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Abstract
The climate crisis is being paid more attention owing to its notable effects on the environment glob
ally. For the sake of facing the challenge, the European Union (EU) has developed different strategies.
One of which is the “2030 Climate Target Plan” published by the European Commission in Brussel in
September 2020. It attempts to achieve a greenhouse gas (GHG) emissions reduction target by at
least 55% by 2030.

Based on the plan, a list of ideas and definitions centred around integrated energy systems has been
proposed. To assess energy system integration strategy in a Dutch context, a generic model of the en
ergy system is necessary. To this end, a comprehensive hybrid energy system, consisting of a Dutch
electricity distribution network model and a heating distribution network model, is developed. The elec
trical network is established by pandapower with three areas (netzero energy building, rural, urban)
owned by main Dutch Distribution System Operators (DSOs). Especially, the rural area is expanded
by adding photovoltaic (PV) modules as a representative to evaluate the impact of integrating renew
able energy sources (RES). The heating network is also built on the basis of the rural area, and it is
simulated in OpenModelica with taking into account the supply system, the pipe system, the heater &
storage system as well as the demand system. Moreover, controllers are introduced for the sake of
tackling the excess PV power issue existing in the above electrical network. They are built in Open
Modelica by designing operational strategies based on the charging state and the discharging state of
the heater & storage system in the heating network.

However, the simulation of the integrated energy system model is computationally expensive due to
the interdependencies between various energy sectors, dynamic operation of components within in
dividual energy domain, etc. To overcome the computational burden of the detailed models, surrogate
models are proposed to enhance the computational efficiency by replacing the expensive parts of the
models in the simulation. In the thesis work, eight machine learning algorithms are covered to create
the respective surrogate models in the electrical network and the heating network. Furthermore, their
performances are compared in terms of different indicators. In consequence, the best model is selected
in each network, which offers a useful recommendation for the integrated energy systemmodelling with
a high computation efficiency.

The simulation results show the linear regression (LR) model can be used as a surrogate model to
represent the electrical network based on the rural area of the integrated energy system. The long
shortterm memory (LSTM) model can be taken as a surrogate model to represent the heating network
based on the rural area of the integrated energy system.
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1
Introduction

The objective of the chapter is to offer a general introduction of the thesis. First, a brief background is
given on the basis of several main topics including climate crisis, renewable energy integration, energy
systems and surrogate models. Second, a problem definition is described, and major subproblems
are identified. Third, research objective and research questions are presented in depth. Based on
these questions, the corresponding research approaches are discussed. Finally, a clear outline of the
thesis work is shown.

1.1 Background
The climate crisis is being paid more and more attention owing to its notable effects on the environment
globally. According to the climate report [1], the global atmospheric carbon dioxide concentrations in
2019 increased to the highest point (409.8 ppm) in the past 800,000 years. Moreover, compared
with the previous records, the surface temperature of the land and ocean around the world for January
2020 also reached the peak (2.05°F) as shown in Figure 1.1 [2]. The global warming has many negative
influences such as extreme weather events, ice melting, sealevel rise, etc. As reported by the National
Climatic Data Centre (NCDC) [3], the global mean sea level in 2019 rose up to 3.4 inches (87.61 mm
centimetres), which has been the highest value from the satellite records.

Figure 1.1: The global land and ocean surface temperature in January between 1880 and 2020 [2].

For the sake of tackling the above crisis, the European Union (EU) has developed different strategies.
One of which is the “2030 Climate Target Plan” [4] published by the European Commission in Brussel in
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September 2020. As illustrated in Figure 1.2, it attempts to achieve a greenhouse gas (GHG) emissions
reduction target by at least 55% by 2030. It is worthmentioning that its target has exceeded the previous
one, which was set up by the Paris Agreement in 2015, with the aim of reducing the GHG emission by at
least 40% by 2030 [5]. Furthermore, the plan contributes to pursuing an ambitious goal with the climate
neutrality (netzero emissions) by 2050. An important reason that the EU takes effort to speed up the
process of reducing the GHG emission can be well understood by Figure 1.2 which depicts an obvious
tradeoff between the GHG emission reduction and GDP growth. The novel decarbonisation goal,
according to Ref. [4], is expected to strengthen the whole EU economy which was affected negatively
by COVID19, an unprecedented health crisis worldwide.

Figure 1.2: The EU’s pathway to sustained economic prosperity and climate neutrality, 19902050 [4].

Based on the above goal, a list of ideas centred around integrated energy systems has been proposed
[6]. Moreover, investments into renewable energy sources (RES), such as wind and solar energy, are
supposed to increase so as to reduce the dependency on fossil fuels. To illustrate, the percentage of
EU electricity production from RES is desired to go up to nearly 65% [4]. A major challenge of the
electricity production derives from the variability and uncertainty of RES that have significant impacts
on the grid stability, reliability even economics [7]. To address these problems arising from the in
creased RES, grid expansion is an effective strategy for many transmission system operators (TSOs)
and distribution system operators (DSOs). For instance, a promising solution in the form of sector
coupling using PowertoX (P2X) devices has been proposed [8]. Various benchmarks based on the
European network structure, for the sake of assessing the solution, have been studied as described in
Ref. [9], [10]. However, the benchmark models provide results that may not be fully applicable to real
world networks. This is because each EU country has their own distribution and transmission networks.

In the context, a generic Dutch grid model is necessary to be established to make up for a deficiency in
the availability of the representative energy system in the Netherlands. Traditionally, when conducting
the research about energy systems, different energy sectors like electricity are taken into account in
an “independent” way, the socalled decoupling methods. However, the methods have apparent draw
backs especially when the integrations of energy sectors become tighter as described in Figure 1.3. For
example, the models established by the decoupling methods ignore the interactions between various
energy sectors such as electrical vehicles (EVs), biofuels, etc. In consequence, the models cannot rep
resent realistic networks, and the related analysis based on the models is not accurate. Furthermore,
apart from the electricity, Figure 1.3 also illustrates the other energy sectors such as heating/cooling,
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Figure 1.3: MCES as a multigrid component [11].

gas, transport, etc. These sectors account for the vast majority of the GHG emission, and they are more
difficult to deal with the decarbonisation issues [12]. Hence, many studies begin to focus on energy
systems by taking into account multiple energy sectors, and the relevant definitions have been given
such as multicarrier energy systems (MCESs) [11], multienergy systems (MES) [13], smart energy
systems [14], hybrid networks [15], etc.

1.2 Problem Definition
The thesis work mainly concentrates on exploring the suitability and applicability of surrogate
models for a multicarrier energy system. When modelling energy systems, surrogate models have
been introduced for the purpose of increasing the computation efficiency [14].There exists an increasing
tendency that more detailed models will be considered to narrow the gap between simulation models
and realistic models with the progressive research. As a result, the simulation models become more
complicated,and the computational burden of simulating such systems increases tremendously. The
manifest characteristic of the problems is that it might take minutes to hours, or even days to finish the
whole simulation. Therefore, there exists a vital necessity to introduce the surrogate models. In order
to tackle the core problem, three subproblems are presented as follows.

The electrical network is experiencing a notable change towards a decentralised architecture with an
increasing fraction of the renewable energy in the Netherlands, as shown in Figure 1.4. As an ac
tive member in the EU, the Netherlands is taking effort to increase the utilisation of RES. The high
penetration of the RES also poses novel challenges. For example, solar energy sources are vulner
able to weather conditions such as cloudy and rainy days, and thus the sources are intermittent with
uncertainties. In order to take on the challenges, different techniques have been proposed and are
being researched like EV integration [16], demand response [17], network expansion planning [18],
etc. In all of these techniques, one of the indispensable operations is to model electrical networks.
Various benchmarks for European networks have been offered in some works [9], [10], however they
can only describe the grid structures in general terms without being specific. Within the background,
it is imperative to develop a static electricity network model with the focus on distribution grids
representing representative Dutch feeders by means of using open data sources, which gives
us our first subproblem definition. It is worth mentioning that the distribution network is particularly
concentrated in the thesis work because more than 90% of distributed energy resources are installed
at DSO level [19]. This model, as a benchmark, is intended to be openly shared between re
searchers in the PowerWeb community of TU Delft for further studies.

However, as mentioned in Section 1.1, it is not enough to consider the single energy sector like electric
ity to achieve the “2030 Climate Target”. It is necessary to consider more integrations of other energy
sectors such as heating/cooling to carry out the holistic analysis of the whole energy system. Therefore,
the related definitions like multicarrier energy systems are introduced, and the modelling approaches
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Figure 1.4: Fraction renewable energy in the Netherlands [20].

ought to be improved by using new tools such as multidomain modelling languages, cosimulation
and so forth. Furthermore, control strategies can be added to regulate the behaviour of the whole
system. A direct idea of establishing models of the energy systems is to consider the coupling of the
district heating network with the electricity distribution network, the socalled multicarrier distribution
networks. This forms our second subproblem definition, developing a model of heating distribution
network and integrate it with the electrical distribution network to create representative multi
carrier distribution networks.

Compared with the electrical networks, the multicarrier energy system model becomes more com
plex after adding other energy sectors. Owing to the increased coupling between the different energy
sectors, computational burden of simulationbased analysis might appear, and simulation time will be
longer. For example, if a utility manager needs to forecast PV generation or heat demand of the energy
system, it will take a lot of time to conduct a simulationbased analysis. For the sake of resolving the
above issues, the applicability of surrogate models is necessary to be investigated. On one hand, the
surrogate models are able to avoid the computational complexity introduced by replacing the expensive
parts of the original models. As a result, the computation efficiency is enhanced with a faster computa
tion speed. On the other hand, they can quickly assess the impacts of various operating conditions on
a tightly integrated system. This offers our third subproblem definition, investigating and developing
surrogate models best suited for the multicarrier distribution networks.

1.3 Objective & Research Questions
The objective of this thesis work is to develop surrogate models for the multicarrier distribution
networks. This is achieved by using different machine learning methods to create surrogate models,
and their performances are compared with the original models. Moreover, distinct software is applied
to carry out the whole simulation, including pandapower [21], OpenModelica [22], EnergySim [23],
Pythonbased libraries (Scikitlearn [24], Tensorflow [25] and Keras [26]).

In order to cope with the above objective, the following research questions and subquestions are
taken into account in the thesis work:

1. How can a representative multicarrier distribution network be modelled?

• How can a Dutch electrical distribution network be established as a static power flow model
using open data sources?

• How can a representative heating network be designed and modelled to reflect a future
tightly integrated distribution energy system?
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2. What kind of surrogate models are used to create for the multicarrier distribution net
works?

• Which methods are selected to establish surrogate models?

• Which parts of the distribution networks are replaced by surrogate models?

• What are the inputs and outputs of the training/testing data for surrogate models?

3. Up towhich extent can the simulation performances of themulticarrier energy distribution
networks be enhanced by the surrogate models?

• Which indicators are used to compare the performances between surrogate models and
original models?

• Which surrogate models best represent the electrical network?

• Which surrogate models best represent the heating network?

The contributions of the thesis work are twofold. First, an electrical distribution network considering
three main Dutch distribution system operator areas is established. On the basis of this network, a
representative heating network and controllers are taken into account under the environment of the co
simulation. As a result, a representative multicarrier energy distribution network is modelled. Second,
different surrogate models are established, and their performances are compared according to specific
indicators. In consequence, the best models are determined in terms of the electrical network and the
heating network, respectively.

1.4 Research Approach
In terms of the first question, the adequate open data sources are determined in the beginning. For ex
ample, load profiles can be obtained from Nederlandse Energie Data Uitwisseling (NEDU) [27]. Next,
a Dutch electrical distribution network is established. Owing to high shares of VRE resources, PV mod
ules are chosen as one of the classical representatives to add in the above electrical network model.
Furthermore, a representative heating network model is built by considering the supply system, the
pipe system, the heater & storage system as well as the demand system. In order to resolve the issue
introduced by the excess PV power in the electrical network, controllers are designed. Their control
strategies are drawn up with considering the electric heaters and storages in the heating network ac
cording to rulebased methods [28]. Finally, a cosimulation setup is used to connect the above various
networks, and a representative multicarrier distribution network is developed.

In terms of the second and third question, surrogate models are built with a series of machine/deep
learningbased algorithms involving linear regression (LR), linear regression with regressor chains (RC
LR), linear support vector machine with regressor chains (RCSVR), decision trees (DT), random forest
(RF), knearest neighbours (kNN), multilayer perceptron (MLP) as well as long shortterm memory
(LSTM). In the thesis work, these methods are adopted to solve regression issues with predicting the
multioutput values of the electrical network and the heating network, respectively. Load profiles and
PV profiles are used as the inputs in the electrical network, and the outputs are the voltage levels of
all the buses in the rural area. Excess PV profiles and demand profiles are employed as the inputs in
the heating network. Its outputs are the supply temperature profiles and storage temperature profiles.
It should be noted that the methods proposed here are generalised and can be used to predict any
other values as required by other users. Furthermore, in order to compare the original models with the
surrogate models, prediction accuracy and simulation time are selected as the performance indicators
which contain the values of rootmeansquareerror (RMSE) and speedup factor (SUF). Eventually,
the best surrogate models are selected for the electrical network and heating network, respectively.
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In the thesis work, different simulation platforms are used. The electrical network is modelled by means
of pandapower. Both the heating network and controllers are created by OpenModelica. The co
simulation is carried out in the environment of EnergySim. The machine/deepbased surrogate models
are simulated via different frameworks containing Scikitlearn and Tensorflow. The programming lan
guages of the above models are all in Python.

1.5 Outline
The remaining part of the thesis work is organised as follows. Chapter 2 offers a literature review based
on the previous works. Chapter 3 shows an electrical distribution network with considering PV mod
ules, and three various areas are considered based on main Dutch DSO networks. The modelling of
a multicarrier distribution network is described in Chapter 4 which details the establishment process
of a representative heating distribution network and controllers, respectively. Different machine/deep
learning algorithms with the modelling process of surrogate models are depicted in Chapter 5. A de
tailed result analysis is presented in Chapter 6. Finally, Chapter 7 reaches conclusions and outlines
the future work.



2
Literature Review

The objective of the chapter is to give a literature review based on previous works, and it is divided into
three aspects. The first aspect concentrates on the modelling of electrical distribution networks. The
second aspect focuses on multicarrier energy systems including the related definitions and simulation
methods. The third aspect puts the emphasis on surrogate models containing their applications in
energy systems and creating approaches. Furthermore, machine/deep learning algorithms are focused
as an emerging approach with their characteristics and applications in energy systems.

2.1 Establishment Methods of Electrical Distribution Networks
Traditionally, electrical distribution networks are considered in the perspective of passive electricity
dispensation without considering automation or digitisation [19]. However, the “fit and forget” method
cannot perform well especially when renewable energy sources are introduced in the networks. Hence,
new approaches ought to be proposed. One of the important works is offered by the Joint Research
Centre (JRC) which is the Commission’s science and knowledge service [29]. The organisation gives
comprehensive overviews of the European electricity distribution networks with solutions by the Dis
tribution System Operators Observatory project launched in 2016 and 2018, respectively [19], [30].
Based on the 2016 observatory, the project comes up with 13 representative distribution networks con
taining 3 largescale networks and 10 feeder type networks. Hence, these models can be used to
establish the corresponding networks directly. Based on the 2018 observatory, the project offers an
alternative with giving 37 DSOs indicators which are key technical input parameters when modelling
the networks. These indicators can be categorised in three aspects: network structure & reliability,
network design as well as distributed generation. Furthermore, DiNeMo is proposed as a platform for
the distribution network simulation based on a subset of the above indicators [31]. Table 2.1 shows the
subset of the total DSOs indicators in detail.

Table 2.1: Subset of the total DSOs indicators used to build the largescale representative distribution networks [31].

ID DSO Indicators
1 Number of LV consumers per MV consumers
2 LV circuit length per LV consumer
3 LV underground ratio
4 Number of LV consumer per MV/LV substation
5 MV/LV substation capacity per LV consumer
6 MV circuit length per MV supply point
7 MV underground ratio
8 Number of MV supply points per HV/MV substation
9 Typical transformation capacity of MV/LV secondary substations in urban areas
10 Typical transformation capacity of MV/LV secondary substations in rural areas

7



8 2. Literature Review

There also exist other works regarding the modelling of the distribution networks. A European bench
mark based on a low voltage microgrid network and its extension containing three types of loads are
developed by Papathanassiou et al. in Ref. [10]. The authors concentrate on the network itself without
putting more emphasis on microsources and control strategies. Based on the benchmark, a series
of researches is carried out to explore various technologies such as demand side management [32],
peertopeer energy trading [33], frequency response analysis [34], etc. Moreover, a work in Ref. [35]
establishes Dutch medium voltage networks and explores the impact of future residential loads, which
gives meaningful references for the network planning. Ref. [36] develops a benchmark of the low volt
age distribution grids in the Netherlands. Three different grid types, including netzero emission building
(NZEB) areas, urban areas and rural areas, are taken into account based on main Dutch DSOs.

