning from a smartphone instead of robot odometry, and is the first to show results
in three dimensions.

2-2-2 Graph based magnetic field SLAM

A common method in SLAM is to match measurements with the map [see e.g. 73]. This ap-
proach would fail for magnetic field SLAM, since a single measurement of the magnetic field
could match with several locations on the map. Therefore, a sequence of measurements can
be used, and match to earlier sequences. This was successfully done by Subbu, Gozick, and
Dantu for just localisation, using DTW to match sequences recorded at different movement
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speeds [42].

SignalSLAM [68] is an algorithm that incorporates an IMU and several RF signals sensors
on a smartphone. The authors show an experiment where Wi-Fi was used for a map, though
they claim that it could be used on any time independent signal, like magnetic field measure-
ments.

Jung, Oh, and Myung show that using the sequences magnetic field observations in Graph-
SLAM allows for a improved loop closing [74], claiming a better performance than the RBPF
used by [30]. The framework also incorporates robot odometry and some prior knowledge of
the magnetic field. The method showed sub meter accuracy, but suffered from false negatives
when matching sequences for loop closure.

In [75], Gao and Harle use smartphone based pedestrian dead reckoning for GraphSLAM.
The aim of the study is to use MagSLAM as a basis for mapping another indoor signal, like
Wi-Fi or Bluetooth. A surveyor walks with the smartphone, generating the map. This map is
then used for localisation. In contrast to [74], a matching algorithm with DTW is proposed,
so that speed changes of the surveyor can be accounted for. A major disadvantage of this
method stems from the assumptions made in the algorithm, like constant smartphone orien-
tation. Therefore the surveyor with knowledge of these assumptions is required to map the
magnetic field, instead of running the GraphSLAM for each phone individually. Fingerprint
grid maps were created from Gaussian Process Regression. This method too found sub meter
accuracy.
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Chapter 3

Method

In this chapter, the proposed method is presented. The chapter starts with a description
of the notation used throughout this chapter. Then, the data provided by the HMTS is
described. A RBPF, in combination with reduced rank GPR to model the magnetic field, is
chosen to estimate improve the position estimate of the HMTS. The chapter concludes with
a summary of the algorithm. Prerequisite knowledge on coordinate frame and rotations can
be found in Appendix A

3-1 Notation

In this chapter a multitude of symbols is introduced. The notation of these symbols follow
some consistant rules.

e Vectors and matrices are denoted in bold, scalars not. Matrix variables are capitalised,
vectors are not. Note that scalars can be capitalised.

e Several values are indexed. For example, the proposed method is capable of using
multiple sensors. These sensors values are indexed with a superscript to the right. For
the sensors the indexing symbol is k. For the particle filter, each particle is indexed
with ¢. Specific sensors are indicated by replacing the k, for example the position of
the 8th sensor is indicated with p®. The total number of sensors is then indicated with
Ni and the total number particles with N;. The right superscript is always reserved for
this index notation. Index symbols are always cursive.

e Vectors, quaternions and rotation matrices are expressed in a coordinate frame. The
superscript on the left is always reserved for the coordinate frames. In contrast to
the indexing symbols, coordinate frame symbols are not cursive. Although there exist
Nj = 17 sensor frames s, they are not indexed.

e The right subscript often contains the symbol ¢ for time.
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12 Method

As an example, 5zF indicates the observation of the sensor k, expressed in the sensor frame
of the k’th sensor. Sensor observations are never expressed in the sensor frame of a different
sensor, therefore there is no indexing on the frame notation s, although there exist as many
sensor frames as sensors. Similarly, the orientation "q* denotes the orientation of the k’th
sensors (and thus its corresponding frame s) of k, with respect to navigation frame n. Every
introduced symbol can be found in the glossary at the end of this thesis.

3-2 MVN Link inertial HMTS

The proposed method for the SLAM problem uses inertial data provided by the commercial
HMTS MVN Link [1], provided by Xsens. The suit defines two coordinate frames that are
used throughout the thesis:

e The navigation frame n. Since the wearer of the HMTS is not expected to travel long
distances, the navigation frame is assumed stationary with respect to the Earth. The
origin and direction of the axes are defined at the initialisation of the algorithm.

o The sensor frames s. The MVN Link contains 17 IMUs. Each IMU has its own sensor
frame s. For a full list of these sensor locations, see [2]. The axes are aligned along the
IMU casing, and its origin is in the centre of the IMU.

The proposed method uses the following data provided by the HMTS:

. Szf € R3, for k=1,...,N;, = 17. The magnetic field observations in atomic units at
the origin of the sensor frame s.

. nf)k € R3 for k =1,...,N, = 17. The position of each sensor of each sensor in the
navigation frame n. This position is estimated with the HMTS and its complementary
software.

. quk € R* for k=1,...,N, = 17. The orientation of the sensor frames s with respect

to the navigation frame n in quaternion space. This position is estimated with the
HMTS and its complementary software.

N} denote the number of sensors. The ~ on nf)k and “qu is used to distinct the positions
and orientation as estimated by the suit and those estimated by the RBPF proposed in
Section 3-3. The goal of the particle filter is to improve the estimation of the sensor positions
and orientations. The provided observations °zF are used the in the magnetic field map
estimation explained in Section 3-5.

The suit provides two different qualities of datas:

e Live, live data indicates that no post processing is done in the Xsens software. This is
necessary for real-time SLAM.
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3-3 Rao-Blackwellized particle filter 13

e HD, HD data is post processed in the Xsens software. This data is post-processed and
has less error than the filtered data. Although this data can not be used in real-time
SLAM, it can be used to show the capabilities of the SLAM algorithm with better
inertial data.

It is important to note that both qualities can be obtained from the same data recording
sessions.

3-3 Rao-Blackwellized particle filter

A RBPF is used to estimate the position p, orientation q and the magnetic field map with
mean m; and covariance P. A detailed description on the formulation of the magnetic field
map can be found in Section 3-5. The estimation problem is described by the following joint
posterior.

p(np1:t7nsq1:t’mt‘szlzbulit)? (3_1)

where subscript 1 : ¢ indicates all values op to time ¢. u is the input vector used in the
odometry model, see Section 3-4. The time index on m; does not indicate that the map
changes over time, but that the estimate of the map changes over time.

A RBPF relies on a separation of the map estimate and the rest of the position and orientation,
so that (3-1) becomes

Mapping with known poses

p (np1:t7 nsq1:t7 mt|SZ1:t> ul!t) =p (mt|np1:t> nsqlst? Szlzt) p (nplst’ nsq1:t|szlzt7 ulit) : (3_2)

Target Distribution

This separation forms the basis of almost all recent particle filter SLAM approaches [i.e 27, 28,
30, 73, 76]. The first distribution in (3-2) represents the problem mapping with known poses.
The approach to solving the mapping problem uses GPR, which is detailed in Section 3-5.
The second part, the target distribution, is estimated by a particle filter.

The particle filter uses N; particles to approximate the target distribution in (3-2). Each
particle i for i = 1,..., N;, contains a position "p! and orientation "*q! at time ¢, as well as
a magnetic field map mi. A more detailed description of the particle state can be found in
Section 3-4.

3-3-1 Particle weight

Each particle i has a weight w! assigned to it. This weight represents the belief that the
particle is in the same location in its map, as the actual mobile platform is in the real world.
The weight can be sequentially updated, as proposed by Doucet et al. [77].

ns

Wi p (szt’mé—hnpi? q )p (HPLHSCﬁ
' m (nptansqt‘npg—l)nsqi—lvszl;t)ul:t—l)

Nt ns %
9 — 7u— )
"Pi_1, i, w 1)w§_17 (3-3)

where p (5z,/m!_,,"p},"q}) is the measurement model, the confidence in the particles ob-

servation, given its map at time t — 1, and is specified in Section 3-5. The distribution
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p (°pi, Q" pl_;,%5qi_1,us—1) is the odometry model of the system. It describes how a sys-
tem moves from the previous state to the new one, given a certain control input u;_1. The
odometry model is described in Section 3-4. The proposal distribution = (-) is chosen equal to
the odometry model, as was done in for instance [27, 78]. The weight update (3-3) simplifies
significantly to

wy o< p (Pzy[mi_y, Py, Sy )wi_y. (3-4)
This simplified weight update relies only on the likelihood of an observation ®z, compared
to the magnetic field map, given the current position and orientation of a particle and the
previous weight w!_;.
The vector containing the weights of all particles is denoted with w;. Particles with high
weight, have a magnetic field map for which the observations match, while a lower weight
particles observe a magnetic field that mismatches with its magnetic field map.

3-3-2 Sampling

The target distribution in (3-2) is approximated by a finite amount of particles. More particles
will cover more of the target distribution, while also increasing the computation time. The
RBPF resamples using systematic resampling [79].

Particles are only resampled when the effective sample size Nog is low, as proposed in [69]
and used in [27, 59]. The effective sample size is introduced in [80]

1

Nep = ————.
Zé\il(w%y

(3-5)

The effective sampling size Neg is low when the weights of the particles differ significantly,
implying only a few particles have trajectories with confidence. Only resampling when a
sampling threshold Nyesample is met, such that Neg < Nyesample reduces the risk of discarding
particles that are on a likely trajectory.

The weights of the particles are normalised after resampling, such that

N; '
dwi=1 Vit (3-6)
1

3-4 Odometry model

The goal of the RBPF is to estimate a position and orientation of suit. The odometry model
describes how the position "p¢ and "q¢ change over time, given some control input u;. Since
the suit consists of 17 sensors, there are N = 17 positions and orientations to estimate.
These positions can be expressed in the navigation frame, for each time step t:

npf, fork=1,...,Ny.
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3-4 Odometry model 15

The orientation of the sensor frames, and thus the sensors itself, can be expressed with respect
to the navigation frame, for each time step t:

nsqf, for k=1,...,N;.

As described in Section 3-2, the HMTS provides Sf)f and nsqf . From these values, the change
in position and orientation can be computed for ¢ > 1 as follows:

Anpf = Isf _Sﬁf—h Vka
AMqf ="q7 , © ™qf, (3-7)

where ® denotes the quaternion product.

Both AnpiC and AnsqffC can be seen as a control input uy, even though they are measured. This
distinction is remarked upon, since the other value provided by the HMTS, Szf , is considered
an observation in the measurement model as explained in Section 3-5.

