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ABSTRACT
The recent emergence of innovative mobility solutions is changing
themobility landscape in urban areas. However, it remains unknown
how the combined operation of private and pooled on-demand
services affect service performance and the required dimensioning
of the fleet size for such services. This study develops a model to
determine the fleet size of an on-demand system offering private
service and pooled service, where the demand for these services is
an outcome of modal choices. We investigate the fleet size required
when taking either the perspective of Transit Planning Authority
(Agency) or Service Provider (Operator). The model is implemented
for the network of Amsterdam North. Results show that the objec-
tives of Agency and Operator yield different total fleet sizes with the
Agency requiring a larger fleet than the Operator and that the opti-
mal scenario for the Agency would be the one where only private
on-demand service is offered.
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1. Introduction

The emergence of innovative mobility solutions, brought about by advancements in vari-
ous ICT platforms and increasing urbanisation, is changing themobility landscape in urban
areas. Service providers and users of such innovative mobility systems often interact with
each other through an online platform such as an application in a smartphone. They offer
users the flexibility to plan their trips in real-time and potentially address some of the inher-
ent issues with a line- and schedule-based public transport (bus, tram, or metro) such as
large waiting time during off-peak hours and low accessibility in rural areas.

Such services have impact on urban mobility at several levels. From a demand perspec-
tive, there is some evidence in the literature to suggest that traditional modes of transport
such as privately owned cars, line- and schedule-basedpublic transport are increasingly los-
ing their market shares to disruptive mobility solutions such as Cabify, Lyft, Uber, Car2Go,
DriveNow, ZipCar (Enoch 2015; Conway, Salon, and King 2018). The operations of such ser-
vices also have an impact at the network level in terms of additional vehicle-kilometres
travelled which in turn influence the levels of congestion across the network. Hence,
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the dimensioning of these mobility services needs to be designed considering demand
elasticity and their impact on overall urban mobility.

Multiple stakeholderswithdifferent objectives are involved in theplanning stageof such
services such as transit planning authority and service operator. The planning authority
can play an instrumental role in planning integrated multi-modal transport services. This
includes setting priorities, policies and regulations so as to stimulate synergy between fixed
line-based services and flexible on-demand services by means of tendering procedures,
incentive schemes, integrated ticketing, pricing and travel information platforms, setting
level-of-service standards, designate space for vehicle fleets and kerbside management. In
the case of a tendered on-demand service, a transit planning authority would be interested
in making the overall mobility portfolio more efficient (i.e. reducing the overall travel time
and operation cost), whereas a service operator would be interested in profit maximisation.
Depending on the number of competing operators, the market is either monopolistic (one
service operator) or oligopolistic (multiple service operators compete for market share).
Insights into levels of service of such systems based on these distinctive objectives are
crucial in planning, operation, and the possible regulation of such services.

In this study,wedevelop amodel to design the service of an on-demandmobility system
offering both private and pooled door-to-door services. We determine the optimal fleet
size of the on-demand system required when taking two distinctive perspectives. The first
one being a transit planning authority interested in improving the travel time of all the
users and the second being a single service provider operating in a monopolistic market
and interested in maximising its own profit. We conduct our analysis using an agent-based
simulation framework that models the day-to-day learning of users.

The remaining of the paper is structured as follows. In the following Literature review
section, we provide a review of existing literature on the study area, identify the research
gap, andelaborate on the studymotivation. Thenext sectionpresents themodelling frame-
work. This is followed by a section on an application of the model which presents the
network and the scenarios considered, followedby a sectiondetailing the results. Thepaper
is concluded by synthesising the key findings and providing directions for future research.

2. Literature review

In this section, we review the literature pertaining to the planning and operations of on-
demand mobility systems. While planning pertains to service design aspects such as fleet
size and fare determination, operations pertain to theday-to-day aspects of the on-demand
service such as fleet dispatching, relocation, and the assignment of travel requests to vehi-
cles.We classify the literature based on the aspects addressed (objective), themethodology
employed for design and analysis, and the key findings.

Mathematical and simulation methods have been used in the literature to model the
operations of on-demand services. The objective is commonly defined as optimally assign-
ing travel requests to vehicles while satisfying certain constraints. Notable early works that
used an analytical approach for the assignment of travel requests include Wilson, Weiss-
berg, and Hauser (1976) and Potter (1976). They used a passenger utility maximisation
approach andmodelled the assignment to travel requests to vehicles as an Integrated Dial-
a-ride Problem (IDARP). More recently, Posada, Andersson, andHäll (2017), Häll et al. (2009),
and Salazar et al. (2018) used amathematical programming approach that involves solving
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the assignment problem as an optimisation problem by assigning travel requests to a fleet
of on-demand vehicles. Posada, Andersson, and Häll (2017) and Häll et al. (2009) solved
the assignment problem as an Integrated Dial-A-Ride Problem (IDARP). They developed a
model to assign travel requests to on-demand vehicles by coordinatingwith the line-based
transit service. Salazar et al. (2018) used a flow optimisation model for assigning the travel
requests to on-demand vehicles while maximising social welfare. The pitfall of such ana-
lytical models is their inherent inability to capture the real-time system dynamics of the
on-demand system.