2.2 Multicarrier Energy Systems
Multicarrier energy systems have received a lot of attention due to high penetrations of renewable en
ergy and electrification. As illustrated in Figure 2.1, the energy systems consider not only the electricity
but also other energy sectors like natural gas, heat/cooling, transport, etc. The precise definition has
been offered by O’Malley et al. [11] who present an exhaustive review based on the system.

Figure 2.1: Schematic illustration of the spatial perspective concept [13].

Other analogous definitions and terms are also proposed and used in many existing works. For in
stance, Mancarella [13] gives a comprehensive overview of multienergy systems involving their mod
els and detailed analysis methods. The same term is used in the work by Chertkov and Andersson
[37] who offer an exhaustive overview of the latest developments and opportunities. A work by Lund
et al. [14] conducts an excellent review based on smart energy systems containing their definitions
and applications, and the integration of the storage is also discussed. A holistic approach is developed
by Widl et al. [15] who undertake technical and economic assessments of hybrid thermalelectrical
distribution grids. It has further been extended by Ref. [28] which considers a design approach to the
optimisation methods and various control strategies.
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2.2.1 Modelling and Simulation Methods

Based on the above definitions, a series of modelling and simulation methods is discussed in the
literature. A thorough review related to the approaches is presented by Subramanian et al. in Ref.
[38]. As seen in Figure 2.2, energy system models are classified into three main branches according
to their works.

Figure 2.2: Classification of energy system models according to modelling approach [38].

To be specific, the computational models can mimic the intelligent behaviour [39] with different expert
systems consisting of agentbased models, knowledgebased models and neural networks. The math
ematical models are divided into statistical (blackbox) and mechanistic (whitebox) models. In terms
of the statistical models, a list of techniques has been employed such as selfoptimising variables [40],
kriging [41] and so forth. In light of the mechanistic models, one typical example is the energy hub
model developed by Geidl and Andersson [42]. Its systematic overview, based on its concept poten
tials and challenges, is provided by Ref. [43], and it is further studied in combination with the urban
climate influence on the energy demand by Perera et al. in Ref. [44]. However, as reported by Ref.
[45], many studies including Ref. [42] lack the information related to the electricity grid status in the
modelling. For the sake of solving the issues, one feasible solution is adopted by Arnaudo et al. [45]
who focus on employing an effective tool called cosimulation which has been widely adopted in the
literature; see e.g., Ref. [46], [47].

Cosimulation, whose structure is described in 2.3, performs the function in coupling multiple software
packages and/or models [48]. It overcomes the barrier that many tools are restricted to simulate a single
energy domain system, but also transcends the limitation existing in the specific energy system analy
sis software like EnergyPLAN without considering the control effects [22]. In addition, as described in
Ref. [28], it has more advantages than multidomain tools such as Modelica, Simulink and MATLAB.
Moreover, various frameworks have been established to achieve the function of cosimulation. Mo
saik [49], as an open source, is used to carry out the simulation of active components in smart grids.
Nonetheless, it is not easy for nonprogrammers owing to the dependence on simulator APIs [23]. The
drawback is overcome by the usage of Functional Mockup Units (FMUs), and two typical represen
tatives are embodied in VirGIL [50] and Mastersim [51]. Another framework is GridSpice [52], on the
basis of cloud systems, which resolves the difficulties existing in the modelling of transmission and
distribution systems via the cosimulation by High Level Architecture (HLA) [53]. EnergySim, originally
named as FMUWorld, is proposed to model energy systems in different domains as shown in Ref. [23]
with the advantage of the multitime step simulation. Other frameworks contain the Functional Mockup
Interface (FMI) specification [54], SystemintheLoop (SITL) [55] and so forth.
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Figure 2.3: Structure of the cosimulation environment [48].

The cosimulation application in energy systems, including hybrid thermalelectrical distribution net
works, is well documented in many studies. Ref. [15] builds the network by considering various energy
sectors via a FUMOLA tool as their cosimulation platform. Furthermore, a technicaleconomic assess
ment is carried out to put forward the recommendation from the perspective of operation and strategy,
respectively. In Ref. [45], the authors extend their works by designing performance indicators such as
the grid capacity, and distributed heatpumps are involved in the whole system. Similar design ideas
are undertaken by Ref. [47] and Ref. [28]. The former focuses on the technical assessment of power
toheat use cases, whereas the latter concentrates on the novel control and optimisation strategies.
However, these works lack attention to the computation time of the simulation.

2.2.2 Computationally Expensive Problems
The computationally expensive problems are likely to occur in multicarrier energy systems, and one
of the main reasons is the interdependencies between various energy sectors, dynamic operation
of components within individual energy domain, etc. The tight couplings between technologies and
networks in the energy system are shown in Figure 2.4.

Figure 2.4: Interactions between MCES technologies and networks [11].
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It can be seen that various sectors in these systems are taken into account for integrations involving
electricity, heat, gas, transportation, among many others. It has existed some works which highlight the
expensive problems in the energy field. The authors in Ref. [28] point out the evaluation of objective
functions has high computation costs (minutes to hours or even days) in the simulationbased design for
the energy system. Ref. [56] indicates that models of the power grid rely on complicated calculations,
and hence the simulation costs will be high. Ref. [57], [58] figure out the computationally expensive
issues might be introduced when Modelica is used to carry out simulations. Modelica is an equation
based language, and its models may include plenty of nonlinear equation systems [59].As a result,
the simulation speed is reduced apparently. Similar ideas can be found in Ref. [51], [60]. To illustrate,
the authors in Ref. [51] state that carrying out Modelicaonly based building simulations is not realistic.
Owing to a large quantity of codes in Modelica, it will be timeconsuming especially when modelling
large buildings.

2.3 Surrogate Models
Surrogate models, also referred to as metamodels or approximate models, have been the focus of
a large body of research over the years [39], [61]. The models can be viewed as classical blackbox
models which concentrate on the inputs and outputs without considering the complicated transforma
tion process. They are mainly introduced to cope with computationally expensive issues with high
computation costs.

Table 2.2: Representative methods creating surrogate models in the application of energy systems.

Creating Methods
of Surrogate Models Applications

Kriging [41]
Prediction based on the behaviour of the offshore
power plants integrating a wind farm to drop the
computation difficulty of the optimisation process

Response surface methodology [62]
Covering the uncertainty of forecast loads to
reduce the complexity of stochastic electricity

grid operations problems

Radial basis functions [63]
Estimation of the system outputs to decrease

computation costs when simulating the
building systems

Support vector machine
(ML algorithm) [64]

Training data based on feasible trajectories to
assist the optimisation process of forecasting
the multiperiod flexibility for LV prosumers

Artificial neutral networks
(ML algorithm) [65]

Using transfer learning with hybrid optimisation
algorithms to decrease the computation time

when optimising the energy systems

2.3.1 General Approaches for Creating Surrogate Models
There are a variety of methods of creating surrogate models, which are summarised and compared by
DiazManriquez et al. in Ref. [39]. Table 2.2 provides a brief summary based on the representative
methods establishing surrogate models in the application of energy systems.

One of the conventional methods is called response surface methodology (RSM) [62] whose goal is to
get the minimum variance value of the responses. Kriging, also known as Gaussian processes (GPs),
is another alternative to build surrogate models with various engineering applications [41]. In Ref. [63],
the authors apply the radial basis function network in the building energy systems and explore the pos
sibility in high dimensions applications. Machine learning (ML) algorithms also play an indispensable
role in creating surrogate models to reduce the computation time. Specifically, the algorithms include
a number of approaches, such as support vector machine (SVM) [64] and artificial neural networks
(ANN) [65], which are applied in various occasions with their different characteristics.
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2.3.2 Applications in Energy Systems
When modelling energy systems, surrogate models can be added in several ways to enhance the com
putation efficiency. One straightforward idea is to employ the models to replace a part of the simulation
models in the whole system directly. In Ref. [66], a dynamic equivalent of the complex distribution grid
is created to replace expensive parts in the original network. As a result, the dynamic effects in power
systems are simulated and studied in depth. The similar approach is carried out by Balduin et al. in
Ref. [67]. The authors carry out the research of the smart grid, and the entire low voltage grid from
Ref. [10] is replaced by a deep neural network used as surrogate models. Here, the surrogate models
show excellent performances in the aspects of the speedup factors, simulation time as well as accu
racy. However, they fail in taking into account other machine learning methods, and their models have
poor performances in the domainspecific experiment. Ref. [68] extends their works and considers
more methods of creating surrogate models. Furthermore, the performances of the various methods
are compared, and the best models are selected. However, surrogate models in their work are only
limited to the application of the electrical network.

Another common technique using surrogate models in energy systems is to assist in the optimisa
tion of complex problems, the socalled surrogateassisted algorithms [61]. When one optimisation
algorithm creates a potential solution, surrogate models can be created to test whether it is feasible.
The testing process is accelerated because it is not required to run the whole simulation and then cal
culating the objective function. Therefore, surrogate models contribute to finding optimal solutions for
the algorithms with a faster speed.

There also exist some works which focus on reducing the surrogate modelling process. To illustrate,
Ref. [69] presents a tool called MeMoBuilder to assist the surrogate modelling process for three typical
simulation models in energy systems consisting of the battery model, photovoltaic plant and fuel cell.

2.4 Machine Learning Algorithms
Asmentioned in section 2.2, machine learning (ML) algorithms are one of the popular approaches when
creating the surrogate models. First, an introduction related to ML algorithms, including deep learning
algorithms, is given. Second, common data splitting approaches in the algorithms are concentrated.
Finally, the applications of the algorithms based on the energy field are summarised.

2.4.1 Basic Definitions
Machine learning algorithms play an important role in the artificial intelligence (AI) technology, and

Figure 2.5: Machine/deep learning in the context of artificial intelligence [70].
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Figure 2.5 depicts their relationships intuitively. ML algorithms have been experiencing an explosive
growth in the research recently. One of their advantages is systems are offered the ability of self
learning without using the complicated programming. Compared with other methods, the algorithms
have excellent performances when performing the big data analytics [71] and predictions [72]. One of
the applications can be well reflected in the predictive modelling which develops a model employing
the historical data to make a prediction on the new data [73]. It includes the classification predic
tive modelling and regression predictive modelling. They have a similar function with estimating the
mapping function from the input variables to output variables [74]. However, their outputs have notable
differences that the classification modelling is discrete, whereas the regression modelling is continuous.

Deep learning (DL) algorithm is a subset of the ML algorithm, which is also described in Figure 2.5.
As a braininspired approach, DL algorithm employs a multilayered structure called neural networks.
Similar as human brains, the neutral networks in the algorithm perform the function of utilising the data
to identify patterns and classify various information [75]. Ref. [76] offers some obvious distinctions be
tween the DL algorithm and other traditional approaches in the AL algorithm. For example, compared
with other methods in the machine learning algorithms, the model in the DL algorithm can be trained
directly by an “endtoend” way. Moreover, it can handle multidimensional tensors. According to Ref.
[77], modern DL algorithm puts more emphasis on training deep (many layered) neural network mod
els by the backpropagation algorithm, and main techniques consist of multilayer perception networks,
convolutional neural networks and long shortterm memory recurrent neural networks.

2.4.2 Data Splitting Approaches
In the machine learning algorithms, a dataset is usually split into the training dataset and the testing
dataset initially. Hence, it is necessary to choose the adequate data splitting approach.

Figure 2.6: The description of the holdout method.

The holdout method, also named as the traintest split method, is one of the popular splitting ap
proaches. In this method, an original dataset is directly divided into two subsets including a training
dataset and a testing dataset. The training dataset performs the function of extracting features and
training to fit a model, and the testing dataset is used to make predictions on the basis of the model
obtained from the training dataset. A common splitting percentage is 80% of the dataset for the training
data and the remaining 20% of the dataset for the testing data [78]. Although the percentage is fixed,
simulation results are still different when carrying out multiple experiments when using the same per
centage. It is not difficult to understand because the same dataset is split randomly in each experiment.
As a result, various training datasets and testing datasets are created in each experiment. Figure 2.6
shows the holdout method.

(a) (b) (c)

Figure 2.7: Regression example: (a). underfit; (b). good fit; (c). overfit [79].
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The above method is easy to implement in the algorithm. However, it suffers from the weakness that it
might encounter the overfit issue as shown in Figure 2.7(c). It can be seen that its fitting performance
is even better than Figure 2.7(b) which is defined as the “good fit”. Ref. [79] describes one of the
characteristics of the overfitting that it fits too closely to the training set, and hence it performs excellently
on the training dataset. However, it does not mean it also performs well when predicting the new data.
To illustrate, the model in the case is likely to learn the “noise” existing in the dataset without focusing on
the variable relationships of the dataset. However, the noise does not belong to the new data. Hence,
the case is not an ideal fitting method and ought to be avoided.

Figure 2.8: An example of the 5fold crossvalidation method [80].

Crossvalidation method is introduced to avoid the above overfitting issue, and one popular technique
in the method is called as the kfold cross validation. Compared with the above holdout method, the
dataset is split into k different subsets (or folds) randomly. One of the subsets is employed as the
validation fold, and the remaining folds are the training folds. Thus, each subset has one validation
fold and k1 training folds. In each subset, a model is trained on the training subset initially, and a
metric value such as RMSE is calculated on the validation subset. As a consequence, K metrics can
be obtained for all the subsets. Then, the model can be tested on the test set. Figure 2.8 illustrates an
example of the method when k is equal to 5.

2.4.3 Research Directions in Energy Systems
In recent years, ML algorithms and DL algorithms also attract the attention in the energy field research.
In Ref. [81], a list of ML algorithms for energy systems is systematically reviewed by Mosavi et al.
Here, the authors highlight the distinct ML models and focus on their applications in different energy
domains. Moreover, ten ML models are discussed and compared in detail.

One of the major topics in the field of energy systems is energy forecasting which plays a key role
in the field of power systems and business from the perspective of planning and operation [72]. Typical
forecasting targets involve electricity demand, electricity prices, heating load, renewable energy gener
ation, etc. Figure 2.9 illustrates the increasing researches with publications of the forecasting based on
the targets. In Ref. [82], a scientometric overview based on the electricity demand prediction is carried
out with a visualisation analysis by Yang et al. Weron undertakes a thorough review of the electricity
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price forecasting and offers the

Figure 2.9: Number of publications in load, price, wind and solar forecasting returned by respective Scopus search [72].

future research directions [83]. Some studies that cover the heating load prediction are conducted in
Ref. [84], [85]. Sweeney et al. [86] present a good review whose topic is renewable energy forecasting
with a focus on wind and solar energy. A comprehensive work by Yagli et al. [87] considers 68 ML and
statistical models for hourly solar forecasting.





3
The Electrical Network Model

The objective of this chapter is to model a Dutch electrical network. First, a general introduction of
system operators is given, and the background of TSOs and DSOs in Europe is concentrated. Fur
thermore, a distribution related to these system operators in the Netherlands is concentrated in detail.
Finally, a representative Dutch LV distribution model is established with the consideration of RES inte
gration.

3.1 The Background of System Operators
System operators play a key role in guaranteeing the electricity delivery to end users such as con
sumers, industry, etc. The background of two essential operators including transmission system oper
ators and distribution system operators is illustrated.

3.1.1 TSOs in Europe
The European Network of Transmission System Operators (ENTSOE) association, including 42 mem
bers and 1 observer member from different countries, has been created to liberalise the European gas
and electricity markets [88]. Tennet, as a unique Dutch TSO, contributes to European grid connections
[89]. Figure 3.1 describes the role of Tennet with three important services [89] in the electrical network.
First, it guarantees the extra high and highvoltage electricity transmission. Second, it offers system
services by keeping the balance

Figure 3.1: The role of Tennet in the electricity network [89].

between generation and consumption. Furthermore, it facilitates the energy market by providing grid

17
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access to the market players such as consumers, prosumers, regulators, etc. As discussed in the prob
lem definition of Chapter 1, transmission network modelling is not the main work in the thesis. Hence,
the detailed Dutch transmission grid structures with the relevant design of simulation parameters are
described in the Appendix section.

3.1.2 DSOs in Europe
Distribution system operators, as shown in Figure 3.2, play an important role in the connection between
TSOs and end customers in the traditional network scenario. In Europe, there exist approximately 98
99% of the customers whose electricity networks are connected with the distribution networks [19].
The responsibilities of the DSOs include planning, maintenance and management of the distribution
networks [90]. In terms of the planning, a list of plans is drawn up for the system and its elements to

Figure 3.2: Conventional scenario versus emerging scenario in the power system due to the emergence of distributed energy
resources [91].

Figure 3.3: The distribution of DSOs in Europe [90].
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meet the future development after collecting the grid data [92]. In terms of the maintenance, DSOs
perform the function of delivering the electricity to end consumers. For instance, faults will be cleared
as fast as possible if they occur in the electrical networks. In terms of the management, DSOs manage
not only different voltage levels (HV, MV, LV) of the distribution systems but also the supply outages
[91]. Furthermore, the energy of distributed sources is absorbed by DSOs who are responsible for their
connection and disconnection.