This description of the control input allows for a similar odometry model as used in [28]. The
first novelty of the proposed odometry model is that it allows for the use of more than one
sensor. To use multiple magnetometers to construct the magnetic field map, it is necessary
to know their positions and orientations relative to each other. These relative positions and
orientations are estimated by the HMTS while the RBPF assumes them known.

First, the odometry model for a single sensor is defined. This single single sensor is denoted
with & = a. This definition is later used to generalise the odometry model for more than one
sensor. The RBPF particle filter estimates the position “pf:a and orientation nsqf:a of one
sensor as follows:

P =PI AP 6, epr ~ N (0,8p),
Mai = AT © exp, (e0) © afT, g ~ N (0,8,), (3-8)

where €, and €, are the zero mean Gaussian noise on the position and orientation of the
sensor o with covariance matrices S, and S, respectively. exp, (-) is the quaternion expo-
nential function, as defined in [6]. The formulation of (3-8) can be extended to include the
remaining sensor positions and orientations. This extended odometry model does not affect
the relative positions and orientations of each sensor. This is accomplished by using the same
noise for each sensor. If each sensor would have its own noise, even if the distributions from
which this noise would be drawn were the same, the sensors would drift from each other. To
prevent this, the same values for €), and €, are used in the odometry update of each sensors.

P,

To compute the translation of each sensor that occurs when rotating sensor v due to €, the

relative position rer{pf of each sensor k with respect to sensor « is required and obtained as
reripzlff = npll:c - npll;c:a7 Vk. (3—9)
The position and orientation update (3-8) can be generalised for more than one sensor to
k k k k
"pt ="pi_1 +A'P{ + ‘fg,t + (Rt (62&)) relPt vk,
gk = AMqF © exp, (e;t) ® g, Vk, (3-10)

where R, (eé’it) is the rotation matrix representation of the quaternion resulting from

exp, (eg‘,t). Note that (3-10) becomes (3-8) for k = a, since Zpf~* = 0s.
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Since each particle computes its own state, a superscript ¢ is added, so that for i =1,..., N;,
(3-10) becomes

K k o
"p = pt + AT+ e + (R (67)) it VR,
mqik — Amsgh © exp, (elq?) ® BqF Vk. (3-11)

Equation (3-11) describes the motion each sensor for each particle. Since the sensor poses are
updated using inertial odometry, no absolute position is ever measured. Therefore, the initial

positions pg’k and orientation "Sq ¥ have to be set for i = 1,...,N;and k=1,...,Ng. The

origin of frame n is set to the position of sensor k = «, pgk * Its axes are aligned with its

T
sensor frame, so that nsqf)k ¢ = [1 00 O}
The initial pose of k = « thus becomes

"pgt =" = 03, Vi, (3-12)
ns _i,k=a T .
a*="=[1 000, v (3-13)

By choosing the frame n like this, the initial positions and orientations of the other sensors
can be directly read from data

nppt = npk — f>’f=a, Vi, k, (3-14)
nsqzk (nSAk a) o ns(ig’ Vi, k, (3_15)

Note that (3-14) and (3-15) become (3-12) and (3-13) for k = «.

This odometry model updates the positions and orientation of multiple sensors, while main-
taining the relative positions and orientations of each sensors, as estimated by the HMTS.
Two more novelties to the odometry model are proposed. The first is scaling the positional
noise with the input signal and the second is the introduction of a third state to estimate
orientation drift.

3-4-1 Positional noise scaling

Scaling the noise results in the following odometry model

K y = k .

"pit ="pply + AP+ AlpiT e (Rt( ))relpi Vi, k,

gyt = A%l © exp, (6F) © nsqf L Vi, k. (3-16)
Scaling the noise signal e;, with the input signal A"pF=2 enables the odometry model to
estimate better trajectories by using more information from the HMTS. A common indoor
trajectory moves over different floors. The HMTS considers this and adjusts its trajectory
estimations so that it does not move perpendicular to a floor. This results an input signal
A"pF=* that moves along these floors. The odometry model (3-11) cannot take this infor-

mation into account. Forcing the positional noise towards a two dimensional plane can also
be achieved by lowering the diagonal entry in the covariance matrix S, that corresponds to
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3-5 Measurement model 17

dimension where the particle cloud should not expand as much. However, since the noise dis-
tribution is the same at all times, choosing the covariance such that the particles do not drift
trough a floor, but move enough in each direction on a ascending or descending trajectory,
is difficult. The scaled noise thus partially removes the otherwise required tuning of S,. Of
course, the covariance matrix S, still has to be chosen.

The second benefit is in low motion scenarios. For example, when standing in place, the par-
ticle cloud will not expand as much, since A"pF= is low. This is especially useful in unvisited
locations, since at these locations the magnetic field map might be insufficient to discard the
particles that drift away from this stationary position. This is common on startup, where the
wearer of the HMTS might stand sill before moving.

3-4-2 Orientational drift

The inertial odometry contains orientational drift. This drift is contained in A™qF, but also
shows in A"p¥. The odometry models (3-11) and (3-16) are able to account for the drift

in A™q} by adding the noise exp, (eé?) However, even if the particle filter estimated the

the correct orientation, the odometry model (3-10) updates the position with A"p¥ in the
navigation frame n and not in the respective sensor frame s. Since this navigation frame is
constant, the positional odometry update is independent of the estimated orientation of the
particle filter. Depending on the filtering and smoothing approaches used by Xsens, this A"pF
could be dependant on the orientation estimation used within the suit and later transformed
to the navigation frame n. This would result in the orientational drift showing in Anpf.
The odometry model (3-10) can be adjusted to handle the orientational drift that influences
A"pF. A new state "q, is introduced. In this new state, the orientational drift is modelled as
a random walk model. Modelling the drift as an additional state increases the dimensionality
of the RBPF. The RBPF might require more particles to capture this new dimension. With
this new sate and scaled positional noise, the odometry model from (3-16) becomes

q, = "a,; © expy (). Vi k,

n 4k _ n_ ik R, (™ Alpk 1 ADpk=a i, R i, n. ik Vi k

Py = Py +( t( eqt)) b + o0 6p,t + t 6q,t relPt LR,
gyt = A%qf © exp, (6F) © "afy, ik, (3-17)

where "$q, is initialised as = {1 00 O}.

Note that the new state "?q, is updated with the same noise as nsqi’k. These are chosen the
same, since it is expected that the drift in A"p} due to orientational drift and the drift in
A"qF originate from the same error in orientation estimate of the HMTS.

3-5 Measurement model

To compute the particle weight wi in (3-4), the measurement model p (°z,/m}_,,"p}, *q’)
needs to be evaluated. In this section, the form of m} is constructed.
As specified in Section 3-2, the HMTS provides the obersvations of the magnetometers in the
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IMUs, %z, € R3, for each sensor. Both the magnitude and direction is used to construct a
magnetic field map. The proposed method uses a GP to represent the magnetic field, similar
to [e.g 27, 30, 57, 59-61, 64]. Modelling the magnetic field as GP fits nicely with the RBPF,
because the GP describes the magnetic field with a mean vector m; and covariance matrix P,.
With this representation, the likelihood of observation °z, can be estimated by the density
function of a multivariate Gaussian distribution

1

(2m) " [Py |

p (Szt‘mé—lv npév e

(Szt - mi—l) to1 ! (szt - m§_1)>.

N[ =

q;) = exp (-~

(3-18)
The exact form of mean m; and covariance P, is given in Section 3-5-1.
Similar to [28, 61], the GP prior used in this method is
@ (x) ~ GP (0, kiin (x,X) + KsE (%,X7)),
zi = Vo (X)|xex, + €, € ~N (0,0—313), (3-19)

where o, is the variance on the observations z and ¢ (x) is the scalar potential of the magnetic
field. The linear kernel and SE kernel are defined as

Kiin (X,X°) = o, X" X, (3-20)

02
s (x,5) = o exp (20 ), (321)

where oy, and ogg are the magnitude scale hyperparameters and Z%E is the lengthscale hy-
perparameter. The indoor magnetic field is assumed to be curl-free. This is ensured by the
GP prior (3-19). A detailed derivation of (3-19) is shown in Appendix B.

Constructing a GP through, for instance, the prior (B-7) is computationally expensive. Stan-
dard GPR scales with O (N3), where N, is total number of measurements. The problem
quickly becomes too large, as the HMTS provides data up to 240Hz. To significantly re-
duce the computation complexity by making the complexity independent of the number of
measurements, an approximation of a full GP is computed.

3-5-1 Reduced rank GPR for multiple sensors

The method uses the GP approximation proposed in [64]. This approximation assumes the
scalar potential ¢(x) to be a GP prior, and the observations of the magnetic field to be its
gradient, as in (3-19).

Similar to [28, 61], the SE kernel in (3-19) is approximated by an eigendecomposition, so that
the kernel in (3-19) becomes

Nm

Rapprox (P, p,) ~ Kiin (P, p’) + Z (Sse (A])¢] (p>¢j (p,>) ) (3_22)
=0

with N, number of basis functions ¢ (p) and eigenvalues A. Since the orientation is only
applied later in this formulation, the more general x is replaced by only the position p.
Ssk (A) is the spectral density function of kgg (x,x’)

3
Sse (V) = o2 (213) exp (—%V) (3-23)
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3-5 Measurement model 19

The eigendecomposition can be solved in a confined domain, denoted with (2. For rectangular
domains, the expressions for ¢ (p) and A can be solved in close form. Therefore several
domains Q¢

Q% € [L1, L] X [La, L] x [Ls, L3] C R? (3-24)

with centre *p? are introduced, where d is the domain index. These domains span the space
where measurements are estimated to be taken. The number domains thus depends on the
trajectory and can change over time. The expressions for ¢ (p) and A are obtained by solving
the eigendecomposition of the Laplace operator subject to to Dirichlet boundary conditions
of domain €2

{—V%;- (P) =Aj¢j(p), PE, (3-25)

¢; (p) =0, p € 00.