Agent-based simulation methods mitigate this issue to an extent. Notable recent works
that used agent-based simulation methods to model the operations of on-demand sys-
tems include Neumann and Nagel (2013), Maciejewski et al. (2016), Maciejewski and
Nagel (2013), and Atasoy et al. (2015). Neumann and Nagel (2013) presented an evolution-
ary algorithm for optimal paratransit service network design by designing the paratransit
services as a competing mode with a line and schedule-based public transport service.
Atasoy et al. (2015) designed an on-demand service which gives a list of travel options
to travellers in real time. The travel options include choosing between using a private taxi
service, shared taxi service, or minibus (multiple passengers with fixed routes but flexible
schedules). Danaf et al. (2019) provide a good overview of how behavioural models can be
applied in real time to generate customised recommendations which facilitate the usage
of an integrated fixed and flexible public transport system. Notwithstanding, these studies
did not determine the service parameters of on-demand service such as fleet size. More-
over, the demand for these services was considered an exogenous value, independent of
the level of service offered.

One of the earliest works, which looked into the design of a large scale on-demand fleet,
was performed by Ma, Zheng, and Wolfson (2013). They developed a heuristic-based taxi
dispatching system for large urban fleets. Later works that looked into the concept of ride-
pooling include Santi et al. (2014) and Alonso-Mora et al. (2017). The former developed the
concept of shareability graph and concluded that all taxi trips inManhattan could be served
by pairing up two requests per taxi while keeping the passenger discomfort low in terms
of travel time. The latter adopted the concept of shareability graph from Santi et al. (2014)
and developed an algorithm that enables real-time high capacity ride-pooling for Manhat-
tan. Results indicate that 98% of its taxi demand can be served by 3000 vehicles (with a
capacity of 4 passengers each) instead of the current fleet which is more than four times
larger. Several studies have examined the hypothetical case of city-wide replacement of
all private vehicles or even all other transport modes with shared autonomous vehicles.
The fleet size requirements for this boundary case were determined for Berlin (Bischoff
and Maciejewski 2016), Austin (Fagnant and Kockelman 2018), Lisbon (Martinez and Vie-
gas 2017), and Melbourne (Dia and Javanshour 2017). The prime interest of these studies
was the potential of shared autonomous vehicles to replace private car trips, indicating that
one shared autonomous vehicle could replace the demand served by 10 privately owned
cars. In contrast, more recent studies, for the cities of Munich (Moreno et al. 2018) and Ams-
terdam (Narayan et al. 2019), suggest a replacement ratio of 10 to 4 and 9 to 1, respectively.
However, these studies considered a fixed demand for on-demand systems, and supply
parameters were exogenous to the model.

Numerous works in the past have studied the service design of on-demand transport
systems in terms of their optimal fleet size and fare determination. The objective of such
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studies was to determine the optimal fleet size required to carry out a set of travel requests
with the objective of minimising travel costs. Some of the early works that used ana-
lytical and mathematical models include Gertsbach and Gurevich (1977) and Desrosiers,
Sauvé, and Soumis (1988). Gertsbach and Gurevich (1977) determined the minimum fleet
required to serve a set of travel requests by introducing the concept of a deficit func-
tion which is defined as the difference between departures and arrivals at a station. The
fleet size required was then proved to be equal to the total deficit. Desrosiers, Sauvé, and
Soumis (1988) determined theminimum fleet size required to visit a set of nodes once, sub-
ject to time window constraints. The objective was to minimise the travel cost while using
Lagrangian relaxation techniques. More recent works that used mathematical models for
fleet size determination include Morisugi, Arintono, and Parajuli (1997), Yang, Wong, and
Wong (2002) and Yang et al. (2005). Morisugi, Arintono, and Parajuli (1997) determined the
optimal pricing and fleet size of a GPS-enabled taxis by considering passengers’ willing-
ness to pay and adding an equal net revenue constraint. Yang, Wong, and Wong (2002)
and Yang et al. (2005) introduced a mathematical model to optimise the taxi fare and fleet
size by considering the demand-supply equilibrium road network and congestion exter-
nality. Notable works that used heuristics for optimal fleet size determination include Fu
and Ishkhanov (2004) and Li and Tao (2010). Fu and Ishkhanov (2004) developed a heuristic
method for determining the optimal fleet sizemix for a set of travel requests bymaximising
the service productivity in terms of (trips/vehicle/hour). They determined the optimal num-
ber of vehicles required for different vehicle categories with varying seating capacity and
showed the existence of a critical point beyondwhich additional capacity becomes ineffec-
tive. Li and Tao (2010) developed a two-stage dynamic programming model to determine
the optimal fleet size and vehicle transfer policy for a car rental company that serves two
cities bymaximising the incomeof the rental company.Noneof these studies consideredan
elastic demand for on-demand services. From a planning perspective, none of the studies
optimised service parameters from an Agency and Operator perspective.

Fleet size optimisation at city-wide level was studied by Chang, Wu, and Lin (2012) and
Li et al. (2010). Chang, Wu, and Lin (2012) considered profit maximisation and cost min-
imisation for the Taipei Metropolitan Area, while Li et al. (2010) considered user cost and
operating cost minimisation for the port of Rotterdam. Vazifeh et al. (2018) addressed the
‘minimum fleet problem’ for an on-demand system with fixed demand in New York City.
They provided a computationally efficient solution by introducing the idea of ‘vehicle shar-
ing network’. Themodel was tested for the taxi demand data for New York City for a period
of one year. More recently, Zhang and Ukkusuri (2016) developed a leader-follower Stack-
elberg gamemodel between transport authorities, taxi drivers, and passengers to optimise
the fleet size and fare setting. The results provided valuable insights into the current NYC
taxi market regulation policies.

