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Abstract

The development of the pole vaulting record is only improved by 1 centimeter over the last 25 years. Multiple studies show
signs of different control strategies in elite pole vaulters, without pointing out what the cause of the differences is The aim
of this research is to explore pole vaulting strategies by a control torque optimization. The optimization is performed for
a simplified biomechanical model. The vaulter contains three segments: arms, a trunk including the head and legs. The
joints are represented by torque actuators, located at the hands, shoulder joint and hip joint. The torque profile of each
actuator is optimized. The optimization starts just after the pole is planted. It ends when the vaulter releases the pole. The
pole length, pole stiffness, the vaulter’s length, the vaulter’s mass and the take-off angle are varied to discover the influence
of these parameters on the control strategy. Three control strategies are found, as well as two power management strategies.
Global trends are found. An increased pole stiffness, a decrease in length and mass of the athlete and a decreased take-off
angle improved the performance. A possible optimal pole length is found.

Introduction

Pole vaulting is one of the most exciting track and field
events. The vaulters entertain the audience by vaulting
heights over 6 m, reached in less than two seconds. Where
every vault is a thrilling event, the overall development of
the discipline is much less exciting. Over the last 25 years,
the world record has only increased by two centimeters
without a clear cause why. In ten years before that, the
world record increased over 30 centimeters as shown in fig-
ure 1.

To break the world record, the vaulter has to improve the
height of the vault. In energy terms, the vaulter has to in-
crease his potential energy at the end of the vault. The
amount of potential energy is a result of the energy trans-
formation of kinetic energy, gained during the approach,
and strain energy, gained by bending the pole.

According to Brüggemann et al. [1999], the amount
of kinetic energy and strain energy differs significantly
among elite pole vaulters. Each vaulter seems to have his
own strategy to perform his best vault. The cause of the
difference in strategy is unknown.

The goal of this research is to improve the pole vault-
ing performance by exploring the motion strategy, or
control strategy, of the athlete and the effect of the
selection of the pole, using a simple biomechanical
model. With more knowledge of the control strategy, the
combination of vaulter, pole and control strategy can be

Figure 1: Time line of the development of the world record in men’s
pole vaulting. The colour of the dots indicates the matieral of the
used pole. Remarkable is the sudden stop of the development of
the world record. Source:IAAF website

optimized to increase the pole vaulting performance.

To improve the pole vault performance, the amount of
potential energy at the end of the vault has to increase.
To do so, the vaulter can either reduce the losses during
the vault, execute the vault more efficient, or increase
the amount of kinetic energy and strain energy during
the vault. The approach to increase the total amount of
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energy of the pole-vaulter system, differs per main phase
of the vault. The pole vault motion contains four main
phases: the approach or run-up, the take-off phase, the
pole support phase and the fly-away phase.

The run-up phase is the start of the vault and ends at
the vaulters second last ground contact. During the
run-up phase, the vaulter can increase the amount of
kinetic energy by increasing his final velocity.

Adamczewski and Perlt [1997] and Brüggemann et al.
[1999] have shown a strong correlation between the final
run-up velocity and the vaulted height. However, the stud-
ies of Adamczewski and Perlt [1997], Zagorac et al. [2008]
and Linthorne and Weetman [2012] show no increase of
the velocities of the vaulter’s last stride over a period of two
decades. The importance of the initial velocity is known
by the athletes and coaches, and therefore well trained.
Since the elite vaulters are most likely already at the limit
for maximum run-up velocity, an increase of the run-up
velocity to improve the world record seems not an option.

The second phase is the take-off phase. It starts at
the second last ground contact of the vaulter and ends
when the pole is planted and the vaulter loses ground
contact. In this phase, energy is lost due to the non-elastic
collision when the pole is planted. The loss of energy
is estimated to be around 10% of the vaulter’s energy at
the start of the take-off phase. Neither tje pole nor the
vaulter’s body is able to store energy of the collision. The
energy is damped out by the body of the vaulter.

According to Liu et al. [2011], the energy loss of the col-
lision can be reduced by increasing the take-off angle. The
take-off angle is the angle between the jump direction of
the vaulter and the horizontal axis. The horizontal velocity
decreases in that case, resulting in a smaller collision and
thus less energy loss. Less elastic energy is stored in the
pole, but by jumping up, the vaulter increases its potential
energy. However, changing the direction of the velocity of
the center of mass when jumping up, also results in a loss
of velocity and thus in a loss of kinetic energy (Linthorne
[2000],Linthorne et al. [2005]).

Another way to reduce the losses caused by the collision
is to give the pole a slight pre-bend. The pre-bend reduces
peak force at the collision, therefore, less energy is dissi-
pated by the body of the vaulter. A big pre-bend reduces
the upwards acceleration when the pole straightens.

The third phase is the pole support phase. It starts
when the pole is planted and the vaulter loses ground con-
tact. The vaulter can increase the energy in the system by
actively bending the pole during the pole support phase.
According to Frère et al. [2012a] an experienced vaulter
with a personal best of 82% of the current world record of

6.16 meter, can gain an additional 22% of his initial energy.
The initial energy is calculated as the sum of the potential
and kinetic energy at the end of the approach, just before
the pole is planted. The average initial energy of this study
was 40 joules per kilogram body weight.

Brüggemann et al. [1999] performed an energy analysis
of the vaults of the pole vault finals at the World Champi-
onships of 1997. He split the pole support phase into the
pole bending phase and the pole straightening phase to get
more insight in the control strategy of the athlete to gain
energy. He found significant differences in control strate-
gies, even though the subjects were all elite vaulters with
similar run-up velocities. The differences in control strat-
egy is a sign that the optimal control strategy is not found
yet.

The elite vaulters in the study of Brüggemann reached
an energy gain around 4.5% of their initial energy. The av-
erage initial energy in the study of Brüggemann was 57.03
Joules per kilogram body weight. The energy gain they
developed is not close to the 22% Frère found. In absolute
values, the vaulters in the study of Frère also perform bet-
ter with an average of 8.8 Joules per kilogram body weight.
The elite vaulters in the study of Brüggemann gained an
average of 2.57 Joules per kilogram body weight. They are
faster during the run-up phase but are less efficient during
the pole support phase. Why this is the case is not known.
If the elite vaulters could reach the efficiency to gain an
additional 8.8 Joules per kilogram body weight, the world
record would increase to 6.7 meters.

The last phase is the fly-away phase. It starts when the pole
does not contribute to the vault anymore. The last thing
the vaulter has to do is fly over the bar without touching it.
There is not much room for improvement besides placing
the bar as close as possible to the highest point of the vault.

Based on the current findings, the most promising
phase to improve the pole vault motion by exploring
different control strategies is the pole support phase. So,
the period the biomechanical model simulates, starts after
take-off and ends when the fly-away phase starts.

A significant improvement of the run-up is not possi-
ble since it is probably already maximized by elite pole
vaulters. An improved take-off phase without controlling
the period after take-off is also not effective. The position
and velocity of the vaulter at the end of the take-off phase
has probably an influence on the control of the vaulter and
thus the final height.

Problem statement

The cause of the different motion strategies found by
Brüggemann et al. [1999] is unknown. The variations are a
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sign of a sub optimal combination of the pole, the vaulter
and the strategy. To find the optimal combination of the
pole, vaulter and strategy, a better understanding in the
different motion strategies is needed. In this research, new
insights will be obtained by optimizing the control strategy
for different vaulter-pole combinations.

Aim of the research

A common approach to analyze the pole vault motion is
by using inverse dynamical models. With that approach,
the motion of multiple vaults is recorded to calculate the
forces and torques used to execute the pole vault motion.
The results can distinguish good vaults from bad vaults,
but whether a certain vault was optimal for a pole-vaulter
combination cannot be said with only inverse dynamical
models.

With a forward dynamical model, the motion is a re-
sult of prescribed control forces. Multiple situations with
different vaulter, pole and control strategy combinations
can be simulated with forward dynamical models to find
the vaulting performance.

An example of a forward dynamical model is build by
Reijne [2016]. A mechanical pole vault model was build
to test the potential of two vaulting pole innovations.
The vaulter was simplified to two segments. The final
movement was found with a trial-and-error approach.
The true influence of a selected pole and control strategy
on the vaulted height cannot be found with the model
developed by Reijne [2016]. Due to the trial and error
approach to form control strategies, it is not possible to
compare different vaults, and hence different strategies,
as it is unknown if for each vault the optimal control
strategy, and hence maximum height, is achieved. To
ensure maximum height is reached, the control strategy
of each type of vault should be optimized.

The goal of this research is to provide the optimiza-
tion of the control strategy of a simplified biomechanical
model. The optimization is done with MATLAB 2017a
using the optimizer fmincon. The aim is to maximize the
final height with the optimal control strategy for a given
pole-vaulter combination. The optimization space will
be constrained as less as possible to include new possible
control strategy.

A sensitivity analysis is performed to find the influ-
ence of pole properties and vaulter properties on the the
control strategy. This is done by varying the initial proper-
ties of the vaulter and the pole and then find the maximal
possible height by optimizing the control strategy. The
initial properties of the vaulter are his length and mass.

These parameters are varied to determine whether the
control strategy is athlete specific or athlete independent.
The initial properties of the pole are its length and its stiff-
ness. These properties are varied to determine whether
the different control strategies found by Brüggemann et al.
[1999] is caused by selecting different poles.

A second sensitivity analysis is performed to find the in-
fluence of variations in the take-off angle on the control
strategy. The take-off angle is varied to investigate the in-
fluence of the by Liu et al. [2011] suggested beneficial in-
crease of take-off angle. The magnitude of the initial veloc-
ity is not adjusted. As stated in the introduction, the initial
velocity is not changed over the last decades.

Methodology

A simple biomechanical model of the vaulter pole is made.
The simulations start just after the pole is planted and the
vaulter took off. The simulation ends when the pole is al-
most stretched.

Pole-Vaulter Representation

The pole vault motion during the pole support phase
contains four main movements. The first movement is the
swing-up, where the legs swing forward until the body is
straight. Then, the rock-back starts. The vaulter tugs in his
legs and rotates around his shoulder axes. The rock-back
stops at the moment of maximal pole bend (MPB). During
the stretch movement the vaulter stretches his legs and
torso upwards, keeping his body as close to the pole as
possible. The last movement is the pull up and starts when
the legs are fully stretched. The vaulter pulls himself up
and turns around his longitudinal axis. The pole support
phase ends when the vaulter releases the pole and flies
over the bar.

The main movements are clearly two dimensional.
This is confirmed by Morlier and Cid [1996] who did
a 3-dimensional angular momentum analysis of the
pole vault motion. A third dimension is only necessary
to describe the longitudinal rotation during the pole
release phase and the rotation of the pole, to not jump
into it. Schade et al. [2000] determined the difference of
2-dimensional and 3-dimensional calculated potential
and kinetic energy of a vaulter. The calculations were
based on video recordings. The difference between the
2-dimensional and 3-dimensional approach was less than
1 percent.

During the pole support phase, the arms are fully
stretched until the pull-up. There are big rotations around
the shoulder and the hip axis. The knees are bend during
the rock-back movement and stretched in the movement
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after that. Bending the knees results in a slight shift of the
center of gravity but probably will not effect the amount of
work the vaulter performs during the jump.

