Aiding Software Developers to Test
with TestNForce

Victor Hurdugaci

Aiding Software Developers to Test
with TestNForce

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Victor Hurdugaci
born in Brasov, Romania

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

(© 2011 Victor Hurdugaci. All rights reserved

Aiding Software Developers to Test
with TestNForce

Author: Victor Hurdugaci
Student id: 4032381
Email: contact@victorhurdugaci.com

Abstract

Regression testing is an expensive process because, most of times, all the avail-
able test cases are executed. Many techniques of test selection/filtering have been
researched and implemented, each having its own strong and weak points. This paper
introduces a tool that helps developers and testers to identify the tests that need to be
executed after a code change, in order to check for regressions. The implementation
is based on dynamic code analysis and the purpose of the tool is to eliminate the time
spent on testing using inappropriate test cases (tests that bring no value in checking for
regressions). The adequacy, usability and completeness of this tool have been evalu-
ated through the meanings of a user study. During the study, a number of developers
used the tool and expressed their opinion about it through questionnaires.

Thesis Committee:

Chair: Prof. Dr. Arie van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. Andy Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. Jan Hidders, Faculty EEMCS, TU Delft

To my parents,
for all the trust and support they gave me
since I left Romania

iii

Preface

One year and one day passed since I started my thesis project. When I look back at what has
happened in the last year, I am very satisfied of what I have learned and about the achieved
results. I am the one getting the credits for this thesis but the project would not have been
possible without the help of many other.

First of all I would like to thank my thesis coordinator, Andy Zaidman. Without him, it
would have been impossible for me to finish the master program on time and still do the 1
year internship in Microsoft. He understood my desire of doing both in the same time and
helped me overcome all the issues caused by the fact that I was in another country.

Special thanks go to the participants of the user studies (user experience survey, pilot
run and user study). Without them, it would have been impossible to evaluate TestNForce.
Also, my colleagues at Microsoft provided valuable feedback for the project, both in the
beginning, by suggesting must-have features, and at the end, suggesting features for the
next versions. I am very grateful to them. I could not have delivered a correct paper without
the help of Lavinia Tanase, Kruna Matijevic and Daniel Manesku. I am very grateful to
them too for reviewing parts of my thesis and suggesting improvements.

Finally, I want to thank to my family for all the trust and support they offered me. It
would have been very hard to finish this project without their moral support.

Victor Hurdugaci
Delft, the Netherlands
July 3, 2011

Contents

Preface
Contents
List of Figures
1 Introduction
1.1 ThesiSProject o v v i vttt e
1.1.1 ResearchQuestions
1.1.2 Goals e
1.2 Thevision e
1.3 USECASES v v v o e e e e e e e e e e
1.4 Requirements analysis,
1.5 From requirements to implementation decisions
1.6 Thesisstructure v v i i it e e e e
2 Development of TestNForce

2.1 Abird’'seyeviewof TestNForce
2.2 Components e e e e e e e e e e e e
23 TStepanalysis e e e
2.3.1 Solution metaidentifier.,
2.3.2 Project metaidentifier
233 Build
234 Instrumentation
2.3.5 Identifytests
2.3.6 Runtests
237 Buildindex e
2.4 Code parsing and code comparison
2.5 WhattestsdoIneedtorun?
2.6 Userinterface e
2.7 Team Foundation Server checkinpolicy

vii

<
= <

DWW NN - b

[C BN IEN |

CONTENTS

2.8 Summary . .

3 User study and survey

3.1 Theusabilitysurvey
31,1 Results
32 Userstudy o oo e e e
3.2.1 Experimentaldesign
3.2.2 Pretestand posttesto
3223 Theassignment
324 Thepilotrun oL
3.3 Theexperimentrun ot it e
3.3.1 Experimentenvironment
3.3.2 Participants selection
3.3.3 Participants’ profile
3.4 Experiment results and analysis.
34.1 Evaluationof TestNForce
3.4.2 Evaluation of the experiment
343 Threatstovalidity
35 Summary

4 Related Work
4.1 Traceability .

42 SupportinIDEs

5 Conclusions and Future Work

5.1 Contributions
5.2 Memorabilia .
5.3 Future work .

Bibliography

A Experiment Documents
A.1 Usabilitysurvey

A2 Pretest
A.3 Posttest . . .
A4 Assignment .
A.5 Pretest results
A.6 Posttest results

B Glossary

viii

25
25
26
27
27
28
30
33
33
34
34
34
41
41
45
47
49

51
51
52

55
56
56
57

59

61
62
63
65
67
72
74

75

1.1
1.2

2.1
22
23
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12

List of Figures

The problem with testing changes in large scale systems 1
Usecasesof TestNForce, 4
Bird’'seye view e 7
TestNForce’s component diagram 8
Full analysis overview L 10
Step loftheanalysis 10
Step2oftheanalysis 11
Step3oftheanalysis 12
Step4oftheanalysis 12
StepSoftheanalysiso 13
Step6oftheanalysis 14
Step7oftheanalysis 16
The process of mapping tests and code undertest 20
The three menus of TestNForce 21
Test results as shown in Visual Studio 22
The checkinpolicy 23
Background information about subjectso 35
Answers to qUestion pre2a ool e 35
ExperiencewithIDEs 36
Answers to question pre2do 36
Experience with managed languages 37
Experience software projects 37
Answers to question pre3ao oo 38
Answers to questionpre3b 38
Answers to question pre3c 39
Experience with testing oo 39
Estimation of testresources 40
Answers toquestionpre3h 40

iX

LI1ST OF FIGURES

3.13
3.14

3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

Before-after comparison of expectations about the usefulness of TestNForce . . 41
Before-after comparison of expectations regarding the fact that TestNForce might

be/isannoying L e 42
Effects of using TestNForce 42
Answers to question post2co 43
Evaluation of the checkinpolicy 43
Restrictions of the checkinpolicy 44
What should be added to TestNForce based on participant’s opinion 44
Assignment difficulty L L 45
How difficult was the assignment compared to prior experience? 45
Benefits from the experiment 46
Experiment impression Lol 46
Answers to question post7d Lo 46
Answers to question post7eo o e 47
Experiment impressiono 47

Chapter 1

Introduction

Errare humanum est (lat. “To err is human™). Companies test software not because they
like to do it, but because they have to do it [15]. Software developers are human and humans
make mistakes. That is why software has to be tested before giving it to end users. Software
can be tested manually, but a more common practice, that increases the return of investment
and decreases the testing time, is to automate tests[20]. Automated tests can run without
any intervention and, if done right, the effort put in developing and maintaining them is less
than executing each of them manually.

Especially in the case of large scale software projects, regression testing is a tremendous
and time consuming job[18]. On one hand, testing is complicated because of the size of the
project. On the other hand, it is complicated because running the tests can take many hours,
even days[20], so one cannot validate the system instantly or in reasonable time.

It is well known [5] that except for the rare event of major rewriting, changes affect
only a small part of the system. That part of the system is covered by only a subset of the
available test cases (figure 1.1). Identifying all the tests (without positive or false negatives)
can be troublesome especially in the case when apparently unrelated components interact.

-

|

() Unchanged code

Changed code

Tests not covering the change

() Tests covering the change

System under test Tests

Figure 1.1: The problem with testing changes in large scale systems

1. INTRODUCTION

1.1 Thesis project

Based on the author’s experience at Microsoft, we can state that identifying the tests that can
check for regressions after code changes is difficult. This fact was also confirmed by Chen
who states that “computing such dependency [between tests and code under test] informa-
tion requires sophisticated analyses of both the source code and the execution behavior of
the test units[5]”. The identification process is error prone because not everyone is aware of
all the links in a system - components that are apparently independent can actually commu-
nicate (indirectly) - and because, in many cases, test descriptions do not match the actions
of the test - tests cover more or less than what is told in description.

Zaidman et. al[21] found that tests and code under test do not co-evolve, as they should,
all the time. Even though there is no clear evidence, we believe that sometimes this happens
because maintaining the tests is too expensive. If developers/testers would have a tool to
identify the tests that need to updated, making the process cheaper and faster, there is a high
chance that co-evolution will happen as expected (tests evolve in the same time as the code
they cover).

In order to help developers and testers identify the tests that cover specific parts of the
code, a tool, that will automate this process, will be created. The thesis project is represented
by this tool and its evaluation.

1.1.1 Research Questions

Central to this research projects stands the development of the prototype tool. If the imple-
mentation is possible, then the tool needs to be evaluated in order to decide if its purpose
is satisfied. Based on this conception, a number of research questions will be answered
throughout the paper:

e Question 1. Can such a tool be implemented using the currently available tools?
e Question 2. Is the tool usable from a performance point of view?
e Question 3. Is the tool useful for developers and testers?

e Question 4. Is the tool offering a good user experience?

1.1.2 Goals

Based on the research questions stated in section 1.1.1, a number of goals can be identified.

1. Answer the research question. The most obvious goal is to answer the questions
stated above. However, this is not possible without achieving a few other goals.

2. Implement a tool that identifies the tests which cover a specific part of the code. Im-
plementing the tool is the foundation of the project. Without the tool, it is impossible
to answer many of the research questions.

The vision

3. Evaluate the tool. Once implemented, the tool has to be evaluated by individuals
outside the development group. This will allow us to obtain objective answers and
decide if the tool reaches our expectation level.

Since this tool enforces the test process and increases the developers/testers’ capacity
of identifying tests we shall call it TestNForce (pronounced “test enforce”). In section 5.2,
one can read a story behind the name and what happened before the name was found.

1.2 The vision

... or what is TestNForce supposed to be? TestNForce is supposed to be tool that allows the
user to see which tests cover the (changed) code. Full stop. Satisfying this only high level
requirement, will prevent TestNForce from being bloated with unnecessary functionality
and will lead to a tool that does one thing but it does it well.

Following the previous requirement, the user will need to integrate the test identification
process in his own development flow. For achieving this, a number of interfaces will be
provided, simplifying the integration.