A downside of these boundary conditions, is that it introduces very very low uncertainty
near the boundary and no uncertainty exactly on the border. The mean is also fixed on the
boundary due to these boundary conditions. Therefore, in the evaluation of the likelihood of
a measurement according to (3-4), it will assign either very high weight if a particle is near
the border and observes a field similar to the mean, or a very low weight if it does not observe
a field close to the mean, while the real magnetic field might not be close to this mean at all.
To prevent this from occurring, adaptations are suggested in Section 3-6.

Choosing the domains as done in (3-24), leads to the following analytic expressions for the
basis functions and eigenvalues, for j =1,..., N, and k=1,..., Ng

ik L (npzlz + Lh) 3 1
o ("or*) = I =sin o L 4R R (3-26)

h=1
where matrix n € RVm*3 consists of an index set of permutations of integers {1,2,..., N}
(ie. {(1,1,1), (1,1,2), ..., (1,2,1), ..., (2,1,1), ...)}) for the N,, eigenvalues with the

highest spectral density Ssg (A) as defined (3-23). Subscript & denotes the h’th element, which
corresponds to three dimensions. The basis functions, together with the spectral densities,
can be used to write the approximation as follows

Rapprox (p; p,) = (I)A(I)T

® (-) is the collection of the eigenfunctions. Let intermediate row block matrix function
X (+) : R? s RVm*3 be defined as

X ("pi*) = {(“pﬁ’k)T o1 ("pi*) @2 ("pi") - ow., (npi’k)}~ (3-27)

X (npi’k) is computed with a single position, belonging to a single magnetometer. To include

multiple sensors, X (“pi’k) is computed for k£ = 1,..., Ni and collected into the column block
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matrix function @ (-) : R3Vk s RNkx (Nm+3)

n_ il n_i,N, N N\ T v
@ ("py!,..."p™) = [X(“pi ) xX(e®) o x (e } : (3-28)
The block diagonal matrix A contains the spectral densities
A=diag([of, of, o2, Sse(\) Ssp(A) ... Sse(w,)])- (3-29)

Note that the first three entries of ® and A are the linear kernel of (3-22) with the remaining
entries approximating the SE.
To finalise the approximation for the GP prior (3-19), the gradient of ® (-), V& () : R3Mk

R3Nex(Nm+3) hag to be computed. The gradient is obtained by concatenating the gradients
of X (+)
ve ("pyts. ey ) = [VX (i) vx(*pi?)" ... VX ("p ”Vkﬂ . (3-30)

where VX (-) : R3 — R3*(Nm+3) in turn consists of the gradients of the basis functions
npik n i T n % n,.%, n..%,
VX ("p}*) = {V( pi") Vo ("p*) Ve ("pi*) ... Vow, ( ptk)} . (331)

The gradients of the basis functions (3-26) can be expressed by defining helper function
g (npzk;) so that V¢, (-) : R® = R3 becomes

i,k
g (np;lk;) — sin (Trn}}h (r;pzl},: + Lh)) : (3-32)

TN 1 ””jyl(npiy,lerLl) n ik n. 4.k

WIniL, CO8 2L, g\"P2t) 9\ P3y
ik

k ; w2 ( Py, +L2 ik ik

v¢] (1’1 ) ) — 271'72]2,12 COS< J (2L22,t >> g (l'lpll’t) g (npgi) . (3_33)

ik

™ g 3("ps+L3 i ke ik

st con (PR ) o () o (i)

The matrix function VX thus includes the positions of all £k = 1,..., N,. This differs from
existing literature [28, 61], where only a single position is used.

Sequential updating

The sequential solution to the GP becomes a KF. In the update step of the filter uses the
observations °z, in the sensor frame. To transform the GP to this frame, the following matrix
function is defined

SnRi’l
sn 4,2
clohwi)=| | va(w).

SHRika
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where the block column matrix with rotation matrices is constructed using the orientations
estimated with the particle filter odometry model (3-10). For notational ease, these orienta-

tions are collected into intermediate variable pi = {ani’l, . ,S“qi’N’f}. These orientations
are used to compute the rotation matrices S“Ri’k vk. V& (1/)35) is defined in (3-30), with

intermediate variable @bé = {npi’l, . ,npi’N’“}. The KF is then be written, for ¢ =1,..., N;,
as

Si = C (o}, 9}) PLy (C (b)) +02Man,, S} RIVON,

Ki=P;(C(pivi)) (s) Kj € ROV,
m} = mj_, + K; (*z,— C (p}, %) mi_, ), mj € R+,
P}:PLl—Kﬁﬁ@qft Pi ¢ RVmtd)x(Nmt3) — (3.34)

Note the difference from existing literature [28], where the matrix sizes of Si and K! do
not scale with the Np. This is a direct consequence of using mulitple sensors to compute
Vo (1#%) The KF is initialised with mean and covariance

my = 0,43, Vi, (3-35)
L =A, Vi. (3-36)

Now, the likelihood of observations ®z, of multiple sensors with positions 1,02' and orientations
p; is given by (3-18), where the mean and covariance are obtained from the KF (3-34).
The mean and covariance do have to be transformed back the sensor frame, so that (3-18)

becomes
exp (_

The argument of matrix function C (pé, 1/:%) is dropped for notational purpose.

N[ —

S i T i -1 S i
( z; — Cmtfl) (CPFlCT) ( zZy — Cmtl))

(3-37)

p(szt|m§_1,'¢§,p§> = \/(27T)Nk ICPi_,CT]|

The scheme proposed in (3-34) updates a single domain and allows for the use of multiple
sensors. It can be expanded to more than one domain, as explained in Section 3-6-2. Similarly,
the likelihood evaluation of (3-37) for multiple domains is described in Section 3-6-1.

The complexity of sequential update step of the reduced rank GP scales as O (Nm3), So not
with the number of measurements taken, but only with the number of basisfunctions used
to approximate the full GP. This allows the algorithm to construct a large map with many
observations.

3-6 Reduced rank GPR with multiple domains and sensors

In addition to the reduced rank GPR, the mapped space is divided to multiple domains to
further reduce the computation complexity, as was done in [28]. Since these domains will be
smaller than the original space, less eigenfunctions will be required to approximate the full
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Figure 3-1: Multiple partially overlapping rectangular domains in two dimensions. L; o indicate
the inner lengths and LO; 5 indicate the outer lengths.

GP of these individual domains. Each particle has its own domains and each domain will
have its own GP, expressed by the mean vector mi’d and covariance matrix Pi’d, where d is
the domain index. '

Due to the Dirichlet boundary conditions (3-25), the magntitude of the mean mi’d at each
domain boundary is equal to oy, without any uncertainty. In other words, the algorithm is
very certain of its constructed map at the domain boundaries, even though the GP has had no
inputs at these locations. As a consequence, particles with sensors located near the domain
boundary obtain very high weight if the measured magnetic field happens to coincide with
the constructed map.

This overestimation of the certainty can be avoided by dividing each domain into an inner-
and outer domain, similar to [28], where the outer parts of the domains overlap with their
neighbours, as shown in two dimensions in Figure 3-1. The length of these overlapping areas in
each dimension is denoted as {LOy, LO1, LO3}. The lenghts of the inner domain are denoted
with {LIy, LIy, LIs}, so that LI, + LOy, = L. If a particle has sensor positions within the
overlapping part of multiple domain boundaries, the weight update step (3-4) can be done
with the mean and covariance of the domain for which the boundary is farthest away from
the sensor in question. This reduces the influence of the overestimated certainty close the
boundary of domain.

The method described in this section is an adaption the the approach used in [28], where
only a single sensor was used. Using more than one sensor with multiple domains introduces
complexities when updating the particle weight and updating the GP of each domain.

A two dimensional example where these complexities arise is given in Figure 3-2a. Four
sensors, of one particle, are located near the boundaries of several domains. Since the sensors
are located in four different domain, the observations made by the four sensors can be used
to update the GP of each domain, but not all four observations can be used for each domain.
For example sensor k£ = 1 is only located in domain d = 2, so its observation can only be
used to update that specific domain. Section 3-6-1 describes the update steps for multiple
domains and sensors in detail.

The same example is used to describe the particle weight update step when using multiple

Thijs Veen Master of Science Thesis
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domains and sensors. For each sensor, the likelihood is evaluated in a single domain. This
domain is chosen, such that its GP domain is least influenced by the Dirichlet boundary
conditions (3-25), as described in Section 3-6-1.

3-6-1 Weight update for multiple domains

To reformulate the weight update equation, several intermediate sets are defined

‘I’i’d _ {(np?k’ B npi,d> | min ”npi,k B npi,dH% Vd, k:}7 (3—38)
o' = {"q" | min|["py* —"p"||a, Vd, k}, (3-39)
Zit = (5gF | min |["py* — "pid||s, Vd, k}. (3-40)

These sets contain, for every domain Q%% 0 up to Nj, elements. For each sensor, the domain
is selected for which the sensor is closest to its domain center "p®?. In (3-38) ot (3-40) this
is indicated with min ani’k —p®d||y, Vd, k. Then for each domain, these position of these
sensors are collected in \I'i’d, the orientations in gi’d and the observations in Zi’d. An example
of these sets for the sitation in Figure 3-2a is shown in Table 3-2b. Using these sets to update
the particle weight ensures the minimal effect of the Dirichlet boundary conditions.

For each particle, a intermediate mean ,m}, covariance matrix *Pi, transformation function
.C! and observation vector ,Z! is constructed. Then for each particle i these matrices can
be constructed for each domain that has at least one sensor closest to its sensor. So for each
d=0,..., Nét ] \Ilid # (), where Né,t is the number of domains constructed by particle ¢ at
time ¢, these matrices are defined as

7,0 T 4Ny,
m ) ..., (m,

T
) (3_41)

T
w1y =

: (3-42)

(
(
Ci=|(c (Qi’o,\lfi’ODT,...,(C (gi’N‘é»t,\pi’Névt»T} , (3-43)
: |
(

(3-44)

) i \NT1T
\Ifi’o)T,...,<\Ili’Nd’t) } , (3-45)

0} = :(gi’O)T,..., <gi’N57t)T]T. (3-46)

An example of these variables is given in Table 3-2c. They are defined, so that the likelihood
evaluation (3-37) for multiple domain can be written as

exp (—4 (2= .Ciomi) " (.CLP}.C) (120Gl mi))

JenY .l P .Clf|

s i i d)
P( z,mp . W, Qt) =

(3-47)
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| d=1 | d=2 |
| h=1+ |
| k=2 |
N e =
| k=4+ |
| d=3 | d=4 |

(a) Two dimensional example with four domains
and four sensors, indicated by «. Used for the
example in Table 3-2.