Based on the movement analysis and the findings of
Morlier and Cid [1996] and Schade et al. [2000], a 2-
dimensional representation is sufficient to get realistic in-
sight in the pole vault motion. The number of segments
of the vaulter is reduced to three: the arms, the head and
torso, and the legs. The main rotations are covered but, the
complexity, and therefore the computational time, is re-
duced. It also increases the simplicity of the model, which
makes it better understandable.

In reality, the vaulter holds the pole with two hands
which are 0.7 meters apart. The distance between the
hands is relatively small to the length of the pole. The
length of the pole can go up to 5 meters measured from
tip to upper hand. The vaulter bends the pole by pushing
with his lower hand and pulling with his upper hand.
The elbow joint of both arms is extended until the pull
up phase (Frère et al. [2012a]). Therefore, the arms are
modeled as one segment without an elbow joint, attached
with a hinge to the tip of the pole. The torque applied at
the tip of the pole, the muscles at the shoulder joint and
hip joint are represented by three torque actuators. So, the
control forces described in the section Optimization, are
represented by three control torque actuators.

The representation is shown in figure 2. The movement
of the vaulter is described by five generalized coordinates:
the position (x , y ) of the center of mass of the arms, the
angle of the arms (φ), the angle of the shoulders (θ ) and
the angle of the hips (ψ). The control torque actuators are
the hand control torque, T1, the shoulder control torque,
T2, and the hip control torque, T3.

The model is very similar to the model build by Reijne
[2016]who build for his master thesis a simple biomechan-
ical pole vault model to test the potential of two vaulting
pole innovations. The vaulter contained two segments.
The final movement was found with a trial-and-error ap-
proach. The optimization of the improved model of Reijne
makes it possible to find new movement strategies. More
realistic vaults with different initial properties, such as pole
length, can be compared.

Equations of Motion

The motion of the pole and the vaulter is calculated by a
combination of an elastica model and the vaulter model.

The vaulter model contains the equations of motion to
determine the accelerations of the vaulter as a result of the
pole force, gravity and the torques at the hinges. The equa-
tions of motion are determined using the TMT-method, a
combination of Newton-Euler method and the Lagrange

θ φ

ψ

Y

X

T
1

T
2

T
3

(x
1
,y

1
)

Figure 2: Simplified model representation. Generalized coordi-
nates: the center of mass of the arms (x , y ), the angle at the hands
(φ), the angle at the shoulders (θ ) and the angle at the hips (ψ).
Control torques: T1 is located at the top of the pole, T2 is located at
the shoulders, T3 is located at the hips

method Schwab and Wisse [2001]. The derivation of the
equation of motion is given in Appendix - Equations of mo-
tion.

The equations of motion are solved numerically using
the fourth order Runge-Kutta integration scheme. The ex-
act scheme and implementation in Matlab is given in Ap-
pendix - Numerical integration with the RK4-method.

The elastica model, or pole sub-model, is built by Reijne
[2016]. The input variables are the pole length, pole stiff-
ness, the torque at the tip of the pole and the distance from
tip to tip. With elliptic integrals, the model calculates the
reaction force on the vaulter and the shape of the pole.

Initial Conditions and Properties

The simulations start just after the pole is planted and the
vaulter took off. So, the pole is already bent and the vaulter
has no ground contact.

The exact initial position, given by the generalized co-
ordinates of figure 2, the initial velocities, the pole length
and take-off angle are based on the initial position of Eke-
vad and Lundberg [1995]. The pole stiffness is based on the
used value of Reijne [2016].

The length, the mass, the location of the center of mass
and inertia of each segment of the model is based on
Moore et al. [2009]. The global inertia is variable during
the vault, since the global center of mass of the vaulter
shifts while moving (see Appendix - Inertia).
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The amount of initial energy of the system is divided
into elastic energy in the pole and kinetic and potential
energy of the vaulter. The total amount of initial energy
is constant for every set of initial conditions and initial
properties. The amount is based on the average initial
energy in Joules per kilogram body weight as Brüggemann
et al. [1999] found. The initial energy was measured before
the pole was planted. The simulation starts after the non-
elastic collision of the pole plant. So, the expected energy
loss of 10% is subtracted of the initial energy Brüggemann
found. The resulting amount of energy is split up in pole
energy, potential energy and kinetic energy according to
the initial conditions of the generalized coordinates. The
fraction linear kinetic energy determines the velocity of
the vaulter.

For the sensitivity analyses, the pole length, pole stiff-
ness, length of the vaulter, mass of the vaulter and the ini-
tial take-off angle are varied. A change in one of the prop-
erties disturbs the initial energy balance. An increase of
the pole length, while keeping the initial position the same,
results in a bigger amount of initial energy. In case of the
pole length, the initial position is changed to compensate
for the increased energy. The properties for the benchmark
vault will have the values shown in table 1 and table 2. The
properties of the vaulter are based on Moore et al. [2009].
The pole length and stiffness, the initial position and ini-
tial velocity are in accordance with Hubbard [1980]. The
compensation of the other initial properties are described
in more detail in Appendix - Matlab Model

Optimization

The model needs prescribed torque profiles for each con-
trol torque to perform a vault. The three control torques
are time dependent and determine the strategy the vaulter
uses. The control torques functions are represented as a
sixth order polynomial. Each term is multiplied with a fac-

Table 1: Initial properties of the vaulter model, l1 to l5 are the dis-
tances between joints and centers of mass of the segment, starting
at the hands. See fig. B.1. The properties of the vaulter are based
on Moore et al. [2009]. The pole length and stiffness are found in
Hubbard [1980].

m1 7.2 kg I1 0.22 kg m 2

m2 41.6 kg I2 1.35 kg m 2

m3 23.2 kg I3 1.59 kg m 2

l1 0.27 m l2 0.34 m
l3 0.20 m l4 0.28 m
l5 0.40 m
L 4.57 m B 2522 Nm 2

tor A to G. This form is chosen for its flexibility in shape
compared to a spline function which Matlab is able to gen-
erate. The number of terms is based on a curve fit de-
scribed in Appendix - Model. A sixth order polynomial is
choosen to make complex profiles possible.

Tc (t ) = At 6+B t 5+C t 4+D t 3+E t 2+ F t +G (1)

The implementation of the control torques into Matlab
are found in Appendix - Model.

The seven optimization parameters A to G, which de-
termines the control strategy, are given in equation
1. Each joint has its own control torque profile, so
twenty-one parameters are optimized in total.

For the sensitivity analyses, the pole length is varied
from 4.22 meters to 4.80 meters. The pole stiffness is varied
from 2272 Nm2 up to 2772 Nm2. The length of the vaulter
is varied from 1.68 meter to 1.92 meter. The mass of the
vaulter is varied from 60 kilograms to 87 kilograms. The
take-off angle is varied from 2.8 degrees to 19.8 degrees.

Objective

In energy terms, the vaulter wants to maximize the amount
of potential energy at the end of his vault. The model ex-
cludes the pole release phase. So, the objective changes to
the maximal sum of potential and upwards kinetic energy
while holding the pole. The objective is maximized by op-
timizing the terms in the polynomial of the control torques
of equation 1.

Final position

The resulting maximized energy of the vaulter is converted
into a fictional final point in space. The body of the vaulter
is transformed into a point mass, located at the center of
mass of the vaulter when the maximal amount of energy
is reached. The velocity of the point mass is found by the
average kinetic energy in x- and y-direction of the three

Table 2: Initial conditions of the benchmark vault. The angle α is
the take-off angle, the angle between the horizontal axes and the
velocity vector as a result of ẋc m and ẏc m . The initial position and
initial velocity are in accordance with Hubbard [1980].

xc m 3.57 m ẋc m 8.7 m/s
yc m 1.12 m ẏc m 1.2 m/s
φ 0.4 rad φ̇ 0.4 r a d /s
θ 0 rad θ̇ 0 r a d /s
ψ 0 rad ψ̇ 0 r a d /s

α 7.85 deg
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body segments. The final position is extrapolated with
known x- and y- position and velocity. The exclusion of
the pole release phase, or fly-away phase, has no signifi-
cant effect on the energy transformation. As stated by Frère
et al. [2012b], the performance of a vaulter is not likely in-
fluenced by the final actions of the vault. However, the
constraint to move an entire body over the bar is heavily
simplified. Favourable positions to complete a successful
vault are neglected.

Constraints

The constraints of the optimization are chosen such that
the resulting vaults are feasible vaults. The constraints
are divided into two groups. The first group are physical
bounds of the pole vault motion. The group contains
constraints on joint angles,the physical space the vaulter
can move in, so that elements will not go through the
ground or are out of reach of the pole. The second group
are bounds to ensure a realistic vault. They describe the
shape of the pole, the maximal torque per joint and the
maximal power per joint.

The vaulter is not infinitely strong which make max-
imal and minimal magnitude bounds of the control
torques necessary. Based on torque profiles found in
Morlier and Mesnard [2007], the torque at the tip of the
pole is bounded by +600 Nm and -600 Nm. After the
pole is maximal bent, the bounds narrow linearly to
+100 Nm and -100 Nm. The absolute control torque
bounds of the shoulders and hips are 500 Nm and 300 Nm
respectively. The maximal absolute control torques are
found in McGinnis [1989] who obtained the magnitudes
by measurements on elite pole vaulters.

The only muscle property introduced, is the maximal
amount of power the shoulders and hips can deliver. The
power bounds are determined by running multiple opti-
mizations for different pole length and pole stiffness. The
final performance where unrealistic with final heights of
twice the world record. This was caused by a raise in power
of 5000 Watts in the last 0.3 seconds of the vault for both the
shoulders and the hips as shown in figure 3.

The period before the excessive peak at the end did not
show extreme values of angular velocity or power. The
power peaks in this period where below 2000 Watts at the
shoulders and below 2500 Watts at the hips (see fig. 3).
These absolute power constraints are implemented in the
optimization procedure to ensure a more realistic combi-
nation of control torque and angular velocity.

There are no muscle properties incorporated besides
the power bounds. The control torques are in reality
dependent of both the angle of the joint and the angular
velocity of the joint. There are no studies found where

Figure 3: Example of a power bounded and a power unbounded
optimization. The graphs on the left are bounded by a maximal
shoulder power of 2000 Watts and a maximal hip power of 2500
Watts. The graphs on the right are unbounded. The increase of
power over the last 0.2 seconds of the vault is very unrealistic. The
power-bounded torque profile results in a vault of 6.22 meters. The
power-unbounded torque profile results in a vault of 7.11 meters.

the maximal torque at the top of the pole, the shoulders
or the hips is described in a torque-position-velocity
relationship. An estimation of such a relationship can
not be scientific supported and is therefore not made.
The ability to generate a certain torque is not bounded
by a prescribed torque-angle or torque-angular velocity
relationship.

The last constraint is the x-position of the position
where the maximum height is achieved, as described
above. According to the IAAF competition rules 2018-
2019, vaulters are allowed to place the bar between straight
above the planting box and 80 centimeters behind the
planting box. The maximal height the point mass reaches,
has to be in this region to complete an optimal and valid
vault.

A list of the constraints is described in Appendix - Model.
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Initial Guess

The initial guess of each optimization is unique for each
set of parameters. The initial guess is found by the same
optimization script, without a formulated objective. The
optimization is only focused on fulfilling the constraints.
The constraints are made stricter to make sure the initial
guess is not located at a constraint boundary. After running
this script, an initial guess is formulated which fulfills all
the constraints.

Results

The results of the sensitivity analyses are presented in
depth for the variation of the pole stiffness. The analysis of
the pole stiffness will form a guide for the analyses of the
pole length, the vaulter’s mass, the vaulter’s length and the
take-off angle.

