INTRODUCTION

Fascination
Objectives
Methodology

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION

Maciej Nowicki, Uorton Arena, Raleigh, 1952
INTRODUCTION

Fascination
Objectives
Methodology

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

Fascination
Objectives
Methodology

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION
Fascination
Objectives
Methodology

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

Fascination

Objectives

Methodology

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND
Context
Reference
Functional Concept
Structural Concept

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND
Context
Reference
Funcional Concept
Structural Concept

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY
- Form finding techniques
- Tensile structures
- Tensegrities
- 2D arches
- 3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

![Diagram showing form-finding techniques and their applications]
INTRODUCTION

BACKGROUND

THEORY

Form finding techniques

Tensile structures

Tensegrities

2D arches

3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

Form finding techniques

Tensile structures

Tensegrities

2D arches

3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

\[q_i = \frac{F_i}{w_i} \]

\[C^T \cdot Q^D \cdot C \cdot X + C^T \cdot Q^D \cdot C_f \cdot X_f = P_x \]

\[C^T \cdot Q^D \cdot C \cdot Y + C^T \cdot Q^D \cdot C_f \cdot Y_f = P_y \]

\[C^T \cdot Q^D \cdot C \cdot Z + C^T \cdot Q^D \cdot C_f \cdot Z_f = P_z \]
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

Equivalent cable nets

\[L_u = W_v = K \]

\[L_v = W_u = H \]

\[L_{vi} = r_i \times 2 \times \sin \left(\frac{\alpha}{2} \right) \]

\[W_{ui} = \frac{L_{vi} + L_{vi+1}}{2} \]

\[W_{vi} = L_{ui} = K \]

\[L \approx w \]

\[q = F/L \]

\[F = s \times W \]

\[q = s \times W/L \]
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

\[K_c = K_m \times W \]

\[A_c \times E_c = \frac{s_t}{e_t} \times W \]

\[A_c = \frac{s_t}{e_t \times E_c} \times W \]

\[F_{max,\text{warp}} = \frac{s_{t,\text{warp}} \times W_{\text{warp}}}{y} \]

\[F_{max,\text{weft}} = \frac{s_{t,\text{weft}} \times W_{\text{weft}}}{y} \]

\[A_{c,\text{warp}} = \frac{s_{t,\text{warp}}}{e_{t,\text{warp}} \times E_c} \times W_{\text{warp}} \]

\[A_{c,\text{weft}} = \frac{s_{t,\text{weft}}}{e_{t,\text{weft}} \times E_c} \times W_{\text{weft}} \]
INTRODUCTION

BACKGROUND

THEORY

Form finding techniques

Tensile structures

Tensegrities

2D arches

3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

\[E_f = \frac{E}{1 + E \cdot \frac{A \cdot q_0^2 \cdot L^2 \cdot \cos^2 \alpha}{12 \cdot T^3}} \]
INTRODUCTION

BACKGROUND

THEORY

Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

2D vertically loaded arch
2D vertically loaded arch

INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

\[
F_{y0} = - \frac{F_1 \left(\delta x_{1,2} + \delta x_{2,3} + \delta x_{3,4} \right) + F_2 \left(\delta x_{2,3} + \delta x_{3,4} \right) + F_3 \left(\delta x_{3,4} \right)}{\left(\delta x_{0,1} + \delta x_{1,2} + \delta x_{2,3} + \delta x_{3,4} \right)}
\]

\[
F_{y4} = -(F_{y0} + F_1 + F_2 + F_3)
\]

\[
F_{x0} = -F_{x4}
\]
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

\[
\frac{F_{x0,1}}{F_{y0,1}} = \frac{\delta x_{0,1}}{\delta y_{thr0,1}} \quad ; \quad \delta y_{thr0,1} = \frac{F_{y0,1} \ast \delta x_{0,1}}{F_{x0,1}}
\]

\[
\frac{F_{x1,2}}{F_{y1,2}} = \frac{\delta x_{1,2}}{\delta y_{thr1,2}} \quad ; \quad \delta y_{thr1,2} = \frac{F_{y1,2} \ast \delta x_{1,2}}{F_{x1,2}}
\]

\[
\frac{F_{x2,3}}{F_{y2,3}} = \frac{\delta x_{2,3}}{\delta y_{thr2,3}} \quad ; \quad \delta y_{thr2,3} = \frac{F_{y2,3} \ast \delta x_{2,3}}{F_{x2,3}}
\]

\[
\frac{F_{x3,4}}{F_{y3,4}} = \frac{\delta x_{3,4}}{\delta y_{thr3,4}} \quad ; \quad \delta y_{thr3,4} = \frac{F_{y3,4} \ast \delta x_{3,4}}{F_{x3,4}}
\]