2] k| L7 &t | 7

1 3 {np?/€3 _ npi,dzl} {nsqiﬁ} {SZ?}

i,k=1 i.d=2 i, k=2 i d=2 7,1 2,2 1 2
9 1’ 9 {npt _ npz,d ’npt _ npz,d } {nsqt 7nsqt } {Szt , szt }

3 4 {np?k:4 _ npi,dB} {nsqi»‘l} {szél}

4| — 0 0 0

(b) Example of the sets defined in (3-38), (3-39) and (3-40) for the situation in Figure 3-2a. The
second column k lists the sensors which have the domain’s centre in the first column d as closest
centre. The positions relative to the corresponding domain, orientations and observations are collected
in the sets \Ili’d, gi’d and Zi’d respectively.

i | P .Cl 7
[ id=3 oid=3\ | | - -
C (Qt Wy ) k=3
0=l pird=l P ¢
t t C (Q;’ e ) k=1
=2 pid=2| | .ci = t
t t ¢ C (oid=2 id=2 k=2
i,d=3 i,d=3 ey ¥y t
my P, )
i d=4 o id=4 Al
C ( t ’ ‘Ilt ) - t -

(c) Example of the variables defined in (3-41), (3-42), (3-43) and (3-44) for the situation in Figure 3-2a.
These variables are used to compute the particle weight using (3-47).

Figure 3-2: Two dimensional example of a single particle with four sensors and for domains, as
shown in Figure 3-2a The given variables are used to evaluate the particle weight with (3-47).
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Updating the weight with multiple domains is summarised in Algorithm 1

Algorithm 1: Particle weight update for multiple domains

N;
Input: {“pi’k,nsqi’k,szf,wi} fork=1,...,N,
i=1

Output: {wi 1},
for i =1 to N; do
Check which domains have a centre "p»?, for which a sensor position “p;’k is closest

to this domain’s centre. Call these domains Qg, . 793\71' ;
d,t
Construct the sets \Ili’d, gi’d, Z;’d, using (3-38), (3-39) and (3-40);
for 0 to Né,t do
Construct ,m}, ,Pi ,Ci and ,Z! using (3-41), (3-42), (3-43) and (3-44);
end
Evaluate the likelihood p (Szt|*m§,* v g,@) using (3-47);

Update the particle weight wi,; = p (Szt|*m§,* v gﬁ)wg, according to (3-4);
Normalise the weight so that the norm of all weights is one, ||w¢+1]]2 = 1 holds,
according to (3-6);

end
return wyy

3-6-2 Sequential reduced rank GPR for multiple domains

A particle will construct a new domain Q¢ when one of its sensors enters a location that
would be part of a new domain. This occurs when a sensor enters the ‘overlapping’ part
of two or more domains, while not all the domains that this sensor is located in have been
constructed.

Partially overlapping the domains allows for a single sensor to be in multiple domains at once.
These domains all need to be updated accordingly. In the three dimensional case, this could
mean that a single sensor updates one, two, four or eight different domains.

The KF update step (3-34) becomes dependant on which sensors k are located in what domain
d. Suppose a particle has constructed multiple rectangular domains and has multiple sensors,
as shown in Figure 3-2a. It is necessary to update the domains only with the observations
within that domain.

Several intermediate sets are constructed for d =1, ... ,N(it
V= {(mpi* ) | mpyt e 0, Wi}, (3-48)
piud — {nsqi,k ‘ npi,k c ind’ Vk’}, (3_49)
¢, = {°zF | "piF e Qi) vk}, (3-50)

containing the positions with respect to the corresponding domain’s centre, orientations or
observations of the sensors located within a domain Q*¢. N 4.+ denotes the number of domains
constructed by particle . Note that his number changes over time and with each particle.
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d ¢i’d Nz 4

i

1 {npi,kZQ _ npi,d:1’ np?k:3 _ npi,dzl’ npi,k:‘l _ npi,dzl} 3
) {npiykl _ npi,d:2’ npiakZQ _ npi,d:27 npiyk::ﬂ _ npi,d:2} 3
3 {npi,k—ig _ npi,d:3, np’i,k’:‘l _ npi,d:S} 2
4 {npz',kzs _ npz‘,d4} 1

Table 3-1: Example of the set 4! defined in (3-48) and the size of the set for the situation
given in Figure 3-2a. Each domain d has a set wi’d, containing the position of each sensor
located in that domain. The KF (3-51) uses only these sensors to update the GP of the
respective domain.

Let N ‘ denote the size of these sets. An example is given in Table 3-1 for the set defined in

(3- 48)
The KF (3-34) can then be reformulated for each domain Q¢

87" = ¢ (o wi?) P (C (01, ld))TJf oalant
t

§i ¢ RsN d><3N¢d
it = (0 (ot ) (59) it e
mp? = mi £ K (2 - C () mity ) mpt e RO,
= P - Kiigid (Ki’d) , Pyl e RWmt3)x(Nm+3) — (3.51)

Each particle thus gets its own KF matrices for each domain Q¢ it has constructed. Note
that the mapping function C (pt , b d) changes it in- and output size for different domains
at different times.

The reformulation of the sequential update step (3—51) increases the computational complexity
by running the steps for each domain Q*? for d = 1,..., N ét, but not that the inversion of
the innovation matrix S. can become easier, since N < Nj. If sensors are located in the
overlapping part multiple domains, more computatlons are required since the same position,
orientation and observation are used multiple times. In the worst case there are Vi sets of
Ni, = Nj entries. In this case the update step (3-51) is run N, times, with the largest
matrix size possible. However this is very likely to occur of the size of the domains is chosen
sufficiently large. Since the sensors are located on the HMTS, they can only be a person’s
length apart at most.

The algorithm for updating each domain is given in Algorithm 2.
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Algorithm 2: Sequential domain update for multiple domains

N;

ik ik i,d i,d ;
Input: {np;’ ,15qy ,Szf, m;", P;’_l} ford=1,...,Ng,
1

1=

N;
Output: {mz’d, Pi’d} ford=1,... ,Nit
=1

for i =1 to N; do
for d to N, do
Construct the intermediate sets 1,0?61, pi’d and ¢, using (3-48), (3-49) and (3-50);
Perform the KF update step (3-51) to obtain mi’d and Pi’d ;
end

end

return {m,;’d, Pi’d}

=1

3-7 Algorithm

The complete magnetic field SLAM algorithm is summarised in Algorithm 3.

Algorithm 3: Magnetic field SLAM using a HMTS, a RBPF and reduced rank GPR

Ni—
Input: {Szf, nf)fmsqk}t; for k = 1,...,Ng

Output: {nf)’&:]\,fi1 , nsq’(ﬁ::]\il }
Initialise the N; particles according to (3-14) and (3-15), and construct domain 2} with
mj, ; and mj, according to (3-35) and (3-36);
for t =0 to N;_1 do
Update the particle weights w! according to Algorithm 1;
Compute Neg;
if Neg < Nyesample then
| Resample using systematic resampling [79];
end
for i =1 to N; do
Update the positions and orientations according to (3-16) or (3-17);
for k to N; do
if "p! is in a new subdomain Q“¢ then
Create new subdomain Q%? for particle i and initialise mi’d and Pi’d
according to (3-35) and (3-36);
end
end

end

Update the magnetic field map mi’d and Pi’d according to Algorithm 2;
end

Set {“13’53::]\2‘71 , nsq’g:zj\g‘il} equal to the trajectories of the particle with the highest weight;

—fo— — k=
return {”po:j\g_l 5 nSqIS:J\g_l }
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Chapter 4

Results

In this chapter, the results of the experiments are presented. In Section 4-1 the proposed
method is divided into smaller parts and the performance of these parts are then verified.
Section 4-2 shows the results of the SLAM algorithm using a single magnetometer to construct
the magnetic field map. Finally, the performance of the SLAM algorithm is shown in Section 4-
3.

Throughout this chapter an OTS [81] is used. This system provides very accurate position
estimates, which can be used as a groundtruth for comparison. Except for the experiment
described in Section 4-1-1 and those where no OTS is used, the OTS tracks the position of
the IMU located on the chest. This IMU was chose over others, because it is clearly visible
from the cameras mounted on the ceiling.

4-1 Method verification

The proposed method consists of different elements and relies on assumptions. One assump-
tion is that the different magnetometers provide matching observations of the magnetic field.
This assumption is tested in Section 4-1-1. In Section 4-1-2, hyperparameters are determined
and the performance of the GP is tested, using validation and training data. Section 4-
1-3 shows the evolution of the magnetic field map as more observations are added to the
GP. In Section 4-1-4 the effect of the domain transitions on the modelled magnetic field is
investigated.

4-1-1 Magnetometer calibration

This experiment is performed to ensure that different magnetometers measure the same mag-
netic field in the same location. The two IMUs on the hands of HMTS were tracked by
the Optitrack system [81]. This setup provides accurate optical position estimates for two
magnetometers and their magnetic field observations. For the two magnetometers, matching
positions are sought, and for these positions the magnetic field observations are compared.
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Data set distance | mean std

Before calibration | < lem | 0.027 | 0.0064
After calibration < lem | 0.015 | 0.0076

Table 4-1: Mean and standard deviation of the difference in magnetic field magnitude observed
by the two magnetometers for different data sets and distance for which two magnetometers are
considered at the same location.

Magnetometer calibration aims to scale the measurements so that each magnetometer provides
observations of the field scaled to the same magnitude. After calibration, the magnetometers
are expected to observe the same magnetic field at these matching locations. The experiment
is performed before and after all the seventeen magnetometers on the HMTS are manually
calibrated using the magnetic field mapper [82] tool by Xsens. The magnetometers were cali-
brated outside, as the magnetic field is expected to not be distorted outside. The difference in
measured field magnitude by the two magnetometers before and after calibration is compared.
Two magnetic calibration tests were performed. One before magnetometer calibration and
one after.For both tests, the magnetometers were considered at the same location, if they were
within lem of each other, as determined by the OTS. This distance is chosen, because the
magnetic field is not expected to differ spatially at these distances. The mean and standard
deviation for all tests are shown in Table 4-1. The difference in magnetic field magnitude
is lower after calibration. The difference in observed magnetic field could have consequences
where multiple sensors are used to construct the magnetic field map, since the GP expects
each sensor to have the same characteristics.