The optimizer finds only around 40% of all the optimized
situations a minimum. The other 60%, the optimizer con-
verges to an infeasible point. Around 90% of the infeasible
solutions, the biggest constraint violates is in the order of
0.5% of the constraint magnitude. A vault is called feasible
when the biggest constraint violation is below 0.1 %.

The last feasible iteration of the infeasible optimized sit-
uation, is taken as the solution. The difference of the objec-
tive function of the infeasible solution and the last feasible
iteration is typically around 3%.

Pole Stiffness

The stiffness of the pole is varied from 2272 Nm2 up to
2772 Nm2 with steps of 25 Nm2. The following general
trend found is: ’the stiffer the pole, the better the perfor-
mance’. As shown in figure 4, the increase in vaulted height
is mainly caused by an increase of the upward velocity at
pole release. All the optimized vaults are divided into three
strategies.

The final performances are remarkably high. The best
vaulting performance is 7.42 meters, vaulted with a pole
stiffness of 2722 Nm2. The world record of 6.16 meters is
broken with 1.62 meters.

Global Strategies

Varying the stiffness results globally in three different
strategies, shown in figure 5.

Strategy one is called the ’Extension-strategy’. The
strategy is found from B = 2272N m 2 up to B = 2372N m 2.
The vaulted heights vary from 6.01 meters up to 6.33
meters. Characteristic for this strategy is the final position
of the legs. These are always close to horizontal, either
by an extended hip joint, an extended shoulder joint, or a

combination of the two. The legs are extended to decrease
the horizontal velocity which is typically higher at lower
pole stiffnesses, as shown in figure 4. The horizontal legs
results in a low center of mass compared to the other
vaults, as shown in figure 4. The low stiffness of the pole
results in a lower upward velocity at the end of the vault,
partly due to its lower stretching velocity.

A second strategy is found at two stiffnesses over the
entire interval. This strategy is called the ’Flexion-
strategy’, also shown in figure 5. The strategy is found at
B = 2572N m 2 with a final vaulted height of 6.86 meters
and B = 2697N m 2 with a final vaulted height of 7.08 me-
ters. Characteristic for this strategy is the lack of shoulder
and hip extension. The arms are almost aligned with the
trunk and the hip has an angle around 90 degrees at the
moment of pole release.

Strategy three is called the ’Upwards-strategy’. The
strategy is found from B = 2397N m 2 up to B = 2772N m 2.
The vaulted heights vary from 6.68 meters up to 7.42 me-
ters. Characteristic for this strategy is the small shoulder
flexion, combined with a big hip extension. As a result, the
feet point upwards at pole release.

Control Torque profiles

The variation in control torque profiles over the range
of pole stiffnesses is shown in figure 6. The ’Extension
Strategy’ shows the worst performance, varying from 6.01
up to 6.33 meters. The ’Flexion Strategy’ cannot be clearly
distinguished from the ’Upwards strategy based on the
control torque profiles.

The control torque profile located at the hands of the
vaulter show are very consistent up to B = 2572N m 2,
where the magnitude of the control torque for the first
time switches from negative to positive. The same goes for
the shoulder control torque profiles. Until B = 2572N m 2,
the shoulder control torques start flat. The control
torque profile starts to decrease after 50 % of the vault is
completed. At B = 2572N m 2 and higher sitffnesses, the
control torque profile switches back and forth from the a
flat profile to a bow profile. The hip control torque profile
is very consistent. The main variation is found in the last
20% of the vault. The cause of these differences is not
found.

The control torque profiles are found in figure 6. The
power profiles are given in figure 7. Remarkable is the in-
crease of the number of oscillations in the power plot. It
shows the importance of the timing of stretching the body
to increase the upward velocity.
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Figure 4: The final conditions at the end of each vault at pole release and final performance per pole stiffness in N m 2. On the left: the
position and flying direction of the center of mass (COM). The small graphs on the left: the x- and y-position of the COM at pole release.
In the middle: horizontal and vertical velocity of the COM at pole release. On the right: the horizontal position of the COM the highest
point. Note: the bar placement is bounded by the region between -0.8 meter and 0 meter.
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Figure 5: The three strategies found by varying the pole stiffness.
On the left: the ’Extension-strategy’, found from B = 2272N m 2 up to B = 2372N m 2. The vaulted heights vary from 6.01 meters up to
6.33 meters. Characteristic is the final position of the legs which is close to horizontal.
In the middle: the ’Upwards-strategy’. The strategy is found from B = 2397N m 2 up to B = 2772N m 2. The vaulted heights vary from
6.68 meters up to 7.42 meters. Characteristic is the small shoulder flexion, combined with a big hip extension. As a result, the feet point
upwards at pole release.
On the right: the ’Flexion-strategy’. The strategy is found at B = 2572N m 2 with a final vaulted height of 6.86 meters and B = 2697N m 2

with a final vaulted height of 7.08 meters. Characteristic is the lack of shoulder and hip extension. The arms are almost aligned with
the trunk and the hip has an angle around 90 degrees at the moment of pole release.
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Figure 6: Optimized control torque profiles for pole stiffnesses varied from 2272 N m 2 to 2772 N m 2. On the left, the torque applied at
the tip of the pole. In the middle: the torque applied at the shoulders. On the right: the torque applied at the hips. Note: the color
represents the jumped height. The minimum height is 6 meters, the maximum height is 7.4 meters. A very global trend is found, the
stiffer the pole, the better the performance.

Figure 7: Power in Watts, developed per control torque. On the left: power generated at the tip of the pole. In the middle: power generated
by at the shoulders. On the right: power generated at the hips. Note: the color represents the jumped height. The minimum height is 6
meters, the maximum height is 7.4 meters. The axis are changed compared figure 6 to increase readability.
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Figure 8: Power profiles as a result of the shoulder control strat-
egy are shown above. ’Two Peaks’ is found at a pole stiffness of
B = 2547N m 2, resulting in a vaulted height of 6.96 meters. ’Three
Peaks’ is found at a pole stiffness of B = 2572N m 2, resulting in
a vaulted height of 6.86 meters. The red line indicates the power
constraint of 2000 Watts.

Power Management

The Upwards-strategy is found over a big range of stiff-
nesses. Based on very global criteria which are used above
to describe the strategies, the Upwards-strategy is one
strategy. The control torque profiles showed a consistency
until B=2572 N m 2. A power analysis gives more insight in
cause of different strategies. The power production of each
control torque is shown in figure 7. The power is found
when the control torque is multiplied by the angular veloc-
ity of the corresponding angle. It shows at which moment
in time a control torque produces energy. Based on the
produced power per control torque, the strategy is splits
up into two control strategies.

The power profile from B = 2272N m 2 up to B =
2547N m 2 shows consistency for each control torque,each
profile contains two positive peaks. The magnitude of
the power peaks at the hands slowly decreases where the
power at the shoulders and hips slowly increases.

At B = 2547N m 2, the power profile of the shoulder
control torque, suddenly changes. At this point, the con-
trol strategy switches back and forth between two different
forms. The strategies are shown in figure 8. Remarkable is
the small difference in pole stiffness.

The first control strategy, ’Three Peaks’, contains three
power peaks which stay all three below the maximal value
of 2000 Watts. The second control strategy, ’Two Peaks’,
contains two power peaks where the first peak hits the
maximal 2000 Watts.

Figure 9: Power profiles as a result of the hip control strategy
are shown above. ’Two Peaks’ is found at a pole stiffness of B =
2547N m 2, resulting in a vaulted height of 6.96 meters. ’Three
Peaks’ is found at a pole stiffness of B = 2572N m 2, resulting in
a vaulted height of 6.86 meters. The red line indicates the power
constraint of 2500 Watts.

The change in strategy is caused by hitting the shoul-
der power constraint. To improve the height, the vaulter
changes his power management by spreading out the
power production over three peaks with a lower mag-
nitude compared to ’Two Peaks’. The result is a higher
average power production. The average power production
of ’Three Peaks’ of figure 8 is 941.5 Watts. The average
power production of ’Two Peaks’ is 697.02 Watts. ’Two
Peaks’ compensates the lower amount of shoulder power
by more hip power. As shown in figure 9, the power
production higher for ’Two Peaks’ with an average power
production of 709.3 Watts against 365.5 Watts produced
with ’Three Peaks’.

Improving the vaulting performance using the strategy
’Two Peaks’ for stiffer poles is blocked by the constraint
on the maximal shoulder power production. As a result,
the strategy slowly merges into the ’Three Peaks’ strategy.
The merging process is illustrated for the shoulder power
production in figure 10 and for the hip power production
in figure 11. The power profile of the hands did not show a
clear merging process.

The stiffnesses which are not shown in figure 10 and
figure 11 did not take part in the merging process and
showed a true ’Three Peaks’ power strategy. This is further
treated in the section Discussion.
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Figure 10: On the top left, the last true ’Two Peaks’ strategy is shown. While moving from the left to the right and top to bottom, the
third peak is growing while the maximal power peak decreases. The figure in the middle on the bottom row shows the best vault and is
a full ’Three Peaks’ strategy. The power profile shown on the bottom right preforms less. This could be caused by the bad convergence as
described above.
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Figure 11: On the top left, the hip power profile matching the ’Two Peaks’ strategy is shown. While moving from the left to the right and
top to bottom, the first hip power peak increases, while the second peak first decreases and later on again increases. The figure in the
middle on the bottom row shows the best vault and is a full ’Three Peaks’ strategy. The power profile shown on the bottom right preforms
less. This could be caused by the bad convergence as described above.
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Figure 12: The amount of energy of each main energy component: poten-
tial energy, upward kinetic energy, the amount of performed work and the
amount of energy stored in the pole. Besides the ’Extension’ strategy, all
vaults have the same amount of potential energy at the end of the vault.
The difference in height is a result of a higher amount of upward kinetic
energy. The maximum amount of energy stored in the pole increases for
stiffer poles. The vaulted height is indicated by the color. The performance
varies from 6 meters up to 7.4 meters.

Energy

An energy analysis is performed to clarify what
component is dominant in the objective energy.
The objective is formulated as the sum of poten-
tial energy of the global center of mass and up-
wards kinetic energy of the global center of mass.
As stated in the introduction, the energy kinetic en-
ergy gained during the run-up, is transformed into
strain energy in the pole, which is returned to the
vaulter as potential- and upward kinetic energy. So,
the main components in the energy analysis are ki-
netic energy in x- and y-direction of the center of
mass, the potential energy of the center of mass and
the amount of energy stored in the pole.

The amount of energy stored in the pole is calcu-
lated as the sum of the initial energy and the total
amount of work of each control torque minus the
potential energy, kinetic energy and angular kinetic
energy of the vaulter. The energy profile of each
main component is shown in figure 12.

Figure 4 shows the same results as figure 12. Be-
sides the ’Extension’ strategy, all vaults have the
same amount of potential energy at the end of the
vault. The difference in height is a result of a higher
amount of upward kinetic energy. The maximum
amount of energy stored in the pole increases for
stiffer poles.
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Figure 13: The energy gain of each vault as a percentage of the initial en-
ergy. The model realizes a much higher energy gain than the average en-
ergy gain found by Frère et al. [2012a] and Brüggemann et al. [1999]

The effect of the different power profiles is only
found in the amount of performed work. Again, the
back and forth switching from a ’Two Peaks’ to a
’Three Peaks’ strategy is visible. The other three en-
ergy components, the potential energy, the upward
kinetic energy and the energy stored in the pole are
very consistent.