1.3 Use cases

Based on the singular requirement above, the use cases for TestNForce will be very simple.
It can be noticed that the user can request the tests either for “code” (a specific piece of
code) or for the changed code. Therefore, the user can act in two ways:

1. Get tests for the changed code

2. Get tests for a particular method

By looking at the previously mentioned actions, it can be determined that the first action
will not be possible without knowing which code changed. That is why a third action can
be identified: Detect changed methods. It must be noticed that this action is not directly
invoked by the user but rather, it is used by Get tests for the changed code and it does not
make sense, in isolation, without the action that uses it. Both user actions are not possible if
the relation between the tests and code under test is unknown. In order to have the relation,
an index must be built. This leads to the fourth and final action: Build index. This action
is not a user action but a consequence of the required user actions. Figure 1.2 shows the
identified actions through the meanings of an UML use case diagram.

1.4 Requirements analysis

Before being able to proceed any further, the use case diagram must be translated to a list
of specifications. These specifications must be satisfied by the system that will be imple-
mented.

From the use case presented before, a number of obvious requirements can be extracted:

1. INTRODUCTION

«uses»

Get tests for
changed code

Detect changed

Get tests for
particular method

Build index
Dev/test

Figure 1.2: Use cases of TestNForce

1. Get the list of tests that cover a specific method. TestNForce must show to the user
the tests that cover a specified method.

2. Specify for which method the results should be displayed. From the previous require-
ment, a new one can be deduced. The user must be able to invoke, somehow, the
actions on a specific method.

3. Get the list of tests that cover the changed code. TestNForce must be able to show the
tests that cover the code that changed since a specific point in time, generic called,
last change.

4. Detect changed code. Again, from the previous requirement, we can extract another
requirement. TestNForce must be able to detect the code that changed.

However, just a set of functional requirements cannot make a good application. A num-
ber of non-functional specification will guide the development process towards a successful
and useful application:

1. Simplicity. TestNForce is supposed to be as simple as possible. Only the decisions
that cannot be done without the user’s intervention should be exposed, all the other
should be handled by the system.

2. Integration. TestNForce must integrate in the users’ current workflow and should not
require any major changes in the process.

3. Transparency. Once integrated, TestNForce must not disturb the user and, as much as
possible, should make its presence noticed only when the user asks it.

4. Good performance. The responses should be displayed in a reasonable amount of
time from the moment the user invoked an action. However, it is not expected that
the application will perform fast if there are good reasons why this is not possible (ie.
a large quantity of data is analyzed)

From requirements to implementation decisions

5. Accuracy. TestNForce must provide 100% accuracy. This requirement is not ex-
tracted from the use cases but was decided by us.

Based on the experience of the development team and because of the limited available
time, the following technical decisions have been taken:

The implementation will be done in C# because of the developers’ experience

For simplicity, the analyzed code will be also C#

Because of the IDE integration, TestNForce will be integrated with Visual Studio

Visual Studio provides a test platform (through mstest) that is semi-extensible. If
extension is possible, then this is the first choice.

1.5 From requirements to implementation decisions

The last non-functional requirement enumerated in the previous section is one of the most
important aspects of TestNForce. In order to obtain 100% accuracy, all the analyzed code
must be understood and there should be no heuristics involved. An interesting approach
was presented by Galli in [10], where they use dynamic code analysis to establish the links
between tests and code under test. A similar approaches, but with different goals, was
adopted by Rothermel[19] in the attempt of prioritizing test caess.

Dynamic analysis is the analysis of the properties of a running program[1]. If imple-
mented correctly, it can give perfect results, but all these do not come for free. In order to
dynamically analyze the code, it has to compile. The compilation is required because the
binaries have to be executed.

A second disadvantage is the time required for analysis and the impossibility of predict-
ing it. In the case of a static analysis one can, with some error, predict the execution time
based on the number of lines of code. In dynamic analysis, this is not possible because the
run time of each instruction and the number of times it runs cannot be predicted; if infinite
loops are taken into account, it can be said, even though unrealistic, that the analysis can
last forever.

1.6 Thesis structure

TestNForce is a software product. Its implementation and internals are detailed in chapter
2. The most interesting parts of the prototype are shown using diagrams, technical details
and other appropriate means of representation.

After understanding the vision and the technical details behind TestNForce, the reader
can look in chapter 3 to see what others think about the tool. In chapter 3, a user study is
presented in details. Both the setup and the results are analyzed and two research questions
are answered.

1. INTRODUCTION

Similar initiatives and similar research to TestNForce exists. Before jumping into con-
clusions, an overview of the scientific publications related to our research is outlined in
chapter 4.

The final chapter of the thesis is devoted to conclusions. Except a summary of the
answers to the research questions, chapter 5 tells three remarkable stories that happened
during the development process and briefly presents the most important items from the next
version’s backlog.

Following the final chapter, a series of appendices contain the documents referenced
in chapter 3. Appendix A.1 contains the questionnaire used for the user experiment survey.
Appendix A.2 and A.3 show the pretest and the posttest, respectively. The assignment given
to the participants of the user survey is shown in appendix A.4 while the results, in tabular
form, of the pretest and posttest are printed in appendix A.5 and A.6, respectively.

Chapter 2

Development of TestNForce

TestNForce must help developers and testers to identify the tests that must be executed in
order to validate changes to the existing codebase. It must provide 100% accurate results
and it must not, under any circumstance, provide false negatives (miss tests that cover the
code). The tool must provide a clear advantage over executing the entire test suite, but its
presence should be as transparent as possible.

2.1 A bird’s eye view of TestNForce

(5%]
Vistal Studio

Visual Studio 2010 / 3™ party applications
Team Foundation Command line /
Server scripts
A
\ \ 4 \
TestNForce

\ A

Visual Studio Solution
(code + tests)

Figure 2.1: Bird’s eye view

From an architectural point of view, TestNForce is designed to be extensible and easily
integrateable with other applications. The prototype implementation offers a Visual Studio
2010 addin, which exposes all the features of TestNForce and a console application, which
allows just a subset of the actions supported by TestNForce to be invoked.

As can be seen in figure 2.1, TestNForce will integrate between the application that
uses it and the code. Any component that will require information about the test mapping

7

2. DEVELOPMENT OF TESTNFORCE

will use TestNForce to obtain it. However, when extra information is required, the Visual
Studio solution can be accessed directly, because TestNForce is not blocking or restricting
other workflows. TestNForce must be seen as a add-on that can be added/removed at any
time and the only consequence of these actions is the possibility of using the test mapping
feature.

2.2 Components

Checkin policy CodeModelMap ----—---=--—--——-—~

T
I
I
I
I
I
I
CodeParser | IParser
I
I
I
I
I
I

I
Visual Studio / TFS |
I
: lindexWriter
| R I
I
I|ndexBui|der>k§— |
CmdExtensions —+—-——-—-—-—--= ! IndexBuilder E————————————_____ I
Console TestNForce

Figure 2.2: TestNForce’s component diagram

TestNForce is composed of seven components. Each of them fulfills a specific role in
the scenarios in which the application can be used. The components, shown in figure 2.2,
are described below:

o [ndexStorage. This component is part of the TestNForce core. It can be seen as a
data abstraction layer[9] on top of the underlying storage service (the file system in
this case). The main purpose is to provide an abstraction layer so that TestNForce
is decoupled from the actual storage. This allows better testing, because the file
system can be replaced by a mock and, in the same time, forbids TestNForce from
accidentally changing files that do not belong to it.

e Code parser. The core of TestNForce was designed in such a way that is not inter-
acting directly with external components. All the external calls need to go through
intermediate, abstraction layers. The code parser is an abstraction over the code pars-
ing library described in section 2.4. Similar to the case of IndexStorage, it simplifies
testing and allows the actual implementation to be replaced by a new one(s) without
changing the logic; such a design allows TestNForce to be adapted to other program-
ming languages.

7 Step analysis

o IndexBuilder. It is responsible for creating the index that holds the mapping between
tests and code under test. There is a clear separation between the component that
creates the index and the one that reads it, because some applications will require just
one of them, as can be seen in the section 1.3. This component performs the “7 step
analysis” that is described in the next section.

e CodeModelMap. The index can be either read or writen to. The reading operations
are handled by the CodeModelMap. This component provides APIs for getting infor-
mation about the tests that cover a specific method. No external code should access
the index directly (however, there is nothing that blocks the access).

e VSAddin. 1t is one of the components that is not part of the TestNForce core. The
VSAddin allows Visual Studio 2010 to communicate with the TestNForce making
the latter look as a part of the former. From a layered architecture perspective, the
VSAddin is a presentation/service layer which provides the visual elements of Test-
NForce for VS and also allows VS to send messages back. Because from VS is
possible to update/create the index and see the tests that need to be run, the VSAddin
component depends on both the CodeModelMap and IndexBuilder.

e Checkin Policy. As the name suggests, this is the component responsible for the
gated checkin for Team Foundation Server. This component depends only on the
CodeModelMap because it will only use information about the tests that need to be
executed and it will not alter the index in any way. The policy goes together with
the VSAddin, but is an optional component. To be more precise, the addin and/or
the checkin policy can be used independently, but both of them depend on Visual
Studio. The checkin policy depends also on the Team Foundation Server SDK, but
since version 10 of Visual Studio, this is a part of it.

o CmdExtensions. The command line extensions is a work-in-progress component that
allows TestNForce to be integrated in scripts with the goal of enhancing automated
builds with test enforcement features. It exposes commands for interrogating the
index and identifying the tests that need to be run. In future versions it will allow
index update operations.

2.3 7 Step analysis

In order to create an index that will allow TestNForce to identify fast what tests need to be
run, a number of operations need to be performed. First of all, because of the dynamic code
analysis requirement, the code has to run. However, in order for the code to run it needs to
be compiled. Secondly, the code cannot just run, it needs to be run by the tests. In order to
run the tests, they have to be identified first. Least, but not last, the execution of the tests
needs to be tracked so that we can know what code was executed by a specific test.

All these constraints and the Visual Studio SDK lead to a seven step analysis process.
The steps are listed below and each of them will be described in the rest of this section.

2. DEVELOPMENT OF TESTNFORCE

/1. Solution 2. Project . .
’ meta meta } 3. Build H lnstrument > Itc:z?stlfy 6. Run tests 7in?jl:)|<d
identifier |dent|f|er bmarles
; R A s . .
v v g 2 B 2
- Projects i| - Project types : - Tests/ ! -Test - Test
-Solution =*| - Build paths ~ fe===-=sesseseseecemeeonan ' project | results =" | mapping
details - Coverage index

Figure 2.3: Full analysis overview

1. Solution meta identifier

2. Project meta identifier

3. Build

4. Instrumentation

5. Identify tests

6. Run tests

7. Build index

All the steps are implemented as a command pattern[11] and the data is passed between
commands using data transfer objects (DTO)!.