4-1-2 Hyperparameters

To obtain the hyperparameters, the max-log-likelihood approach as described in Appendix C
was used. The first 2000 data points after downsampling were used. To verify the quality of
the GP, the data was split into 80% training data and 20% validation data.

Table 4-2a shows the results, computed with the optimised hyperparameters oy, = 0.850,
osg = 1.15, Isg = 0.388, 0, = 0.00357 and N,, = 500, L = {7.8,7.8,2.75}. The GP is
constructed with the observations of a single sensor. In Table 4-2a, the mean error shows
that the GP is close to the measured field. However, the GP overestimates its own accuracy,
indicated by the very low o,. The variance is so low no validation observation falls into the
95% confidence interval.

Better results are obtained when choosing hyperparameters characteristic with the Earth’s
magnetic field. With hyperparameters oy, = 1.05, ogg = 0.44, Isg = 0.71, 0, = 0.10 the
validation observations fit better into the modelled magnetic field. The results are shown
in Table 4-2b. Although the mean error is slightly worse, the confidence of the GP is more
realistic, as the fraction of validation observation that fall within the confidence intervals is
more realistic.

Constructing the magnetic field with all Ny = 17 magnetometers results in a less accurate
map if the same hyperparameters are chosen. An explanation could be that the different mag-
netometers have a slightly different calibration, resulting in different observed magnitudes.
The hyperparameters are shared for each sensor, so the magnitude scales oy, and ogg cannot
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Mean error | 0.0104 Mean error | 0.0113 Mean error | 0.0442
68% interval | 0.0 68% interval | 0.92 68% interval | 0.5
95% interval | 0.0 95% interval 1.0 95% interval | 0.72
(a) A single IMU, with (b) A single IMU, with (c) All Nj, =17 IMUs, with
hyperparameters obtained trough hyperparameters oy, = 1.05, hyperparameters ojin = 1.05,

optimisation [61] oyin = 0.850, ose = 0.44, lsg = 0.71, 0, = 0.10 . osg = 0.63, Ise = 0.32, 0, = 0.39 .
ose = 1.15, Isg = 0.388,
o, = 0.00357

Table 4-2: Results for the magnetic field with different hyperparameters and number of IMUs.

The data is split in training (80%) and validation (20%) data. The 68% and 95% interval shows

what fraction of validation data was within once or twice standard deviation from the mean of
the GP. Error to the mean is defined as € = ||C (p}, ¥}) m (x) — z||.

be chosen for each sensor separately. Additionally, the orientation of the sensors with respect
to each other need to be accurate as well, since the direction of the observed field is vital for
GP. The extra difficulties introduced by the additional sensors result in an higher measure-
ment noise o,. The SE magnitude ogg is also raised so that the higher measurement noise
is still smaller than this magnitude. The results of a constructed magnetic field map with
hyperparameters, oy, = 1.05, ogg = 0.63, Isg = 0.32, 0, = 0.39 , is shown in Table 4-2c.
The mean error is significantly higher than for the map constructed with only one sensor.
Due to the much larger o, the fraction validation observations that fit into the confidence
intervals is still relatively high, considering the large mean error. For multiple sensors, GPs
with lower lengthscale lgE seems to perform better. A possible explanation could be that due
to the closeness of the different magnetometers, small anomalies can also be observed. A GP
with a large lengthscale would have difficulties mapping these smaller anomalies.

4-1-3 Sequential magnetic field map

The magnetic field maps constructed in Section 4-1-2 are not constructed sequentially. To
show the evolution of the map as more observations are made, a magnetic field map is con-
structed and evaluated at different times. The hyperparameters are oy, = 1.05, ogg = 0.63,
lsg =1, 0, =0.05.
The GP is sampled in a xy-plane, with the height z equal to the height of the sensor at the
first measurement. Since no significant height differences are present in the trajectory, this
plane is expected to be a good view of the full 3D constructed magnetic field map.
First, sequentially updating the magnetic field map with a single magnetometer is investi-
gated. Figure 4-1 shows the magnetic field map at three different time steps. It shows the
estimated field strength in each direction, as well as the variance. The magnetic field changes
trough the first circulation, as observations from the newly visited locations are added to the
GP. Afterwards, when no new locations are visited, the map does not change significantly
near the trajectory. This behaviour is expected, since the magnetic field is assumed to be
constant over time, and no ferromagnetic materials were moved during the experiment.
Second, the same experiment is repeated with all N = 17 IMUs. The same hyperparame-
ters are used. The evolution of the constructed magnetic field is shown in Figure 4-2. The
evolution of the magnetic field shows similar behaviour when constructed with a single mag-
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Figure 4-1: Evolution of the magnetic field map over time. The trajectory is shown with the
orange line. The colormap represents the field strength. The magnetic field map is constructed

using one magnetometer. Hyperparameters:
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oiin = 1.05, osg = 0.63, lIsg =1, 0, = 0.05
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Figure 4-2: Evolution of the magnetic field map over time. The trajectory of the IMU on the
pelvis is shown with the orange line. The colormap represents the field strength. The magnetic

field map is constructed using Ny = 17 magnetometers. Hyperparameters: oy, = 1.05,
ose = 0.63, Isg = 1, 0, = 0.05
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netometer. An effect of using more magnetometers is that the variance is low further away
from the trajectory line shown in the figures, as seen in the variance plots of both Figure 4-1
and Figure 4-2. This occurs because a larger area is covered by multiple IMUs compared to a
single one. However, the trajectory line in Figure 4-2 shows only the trajectory of the pelvis
Sensor.

The magnetic field strength differs more in the x and y direction over short lengths than in
the z direction. Unfortunately, the squared exponential covariance kernel kgg (x,x’) (3-21)
the lengthscale hyperparameter Isg cannot be chosen for each direction individually.

The variance plots in Figure 4-1a and Figure 4-2a shows that the GP is confidant around the
trajectory and gradually falling further away from the measurements. After the trajectory is
closed in Figure 4-1b and Figure 4-2b, the variance is very similar over the area where the
trajectory is. Note that in this experiment the boundaries of the domain are chosen far away
from the trajectory, so that they affect the magnetic field map minimally due to the Dirichlet
boundary conditions. Therefore, they do not show in the plots of Figure 4-1.

4-1-4 Domain transitions

To verify that no unexpected behaviour occurs when sensors are near domain boundaries
and transition to new domains, a scenario with a simple trajectory and small domains is
investigated.A close up view of the transition is given in Figure 4-3. The inner domain
boundaries are shown with the vertical black lines. Between these two lines is the overlapping
part of the domains. The orange line shows the trajectory. Figure 4-3a shows the magnetic
field constructed using one IMU and Figure 4-3b shows the field using all N = 17 IMUs.
To closely investigate the difference in the magnetic field map of each domain, the magnetic
field is sampled. At each sampled location a coloured rectangle is shown. In this rectangle,
a scalar value represents the strength of the magnetic field at that the center of the coloured
rectangle. On the overlapping part, two scalar values are shown in each rectangle. The two
scalars are computed using the constructed magnetic field from different domains. With these
scalars, the behaviour in the overlapping part can be more closely investigated. The values
are expected to be close together, since both GPs model the field at the same location.
With a single IMU, the magnetic field in the overlapping areas are very similar in all directions.
However, for all IMUs, the overlapping field in the x-direction differ slightly more, while the
other direction are modelled much more equal. This slight boundary transition of the x-field
could be caused by the difficulty of modelling the x-field for multiple sensors, regardless of
domain transitions, as experienced in Section 4-1-2.

For both a single and multiple magnetometers, the two sampled values of the GP are close to
each other near the trajectory, while the difference grows further from the trajectory. This is
expected behaviour in the case of a single magnetometer, as the GP is less confident in these
locations, as the observations are further away. This also shows in the variance. However,
for multiple sensors the difference of the two fields starts to show further from the trajectory
line. This is also expected, as only the trajectory of the IMU on the pelvis is shown. The
other sensors provide observations around the shown trajectory, enabling the GP to model
the field better further away from the trajectory line.
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Figure 4-3: Comparison of the modelled magnetic field at an overlapping part of two domains,
constructed with a single and multiple magnetometers. The orange line shows the trajectory of
the sensor on the pelvis. The scalars printed within the coloured rectangles give the value of the
sampled GP at the centre of the rectangle. On the overlapping part, two scalars are shown, each

belonging to another domain. Hyperparameters:
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Odometry model H Olin l ‘ OSE ‘ Oy ‘ L ‘ LO ‘ N,
(3-16) 110 105 | 0.2 | 0.05 | [5.5 4 3] |[o 0 o] | 500
(3-17) 110 | 1|02 [0075 | [55 4 3| | [0 o of|400
Odometry model || N; | Neg %Sp %Sq N
002 0 0
(3-16) 60 | 0.5 | 3I3 |[107°| 0 0.02 of | 1
0 0 1
[0.02 0 0
(3-17) 150 | 0.5 | 0.01I3 | 107 | 0 0.02 0 1
00 1

Table 4-3: The used parameters for the comparison of odometry model used in the RBPF.

4-2 SLAM using a single magnetometer

In this section, the performance of the proposed algorithm is evaluated with experiments.
This sections shows the results of the algorithm when only one magnetometer is used to
construct the magnetic field map. This does not mean that the HMTS suit can be replaced
by a single IMU, because the HMTS still uses all IMUs to compute its odometry.

In Section 4-2-1 the results of using different odometry models is shown. Both qualities of
data from the HMTS, as explained in Section 3-2, were used to asses the performance of the
SLAM algorithm. The results are shown in Section 4-2-2. For both these results, no domain
transitions are used. The odometry is covered by a single domain. Finally, a set of stairs is
traversed to show the performance in a fully 3D environment, shown in Section 4-2-3. The
space covered with the odometry in this experiment does require multiple domains.