Remarkable is the final negative amount of en-
ergy stored in the pole at the end of the vault. The
amount of negative energy is the pole is further dis-
cussed in the section Discussion.
In the introduction, an energy gain of 22% of the ini-
tial energy is found among experienced vaulters by
Frère et al. [2012a]. Brüggemann et al. [1999] found
an energy gain of 4.5%. In figure 13 is the energy
gain of the model presented. The model realizes a
much bigger energy gain with peaks around 40%.
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Figure 14: The final conditions at the end of each vault at pole release and final performance, per pole length in meters. On the left: the
position and flying direction of the center of mass (COM) The small graphs on the left: the x- and y-position of the COM at pole release.
In the middle: horizontal and vertical velocity of the COM at pole release. On the right: the horizontal position of the COM the highest
point. Note: the bar placement is bounded by the region between -0.8 meter and 0 meter.

Pole Length

The pole length is varied from 4.22 meters up to 4.82 meters with steps of 2.5 centimeters. The model is very stable in its
behaviour when the pole length is changed. There are no different control strategies found. Only the ’Upwards’ strategy
is found. The positions at pole release, the velocity at pole release and the final highest point are shown in figure 14.

Short poles result in a higher upward velocity. Long poles have as an advantage the increase of potential energy at
pole release. The optimal pole length is found at 4.545 meters with a height of 7.03 meters.

The optimized control torques are shown in figure 15. The power production and main energy components are similar
to the presented power production and main energy components of the first consistent part of the pole stiffness analysis.

Figure 15: Optimized control torque profiles for pole length varied from 4.22 meters to 4.82 meters. On the left, the torque applied at the
tip of the pole. In the middle: the torque applied at the shoulders. On the right: the torque applied at the hips. Note: the color represents
the jumped height. The minimum height is 6.2 meters, the maximum height is 7.03 meters. According to these outcome, the optimal
pole length is 4.545 meters.
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Figure 16: The final conditions at the end of each vault at pole release and final performance, per length of the vaulter in % of the
benchmark length (Table 1. On the left: the position and flying direction of the center of mass (COM) The small graphs on the left: the
x- and y-position of the COM at pole release. In the middle: horizontal and vertical velocity of the COM at pole release. On the right:
the horizontal position of the COM the highest point. Note: the bar placement is bounded by the region between -0.8 meter and 0 meter.

Length of the Vaulter

The length of the vaulter is varied in % of the benchmark length, given in table 1. The segment length, given in Moore
et al. [2009], are after neglecting the feet, hands and neck. The true length is therefore estimated at 1.75 meters. The
length is varied from a decrease with 2%, which corresponds to a length of 1.72 meters, up to an increase of 10%, which
corresponds to a length of 1.95 meters.

The following global trend is found: ’The shorter the vaulter, the better the performance’. A shorter vaulter has a lower
inertia which gives him the ability to change his posture with less effort. The highest vault of 7.04 m is performed by the
vaulter of 1.72 meters. The positions and velocity at pole release and the final highest point are shown in figure 16.

There are no different control strategies found. The ’Extension’ strategy is found ones, at the maximal length of 1.95.
The shoulder control torque and hip control torque necessary to point the feet up are beyond the constrained values.
The vaulter is thereby forced to perform the ’Extension’ strategy. The other vaults are executed with the ’Upwards’ strat-
egy.

The optimized control torques are shown in figure 17. The power production and main energy components are similar
to the presented power production and main energy components of the first consistent part of the pole stiffness analysis.

Figure 17: Optimized control torque profiles for the varied length of the vaulter over a range of 98% up to 110% of the benchmark length
(Table 1. On the left, the torque applied at the tip of the pole. In the middle: the torque applied at the shoulders. On the right: the
torque applied at the hips. Note: the color represents the jumped height. The minimum height is 6.1 meters, the maximum height is
7.03 meters.
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Figure 18: The final conditions at the end of each vault at pole release and final performance, per mass of the vaulter. The mass is varied
from 66 kilograms up to 90 kilograms. The benchmark weight is 72 kg. On the left: the position and flying direction of the center of mass
(COM) The small graphs on the left: the x- and y-position of the COM at pole release. In the middle: horizontal and vertical velocity of
the COM at pole release. On the right: the horizontal position of the COM the highest point. Note: the bar placement is bounded by the
region between -0.8 meter and 0 meter.

Mass of the Vaulter

The mass of the vaulter is varied from 66 kilograms up to 90 kilograms. The model is very sensitive for changes in the
vaulter’s mass, as shown by the inconsistent torque profiles of figure 19. A global trend however, is found: ’The lighter
the vaulter, the better the performance.’

As shown in figure 18, vaulters with a lower mass score beneficial for both the height of the center of mass at pole
release, as well as the upward velocity. The best vault is performed by the lightest vaulter of 66 kilograms with a final
height of 7.33 meters.

All the different control strategies are found. The ’Extension’ strategy is found after a weight of 78 kilograms. Again.
The amount of torque necessary to point the feet up to complete the ’Upwards’ strategy, is bounded, which leaves the
vaulter with the ’Extension’ strategy. This is in accordance to the increase in body length. When the mass increases, the
inertia also increases. More effort is needed to get into the ’Upwards’ position.

The different power management strategies are also found. After the mass below 72 kilograms, the torque profiles
start to change drastically. Again, the power profile gives a clearer representation of the energy transmissions.

A change in mass does not lead to remarkable change of the energy components as discussed for the pole stiffness.

Figure 19: Optimized control torque profiles for the varied mass of the vaulter over a range of 66 kilograms up to 90 kilograms. The
benchmark weight is 72 kilograms. On the left, the torque applied at the tip of the pole. In the middle: the torque applied at the
shoulders. On the right: the torque applied at the hips. Note: the color represents the jumped height. The minimum height is 7.33
meters, the maximum height is 5.11 meters.
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Figure 20: Power profile after optimizing the control torques for a range of body mass from 66 kilograms up to 90 kilograms. The change
in power management is clearly visible as the power profiles at a body mass of 66 and 69 kilograms show three peaks, where the profiles
after that show the ’Two Peaks’ strategy.
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Figure 21: The final conditions at the end of each vault at pole release and final performance, take-off angle. In the middle: horizontal
and vertical velocity of the COM at pole release. On the right: the horizontal position of the COM the highest point. Note: the bar
placement is bounded by the region between -0.8 meter and 0 meter. The take-off angle is varies over a range of 3 degrees up to 20
degrees with steps of 1 degree. The best performance is found with the smallest take-off angle, 5 degrees. The vaulted heigth is 7.26
meters. An increase of the take-off angle results in a higher horizontal velocity. Less horizontal kinetic energy is converted into potential
energy and upwards kinetic energy.

Take-off Angle

The best performance is found with the take-off angle of 5 degrees. The vaulted heigth is 7.26 meters. An increase of the
take-off angle results in a higher horizontal velocity, as shown in figure 21.

Varying the take-off angle showed only the ’Upwards’ strategy. For a take-off angle below 6 degrees showed the switch
to the ’Three Peaks’ power strategy. The optimized control torque profiles are shown in figure 22

An increase in take-off angle results in less energy transformation. This is shown by figure 23. More energy is di-
rectly transferred into potential energy, by jumping up. The resulting vault has for an increasing take-off angle, a faster
increase of potential energy, a lower upward kinetic energy at the end of the vault and a shorter vault. The amount of
energy stored in the pole decreases. 3100 Joules is the maximum amount of energy stored in the pole for the smallest
angle of 3 degrees. The maximum amount of energy in the pole for the biggest angle (20 degrees) is 1300 Joules.
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Figure 22: Optimized control torque profiles for the varied take-off angle over a range of 3 degrees up to 20 degrees. On the left: the
torque applied at the tip of the pole. In the middle: the torque applied at the shoulders. On the right: the torque applied at the hips.
Note: the color represents the jumped height. The maximum height is 7.26 meters, the minimum height of 6.33 meters is found at the
biggest angle of 20 degrees.

Figure 23: The amount of energy of each main energy component: potential energy at the top left, upward kinetic energy at the top
right, the amount of performed work at the bottom left and the amount of energy stored in the pole at the bottom right. The difference
in height is a result of a higher amount of upward kinetic energy. The maximum amount of energy stored in the pole increases for stiffer
poles. The vaulted height is indicated by the color. The performance varies from 6 meters up to 7.4 meters.
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Conclusion

The goal of this research was to provide the optimization
of the control strategy of a simplified biomechanical
model. With a sensitivity analysis, the influence of the
pole properties and the initial properties of the vaulter
are investigated to determine whether this is the cause
of the different control strategies found by Brüggemann
et al. [1999]. A sensitivity analysis of the take-off angle is
investigated to determine the influence of the by Liu et al.
[2011] suggested beneficial take-off angle at the pole plant.

Based on the found general trends and the different
control strategies, the goal is fulfilled.

The following general trends or optima are found:

• The stiffer the pole, the better the performance

• The optimal pole length for the benchmark vaulter is
4.545 meters

• The lighter the vaulter, the better the performance

• The shorter the vaulter, the better the performance

• The smaller the take-off angle, the better the perfor-
mance

Three main control strategies are found which are visual
distinguished. The first strategy is the ’Extension-strategy’
with a characteristic leg or shoulder extension. The strat-
egy is found when the applicable torque is not high enough
to point the feet up during the vault. This was the case with
an increased mass, an increased length of the athlete and
a decreased stiffness.

A second control strategy is found, called the ’Flexion-
strategy’. The vault is not consistently found. Character-
istic for this strategy is the lack of shoulder and hip exten-
sion. The arms are almost aligned with the trunk and the
hip has an angle around 90 degrees at the moment of pole
release.

The last control strategy is the ’Upwards strategy’, Char-
acteristic for this strategy is the small shoulder flexion,
combined with a big hip extension. As a result, the feet
point upwards at pole release.

Within the ’Upwards strategy’, there are two power man-
agement strategies found. The first strategy is the ’Two
Peaks’ power strategy, the second power strategy is called
’Three Peaks’. Both strategies are shown in figure 8. The
’Two Peaks’ strategy slowly merges into the ’Three peaks’
strategy when the pole stiffness increased.

A clear difference of control is shown in by the ’Two
Peaks’ and ’Three Peaks’ power strategy. A clear difference
in motion between the two strategies is not found. This
confirms the finding of Brüggemann et al. [1999]. Multiple
control strategies are possible to for different sets of initial
conditions and initial properties to maximize the vaulting
performance.

Limitations and Recommendations

Optimization problems

The optimizer has a hard time with converging to a feasli-
ble minimum. The optimization procedure finds only
around 40% of each try a minimum. The other 60%, the
optimizer converges to an infeasible point.

The infeasbile solutions can be sorted out manually,
resulting in only feasible vaults. The difference of the
objective of the infeasible found solution is mostly around
4% of the maximal objective. Form an exploratory point
of view, these difference are acceptable to find the global
changes in control strategy between two different vaults
and vaulters.