The roles of DSOs are experiencing a notable variation considering the introduction of distributed
energy sources (DERs) and novel market players [93] such as prosumers, market regulators, retail
suppliers, microgrid operators, etc. Therefore, they have new responsibilities to meet these challenges
in the emerging scenario depicted in Figure 3.2. In light of DERs introduction, DSOs are supposed to
guarantee that flexibility services [91], such as peak load management and congestion management,
are offered to reduce the redundancy issues from the DERs. With respect to the new market players,
take retail suppliers as an example, the cooperation between these suppliers and DSOs ought to be
enhanced to bring considerable benefits for customers [93]. To illustrate, when the suppliers offer high
quality electricity supply, DSOs are expected to guarantee their stability and security accordingly.

As illustrated in Figure 3.3, the number of DSOs varies significantly from country to country. For in
stance, Ireland and Slovenia have only one distribution system operator. Countries like Czechia and
Greece exist several DSOs. Countries such as Germany, Spain and Poland possess more than 100
DSOs. Owing to the differences, it is necessary to take into account local situations when modelling
the distribution networks for one specific country.

3.2 The Modelling of the LV Distribution Network in the Nether
lands

In this section, distribution network models in the Netherlands are established based on main Dutch
DSOs with their representative areas. Therefore, some backgrounds on the Dutch DSOs are provided
in the beginning. Next, the simulation tool and open data sources used in the thesis work are described.
Furthermore, the detailed distribution network with the design of simulation parameters are given. Fi
nally, renewable energy sources are studied by taking into account PV modules on the basis of the
established distribution network.

3.2.1 The Distribution of Main Dutch DSOs

Figure 3.4: The energy distribution network operators in the Netherlands [36].
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Figure 3.4 depicts energy (gas and electricity) distribution network operators in the Netherlands. It can
be seen that Enexis, Liander and Stedin are three major Dutch DSOs in the electricity network. In Ref.
[36], the authors build a distribution grid network focusing on realistic networks in the Netherlands.
Furthermore, three types of the distribution grids are studied based on the above three Dutch DSOs.
The first type is the residential area with nearly zero energy buildings, which belongs to the realistic
grid of Liander. The other two types are the old urban residential area and the rural residential area
which are owned by Stedin and Enexis, respectively. In the thesis work, a similar network structure is
employed.

Figure 3.5: The NZEB in Rijsdijk, EttenLeur [94].

It is worth mentioning that NZEB areas, as one of the representatives, are necessary to be concentrated
due to EU requirements and local policies. One of the requirements proposed by the Renovate Europe
campaign in the EU. They work towards a main goal to decrease the energy demand of the building
blocks by 80% by 2050 [95]. In order to achieve the above goal, the energy consumption of the blocks
is anticipated to be reduced substantially, and the definition of NZEB is introduced. A representative
policy in the Netherlands regulates that all new construction, both residential and nonresidential, ought
to meet the requirements for Bijna Energieneutrale Gebouwen (BENG) from 1 January 2021. There has
been a rapid growth of these buildings in the EU, and Figure 3.5 illustrates an example of NZEB based
on Rijsdijk in the Netherlands. The building uses PV panels, a heat pump with the ground source and
solar thermal collectors. The heat from the ground storage during the summer is utilized in the winter
time [94].

3.2.2 The Simulation Tool & Open Sources

Pandapower [21], as an open source Python tool, is applied to carry out the static analysis, quasi
static analysis and optimisation of the electrical power system. Compared with other calculation tools
in the power system, it overcomes their limitations in the specific application as illustrated in Table 3.1.
Moreover, its advantage lies in conducting the symmetric distribution system analysis [21]. Thus, pan
dapower is deployed to model the static power flow of the distribution network in the thesis work.

Open sources can offer reliable parameters of electrical components and various profiles (i.e., genera
tors, loads, etc.) in the distribution network. Electrical components are obtained from design handbooks
and the standard simulation settings from pandapower, whereas different profiles such as generators
and loads are identified and processed from Nederlandse Energie Data Uitwisseling [27] which is an
important data platform for combining various energy sectors in the Netherlands. Additionally, the pa
rameters related to RES involve penetration rates obtained from Ref. [36] and PV profiles accessed
from the Open Power System Data Platform [96] that offers free data for power system modelling.
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Table 3.1: Comparison of open source element model libraries [21].
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ZIPload √ √ √ √ √
Line √ √ √ √ √ √ √ √

2Winding Transformer (𝜋) √ √ √ √ √ √ √ √
2Winding Transformer (T) √ √ √ √
3Winding Transformer √ √ √ √

DC Line √ √ √ √ √ √
Local Switches √

Voltage Controller Generator √ √ √ √ √ √ √ √
Static Load/Generation √ √ √ √ √ √ √ √

Shunt √ √ √ √ √ √ √ √
Asymmetrical Impedance √

Ward Equivalents √
Storage Unit √ √ √

3.2.3 Network Structures & Simulation Parameters

Figure 3.6 depicts the structures of a Dutch LV distribution network designed in the thesis work. The
designed parameters of each part used in the above network are described in detail. In order to give a
clear illustration, Table 3.2 lists the abbreviation meaning of the parameters used in the later table.

Figure 3.6: The LV distribution network in the Netherlands.
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Table 3.2: Abbreviation meaning of used parameters.

Parameter Meaning of Each Parameter
vm voltage magnitude at the slack node in per unit
va voltage angle at the slack node in degree
hv The bus on the highvoltage side of the transformer
lv The bus on the lowvoltage side of the transformer
sn rated apparent power
vh rated voltage on high voltage side
vl rated voltage on low voltage side
vk relative shortcircuit voltage
vkr relal part of relative shortcircuit voltage
pre iron losses in kW
i0 open loop losses in percent of rated current
vn voltage magnitude of each bus
va voltage degree of each bus
I line length in km
r line resistance in ohm per km
x line reactance in ohm per km
c line capacitance in nano Farad per km

imax maximum thermal current in kilo Ampere
p active power
q reactive power

The external grid is used to replace the connection of the network to higher voltage levels. Table 3.3
depicts its simulation parameters.

Table 3.3: The simulation parameters of the external grid.

Index Name Bus vm (pu) va (degree) In Service
0 grid connection 0 1.02 0 True

Table 3.4: The simulation parameters of different buses.

Index Name vn (kv) va (degree) In Service
0 Bus0 11 0 True
1 Bus1 0.4 0 True
2 Bus2 0.4 0 True
3 Bus3 0.4 0 True
4 Bus4 0.4 0 True
5 Bus5 0.4 0 True
6 Bus6 0.4 0 True
7 Bus7 0.4 0 True
8 Bus8 0.4 0 True
9 Bus9 0.4 0 True
10 Bus10 0.4 0 True
11 Bus11 0.4 0 True
12 Bus12 0.4 0 True
13 Bus13 0.4 0 True
14 Bus14 0.4 0 True
15 Bus15 0.4 0 True
16 Bus16 0.4 0 True
17 Bus17 0.4 0 True
18 Bus18 0.4 0 True



3.2. The Modelling of the LV Distribution Network in the Netherlands 23

Table 3.5: The simulation parameters of transformers.

Index Name hv lv sn (mva) vh (kv) vl (kv) vk (%) vkr (%) pre (kw) i0 (%)
0 Trafo1 Bus0 Bus1 0.315 11 0.4 4.0 1.25 0.8 0.2385
1 Trafo2 Bus0 Bus7 0.4 11 0.4 4.0 1.325 0.95 0.2375
2 Trafo3 Bus0 Bus14 0.4 11 0.4 4.0 0.325 0.95 0.2375

Transformers play an important role in transferring voltage levels from themedium voltage (11 kV) to the
low voltage (400 V). In the thesis work, transformers are designed for different residential areas (NZEB
areas, rural areas and urban areas). They have the same transformation level (11/0.4 kV) but different
rated power values. The transformers in the rural area and the urban area have the same values (400
kVA), whereas the value of the transformer in the NZEB area is 315 kVA. Moreover, as mentioned
above, two main voltage levels (MV for 11kV and LV for 400V) of different buses are considered. Ta
ble 3.4 and Table 3.5 depict designed parameters of the different buses and transformers, respectively.

Similar as the design of the transformers, different cable lines are taken into account for three resi
dential areas. Their parameters are acquired from the design handbooks [97], [98] and the Ref. [36].
The underground copper cable is selected for the NZEB area. Its type is NYY 4*35, and the total length

Table 3.6: The simulation parameters of cable lines.

Index Name Type From To l (km) r (ohm/km) x (ohm/km) c (nf/km) imax (ka)

0 LV
Line0.1

NYY
4*35 Bus1 Bus2 0.055 0.524 0.083 205 0.159

1 LV
Line0.2

NYY
4*35 Bus2 Bus3 0.04 0.524 0.083 205 0.159

2 LV
Line0.3

NYY
4*35 Bus3 Bus4 0.02 0.524 0.083 205 0.159

3 LV
Line0.4

NYY
4*35 Bus4 Bus5 0.08 0.524 0.083 205 0.159

4 LV
Line0.5

NYY
4*35 Bus5 Bus6 0.02 0.524 0.083 205 0.159

5 LV
Line1.1

NAYY
4*50 Bus7 Bus8 0.03 0.642 0.083 210 0.142

6 LV
Line1.2

NAYY
4*50 Bus8 Bus9 0.02 0.642 0.083 210 0.142

7 LV
Line1.3

NAYY
4*50 Bus9 Bus10 0.02 0.642 0.083 210 0.142

8 LV
Line1.4

NAYY
4*50 Bus10 Bus11 0.02 0.642 0.083 210 0.142

9 LV
Line1.5

NAYY
4*50 Bus11 Bus12 0.02 0.642 0.083 210 0.142

10 LV
Line1.6

NAYY
4*50 Bus12 Bus13 0.02 0.642 0.083 210 0.142

11 LV
Line2.1

NYY
4*70 Bus14 Bus15 0.06 0.268 0.082 220 0.232

12 LV
Line2.2

NYY
4*70 Bus15 Bus16 0.09 0.268 0.082 220 0.232

13 LV
Line2.3

NYY
4*70 Bus16 Bus17 0.03 0.268 0.082 220 0.232

14 LV
Line2.4

NYY
4*70 Bus17 Bus18 0.12 0.268 0.082 220 0.232

15 LV
Line2.5

NYY
4*70 Bus18 Bus19 0.03 0.268 0.082 220 0.232
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is 215m. The same cable material is used in the urban area. However, its type is NYY 4*70 with a total
length of 330m. The length of the cable line in the rural area is chosen as 130m with the aluminium
material, and its type is NAYY 4*50. Table 3.6 shows the simulation parameters of the cable lines
between two adjacent buses in various areas.

Table 3.7: The eight categories of the NEDU profiles [99].

Profile > ≤ other # #used
E1A  3x25A single tariff 205 101
E1B  3x25A night tariff 222 40
E1C  3x25A single tariff 81 34
E2A 3x25A 3x80A evening tariff 71 32
E2B 3x25A 3x80A double tariff 369 99
E3A 3x80A 100 kW UT2000h 75 32
E3B 3x80A 100 kW UT3000h 36 18
E3C 3x80A 100 kW UT3000h 17 5

Table 3.8: The simulation parameters of loads at time=0.

Index Name Bus p (mw) q (mvar) Scaling In Service
0 load0 2 8.72E04 2.88E04 1.0 True
1 load1 3 4.99E04 1.65E04 1.0 True
2 load2 4 6.23E04 2.06E04 1.0 True
3 load3 5 1.25E03 4.11E04 1.0 True
4 load4 6 4.99E04 1.65E04 1.0 True
5 load5 8 2.49E04 1.55E04 1.0 True
6 load6 9 2.49E04 1.55E04 1.0 True
7 load7 10 2.49E04 1.55E04 1.0 True
8 load8 11 2.49E04 1.55E04 1.0 True
9 load9 12 2.49E04 1.55E04 1.0 True
10 load10 13 3.74E04 2.32E04 1.0 True
11 load11 15 1.74E03 8.38E04 1.0 True
12 load12 16 1.87E03 8.97E04 1.0 True
13 load13 17 4.99E04 2.39E04 1.0 True
14 load14 18 2.87E03 1.38E03 1.0 True
15 load15 19 6.23E04 2.99E04 1.0 True

In the structure of the network, a total of 104 households with 15 aggregated loads are taken into
account. They belong to three typical residential areas which are owned by main Dutch DSOs. Load
profiles are attained by NEDU. There is a lot of data in the platform, and hence it is a key procedure of
processing the data used in pandapower. Table 3.7 illustrates eight categories of the NEDU profiles.
Similar as the study in Ref. [99], the profile values in E1A are chosen in the thesis work. The active
power values in the load profiles of the single customer i are extracted from the NEDU data based on
the equation 3.1 provided in Ref. [100]:

𝑣𝑖(𝑡) = 𝐴𝐸𝐶𝐼 ⋅ 𝑤𝑖(𝑡) (3.1)

Here AEC is the annual electricity consumption in kWh, and w(t) shows the normalised measurement
series in ℎ−1. The value of AEC is nearly 3500 kWh per capita in the Netherlands according to Ref.
[101], and the values of w(t) are equal to the profile values in E1A based on the annual electricity data
in 2019.

The reactive power values in the load profiles are calculated on the basis of the active power values.
The formula is depicted in the following equation:
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𝑄 = 𝑃 ⋅ tan𝜙 (3.2)
Here 𝜙 is the phase angle. To be specific, cos𝜙 is defined as the power factor. In the thesis work, the
values of power factors are 0.95, 0.85 and 0.9 for the NZEB area, the rural area and the urban area,
respectively.

It should be noted that the time resolution of the profile values in E1A is in 15 mins. Hence, the time
resolution of calculated profiles of each load is also in 15 mins. Table 3.8 illustrates calculation results,
using the above method, based on the electricity profiles of 15 aggregated loads. The time period in
the table is chosen as 0:000:15 a.m. on Jan 1, 2019 with its timestep is noted as 0. The electricity
profiles based on other timesteps can be calculated and set up via a similar procedure in pandapower.

3.2.4 Model Validation by Reference Values
As discussed in the literature review, JRC offers holistic overviews of the European electricity distri
bution networks with solutions by the Distribution System Operators Observatory project launched in
2016 [30] and 2018 [19]. In the thesis, the model from Ref. [36] is used, and it is validated against the
reference values offered in Ref. [31].

Table 3.9: The Dutch DSO indicators and their values in the designed network.

ID DSO Indicators Actual Values in the Designed Network
1 Number of LV consumers per MV consumers 104
2 LV circuit length per LV consumer Minimum (0.02), Maximum (0.12)

(km/LV consumer)
3 LV underground ratio (%) Minimum (19.3), Maximum (48.9)
4 Number of LV consumer per MV/LV substation Minimum (13), Maximum (61)
5 MV/LV substation capacity per LV consumer

(kVA/LV consumer) –
6 MV circuit length per MV supply point –
7 MV underground ratio (%) –
8 Number of MV supply points per HV/MV substation –

9 Typical transformation capacity of MV/LV
secondary substations in urban areas 400

10 Typical transformation capacity of MV/LV
secondary substations in rural areas 400

Table 3.10: DSOs indicators and reference values [31].

ID Indicators Average Value Median Value Min Value Max Value

1 Number of LV consumers
per MV consumers 671 401 22 1946

2 LV circuit length per LV consumer
(km/LV consumer) 0.03 0.025 0.012 0.16

3 LV underground ratio (%) 66 75 11 99

4 Number of LV consumer
per MV/LV substation 86 76 17 230

5 MV/LV substation capacity
per LV consumer (kVA/LV consumer) 4.76 3.88 2.1 13

6 MV circuit length per MV supply point
(km/MV supply point) 1.06 1.04 0.54 1.77

7 MV underground ratio (%) 59 61 10 100

8 Number of MV supply points
per HV/MV substation 155 127 33 460
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Table 3.11: Typical Transformation capacity indicators and reference values [31].

ID Indicators Common Values

9 Typical transformation capacity of MV/LV
secondary substation in urban areas (kVA) 400,630,1000

10 Typical transformation capacity of MV/LV
secondary substation in urban areas (kVA) 50,100,250,400,630

Table 3.9 illustrates 10 key Dutch DSO indicators, offered by DSOObservatory Project 2018 [19], when
designingMV and LV distribution networks. Their values, calculated based on Figure 3.6, are also listed
in the table. Moreover, the reference values are determined according to the EU level and listed in the
corresponding tables as illustrated in Table 3.10 and Table 3.11. It can be observed that the actual
values used in the designed network are in the same range as the reference values, and hence the
model used in the thesis is in accordance with the JRC reference.

3.2.5 RES Integration in the Network

The above distribution network does not take into account the penetration of RES. In the thesis work, in
order to study the effect of the RES integration, PV modules are added on the basis of the distribution
network. Especially, the rural area is selected as a use case to assess the simulation performance.
The number of households with PV modules in the rural area can be calculated according to the PV
penetration rate [36] as shown in Table 3.12. Figure 3.7 shows the structure of the distribution network
after considering the penetration of RES, which extends the original rural area network in Figure 3.6.

Table 3.12: Overview of the assumptions of PV panels for the three areas [36].

Area Households PV Penetration Rate Households with PV
NZEB area 30 100% 30
Rural area 13 35% 5
Urban area 61 19% 12

Figure 3.7: The Dutch LV distribution network of the rural area considering the PV integration.