4-2-1 Comparison of the odometry models

In Section 3-4, two odometry models are presented. The first model (3-16) applies uncertainty
on both the position and orientation trough added noise scaled with the input Anpf:a. The
second model (3-17) builds upon the first with an additional state to account for drift in
the orientation, so that it can correct the input signal A"pf=®. Both models can be used
seperately in the SLAM algorithm. The results are compared in this section. In both situation,
the post-processed HD data was used. Table 4-3 shows the settings used for both results.
Figure 4-4 shows the result of the SLAM algorithm, using the first odometry model.

From Figure 4-4a it can be seen that the odometry suffers from drift in all four corners. The
trajectory estimated by the RBPF shows significantly less drift in two corners, but significantly
worse performance in the other two corners. The RBPF is able to correct its own large error
in these corners, but not able to prevent the error in the two badly performing corners.

In Figure 4-4b the Euclidian distance of both the odometry and the RBPF to groundtruth
is shown. It is clear that both errors increase over time with the same slope, although the
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Figure 4-4: Results for first odometry model (3-16). Post-processed odometry was used.

RBPF has a lower minimum and higher maximum error. Through different tunings of the
SLAM algorithm, the contrast in performance in the two sets of corners is similar. All test
performed significantly worse in the two right corners, and good performance in the two left
corners.

The cause of this behaviour is the orientation drift present in Anpff:a. This can verified by
running the same experiment, but with the second odometry model. The results are shown in
Figure 4-5. For these results, significantly more particles were used, so that the improvement
of the second odometry model can be validated.

The esimated trajectory does not suffer from a drifting error and settles after around 150
seconds. After 250 seconds the RBPF starts to outperform the odometry. This lack of dirft
in the error shows that the RBPF is capable of using the map to correct for the drift.

The performance of the RBPF is significantly worse compared the odometry early on. A
possible cause could be that the first circulation of particles is polluted due to the introduced
noise. A map is constructed with this incorrect circulation, resulting in a incorrect map. This
map is than used to estimate the position in the further circulations. This would cause a
large error appearing early, but settling afterwards. This behaviour is consistent when using
lower values of orientational and positional noise. As the portion of the positional noise is
shifted to S,, the covariance matrix S, can be significantly lower than for the experiments
without this odometry model.
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Figure 4-5: Results for the second odometry model (3-17). Post-processed odometry was used.

4-2-2 Impact of post-processed odometry

Since the method proposed in Chapter 3 is sequential it is capable of running real-time,
assuming the computations can be performed fast enough. Therefore, it is interesting to
investigate the impact of using real-time or post-processed odometry.

For these results, the data was collected from the same experiment as performed in Section 4-
2-1, although the results shown that section used post-processed odometry. The results of the
test with real-time data used the second odometry model (3-17) so that the can be compared
to the results in Figure 4-5. The used parameters are shown in Table 4-4.

The results are shown in Figure 4-6. The error shows similar characteristics as the error when
using post-processed data. At first, the RBPF has a larger error. Later it outperforms the
odometry. However, the RBPF trajectory shows significantly less drift in the corner than the
odometry. The RBPF trajectory is slightly rotated in both yaw and pitch, possibly caused
by a slightly rotated initial circulation. This is very likely a result of the second odometry
model, since a change in the yaw and pitch early on can result in the wrong particle obtaining
the highest weight. Since no map is yet build, the RBPF cannot correct for it. This particle
then builds the map for this first circulation and is then able to close the loop on this offset
circulation. This is also shown in the error, which settles after approximately 100 seconds.This
would explain the large error in the start and settling of the error thereafter. The error in
pitch shown in the estimation of the RBPF shows a limitation of the second odometry model.
The inertial odometry moves along the floor, while the RBPF estimation moves trough the
floor twice with each circulation.

The SLAM algorithm is capable of improving both the real-time and smoothed odometry.
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Odometry model H Olin l ‘ OSE ‘ Oy ‘ L ‘ LO ‘ Ny,
(3-17) | 110 05] 02 005][55 4 3] [[o o of[ 100
Odometry model || N; | Neg éSp ésq N
002 0 O
(3-17) 300 | 0.5 | 0.01I3 | 1075 | 0 0.02 0 1
0 0 1

Table 4-4: The used parameters for the estimation using real-time odometry.

In both cases, the odometry is outperformed after roughly 250 seconds. The error for the
real-time RBPF estimation shows more fluctuations than for the estimation using the post-
processed odometry. This corresponds to the odometry signal, where the real-time error in
the odometry fluctuates more then the post-processed odometry error.

4-2-3 Traversing a set of stairs

To test the performance of the SLAM algorithm in a full three dimensional setting, an odom-
etry that moves trough three dimensions is required. The odometry used in Section 4-2-1
and Section 4-2-2 mostly move trough a two dimensional plane. The trajectories were cap-
tured on a single floor. This does not imply that in these situations the three dimensional
SLAM approach could be interchanged with a two dimensional one, since all sensors do make
movement in three dimensions. Especially the sensors mounted on the arms and feet make
motions those three dimensional motions, even when the odometry was captured on a single
floor. For these results post-processed odometry data and the first odometry model (3-16)
were used. To test the full three dimensional capabilities, this experiments contains a stairs.
The scenario starts on the lower floor, the stairs are taken to the second floor. The stairs
contain a platform parallel to the floors halfway. On the second floor a small circulation is
made before returning down the same stairs. This trajectory is too large for a single domain,
therefore the domain transitions occur in this estimation.

For this experiment, no optical groundtruth is available. The performance of the RBPF is

Odometry model ‘ Olin l ‘ OSE ‘ Oy ‘ L ‘ LO ‘ N,
(3-16) 11005 | 02 0075 | [5 5 5] [ [2 2 2f | 400
N; | Neg | &S, S, N,
0.0001 0 0
200 | 0.5 | 10I3 [ 107*| 0 10 © 1
0 0 1

Table 4-5: The used parameters for the estimation when traversing the stairs.
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Figure 4-6: Results for the SLAM algorithm with real-time odometry.

evaluated using the start of the stairs. In this experiment, the estimated trajectory is ex-
pected to start and return from the stairs end at roughly the same spot.

Figure 4-7 shows that the inertial odometry is able to estimate the correct height after travers-
ing the stairs, but not the x and y coordinates. The inertial odometry places the return point
from the stairs approximately one meter away from the starting point. An explanation could
be that the post-processing algorithm used correctly assumes that the system returns to same
floor, which could be expected to have the same height. Forcing the return point on the same
xy-plane could introduce errors in the other dimensions, which results in the large error in a
short time span, compared to the error in for example the results in Section 4-2-1. In that
experiment the error after 360s appears smaller than the error after traversing the stairs,
which only takes approximately 45 seconds.

The trajectory estimated by the RBPF estimates the return point closer to the starting point,
as shown in Figure 4-7, although the error is still noticeable. The two passages of the upper
half of the stairs is much better than on the lower half. The inability of the RBPF to correct
the odometry error could be same as the cause for drift in Section 4-2-1, where where orien-
tational drift caused large drift in the position when using the first odometry model (3-16).
For this scenario the yaw drift is very low, as the data set is rather short. However, traversing
stairs seems to introduce an temporary error in the pitch of the odometry. On the ascent, the
stairs appear steeper than on the descent. The pitch is restored when the system returns to
the lower floor. On the small platform halfway the stairs, the pitch is corrected as well. This
pitch error explains the distance between the starting and return point a the base of the stairs
in the odemetry estimate. The same limitation of the motion model that could not correct
for the yaw drift in Section 3-4-2 makes the RBPF unable to correct for the pitch error on
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Figure 4-7: Odometry and estimated trajectory by the RBPF with a single IMU in a scenario
where a set of stairs is walked up and down once.
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the stairs.

Using the odometry model that estimates the orientational drift (3-17) does not improve the
trajectory estimated by the RBPF. This model estimates the drift with a random walk model,
while the pitch error in orientation estimate experienced in this test is large at the start of
the stairs. While moving along a floor this error is significantly smaller. The random walk
model is unable to capture this behaviour, as the difference in error is too large. However,
the benefit of scaling the noise with the input signal A"pf=® does show. The trajectory does
not drift in the z direction when the system is on the second floor, but is able to differ from
the odometry in the z direction when traversing the stairs.

4-3 SLAM using multiple magnetometers

The HMTS suit contains N = 17 IMUs. In this section, the results of the SLAM algorithm
are shown, when all magnetometers are used to construct the magnetic field map. The
experiment in Section 4-2-1 is repeated with multiple magnetometers in Section 4-3-1. The
performance of the SLAM algorithm when traversing a stairs and multiple magnetometers is
presented in Section 4-3-2

4-3-1 Comparison of the odometry models

Similarly as was done for one IMU in Section 4-2-1, the two odometry models (3-16) and
(3-17) are compared with all Ny = 17 IMUs. The estimated trajectory is shown in Figure 4-
8. Only the trajectory of one IMU is shown. The RBPF performance worse than both the
odometry and the estimation where only one sensor is used. Especially the estimation in the z
direction is worse and drifts away from the plane where the sensor is. In contrast to the single
IMU case, the map is now constructed with magnetometers located at different heights. This
causes the magnetic field map to have more confidence along the third dimension compared
to the single sensor case, where the is only confident along a single xy-plane. This could cause
the more excessive drift of the RBPF estimation in the z direction.

With the second odometry model (3-17), the RBPF estimation improves, as is shown in
Figure 4-9. The RBPF error grows very large in the first circulation, indicating that this
estimated circulation is incorrect. The error in this first circulation is much more present
than in the single magnetometer case. This error in the first circulation also showed when
using real-time odometry and a single magnetometer, as discussed in Section 4-2-2. Similarly
to previous results using the second odometry model, the error of the RBPF does not drift over
time and performs better than the odometry after 250 seconds. The error is slightly larger than
for the single sensor experiment, which is caused by the significantly worse first circulation.
The RBPF is never able to restore that initial error. The overall worse performance when
using multiple magnetometers, regardless of the odometry model, could be caused by the
difficulty the GP has to represent the magnetic field when multiple magnetometers are used,
as was observed in Section 4-1-2.
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Odometry model H Olin l ‘ OSE ‘ Oy ‘ L ‘ LO ‘ Ny,
(3-16) H 1.10 ‘ 0.5 ‘ 0.2 ‘0.075 ‘ 5 5 5] ‘ 2 2 2 ‘400
Ni | New | £Sp 1S, Ny,
0.0001 0 0
250 | 0.5 | 0.001I3 | 107° | 0 10 0| | 17
0 0 1

Table 4-6: The used parameters for the estimation when traversing the stairs and using
multiple magnetometers to construct the magnetic field map.