A possible reason for the bad convergence is caused
by a combination of two factors. The first factor is the
discretisation of the equations of motion. The second
factor is the stopping cirterion where the pole is maximal
97% stretched. In the final stage of the optimization, the
best solution is often one where the last step of the motion
is very close to the edge of a 97% stretched pole. Such
points are a very local optimum due to its advantage in
potential energy. If the last time step of the motion is at
a height of 95% of a stretched pole, then the amount of
potential energy in the objective decreases with around
65 Joules for the bench mark pole of 4.57 meters. If the
optimizer is in the feasible domain at a height close to
97% of the stretched pole, the optimizer decreases its step
size, trying to increase the objective close to its current
position. It will stop when the step size is below the
step size tolerance. If the optimizer is not in the feasible
domain, the optimizer searches for feasible solutions
nearby, while maintaining the value of its objective. But
due to its very local optimum, the next step will lower
the objective. Often, the optimizer sticks to its current
infeasible solution, decreases its step size, trying to get in a
feasible domain close to its current position. Again, it will
stop when the step size is below the step size tolerance.

The numerical integration step size of 0.02 seconds is
a cause of not being able to step out of such a local opti-
mum. With a smaller numerical integration step size, the
surrounding solutions of the local minimum come closer.
The optimizer is tempted to take a step from its local in-
feasbile optimum to a feasible solution, without lowering
the objective.

The seven terms of equation B.7 are also picked arbitrar-
ily and could be a cause of the slow convergence. Since
there are 21 parameters to tweak, the optimizer has very
many options to.

The initial guess is also an arbitrary factor in the opti-
mization procedure. To investigate its influence, the opti-
mization over the entire stiffness range is done a second
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Figure 24: The final vaulted height is shown as a function of the
pole stiffness in Nm2. The vaulted heights are found with the first
initial guess and with an intial guess by a random factor between
0.6 and 1.4. The biggest deviation is around 0.38 centimeters for a
stiffness of B = 2572 Nm2, which is close to the a 6 % deviation.

time. However, this time, the initial guess is multiplied
with a factor between 0.6 and 1.4. The resulting objectives
of the first and the second optimization are shown in figure
24.

Vaulter Assumptions

The translation from the physiology of the vaulter to a
simplified biomechanical model goes hand in hand with
assumptions. The assumptions made by designing this
model has to be considered when interpreting the results.

The most influential assumption of the presented model
are the bounds on the energy sources of the model, the
bounds on the control torques. Both the absolute bounds
on the magnitude of the control torques, as well as the
power bound, are both debatable.

The absolute bounds on the magnitude are found in
McGinnis [1989] which used the bounds for a two dimen-
sional forward dynamical model of the pole vault motion.
The magnitudes are based on measurements performed
on elite pole vaulters. However, the number of segments
of the model McGinnis [1989] build was five, the hands
were attached in a different manner, and simple muscle
dynamics where implemented. There is not compensated
for the difference between McGinnis’ model and the pre-
sented model.

However, a control torque function with advanced mus-
cle dynamical properties incorporated is also not suitable.
It does not fit the purpose of the current model. A question
which may arise is: How applicable is an advanced mus-
cle dynamical model in a two dimensional biomechain-
cal model? A basic torque function per joint, dependent

on the angular position and angular velocity is therefore
recommended to increase the reliability while keeping the
purpose of the model the same.

The maximal amount of power is supported by a basic
trial and error analysis, as described in the Constraints sec-
tion. The influence of the power constraint is shown in
figure 3. Clearly, the power constraint blocks vaults from
improving and forces the vaulter to change its power man-
agement strategy. As suggested above, a basic torque func-
tion per joint could be a step ahead to improve the model.
By making the torque dependent on the angular velocity in
combination with a power bound prevent the combination
of a high torque and a high angular velocity.

Model Assumptions

The simplifications regarding the motion of the vaulter
also comes at expense of the reliability of the model.

The two dimensional resemblance of the pole vault
movement seems accurate during the majority of the pole
support phase. Besides that, it makes the vault more ap-
plicable for an optimization due to the reduced number of
degrees of freedom. However, in the final stage of the pole
support phase, the vaulter turns the pole to the outside to
not jump into it. The ability to apply a torque at the tip
of the pole during and after this transition is questionable.
The hand torque of the forward dynamical model McGin-
nis [1989]made is set to zero after 60% of the vault is com-
pleted. On the other hand, Morlier and Mesnard [2007]
measured torques located at the tip of the pole up to 200
Nm.

The constraint of the presented model is a combined ap-
proach of Morlier and Mesnard [2007]. When the vault is
completed for 50%, the absolute torque bound decreases
from 600 Nm, found by McGinnis [1989], to 100 Nm at the
end of the vault. As shown in figure 25, the influence of the
constraint is only present at the end of the vault. Although
there is no scientific support for the exact formulation of
this constraint, it prevents the vaulter from producing un-
realistic torque magnitudes for the position over the last
25% of the vault. The constraint seems therefore justified.
The three segmental representation of the vaulter covers
the main movements of the pole vault motion. Nev-
ertheless, introducing more segments could result in
more strategies, since there is an extra degree of freedom.
Besides that, it could result in a shift of the range where
the current strategies are found. Introducing a knee joint,
for instance, changes the inertia and the location of the
segmental center of mass. Less torque is needed to move
the body in a more optimal position. A strategy which
requires a high hip torque due to a high inertia of the legs
is with a knee joint applicable for a wider range of initial
parameters.
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Figure 25: Control torque profiles for the entire range of the pole
length. The bounds keep the magnitude of the torque within a fea-
sible reagion. Note: the shown bound is only applicable for the
longest torque profile in time. The constraint on the tip of the pole
is dependent on the duration of the vault

The exclusion of the fly-away phase gives the current
model the possibility to end in unrealistic positions and
velocities. The feasible domain at the end of the vault is
beyond realistic. The final positions have often almost no
forward velocity, which makes crossing the bar in reality
very difficult. The size of the feasible domain can be
solved by introducing extra constraints at the end of the
vault to guide the optimizer to a favourable final position.
What this favourable position should look like, is not
found in scientific literature. Besides that, the adaptability
of the vaulter at the end of the vault is hard to estimate.
Therefore, an extension of the current model is suggested
where a true pole release phase and fly-away phase is
simulated to ensure feasible vaults.

A reduced feasible domain at the end of the vault can
also reduce the sensitivity of the initial guess, because
there is a smaller region to converge to. Even though the
variation between the final objective stays below 5%, it is
still not said that the global optimum is found for a given
set of initial conditions and initial properties.
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Appendix A Matlab Model
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Figure A.1: Simplified model representation. Generalized coordi-
nates: the center of mass of the arms (x , y ), the angle at the hands (φ),
the angle at the shoulders (θ ) and the angle at the hips (ψ). Control
torques: T1 is located at the top of the pole, T2 is located at the shoul-
ders, T3 is located at the hips

The complete MATLAB optimization program is built
on two functions and the optimizer fmincon. MAT-
LAB is used since the script of Reijne [2016] was also
built in MATLAB. The functionfmincon is used since
the optimization problem is a constrained, multi vari-
able problem. It fits the best to the optimization prob-
lem.

The goal of the optimization is to maximize the sum
of potential and upward kinetic energy by optimiz-
ing the control torques at the hand, shoulder and hip.
This is also described in section Objective. The con-
trol torques are optimized by changing the parame-
ters A to G of the polynomial:

Tc (t ) = At 6+B t 5+C t 4+D t 3+E t 2+ F t +G (A.1)

Each hinge needs its own torque profile, so each
torque profile has its own set of torque parameters.
This gives 21 parameters to optimize. In Matlab, the
torque functions and the set of torque parameters are
numbered where T1_fun is the torque located at the
tip of the pole, T2_fun is the torque actuator located
at the shoulders and T3_fun is the torque actuator
located at the hips as shown in figure A.1. The torque
parameters are stored in vectors called INP_T1_fun,
INP_T2_fun and INP_T3_fun.

The development of the optimization model started with spline functions as torque profiles. How the spline
function works is explained in section Initial guess. In that stadium of development, the spline functions often did
not find an optimum. On advice of T. Geijtenbeek, postdoctoral researcher at Biomechanical Design, the switch was
made to polynomials to get more flexibility in the final torque profile. A 6t h degree polynomial gave a very accurate
fit to the spline function, with a root mean square error of 0.99. The optimization time turned out to be in the order
of hours which is not excessively long. So, the current polynomial is chosen to be the function to optimize.

The Script

The optimization is started from the main file Optimization.m. The file contains two functions besides a call to
fmincon:

• The objective function, to calculate the amount of energy for a given set of input variables

• The constraint function, to check whether all the variables fulfill the constraints

The first part ofOptimization.m is the design set-up. In this part, the properties of the pole (length and stiffness),
vaulter (mass, length, inertia) and other optimization parameters (integration time step size, pole discretization) are
determined. These variables are written in the vector INP_ode. In the second part of Optimization.m, the initial
position and velocities of the generalized coordinates, shown in figure A.1, are calculated.

Initial position

Several initial parameters are varied and optimization to find the influence on the vaulter’s control strategy. The
variations have influence on the amount of energy the vaulter starts with. If the stiffness or the length of the pole is
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changed but the position of the tip stays the same, the vaulter starts each optimization with a different amount of
initial pole energy.
A choice has to be made to keep the initial energy the same when, for example, the pole length is varied. The following
energy balance should be constant:

Ev a ul t e r +Ep o l e =
�

Ek +Ep

�

+Ep o l e =
�1

2
m v 2+mg hc o m

�

+
1

2
Bκ2 =C (A.2)

Where the energy of the vaulter is split into potential energy, Ep , and kinetic energy, Ek . Both the kinetic energy and
potential energy are calculated with respect to center of mass of the vaulter. The energy of the pole is a function of
stiffness B and k a p p a , where,

r =
1

κ
(A.3)

Assumed that the pole is curved as a perfect circular arc, radius r is solved from the relation of the length of the pole
chord and the length of the pole:

sin
�Lp o l e

2r

�

=
Lc ho r d

2r
(A.4)

C is set equal to what Brüggemann et al. [1999] found by the elite vaulters at the World Championships of 1998.
The sum of potential and kinetic energy per kilogram body weight was 57.03 Joules per kilogram body weight. The
amount of potential energy is calculated according to the bench mark position of table 1. The remaining part of
initial energy is kinetic energy and corresponds to a velocity of 9.7 m/s . This is measured at the last stride before the
pole is planted and the vaulter takes off. During the pole plant and take-off, the vaulter looses around 10% of his
energy. The resulting energy is 51.327 Joules per kilogram body weight.

If the position of the tip of the pole stays the same but the pole length increases, the curvature of the pole
should increases, resulting in more pole energy. The velocity of the vaulter is reduced to fulfill the energy balance in
equation A.2. As shown in figure A.2, the velocity does not changes drastically.

Figure A.2: On the left: the change of velocity of the vaulter in x-direction when the velocity is adjusted to fulfill the energy balance
of equation A.2. On the right: the change of velocity of the vaulter in y-direction when the velocity is adjusted to fulfill the energy
balance of equation A.2.

If the curvature stays the same, the position of the tip has to change if the pole length increases. Keeping the position
constant lead to a small curvature when the pole length decreases. The pole reaction forces for a small curvature are
much higher for the absolute torque bounds at the tip of the pole, as shown in figure A.3. To avoid high pole forces,
the position of the tip of the pole is changed to fulfill the energy balance.
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Figure A.3: On the left: the maximal and minimal pole forces at the start of the optimization for different pole length. The velocity
of the vaulter or the position of the tip of the pole is changed to fulfill the energy balance of equation A.2. Varying the initial position
results in lower pole forces which is preferred in the optimization. In the middle: the curvature of the shortest and longest pole used
in the optimization when the velocity is varied to fulfill the energy balance of equation A.2. On the right: the shift of the tip of the
pole when the pole length is varied but the curvature stays the same.