Studies that have considered elastic demand for on-demand services includeHörl, Erath,
and Axhausen (2016), Narayan et al. (2019), Basu et al. (2018), Wen, Nassir, and Zhao (2019).
Hörl, Erath, and Axhausen (2016) presented a framework for simulation of autonomous
vehicles in an integrated network and population-based traffic environment. The model
allows the demand to evolve dynamically from the traffic situation. Narayan et al. (2019)
adopted an agent-based simulation framework to explore hypothetical scenarios that
involve ride-sourcing replacing private car and public transport trips for Amsterdam. Basu
et al. (2018) presented a flexible automatedmobility on-demand (AMoD)model developed
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within an agent-based simulation platform. Wen, Nassir, and Zhao (2019) studied the value
of information on passenger demand in an on-demand mobility system at both individual
and aggregate levels. Their results indicate that information on aggregate demand can lead
to a better service (more requests served and shorter waiting time) while improving system
performance and yielding a higher profit. However, these studies did not optimise the sup-
ply side parameters while considering an elastic demand. To the best of our knowledge,
the work by Liu et al. (2018) addressing fare and fleet size optimisation for a mobility on-
demand systemwith inelastic demand is oneof themost direct relevance to this study. They
developed a Bayesian model to optimise the fleet size and fare of a mobility-on-demand
system and considered a profit maximisation objective from the perspective of a service
provider.

Our review suggests that, while fleet size optimisation has been studied in the literature,
most of the studies assumeda fixed (inelastic) demand for on-demand services. However, in
reality, demand is expected todependon fleet sizedue to its impacts on the level-of-service.
Supply-demand interactions need, therefore, to be explicitly accounted for to identify the
steady-state conditions. Furthermore, the extent to which demand is elastic depends on
the availability and quality of service offered by alternative transport modes, including car,
bike and lined-based public transport. From a planning and policy perspective, none of
the works designed optimal service parameter from the perspective of a transport oper-
ator (profit maximisation) and a transit authority (system cost minimisation) with elastic
demand. This study attempts to fill the gap in the literature by determining the fleet size
required for an on-demand service with elastic demand while considering both service
profit maximisation and integrated planning perspectives. In addition, the study provides
novel insights into the service design of on-demand systems from a planning perspective.
The study analyses the fleet size of two competing on-demand services, one which offers
private service and another which offers a pooled service. We analyse and compare the
results from the perspective of a service provider (Operator) and a transit planning author-
ity (Agency). The objective of the Operator is to maximise the profit while the Agency aims
to minimise the total system cost.

3. Modelling framework

This section presents the modelling framework, details the individual components, and
presents the optimisation formulation. Figure 1 shows the overall modelling framework.
The input modules comprise of Demand, Network, and Supply. The Demand data comprise
of passengerswith a set of origin–destination points in the network. TheNetwork data com-
prise of the road network and public transport network represented by a set of nodes and
connecting links. The Supply data comprise of the modes available to each user to travel
from their origin to their destination. The modes available are car, walk, bike, schedule and
line-based public transport (PT), and on-demand service (private and pooled). On-demand
service in this study is modelled as a fleet of vehicles operated by a central dispatching
unit that assigns travel requests to vehicles in real time and offers door-to-door service to
passengers.

Two types of on-demand services are considered in this study based on the type of
service offered. The types of services are as follows:
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Figure 1. Modelling framework.

• Private on-demand: This service offers individual taxi-like service to passengers
• Pooledon-demand: This serviceoffers shared rideswherepassengersmay share their ride

with an occupancy of 4 passengers

Each user starts with a set of travel plans that define their performing activity (type,
duration, and departure time) and travel modes. The ‘Assignment and Network loading
module’ comprise the within-day dynamics of the system. The users evaluate the services
in the ‘Evaluation’ module by assigning a score to the executed plan and replan their travel
strategies accordingly in the ‘Re-planning’ module. This sequence of assignment, network
loading, scoring and re-planning forms an iteration which corresponds to a day. The pro-
cess continues until a convergence criterion is achieved. Nagel and Marchal (2003) show
that while day-to-day learning may not satisfy the mathematical definition of equilibrium
conditions, the iterative process results in a stochastic user equilibrium. During an iteration,
users may undertake different strategies to alter their travel plans while making their trip
from origin to destination based on service experience. In this study, the strategies avail-
able to an agent are changing the route of travel, changing the mode of travel, changing
the departure time from an activity, and selecting a plan with the best score. The demand
at equilibrium along with the supply configuration is the input data to the ‘Supply deter-
mination’ module where they are scored and evaluated. The proposedmodel is embedded
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in amulti-agent transport simulation framework. It is implemented and integrated into the
open-source software MATSim (Axhausen, Horni, and Nagel 2016).

In the context of this study, the objective of the ‘Supply determination’ module is to
set an optimal fleet size for the two on-demand services offering private and pooled rides.
The desired fleet size for on-demand service is explored and analysed from two different
perspectives, namely:

(1) Agency’sperspective: A public authority interested in setting the fleet size of on-demand
services so as to minimise the generalised travel cost of users and the operator’s
operating cost.

(2) Operator’s perspective: A transport service provider interested in finding the fleet size of
on-demand service so that its total profit – defined as the difference between revenue
and expenditure – is maximised.

In the following sub-sections, we present themathematical formulation of the objective
function, decision variables, and constraints for the two perspectives: the Agency and the
Operator.