2.3.1 Solution meta identifier

(" 1. Solution (" 2. Project . . .
meta meta 3. Build Instrument S 6. Run tests 7.' Euild
. i tests index
identifier |dent|f|er binaries

J

- Projects
- Solution
details

Figure 2.4: Step 1 of the analysis

The first step analyzes the Visual Studio solution and caches information about it. A
DTO containing the path of the solution file and the list of projects available in it is created.
The path of the solution will be used in the future steps when resolving relative paths. The

Ihttp://msdn.microsoft.com/en-us/library/ms978717.aspx

10

7 Step analysis

list of projects is cached in the DTO, in order to prevent future calls to the SDK, because of
performance reasons and because of the retry issue described in the next paragraph.

It will be noticed that many future step will take a similar approach of creating new
objects that cache the information provided by the SDK. Such a design has two advantages
(1) it reduces the number of retries needed caused by bug described here http://msdn.
microsoft.com/en-us/library/ms228772.aspx (2) it allows the code to be testable.

If the commands would work directly with the VS SDK objects, then testing individual
commands, in isolation, would be a difficult task. The DTOs have the purpose of creating
an internal, intermediate representation of the data collected from the SDK. These DTOs
are easy to mock and commands can be tested individually by supplying fake DTOs created
by the test case.

The analysis will stop at the first step, if there are no projects in the solution. There is
no need to continue because no test can exist outside a (test) project.

2.3.2 Project meta identifier

1. Solution) (2.Project) /
| if 7. Buil
meta meta 3. Build Instrument 5 ey 6. Run tests Lild
. i . e tests index
identifier identifier) ‘ bmanes

\ 4
- Project types :
- Build paths ~ f==-======sessememcecananoasl

Figure 2.5: Step 2 of the analysis

Once the list of projects is created, the project meta(data) identifier command is invoked.
This command will analyze each project in the solution, in order to decide if it can be used
by TestNForce. If no valid (test) project is found, the analysis stops here. The projects that
can be used by TestNForce are C# project and C# test projects.

Each Visual Studio project has a GUID which specifies its type. In the case of C#
project, the project GUID is FAE04EC0-301F-11D3-BF4B-00C04F79EFBC. TestNForce first
tries to identify all the C# projects. If at least one project is found, then a second analysis is
performed. This second analysis has the purpose of identifying test project.

Any Visual Studio project can have subtypes. These subtypes are meant to allow the
creation of new project types based on existing ones. A project with subtypes is called
“flavored” and the flavors are specified by GUIDS in the Project TypeGuids section of the
file.

One way of identifying a test project is to look for the test project flavor. However,
this method is not reliable if the project was created manually or test references were added
after the automatic creation. Visual Studio will run the tests in the project anyway. In or-
der to mitigate future failures and/or incorrect results that could be caused by non-flavored

11

2. DEVELOPMENT OF TESTNFORCE

test projects, another identification method was developed. Any test class/method that con-
tains mstest tests must be decorated with attributes defined in Microsoft.vVisualStudio.
QualityTools.UnitTestFramework. Therefore, in order to detect if a project is a test
project, instead of looking for the test flavor, TestNForce looks for the referenced assem-
blies; if the previously mentioned assembly is referenced, then the project is marked as
having tests.

Once the supported projects are identified and categorized, their output paths, output file
names and internal names are stored in the DTOs. The output path is considered to be the
path where binaries are placed after the build process using the default build configuration.

In order to continue the analysis, at least one test project must be found. Any invalid
projects (the list could include, but is not limited to, Visual Basic.NET project, C++ projects,
Azure projects) is simply ignored and not analyzed.

2.3.3 Build

1. Solution 2. Project 4 N\ ([4. e) ((.
o i 7. Buil
(meta meta 3. Build Instrument = Gty 6. Run tests . liE
. . . ” A tests index
identifier identifier _) __ binaries \ ‘

Figure 2.6: Step 3 of the analysis

The build process happens after the solution and projects are validated. It was decided
to build only after validation because if the validation fails there is no reason to build. Also,
some projects might have a long build time and it is faster to validate first, saving precious
time.

The Visual Studio solution file (the files having “.sIn”” extension), holds the information
about the default build configuration. This configuration can be changed from Visual Studio
by changing the current build configuration or, from outside Visual Studio, by editing the
sln file. The file is processed by msbuild which then processes each project file and builds
it on the specified configuration.

TestNForce relies on the VS SDK for this operation. After the build is completed, the
next step is invoked in case of success or the analysis stops in case of failure. TestNForce
also relies on the user for running the build in the correct environment and does not try to
solve any compilation problems.

2.3.4 Instrumentation

1. Solution 2. Project (.

meta P‘ meta 3. Build Instrument ‘ el ety 6. Run tests H 7.' Euild
. i . e tests index
identifier identifier ‘ binaries \

Figure 2.7: Step 4 of the analysis

12

7 Step analysis

As described by [3], instrumentation is “a mechanism that allows modules of programs
to be completely rewritten at runtime”. In the case of TestNForce the compiled binaries are
instrumented so that their execution can be traced.

vsinstr.exe is a tool provided with the .NET Framework and facilitates the instru-
mentation of .NET binaries. It has a special mode for instrumenting with the purpose of
code coverage.

TestNForce uses vsinstr on all the compiled binaries from the previous step. After the
process completes, the binaries can be used by vsperfmon (see section 2.3.6) to trace the
execution.

2.3.5 Identify tests

1. Solution (" 2. Project (4. () [‘ .
meta P‘ meta 3. Build H Instrument > It(ii:st'fy 6. Run tests 7i'n?jlcjal>|<d
identifier identifier binaries
\ 4

- Tests/
project =~ peseeeeeeees

Figure 2.8: Step 5 of the analysis

After the binaries are instrumented, .NET Reflection is used to identify tests in each test
assembly. The test assemblies were identified in step 2 (section 2.3.2).

From Reflection’s point of view, an assembly is a collection of types, each type having
methods. A test method, from mstest’s point of view, is a public, instance method with
no arguments decorated with the TestMethodAttribute, attribute declared inside a public
class decorated with the TestClassAttribute. Having these two definitions, allows Test-
NForce to identify the test methods using reflection. The pseudo code for identifying test
methods is presented below (an exposed type/method is a public type/method):

for each test assembly TA in DTO
{
for each type T exposed by TA
which is decorated with TestClassAttribute

for each method M exposed by T
which is decorated with TestMethodAttribute

Add M to the tests list

13

2. DEVELOPMENT OF TESTNFORCE

The identified method’s details are stored as tests in the DTO corresponding to the
project which created the assembly.

This fifth step of the analysis and the previous one could be performed in parallel.
However, the decision was not to do so because both operations are fast (a few seconds)
and handling multi thread execution, unless implemented with much care, would add a few
new points of failure.

2.3.6 Run tests

(" 1. Solution 2 Project ~ ~ -—
meta meta 3. Build Instrument > Identlfy 6. Run tests 7,' Build
. . tests index
identifier |dennﬁer binaries L

/

- Test !
results firoeeeeeee?
- Coverage

Figure 2.9: Step 6 of the analysis

The implementation of mstest, vsinstr and perfmon does not allow the generation
of reports per test case. The only result provided is a general coverage report. TestNForce
requires detailed coverage information about each executed test.

To the best of our knowledge, there are two ways of getting the required information
from mstest:

1. Write a .NET profiler. Writing a custom profiler has many advantages one of them
being that the code is instrumented “on the fly” making the instrumentation step not
necessary. The .NET CLR (Common Language Runtime) exposes a set of interfaces
that allow applications to subscribe to profiling events. One of these interfaces is
ICorProfilerCallback? which provides callbacks for events like assembly loaded,
method execution started, etc. However, writing a good profiler requires much ex-
perience with the .NET internals and just the profiler alone could make the subject
of a thesis. Moreover, we do not have enough experience to guarantee that his im-
plementation will work for any application. That’s why, the second approach was
addressed.

2. Execute each test individually. This approach is similar to what Galli et al did in [10].
Instead of intercepting the calls, the out-of-the-box vsinstr and perfmon can be
used to track down the execution path of individual test cases. If only one report can
be generated per test run, then if only one test is run the report will include exactly the
information needed by TestNForce... for one test. In order to get the complete data
about the execution, each test must be executed individually. Luckily, mstest (.exe)

Zhttp://msdn.microsoft.com/en-us/library/ms230818.aspx

14

7 Step analysis

provides a series of command lines arguments that allow the execution of individual
tests, as described next.

For each test case, the associated DTO stores information about it and about the cover-
age report that was generated for it.

How mstest, perfmon, perfcmd and vsinstr can give reports/test

As mentioned before, there is no out-of-the-box support for individual individual reports.
This is mainly because perfmon cannot distinguish between the tests calling the executed
code. However, running individual tests makes these reports possible.

A

combination of arguments and processes is needed:

mstest has the sole purpose of running the test case. It does nothing more that
loading the test assembly and executing the test case. By default, it executes all the
tests in the specified assembly(ies), but with specific arguments it can be forced to
execute only certain test. In the case of TestNForce the /test argument, with the test
name is passed. However, this argument works like string.Contains, matching
any test that contains the value of the argument. In order to match only a single test
the /unique argument is also added. With this two arguments and the path to test
assembly, mstest is able to execute individual test cases.

perfmon is the coverage collector. It will monitor any instrumented binaries who’s
process was started from the current process. This executable is launched just before a
new test run starts and it is turned off after the test ends. Basically, while mstest runs
some instrumented code, perfmon collects coverage data. The path to the generated
report is stored in the DTO corresponding to the current test (if the test passed).

perfcmd allows the manipulation of per fmon after it started. The latter one is blocked
while running and it would be impossible to control it from itself. The argument
/shutdown is passed to kill all instances of perfmon.

vsinstr is taking part in this process only to instrument the binaries so that perfmon
can recognize them.