The approach described above is also used when the stiffness is varied. Varying the mass of the athlete increases
the potential energy. This is covered by reducing the velocity while keeping the direction of the velocity, or take-off
angle, the same. When the length is varied, the amount of potential energy increases which is covered by reducing
the velocity. Again, by keeping the direction of the velocity the same. The position of the tip of the pole also shifts
slightly along the circle with the pole chord as radius.

Objective function

The objective function calculates each iteration, the sum of potential and upward kinetic energy during the entire
vault, as a function of the torque parameters (see paper section Objective). The maximum of the sum is taken as
the moment the vaulter releases the pole. The input variables are the torque parameters, the time step size of the
numerical integration, the initial conditions (X_ode) and the initial parameters (INP_ode). The objective function
is in essence the same as the model M. Reijne. It is adjusted for optimization of the control torques. The vaulter
contains three segments instead of two, and an inertia model is introduced.

First, the objective processes the input vectors into separate input variables. The variables are used in a for-loop
which calculates the movement according to the input. The loop stops if the pole is stretched for 97% or the pole
force equations, described below, cannot be solved. The loop stops before the pole is fully stretched. The solver
which calculates the pole forces cannot cope with a almost fully stretched pole.

Pole forces

The loop starts by calculating the shape of the pole and the force of the pole acting on the vaulter. The shape is given
by the angle γ, shown in figure A.4
The angle γ is defined as the angle between the tangent of the pole, located at the origin, and the line parallel to R ,
crossing the origin. The pole force is denoted as R . R and γ are found by the function myfun which is built by M.
Reijne. The input variables of myfun are the length and stiffness of the pole, the length of the pole chord and the
torque at the tip of the pole.

The solver fsolve is used to solve the set of equations of myfun. To do so, fsolve needs an initial guess. The
first initial guess is based on trial and error and stored in the vector INP_ode. An accurate initial guess will decrease
the computational time. For the next time step, the previous solution is used as an initial guess, since γ and R change
gradually during a simulated vault as shown in figure A.5.
If the found R and γ are both positive, the for-loop continues. If γ is negative, the pole has a convex shape from the
vaulter’s point of view which is impossible to have. If R is negative, the pole pulls on the vaulter towards the origin,
which is also impossible for a realistic vault. So, if one of these situations occurs, the simulation stops.
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Figure A.4: The pole force and pole shape is determined by pole force R and angle γ, located between the tangent at the origin and
the line parallel to R , crossing the origin. The angle λ is the angle between the pole chord and the x-axes. The angle η is calculated
with the elliptic integrals to find the pole forces Rn and Rt

Figure A.5: An example of the pole force and pole tangent γ during a vault. Both graphs develop very gradual
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Besides R and γ, the solver gives an exit flag as output. If the exit flag is not equal to one, which is given when a
solution is found, the simulation stops. Otherwise, fsolve has found a valid R and γ and the for-loop continues.
The old values of R and γ are overwritten in INP_ode as a new initial guess.

Equation of Motion

The function of the equation of motion is used, called odefun. The derivation of the equation of motion is found in
Appendix - Equations of motion. The output of the function are the velocities and accelerations of the generalized
coordinates for the next time step as a function of the current position, velocities and torques.
Odefun has multiple input variables. The first input variable is the moment in time, t. The second input variable

is the vector X_ode which contains the position and velocities of the generalized coordinates at the start of the time
step. The next three input vectors are the optimization variables parameters A to G. The last input vector is INP_ode,
containing the properties of the vaulter, the pole properties, R, γ and the gravitational constant.

The inertia of each segment with respect to the center of mass of the vaulter, is needed to use the equation of
motion. Every time odefun is used, the inertia is calculated since the position of the vaulter changes and the inertia
changes with the position of the vaulter. The amount of torque of each actuator is calculated by its own function
called T1_fun, T2_fun and T3_fun. The function and its input is shown in equation A.1.

The values of the generalized positions and velocities, together with the pole forces and control torques are
filled in into the matrices and vectors needed for the TMT-method. The result is a reduced mass matrix and an
extended force vector (Appendix - Equations of motion). The system is solved using the backslash operator. The
resulting vector contains the accelerations of the current situation. The output vector of odefun.m contains,
besides the found generalized accelerations, the generalized velocities.

The equations of motion are numerically solved by the 4th order Runge-Kutta scheme, explained in Appendix
- Numerical integration. The function calculates for four situations the velocities and the accelerations of the
equations of motion and takes a weighted average of these four situations as the of the equation of motion. To solve
the equations of motion, the pole force R is needed. Since the amount of torque is time dependent, the function
fsolve is used again to calculate the pole forces for the four situations the RK4 scheme needs. The setup of fsolve
and myfun is the same as described above. The only thing which is adjusted is the initial guess of R and γ as they
are overwritten in objective.m. The force R is with elliptic variables transformed into forces Rt and Rn which
are defined in the pole coordinate system, as shown in figure A.4. If fsolve does not find a solution, as described
above, the simulation stops.

The equations of motion provide the velocities and accelerations for every time step. With numerical integra-
tion, the next position and velocities can be calculated. The numerical integration scheme, explained in Appendix
- Numerical integration, is written as a function with all the input the equations of motion need. The output is
the position and velocities of the generalized coordinates at the next time step. The function calculates for four
situations the velocities and the accelerations of the equations of motion. If one of the situations does not result
in a solution due to fsolve, the output the entire integration step is set to zero. If each step results in a solution,
then the next step in time is calculated and returned to objective.m. The solution of the numerical integration is
stored in a vector per generalized coordinate and generalized velocity. Matlab breaks the for-loop if the entire output
vector of the numerical integration is zero which means the pole is almost stretched, or fsolve could not solve the
problem. Based on the experience with the model, the inability of fsolve to find a solution mainly occurs with
unsuccessful vaults with an unrealistic combination of pole shape and pole forces.

When the for-loop ends, the trajectory and velocity of each segment is calculated. The potential energy and
upwards kinetic energy are calculated for the entire vault. The potential energy is calculated as the sum of the
potential energy of each segment. The same goes for the upward kinetic energy. Note that in the script, the sum
of these two parameters is denoted as a negative value since fmincon searches for a minimum. So, the output
of objective.m is the minimum value of these two parameters. The moment in time and the final value of the
objective function is found with the min command in Matlab. Every set of torque inputs fmincon tries is stored in
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a matrix to analyze the search of fmincon if necessary.

Contraint function

The constraint function, nonlcon.m, is the second vital function fmincon needs to function properly. This
function determines the design space by putting bounds on variables. The bounds are formulated as inequality
constraints where a value below zero means the constraint is fulfilled.

The constraint on the highest point of the vault for instance, explained in section Final position, is formulated
as:

c1 = x f i na l ≤ 0

c2 =−x f i na l −0.8≤ 0

In this way, the value of x f i na l will be between 0 and 0.8 which is the region the vaulter may place the bar.

The first constraint in the constraint function is the length of the pole chord. The length of the pole chord
should always be less than the length of the pole. The second constraint is the sign of γ. For a realistic shape, γ
should always be negative, resulting in a concave shape. The maximal value of gamma should be below zero. The
next four constraints are formulated so that no element will go through the ground. The seventh constraint makes
sure the vault only ends when the pole is stretched for 97 percent of its unloaded length. The eighth and ninth
constraint are the constraints for the final position and described in the example. The next six constraints are the
bounds set for the joints, to overcome hyper flexing and hyper extension. Then, six constraints are the bounds which
constraint the maximal and minimal amount of torque of each actuator. The last four constraints bound the amount
of power at the shoulders and the hips, as explained in section Control.

The solver fmincon tries each iteration to fix the constraints which are violated the most. Besides that, fmincon
sometimes takes steps slightly outside the region where all the constraints are fulfilled, to check if the objective can
be improved. The constraints are normalized by their bound to make sure every constraint is equally important to
solve and do not block improvements because of their magnitude.

If there are certain constraints that are more important, a penalty could be introduced to increase the magnitude
of the constraint.

There is an option to constrain the 21 optimization parameters of the control torques, outside the constraint
function in Optimization.m. Each parameter is then bounded by a certain magnitude. This option is not used
since the shape of the control torques should not be constrained.

The constraint bounds are given in the script Optimization.m. The bounds are stored in the vector INP_con
and is one of the input vectors for the constraint function. The other input vectors are the same as the objective
function: the optimization variables for each torque function, the time step size, the initial position X_ode and
system properties INP_ode. The constraint function is very similar to the objective function. The function starts
with processing the input vectors into separate input vectors or input variables. Then, the same for-loop as the
objective starts but, in this function, several variables are saved in a vector to check their magnitude during the entire
vault. The magnitude of the torques and the length of the pole chord for instance.

The conditions to break out of the loop are the same as in the objective function. The loop stops when fsolve
cannot find a proper solution for the shape of the pole. When the loop is finished, the trajectory and velocities of
each element is calculated. The potential energy and upwards kinetic energy are calculated for the entire vault. The
potential energy is calculated as the sum of the potential energy of each segment. The same goes for the upward
kinetic energy. The moment in time and the final value of the maximal energy is found with the max command in
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Matlab. All constraints are checked until the maximal amount of energy is reached. At that moment, the vaulter
starts the fly-away phase which does not involve the pole.

The output of nonlcon.m are the answers of the constraint equations of each iteration. The results are saved
in a separate matrix to see which constraints are broken during the optimization and which constraints make the
vault infeasible.

Initial guess

The last input fmincon needs is a place to start the optimization, an initial guess. The initial guess determines the
first shape of the torque functions. Picking an initial guess can make or break the optimization. A bad initial guess far
from the optimum results in long computational times. An initial guess which breaks many constraints also results
in long computational times or can even result in not finding an optimum at all. The initial guess is determined in
a different script. The script is again very similar to the objective function. The same for-loop is used, resulting a
trajectory based on the guessed torque function. The vault is visualized to see if the vaulter breaks the constraints.

The sixth-degree polynomial is hard to interpret by guessing the optimization parameters. So, a spline func-
tion is used instead to make a first estimation of the control torques. The shape of the spline function is made
by fixing the value of the torque-function every tenth of a second. By fixing eleven points throughout the torque
function, the magnitude, which preferably is below the constrained value, is much easier to estimate than a sixth-
degree polynomial. These eleven points are the input of the spline command of Matlab which creates the torque
functions as a function of time.

Now the new torque functions are made, the for-loop, described in section Objective of this chapter, is used to
determine the final trajectory. Based on the visualization, it is easier to see where the torque is to high or to low. By
trial and error, the eleven points in time, which determines the shape of the spline, are tweaked until a rough realistic
vault is found.

The eleven points per torque function are translated into a sixth-degree polynomial using the curve fit appli-
cation of Matlab. Now, the seven parameters per torque function are known and used as the initial guess for the
check of the constraints.

The constraint check is performed in the same script as the entire optimization with one small adjustment, the
objective function is set to zero. This results in a major change of behavior of fmincon. The optimizer now only
moves in the direction were all the constraints are met. Two constraints are made stricter to leave room for the true
optimization. These constraints describe the space where the highest point should be reached ref final position.
When the initial guess breaks these constraints, it often results in a non-feasible outcome. After the constraint check
is performed, an initial guess is found within the feasible domain which most likely gives a feasible optimum.

Optimization options

Now, all the input needed for an optimization are formulated. So, the fmincon function is formulated with the
objective function, the initial guess, the parameter bounds, the constraint function and the solver options. The
solver returns the resulting objective, the maximal amount of energy, and the 21 torque parameters, which results in
the maximal amount of energy.