3.1. Agency perspective

The Total Agency Cost is formulated as follows:

Total Agency Cost (TAC) = User’s travel Cost (UC) + Operator’s operating cost (OC)

UC =
∑

i∈U
(δ · f : (θ1, θ2) �→ ti)

OC =
∑

m∈{1,2}
(αm · θm + σm · gm : (θ1, θ2) �→ ζm). (1)

The Total Agency Cost (TAC) is defined as the summation of the User’s travel cost (UC) and
the Operator’s operating cost (OC) as shown in Equation (1). The User’s travel cost is a func-
tion of the travel time experienced by all the users (

∑
i∈U ti). The passenger travel time ti

is, in turn, the summation of all the travel time components experienced by the user. This
includes the mode-specific travel time components such as walking time, in-vehicle time
and waiting time. The travel time of all the users (

∑
i∈U ti), in turn, is a function (f ) of the

decision variables of the optimisation model which are the fleet size of private and pooled
on-demand services, θ1 and θ2, respectively. The Operator’s operating cost (OC) is a func-
tion of the fleet size of the two on-demand services (θ1 and θ2) and the distance travelled
by the on-demand vehicles, ζm. The distance travelled by each of the on-demand service
(ζm) is a function (gm) of the fleet size of the two on-demand services. The travel time of
the users (ti) and the distance travelled by the on-demand service ζm are obtained as an
output from the simulation. The optimisation problem is formulated as follows, subject to
two constraints:

min
θ1.θ2

TAC

s.t. θmin
1 ≤ θ1 ≤ θmax

1

θmin
2 ≤ θ2 ≤ θmax

2

(2)



904 J. NARAYAN ET AL.

where

U is the set of all passengers;
m is the on-demand service, wherem = 1 represents private andm = 2 represents pooled

service;
ti is the total travel time of passenger i in h;
δ is the value of travel time ine/h;
αm is the maintenance cost of on-demand service m in e/vehicles which corresponds to

the leasing cost of the fleet of vehicles;
θ1 is the fleet size of private on-demand service;
θ2 is the fleet size of pooled on-demand service;
σm is the operating cost of on-demand service m in e/km which corresponds to the fuel

cost;
ζm is the total distance travelled by all vehicles of on-demand servicem in km;
θmin
1 is the minimum required fleet size of private on-demand service;

θmax
1 is the maximum required fleet size of private on-demand service;

θmin
2 is the minimum required fleet size of pooled on-demand service;

θmax
2 is the maximum required fleet size of pooled on-demand service.

3.2. Operator perspective

The Profit (P) of the operator is formulated as

Profit(P) = Revenue(R) − Operating Cost(OC)

R =
∑

m∈{1,2}

∑

i∈�m

(μm + γm · hm : (θ1, θ2) �→ ξm,i)

OC =
∑

m∈{1,2}
(αm · θm + σm · gm : (θ1, θ2) �→ ζm).

(3)

The Profit(P) is defined as the difference between the Revenue (R) and the Operating cost
(OC) as shown in Equation (3). The Revenue (R) is a function of the demand for each of
the on-demand service (�m) and the distance travelled by the users of the on-demand ser-
vice (ξm,i). The distance travelled by the users of the on-demand service (ξm,i), in turn, is a
function (hm) of the decision variables of the optimisationmodel which are the fleet size of
private and pooled on-demand services, θ1 and θ2, respectively. The distance travelled by
theon-demandusers (ξm,i), the total distance travelledby the vehicles (ζm), and thedemand
for each of the on-demand service (�m) are obtained as the output from the simulation. The
optimisation problem is formulated as, subject to two constraints:

max
θ1.θ2

P

s.t. θmin
1 ≤ θ1 ≤ θmax

1

θmin
2 ≤ θ2 ≤ θmax

2

(4)

where

μm is the base fare of modem in e;
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�m is the set of all passengers using mode ‘m’;
γm is the distance-based fare of modem in e/km;
ξm,i is the total distance travelled by passenger i using modem in km.

4. Application

4.1. Network and demand data

The model is applied for a network centred around the northern district of the city of Ams-
terdam, Netherlands. The network is developed using data extracted fromOpenStreetMap
(Haklay and Weber 2008). A layer of links and nodes was first selected in OpenStreetMap
that included the road infrastructure (motorway, trunk, primary, secondary, tertiary, and
minor) and public transport stops. The network was then cleaned for redundant/duplicate
links and unconnected nodes. The total number of nodes and links in the final network is
11,399 and 24,396, respectively. The demand data are adopted from the national activity-
based demand model, Albatross (Arentze et al. 2000). Albatross is a learning-based model
of activity-based travel behaviour. Themodel predicts the time, place, anddurationof activ-
ities of users and the travel modes involved. The demand data hence comprise an activity-
based travel plan for each user in theNetherlands and comprise of activities (type, duration,
arrival and departure time) and travel modes (type, route, and travel time). The data were
then converted to a format to be consistent withMATSim (Winter and Narayan 2019). Next,
the demand data located within the network of Amsterdam North was extracted. The final
demand data consist of 4169 agents with a total number of daily trips as 20,996. Figure 2
shows the case study network.

Figure 2. Application network of Amsterdam North.
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4.2. Simulation scenarios

Two scenarios are considered based on the type of service available for users. In the Base
Scenario, the modes available consist of car, walk, bike, PT (line- and schedule-based pub-
lic transport including bus, tram, and metro). In the On-demand scenario, an on-demand
mobility operator enters the market with two types of on-demand services: private on-
demand and pooled on-demand. These new services compete with each other as well as
with other modes of travel demand. In order to account for stochasticity in the results, 10
runs for each simulation instance was carried out, and the key performance indices were
averaged over these runs.