The full process is described in pseudocode below:

run vsinstr.exe /coverage to instrument all binaries
for each test project P in projects DTO

{

for each test T in P

{

create a file TMP for storing the report

run perfmon.exe /coverage /output:TMP

run mstest.exe /testcontainer:P /test:T /unique
wait for mstest to exit

15

2. DEVELOPMENT OF TESTNFORCE

run perfcmd.exe /shutdown

if T passed then
store path to TMP in the DTO for T

This approach, even though it is slower than the custom profiler, has the advantage of
having a more simple implementation. Also, it was more suitable for the limited research
time allocated for the thesis. The results are identical.

2.3.7 Build index

1. Solution ‘ 2. Project . ()

meta meta 3. Build Instrument Salentily 6. Run tests 7.' Build
. e tests index
identifier ‘ identifier binaries

) 4

- Test

mapping
index

Figure 2.10: Step 7 of the analysis

The last step of the analysis process is the one that allows TestNForce to be TestNForce.
Of course, all the predecessor steps are needed, but all those are done in order to allow
the final step to succeed. During this step, the index that permanently stores the relation
between tests and code under test is created.

Index structure

The index is, by a bird eye view, just an archive. It contains all the information about (test)
methods and the relation between test methods and code under test. This archive always
resides next to the corresponding solution file and has same name as the solution just a
different extension, tnf.

Inside the archive two types of files exist:

e Method description files. This kind of files, hold the structure defined in section 2.4.
For each indexed method, an associated file having the mtddesc description exists.
The files are named with the method signature that they describe. An example of such
name is AppWithTests.Program.Add (System.Int32,System.Int32) .mtddesc.
Inside the file, the method structure is stored in plain text. The reason behind naming
the files with the full signature rather that just the method name is the polymorphism
support of C#. If arguments would be ignored, then it would be impossible to dis-
tinguish between methods with the same name but different arguments. Also, the

16

Code parsing and code comparison

full qualified name (including the namespace) is stored because an application can
contains methods with the same name and, optionally arguments, in different names-
paces.

o Test mapping file. The index mapping keeps a many-to-many relation between test
methods and the tested methods. The many-to-many relation is needed because a
test can cover, and usually does, multiple methods while a method can be covered by
multiple tests. There is just one index file in the tnf file and its content is XML. For
space saving reasons, each indexed method gets an Id and the mapping section of the
file refers to their Ids. Below is a part of a mapping file:

<Root>
<Methods>
<Method Name="P.Add (System.Int32,System.Int32)" ID="0" />
<Method Name="P.AddTest ()" ID="1" />
<Method Name="P.Cmp (System.Int32)" ID="2" />
</Methods>
<TestMapping>
<TestMap MethodID="0" TestID="1" />
<TestMap MethodID="2" TestID="1" />
</TestMapping>
</Root>

The name of the methods is identical with the name of description files corresponding
to that particular method.

2.4 Code parsing and code comparison

TestNForce needs to compare snippets of code in order to determine if anything changed.
Comparing two snippets of code is not a trivial task. Depending on the needs, the compari-
son algorithm can be more or less smarter than a simple string comparison.

The initial comparison algorithm was just checking the strings, bit by bit, ignoring any
leading, trailing white spaces and empty. So, the following two snippets were equivalent
because the formatting, in the second example, has only the ignored elements mentioned
before.

void MyMethod ()

{

int a=0;

att;
Console.WriteLine(a);

}

//Equivalent to

17

2. DEVELOPMENT OF TESTNFORCE

void MyMethod()
{

int a=0;

att;

Console.WriteLine (a);

}

However, such an approach had the disadvantage of not being able to deal with con-
structs that do not affect the functionality of the code, like comments. The following two
snippets, even though have the same output, will be identified as being different, because of
the comment:

void MyMethod ()

{

int a=0;

att;
Console.WriteLine (a);

}
//Not equivalent to:

void MyMethod ()
{
//A comment
int a=0;
at+;
Console.WriteLine(a);

}

In order to improve the accuracy of the detection, it was decided to parse the C# code
and perform a comparison based on its semantic, rather than syntax. Implementing a C#
parser would be a tremendous, error-prone and even useless job when there are many free
available. Therefore, it was decided to use NRefactory” as it provides a good enough parser,
sufficient for the needs of TestNForce. The structure will contain only information about the
bits that will be executed in the compiled binary, ignoring formatting and comments. The
picture below shows the semantical representation of a function that performs the addition
of two integers:

static int Add(int a, int Db){
//Comment

3http://wiki.sharpdevelop.net/NRefactory.ashx

18

What tests do I need to run?

return a + b;

//Semantical representation:

[MethodDeclaration
Body=[BlockStatement: Children={
[ReturnStatement
Expression=[BinaryOperatorExpression
Left=[IdentifierExpression Identifier=a TypeArguments={}]
Op=Add
Right=[IdentifierExpression Identifier=b TypeArguments={}]
]
]
}]
HandlesClause={} Templates={} IsExtensionMethod=False
InterfaceImplementations={} TypeReference=System.Int32
Name=Add
Parameters={
[ParameterDeclarationExpression Attributes={}
ParameterName=a TypeReference=System.Int32
ParamModifier=In DefaultValue=[NullExpression]],
[ParameterDeclarationExpression Attributes={}
ParameterName=b TypeReference=System.Int32
ParamModifier=In DefaultValue=[NullExpression]]
}
Attributes={} Modifier=Static

]

However, the semantical representation has a number of drawbacks. First of all, it uses
more storage space; this is not a big issue for today’s computers because the storage space is
becoming cheaper and cheaper. Secondly, it cannot cope with renamed variables, renamed
functions, reordered arguments or lines of code, changed types and, finally, preprocessor
directives. Handling all those would require either implementing a hook to the C# com-
piler, which is currently not possible but is planned in future releases of the language or
implementing a compiler which is out of the scope of TestNForce. It was decided that hav-
ing a semantical representation is a good enough improvement from the primitive string
comparison.

2.5 What tests do I need to run?

What would be the purpose of the index if it would not be used? Once the analysis is
complete and the index is created, TestNForce can use it to display information about the
tests that need to be run. TestNForce can provide the list of tests that covers a specific

19

2. DEVELOPMENT OF TESTNFORCE

method. Applications that use it have the responsibility of deciding the method(s) for which
they want the tests list.

What tests cover AppWithTests.Program.Subtract(System.Int32,System.Int32)? ‘

1. Get the ID of the method based on its name |

<Method Name="AppWithTestsFest-Progr: est.AddTest{)™ —‘4",/2,,,7%% TN
<Method Name="AppWithTests.Program.Subtract(System.Int32,System.Int32)" I{=“2" />/3

<Method Name="AppWithTests:Program.Main(System.String)" 1D="3"7/>
<Method Name:”ADo\/\/ithTestsTest.Prong
4{ 2. Use the ID to identify the IDs of the tests covering the method }—
<TestMapping> mﬂ/
<TestMa H Biq TestID;‘i%f/\

p
<TestMap)l\/la§:hodlD="2"Test D="1"/>
<TestMa p\Wrethedtt}:‘?/” TestI\Dslli",///

<TestMap MethodID="4" TestID="1" />

4| 3. Use the test IDs to identify test names

<Method Name:"AppWithﬁst;F’rogmdﬁiﬁym.&ntﬂﬁyﬁg}#@ﬂ)” ID="0" />
<Method Name="AppWithTestsTest.ProgramTest.AddTest()" ID="1" />

<Method Name="AppWithTests.Pr Subtract(System.Int32,System.Int32)" ID="2" />
<Method Name="AppWit| S.Program.Main(System.String)" ID="3" />

<Method Name= SWithTest<sTest Prosram Test TestContext" ID="4" />

Result: AppWithTestsTest.ProgramTest.AddTest() is one of the
tests covering the method

Figure 2.11: The process of mapping tests and code under test

The identification from index is a simple process similar to a join operation in a database.
An abstract view of this process can be phrased like “for each method that I am interested
in, look for the tests that cover it and give me an aggregated result”. Because of the index
structure, the query is split in two sub queries:

o [dentify if the method is changed. Once a request is done, the first step is looking
for the method in the indexed methods list. If the method is not there, the operation
fail. Otherwise, the semantical representation of the requested method is created and
compared with the indexed one. In case of equality, nothing changed.

o Get the test. The process is described visually in figure 2.11. If the methods are
different or the query explicitly mentions that even not changed methods should be
used, then for each of the methods the index is obtained. Armed with the indexes, the
XML mapping file is queried for nodes that have the “MethodID” attribute between
the indexes. Once the nodes are identified, the test methods corresponding to their
nodes are obtained and the result is returned.

20

User interface

2.6 User interface

TestNForce is designed to be simple. The interface consists of three menu items and a tool
window. The menu items, shown in figure 2.12, are described below:

r - - —

oo AppWithTests - Microsoft Visual Studio - Experimentaansl_M -
File Edit View Refactor Project Build Debug Team Data Tools Architecture Test | Analyze Window Help
j' EER=A = = | & =3 J| >0~ ;.F:'" ___1>| P | Windows Phone 7 Devi What tests do I need to run?
0% % R ERIEIR] Lo i ghhoa| Uedtcctmapn

[v-_1 Mew Test...
%2 Load Metadata File...

Program.cs®

y - N ETYY -
ﬁAplethTests}.Program | &Y Add(int a, int b) 3 Create New Test List...
Run r
= static int Add(int a. int b) Debug v |
{ Show covering tests
5 Manage Test Controllers...
} Refactor 3))
Select Active Test Settings ’
COrganize Usings 3 -
= = - 2 2 Edit Test Settings P
{ ?,j Create Unit Tests...
Wind [
Generate Sequence Diagram... (neews y
L Create Drivate Arreccnr » | I

Figure 2.12: The three menus of TestNForce

e Update test mapping. This menu item, is placed in the Test menu of Visual Studio.
Its purpose, as the name suggests, is to update the test mapping index with the latest
changes in the code. When invoked, it will trigger the update process in TestNForce
and will display the status and output in an output window, just like the compilation
process does.

e What tests do I need to run?. Placed next to Update index in the Test menu, this
menu item displays the tests that need to be run based on the changed code. All the
files in the solution are analyzed so the reason of placing this menu item in a toolbar
menu is that its action is not context sensitive.

e Show covering tests. The only context sensitive menu of TestNForce, it is enabled
only when right clicking text in C# files in the code editor. It will display the lists
of tests that cover the line of code on which the right click was performed. Results
will be displayed even if no changes were made to the code. Because of the reasons
presented in section 3.1, when this menu item is invoked on a line of code inside a
method, the option will be invoked for the whole method.