APVmodule can bemodelled as one ‘static generator’ in pandapower. PV profiles are offered based on
the typical Dutch rural data from theOpen Power SystemData Platform [96]. Similar as the load profiles,
the obtained PV profiles are in 15min time resolution. Table 3.13 depicts the simulation parameters
of PV modules using in the simulation when its timestep is equal to 0. The PV profiles based on other
timesteps can be calculated by a similar procedure.
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Table 3.13: The simulation parameters of PV modules at time=0.

Index Name Bus p (mw)
0 sgen0 8 0
1 sgen1 10 0
2 sgen2 11 0
3 sgen3 13 0
4 sgen4 13 0

Having established the structure and the above data (inputs) in the electrical network, the simulation
can be carried out in pandapower. As mentioned earlier, the simulation time is based on one year.
Considering the data (csv format) of load profiles and PV profiles is in 15min time resolution, the
number of timesteps is 35040 in one year. In consequence, the outputs (voltage profiles) in 15min
time resolutions will be obtained after undertaking the simulation.





4
The Multicarrier Energy System Model

The objective of the chapter is to describe a representative multicarrier energy system in detail. First,
simulation tools are given to offer the adequate simulation platforms used in the thesis work. Second,
a heating network is designed and parameterised. Then, it is coupled with the electrical network de
veloped in the last chapter using electric boilers. Third, controllers with a rulebased operation strategy
are developed, and they play an essential role in controlling the energy system. Eventually, the applied
cosimulation methodology is depicted in depth.

4.1 Simulation Tools
OpenModelica, based on the objectoriented Modelica language, is an opensource tool for system
modelling and simulation. Compared with other simulation languages, it has notable advantages in
acausal modelling, multidomain modelling and so forth [22]. Moreover, models in the tool are easy
to be created, connected and simulated by means of a userfriendly graphical interface called Open
Modelica Connection Editor (OMEdit). Furthermore, Openmodelica offers various libraries such as
fluid components, control systems, etc. Hence, OpenModelica is selected to simulate models of the
heating network and controllers. The representative libraries for simulating the heating network con
tain IBPSA, DisHeatLib, AixLib, etc. The Modelica IBPSA library [102] is a free opensource library
employed to simulate buildings and district energy systems. On the basis of the IBPSA library, the
Modelica DisHeatLib library [103] is developed and focuses on modelling the district heating network.
The AixLib library [104] is also a free opensource Modelica library which concentrates on building per
formance simulations. In the thesis work, the AixLib library is used since it is the only one that works
well with the established model in OpenModelica, whereas others are found to not be fully compatible
with OpenModelica.

4.2 The Modelling of the Heating Network
Figure 4.1 illustrates the structure of a representative heating network which is designed according to
the work in Ref. [28]. Following the idea of treating the rural area as a use case when studying the
RES integration, the rural area with 13 households is also focused and considered as a use case in
the heating network. There are four main systems in the heating network: supply system (a thermal
plant), pipe system (thermal flow pipes and return pipes), heater & storage system (3 subsystems of
electric heaters and thermal energy storages) as well as demand system (13 households). It is worth
mentioning that the demand system is classified into six different groups,which are highlighted in Figure
4.1, owing to similar heating profiles in each group. Based on the above design methods and examples
provided by libraries of OpenModelica, the heating network is modelled, and its OpenModelica structure
is shown in Figure 4.3 where the heater & storage system and the demand system are packaged.
Furthermore, it can be seen that different temperature profiles are obtained by focusing on supply
temperatures and storage temperatures in the thesis work. They are measured by considering the
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temperatures of flow pipes and the layer of storage tanks, respectively. Due to three heater & storage
subsystems are designed, three groups of supply temperatures and storage temperatures are acquired.

Figure 4.1: The Dutch heating grid of the rural area (EH, electric heater; TES, thermal energy storage). The dash boxes
highlight six different groups of the households in the demand system.

Figure 4.2: The structure of one subsystem of the heater & storage system model in OpenModelica.

In the heater & storage system, three heaterstorage subsystems are designed, and each of them
connects the corresponding pipes. Figure 4.2 illustrates the detailed structure of the heater and storage
based on one subsystem. The inputs of the subsystem are three external signals (boiler input, charge
valve on/off, mass flow rate). The electric boiler connects to the controller input of the heater directly
after converting from the electrical energy to the heat energy with a fixed efficiency (0.97 in the thesis
work). Then, the water flows into the storage tank via a charging pump. The charge valve on/off signal
is linked to a simple valve. If the signal is in the charging state, water from the storage tank will flow
back to the heater via the pipe. The mass flow rate signal offers a rate value to a fan whose efficiency
is computed based on the efficiency and pressure curves [104].
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Figure 4.3: The structure of the Dutch heating network based on the rural area in OpenModelica. Four main systems are
highlighted in dash boxes.



32 4. The Multicarrier Energy System Model

Figure 4.4: The structure of one subsystem of the demand system model in OpenModelica.

Table 4.1: The design of parameters using in the heating network.

Systems Parameters Values Units

Supply System
Fixed value of pressure 306000 Pa
Pressure difference 400 Pa

Maximum heat flow rate
for heating (positive) 200000 W

Pipe System

The length of pipe1 200 m
The length of other pipes 20 m

Return temperature setpoint 55 degC
Hot water temperature setpoint 70 degC

Demand System

Nominal mass flow rate 0.05 kg/s
Fixed value of pressure 103125 Pa

Heat exchanger effectiveness 85% 
Peak load demand 2000000 W

Electric boiler efficiency 97% 
Heat flow rate 200000 W

Heater & Storage system
Nominal mass flow rate 0.1 Kg/s
Pressure difference 200 Pa

Diameter of circular pipe 0.05 m

In the demand system, six demand subsystems are considered as mentioned earlier, and Figure 4.4
depicts its structure based on one subsystem. The relevant demand (thermal load) profiles can be
collected from Open Power System Data Platform [96], NEDU [27], Modelica DisHeatLib Library [103],
etc. In the thesis work, the DisHeatLib Library is finally selected because its thermal data (space
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heating and the domestic hot water) has the same time resolution (15min resolution) as the data in
the electrical network. One of the important components in the subsystem is the heat exchanger with
a constant effectiveness. The formula related to the heat transfer can be depicted as follows:

𝑄 = 𝑄𝑚𝑎𝑥 ⋅ 𝜀 (4.1)

where 𝜀 is a constant effectiveness, and 𝑄𝑚𝑎𝑥 is the maximum heat that can be transferred.

Table 4.1 depicts the major parameters applying in the heating network. As mentioned earlier, they
are obtained from the related design handbooks, reference values from OpenModelica examples and
typical rural area systems, etc.

4.3 The Modelling of Controllers

In the electricity network, PV modules are added to study the renewable energy integration. However,
one of the main problems which cannot be ignored is the excess power from the PV modules, the
socalled PV surplus issue. For example, when the PV modules produce too much power in specific
weather conditions, the generated power values will be far more than the consumed power values.
In consequence, power imbalances are likely to occur with frequency variations, which are harmful to
system components even lead to the blackout for the whole system. [105].

In order to deal with the above issue, systemlevel controllers are proposed to utilise the extra power
from the PV modules. They consist of two typical types: rulebased and modelbased control schemes.
Ref. [28] offers an explicit methodology of the controllers. In the work, the rulebased controllers are
selected because a list of control rules is necessary to be established for tackling the PV surplus issue.
Furthermore, the controllers are casespecific with the expert knowledge, and they follow a series of
rules which is described as follows:

(𝜙1 → 𝜓1) ∧ ... ∧ (𝜙𝑖 → 𝜓𝑖) (4.2)

Here, 𝜓1 and 𝜙𝑖 represent a certain system state and a control action of the system inputs, respectively.

Operational strategies are used to describe control rules of the system controllers. The strategies
in the thesis work are formulated by taking into account the working states of the electric heaters and
thermal storage tanks in the heating network. They can be depicted by the following two algorithms.
Algorithm 1 and Algorithm 2 describe the charging state and the discharging state of the heating net
work, respectively.

Algorithm 1: The charging state of the heating network.
if (a1). excess PV power is produced and (b1). the temperatures in the storage tanks of their
top layers are lower than 95 °𝐶 then
The heater&storage system is in the charging state;

else
The storage tanks do not charge;

end
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Algorithm 2: The discharging state of the heating network.
if (a2). the district heating demand is sufficient and (b2). the temperatures of the top layers of
storage tanks are higher than the supply temperature of the district heating and (c2). the
supply temperature of the district heating is more than 55 °𝐶 then
The heater&storage system is in the discharging state;

else
The storage tanks do not discharge;

end

Figure 4.5: The structure of one subsystem of the controller model in OpenModelica. The modules related to the control rules
are highlighted in red.

The controllers are modelled in OpenModelica with offering control signals to three heater & storage
subsystems. Considering each subsystem has the same control signals, one heater & storage sub
system is zoomed with its structure to give a clear illustration as shown in Figure 4.5. The rules based
on the charging state and the discharging state are highlighted. In terms of the charging state, on/off
signals of the charge valve and the boiler input signal are considered as outputs to indicate the charging
state. In terms of the discharging state, the mass flow rate value is used as the only output to decide
whether the model is in the discharging state, and it is calculated by the following formula:

𝑚 = 𝑄
𝑐 ⋅ △𝑡 (4.3)

In equation 4.3, 𝑄 is the district heating demand energy which is calculated by the difference between
the value of the total demand and the peak load demand. 𝑐 represents the specific heat capacity
that is equal to 4200J/kg °C (water). △𝑡 is the temperature change. Considering 𝑚 is more than
zero in practice, one extra rule is added to determine whether the value of the temperature difference
is positive. In the thesis work, the temperature difference is established based on the comparison
between the actual water temperature and the return temperature setpoint (55°𝐶).

4.4 The Modelling of the Multicarrier Energy System

The electrical network in Chapter 3 is a pythonbased power flow model, the heating network and
the controllers, modelled in OpenModelica, are timecontinuous models. Moreover, the time step of
these models are also different. Hence, a tool is necessary to combine different networks to form the
multicarrier energy system and undertake the multidomain simulation.



4.4. The Modelling of the Multicarrier Energy System 35

4.4.1 The Methodology of Cosimulation

Cosimulation, as a powerful tool, plays an important role in analysing the interaction between various
networks in energy systems. It overcomes the limitation occurring in traditional tools which concentrate
on simulating one detailed structure with simplified models and ignore the interactions between models
[48]. EnergySim, previously called as FMUWorld, is one of the platforms of the cosimulation. Its
structure is shown in Figure 4.6 (a), and different FMU modules (i.e., four FMUs) are connected in
a canvas/World [23]. The simulation time of each energy domain model (electricity networks, thermal
networks, etc.) in energy systems have obvious distinctions. In EnergySim, thesemodels are packaged
as FMUs. Hence, the time step of each FMU is different. One of the prime functions of EnergySim is to
find an optimal time size (highlighted in red) for the different FMUs described in Figure 4.6 (b), and the
FMUs can exchange the related information in the World. Therefore, EnergySim is used to undertake
the the multidomain simulation with a combined analysis in the thesis work.

(a) (b)

Figure 4.6: The description of FMUWorld. (a) FMUWorld structure (b) Time step determination for simulation setups with variable
step sizes for each FMU [23].

4.4.2 The Establishment of the Multicarrier Energy System

A Dutch multicarrier energy system, also called as a hybrid network, is designed based on the rural
area with 13 households as illustrated in Figure 4.7. In the system, it combines the structure of the
electricity distribution network integrating PV modules (Figure 3.7) with the heating network (Figure
4.1). If the excess PV power occurs in the electricity network, it will be utilised by electric heaters and
storage tanks in the heating network according to the above operational strategies of the controllers.

Figure 4.7: The Dutch hybrid network of the rural area (PV, photovoltaic; EH, electric heater; TES, thermal energy storage).
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Figure 4.8: The simplified scheme of the cosimulation framework based on the multicarrier energy system in the rural area.
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Figure 4.8 depicts the simplified scheme of the cosimulation framework applied in the thesis work. The
Dutch multicarrier energy system, mainly focusing on the rural areas, is modelled by means of the co
simulation (EnergySim) which connects various networks including the electrical distribution network
(pandapower), the heating network (OpenModelica) as well as the controllers (OpenModelica). More
over, the interaction between the heating network and the controller can be depicted intuitively in this
figure. It can be seen that the controllers send the corresponding signals to the heating network ac
cording to the operation strategies listed earlier. The heating network returns the realtime temperature
measurement signals (the toplayer temperature of the specific storage tank and the supply tempera
ture) to the controller.

It should be noted that electric heaters are taken into account in the heater & storage system of the
heating network. Their characteristic is to transfer electrical energy to heat energy with a specific effi
ciency (0.97 in the thesis work). Hence, the electrical heaters are necessary to be added as extra loads
in the established electrical network in the rural area. Its load profile, when the timestep is equal to 0,
can be illustrated in Table 4.2. The main parameter of the electric heaters in the heating network are the
heat flow rate whose value is shown in Table 4.2. Furthermore, heat pumps are also key components
in the heater & storage system.

Table 4.2: The simulation parameters of electric heaters in the electrical network at time=0.

Name Bus p (mw) q (mvar) Scaling In Service
EH1 8 0 0 1 True
EH2 10 0 0 1 True
EH3 13 0 0 1 True

Having determined the structure and the above data, cosimulation can be undertaken by EnergySim.
It will take several hours even days if the simulation period of the energy system is settled as oneyear.
Hence, 12 representative days (3 days per season) are finally chosen as its simulation period. Con
sidering the data (csv format) is in 15min time resolutions, the number of timesteps is 1152 timesteps
based on 12 days. As a result, the outputs (3 groups of storage temperature profiles and supply tem
perature profiles) are obtained after carrying out the cosimulation.

It is also worth mentioning that different losses are taken into account in the above multienergy energy
system. In the electrical network, when using pandapower, the parameters of cable lines are designed,
and hence power losses, based on the power flow calculation, are included in the simulation. In the
heating network, four largest parameters affecting the losses involve the amount of insulation around
the pipes, the pipe dimension, supply and return temperature and the geographical distribution of the
heat demand [106]. These parameters are considered and designed before carrying out the simulation
in OpenModelica. Thus, the losses in the heating network are also included in the simulation.





5
Surrogate Models for the Multicarrier

Energy System
The objective of the chapter is to create surrogate models based on the multicarrier energy system
established in the previous chapter. First, computationally expensive issues are described, and this
is why surrogate models are introduced. Second, surrogate models with their modelling processes
are given by a list of mathematical expressions. Furthermore, different creating methods of surrogate
models are described with the focus on several main approaches used in the thesis work. Finally, the
application of surrogate models in the multicarrier energy system is depicted in detail.

5.1 The Background of Surrogate Models
Computationally expensive problems have received notable research attention in the engineering field.
The work in Ref. [107] offers its background in depth. During the conventional engineering design
process, several prototypes used to be established for the sake of providing benefits to the real system
design and optimisation. However, the process is often slow because different prototypes, rather than
a single one, need to be considered. A dramatic progress is achieved by computer simulations with
the corresponding models which decrease the number of prototypes, and hence the traditional design
process is accelerated efficiently. Then, a series of approaches, in order to make these simulation
models closer to the real case, is proposed. For instance, these models get more complicated [108],
and they might have more interactions [11]. As a consequence, simulation time increases significantly,
and computational costs are very expensive. These direct effects can be categorised into computa
tionally expensive problems [109], [110]

In the context, many researches have focused on dealing with computationally expensive problems. In
Ref. [108], the authors offer a detailed description of the problems by three different aspects: approx
imation models, optimisation algorithms and multi design objectives. Figure 5.1 depicts the aspects
intuitively. Furthermore, they also figure out effective solutions. In light of approximation models, their
goals are to employ a list of techniques to replace the expensive structures in the original models. The
techniques include modeldriven approaches, datadriven approaches and their hybridisation [107].
Modeldriven approaches, also named as model order reduction approaches, are limited to the appli
cation in specific domains. Moreover, they make approximations of original simulators by means of
mathematical methods. Datadriven approaches, compared with the modeldriven approaches, are
not problemspecific. Moreover, a term called surrogate models [110] is introduced because the ap
proaches ignore internal states of simulators treated as blackbox models. Hybrid approaches focus
on applying the problemspecific knowledge to datadriven models. Hence, the approaches combine
modeldriven approaches with datadriven approaches. In light of optimisation algorithms, there exist
two main branches: local search optimisation methods and multimodal global optimisation methods.
On one hand, a series of classical algorithms, such as gradientbased algorithms, shows excellent per
formances in the local search methods. On the other hand, a number of advanced methods, such as
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heuristic algorithms, have more advantages in the multimodal global methods. In light of multi design
objectives, it ought to be focused in particular because computationally expensive problems are likely
to appear in many engineering applications involving multiple objectives and complicated constraints.

Figure 5.1: Three main aspects considered in the computationally expensive problems according to Ref. [108].