4.3. Dispatching strategy of on-demand service

The dispatching strategy of the on-demand system offering private service is as follows. A
vehicle that has been assigned a request drives to the pick-up location, picks up the pas-
senger, drives to the travel request destination, drops off the passenger and stays at the
drop-off location until further requests are assigned. The dispatching strategy of the on-
demand system offering pooled service is as follows. A vehicle that has been assigned a
request drives to the pick-up location, picks up the passenger, makes detours to pick up
other pooled requests, drives to their destination, drops off the passenger and stays at the
drop-off location until further requests are assigned. The dispatching strategy of the on-
demand vehicles has been adopted from Bischoff andMaciejewski (2016) andMaciejewski
et al. (2016).

4.4. Model specifications

4.4.1. Objective function parameters
The values of the parameters included in the objective function are given in Table 1.

4.4.2. Fare setting
The ratio of fare of public transport, pooled on-demand, and private on-demand is set to
1:5:10 which is a reasonable assumption for line- and schedule-based, private, and pooled
services in Amsterdam. The fare of public transport provided by GVB (the public transport
operators in Amsterdam) is used in this study (GVB 2019).

Table 1. Parameter value specification.

δ 8.75e/h (Bates 2012)
α1 9.4e/vehicles (LeasePlanDirect 2019)
α2 9.4e/vehicles (LeasePlanDirect 2019)
σ1 0.079e/km (LeasePlanDirect 2019)
σ2 0.079e/km (LeasePlanDirect 2019)
μ1 3.19e
μ2 3.19e
γ1 1.62e/km
γ2 0.81e/km



TRANSPORTMETRICA A: TRANSPORT SCIENCE 907

4.4.3. Calibration and parameters of themode choicemodel
Calibration of the model and parameter setting plays a crucial part in system performance
and simulation output, particularly because the system comprises dynamic transport ser-
vices such as private and pooled services where travel time variability plays an important
part in the mode choice of users (Alonso-González et al. 2020). For instance, for pooled
on-demand services, this entails longer travel time for its users as the service becomes pop-
ular and attracts more users. Themodel hence has to be adequately calibrated considering
these feedback effects between travel demand and service performance. In the absence
of real data, the choice model (utility function) was calibrated following the calibration
guidelines in MATSim. This was done by means of investigating the alternate specific con-
stants of the available modes methodically following the calibration guidelines provided
in MATSim (Axhausen, Horni, and Nagel 2016). The modal share for all the available modes
(car, walk, bike, public transport) was set corresponding to the actual value for the case
study area, thus obtaining the ASCs (alternate specific constants) that yielded the respec-
tive modal shares. The set of values obtained for the ASCs was then kept fixed throughout
the simulation runs.

The marginal utility of performing an activity (βdur), marginal utility of time spent by
travelling (βtravel) for all available modes and marginal utility of arriving late for an activ-
ity (βlatear.) have been set to+6 utilities/ h,−6 utilities/ h, and−18 utilities/ h, respectively.
Finally, the marginal utility of money (βmoney) was set to−0.685 utilities/Euro based on the
Dutch value of time.

5. Results and analysis

In the following, we investigate the relation between the fleet size of on-demand services
(bothprivate andpooled) and the individual objective functions fromtheAgencyandOper-
ator perspective. The objective of this investigation is to determine the upper and lower
bound of the fleet size values of the two alternative on-demand services. Then, we present
the objective function values for Agency and Operator in relation to the fleet size of private
and pooled services exploring all possible fleet size combinations for the two alternative
on-demand services, assuming a reasonable fleet size increment. We also present the con-
tributing components of each objective function for alternative fleet size solutions of the
two services, and analyse the underlying trends of the objective function values and their
relation with the fleet size.

5.1. Upper and lower bound of fleet size

Figure 3 shows the variation of Agency and Operator cost for various total fleet sizes of
on-demand services. The ratio of fleet size of private and pooled on-demand services is 1:1
here. As can be seen from Figure 3(a), the Agency cost decreasesmonotonically until a fleet
size of about 400 and increases monotonically from a fleet size of 800 till 2000. Similarly,
we learn from Figure 3(b) that the Operator cost increases monotonically until a fleet size
of 300 and thereafter decreases monotonically from a fleet size of 700 to 2000.

The trends also reveal the presence of an optimal value of fleet size for both Agency and
Operator in the range considered. Hence, we truncate the solution space by excluding all



908 J. NARAYAN ET AL.

Figure 3. Agency and Operator cost variation with fleet size of on-demand services with a 1:1 ratio of
private and pooled services. (a) Agency cost in relation to fleet size and (b) Operator cost in relation to
fleet size.

fleet size combinations involving a total fleet size less than or equal to 200 and greater than
or equal to 1600.

We further investigate this trend by examining the mode share and travel times for all
possible fleet size combinations of private and pooled service within a total fleet size range
from 200 to 1600 with an increment of 100 vehicles. We plot the travel times and mode
shares for all possible fleet size combinations within the range for both private and pooled
on-demand users (Figures 4–6). Figures 4 and 5 plots the averagewaiting time and average
in-vehicle time respectively for private and pooled on-demand service users and Figure 6
plots the mode share for private and pooled on-demand service.

The initial decrease in the Agency cost in Figure 3(a) is attributed to an overall increase
in the mode share of on-demand service as shown in Figure 6. The increase in fleet size

Figure 4. Average waiting time variation with fleet size of on-demand vehicles.
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Figure 5. Average in-vehicle time variation with the fleet size of on-demand vehicles.