The tool window that presents the covering tests has just a listbox(figure 2.13). It shows
the full name of the each test that was obtained using one of the menu items previously
mentioned.

It might sound that the interface of TestNForce is too simple. However, TestNForce just
provides the list of test cases that need to be executed and that is all what is needed for this.

21

2. DEVELOPMENT OF TESTNFORCE

return Add(a, -b); I |] Program.cs

} 4 E‘ﬁ AppWithTestsTe
> [=d Properties
» [x3] References

> [Test Referen

#] ProgramTes

TestMForce *@x

Your changes require that you run the following tests:

AppWith Tests Test. Program Test. Add Test ()
AppWith Tests Test. Program Test. Subtract Test()

I—“iJ Selution Explorer

B Output E Test Results

Ready

— ——

Figure 2.13: Test results as shown in Visual Studio

As mentioned in section 3.1, the interface could be simplified even more if a background
analyzer would look for changes all the time.

2.7 Team Foundation Server checkin policy

TestNForce offers a checkin policy* for Team Foundation Server. The policy will prevent
checkins if the test mapping index is not up to date.

The policy integrates with the standard checkin window (figure 2.14) and for those
unfamiliar with Team Foundation Server, it not might be obvious which part of the window
is the actual addin. We strongly believe that the previously mentioned fact is a plus for
TestNForce because if keeps a unified experience across the development process.

Two types of warnings are displayed:

1. The test mapping index is not included in the checkin. The index must be included
with the checked files because other developers should be able to get the updated
version. This policy is triggered only when C# files are included in the checkedin
files list.

2. The test mapping index is not up to date. When C# files are included, the index file
must be the latest updated file. Otherwise, the index is not up to date and the policy
is triggered.

4As described on MSDN: “Check-in policies are a mechanism for enforcing development practices across
your development team.”

22

Summary

Check In - Policy Warnings HE

JE TF10139: The following check-in policies have not been satisfied

=} Drescription
Source Files

TestNForce index is not up to date

¥

| ‘Work Ihems

Check-in
[okes

Palicy
‘Warnings

Check In I Cancel |

Figure 2.14: The checkin policy

2.8 Summary

In this chapter, the technical details of TestNForce were presented. The implementation is
far more complex and only the most important aspects were detailed.

In the next chapter, we’ll see if the current implementation of TestNForce can help
developers and testers.

23

Chapter 3

User study and survey

During the development of TestNForce, a survey and an user study were conducted. The
first one was informal and it had the purpose of improving the usability of TestNForce while,
the latter one, took place in a controlled environment and had the purpose of evaluating the
final version of TestNForce. This chapter is about them.

Each of the two is presented in two parts. The first part always gives details about the
setup and execution while the second part carefully analyzes the outcome.

3.1 The usability survey

Just after the start of the Visual Studio integration implementation phase, a usability problem
arose. The question without answer was “What should be displayed when invoking the
“tests that cover this code” option from the context menu in editor?”. This question was and
still is open ended. More specifically, a number of subquestions need to be answered: What
is displayed when the previously mentioned option is invoked for ...

1. ... afew lines in a method are selected?

2. ... the whole method is selected?

3. ... one or more methods are fully selected and one or more other are partially selected?
4. ... anamespace is selected?

5. ... an empty line in a method/class is selected?

6. ... the “using” section is selected?

For example, the first subquestion, “What happens when a few lines in a method are
selected?” can have multiple answers. The user can get only the tests that cover those
specific lines; in this case, if we have an if block and only the else branch is selected, any
test that covers the if branch will not be displayed. Another solution, which is as valid as
the previous one, could give the user all the tests covering the method in which the lines are;

25

3. USER STUDY AND SURVEY

in this case we would have a method level granularity'. A third alternative, but definitely
not the last one possible, is to display either the tests covering each line in the selection or
just an aggregated result when branches exist.

We had multiple answers to these questions and could not decide what the end users will
find more useful. In order to answer the question and to make the TestNForce experience
very pleasant, an informal survey was conducted. A number of six subjects were selected.
They all work at Microsoft and have extensive experience with Visual Studio, which is the
primary IDE used in the company. There was no reason to collect background information
about participants because they all have a similar profile and no major differences could be
observed.

They were all gathered in one room where they filled the questionnaire while the author
was showing, on a projector screen, different methods of selection and menu invocations.

The questionnaire had 4 questions. The first one covered the subquestions previously
mentioned. The second question was asking about the expectation when just the method
signature/class name/namespace name is selected and the option is invoked; is it expected
to have results for each line of code or just one aggregated result? The third question was
asking about expectations for methods/classes/namespaces that split over multiple files (C#
supports partial methods since version 3.0%). The final question was asking the participants
to write their ideas and to give details if they see a better approach for the selection method.

The questionnaire can be seen on page 62.

3.1.1 Results

The answers to the first question were aligned to our initial belief. If the code file is seen as
a tree with lines of code as leafs, having the method as parent, having the class as parent,
having as namespace as root then, selecting a node will invoke the action on all the leafs.
For empty lines, the action will be invoked on the node that contains the empty line.

For the second question, only one participant thought that the aggregated results are
enough. All the rest thought that the aggregated result is good but there should be an option
to expand the result for details.

An unanimous answer was provided for the third question: when selecting a namespace
that splits over multiple files, all the files should be analyzed. For any other code block
(class, method), only the local context should be analyzed.

After a brainstorming session for the fourth question, the following ideas were pro-
duced:

1. “A popup dialog that provides different options can be shown prior to results”

2. “Automatic discovery while typing”: the index will be queried while changing the
code and results will be updated in real time. While this solution is very interesting
and would simplify the interface (there is no need for menus anymore), it might be

IThis means that when details about the content of a method are asked, only details about the method itself
can be obtained
Zhttp://msdn.microsoft.com/en-us/library/wa80x488\%28v=vS.100\%29.aspx

26

User study

impossible to implement it for large projects because of the time required to query
the index.

3. “Code overlay, like code coverage does”: in Visual Studio, the code coverage result
is displayed over the code, by coloring lines with different colors. Initially, it was not
clear how such a solution can be implement. The answer was later clarified, verbally,
by the participant: display, for each line of code, on its left (where the breakpoints are
displayed) a rectangle that shows a popup window with tests that cover that method,
when clicked.

Only part of the ideas extracted from the survey’s results were used in the final design.
This is mostly because the initial design had a line of code granularity for the tests that
cover a specific block of code. The final design, because of some limitation of the Visual
Studio API, allows only method level granularity (the finest granularity that can be obtained
is at method level; when an option is invoked for elements inside a method, the result is
equivalent with invoking the option at method level).

3.2 User study

A tool is useful if it solves a real problem and it is not creating new ones. TestNForce might
change the way software development is done and, in some cases, the change might be
radical. It is dangerous to say that TestNForce is good just because it tries to solve a real
problem. A proof was needed.

A historical analysis of tools similar to TestNForce, in order to decide what is good/bad
by looking at the past was not a feasible option. To the best of our knowledge, only one
tool, the Test Impact Analyzer from Visual Studio 20103, is available and it does not have
enough history behind. Therefore, TestNForce was evaluated through the meanings of a
user study (organized as an experiment).

The first part of the section describes the experiment and the way it was prepared. The
section ends with the outcome of the experiment. Also, conclusions about the usefulness
and usability of TestNForce are drawn at the end.

3.2.1 Experimental design

Great attention must be given to the experiment design because only an experiment that is
well designed can give high quality results. The efficiency of the analysis of the results
depends on the design of the experiment that was conducted to extract the results[6]. There-
fore, the experiment was carefully designed taking into account, from the beginning, the
questions that must be answered.

A one-shot case study[4] would be of little use in the case of TestNForce because the
group is only observed once while “securing scientific evidence involves making at least
one comparison[4]”. A static-group comparison design would give very good data because
two groups, one using TestNForce and one not using it could be observed and their results

3http://msdn.microsoft.com/en-us/library/dd264992.aspx

27

3. USER STUDY AND SURVEY

compared. If designed and planned correctly, the only difference between results would
be caused by TestNForce. However, as will be mentioned in section 3.3.2, the experiment
involved a number of participants insufficient for making more than one group.

A one-group pretest-posttest design[4] was selected for evaluating TestNForce. Even
though such a design is categorized as a pre-experimental design, for the rest of the paper we
will to it as “experimental design” and “experiment”, respectively. The one-group pretest-
posttest design involves a group that is observed before and after some (controlled) variables
are changed. In the case of TestNForce, the only change between the two observations is
the usage of the tool. A number of subjects were asked to use TestNForce and express their
opinion before and after using it.

In order to reduce the effects of history[4], meaning that the results could be altered
by time if the time difference between the pretest and the posttest spans across a long time
interval, it was decided the run the whole experiment without breaks. The experiment was
preceded by a pilot run which highlighted some problems with the tool and with the exper-
iment environment.

Before designing the experiment material, a number of variables, that will be observed,
need to be defined. The variables chose for analysis are:

1. Usefulness.* The degree to which TestNForce can solve a real problem and is helpful.
2. Usability.> The degree to which TestNForce is easy and pleasant to use.

3. Completeness.® The degree to which TestNForce solves the problem or how much of
what is necessary was left uncovered.

Having the values for the above mentioned variables, we can answer a part of the re-
search questions mentioned in 1. The first and the third variable provide the answers to
research question 3 while the second and, again, the third variable give the answer to the
forth question. The third variable has a double role because an incomplete product reduces
its usefulness and frustrates the users. To summarize, the two research question that will be
answered by the experiment are:

1. Is TestNForce useful?

2. Is TestNForce providing a good user experience?

3.2.2 Pretest and posttest
The pretest

The purpose of the pretest was to gather some background information about the subjects
and to get their expectations from a tool like TestNForce. Four categories of questions were

4Usefulness = (1) Having a beneficial use; serviceable (2) Being of practical use
5Usability = (1) That can be used (2) Fit for use; convenient to use
6Completeness = Having all necessary or normal parts, components, or steps; entire

28

User study

asked. The questions in the first three categories collect relevant information about the par-
ticipant in order to create its profile. The questions in the last category collect information
about their expectations from a tool like TestNForce.