The main focus of interest at the thesis work is employing datadriven approaches to tackle the compu
tationally expensive problems due to a great amount of data is used in the energy system simulation.
Surrogate models are established to replace expensive models in the whole system to reduce high
computation costs.

5.2 The Mathematical Description of Surrogate Models
Surrogate models, also called metamodels or approximate models [39], are commonly used to replace
expensivemodels in the datadriven approaches. Moreover, themodels depict the relationship between
independent variables (x) and dependent variables (y). Ref. [111] describes the approximation between
original models and the corresponding surrogate models. If the original model is represented as

𝑦 = 𝑓(𝑥) (5.1)

Then a surrogate model can be expressed as

𝑦 = 𝑓(𝑥) (5.2)

with 𝑦 = 𝑦 + 𝜖, where 𝜖 refers to the disturbance terms.

Moreover, in Ref. [107], the authors focus on the internal process of surrogate modelling, and its
mathematical expression is given as follows:

𝑎𝑟𝑔𝑚𝑎𝑥𝑡∈𝑇𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈𝛼 − Λ(𝜅, 𝑓𝑡,𝜃 , 𝐷) (5.3)

subject to

Λ(𝜅, 𝑓𝑡,𝜃 , 𝐷) ≤ 𝜏 (5.4)

where 𝑓 represents an expensive function, 𝐷 is the data sample collection with the corresponding
evaluations, 𝜅 represents an error function such as mean squared error (MSE), root mean square
error, etc., Λ is the model quality estimator, 𝜏 is the targeted quality value, 𝑡 and 𝑇 are model types and
available model types. 𝜃 and 𝛼 represent hypermetres and available hypermetre values, respectively.

5.3 Detailed Method Illustrations of Creating Surrogate Models
Different creating methods of surrogate models have been summarised in Chapter 2. As one of the
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approaches, machine learning algorithms have recently seen rapid growth in the research of the en
ergy domain. Hence, ML algorithms are employed to establish surrogate models, and the multioutput
regression problem will be concentrated. Different approaches have been proposed to deal with the
problem. In the thesis work, eight typical methods (LR, RCLR, RCSVR, DT, RF, kNN, MLP, LSTM)
are chosen and used in the algorithms, and their descriptions are given as follows.

5.3.1 Linear Regression
Regression analysis, as one of the statistical methods [112], is used to estimate the relationships be
tween a dependent variable 1 (y) and one or more independent variables (𝑥). One of the common

Figure 5.2: Population and sample regression [113].

types in the regression analysis is linear regression models. Its linear relationship between 𝑥 and 𝑦,
the socalled regression equation [114], is expressed as:

𝑦 = 𝑋𝛽 + 𝜖 (5.5)

Equation 5.5 can be expanded to the form of matrix, which can be written as the equation 5.6:

𝑦 = [1 𝑥1 𝑥2 ... 𝑥𝐾]
⎡
⎢
⎢
⎢
⎣

𝛽0
𝛽1
𝛽2
...
𝛽𝐾

⎤
⎥
⎥
⎥
⎦

+ 𝜖 (5.6)

The equation 5.6 can be organised and expressed as:

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽𝐾𝑥𝐾 + 𝜖 (5.7)

where 𝛽0, 𝛽1, 𝛽2, 𝛽𝐾 represent the regression coefficients.

Following the above definition, one of the simplest equations is a single linear regression model [115]
when 𝐾 is equal to 1. Figure 5.2 shows an example of the model. It can be depicted as:
1In this thesis work, the terms dependent variable, target variable and response variable will be used interchangeably.
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𝑦𝑖 = 𝛽0 + 𝛽𝑖𝑥𝑖 + 𝜖𝑖 (5.8)

with:

𝜖𝑖 ∼ 𝑁(0, 𝜖2) 𝑎𝑛𝑑 𝑐𝑜𝑣(𝜖𝑖 , 𝜖𝑗) = 0,𝑤ℎ𝑒𝑛 𝑖 ≠ 𝑗 (5.9)

herein 𝑖 refers to a particular observation, and 𝜖𝑖 is a random error or disturbance terms.

The single linear regression model is a good example to illustrate the function of regression analysis.
As discussed above, its prior goal is to estimate the relationship between 𝑦 and 𝑥. From the equa
tion 5.8, it is easy to get the estimated parameters are 𝛽0 and 𝛽𝑖. A typical method of the estimation
is the least squares regression which forms the following optimisation problem with no constraints [115]:

Minimize

𝑛

∑
𝑖=1
[𝑦𝑖 − (𝛽0 + 𝛽𝑖𝑥𝑖)]2 (5.10)

It is worth mentioning that the above linear regression is simple to implement. However, according to
Ref. [116], it might introduce the underfitting or overfitting issue. Ridge regression, as a variant of linear
regression, is mainly taken into account to overcome the issue in the thesis work.

5.3.2 Regressor Chain
Regressor chain method is mainly applied in multioutput regression problems with the idea of chaining
singletarget models [117]. When predicting all target variables together is difficult, the method is very

Figure 5.3: Graphical illustration of regressor chain [118].

useful by considering prediction values sequentially. For instance, an easy application of the regressor
chain is to create a linear sequence of models on the basis of singleoutput regression models. Figure
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5.3 clearly shows its working principle by taking into account three output variables (𝑌1, 𝑌2, 𝑌3) and one
input variable (𝑋) [118].

In the training process, a model (𝑓1) is fitted for the first dependent variable (𝑌1) when its input is an
independent variable (X). Then, a new model (𝑓2) is fitted for the second dependent variable (𝑌2) by
considering two inputs: the dependent variable (X) and the target variable (𝑌1). Similarly, a model (𝑓3)
is fitted for the third response variable (𝑌3) when its input variables are the dependent variable (𝑋) and
the independent variables (𝑌1, 𝑌2).

In the testing process, the first stage begins with acquiring the predicted output variable (𝑌1) by us
ing the first model (𝑓1) and the test input data (𝑥𝑞). Then, a prediction for the second output variable
(𝑦𝑞2 ) is made by the second model (𝑓2) , the same test data (𝑥𝑞) as well as the first predictions (𝑦𝑞1 ). In
the last stage, the third output variable (𝑦𝑞3 ) is predicted by using the concatenated data (𝑥𝑞, 𝑦𝑞1 , 𝑦𝑞2 )
and the third model (𝑓3).

5.3.3 Linear Support Vector Machine
Support vector machine algorithm, first proposed by Vladimir Vapnik and his colleagues, is a promi
nent supervised machine learning method for classification and regression [119]. The advantage of the
algorithm is that it offers more choices of penalties and loss functions. Furthermore, it is expected to
scale better when the numbers of samples are large [120].

If a training set (𝑥1, 𝑦1), …, (𝑥𝑖 , 𝑦𝑖) is given, then the goal of the SVM can be described to find a fit
ting function and make sure that it is as flat as possible [121]. In other words, the deviation between
the function and the target (𝑦𝑖) is less than ε. The fitting function can be depicted by

𝑓(𝑥) = 𝜔𝑥 + 𝑏 (5.11)

Here 𝜔 is the weighted vector, and 𝑏 represents the bias. Due to the fitting function is linear, the
definition of linear SVM is introduced.

Figure 5.4: Support vector machine [121].

Figure 5.4 can explain the algorithm intuitively. The solid line represents the targeted fitting function.
The dash lines are called as the negative hyperplane and positive hyperplane, respectively. The vec
tor points closest to the hyperplanes are known as the support vector points. The distance between
the vectors and the hyperplane is named as the margin. Hence, the goal of SVM can be depicted as
a typical optimisation problem with searching for the maximum margin value. The solutions and the
corresponding constraints in the problem are also illustrated in the figure.

However, according to Ref.[122], the algorithm cannot support the multioutput regression. An effective
solution is to divide the regression into multiple singleoutput regressions. The solution has the similar
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idea as the above regressor chain algorithm. Hence, the linear SVM is combined with the regressor
chain to achieve the multioutput regression in the thesis work.

5.3.4 Decision Tree
Decision tree, as a nonparametric supervised learning method, is applied in two important aspects:
classification and regression [123]. Hence, the definitions of classification trees and regression trees
are introduced. One of the main differences between these two trees is dependent variables [124]. The
classification trees take unordered values as their dependent variables, whereas the regression trees
take continuous values or ordered discrete values. Figure 5.5 shows the basic structure of a threelayer
decision tree.

Figure 5.5: Basic structure of a threelayer decision tree [125].

A decision tree has nodes, branches and layers which originate from the definitions in the graph theory.
In a graph G = (V, E), it includes a finite, nonempty set of nodes V and edges E [126]. With regard
to the nodes, there are three various nodes: root (topmost) node, leaf node and internal node. Take
the threelayer decision tree as an example, the whole tree begins from the node which is called a root
node or a topmost node. The nodes without any extension are named as leaf nodes or terminals. The
other nodes in the tree are called internal nodes except for root nodes and leaf nodes. With regard to
the edges, they are known as branches in a tree. The branches, as a subsection of the decision tree,
play an essential role in connecting various nodes. In regression trees, particularly, each internal node
corresponds to a test on a feature. Each branch and each leaf node represent the decision rule and
the prediction result, respectively. There also exist other definitions. To illustrate, the layer of the tree
is described by the maximum depth of a node defined as the path length from the root node to the leaf
node [127].

5.3.5 Random Forest
The above decision tree method is easy to understand and implement. However, the method is vulner
able to overfitting issues particularly when the layers of a tree are extremely deep [128]. One available
remedy is to use the random forest algorithm introduced by Breiman [129]. Random forest is defined
as an ensemble which combines various tree predictors ℎ(𝑥; 𝜃𝑘), 𝑘 = 1, 2, ...𝐾. Here 𝑥 refers to the in
put data with associated random vector 𝑋, and 𝜃𝐾 represents a series of identical and independent
distributed random vectors. Figure 5.6 illustrates an architecture of a random forest model. It can be
observed that each individual tree offers a prediction value (i.e., 𝑘1). Then, the final prediction value
(𝑘) of the whole model is selected by votes in the classification or averages in the regression with the
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highest weighted values.

Figure 5.6: Architecture of a random forest model [129].

The reason why the random forest algorithm can avoid the overfitting issues can be illustrated by the
following mathematical expressions [130]. In terms of the regression, the prediction of the random
forest can be depicted as:

ℎ(𝑥) = 1
𝐾

𝐾

∑
𝑘=1

ℎ(𝑥; 𝜃𝑘) (5.12)

When 𝑘 → ∞, the Law of Large Numbers gives:

𝐸𝑋,𝑌(𝑌 − ℎ(𝑥))2 → 𝐸𝑋,𝑌(𝑌 − 𝐸𝜃ℎ(𝑋; 𝜃))2 (5.13)

where 𝑌 is the outcome of the whole model. Hence, the random forest algorithm is able to tackle the
overfitting issues due to the convergence shown in the expression.

Having established the models of the random forest, one of the important aspects in the regression
is to enhance its accuracy. In order to give a detailed description, several definitions need to be intro
duced in advance [130]. First, the average prediction error of an individual can be expressed as:

𝑃𝐸𝑡∗ = 𝐸𝜃𝐸𝑋,𝑌(𝑌 − ℎ(𝑋; 𝜃))2 (5.14)

Second, an assumption is added that the tree is unbiased for all 𝜃:

𝐸𝑌 = 𝐸𝑋ℎ(𝑋; 𝜃) (5.15)

If the convergence result in Formula 5.13 is noted as 𝑃𝐸𝑓∗, then

𝑃𝐸𝑓∗ ≤ 𝜌𝑃𝐸𝑡∗ (5.16)

where 𝜌 represents the weighted correlation between 𝑌 − ℎ(𝑋; 𝜃) and 𝑌 − ℎ(𝑋; 𝜃′). Therefore, it can
be seen that the low weighted correlation value and average prediction error are two key aspects for
obtaining the high accuracy in the random forest regression.
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5.3.6 knearest Neighbours
The knearest neighbours algorithm is a supervised machine learning method [131]. Ref. [132] depicts
the definition of the kth nearest neighbour. Define 𝑥 ∈ 𝑅𝑑 and the data (𝑋1, 𝑌1), (𝑋2, 𝑌2), ..., (𝑋𝑛 , 𝑌𝑛) based
on the increasing order of distance values between (𝑋𝑖) and 𝑥, noted as ∥ 𝑋𝑖 − 𝑥 ∥. Then, the data
sequence can be obtained:

(𝑋(1,𝑛)(𝑥), 𝑌1,𝑛(𝑥)), ..., (𝑋(𝑛,𝑛)(𝑥)𝑌(𝑛,𝑛)(𝑥)) (5.17)

In the equation 5.17, 𝑋(𝑘,𝑛)(𝑥) is defined as the 𝑘th nearest neighbour of 𝑥.

Figure 5.7: An example of knearest neighbor algorithm illustration used to predict the class of a new data point [133].

Figure 5.7 shows an example of the knearest neighbour algorithm illustration by predicting the class of
a new data point. There are two initial class labels (Class A and Class B), and the purple diamond is the
new data point. When 𝑘 is equal to 3, the algorithm will just consider the three closest neighbours (two
points belonging to Class B and one point belonging to Class A) inside the blue circle with the dotted
line. Hence, the new data point is in the category of Class B. When 𝑘 is equal to 5, seven nearest
neighbours (four points in Class A and three points in Class B) will be taken into account inside the
blue circle with the solid line. In this case, the new data point belongs to Class A. Therefore, in the
algorithm, the value of 𝑘 plays an essential role in determining the prediction of the new data point.
Furthermore, it is worth mentioning that the circles in the figure are drawn according to the distance
metric [133]. The commonly used metric is called Euclidean distance (ED) [134] whose expression is
shown as follows:

𝐸𝐷(𝑋, 𝑌) = √
𝑛

∑
𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 (5.18)

Herein 𝑥 and 𝑦 are depicted by feature vectors 𝑥 = (𝑥1, 𝑥2, ..., 𝑥𝑛) and 𝑥 = (𝑦1, 𝑦2, ..., 𝑦𝑛), respectively. 𝑛
refers to the dimensionality of the feature vectors.

5.3.7 Multilayer Perceptron
A neural network (NN), also called an artificial neural network, is inspired by the organisation of the
human brain [135]. It consists of a collection of mathematical or computational models that are made
of natural or artificial neurons. Its categories can be illustrated in Figure 5.8.



5.3. Detailed Method Illustrations of Creating Surrogate Models 47

Figure 5.8: A taxonomy of neural network architectures [135].

A singlelayer perceptron, as one of the branches in feedforward networks, is proposed by Frank
Rosenblatt [136]. It is a simple learning machine whose inputs are a vector of real numbers and output
is a real number. Figure 5.9 shows the structure of a perception. The mathematical expression of the
perception can be described as follows [117], [137]:

𝑦 = 𝑓(𝜔1𝑥1 + 𝜔2𝑥2 + ... + 𝜔𝑛𝑥𝑛 + 𝑏) = 𝑓(𝜔𝑇𝑥 + 𝑏) (5.19)

where 𝑤1, 𝑤2, ..., 𝑤𝑛 represent different weights, 𝑏 is a bias, 𝑓 is an activation function, 𝑥1, 𝑥2, ..., 𝑥𝑛 rep
resent inputs, and 𝑦 is an output. It is worth mentioning that the activation function, in the process
of training, will be optimised to reduce the error between the output value of the perception for the
corresponding input and the target output value.

Figure 5.9: The general structure of a perception [138].

The above perception algorithm is simple to implement, however it does not handle nonlinearly sep
arable data [137]. Hence, a multilayer perception algorithm is introduced to overcome the drawback
[139]. MLP is a neural network which incorporates additional multilayer perceptions. Moreover, the
structure of a MLP is fully connected that means each node of the MLP is connected with every node in
the adjacent layers. Figure 5.10 illustrates an example of a MLP with two hidden layers. In particular,
if the structure of a MLP has many hidden layers, it can be called a deep neural network [140].
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Figure 5.10: An example of the multilayer perception [139].

The mathematical expression of a MLP can be depicted [139]:

𝑌𝑀𝐿𝑃 = 𝑓(𝑋𝑀𝐿𝑃) (5.20)

where 𝑋𝑀𝐿𝑃 = [𝑛 × 𝑘], 𝑌𝑀𝐿𝑃 = [𝑛 × 𝑗], 𝑋𝑀𝐿𝑃 is the input vector and 𝑌𝑀𝐿𝑃 is the output vector. 𝑓 is the
activation function. 𝑛 represents the number of training patterns, 𝑘 and 𝑗 are the number of input nodes
and output nodes, respectively.

5.3.8 Long Shortterm Memory
A recurrent neural network (RNN), as shown in Figure 5.11, is another important branch in the neural

Figure 5.11: The structure of the RNN [141].

networks. The network is mainly used to handle timeseries data in comparison with other algorithms
[142]. A simple structure of RNN is shown in Figure 5.11. After being unfolded, the right part in the
figure can be described as follows [141]:

ℎ(𝑡) = 𝜎(𝑈𝑥(𝑡) +𝑊ℎ(𝑡−1) + 𝑏) (5.21)

𝑦(𝑡) = 𝜎(𝑉ℎ(𝑡) + 𝑐) (5.22)

where 𝑥(𝑡), 𝑦(𝑡) and ℎ(𝑡) refer to the input vectors, output vectors and hidden vectors, respectively at 𝑡;
𝜎 is the activation function; 𝑏 and 𝑐 are the bias terms; 𝑈,𝑊 and 𝑉 represent connection weights.
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Figure 5.12: The structure of the long shortterm memory neural network [143].