4-3-2 Traversing a set of stairs

Similar as was done for a single IMU in Section 4-2-3, the performance of the SLAM algorithm
in three dimensional situations is evaluated. The parameters used are shown in Table 4-6.
The RBPF does not perform well in this scenario. The return point is too low and further
from the starting point of the stairs. Additionally, the upper floor and the platform halway
the stairs is slightly tilted compared the lower floor.

The cause for the worse performance compared to the single sensor version, could be due to the
domain transitions. As noticed in Section 4-1-4, using multiple magnetometers to construct
the magnetic field map creates slightly fields in the overlapping part of the domains. Figure 4-
11 shows the trajectory and the domain boundaries. Each red cross represents shows a point
on the trajectory where the particles were resampled. If the worse performance is caused by
the domain transitions, the RBPF estimate would perform worse in the overlapping part of
the domains. The RBPF estimate starts to differ from the odometry on the ascent of the
second half of the stairs. At the start of the descent, on the second floor, the RBPF is able
to close the loop. However, the estimated descent is not the same as the ascent of the stairs.
These parts of the estimation start to differ within a non-overlapping part of the domain,
indicating that domain transitions are not responsible for the decreased performance.
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Figure 4-11: The RBPF estimate(orange), odometry (grey) with domain boundaries (black lined rectangles) and particles (red dots). The
area between the solid and dotted domain boundaries is the overlapping area. The red crosses represent location where resampling occurred.
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Chapter 5

Conclusion

This thesis focuses on using the ambient magnetic field for to tackle SLAM problem. The
novelties presented in this thesis are the use of an inertial HMTS for odometry and multiple
magnetometers to construct a map of the magnetic field.

In the introduction, the first research question for this thesis was posed:

What are the improvements to the position estimate of an inertial human motion tracking
suit when combined with magnetic field simultatenous localistation and mapping?

The results show that using a RBPF and reduced rank GPR can improve the position esti-
mate after roughly 250 seconds. This result was achieved for both the real-time odemetry
and the post-processed odometry.

The second research question of this thesis is:

How does using multiple magnetometers to construct a magnetic field map in a magnetic field
simultatenous localistation and mapping approach differ compared to a map constructed with
a single magnetometer?

The results do not show improved position estimates when multiple magnetometers are used.
When traversing the stairs, using multiple magnetometers decreased the location estimate
performance compared to using a single magnetometer.

In Chapter 2 related work was discussed. A RBPF and the reduced rank GPR was chosen as
best option to improve the inertial position estimate from the HMTS. The reduced rank GPR
had already been successfully used in literature for magnetic field SLAM [28]. The RBPF
was chosen of other filtering methods since natural fit with the GP.

Chapter 3 shows the derivation of the algorithm. The first novelty is use of multiple sensors
in magnetic field SLAM through the use of a HMTS. Two motion models are proposed. Both
models are capable of adding noise to the odometry, while using the relative poses of each
IMU as estimated by the HMTS. The difference between the models is that the second model
introduces an extra state to estimate the orientation drift through a random walk model.
This extra state is then used to compensate for orientational drift in the positional odometry.
The improved performance of the additional state is shown in Section 4-2-1.

The second novelty is the adaptation of the reduced rank GPR proposed in [61] to model the
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magnetic field. The adaptation allows for multiple magnetometers to be used in the construc-
tion of the magnetic field map. The third novelty is the adjustment made to splitting the
space into multiple domain as done in [28]. The adjustment allows for the use of more than
one magnetometer when multiple domains are required by determining which observations
are used to update the GP of each domain and which GPs are used to evaluate the weight of
the particles.

Both for real-time and post-processed odometry, the RBPF is able to improve the position
estimate, but only after around 250 seconds, as shown if Figure 4-5b and Figure 4-6b. In the
first 250 seconds, the post-processed odometry is considerably better compared to the RBPF
position estimate. This difference in performance between the odometry and the RBPF is
less pronounced for the real-time odometry. The spread in error is considerably larger for the
real-time data than for the post-processed. For both experiments the error oscillates around
0.4 meter. The real-time RBPF trajectory is rotated, pitch and yaw, with respect to its
odometry, while the post-processed RBPF trajectory is not rotated.

With training and validation data, it was shown that the map constructed with a single sensor
is considerably better than its multi sensor counterpart. A possible explanation could be that
in the multiple sensor case, the magnetometer calibration becomes vital. Different magne-
tometers at the same location have to observe the same field, otherwise the GP has difficulty
discerning magnetic field anomalies with measurement noise. Additionally, the postion and
orientation estimate of each magnetometer with respect to each other is important. If these
relative position and orientation estimates are not accurate enough, the observations enter
the GP in a different coordinate frame, further deteriorating the quality of the magnetic field
map.

The difference in the magnetic field map when using multiple sensors is further shown when
system crosses a domain boundary. For single sensor constructed maps, the overlapping parts
of the domain show similar fields, while for magnetic field map constructed with multiple
sensors, the overlapping domains differ slightly.

The results when using a single magnetometer and 17 magnetometers show similar results,
although with 17 mangetometers the trajectory estimated by the RBPF is rotated with pitch
compared to the odometry. The single sensor version does not have this rotation. In both
experiments, the RBPF outperforms the odometry after around 250 seconds.

For larger trajectories, where multiple domains are required, the single sensor version outper-
forms the multiple sensors variant.

The RBPF performs as good or better with a single sensor compared to using all sensors.
Note that the sensors are still used to create the odometry from the HMTS which is used in
the RBPF.

This theses has shown that using magnetic field SLAM can improve the position estimate of
a inertial HMTS. However, for the best results, not all sensors are used in the construction
magnetic field map. In future work, the better use of multiple sensors for the magnetic
field mapping could be investigated. More extensive research should be done into the effect
of magnetometer calibration on the constructed magnetic field to investigate the reduced
performance when using multiple magnetometers. Another interesting research goal would
be to quantify the effect of the accuracy of the relative position and orientation estimation of
each magnetometer on the quality of the magnetic field map.
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Scaling the positional with the positional odometry showed significant improvements. Further
research could be done to improve the odometry model. For example, similar to scaling the
positional noise with the change in position, the orientational noise could be scaled to the
change in orientation. This could improve the performance of the RBPF at the start of a
stairs.

In three dimensional situations, the suit seems to be able to detect different floors, and
correct the orientation of the system accordingly. The RBPF does not make use of this. An
improvement could be to use this detection in either the odometry model or in the weight
evaluation, so that particles that move along the floor, are assigned a greater weight.

The estimated trajectory is significantly worse than the odometry in the early stages. Further
research could determine if this is a fundamental of the method, or else if it can be improved.
If it is fundamental, using the odometry early might improve the overall performance of the
estimation.
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Appendix A

Rotations

A-1 Coordinate frames

A coordinate frame is a frame in which a position can be expressed. All coordinate frames have
an origin and an alignment. All the frames required for the proposed method are described
in Section 3-2.

Vectors, like position p can be expressed in different coordinate frames. The position with
respect to the origin of a frame f1 is denotes with the superscript 'p. The same position
with expressed in frame 2 is denotes as Zp.

Coordinate frames also have an alignment or orientation. The orientation of a coordinate
frame can be expressed with respect to another coordinate frame. The mapping between

these two frame orientations is expressed by a rotation matrix.

A-2 Rotation Matrices and Quaternions

R There exist several representations of orientation, two of which are used in this thesis.
The first one is the rotation matriz. These matrices are denoted by R € R3*3 and have the
following properties

RRT = RTR =13, IR| =1,

where |R| is the matrix determinant. The rotation matrix is part of the special orthogonal
group SO(3). Rotation matrices rotation of a coordinate frame with respect to a different
frame. The rotation from navigation frame n to sensor frame s is denoted with the double
superscript **R.. The inverse rotation, from frame s to n, is equal to the transpose

LSRR — snRT'

To transform a vector from one coordinate frame to the new one, the vector can be multiplied
with the corresponding rotation matrix on the right

l’lp — nSRSp.
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The second parametrisation of orientation is the unit quaternion. Where the rotation matrix
requires nine values, the quaternion needs only four. Quaternions are denoted with q € R*.
Unit quaternions are always of length one, so that ||g||2 = 1. Quaternions do not describe a
rotation uniquely, meaning that one orientation can have multiple quaternion representations.
For quaternions q and —q describe the same orientation. The rotation between two frames
as denoted with the same superscript as for the rotation matrix. The quaternion can be split
as

40
qdy

[QO q q2 %}T:l

Transforming a vector to a different frame requires the quaternion q€, so that

T
nsq — (an)c — {nsqo _nquT:|

Transforming vector p can then be done as follows
nf) — nsq ® Sf) ® (an)c (A—l)

where "p is the quaternion representation of "p and ® is the quaternion multiplication oper-
ator, defined as

Or =
d qoTy + 70dy, +Qy X Ty

qoTo — 4, " To ]

Note that the quaternion resulting from (A-1) is not guaranteed to be of unit length. Con-
verting quaternion q to rotation matrix R is done as

203 +2q¢7 — 1 2q1q2 — 29093 29143 + 29092

R = |2q1¢2 + 29093 293 + 295 — 1 2q2q3 — 2qoq1
20193 — 2q0q2  2q2g3 + 2q0q1  2q3 +2¢3 — 1
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Appendix B

Scalar potential Gaussian process prior

GPs can be seen as a probabilistic approach to learning in kernel machines [56]. In machine
learning, GPR (Gaussian process regression) is used to learn the input-output mapping from
measurements. In the case of modelling the three dimensional magnetic field, the input could
be the position and orientation, and the output would be an estimate of the magnetic field
at that location.

To embed the most information from the observation, it is necessary to consider not only the
magnitude of the magnetic field observation, but also its direction. Therefore it is required
to know the orientation of the magnetometer when it makes an observation.