1. Participant’s background (questions la-1d). Questions about age, profession and
education were asked

2. Development experience (questions 2a-2i). Subjects were asked to rate their develop-
ment skills in general, development skills and experience with C# and Visual Studio
and experience with large projects. The information collected can be used to deter-
mine if the answers of the participants differ with the experience level.

3. Testing experience (questions 3a-3h). Because TestNForce involves testing and tests,
information about the testing skills was collected using the questions in this category.
Participants had to rate their testing skills, their expectations from tests (expected
code coverage, expected tests for small projects, time spent on testing) and also had
to share what kind of test, if any, they did in the past.

4. Expectations from TestNForce (questions 4a-4f). The participants read an abstract de-
scription of TestNForce (printed below) and expressed their expectations with regard
to usability and usefulness of such a tool. Also, they had the opportunity to write if
the ever heard and/or used a tool that matches the description.

“With a test impact tool, one should be able to decide what tests to run
after changing the code. In other words, the tool will provide a list of tests
that are relevant for the change. Such a tool will inform the developer
about the tests that cover the code she/he changed. Furthermore, upon
check-in (commit) to the version control system, the tool will prevent this
action if tests corresponding to the changed code were not executed and,
optionally, updated.”

The full pretest can be seen on page 63.

The posttest

After the assignment was done or the time allocated for it elapsed, the participants had to
fill a second questionnaire. This time, the questions were directly targeting TestNForce and
the experiment. Seven categories of questions were created. Following them, an additional
open ended question was asked and the participants had the chance to express any thoughts
that were not covered by previous questions.

The seven categories are as follows:

1. Simple questions about TestNForce (questions la-1c). The subjects were asked if
they liked TestNForce and if they found it easy to use.

2. TestNForce in relation to the assignment (questions 2a-2c). The questions in this
category were asked in order to figure out if the tool helped the participants solve
assignment.

29

3. USER STUDY AND SURVEY

3. TestNForce and Team Foundation Server (questions 3a-3d). The assignment covered
the integration between the Team Foundation Server and TestNForce. The partici-
pants had to express their opinion about the integration. The questions asked were
about the quality of the integration, about the usefulness of the integration and about
usability.

4. Usability (questions 4a-4f). A tool must not be difficult to use. Questions in this
category are meant to provide a clear answer about TestNForce: is it easy to use it in
general?

5. What is missing (questions 5a-5f). We are aware of some features that were planned
initially as “nice to have” but, the lack of time removed it from the backlog. These
features are listed in this category and participants had to tell, for each of them, if they
would like or not, to have them. The features includes support for other programming
languages, static code analysis, incremental index update, etc.

6. Assignment (questions 6a-6e). Even though the evaluation of tool was the primary
goal of the experiment, the assignment had to be evaluated. Important conclusions
can be drawn from these questions. Having the answers to questions like “Was the
time allocated for the experiment enough to complete the assignment?” or “Was
there enough guidance?” can tell if the focus of the subjects was on the tool and on
the assignment or they just tried to overcome different blocking issues, not related to
the experiment.

7. Experiment (questions 7a-7f). Just like the questions in the previous category, the
experiment questions are meant to decide if the tool was evaluated well enough or
the experiment actually focused on irrelevant aspects. The subjects were asked if the
experiment was well organized, if they think that Jurassic was appropriate and they
were asked to rate their overall impression of the experiment.

The full posttest can be seen on page 65.

Some of the questions in the posttest are the same as the ones in the last category of the
pretest. This allows the comparison of expectations before using TestNForce and the actual
impression after.

All the questions, except the last one, can be answered with one of the following 5
answers, each answer having a score value associated with it: (1) Totally disagree, (2)
Somehow disagree, (3) Neutral, (4) Somehow agree, (5) Totally agree.

3.2.3 The assignment

Even though it is presented after the posttest, the completion of the assignment took place,
chronologically, just after the pretest and before the posttest. The experiment took place
in Delft, the Netherlands while the author of this thesis lives in Copenhagen, Denmark.
Because of this and, because each participant is volunteer and does not have too much time
for the experiment, it was decided to run the experiment over 2 days. Based on the number

30

User study

of participants, the time allocated for the assignment was 1 hour, with a maximum extension
of 5 minutes in special situations.

The assignment was designed in such a way that it will require the participants to use
TestNForce but, will still be a realistic scenario. There was a total of nine participants that
completed the assignment (one in the pilot and eight in the real experiment).

The content

The assignment is constructed around a semi-realistic scenario. The subject is a newly hired
developer at Monroe Corporation. He is arriving at work on his first day and everyone is
away. He finds only a note (the assignment) that mentions that everyone else is in Bahamas
for a team building event and he is told that this should not stop him from starting. The
note gives him a brief introduction of Jurassic and TestNForce. The final paragraph asks
the “employee” to not spend too much time at work in the first day and mentions that 60
minutes are enough. This last paragraph actually sets the time limit for the experiment.

The first assignment is asking the subject to get familiar with the (test) code. It is
important for a developer/tester to know which tests are covering a specific method. First,
the participant has to spend a few minutes trying to identify the tests manually and then he
is asked to use TestNForce to achieve the same result.

The second assignment is about change risk. The assignment states that the risk of a
change increases with the number of affected tests. This holds as long as there is enough
coverage and, luckily, this is valid for Jurassic. The participant has to decide if adding a
new base type to the compiler core can break many tests. TestNForce can be used after
identifying what methods need to be changed either by invoking the “What tests cover this
method?” option or by actually making the changed and invoking “What tests should I run”.

The third question was the first and only, programming assignment. The request is to
fix a method that is causing some tests to fail. The participants were not told which tests
are covering that method so they have two options (1) either execute all tests, which it not
feasible because it takes 40 minutes or (2) use TestNForce to identify the tests. Then, armed
with the tests cases, they have to proceed and change the method. Finally, they have to
prove that the change is good by invoking the (two) covering tests.

The forth assignment and the fifth could be done together. Actually, the fifth is a con-
sequence of the forth and can be involuntarily completed while doing the former. The forth
assignment asks to checkin the changes that the subject did. This is not possible until the
index is updated and added to the project so the fifth assignment can be completed here.
However, updating the index takes 28 minutes so, participants were asked to start the pro-
cess, but not wait until is finished.

Jurassic

The assignment had to be created around a project. A number of criteria had to be satisfied
in order for a project to be a good candidate (in random order):

e The project has to be free or its license should allow the use in academic environments

31

3. USER STUDY AND SURVEY

e The full source code must be available

o It should not be graphically intensive because it will run on virtual machine, where
3D acceleration is not available

e It should have a considerable number of test cases that pass and a good coverage
o It should not be a trivial application

e The tests cases must take more than a few minutes to run

e The code used should be C# only

e MSTest should be the test platform

o It should be either known by everyone or by no one in order to have a fair experiment

The selection process was extremely difficult. Most projects found satisfy just partially
the conditions stated above. The biggest community of .NET open source projects is Code-
Plex” and that is, to the best of our knowledge, the only place where such a project can be
found.

Between the tools that satisfy most of the conditions we find tools like Ajax Control
Toolkit® - “a rich set of controls that you can use to build highly responsive and interactive
Ajax-enabled Web applications” - Microsoft All in One Code Framework® - “The Microsoft
All-In-One Code Framework is a free, centralized code sample library driven by developers’
needs” - or StyleCop!? - “StyleCop analyzes C# source code to enforce a set of style and
consistency rules”.

The previously mentioned projects have the disadvantage of being well known between
.NET programmers but, probably, unknown to others. It would have been possible to have
some experienced .NET developer taking part in the experiment and his results would,
mostly sure, not be comparable with other’s who do not know the code base.

During the “Most popular projects” list interrogation, Jurassic showed up. Jurassic is
“an implementation of the ECMAScript language and runtime. It aims to provide the best
performing and most standards-compliant implementation of JavaScript for .NET. Jurassic
is not intended for end-users; instead it is intended to be integrated into .NET programs.
If you are the author of a .NET program, you can use Jurassic to compile and execute
JavaScript code.'!”.

Jurassic satisfies all the prerequisites for the project and is worth mentioning that a
number of 344 test cases are available, out of which 328 pass. The project is extremely
complex since it translates JavaScript code to Microsoft Intermediate Language but, still is
very simple to learn due to a good architecture. This makes it the perfect candidate.

Thttp://codeplex.com
8http://ajaxcontroltoolkit.codeplex.com/
9http://lcode.codeplex.com/
10http://stylecop.codeplex.com/
Uhttp://jurassic.codeplex.con/

32

The experiment run

The only drawback: the Jurassic solution has a Silverlight project. TestNForce does
not support XAML code. For this reason, the project was removed from solution but, the
functionality of Jurassic was not impacted at all since the Silverlight project was just an user
interface for demo purposes.

3.2.4 The pilot run

After the design of the assignment was completed, but before the actual experiment run,
a pilot run was set up. Such a run was scheduled in order to be proactive and catch any
unexpected issue. The run was schedule approximately 2 weeks before the final experiment
date. This time interval was considered sufficient to fix any issue that might surface during
the pilot.

Two major issues were discovered and fixed subsequently. The first bug caused the
index not to be updated correctly because the virtual machine had an outdated version of
TestNForce. This issue was mitigated by copying the latest version of the binaries and
updating the index.

The second issue was caused by the fact that Visual Studio is not caching the creden-
tials for the Team Foundation Server in the experimental instance if they were typed in the
non-experimental instance. This leads to the impossibility of connecting to TFS without
assistance - the participants could not know the URL of the server. This problem cannot
be fixed and it was decided that each participant to ask for the credentials and URL before
checkin.

Other minor issues fixed after the pilot experiment:

e Added more hints for the first assignment, especially regarding the Find References
features of Visual Studio

e Concluded that a crash course on Visual Studio is needed, if the participant has no
prior experience because, the pilot participant had some troubles finding its way
through the IDE

e Fixed a typo in one of the menus (“index” was written as “idnex’)

e Fixed some grammar mistakes in the assignment’s text

3.3 The experiment run

In the graphical representation of the results, the horizontal axis which contains numbers
from 1 to 8 always represents the subjects’ answers, each bar corresponding to the candidate
with that index. The vertical bar with values from 1 to 5 is always the value of the response
(1 = Totally disagree; 2 = Somehow disagree; 3 = Neutral; 4 = Somehow agree; 5 = Totally
agree). Questions starting with “pre” are part of the pretest while those starting with “post”
are part of the posttest.