2D vertically loaded arch
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

2D vertically loaded arch
INTRODUCTION

BACKGROUND

THEORY

Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities

2D arches

3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

$\delta y_{str,0,1} + \delta y_{str,1,2} + \delta y_{str,2,3} + \delta y_{str,3,4} = K_{str} = K_{thr} = \delta y_{thr,0,1} + \delta y_{thr,1,2} + \delta y_{thr,2,3} + \delta y_{thr,3,4}$

$\delta y_{thr(i-1),i} = \frac{F_{y(i-1),i} \cdot \delta x(i-1),i}{F_{x(i-1),i}}$

$F_{y0} = -\frac{\delta x_{0,1}}{F_{x0}} + \frac{\delta x_{1,2}}{F_{x0} + F_{x1}} + \frac{(F_{y1} + F_{y2}) \cdot \delta x_{2,3}}{F_{x0} + F_{x1} + F_{x2}} + \frac{(F_{y1} + F_{y2} + F_{y3}) \cdot \delta x_{3,4}}{F_{x0} + F_{x1} + F_{x2} + F_{x3}}$
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

2D vertically and horizontally loaded arch
2D vertically and horizontally loaded arch

INTRODUCTION

BACKGROUND

THEORY

Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

Complementary Normal Energy

\[E_{C,N} = \frac{N^2 \cdot l}{2 \cdot E \cdot A} \]

Complementary Bending Energy

\[E_{C,M} = \frac{M^2 \cdot l}{2 \cdot E \cdot I} \]
INTRODUCTION

BACKGROUND

THEORY

Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

Form finding techniques
Tensile structures
Tensegrities

2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

Complementary Bending Energy

\[M = F_x \cdot e_y \]

\[E_{C\text{,factor}} = M^2 \]
INTRODUCTION

BACKGROUND

THEORY

Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

Keith Brownlie, Hulme Arch Bridge, Manchester, 1997
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

3D generic arch
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

3D planar arch
INTRODUCTION

BACKGROUND

THEORY
Form finding techniques
Tensile structures
Tensegrities
2D arches
3D arches

TOOLS

DESIGN

VARIANTS

VISUALIZATION

3D planar arch
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN
 Algorithm
 FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN
 Algorithm
 FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN
Algorithm
FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN
Algorithm
FEM Results

VARIANTS

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION
Dead Load Combination, Nodal Translation

Dead + Wind Load Combination, Nodal Translation
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

Algorithm

FEM Results

VARIANTS

VISUALIZATION

Dead Load Combination, Axial Forces

Dead + Wind Load Combination, Axial Forces
Mean and Gaussian Curvature

\[\kappa_m = \frac{\kappa_1 + \kappa_2}{2} \]

\[\kappa_g = \kappa_1 \times \kappa_2 \]

Curvature
Typologies
Comparison

\[\kappa_g > 0 \]
\[\kappa_g = 0 \]
\[\kappa_g < 0 \]

synclastic
zeroclastic
monoclastic
anticlastic
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

Curvature

Typologies

Comparison

VISUALIZATION

Simple saddle structure

Orthogonal and radial ridge and valley structures
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

Curvature

Typologies

Comparison

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS
Curvature
Typologies
Comparison

VISUALIZATION

Internal Normal Forces
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

Curvature

Typologies

Comparison

VISUALIZATION

Gaussian Curvature of the Membranes
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

Curvature

Typologies

Comparison

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

Curvature

Typologies

Comparison

VISUALIZATION
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION

Outside

Inside
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION

Outside

Inside
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION

Outside

Inside
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION

Outside

Inside
INTRODUCTION

BACKGROUND

THEORY

TOOLS

DESIGN

VARIANTS

VISUALIZATION