Figure 6. Mode share variation with the fleet size of on-demand vehicles.

causes an overall reduction in waiting time as shown in Figure 4, which makes the service
more attractive. Also, themajority of themode share for on-demand are active mode users
in the Base Scenario. This shift results in an overall decrease in the travel time of users which
in turn results in a decrease in the Users’s travel cost component of the Agency cost. During
this range, the reduction in the travel time component outweighs the increase in theOper-
ator’s operating cost component caused due to the increase in fleet size. However, beyond
a certain point, the increase in fleet size does not yield a significant reduction in the travel
time of users and the operating cost outweighs the travel time component. This explains
the monotonic increase in Agency cost beyond a certain point.

Similarly, the initial increase in the Operator cost in Figure 3(b) is attributed to an over-
all increase in the mode share of on-demand service (Figure 6), thereby also increasing the
Revenue. The increase in the Revenue outweighs the increase in Operating cost within this
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range. However, beyond a certain point, the increase in fleet size does not cause a signif-
icant increase in the Revenue, and the Operating cost outweighs the Revenue. During the
entire range of fleet size considered, the Revenue exceeds the Operating cost.

As can be seen from Figure 6, the mode share of private and pooled on-demand service
increases monotonically when operated as the sole on-demand service. When the private
and pooled on-demand services start operating in competition, the combinedmode share
of the private on-demand service and the pooled on-demand service decreases compared
to when they operate in isolation. This can be seen from the trends of the mode share of
the two on-demand services which shows a decrease along the fleet size axis of the com-
peting on-demand service. However, as can be seen from the figure, this decrease is more
pronounced for pooled on-demand users where the rate of reduction is more along the
private on-demand axis. This indicates that the effect of the increase of fleet size on mode
share is more pronounced for private on-demand users. The effect of fleet size on mode
share also decreases for higher fleet size as shown in Figure 6, indicating that the increase
in fleet size does not attract significant mode share beyond a certain point.

This trend can be further explained by Figures 4 and 5. As can be seen from Figure 4,
the waiting time for private on-demand users decreases along the private on-demand fleet
size axis and that of pooled on-demand users decreases along the pooled fleet size axis.
The trend is more pronounced when the two services operate as the sole on-demand ser-
vice. It can also be seen from the figure that the decrease in average waiting time is more
pronounced for private on-demand service compared to pooled on-demand service indi-
cating that the waiting time of on-demand users is more sensitive to fleet size increment as
compared to pooled service. From Figure 5, it becomes evident that the in-vehicle time of
private on-demand users is less sensitive to fleet size as compared to pooled on-demand
users. Themarginal increase in in-vehicle timeofpooledon-demandusers along thepooled
on-demand fleet axis indicates inadequate supply for the corresponding demand which
results in more detours for pooled on-demand users. The in-vehicle time for pooled on-
demand users also decreases along the private on-demand axis which is due to the rapid
decline in the mode share of pooled service when private service enters the market as
shown in Figure 6.

5.2. Optimal private and pooled fleet size

In this section, we explore the effect of fleet size of private and pooled on-demand ser-
vice on the Agency cost and the Operator cost. Figure 7 shows the split of the Agency cost
along with its individual components as shown in Equation (1). We plot the Agency cost
along with its individual contributing components in relation to the fleet size of the two
on-demand services (private and pooled). The Users’s travel cost in the figure corresponds
to the total travel time cost of all the users. Operator’s operating cost corresponds to the
operational cost of the on-demand services. Total agency cost corresponds to the summa-
tion of the two components. As can be seen from the figure, theUsers’s travel cost decreases
monotonically along the axis of private and pooled on-demand services. However, the rate
of decrease ismore along the private on-demand fleet size axis than that for the pooled on-
demand fleet axis. The Operator’s operating cost increases monotonically along the axis of
private and pooled on-demand services. As expressed in Equation (1), the Operator’s oper-
ating cost is a linear function of the total fleet size and the vehicle-km travelled. The leasing
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Figure 7. Plot of Agency’s objective function values.

cost which is assumed the same for the two on-demand services (Table 1) is the dominant
factor compared to the cost incurred by vehicle-kms driven. Hence theOperator’s operating
cost shows a uniform variation along the two fleet size axes. As can be seen from the range
of values for the two components of the Agency cost, the Users’ travel cost is the dominant
factor in the Agency cost.

The decrease in Users’ travel cost is attributed to the modal shift of users when compar-
ing the Base Scenario and theOn-demand scenario. Themode share of activemodes in Base
Scenario is close to 75% and that of on-demand services in the On-demand scenario ranges
between 60% and 90%. Hence, a considerable share of active mode users in the Base Sce-
nario shifts to on-demand services in the On-demand scenario, thus resulting in an overall
reduction in the travel time of users. This results in a decrease in Users’ travel costs.

As can be seen from Figure 5, the average in-vehicle time of private on-demand service
users is marginally lower than that of pooled on-demand service. This is due to the possible
detours that pooled on-demand vehicles perform in order to pick up other passengers. The
private on-demand service being a direct door-to-door service does not have such detours,
and this results in lower in-vehicle travel time. From Figure 4 it can be seen that the average
waiting time of pooled on-demand service is initially lower than that of private on-demand
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service up to a fleet size of 500. Beyond this point, the average waiting time of private on-
demand users is lower than that of pooled on-demand users. The initial gain in average
waiting time for pooled on-demand users is attributed to the number of vehicles in service
in relation to the demand for that service. Initially, the number of private on-demand vehi-
cles is not sufficient enough to cater to its demand when compared to the pooled service.
However, as the fleet size increases, this gain in waiting time decreases and beyond a cer-
tain point, the waiting time for private on-demand service becomes lower than for pooled
on-demand service. This could be explained by the rate of decrease in averagewaiting time
for private on-demand users and pooled on-demand users. The rate of decrease in average
waiting time for private service users is higher than that of pooled on-demand users. Thus,
the effect of an increase in fleet size on the averagewaiting time ismuchmore pronounced
for private on-demand service than that for pooled on-demand service.