33

3. USER STUDY AND SURVEY

3.3.1 Experiment environment

In an attempt to mitigate possible failures caused by the software policies in the TUDelft
network, a virtual machine was set up. Since all the technologies used during the develop-
ment of TestNForce were signed by Microsoft, the machine emulation software could not
be signed by someone else.

The operating system of the virtual machine was Windows 7 Ultimate. All the unnec-
essary components (Media Player, themes, Media Center, games, etc.) were removed and
only Visual Studio Ultimate with Team Explorer was installed. There was no restriction on
what applications can be used but, as expected, there was no need for any other software,
not even for the Internet browser. The Team Foundation Server was running on another
Windows 2008 machine. Participants did not had direct access to this machine and their
only interaction with the source control server was though Visual Studio.

The configuration for which TestNForce was created and on which it was tested has
the characteristics of a netbook. Such a configuration includes a slow processor (usually
single core with a maximum frequency of 1.6GHz and 1-2GB of RAM memory). All the
computers used in the experiment have a better configuration that the recommended one, so
there is no doubt that the hardware could not have impacted, in a negative way, the results.

Upon start, participants were asked to run a small script that will clean the machine (if
there were any leftovers from the previous experiment run) and setup the environment for
them. Each participant had a fresh, untouched copy of TestNForce, Jurassic and experiment
documents.

3.3.2 Participants selection

In order to evaluate TestNForce, the ideal subject would have some background with .NET
technologies and would have worked on projects that have many tests and require a long
time to run. Such a profile is required in order to be able to evaluate if TestNForce improves
the development process - without prior knowledge it is hard to say if things can be different
without the tool.

Even though Java is the primary language used in the University of Delft, there is still
a good number of students and staff members that have .NET knowledge. The experiment
invitation was sent without taking into account the subject’s profile. Later, it was realized
that not including a prerequisite was a enormous risk because the final subjects could be
completely unfamiliar with .NET. However, it turned out that most of the participants had
at least basic knowledge of Visual Studio and .NET and they worked with tests before.

The invitation was sent to approximately 20 individuals out of whom eight confirmed
their availability in the proposed time intervals. All who responded were selected for par-
ticipation.

3.3.3 Participants’ profile

As mentioned before, a number of 8 participants took part in the experiment. This section
gives an overview of their profile based on their answers from the pretest.

34

The experiment run

la) Age 1b) Education 1c) Studied in d) Occupation
1 1 1
2 1 2
1 1
1
4 8
1
2 6
ENL mPT mUK 5
m23 m25 m26 m27 mPhD m MSc EGR mBD m MK mPhD m Master = Owner

(a) Answers to question(b) Answers to question(c) Answers to question(d) Answers to question
prela prelb prelc preld

Figure 3.1: Background information about subjects

Participant’s background

The participants have the age between 23 and 27 years, most of them being situated in the
upper part of the interval as can be seen in figure 3.1a. Two of them are PhD students (phd),
five of them are master students (msc) and one of them is owner of an IT consultancy com-
pany (own) (figure 3.1d). Figure 3.1b shows that their educational background is similar,
all having or being in the process of getting academic degrees. All the subjects studied in
Netherlands (NL). Moreover, just three of them studied in one country only, the rest being
equally distributed between: Portugal (PT), Greece (GR), Macedonia (MK) and Bangladesh
(BD). A graphical representation of this data can be seen in figure 3.1c.

Development experience

2a) | consider myself an experienced developer

mmmm |ndividual

e Ve dlian

Answer
N Wb~ o

Figure 3.2: Answers to question pre2a

All participants consider themselves at least average experienced developers. Figure 3.2
shows the previously mentioned observation and also shows that none of the participants is
a guru. For evaluating TestNForce such a skill level is almost ideal because the majority of
the developers in the field have similar skills and extremes are rare.

35

3. USER STUDY AND SURVEY

2¢0) | id If i d
2b) What is (are) the development environment(s) 9 Cons{/i(::;? gisdiﬁnu(;:f erience
that you are experienced with?
DE #1 2 3 4 5 6 7 8 ;
Borland | 1l 3¢ 3¢ 3¢ 3¢ € ¢ ¢ 57
. s 3 | mmm Individual
Edipse (8} & & & & & & & | E°
Netbeans [1/3¢ 3¢ ¢ « 3¢ ¢ ¢ K 2 1 = Median
Vim 2 & X X &« X X X 1‘12345678
VS 5 X & & X & & &
(a) Answers to question pre2b (b) Answers to question pre2c

Figure 3.3: Experience with IDEs

Figure 3.3a shows the Integrated Development Environments with which each partici-
pant is familiar. It can be seen that all subjects have knowledge of Eclipse and more than
half of the participants have worked with Visual Studio (VS). Having an Eclipse background
makes the transition to VS simple because the two IDE have many similar features. None of
the participants expressed difficulties in using VS and there is no reason to believe that the
VS knowledge affected the experiment results. On the official website of VIM is it stated
that “[Vim] is often called a programmer’s editor, and so useful for programming that many
consider it an entire IDE!?”. The inclusion of VIM in the list might be arguable by some.
No matter what the correct categorization is, the answer will stay in the list in order to not
alter the subject’s profile.

In figure 3.3b, the experience of each participant with VS can be seen. These answers
are strongly connected to those of question Pre2b. The participants that did not include
VS as an answer in Pre2b, answered with “Strongly disagree” or “Somehow disagree” in
question Pre2c. An important observation is that only one participant (number 5) has no
experience with VS; all the others have at least some.

2d) What is (are) the programming language(s) that you are
experienced with?
c 5 of K o & K X
CH+ I X X X X & K «
CH 4 K & X X &« & «
Haskell Iy X X X X X X X
Java 8/ & o o
R 1 & K K « ¥ X X
Python 3R & K « « ¥ K K
Stratego/XT 1€ K K X « K K X
Figure 3.4: Answers to question pre2d

The information collected about subjects’ background was their experience with differ-

I2nttp:/ /www.vim.org/about . php

36

The experiment run

2e) | consider myself experienced with 2f) | consider myself an experienced C#
a .NET language programmer
5 5
o4 o4
% 3 mmmm |ndividual % 3 s [ndividual
C o
<2 s Ve dliaN <2 e Medlian
1 4 1 -
123456738 12345678
(a) Answers to question pre2e (b) Answers to question pre2f
Figure 3.5: Experience with managed languages
29) | worked before on large scale 2h) I understand the challenges that
software projects arise in software projects
5 5
5 g4
z 3 mmmm |ndividual 23 mmmm Individual
c C
< 2 e Melian <2 e Median
1 1
123456738 12345678
(a) Answers to question pre2g (b) Answers to question pre2h

Figure 3.6: Experience software projects

ent programming languages. The table in figure 3.4 shows the answers. Since the partici-
pants are all students at the Technical University of Delft (see answers from question prelc)
where Java is one of the most common programming languages, the answers reflect this
aspect. All the participants have experience with Java and half of them know C#. More-
over, some participants have C++ knowledge. Having such a good background with OOP
languages, makes even the subjects with no C# experience able to program in .NET.

Figures 3.5a and 3.5b show the experience of the participants with a .NET language
(which could be C#, VB.NET, F#, C++/CLI, IronPython, etc.) and the experience with
C#, respectively. The results of these two questions can give clues about the problem, if
the subject has difficulties in completing the programming assignment. It can be observed
that two participants (1 and 5) have no prior experience with managed languages. Subject
8 mostly sure knows another .NET language better than C#. The rest of the participants
have the same answers in both questions which lead to the conclusion that the language
experience expressed in question preZe is actually C#.

Based on the results in figure 3.6b it can be concluded that participants know what are
the pain points of software projects and they will be able to evaluate TestNForce correctly
and decide if it helps them in delivering faster/better products. However, the answers in

37

3. USER STUDY AND SURVEY

figure 3.6a shows that while the participants understand the challenges, most of them did
not work in large projects. This might have been a threat to the validity of the experiment
because the subjects could have only theoretical knowledge about the projects that TestN-
Force targets. However, the answers in the post test show that participants actually identified
correctly the benefits of TestNForce.

None of the participants heard of a tool similar to TestNForce (question pre2i), therefore
there is no reason to discuss this answer. The only observation is that the subjects are equal
from this perspective and their answer will not be affected by the previous experience.

Testing experience

3a) | consider myself an experienced tester

5
5 4
z3 mmmm ndividual
c
< 2 - e Ve dlian
1 4

Figure 3.7: Answers to question pre3a

Figure 3.7 shows how each participant evaluated his testing skills. If the results are
compared with those from question pre2a, an interesting pattern will be observed: all par-
ticipants have a lower (or equal) testing skill.

3b) | write tests for most of the code | am writing

mmmm [ndividual

e |\ledian

Answer
P N w b~ o

Figure 3.8: Answers to question pre3b

The responses to question pre3a, most probably, are influenced by the responses to
question pre3b. In figure 3.8 it can be noticed that participants do not really write tests for
the code they write, with one exception. An interesting response was provided by subject 8
who mentions that he is writing some tests but, as will be seen in the responses of question
pre3c, no test type was mentioned. Even though the participants understood correctly the

38

The experiment run

purpose of TestNForce and identified the problems it is solving, it might be argued that the
lack of test experience might have impacted the test results.

3c) What kind of tests you did in the past?

Test type
Acceptance
Integration
Manual
Unit

Question pre3c, which has the results presented in figure 3.9, asks the participants, indi-
rectly, to give more details about the response from the previous question. The participants
wrote what kind of tests they did in the past. It can be noticed that most participants wrote
unit tests which are the tests that TestNForce targets.

The questions pre3d to pre3h are used just to get an idea about the level of expertise
of the participants and their work style. From figure 3.10a it can be deduced that the par-
ticipants do not want to deliver low quality code but, unfortunately, it cannot be deduced if
they would have the same opinion under pressure (time or budget pressure). This question
is valuable for understanding the profile but its design is incomplete.