RNN networks, as discussed above, mainly manage the temporal data. However, the typical RNN
models are limited to shortterm memories like 510 time steps according to Ref. [144]. Hence, a
neural network called long shortterm memory is introduced, and Figure 5.12 illustrates its structure.
Ref. [143] offers the mathematical expressions of the LSTM structure in detail. Three gates (forget
gate, input gate and output gate) can be described as:

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑓) (5.23)

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑖) (5.24)

𝑂𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑜) (5.25)

where 𝑓𝑡,𝑖𝑡,𝑂𝑡 are the forget gate, input gate and output gate, respectively. 𝑊 and 𝑏 represent the
weight matrices and bias of the corresponding gates; 𝜎 is the nonlinear function, and the sigmoid func
tion is selected as usual because it is used to update or omit the new information (1 or 0).

An intermediate state 𝑁𝑡 in LSTM can be expressed as:

𝑁𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑛[ℎ𝑡−1, 𝑋𝑡] + 𝑏𝑛) (5.26)

here𝑊𝑛 and 𝑏𝑛 represent the corresponding weight matrices and bias; 𝑡𝑎𝑛ℎ refers to the tanh function
which determines the weight values.

In consequence, the updating values of the memory call and hidden state can be shown as:

𝐶𝑡 = 𝐶𝑡−1𝑓𝑡 + 𝑁𝑡𝑖𝑡 (5.27)

ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ(𝐶𝑡) (5.28)

where 𝐶𝑡−1 and 𝐶𝑡 refer to the cell states at 𝑡 − 1 and 𝑡, respectively; ℎ𝑡 is the hidden state at 𝑡.
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Figure 5.13: The structure of the LSTM model used in the thesis work.

It should be mentioned that LSTM algorithm has different models, and stacked LSTM is selected due
to its simple structure in the thesis work. Its structure is depicted in Figure 5.13. It can be seen that,
beside LSTM layers, different layers are covered in the structure. LeakyRelu is one of the common
activation functions. The dropout technique is used for regularisation [145]. The dense layer is another
basic layer in neural networks. Furthermore, in order to reduce the computation time, a callback called
EarlyStopping in tf.keras is taken into account in its simulation.

5.4 The Modelling of Surrogate Models
The above eight methods are used to create surrogate models. Scikitlearn and Tensorflow, as simula
tion platforms, are depicted in detail. Furthermore, the modelling process of surrogate models including
their structures and datasets are illustrated. Finally, several indicators are described to compare the
performances between the surrogate models and the original model.

5.4.1 Simulation Platforms
Scikitlearn, mainly written in Python, is an important library by offering algorithms to deal with machine
learning problems [24]. It is established on the basis of several libraries such as Numpy [146], Scipy
[147] and Cython [148]. Numpy has advantages when handling large arrays and multidimensional
matrices. Scipy is a powerful scientific computing tool. Cython performs the function of integrating C
language in python.

Scikitlearn plays an essential role in enhancing the computation efficiency. Table 5.1 shows com
puting time comparisons between six algorithms when using different machine learning libraries on
the Madelson data set. It can be seen that scikitlearn, compared with the other five libraries, shows
the best performances in Supper Vector Classification, LARS, Elastic Net and PCA. In the algorithm
of KNearest Neighbours, the computing time of scikitlearn is similar to pymvpa which has the most
excellent performance. In the algorithm of kMeans, the performance of Scikitlearn is limited owing to
NumPy’s array operations [24]. In the work, Scikitlearn is used to create different algorithms includ
ing linear regression, regressor chain, support vector machine, decision tree, random forest, knearest
neighbours as well as multilayer perceptron.
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Table 5.1: Time in seconds on the Madelson data set for various machine learning libraries exposed in Python [24].

scikitlearn mlpy pybrain pymvpa mdp shogun
Support Vector Classification 5.2 9.47 17.5 11.52 40.48 5.63

Lasso (LARS) 1.17 105.3  37.35  
Elastic Net 0.52 73.7  1.44  

kNearest Neighbors 0.57 1.41  0.56 0.58 1.36
PCA (9 components) 0.18   8.93 0.47 0.33
kMeans (9 clusters) 1.34 0.79 ⋆  35.75 0.68

License BSD GPL BSD BSD BSD GPL

: Not implemented. ⋆: Does not converge within 1 hour.

Figure 5.14: Two Keras implementations: kerasteam (left) and tf.keras (right) [149].

Keras, an Application Programming Interface (API) for deep learning, is mainly employed to build neu
ral network models [26]. Here the term called kerasteam describing the implementation of Keras is
followed as stated in Ref. [150]. Kerasteam is established on the basis of Theano [149] and Ten
sorFlow [151]. Theano, a pythonbased library,arrays. Tensorflow is an opensource library applied
for building computational graphs. Moreover, kerasteam depends on a computation backend which
can be selected from one of the libraries including TensorFlow, Theano, Mxnet, etc. Particularly, when
TensorFlow is chosen as the backend of Keras, it has the own implementation, named as tf.keras, with
TensorFlow (TF)only features as depicted in the right part of Figure 5.14. In the thesis work, long
shortterm memory algorithm is established by Keras, and tf.keras is selected as the implementation
due to no additional TF features are considered.

5.4.2 The Establishment of the Surrogate Models in the Energy
System

Themulticarrier energy system in the rural area has been established as shown in Chapter 4. However,
its computation costs are expensive when carrying out its simulation in the system. Hence, surrogate
models based on the system are necessary to be created to enhance the computation efficiency. Fig
ure 5.15 shows the simplified scheme of the surrogate models in the multicarrier energy system. In the
thesis work, the electrical network and the heating network are replaced by surrogate models, respec
tively. In order to give a detailed description, the surrogate models are zoomed and depicted in Figure
5.16. The surrogate models in two networks have similar functions such as enhancing the computation
efficiency and predicting multiple outputs. However, they have notable differences, and hence they are
split into two models.
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Figure 5.15: The simplified scheme of the surrogate models based on the multicarrier energy system.
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(a)

(b)

Figure 5.16: The structures of surrogate models used to replace the original networks in the energy system. (a). the surrogate
model in the electrical network; (b). the surrogate model in the heating network.

First, the difference is employed in various characteristics of the simulation in these two networks. In the
electrical network, its output variables (voltages) are a result of staticpower flow solution implemented
by pandapower. Thus, its surrogate model replaces the power flow functionality for the electrical net
work. For a given set of inputs (PV and load setpoints) at a particular time, the power flow model and
the surrogate model calculate the voltages for each bus at that time. In the heating network, its output
variables (temperatures) are a result of dynamic simulation implemented by Open Modelica. Hence,
the surrogate model here therefore replaces the dynamic simulation. For a given set of inputs (excess
PV and thermal demand setpoints), the dynamic simulation model and the surrogate model calculate
the storage and supply temperatures at specified points in the heating network.

It must be noted here that both the surrogate models developed here take inputs as an array of values
at a particular time instant, and convert the array into the required output variables corresponding to
those input values at that time. The surrogate models here do not capture sequential information in the
input data, and therefore the outputs of each surrogate model at any instant of time are independent of
the model state at previous time instants. In essence, surrogate models for both networks are snapshot
models. Furthermore, the surrogate models without considering the sequential information in the input
data are evaluated initially. Later, surrogate models which have the ability of dealing with the sequence
data, such as LSTM, will be investigated. Moreover, the two approaches to surrogate modelling will be
compared in detail.

Second, the input dataset and the output dataset of the surrogate models have obvious distinctions.
The electrical network simulation is for a period of one year. In each 15 min time steps, a power flow is
calculated based on the values of loads and pv modules, and then bus voltages are measured. There
fore, generated dataset has dimensions of (35040, 37) for inputs and (35040, 7) for outputs, which
are corresponding to 37 inputs for pv modules, loads, and 7 outputs for 7 bus voltages. The dynamic
simulation for the heating network is carried out along with electrical network and controller model. The
thermal demand is given as setpoint within the heating network, while the controller determines the
valve positions of storages and electric heater setpoints within the heating network. The dynamic sim
ulation calculates the temperatures at various points in the network with a timestep of 0.1 sec. However,
since the cosimulation for an entire year for the combined controller, electrical and heating network can
take several hours and even simulated days, only 12 representative simulated days (three represen
tative days for each season) with simulation time step of 0.1s. In order to train the surrogate models,
however, the dataset is generated by sampling the results of highresolution temperature profile from
the dynamic simulation at every 15 minutes. In each 15 min time steps, a dynamic simulation is carried
out based on the values of excess PV profiles and demand profiles, and then storage temperatures
and supply temperatures are measured. Hence, generated dataset has dimensions of (1152, 10) for
inputs and (1152, 6) for outputs, which are corresponding to 10 inputs for excess PV profiles, demand
profiles, and 6 outputs for 3 storage temperature profiles and 3 supply temperature profiles.
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5.4.3 The Description of the Modelling Approach
Having determined the above input dataset and output dataset, they can be trained and tested in the
machine learning algorithms to create the corresponding models in the electrical network and the heat
ing network, respectively. In each network, the modelling approach of the algorithms are similar.

As mentioned in the literature review, train/test data splitting is one of the key procedures in the machine
learning algorithms. In the thesis work, except the LSTM algorithm, the above input/output dataset
of the electrical network and the heating network is split by 8020 ratio in the aforementioned ma
chine/deep learning algorithm. 80% data is used for training the dataset, and 20 % data is used for
testing. Then, data scaling is carried out as a preprocessing procedure. After that, except LSTM
model, nfold cross validation method with n = 10 based on the splitting percentage is employed to
avoid the overfitting issue. Furthermore, the appropriate hyperparameters in each algorithm are se
lected in the process. The detailed description of the cross validation method is offered as depicted in
Figure 2.8.

Table 5.2: Tuned hyperparameters in the machine/deep learning algorithm.

Machine/Deep Learning Algorithms Hyperparameters and Tuning Ranges

LR
• alpha: [1, 0.1, 0.01, 0.001]
• solver: [svd, cholesky, lsqr, sparse_cg]
• max_iter: [100, 1000, 10000]

RCLR
• based_alpha: [1.0, 0.1, 0.01]
• based_solver: [svd, cholesky, lsqr, sparse_cg]
• based_max_iter: [10, 100, 1000]

RCSVR • base_estimator__C: [0.1, 1, 10, 100]
• base_estimator__tol: [0.00001, 0.0001, 0.001]

DT
• max_depth: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
• min_samples_leaf: [1, 2, 3, 4, 5]
• min_samples_split: [2, 3, 4, 5, 6, 7, 8, 9, 10]

RF

• n_estimators: [10, 30, 100]
• max_depth: [10, 20, 30, 40, 50]
• min_samples_split: [2, 3, 4, 5]
• min_samples_leaf: [1, 2, 3, 4, 5]

kNN • n_neighbors: range (1, 50)
• p: [1, 2]

MLP

• hidden_layer_size: [(50,50), (100,50)]
• activation: [tanh, relu]
• solver: [sgd, adam]
• alpha: [0.0001, 0.05]
• learning rate: [constant, adaptive]

LSTM

• hidden_nodes: [128, 64, 32]
• dropout: [0.2, 0.3]
• batch_size: [32, 64]
• epoch: [10, 50]

Hyperparameters,as a key branch of model parameters, play an important role in the machine learning
algorithms. Compared with the ordinary parameters, hyperparameters need to be established manu
ally before the machine learning model is trained [152]. Table 5.2 depicts selected hyperparameters
and their tuning ranges used in the thesis work. It can be seen that each algorithm has a set of various
hyperparameters. Hence, it is essential to obtain the appropriate hyperparameters by specific optimi
sation approaches. Two common approaches, including grid search and random search, are mainly
considered in the thesis work. The major difference between them is their search space [153]. The
random search focuses on a bounded domain where sample points are chosen randomly. In the thesis
work, the approach is used to find the appropriate hyperparameters in the algorithms of RCSVR, DT,
RF and MLP. Whereas, the grid search concentrates on a grid where each position is assessed. The
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approach is considered in LR, RCLR and kNN algorithms to assist in searching for their appropriate
hyperparameters.

It should be noted that the above two optimisation approaches are still not employed in the LSTM algo
rithm. The hyperparameters of the LSTM model are easily tuned by means of the method mentioned
in Ref. [154].

5.4.4 Performance Indicators

As discussed above, surrogate models are used to replace the original simulation models. Hence, it
is necessary to introduce relevant performance indicators (metrics) to determine whether the surro
gate models can perform the above function. It is worth mentioning that the term “original model” and
“surrogate model” are used in the following description to distinguish two models. In the thesis work,
two indicators are implemented to compare the performances between the surrogate models and the
original models.

The first indicator is the speedup factor which aims to observe the enhancement based on the av
erage calculating time of each surrogate model compared with the original model [68]. The SUF is
defined on the basis of the simulation time, and it can be expressed as:

𝑆𝑈𝐹 =
1
𝑁 ∑

𝑁
𝑛=1 𝑡𝑜𝑟𝑖,𝑛

1
𝑁 ∑

𝑁
𝑛=1 𝑡𝑠𝑢𝑟,𝑛

(5.29)

where 𝑡𝑜𝑟𝑖,𝑛 is the simulation time of each repetition (noted as 𝑛) based on the original model; 𝑡𝑠𝑢𝑟,𝑛
is the simulation time of each repetition based on the surrogate model; 𝑁 is the number of repetitions,
and its value is equal to 10.

The second indicator is the RMSE whose main objective is to estimate the prediction accuracy of
the surrogate models. RMSE can be defined in the following equation.

𝑅𝑀𝑆𝐸 = √ 1
𝑁 ⋅ 𝑀 ⋅ 𝐿

𝑁

∑
𝑛=1

𝑀

∑
𝑚=1

𝐿

∑
𝑙=1
(𝑦𝑛𝑚𝑙 − 𝑦𝑛𝑚𝑙)

2 (5.30)

where 𝑛 is the number of repetitions of the experiment. 𝑦𝑛𝑚𝑙 is an element in Ya (matrix of actual values
of outputs), while 𝑦𝑛𝑚𝑙 is an element in Yp (matrix of predicted values of outputs). The dimension of Ya
and Yp is 𝐿 ×𝑀. 𝑀 is the number of output variables which represent predicted bus and temperature
profiles in the electrical network and heating network, respectively. 𝐿 is the number of samples. As
mentioned earlier, all the surrogate models considered in this section do not consider the sequential
information in the input data. It means each 𝑙 ∈ 𝐿 is a snapshot. As for the electrical network, the
snapshot can be depicted that voltage values of buses are obtained using power flow calculation. As
for the heating network, the snapshot can be described that temperatures are sampled at every 15
minutes from the result of the dynamic simulation. In short, the surrogate models in each network
predict values of desired output variables for a given snapshot of input variables. To give a better
illustration, Figure 5.17 (a) and 5.17 (b) describe the dataframe of Ya and Yp when 𝑛 is equal to 1.
Table 5.3 shows the key parameters when calculating the above performance indicator.
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(a)

(b)

Figure 5.17: The description of the dataframe of Ya and Yp in two networks. (a). The dataframe of Ya (b). The dataframe of Yp.

Table 5.3: Key parameters when calculating performance indicators in the electrical and heating network.

Number of
Total Samples L M N

Electrical Network 35040 7008 7 10
Heating Network 1152 231 6 10



6
Results & Discussions

The objective of the chapter is to provide simulation results based on the original model and surrogate
models in the electrical network and heating network, respectively. First, seven surrogate models are
taken into account initially, and their performances based on two metrics (speedup factor and root
mean square error) in each network are given, respectively. The framework of these models are based
on Scikitlearn. The models consist of linear regression, linear regression with regressor chains, linear
support vector machine with regressor chains, decision tree, random forest, knearest neighbours as
well as multilayer perceptron. Second, one extra surrogate model called long shorttermmemory model
is considered, and its framework is based on TensorFlow. Its performance is offered and compared
with the seven surrogate models in the heating network. The simulation in the thesis work is mainly
coded in Python 3.7 and performed on a HP personal computer with Intel (R) Core (TM) i78750 CPU
@ 2.20 Ghz and 16 GB RAM.

6.1 Metric 1: Speedup Factor
Surrogate models are introduced to improve the computation efficiency by replacing expensive parts
in the original model. Hence, the metric related to the simulation time is taken into account initially.
First, the results based on the simulation time of the original model is given. Second, the results based
on the simulation time of the surrogate models are provided. Finally, the performances between the
original model and the surrogate models are compared. Speedup factor, defined on the basis of the
simulation time, is used to carry out the related assessment.

6.1.1 Simulation Time of the Original Model
As mentioned in Chapter 5, in order to avoid the randomness brought by the single simulation and
make the results persuasive, the simulation of each network in the original model is repeated 10 times.
Table 6.1 shows the the simulation time of the electrical network when the simulated days are

Table 6.1: The simulation time of the electrical network.