Similarly, Figure 8 shows the split of Operator’s Profit along with its individual compo-
nents as shown in Equation (3). Revenue corresponds to the revenue generated from the
on-demand service, Operating cost corresponds to the operational cost of the on-demand
system, and Profit corresponds to the overall profit which is the difference between the
revenue and the operational cost. The Revenue monotonically increases as the fleet size
increases along both axes of private and pooled on-demand services. However, the rate of
increase of revenue is higher along the private on-demand axis than the pooled axis. This
can be explained by the trends observed in Figures 4–6. As can be seen in Figure 4, the
rate of decrease of average waiting time for private on-demand users is higher than that
for pooled on-demand users, thus making the service increasingly more competitive com-
pared with the pooled service with an increase in fleet size. This is also visible in Figure 6,
which indicates that the mode share of private on-demand service is significantly higher
than the shared service for all possible fleet sizes. We also observe that the rate of increase
of mode share for private service is higher than for the pooled service and that the private
service is more competitive than pooled service. This also explains the shape of the plot of
Revenue and Profit in Figure 8. The maxima of Revenue and the Profit are skewed towards
the private on-demand axis. The range of values for Revenue and Operating cost indicates
that the Profit is primarily governed by the Revenue.

The fleet size configuration of private and pooled on-demand service that yields the
optimal values are 400 and 0, respectively, for Agency and 300 and 0, respectively, for Oper-
ator. Hence both from an Agency perspective and from an Operator perspective, the ideal
strategy would be to operate a private on-demand service only. The increase in fleet size
from 300 to 400 cause an increase in the operating cost and revenue and a decrease in
the overall travel cost of users. However, from an Agency perspective, during the increase
in fleet size from 300 to 400, the travel time savings of the users outweighs the increase
in operating cost. However, from an Operator’s perspective, the additional operational
cost outweighs the increase in Revenue. This explains the difference in optimal values for
the Agency and the Operator. Hence from a planning perspective, the Agency allowing
the Operator to determine the fleet size would result in a sub-optimum solution for the
Agency.

Finally, we compare the Agency cost in the Base Scenario and On-demand scenario. The
Agency cost at the optimal solution of 400 private vehicles is 31,300e and that in the Base
Scenario is 55,359 e. Hence, the Agency cost at Base Scenario yields a higher cost than
the Agency cost at the optimal solution for scenario On-demand. This shows that from an
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Figure 8. Plot of operator’s objective function values.

Agency perspective, the optimal scenariowould be theOn-demand indicating that the best
plan of action from an Agency perspective would be to operate an on-demand service as
opposed to the Base Scenario.

5.3. Fare sensitivity analysis

In this section, we perform a fare sensitivity analysis for the private and pooled on-demand
services. To this end, we consider 4 fleet size instances. First, we consider the fleet size
instance that yields the optimal Agency cost (private on-demand fleet size = 400 and
pooled on-demand fleet size = 0). Next, we consider the fleet size instance that yields the
optimal Operator cost (private on-demand fleet size = 300 and pooled on-demand fleet
size = 0). For the two fleet size instances, we vary the fare ratio of public transport to pri-
vate on-demand service by varying the fare of private on-demand service. The ratios of fare
of public transport to private on-demand service considered are 1:1, 1:2, 1:3, 1:5, 1:10, 1:15,
and 1:25.

In addition, we consider two fleet size instances with both private and pooled on-
demand service. The first one being the mixed fleet size instance with the lowest fleet
size (private on-demand fleet size = 100 and pooled on-demand fleet size = 100) and the
next being the mixed fleet size instance with the highest possible fleet size (private on-
demand fleet size = 800 and pooled on-demand fleet size = 800). For both instances
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of the mix fleet size, we vary the fare of pooled on-demand service relative to public
transport andprivateon-demand service. The ratios of fare of public transport topooledon-
demand service to private on-demand service considered are 1:1:10, 1:2:10, 1:3:10, 1:5:10,
and 1:10:10.

5.3.1. Agency and operator optimal fleet size instances
Figures 9 and 10 shows the variation of Agency cost and Profit of operator along with their
individual components with varying fare ratios for the optimal fleet size configuration for
Agency and Operator, respectively. As can be seen from the two figures, the Agency cost
remains relatively stable during the initial increments in fare ratio (till 1:5) and then mono-
tonically increases beyond this point. The total Agency cost follows the trendofUser’s travel
costwhich is thedominantpart of theAgency cost. TheOperator’s operating costmonoton-
ically decreases for all the fare increments. The increase in fare ratio makes the on-demand
service relatively less attractive, and consequentially, themode share of private on-demand
service decreases with the increase in fare ratio. However, during the initial increments, the
decrease inmode share is marginal and not sufficiently high to cause an overall decrease in
total Users’ travel cost (and thus Agency cost). The decrease becomes substantial for higher
fare ratios which cause an increase in the Users’ travel cost and Agency cost at higher fare
ratios. This also explains the decrease in operating cost component for both the optimal
fleet size instances. In both cases, the optimal pricing strategy for the Agency would be
to keep the fare of private on-demand service as low as possible (comparable to public
transport).