Suppose the magnetic field can be described by a real, unknown process f (x), where x consists
of a position "p and an orientation "*q. The GP that describes f (x), is defined by a mean
function m (x) and covariance function or kernel & (x,x’)

m(x) =E[f (x)], (B-1)
k(x,x7) =E[(f (x) —m(x)) (f (x") —m (x)])]. (B-2)
The output of the GP is multidimensional, since the magnetic field consists of three compo-

nents. One way to obtain this multidimensionality is to consider a GP for each direction, x,
y and z individually. The GP prior can then be written as

fa (%)
fy ()| = fn (x) ~ GP(my, (x), 5k (x,%7)),
[z (x)
Yk = fh (X) + €h, €n ~ N <0a O-I%, noise)7 (B_g)

where yj, are noisy measurement for h = {z,y, z}. The drawback of modelling the three com-
ponents of the magnetic field vector as separate GPs, is that these GPs are then independent
of each other. A real magnetic field follows Maxwell’s equations [83].

The indoor magnetic field H (x) that is to be modelled is assumed to be curl-free, so that

VxH = 0s. (B—4)
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This assumption holds if there is no free current within area where the magnetic field is to
be modelled. This curl-free property can be embedded into the kernel, so that the GP will
also be curl-free. This curl-free kernel is presented in [84]

eushree (5,%°) = fis (3, X7) (13 () (e )T> . (B-5)

lcurl-free l curl-free

ksE (x,x’) is the SE kernel

x—x|?
KsE (X,X°) = 03g exp (—' 21§E| ) (B-6)

This kernel guarantees smoothness of the output, which in turn ensures that the modelled
magnetic field is continuous. ogp is the magnitude scale hyperparameter and for both (B-5)
and (3-21) l%E are the lengthscale parameters. These hyperparameters can be learned from
data, see Appendix C for details. A curl free prior in the mangnetic field H (x) can be written
as

H (x) ~ GP (03, 02,55015 + Feut e (%,%7)) (B-7)

with magnitude scale hyperparameter oconst-

It is possible to model a curl-free GP using the scalar potential ¢ (x) This approach assumes
¢ (x) to be a GP prior, and the observations of the magnetic field to be its gradient subject
to Gaussian noise. This approach is used in the reduced rank GPR detailed in Section 3-5-1.
The H-field can be written as the gradient of the scalar potential field

H (x) = -V (x). (B-8)
The GP prior then becomes

® (X) ~ gp (Oa Rlin (Xv X’) + KSE (X7 X’>) )
2t = -V (X)|x=x, + €, €~N (0, 0313), (B-9)

where o, is the variance on the observations z, and
2 T
Klin (X, X’) = 0fi, X" X. (B-10)

is the linear kernel, with oy;, is the linear magnitude scale hyperparameter. The equivalence
of (B-7) and (3-19) is shown in [85].
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Appendix C

Hyperparameter optimisation for
reduced rank Gaussian processes

The GP the hyperparameters need to be chosen or determined. Hyperparameters are of-
ten determined by minimising the log marginal likelihood. For the reduced rank GP, the
expression for this likelihood can be written as [64]

1
L (0) = 5 log |/€approx (P, p’)g + O'iINZH-

1 3N
vec (5zy4) 7 (/ﬁ;approx (p,p)o + UiINZ) vec (°zy.4) + TZ log 27,
where 6 is a vector containing all hyperparameters and vec (°z;.,,) is a vector containing
all magnetic field observations up to time t. Kapprox (P, P’)g is the kernel from (3-27) with
hyperparameters 6. The log likelihood functions can be approximated by the matrices defined
in (3-27)

Nm

log ’/iapprox (pz P’)e + UZINJ ~ <3Nz - Nm) log (Uz) + Z A0j7j+
j=1

log ‘Ug‘Agl + Cl:tTclzt7 (C_l)

1
vee (21,7 (sappros (BP0 + 031, ) vee (21.) & — (vee (2. Tvee (21,
z
vec (szlzt)TCI:t (O-zA;l + Cl:tTCI:t) ! (JI:tTVeC (Szl:t)> ) (C_Q)

where C,; = C (P14 Y1) Pr4s Y14 are all the positions and orientation up to time t
respectively.
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Abbreviations

DTW
GP
GPR
GPS
HMTS
IMU
KF
OTS
RBPF

SE
SLAM

Miscellaneous

V x

Master of Science Thesis

Glossary

dynamic time warping
Gaussian process

Gaussian process regression
Global posioning system
Human motion tracking suit
Inertial measurement unit
Kalman filter

Optical tracking system

A particle filter where, in case of SLAM, the conditional on the map and
pose are seperated

Squared exponential covariance function or kernel

simultaneous localisation and mapping

Curl operator

Matrix determinant of -
Exponential function
Gradient operator
Quaternion product

Vector of zeros of length n
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64 Particle filter

E[] Expectation of random variable -

h Index variable that indicates the dimension of a vector in R?

I, Identy matrix of size n x n

N (0, 02) Gaussian distribution with mean 0 and standard deviation o2

R, Rotations matrix representation of the orientation at t. Upper-left su-
perscript denotes the orientation of frame s with rescpect to frame n

Ny Total time steps

o) Computational scaling by -

exp, () Exponential function

log, () Logarithm function

R Real numbers

t Time index

U Uniform distribution

V] Variation of random variable -

Particle filter

dt

Neff

N;

N

n-k=«

Po:N, 4
k

npt

Nresample

Ny

ns k=«
qdo:N,_,
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Noise

Body coordinate frame. The coordinate frames of the 23 bodies as defined
by the MVN Link [2]

Single timestep

Particle index variable

Sensor index

Navigation coordiate frame. Assumed static of time
Effective sample size

Number of particles

Number of domains Q% constructed by particle ¢ at time ¢
Position trajectory outputted by the RBPF

Position of each sensor expressed in the navigation frame relative to sen-
sor k =«

Resampling threshold
Number of sensors
Orientation trajectory outputted by the RBPF
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ns

q

ns A

q;

'U>'UN2

p(A|B)

ns

e dt

Magnetic field

f(p)
gp
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Unit quaternion representation of the orientation at t. Upper-left super-
script denotes the orientation of frame s with rescpect to frame n

Unit quaternion representation of the orientation at ¢t. Upper-left super-
script denotes the orientation of frame s with rescpect to frame n. The
hat indicates that this value comes directly from the HMTS

Number of measurements
Position vector

Position vector. The hat indicates that this value comes directly from
the HMTS

Conditional distrubtion, where random variable A is conditioned on B

Orientational drift at time t, accumulated upto time t. Represented by
a unit quaternion.

Sensor coordinate frame. The coordinate frames of the 17 sensors as
defined by the MVN Link [2]

Covariance matrix of the position update step in the odometry model
Covariance matrix of the orientation update step in the odometry model
Input vector at time ¢

The state containing a position and orientation for particle 4
Observation, measurement vector

Sensor frame of sensor k = «

Change in position, used in as control input u

Change in orientation, used in as control input u

Sensor index of the sensor for which the RBPF is estimating the position
and orientation

Proposal distribution used in a particle filter
Vector containing the weight of all particles at time ¢

Weight of particle i at time ¢

Matrix functions that transforms the GP to the sensor frame s
Domain index
Unkown process described by a GP, depending on variable p

Gaussian process prior
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Ve Matrix containing the gradients of (IV,, — 1) eigenfunctions ¢ () at time ¢

H() Magnetic field

K, Kalman gain matrix in the KF at t

L Cuboid lenghts

l Lenghtscale hyperparameter for a kernel

L(0) Log marginal likelihood function used to optimise the hyperparameters
0

LI Cuboid inner, non-overlapping lengths for mulitple domain scenarios

LO Cuboid overlapping lenghts for mulitple domain scenarios

m(x) Mean function of a GP at x

my GPR mean at t

n Index set of permutation integers for the largest IV, eigenvalues

Ny Size of the sets wi’d, pﬁ’d and (;

N, Number of eigenvalues A and eigenfunctions ¢ () used in the reduced rank
GP to approximate a full GP

npd Center of domain Q% expressed in the navigation frame

Py, Covariance of a GP representing the magnetic field within domain d at
time ¢

s Sensor Index

Ssk () Spectral density function of kgg (x,x’) as function of A

S, Innovation matrix in the KF at t

vec (z) Column vector containing observations z

X State in the general description of the GP

Yk Output in one direction of the multidimensional GP

VA Intermediate variable containing the observations of different sensors.
Each domain has this set and it contains the sensor observations of the
sensors within this domain, if the domain boundary of this set is further
away from the sensor than the other domains in which this sensor is
located

A Matrix containing the spectral densities

P Matrix containing (N,,) eigenfunctions ¢ ()

X Intermediate matrix containing Ny, eigenfunctions ¢ ()

Thijs Veen
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¥

K (x,%x”)

Kapprox (P, P’)

Keurl-free (X, X”)
Klin (X, X’)

ksE (x,x7)

A

P

Oconst

Olin

Intermediate variable containing the positions of different sensors. Each
domain has this set and it contains the sensor positions of the sensors
within this domain, if the domain boundary of this set is further away
from the sensor than the other domains in which this sensor is located

Compact subset of R3

Intermediate variable containing the observations for the sensor located
ind

Vector containing the hyperparameters

Kernel function of a GP

Approximation kernel where the SFE is opproximated with basisfunctions
and their eigenvalues \;

Curl free covariance function, kernel

Linear covariance function, kernel

Squared exponential covariance function, kernel
Eigenvalue

Intermediate variable containing the orientations of different sensors.
Used as argument to matrix function C. Optional subscript d indicates

that the variable only contains orientations of sensors located in domain
d

The set of sensor indices, for which the corresponding sensor are located
in a certain domain

Magnitude scale for the GP prior on the magnetic field
Linear magnitude hyperparameter

Noise on the observations

SE magnitude hyperparameter

Scalar potential

Matrix in which eigenfunctions ¢ () are collected

Intermediate variable containing the positions of different sensors. Used
as argument to matrix function V®. Optional subscript d indicates that
the variable only contains positions of sensors located in domain d

Eigenfunction evaluated at p

Intermediate variable containing the orientations of different sensors.
Each domain has this set and it contains the sensor orientations of the
sensors within this domain, if the domain boundary of this set is fur-
ther away from the sensor than the other domains in which this sensor
is located
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