The fmincon function has several options to make the optimization fit to a specific problem. The most im-
portant option is selecting the algorithm fmincon uses to solve the problem. Each algorithm has its own strong and
weak points. For the pole vault optimization, the Sequential Quadratic Programming, or SQP, is used. The algorithm
is not the fastest algorithm of the other options, but it is very robust, meaning it can cope with complex interactions
between reaching the objective and fulfilling the constraints.

The complexity of the constraints is the result of the causality of the optimization parameters and the different
types of constraints. The torque constraints for instance are very straightforward. The maximal and minimal torque
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at the tip of the pole are direct related to its seven optimized parameters. The constraints on the position however,
are dependent on the combination of the three torque parameters and the torque’s curve over time.

Another complexity of the combination of constraints is the difference in magnitude. The joint angles are ex-
pressed in radians. So, a violation of a joint angle constraint will be in the order of 10−3. A violation of the torque
bounds however, is often in the order of 101. Most algorithms use the magnitude of the violation as a measure of
importance. Torque constraint violations are therefore completed in an earlier stage of the optimization then the
joint angle constraints. The constraints are normalized by the magnitude of their bound to cope with the difference
in importance.

The SQP algorithm has the option Scale problem which normalizes the constraint function and objective
function. With this property switched on, the optimization is often able to stay close to the feasible domain. The
downside is the slow convergence of the objective function which is shown in figure A.6. A self-written normal-
ization of the constraints and a switch to the interior-point algorithm, which tend to converge faster, is a possible
improvement.

Two optimization options are exit-bounds for the optimization procedure. The bounds are determined by a
trial and error approach. The first bound is the maximal amount of function evaluations, this is the number of tries
fmincon can use to find the optimum. It is currently set on 1500 function evaluations.

As described above, the convergence can take a long time. When a certain optimization takes 1500 function eval-
uations, the objective increases in general less than 3% over the second half of the optimization. The feasibility, the
biggest constraint violation, is often in the order of 10−3 and decreasing. Since the constraints are normalized, the
feasibility corresponds to a violation of 0.1%. Based on that, it can be concluded that the strategy does not change
but improves slightly. 1500 function evaluations seem therefore sufficient. The convergence is shown in figure A.6.
Here, the slow convergence at the end of the optimization is clearly visible.

The step size tolerance is the second option. The step size is a lower bound tolerance and is determined as the norm
of the difference of the previous try and the current try. The step size is set to 10−6 to stop extreme slow convergence. If
fminconmakes a step with a step size below the bound, it stops the optimization. Changing the step size tolerance is
another way to increase the convergence speed. However, the SQP algorithm tend to take small steps at the beginning
of the optimization. A too big step size tolerance can block these steps, forcing fmincon to stop. Therefore, a small
step size tolerance is preferred.

The last option, which does not stop the optimization, is a tolerance on the constraints. The tolerance is currently
set on 10−3. As described above, a constraint violation with 0.1% is permitted. During the optimization, fmincon
some times takes steps outside the feasible domain to increase the objective. By introducing a constraint tolerance,
fmincon takes bigger steps outside the feasible domain in the direction of a better objective which makes the op-
timization faster. However, the risk of converging into a feasible domain is slightly bigger. The optimizer does not
store his previous steps. If the step into the infeasible domain is to big, fmincon could start converging in this region,
resulting in a failed optimization.
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Figure A.6: A typical example of the development of the objective value. After 600 iterations, the objective converges slowly. The
last 600 calculations calculations do not improve the vault significantly. A maximal amount of 1500 function evaluations seems
therefore sufficient.
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Appendix B Equations of motion

Multiple methods are available to calculate the equations of motion of a multi body system with each its own strength
and flaws. The equations of motion for the optimization model are derived with the TMT-method, a combination of
using generalized coordinates formulated by Lagrange, virtual power and inertia contribution via d’Alembert forces.
The exact derivation how the Lagrange method and d’Alembert’s principle are combined can be found in Schwab
and Linde [1997].
The TMT-method is used since it is very computational efficient. This is a big plus. The equations of motion are
evaluated over a hundred thousand times during a complete optimization.

General Approach

The equations of motion are based on a set generalized coordinates (q ). This is a set of independent variables which
describe the position and orientation of each body of a multi-body system. There is no recipe to determine general-
ized coordinates.

The final form of the equations of motion is given by equation (B.1) and contains five elements:

Ti ,k Mi j Tj ,l q̈l = Ti ,k

∑

fi +Ti ,k Mi j h j (B.1)

The first element is the kinematic transformation matrix T . It is the geometric relations between the generalized
coordinates and the x-position, the y-position and orientation of each body, derived with respect to q . The chosen
set of generalized coordinates keeps the kinematic transformation compact.

The second element is the mass matrix M which contains the mass and inertia per body on the diagonal. The
third element is the second derivative of the generalized coordinates with respect to time, q̈ . The fourth element is
the vector containing the sum of the forces of each body, f . The final element is h which contains the convective
accelerations, a component of the time derivation of the transformation matrix.
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Figure B.1: Simplified model representation with generalized coordinates: the center of mass of the arms (x , y ), the angle at the hands
(φ), the angle at the shoulders (θ ) and the angle at the hips (ψ). Distances l1, l2, l3, l4 and l5 locate the center of mass of each body.
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Derivation

The general setup, as described above, is now applied to the model shown in figure B.1. Here, the positions of the
center of mass is shown, together with the joint anglesφ, θ andψ and the distances l1, l2, l3, l4 and l5 which determine
the location of the centers of mass of each body and the tip of the pole.

Positions

The body of the vaulter is modelled as of three bodies with each three degrees of freedom, the x-position, the y-
position and an orientation angle.

xi =



























xc m1

yc m1
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xc m2

yc m2
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φ+θ +ψ



























(B.2)

The mass matrix corresponding to the notation of xi is:

Mi ,i =
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(B.3)

The set of degrees of freedom can be described using five generalized coordinates, the x and y position of body one,
the arms, the angleφ, the angle θ and the angleψ. These five variables are the generalized coordinates, stored in q j .

q j =











xc m1

yc m1

φ
θ
ψ











(B.4)

The geometric relations of xi as a function of q j are given by:

g i =



























xc m1

yc m1

φ
xc m1− l1s i n (φ)− l3s i n (φ+θ )
yc m1− l1c o s (φ)− l3c o s (φ+θ )

φ+θ
xc m2− l4s i n (φ+θ )− l5s i n (φ+θ +ψ)
yc m2− l4c o s (φ+θ )− l5c o s (φ+θ +ψ)

φ+θ +ψ



























(B.5)

Now, the positions can be described with only five generalized coordinates, stored in q j .
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Velocities

The linear and angular velocities of x as a function of the velocities of q are found by taking the derivative of x with
respect to time. This results in two factors because of the chain rule.

ẋi = Ti k q̇k (B.6)

The first term is transformation matrix T which is g i derived with respect to q j . The second term is q j derived with
respect to time, resulting in q̇ .

Ti ,k =



























1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 −l2c o s (φ)− l3c o s (φ+θ ) −l3c o s (φ+θ ) 0
0 1 l2s i n (φ) + l3s i n (φ+θ ) l3s i n (φ+θ ) 0
0 0 1 1 0
1 0 −l2c o s (φ)− (l3+ l4)c o s (φ+θ )− l5c o s (φ+θ +ψ) −(l3+ l4)c o s (φ+θ )− l5c o s (φ+θ +ψ) −l5c o s (φ+θ +ψ)
0 1 l2s i n (φ) + (l3+ l4)s i n (φ+θ ) + l5s i n (φ+θ +ψ) (l3+ l4)s i n (φ+θ ) + l5s i n (φ+θ +ψ) l5s i n (φ+θ +ψ)
0 0 1 1 1



























(B.7)

The multiplication of these two terms gives the linear and angular velocity of every body as a function of q j and q̇ .

Accelerations

The transformation of the accelerations of q j into the accelerations of x is done in the same manner, by taking the
time derivative of the velocities ẋ .

ẍi =
∂ g i

∂ ql
q̈l +

∂ 2g i

∂ qm∂ qp
q̇m q̇p (B.8)

This equation consists of two terms each containing two factors, as a result of the chain rule. The first term is nothing
more than Ti ,k multiplied by the generalized accelerations. The second term is called the convective accelerations,
further denoted with h . The vector h is found by taking the derivative of the T with respect to q . The resulting vector
h is:

h =
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0
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(B.9)

With:

h4 = l2φ̇
2s i n (φ) + l3φ̇

2s i n (φ+θ ) + l3θ̇
2s i n (φ+θ ) +2l3φ̇θ̇ s i n (φ+θ ) (B.10)

h5 = l2φ̇
2c o s (φ) + l3φ̇

2c o s (φ+θ ) + l3θ̇
2c o s (φ+θ ) +2l3φ̇θ̇ c o s (φ+θ ) (B.11)
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h7 = l2φ̇
2s i n (φ) + l3φ̇

2s i n (φ+θ ) + l3θ̇
2s i n (φ+θ ) +2l3φ̇θ̇ s i n (φ+θ )+

l4φ̇
2s i n (φ+θ ) + l4θ̇

2s i n (φ+θ ) +2l4φ̇θ̇ s i n (φ+θ )+

l5φ̇
2s i n (φ+θ +ψ) + l5θ̇

2s i n (φ+θ +ψ) + l5ψ̇
2s i n (φ+θ +ψ)+

2l5φ̇θ̇ s i n (φ+θ +ψ) +2l5φ̇ψ̇s i n (φ+θ +ψ) +2l5θ̇ ψ̇s i n (φ+θ +ψ)

(B.12)

h8 = l2φ̇
2c o s (φ) + l3φ̇

2c o s (φ+θ ) + l3θ̇
2c o s (φ+θ ) +2l3φ̇θ̇ c o s (φ+θ )+

l4φ̇
2c o s (φ+θ ) + l4θ̇

2c o s (φ+θ ) +2l4φ̇θ̇ c o s (φ+θ )+

l5φ̇
2c o s (φ+θ +ψ) + l5θ̇

2c o s (φ+θ +ψ) + l5ψ̇
2c o s (φ+θ +ψ)+

2l5φ̇θ̇ c o s (φ+θ +ψ) +2l5φ̇ψ̇c o s (φ+θ +ψ) +2l5θ̇ ψ̇c o s (φ+θ +ψ)

(B.13)

Forces

The force vector is formed by the external forces on the body in x and y direction and the torques around the center
of mass. The only external forces besides gravity are caused by the pole. The pole forces are split up into two compo-
nents, Rn and Rt . Rn points in the direction of the pole chord. The line from tip to tip of the pole. The angles λ and
η are found in figure. R and η is calculated in the pole model, explained in section Pole forces.