Number of Simulations Max. Time (s) Min. Time (s) Mean Time(s)
Electrical Network 10 1742.649 1439.393 1565.541

Table 6.2: The simulation time of the heating network.

Number of Simulations Max. Time (s) Min. Time (s) Mean Time (s)
Heating Network 10 43304 32544 38851

57
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oneyear, and Table 6.2 illustrates the simulation time of the heating network when the simulated days
are 12 representative days. It can be seen that computation costs are expensive in two networks
especially the time in the heating network reaches 38851s when the simulated days are only 12 days.
Hence, it is necessary to introduce surrogate models to enhance the computation efficiency.

6.1.2 Simulation Time of Surrogate Models
Similarly, the simulation of each surrogate model is also repeated 10 times, and the simulation time is
recorded. Table 6.3 and Table 6.4 show results based on the simulation time of the electrical network
and heating network, respectively.

Table 6.3: Performance comparisons of the simulation time for different surrogate models in the electrical network whose
simulated days are oneyear. Bold values mark the best performance in the column of the mean value.

Number of Simulations Max. Time (s) Min. Time (s) Mean Time (s)
LR 10 29.856 20.407 23.430

RCLR 10 83.076 68.334 74.481
RCSVR 10 4403.709 3989.231 4244.119

DT 10 71.411 55.996 63.267
RF 10 5758.628 1844.002 3101.228
kNN 10 284.651 247.183 258.927
MLP 10 1324.711 712.607 1028.135

Table 6.4: Performance comparisons of the simulation time for different surrogate models in the heating network whose
simulated days are 12 representative days. Bold values mark the best performance in the column of the mean value.

Number of Simulations Max. Time (s) Min. Time (s) Mean Time (s)
LR 10 1.512 1.081 1.193

RCLR 10 2.827 2.157 2.324
RCSVR 10 10.876 8.878 9.914

DT 10 0.428 0.331 0.383
RF 10 22.995 13.943 18.590
kNN 10 1.866 1.960 1.904
MLP 10 245.397 210.411 223.798

In the electrical network, it is clear that LRmodel has the fastest computation speed (23.430 s), followed
by the DT model (63.267 s) and RCLR model (74.481 s). However, the performances of RCSVR
model (4244.119 s) and RF model (3101.228 s) are not satisfactory. They have longer simulation time
than the other models, and hence their computation speeds are lower. In the heating network, it can be
found that DT model has the best performances with the highest computation speed (0.383 s), followed
by the LR model (1.193 s) and kNN model (1.904 s). Whereas, MLP model has the worst performance
with the longest simulation time (223.798 s).

6.1.3 Performance Comparisons Based on Metric 1
Having obtained the simulation results of both the original model and the surrogate modes, it is im
portant to compare their differences in light of the simulation time. First, oneway analysis of variance
(ANOVA) is used to know about whether there are any statistically significant differences of the sim
ulation time between these models. The detailed results of the analysis, offered in Appendix, prove
that the differences between these models are significant. Second, in order to reflect the differences
between them explicitly, the values of the speedup factor are calculated.
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Table 6.5 combines the simulation time of the original model with the surrogate models in the elec
trical network. Here, the time of the surrogate models uses the mean time of 10 repeated simulation
results based on Table 6.1 and Table 6.3. Furthermore, the simulation time of different models is plotted
together as shown in Figure 6.1. Except RCSVR model and RF model, the other surrogate models
show faster computation speed compared with the original model. It can be better depicted by one of
the performance indicators, speedup factor. As mentioned in Chapter 5, it can reflect how much faster
the surrogate models’ computation speed in comparison with the original model’s computation speed.
It can be observed that LR model has the most remarkable speedup factor (66.818) with the fastest
computation speed. Furthermore, the performances of DT model (24.745) and RCLR model (21.019)
are also notable. However, the values of the speed up factors of RCSVR model and RF model are
even less than 1, which means their simulation time are longer than the original model. Hence, their
performances in terms of the speedup factor are not satisfactory.

Table 6.5: A summary based on the first metric reflecting the performances of the original model and different surrogate models
in the electrical network. Bold values mark the best performance in the corresponding column.

Number of Simulations Simulation Time (s) Speedup Factor
Original Model 10 1565.541 1

LR 10 23.430 66.818
RCLR 10 74.481 21.019
RCSVR 10 4244.119 0.369

DT 10 63.267 24.745
RF 10 3101.228 0.505
kNN 10 258.927 6.046
MLP 10 1028.135 1.523

Figure 6.1: Performance comparisons of simulation time between the original model and the surrogate models in the electrical
network. Solid dots show the simulation time of different surrogate models. Red dash line represents the simulation time of the

original model.

The simulation time of the original model and the surrogate models in the heating network is illustrated
in Table 6.6. Here, the time of the surrogate models also uses the mean time based on Table 6.2
and Table 6.4. Figure 6.2 describes their performances of the simulation time. Similar as the previous
work in the electrical network, the ANOVA analysis is carried out, and it shows the differences between
these models are significant. The results are also illustrated in Appendix. It can be seen that all the
surrogate models show faster simulation speed in comparison with the original model. Especially, DT
model has the most excellent performances (1.01E+05), followed by LR model (3.26E+04) and kNN
model (2.04E+04). Whereas, MLP model has the lowest speedup factor (1.74E+02).
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Table 6.6: A summary based on the first metric reflecting the performances of the original model and different surrogate models
in the heating network. Bold values mark the best performance in the corresponding column.

Number of Simulations Simulation Time (s) Speedup Factor
Original Model 10 38851 1

LR 10 1.193 3.26E+04
RCLR 10 2.324 1.67E+04
RCSVR 10 9.914 3.92E+03

DT 10 0.383 1.01E+05
RF 10 18.590 2.09E+03
kNN 10 1.904 2.04E+04
MLP 10 223.798 1.74E+02

Figure 6.2: Performance comparisons of simulation time between the original model and the surrogate models in the heating
network. Solid dots show the simulation time of different surrogate models. Red dash line represents the simulation time of the

original model.

6.2 Metric 2: Root Mean Square Error

As stated in Chapter 5, the essential characteristic of the surrogate model is to mimic the behaviour of
the computation codes in the original model. Thus, it is necessary to evaluate accuracy of the models,
and RMSE is considered as the second metric. Similar as the first section, simulation results of the
original model and surrogate models in each network are given.

6.2.1 Simulation Results of the Original Model

In the electrical network, the output data focused in the thesis work is the voltage magnitude of each
bus based on the rural area. Figure 6.3 illustrates yearly voltage profiles in per unit based on one
typical bus (Bus 8) in the area. It can be seen that the voltage values change from 1.019 per unit to
1.026 per per unit. The results can be validated according to standard EN 50160 which reflects voltage
characteristics of public distribution systems [155]. In the European standard, it offers references for
important voltage parameters with the related requirements. For instance, it exposes the limitation that
the voltage magnitude variations should have a tolerance of +/ 10% of the nominal voltage (0.9 per
unit to 1.1 per unit) for MV and LV networks. It can be found that the voltage magnitude values in the
figure (1.019 per unit to 1.026 per unit) vary in the range (0.9 per unit to 1.1 per unit), which proves that
the results are reasonable according to the standard.
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Figure 6.3: The simulation results based on the outputs of Bus 8 in the electrical network.

In the heating network, its outputs are supply temperatures and storage temperatures based on the
rural area. As mentioned earlier, it will take several days to undertake the simulation in the network
when its simulated days are one year. Thus, in order to simplify the workload, 12 representative days
(3 simulated days per season) in one year are selected. It is worth mentioning that the simulation in
each group (season) is carried out independently. As a result, the output data of each group can be
collected. After combining the data of these groups, the temperature profiles based on 12 typical days
are finally obtained. Figure 6.4 depicts temperature profiles in Kelvin (K) based on 12 simulated days.
The output data of group 1 (“Supply_Temp1” and “Temp1”) in Figure 4.3 is taken as the supply temper
ature profile and storage temperature profile, respectively.

It can be found that supply temperatures keep constant after experiencing a short increase in the
initial period. The storage temperatures have obvious increasing and decreasing periods based on the
operation strategies (charging state and discharging state) of the designed controllers.

6.2.2 Simulation Results of Surrogate Models

In each network, surrogate models are established based on different machine learning algorithms.
As mentioned in Chapter 5, the algorithms are used to cope with the regression problem in the thesis
work. Considering regression is one of the main branches in the predictive modelling, and hence the
prediction accuracy of the algorithms should be concentrated. An intuitive method is to observe the
outputs of the surrogate models and compare them with the outputs of the original model.

Figure 6.5 (a) illustrates actual results and prediction results of one simulated day in the electrical
network, and Figure 6.5 (b) illustrates the zoomed result of the Figure 6.5 (a) for the sake of showing
differences between surrogate models clearly. The bus selected here (Bus 8) is the same as in Figure
6.3 based on the rural area. Also, in order to make a better observation, the actual results provided
by the original model are also plotted in the figures to offer a reference. It can be seen that the per
formances of surrogate models are various in the electrical network. Compared with other surrogate
models, DT model and kNN model show bigger prediction errors.

Figure 6.6 describes prediction results of one simulated day in the heating network. It is clear that
prediction performances of surrogate models have obvious differences between supply temperatures
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Figure 6.4: The simulation results based on the outputs of group 1 in the heating network. The left and right column show
supply temperatures and storage temperatures of three representative days in each season. The subfigures from top to bottom

in each column represent the temperature profiles of January, April, July and October, respectively).

and storage temperatures. In terms of the supply temperatures, except MLP model, other surrogate
models have excellent performances with small errors. The performance of MLP model is not satisfac
tory. In terms of the storage temperatures, surrogate models show various performances clearly. It can
be found that some surrogate models can give correct prediction results at specific points. However,
none of the models have satisfactory performances in the whole period.
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(a)

(b)

Figure 6.5: The simulation results of the outputs based on Bus 8 between different surrogate models in the electrical network.
The result of the original model is also illustrated as a reference. (a). The simulation result of surrogate models based on one

simulated day. (b). Zoomed result of (a).

(a) (b)

Figure 6.6: The simulation results based on the outputs of group 1 in the heating network. The subfigures from left to right
represent the temperature profiles of supply temperature and storage temperature, respectively. The results of the original

model are also illustrated as a reference.
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6.2.3 Performance Comparisons Based on Metric 2

When comparing various surrogate models in the last subsection, the differences between the original
model and the surrogate models in each network can also be observed in Figure 6.5 and Figure 6.6,
respectively. In order to quantify the comparison results, RMSE is introduced to calculate the differ
ences between the actual values and the predicted values.

Table 6.7 shows average RMSE values of different surrogate models in the electrical network, and
Figure 6.7 depicts the boxplot of yearly RMSE values of the surrogate models. It can be found that
the performances of seven surrogate models are different. RF model (6.516E06) has the best per
formance, followed by LR model (7.494E06) and RCLR model (7.498E06). Compared with other
models, the performances of DT model (30.716E06) and kNN model (25.878E06) are not satisfac
tory. The results corresponds to the previous observations in Figure 6.5.

Table 6.7: Average RMSE values of surrogate models relative to the original model in the electrical network.

Original Model LR RCLR RCSVR DT RF kNN MLP
RMSE  7.494 7.498 8.109 30.716 6.516 25.878 12.802
(×10−6)

Figure 6.7: Performance comparisons of RMSE values for different surrogate models in the electrical network when the
simulated days are one year.

Surrogate models in the heating network are also studied by calculating their RMSE values.Table 6.8
shows average RMSE values of seven surrogate models in the heating network, and Figure 6.8 depicts
the boxplot of RMSE values in the surrogatemodels. It can be seen that RFmodel has the lowest RMSE
values (0.685). However, its advantage is not notable compared with other surrogate models. All the
surrogate models have high RMSE values which are above 0.5. The results can also be reflected by
the observation in Figure 6.6.

Table 6.8: Average RMSE values of surrogate models relative to the original model in the heating network.

Original Model LR RCLR RCSVR DT RF kNN MLP
RMSE  0.747 0.757 0.783 0.757 0.685 0.738 0.727
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Figure 6.8: Performance comparisons of RMSE values for different surrogate models in the heating network when the
simulated days are 12 representative days.

6.3 Another surrogate model: LSTM model
Having obtained the above simulation results, it can be found that the performances of all the surrogate
models used in the thesis work are not satisfactory in the heating network. Hence, it is necessary to
consider other surrogatemodels. Long shorttermmemorymodel is studied as another surrogatemodel
in the thesis work. As mentioned in Chapter 5, as a deep learning model, LSTM network has obvious
advantages when handling timeseries data. Stacked LSTM model is concentrated, and its structure
is shown in Figure 5.13. Similar as the other models, the same metrics are employed to assess the
performances of the model in the heating network. It should be noted that, although LSTM model is
introduced for the heating network in the thesis work, its performance is also studied in the electrical
network to conduct a comprehensive analysis, and its simulation results are listed in the appendix
chapter.

6.3.1 The description of LSTM model in the heating network
Compared with other surrogate models in the heating network as shown in Figure 5.16 (b), it can be
found that the main difference is the input dataset of the LSTM model takes into account previous
values of the output dataset (temperature profiles in the heating network). Then, the snapshot data
is transferred to timeseries data via the timeseries generator. In consequence, the output values are
predicted, and hence the model is capable of capturing the sequential information in the input data.
Figure 6.9 shows the LSTM model in the heating network.

Figure 6.9: The illustration of LSTM model in the heating network.

6.3.2 Simulation results based on the metric 1 in the heating net
work

A summary based on simulation results of the LSTM model in the heating network is given by Table
6.9. Similar as other surrogate models, the simulation time here also uses the average time based
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on 10 repeated simulation. It can be seen that its simulation time (51.880) is not notable (only faster
than the MLP model) in comparison with the aforementioned surrogate models as listed in Table 6.6.
However, it still has a better performance in terms of the computation speed when comparing with the
original model in the network.

Table 6.9: A summary of simulation time (s), speedup factor and RMSE of LSTM model in the heating network.

Simulation Time (s) Speedup Factor RMSE
heating network 51.880 748.863 0.376

6.3.3 Simulation results based on the metric 2 in the heating net
work

In terms of the metric 2, the RMSE value of the LSTM model is also shown in Table 6.9. In order to
make a clear comparison, RMSE values of various surrogate models after considering the LSTMmodel
in the heating network is depicted in Figure 6.10. Compared with the other surrogate models, the LSTM
model shows its obvious advantage with the lowest RMSE value (0.376) which is lower than 0.5.

Figure 6.10: Performance comparisons of RMSE values for eight surrogate models in the heating network when the simulated
days are 12 representative days.

Figure 6.11 shows the prediction results of the supply temperature and storage temperature of the LSTM
model based on one simulated day in the heating network. It is worth mentioning that, although the
prediction results of the LSTMmodel is better than the above surrogate models, it still exist errors. One
of themain reasons is themodel hasmany hyperparameters such as size of the hidden state, number of
layers, batch size, epoch number, activation function type, optimiser type, etc. These hyperparameters
not only affects the performance of the model in terms of the metric 2, but also plays an important role in
influencing the performance in terms of the simulation time (metric 1). An advanced tuning approach,
such as HyperOpt [156], can be taken into account to find the appropriate hyperparameters for the
LSTM model in the future work. Moreover, the LSTM model has other types such as bidirectional
LSTM, encoderdecoder LSTM, CNNLSTM, ConvLSTM, etc. Hence, the model needs more studies
in the further research.
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(a) (b)

Figure 6.11: The simulation results of the outputs based on group 1 in the LSTM model of the heating network. (a). The supply
temperature prediction results; (b). The storage temperature prediction results. The result of the original model is shown as a

reference.

6.4 Performance Summary of Surrogate Models Based on Metric
1 and Metric 2

Table 6.10 summarises the simulation results based on Table 6.5, Table 6.7 and the LSTM performance.
In the electrical network, in terms of the metric 1, LR model has the best performances, followed by DT
model and RCLR model. However, RCSVR model and RF model have the worst performance, and
their simulation time is even more than the original model. In terms of the metric 2, the performance
of RF model is the best, followed by LR model and RCLR model. Whereas, LSTM model (analysed
in Appendix) has the worst performance. DT model and kNN model are not satisfactory with higher
RMSE values. Hence, according to the general performances based on two metrics, LR model shows
the most excellent performance compared with other surrogate models used in the thesis work.

Table 6.10: A summary based on two metrics reflecting the performances of the original model and different surrogate models
in the electrical network. Bold values mark the best performance in the corresponding column.