The Profit for the Operator increases monotonically for both optimal fleet size instances
with an increase in the fare ratio. Although the mode share of the private on-demand ser-
vice decreases the more its fare increases, the increase in its revenue caused by the fare
increment outweighs the revenue loss caused by the decrease in its modal share. Conse-
quently, the Operator sees an overall increase in its profit when it becomes increasingly
expansive relative to public transport despite the decrease in its modal share.

Figure 9. Agency and operator cost variation with fare ratio of public transport to private on-demand
services at optimal Agency fleet size. (a) Agency cost components and (b) Operator cost components.
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Figure 10. Agency and operator cost variation with fare ratio of public transport to private on-demand
services at optimal Operator fleet size. (a) Agency cost components and (b) Operator cost components.

5.3.2. Mixed fleet size instances
Figures 11 and 12 plot the Agency cost and Profit of the operator along with its individual
components for the mixed fleet size instances of 100 and 800. As can be seen from the two
figures, as the fare of pooled on-demand service increases, the total Agency cost and the
users’ travel cost decrease till a ratio of 1:5:10 and then increase from 1:5:10 to 1:10:10. The
Agency cost is primarily governed by the market share of the on-demand service and the
share of private and pooled on-demand services. As the fare of pooled on-demand service
increases, the service becomes less attractive and there is a modal shift from pooled on-
demand to private on-demand service. Private on-demand service being a direct door-to-
door service, the increase in its market share causes an overall decrease in the travel time
of its users which also yields to a decrease in the Agency cost. This decrease in travel time

Figure 11. Agency and Operator cost variation with fare ratio of public transport to pooled to private
on-demand services (private and pooled on-demand fleet size= 100). (a) Agency cost components and
(b) Operator cost components.
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Figure 12. Agency and Operator cost variation with fare ratio of public transport to pooled to private
on-demand services (private and pooled on-demand fleet size= 800). (a) Agency cost components and
(b) Operator cost components.

caused due to the shift from pooled service to private service outweighs the effect of an
overall decrease in on-demand modal share till a ratio of 1:5:10. Conversely, beyond this
point, the decrease in the market share of the on-demand service caused by the increase
of fare ratio from 1:5:10 to 1:10:10 is substantial enough to outweigh the effect of travel
time reduction caused due to the shift from pooled to private. The minimum Agency cost
is hence achieved for a fare ratio of 1:5:10.

As in the previous case, the Profit for the operator increases monotonically for both
mixed fleet size instances with an increase in the fare ratio of public transport to pooled to
private service. Although the overall market share of on-demand services decreases with
an increase in the fare ratio, the increment in Revenue due to an increase in its fare out-
weighs the decrease in itsmarket share. This results in an overall increase in its Profit for the
operator despite an overall decrease in its market share.

6. Conclusion

This study explored the relation between the optimal fleet size of an on-demand system
with elastic demand from the perspective of a transport planning authority (Agency) and a
service provider (Operator). An agent-based simulation framework was adopted for imple-
menting the model with the day-to-day learning of users (which corresponds to the elastic
demand). The model was implemented in the real world network based on Amsterdam
North. Results indicated that operating a private on-demand service is more profitable for
both Agency and Operator than a pooled on-demand service. Analysis of travel time of on-
demand passengers also indicated that the effect of an increase in fleet size on travel time
is more prominent for private on-demand when compared with pooled on-demand. Com-
parative analyses of optimal fleet size for Agency andOperator indicated different total fleet
size with the Agency perspective requiring a larger fleet thanwould have been required if it
is tobe setby theOperator. The analysis also showeddifferentdominantparts of the individ-
ual objective functions with revenue dominating the Operator’s cost and user’s travel cost
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dominating the Agency cost. An analysis of the Agency cost indicated the optimal scenario
for theAgencywouldbe theOn-demand scenario inwhich theAgency operates a fleet of pri-
vate on-demand vehicles as opposed to a scenario where no on-demand service is offered.
This is due to an overall reduction in the travel time of users in the On-demand scenario
compared to the Base Scenario. Fare sensitivity analysis of private and pooled on-demand
service indicated that the optimal pricing strategy for the Agencywould be to keep the fare
of private on-demand service as low as possible (comparable to public transport).

In this study, we determined the private and shared fleets of an on-demand service
provider with elastic demand. However, the service levels of the line- and schedule-based
services were exogenously defined. Passengers were also not allowed to combine on-
demand and line-based services in a single trip, albeit unlikely in the application considered
in this study. Also, the cost components considered in this study do not include costs
beyond the transit systemsuchas societal costs (emissions andhealth).Moreover, amonop-
olistic market, where only one on-demand service provider prevails, was considered in
this study. However, the market of on-demand services may consist of multiple compet-
ing operators offering competing services that cater to different segments in the market
and differ in price, level of service (travel time and comfort), and types of service offered
(private or pooled). Competitionbetween such serviceswill affect theoptimal fleet size con-
figuration. Future research directions and model improvement include thus developing a
model which jointly optimises the service parameters of line-based public transport and an
on-demand service while considering costs beyond the transit system, developing a route
choice model that allows users to combine line-based public transport and on-demand
services in a single trip, and considering oligopolistic markets where multiple on-demand
operators prevail and a scenario where there is no overseeing authority and tendering of
services.
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