The order of the force components is the same as the order of degrees of freedom of vector xi . This results in the
following force vector:

fi =



























Rn c o sλ+Rt s i nλ
Rn s i nλ+Rt c o sλ−m1g

l1Rn c o s (φ+λ) + l1Rt s i n (φ+λ)
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0
0
−m3g

0
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The torques generated by the torque actuators at the joints can also be seen as external forces. These torques
are simply added on the right hand side of equation:

yl =











0
0
−T1

T2

T3











(B.15)

All these terms together make the equations of motion complete, resulting in the following final form:

Ti ,k Mi j Tj ,l q̈l = yl +Ti ,k

�∑

fi −Mi j h j

�

(B.16)

Implementation in Matlab

The transformation matrix (eqn.B.7) and the convective accelerations (eqn.B.9) are determined in a separate script
using a symbolic approach. The generalized coordinates (eqn.B.4) and generalized velocities are declared as symbols
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in vector q and q d . The length, mass and inertia properties of the bodies are also declared as symbols. The first
step is to write vector g i (eqn.B.5) as a function of q as described above. Then, g i is derived with respect to q , using
the jacobian command. The convective accelerations are determined in three steps. First Ti j is multiplied by the
generalized velocities. Then, the jacobian is taken with respect to q . Finally, the result is multieplied with q d ,
resulting in the convective accelerations.

The transformation matrix and convective accelerations are copied and paste in the function odefun.m. The
other TMT-elements are also declared in odefun.m. Starting with the mass matrix, which is equal to equation B.3.
The force vector is equal to equation B.14. The vector containing the control torques is equal to equationB.15.

Now, Matlab only has to fill in the variables which were declared as symbols and perform vector and matrix multi-
plications to create a set of equations shown in equation B.16, where the TMT multiplication results in the reduced
mass matrix M̄ . The right-hand side can be seen as the extended force vector f̄ , which leaves the following equation:

M q̈ = f (B.17)

This system of equations is solved using the backslash operator, resulting in the generalized accelerations which
are integrated in a numerical manner. The numerical integration is performed with the Runge-Kutta fourth order
scheme which is explained in Appendix - Numerical integration with the RK4-method.
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Appendix C Inertia

The inertia properties of the athlete are estimated by the method developed by Moore et al. [2009]. In his research,
the inertia properties of a human together with a bike are estimated. Moore et al. [2009] simplified the human body
to a tin man posture (fig. C.1). This means the upper arms, lower arms, upper legs and lower legs are represented by
cylinders, the head is represented by a sphere and the torso by a cuboid.

The measurements were made as accurately as possible with basic tools but no special attention is given further to
the accuracy of the calculations due to the fact that modeling the human as basic geometric shapes already introduces
a large error. The circumferences were measured at the cross section where the circumference was maximum, for
example around the biceps for the arms and over the nipples for the chest. The dimensions are given in table C.1.

The mass of each segment is determined as a percentage of the total body mass. The percentages per segment are
based on cadaver studies. Each segment is modelled with a uniform density. So, the center of mass is located at the
geometrical center of each segment. The mass of each segment is given in table C.2.

The simplified shapes and uniform density of each segment make the results less realistic. The influence of the
current simplifications is partly covered in the sensitivity analysis. The inertia properties are a function of mass and
shape. So, varying the length or mass of the vaulter also change the inertia properties of the vaulter and thus its final
vault.
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Figure C.1: The human body in ’tin man’ representation [Moore et al., 2009]. The measures are found in table C.1. The figure is made
by Reijne [2016]
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Description Symbol Value Units
circumference upper arm cua 0.30 m
circumference lower arm cl a 0.33 m
circumference head ch 0.58 m
circumference torso ct o 0.94 m
circumference upper leg cul 0.46 m
circumference lower leg cl l 0.38 m
length upper arm Lua 0.28 m
length lower arm L l a 0.33 m
length torso L t o 0.48 m
length shoulder to shoulder L s s 0.44 m
length upper leg Lul 0.46 m
length lower leg L l l 0.46 m

Table C.1: Table with measures of the tin man, given by Moore et al. [2009]. These measures are used to calculate the inertia of the
vaulter.

Segment Symbol Equation Value Units
mass of vaulter’s body mb r 1.0 mb r 72 kg
upper arm mua 0.028 mb r 2.02 kg
lower arm ml a 0.022 mb r 1.58 kg
head mh 0.068 mb r 4.90 kg
torso mt o 0.510 mb r 36.72 kg
upper leg mul 0.100 mb r 7.20 kg
lower leg ml l 0.061 mb r 4.39 kg

Table C.2: Table with the mass per segment of the tin man, given by Moore et al. [2009]. The masses are used to calculate the inertia
of the vaulter.

Calculations

Important to notice is that the optimization model is two dimensional where the model is three dimensional. There
are also different global axes used. Only in this part of the appendix, the axes notation of figure C.1 is used. So, the
rotations of the bodies occur only around the y-axis, according to the figure. Anywhere else in the report, the rotations
occur around the z-axis.

Inertia per tin man segment

The first step to determine the inertia properties of the three segments of the vaulter, is calculating the inertia proper-
ties of each segment of the tin man. The inertia properties are calculated for rotations around the local y-axis, located
at the center of mass of the segment. The inertia of the arm and leg segments is given by the inertia of a cylinder:

Iy =
1

12
m
�

3c 2

4π2
+ l 2
�

(C.1)

The inertia of the head is given by the inertia of a sphere:

Iy =
m c 2

h

10π2
(C.2)

The inertia of the torso is given by:

Iy =
1

12
m
�

l 2
x + l 2

z

�

(C.3)
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With:

lx =
ct o −2l y

π−2
(C.4)

l y = L s s −
cua

π
(C.5)

lz = L t o (C.6)

Length ’lx ’ estimates the thickness of the cuboid, using the chest circumference measurement and assuming that the
cross section of the chest is similar to a stadium shape. Length ’lz ’ is the length of the torso as given in table C.1. The
resulting inertia properties per tin man segment are given in table C.3.

Tin man segments Inertia Units
Upper arm 0.014 kg m 2

Lower arm 0.015 kg m 2

Head 0.017 kg m 2

Torso 0.835 kg m 2

Upper leg 0.138 kg m 2

Lower leg 0.081 kg m 2

Table C.3: The inertia of the tin man segments for rotations around the local transfersal axes. The inertia is calculated according to
equation C.1, equation C.2 and equation C.3

Inertia per vaulter segment

The next step is to combine the multiple tin man segments into the three vaulter segments, used in the optimization
model. So, the upper arms and the lower arms are combined, the upper legs and lower legs are combined, and the
head and the torso are combined to each one vaulter segment. This is done using the formula to calculate the center
of mass:

rB r =

∑

mi ri

mB r
(C.7)

Here, mi is the mass of a single tin man segment, ri is the distance from the center of mass of tin man segment i
to a reference point in space. The total mass of the combined tin man segments is given by mb r . Finally, rB r is the
distance from the reference point to the center of mass of the combined tin man segments.

Then, the parallel axis theorem is used to calculate the inertia of a separate tin man segment around the combined
center of mass. The inertia of the upper arm relative to the center of mass of the combined arm segments for example.
The formula is given by:

I ∗i = Ii +mi

�

d 2
z +d 2

x

�

(C.8)

Here, dz and dx are the distances in x- and z-direction from the combined center of mass to the center of mass of tin
man segment i . The resulting I ∗i is the inertia of tin man segment i with respect to the combined center of mass. The
final inertia of the resulting vaulter segment is given by:

IB r =
∑

I∗ (C.9)

Here, IB r is the inertia of the vaulter segment around the vaulter segment’s center of mass. The inertia of the arm
vaulter segment, torso vaulter segment and leg vaulter segment are given in table C.4.
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Combined vaulter segments Inertia Units
Arms 0.2235 kg m 2

Torso and head 1.3467 kg m 2

Legs 1.5941 kg m 2

Table C.4: Inertia of the combined tin man segments into vaulter segments, with respect to rotations around the transverse axis of
the local centers of mass. The inertia is calculated according to equation C.7, equation C.8 and equation C.9

Inertia during the pole vault motion

The inertia of the resulting vaulter segments (the arms, legs and torso) with respect to the center of mass of the
entire body, are again calculated with equation C.8, the parallel axis theorem. As the parallel axis theorem shows,
the inertia of the vaulter segments depends on the distance from its local center of mass to the center of mass of the
entire vaulter. Due to the movement of the segment, the position of the center of mass changes during the vaulting
movement. The parallel axis theorem is therefore written as function in Matlab to calculate the inertia as a function
of the position in time per combined segment.

During the development of the optimization model, the inertia properties started as a static value calculated
for the initial position. With these values the vaulter could not bring his legs up, even when the torque bounds where
set beyond realistic values. Figure C.2 shows four different positions of the vaulter during a vault, together with the
changes in inertia over time and the previously used static values.
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Figure C.2: Four positions are given at t = 0.00, t = 0.40, t = 0.70 and t = 0.98. The center of mass of the total body shifts as a result
of the moving segments. This is illustrated in the graphs to the right where the inertia over time is shown. The upper graphs shows
the inertia of the arms, the middel graph shows the inertia of the torso, the lower graph shows the inertia of the legs. The circles
correspond to the positions on the left. The static values are clearly less accurate compared to the variable inertia.

The influence of a variable inertia is clearly visible. Less torque is needed to lift the legs and torso since the inertia is
decreasing. It brings the optimized vault closer to reality.
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Appendix D Numerical integration with the RK4-method

The numerical integration of the equations of motion (EOM) is done with the Runge-Kutta fourth order scheme.
According to Boyce et al. [1992], the Runge-Kutta fourth order method is accurate enough for solving most differential
equations. Besides that, the Runge-Kutta fourth order method is very straightforward to implement in Matlab.

The RK4-Scheme

The Runge-Kutta formula approximates the solution with a weighted average of four factors, kn1 kn2 kn3 and kn4.
Each factor is the output of the solved EOM, in the scheme denoted as f (tn , yn ). For every factor, t and y are varied
over time interval t and t +h . Here, y contains the input variables q (eqn.B.4) and q d (eqn.B.6), necessary to solve
the EOM. The four factors are calculated with the following input:

kn1 = f (tn , yn )

kn2 = f
�

tn +
h

2
, yn +

h

2
kn1

�

kn3 = f
�

tn +
h

2
, yn +

h

2
kn2

�

kn4 = f
�

tn +h , yn +hkn3

�

The first term, kn1 approximates the term at the starting point at t. The terms kn2 and kn3 approximate the slope
in the middle of the interval with different input for y . The last term, kn4, approximates the slope at the end of the
interval, at t+h. The following weighted average over the four terms is taken:

yn+1 = yn +h
�

kn1+2kn2+2kn3+kn4

6

�

Important to notice is that the Runge-Kutta fourth order scheme solves only first order differential equations, where
the EOM is a set of five second order differential equations. This is solved by introducing five new differential equa-
tions which are related to the first order time derivatives of the current five state variables:
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The second order terms in the EOM are replaced with the first time derivative of the variables above. The angular
accelerations for example, are replaced by the first order time derivative of the angular velocities ω̇. Now, the output
of the integrated set of differential equations results in the input needed for the next integration step.

Implementation in Matlab

The Runge-Kutta scheme is implemented as a separate function in Matlab. The input for the rk4step.m is the
function containing the equations of motionodefun.m, the input for the equations of motionINP_ODE, time t , step
size h , the generalized positions and generalized velocities at t and the input vectors for the three torque functions.
The four terms kn1, kn2, kn3 and kn4 are calculated with the function feval. For each term, t and y are changed
according to the scheme. As explained in the appendix script, the output of odefun depends on whether there is
a solution found in the pole model. If this is not the case, odefun returns a vector with only zero’s. The function
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rk4step checks if there are terms which are only zero. In that case it returns a vector with only zeros to either
objective.m or nonlcon.m. The vector with zeros forces the functions to stop the motion. If the pole model did
find a solution, the weighted average is taken over the four terms, resulting in the positions q and velocities q̇ at time
= t +h .
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