Number of Simulations Simulation Time (s) Speedup Factor RMSE
Original Model 10 1565.541 1 

LR 10 23.430 66.818 7.494E06
RCLR 10 74.481 21.019 7.498E06
RCSVR 10 4244.119 0.369 8.109E06

DT 10 63.267 24.745 3.072E05
RF 10 3101.228 0.505 6.516E06
kNN 10 258.927 6.046 2.588E05
MLP 10 1028.135 1.523 1.280E05
LSTM 10 2381.586 0.657 8.335E05

Table 6.11 summarises the simulation results based on Table 6.6, Table 6.8 and the LSTM performance.
In the heating network, in light of the metric 1, DT model has the fastest simulation time, followed by
LR model and kNN model. MLP model has the worst performance compared with other surrogate
models. In light of the metric 2, the performances of seven models (LR, RCLR, RCSVR, DT, RF, k
NN, MLP) are all not satisfactory with high prediction errors, and their prediction output curves cannot
follow the actual output curve. Hence, LSTM model is studied as an extra surrogate model. Although
its performance of simulation time is not notable, it has a unique advantage in terms of RMSE value
with a smaller prediction error. Therefore, based on the general performances based on two metrics,
LSTM model shows the best performance compared with other surrogate models used in the thesis
work.
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Table 6.11: A summary based on two metrics reflecting the performances of the original model and different surrogate models
in the heating network. Bold values mark the best performance in the corresponding column.

Number of Simulations Simulation Time (s) Speedup Factor RMSE
Original Model 10 38851 1 

LR 10 1.193 3.26E+04 0.747
RCLR 10 2.324 1.67E+04 0.757
RCSVR 10 9.914 3.92E+03 0.783

DT 10 0.383 1.01E+05 0.757
RF 10 18.590 2.09E+03 0.685
kNN 10 1.904 2.04E+04 0.738
MLP 10 223.798 1.74E+02 0.727
LSTM 10 51.880 7.49E+02 0.376
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Conclusion & Outlook

The objective of the chapter is to provide final conclusions and future outlooks. First, research questions
raised in the introduction are answered. Second, main contributions in the thesis work are presented.
Finally, several recommendations with potential research directions are illustrated for the future work.

7.1 Research Questions
The core research questions with their subquestions posed in Chapter 1 are taken up again with
detailed answers:

1. How can a representative multicarrier distribution network be modelled?

As described in Chapter 2, electricity is not the only energy sector in the multicarrier energy
system. In the thesis work, a detailed hybrid network related to the energy system is established
with containing the electrical network with the focus on the distribution grid and the heating net
work. In order to combine two networks, cosimulation is employed by the simulation platform
named as EnergySim. Furthermore, controllers are considered in the cosimulation and built
by Open Modelica. The detailed modelling processes of the electrical network and the heating
network are illustrated by answering the subquestions below.

• How can a Dutch electrical distribution network be established as a static power flow model
using open data sources?

Dutch electrical distribution network is built with the design of different electric parameters by
means of pandapower. Furthermore, various areas (NZEB area, rural area and urban area)
owned by three chief DSOs in the Netherlands are taken into account, and the lowvoltage
network with 104 households is especially focused. Moreover, owing to the rising distributed
energy resources, PV modules are considered in the rural area which is treated as a use
case.

• How can a representative heating network be designed and modelled to reflect a future
tightly integrated energy system?

The heating network, also concentrating on the rural area, is built via OpenModelica with
designing various heating parameters. The network involves supply system, pipe system,
electric heater & storage system as well as demand system. To be specific, the electric
heater & storage system plays an important role in the design of controllers whose control
strategies consist of the charging state and the discharging state to offer the solution when
excess PV power is produced in the electrical network. Furthermore, electric heaters are
both considered in the network and the electrical network because the electrical power is
converted to the heat power with a specific efficiency in their working states.

69
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2. What kind of surrogate models are used to create for the multicarrier distribution net
works?

When modelling the multicarrier energy system (the original model) according to the solutions
of the above question, one of the main limitations is the low computation efficiency with the long
simulation time. Hence, surrogate models are introduced to replace the expensive parts in the
original model. The following subquestions are centred around the modelling process of the
surrogate models.

• Which methods are selected to establish surrogate models?

As discussed in Chapter 2, various techniques of creating surrogate models have been pro
posed. As one of the popular approaches, machine learning algorithms are chosen as the
main approach to establish the surrogatemodels. Furthermore, these exists a list of methods
when dealing with the multioutput regression problems in the machine learning algorithms.
In the thesis work, eight typical algorithms are taken into account to establish the corre
sponding surrogate models including linear regression model, linear regression with chain
model, linear support vector with chain model, decision tree model, random forest model,
knearest neighbour model, multilayer perceptron model as well as long shortterm memory
model.

• Which parts of the distribution networks are replaced by surrogate models?

In terms of the multicarrier energy system in the thesis work, surrogate models are built
for the electrical network and the heating network, respectively. In each network, eight ma
chine learning algorithms are taken into account, and their performances are compared.

• What are the inputs and outputs of the training/testing data for surrogate models?

When machine learning algorithms are selected as creating methods of surrogate models,
dataset processing should be taken as an important goal initially. The same datasets con
taining input datasets and output datasets are applied for different algorithms in the respec
tive network. In the electrical network, its input datasets include PV and load power profiles,
and its output datasets consist of voltage profiles in each bus. In the heating network, its in
put datasets contain excess PV profiles and demand profiles, and its output datasets involve
storage temperatures and supply temperatures. These input datasets and output datasets
are trained and tested in the machine learning algorithms to create the corresponding sur
rogate models.

3. Up to which extent can the simulation performances of the multicarrier distribution net
works be enhanced by surrogate models?

Having established the original models and the surrogate models, it is essential to compare their
performances. Hence, the comparison indicators need to be determined initially. Then, the best
surrogate models, which represent the electrical network and the heating network in MCES, can
be selected and summarised. The comparison and selection in each network are described by
answering the sub questions below.

• Which indicators are used to compare the performances between surrogate models and
original models?

One of the significant characteristics of the surrogate model is to mimic the behaviour of
the computation codes in the original models. Thus, it is necessary to introduce perfor
mance indicators to compare the differences between the original models and the surrogate
models. Two indicators are taken into account in the thesis work. The first indicator is speed
up factor defined on the basis of the simulation time. The second indicator is RMSE which
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performs the function of comparing the performances with regard to the prediction ability.

• Which surrogate models best represent the electrical network?

In the electrical network, the rural area of the MCES is concentrated, and the simulation
period is chosen as one year. In terms of the speedup factor, linear regression model has
the best performances. Furthermore, the performances of decision tree model and linear
regression with regressor chains are also notable. Whereas, the performances of linear
support vector machine with regressor chains model and random forest model are not satis
factory with their simulation time is even more than the original model. In terms of the RMSE
value, the performance of RF model is the best, followed by linear regression model and lin
ear regression with regressor chains model. Whereas, long shortterm memory model has
the worst performance. Hence, linear regression model can be employed as a surrogate
model to represent the electrical network based on the rural area of the MCES.

• Which surrogate models best represent the heating network?

In the heating network, its simulation is still based on the rural area of the MCES, and the
simulation period is selected as 12 representative days in one year. In light of the speed
up factor, decision tree model has the fastest simulation time, followed by linear regression
model and k nearest neighbour model. Whereas, multilayer perceptron model has the worst
performance compared with other surrogate models. In light of the RMSE value, long short
term memory model has the best performance with the lowest prediction errors. Thus, ac
cording to the general performances of two metrics, long shortterm memory model can be
taken as a surrogate model to represent the heating network based on the rural area of the
MCES.

7.2 Contributions
The thesis work focuses on the research field of the machine learning algorithms employed in the
energy system. The main contributions are outlined.

• A LV Dutch electrical distribution network has been established with the design of different electric
parameters via pandapower. Furthermore, various areas (NZEB, rural, urban) owned by main
Dutch DSOs are taken into account. Especially, the rural area is expanded with adding PV mod
ules as a representative to evaluate the impact of RES integration. Therefore, it can be viewed
as a benchmark when carrying out the further study of the Dutch electrical network.

• On the basis of the electrical distribution network, a representative multicarrier energy system
based on the rural area has been modelled by EnergySim. The cosimulation platform also con
nects other networks including the heating network and controllers built by Open Modelica. The
heating network considers different subsystems, and controllers with their operational strategies
resolve the excess PV power issue existing in the above electrical network. Hence, the energy
systemmodelling helps to explore the potential of achieving the carbon emission reduction target.

• Surrogate models have been created for the electrical network and the heating network of the
above energy system, respectively. In each network, eight representative machine learning al
gorithms are employed, and their performances are compared with considering various indicators.
As a result, the best surrogate models are selected, which can be taken as a useful replacement
when the computation costs of the original simulation models are expensive.

7.3 Recommendations and Future Works
The work in the thesis yields some promising results related to the renewable energy penetration, the
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establishment of the multicarrier energy system as well as surrogate models. However, several gaps
still need to be filled and further research is required. Some recommendations and potential future
research topics are described below:

• When modelling the electrical distribution network, the low voltage level is mainly concentrated
in the thesis work without considering other levels such as the medium voltage level and the high
voltage level. In order to carry out a comprehensive analysis, it is expected to build their mod
els on the basis of the established LV network. Moreover, due to the rising penetration of the
renewable energy, PV modules are especially taken into account in the rural area, and a similar
treatment in the heating network is carried out. However, three areas are covered in the origi
nal LV network. Hence, other areas such as the NZEB area and the urban area can be further
expanded. Then, the operation strategies of controllers are anticipated to have differences be
cause detailed situations will vary from areas to areas. Furthermore, solar energy is not the only
renewable source, other sources can be included in the further study.

• When modelling the multicarrier energy system, the hybrid network consists of the electrical dis
tribution network and the heating network. There exist other different energy sectors such as
hydrogen energy, gas energy and so forth. Thus, it will be a future direction when adding other
energy sectors or advanced techniques such as PowertoX on the basis of the hybrid network
with considering more interactions. In addition, the simulation of the energy system mainly puts
an emphasis on two aspects: simulation time and simulation outputs. Some details with the rele
vant analysis in the energy system are ignored such as flexibility. Hence, undertaking the analy
sis in the further study can better contribute to getting a holistic of the multicarrier energy system.

• Machine learning algorithms, as one of the popular approaches, are applied to create surrogate
models based on the energy system. A total of eight typical machine learning algorithms are
selected and used in each network. A more indepth analysis and study can be undertaken by
considering more surrogate models, such as gradient boosting, quantile regression, multivariate
adaptative regression splines, in the machine learning algorithms to make detailed comparisons.
Furthermore, as mentioned earlier, more works ought to be focused on the LSTM model with
finding its appropriate hyperparameters by using advanced methods such as HyperOpt based
on Bayesian hyperparameter optimisation. Moreover, a further extension is to create and find
the best surrogate models for the whole multicarrier distribution network even the multicarrier
energy systems, and the conclusion obtained in the thesis work related to the best surrogate
models can be treated as a reference. Last but not least, a further investigation related to the
surrogate models is to explore their potential in the application of digital twin in energy systems
considering the relevant simulation is computationally expensive.



A
Transmission Network Modelling

TSOs perform the function in ensuring the extra high & highvoltage electricity transmission. Chapter
3 offers the detailed background of Tennet which is the unique TSO in the Netherlands. Due to com
plicated structures of general transmission networks, a part of the network is only concentrated in the
thesis work. Figure A.1 1 offers the transmission grid map in the Netherlands provided by Tennet, and
Figure A.22 and Figure A.3 show actual and simplified structure of the study area in the thesis work.

Figure A.1: The transmission grid map in the Netherlands (the study area is highlighted in blue).

1Source:https://www.tennet.eu/company/newsandpress/pressroom/gridmaps/
2Source:https://www.hoogspanningsnet.com/netschema/
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Figure A.2: The zoomed transmission grid map of the study area.

Figure A.3: The designed transmission network used in the thesis work based on the above zoomed area.
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Table A.1: The simulation parameters of the external grid in the transmission network.

Index Bus vm_pu va_degree
0 0 1.02 0

Table A.2: The simulation parameters of different buses in the transmission network.

Index Name vn (kv)
0 bus0 380
1 bus1 150
2 bus2 380
3 bus3 150
4 bus4 150
5 bus5 380
6 bus6 150
7 bus7 380
8 bus8 380
9 bus9 380
10 bus10 380

Table A.3: The simulation parameters of cable lines in the transmission network.

Index Name Type From To l (km) r (ohm/km) x (ohm/km) c (nf/km) imax (ka)

0 HV
Line0.1

679AL1/86ST1A
380.0 Bus0 Bus2 22 0.042 0.25 14.6 1.15

1 HV
Line0.2

679AL1/86ST1A
380.0 Bus0 Bus2 22 0.042 0.25 14.6 1.15

2 LV
Line0.3

679AL1/86ST1A
380.0 Bus2 Bus5 6.8 0.042 0.25 14.6 1.15

3 LV
Line0.4

679AL1/86ST1A
380.0 Bus2 Bus5 6.8 0.042 0.25 14.6 1.15

4 LV
Line0.5

679AL1/86ST1A
380.0 Bus5 Bus7 21.5 0.042 0.25 14.6 1.15

5 LV
Line0.6

679AL1/86ST1A
380.0 Bus5 Bus7 21.5 0.042 0.25 14.6 1.15

6 LV
Line0.7

679AL1/86ST1A
380.0 Bus7 Bus8 23 0.042 0.25 14.6 1.15

7 LV
Line0.8

679AL1/86ST1A
380.0 Bus7 Bus8 23 0.042 0.25 14.6 1.15

8 LV
Line0.9

679AL1/86ST1A
380.0 Bus8 Bus9 43.5 0.042 0.25 14.6 1.15

9 LV
Line1.0

679AL1/86ST1A
380.0 Bus8 Bus9 43.5 0.042 0.25 14.6 1.15

10 LV
Line1.1

679AL1/86ST1A
380.0 Bus9 Bus10 14.8 0.042 0.25 14.6 1.15

11 LV
Line1.2

679AL1/86ST1A
380.0 Bus9 Bus10 14.8 0.042 0.25 14.6 1.15

12 LV
Line1.3

679AL1/86ST1A
380.0 Bus0 Bus10 18.6 0.042 0.25 14.6 1.15

13 LV
Line1.4

679AL1/86ST1A
380.0 Bus0 Bus10 18.6 0.042 0.25 14.6 1.15
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Table A.4: The simulation parameters of generators in the transmission network.

Index Name Bus p (mw) vm (pu)
0 G1 7 3600 1.06
1 G2 8 400 1.06
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Figure A.4: Specifications 380 kV connections as provided by TenneT (source:Gockel.P.N.M, ”Steadystate voltage profile and
reactive power balance for EHV AC cable systems in the Randstad 380 project”, Master Thesis, TU Delft, 2009).





B
Test Results of Designed Controllers

In order to get to know whether designed controllers normally work, they are tested in OpenModel
ica. The test method is to given initial parameters to observe whether they have different working
states (charging state/discharging state) rather than keep constant outputs. As shown in Figure 4.5,
temperatures need to be given initially. Here storage temperatures are settled as 65 °𝐶, and supply
temperatures as 60 °𝐶. Figure B.1 illustrates the test results. To show a better description, a shorter
time period is zoomed as shown in Figure B.2. To be specific, the ”1” and ”0” of the yaxis in the figures
represent the working state and nonworking state of the charge valves.

Figure B.1: The simulation result based on the tests results of controllers designed in the thesis work with the zoomed period is
highlighted in black.
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Figure B.2: A zoomed result of Figure B.1.



C
ANOVA Analysis

Table C.1: The ANOVA analysis based on the original model and surrogate models in the electrical network.

sum (sq) df mean (sq) Fvalue pvalue
C (treatments) 1.779674e+08 7.0 2.542391e+07 148.4699 3.664794e40

Residual 1.232924e+07 72.0 1.712395e+05

Table C.2: The ANOVA analysis based on the original model and surrogate models in the heating network.

sum (sq) df mean (sq) Fvalue pvalue
C (treatments) 1.253528e+10 7.0 1.790754e+09 1282.036812 6.969416e73

Residual 1.005699e+08 72.0 1.396804e+06
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D
LSTM Model in the Electrical Network

Table D.1 shows a summary based on simulation results of the LSTM model in the electrical network.
It should be noted that, when calculating the speedup factor here, the simulation time of the origi
nal model is also obtained from Table 6.5 as the other surrogate models to make the corresponding
comparisons.

Table D.1: A summary of simulation time (s), speedup factor and RMSE of LSTM model in the electrical network.

Simulation Time (s) Speedup Factor RMSE
electrical network 2381.586 0.657 8.335E05

Figure D.1: Performance comparisons of RMSE values for bus 8 between eight surrogate models in the electrical network
when the simulated days are one year.

In terms of the metric 1, its performance is not satisfactory because its speedup factor value (0.657) is
less than 1. It means the simulation time is even longer than the original model. In terms of the metric
2, Figure D.1 depicts the performance comparisons of RMSE values for various surrogate models after
considering the LSTM model in the network. The performance of the LSTM model (8.335E05) is not
satisfactory with the highest RMSE value. Figure D.2 illustrates the prediction results of the LSTM
model based on one simulated day in the electrical network.
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Figure D.2: The simulation results of the outputs based on Bus 8 in the LSTM model of the electrical network. The result of the
original model is illustrated as a reference.

After considering the LSTM model, a performance summary can be finally made based on eight sur
rogate models in the electrical network, and the conclusion in the main text keeps constant. LR model
has the best performance in all the surrogate models, used in the thesis work, of the electrical network.
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