On the other hand, the results in figure 3.10b, reflect the style of the participants when
working alone. We believe that the responses reflect the approach that the participants would
take even when working on a multi-man project, where there are no test criteria. It can be
seen that three of the participants said that there is a 50:50 chance for them writing tests.
However, in the post experiment discussions, many participants admitted that, unless told
to, they do not write tests.

The subjects had to estimate or tell from experience their expectations for the resources
involved in testing. The responses in figure 3.11a and 3.11b shows that, on average, the
participants are aware about the fact that the size of the test code can be greater that that

3d) | believe that is better to deliver fast 3e) | believe that one-man projects
than spending more time on testing don’t require automated tests
5 5
= 4 = 4
;| s Individual S5 s Individual
c
"]:I:I:I:I:E[e) HII—:IE e
1 A 1
1 2 3 456 7 8 12345678
(a) Answers to question pre3d (b) Answers to question pre3e

Figure 3.10: Experience with testing

39

3. USER STUDY AND SURVEY

3f) Is it common that the size of the test 3g) The amount of resources spent on
code to be greater than the size of the developing and maintaining test code can
tested code be greater than those spent for the tested
5 code
— 4 1 5
[] .. - 4
2 31 Individual % 3 s [ndividual
< — H <
2 1 Median <2 e Medlian
1 1
12 3 456 78 12 3 456 78
(a) Answers to question pre3f (b) Answers to question pre3g

Figure 3.11: Estimation of test resources

of the code under test and that it can also be (the test code) more complex. Also, the
participants are aware that the time spent on testing can be greater than the time spent on
developing the code under test. The advantages and disadvantages of spending extra time
are also presented by George in [12] where he conducted an experiment and showed that
more resources are needed when testing is involved.

3h) How much code coverage is considered “good”?

100%
80% -
60% -
40% -
20% -

0% -

mmmm Individual

Answer

e— AVErage

Figure 3.12: Answers to question pre3h

The last question in the testing background category was about code coverage. The par-
ticipants provided the answers shown in figure 3.11b when asked how much code coverage
is considered “good”. This question has the purpose of highlighting what the subject under-
stands as code coverage benefits. A response of 100% means that the participant was not
fully realistic because the return of investment of such a coverage is not justified. However,
a too low value would mean that either the project is too small and too much time would be
spent on developing tests or there are not enough tests. We believe that an 80% coverage is
a realistic target, a target expressed by the average of the responses.

The profile of the participants makes them fit in the ideal subject profile. Just two of
the participants indicated no prior C# knowledge and only one of them indicated no prior
Visual Studio experience. All consider themselves average or above average developers and
understand the challenges that arise in software projects. The only requirement that is not

40

Experiment results and analysis

fully satisfied by the profiles is the experience with large projects. Most of the participants
indicated very little experience.

3.4 Experiment results and analysis

The ultimate goal of the experiment was two answer two research questions:

1. Is TestNForce useful?

2. Is TestNForce providing a good usability experience?

3.4.1 Evaluation of TestNForce

Preda vs Postla - Is TNF useful?

4 1 I Before

After

Answer
w
,
[

=== Before average

e After average

Figure 3.13: Before-after comparison of expectations about the usefulness of TestNForce

In the pretest, participants were asked to say if they would use a tool like TestNForce.
In the posttest, they were asked if TestNForce was indeed useful. These two questions, even
though phrased differently, try to evaluate if TestNForce is of any good. As can be noticed
in figure 3.13, before having the chance to work with TestNForce, the subjects considered
such a tool useful giving an average rating of 4 (of a scale from 1 to 5, 5 meaning “Totally
agree”). The answers in the post test confirm the fact that TestNForce is useful. All the
answers, after the assignment, remained either at the same level (which was already high)
or improved. One important fact worth mentioning is that some subjects expected, during
the pretest, that such a tool to be extremely useful (answering with the maximum 5) and it
turned out that TestNForce has been at their expectation level.

In both the pretest and the posttest, participants were asked if the tool described and
TestNForce, respectively, it is annoying. It is extremely important to have a tool that solves
the problem and does not introduce new ones like difficulties in getting the answer. Most of
the participants, as confirmed by their answers shown in figure 3.14, expected TestNForce
to offer a good experience - the average rating for the annoyance level was 2.75, placing
it in the lower part of the grading interval. Based on the answers in the pretest, it can be

41

3. USER STUDY AND SURVEY

Pre4d vs Postlb - Is TNF annoying?

mmmm Before

3 After

Answer

e Before average

- After average

Figure 3.14: Before-after comparison of expectations regarding the fact that TestNForce
might be/is annoying

2a) TestNForce helped me complete the 2b) My test identification result improved with
assignment TestNForce
5 5
4 4
9] .) L
2 3 s Individual S 3 mmm Individual
2 2
<, e Vedian <, e Ve dlian
1 1
123456738 123 45¢61738
(a) Answers to question post2a (b) Answers to question post2b

Figure 3.15: Effects of using TestNForce

concluded that the expectations in terms of usability and annoyance were met. Even more,
in 5 cases, the annoyance level was lower than expected.

Figure 3.15a, shows the fact that participants did used TestNForce to complete the as-
signment and the tool helped them. However, as one of the participants noticed, the assign-
ment was designed in such a way that it will require the use of TestNForce. We agree with
this statement but we do not believe that the assignment was structured to put TestNForce
in a good light. The only reason why the assignment forced the participants to use the tool
is that the only way of evaluating it is by using it. The answers to question post2b, shown
in figure 3.15b are the reason of the answers to question post2a. The participants used Test-
NForce, their test identification skills improved (6 of the participants fully agreed with this
statement), therefore the tool helped them complete the assignment.

None of the participants heard of Jurassic before the assignment (question pre2i). As
can be seen in figure 3.16, TestNForce made them confident about changing unknown code
which can lead to the conclusion that TestNForce does make the developer’s job easier. The
median rating of 4 strongly supports this. However, the participants might have been less

42

Experiment results and analysis

2c) TestNForce makes me more confident when changing unknown code
5
—_ 4 T
(] .
s 3 mm Individual
2
< 5 | e Median
1 -
1 2 3 4 5 6 7 8
Figure 3.16: Answers to question post2c
3a) The checkin policy for test enforcement is 3b) The integration between TestNForce and
good TFS is good
5 5
4 4
o] - 9] -
s 3 mmm |ndividual 23 mmm |ndividual
2 2
<, e Median <, e Median
1 1
12345678 12345678
(a) Answers to question post3a (b) Answers to question post3b

Figure 3.17: Evaluation of the checkin policy

worried about changing unknown code because they had explicit instructions and there were
no consequences for mistakes.

From figure 3.17a it can be deduced that the checkin policy is mostly useful and most
of the participants understood and appreciated its purpose. However, as can be seen from
the results, there are not too many answers of “Totally agree” which means that no one
considers the policy a critical component. The results presented in figure 3.17b represent the
quality of the integration between TestNForce and Team Foundation Server (TFS). Because
TestNForce integrates in the checkin window, there is no sign that could show that the policy
is an external part of VS. This must be the reason why most of the participants considered
the integration good. However, the integration is very light and for those who never seen the
checkin window it might not show anything different; this might be the reason why some
people gave a medium rating.

An interesting set of responses can be seen in figures 3.18a and 3.18b. Subjects 6 and
7, considered the policy quite restrictive (giving a rating of 4) but still they only “Somehow
disagree” that the policy should have an option to bypass it (giving a rating of 2). On the
other hand, subject 2 considers the policy very less restrictive but somehow agrees that it
should be possible to bypass it. The rest of the participants think that the policy is mostly
alright and it should not be possible to bypass it.

43

3. USER STUDY AND SURVEY

3c) The checkin policy is too restrictive 3d) It should not be possible to bypass the
5 checkin policy
5
4 -
3 - 4
2 3 | s Individual % 3 individual
< —— i <
7 | Median Z 5 e Mediian
1+ 1
123456738 123 45¢6 738
(a) Answers to question post3c (b) Answers to question post3d
Figure 3.18: Restrictions of the checkin policy
5a - 5f. What features are missing from TestNForce?
5 B 5a) Support for other programming languages
g 4 4 B 5b) Possibility to exclude certain parts of the project from checking
w
@ 3 m 5¢) Incremental update of index
o3 -
& m 5d) Static code analysis
o -
z 2 H 5e) Integration with the test platform in Visual Studio
1 m 5f) More configuration options
52 5b 5c¢ 5d b5e 5f

Figure 3.19: What should be added to TestNForce based on participant’s opinion

All the questions in the fifth category of the post test ask about missing features. The
results are presented in figure 3.19 as the average of the responses. Only the average is
important here because new features are added based on what the majority of the users
want, not on individual requests (individual responses can be seen on page 74). The most
desirable feature is the incremental index update; this feature would allow TestNForce to
update the index fast by replacing only the records that are affected by code/test changes.
Following, the support for other programming languages and the integration with the test
platform in Visual Studio are the requested features. The only missing feature, noticed by
all the participants and not covered by the question, that must have impacted the usability, is
the lack of navigation from the covering tests window to the actual test code. However, this
was not a blocking issue because it could be worked around by searching the code and using
the search results window for navigation. The backlog for future versions will prioritize
the pain points identified by participants during the experiment. Another feature that was
planned for the next releases and was also prototyped (but not used in the experiment) is
a version of TestNForce that can work outside Visual Studio. The participants somehow
disagree, on average, that there should be a standalone version (question post4f) therefore
the priority was decreased, but this item is still on the backlog. We believe that a standalone

44

Experiment results and analysis

6b) The time allocated for too short for the 6d) | could have used more guidance
assignment
5
5
4
L 4 @ dividual
% 3 mmmm Individual 2 3 Individual
c <C H
1 1
12345678 123456178
(a) Answers to question post6b (b) Answers to question post6d

Figure 3.20: Assignment difficulty

version would allow the integration of TestNForce with different build systems.

3.4.2 Evaluation of the experiment

A number of 12 questions about the experiment were asked in the posttest.

Figures 3.20a and 3.20b give an overview of the difficulty of the assignment. The me-
dian value of 2 of the answers clearly shows that the assignment was not too difficult, but
not trivial either which is exactly the point: the participants were able to complete the tasks,
but they had to do a little effort for it.

One of the most interesting observations that can be derived from the information in the
two previously mentioned charts is the fact that people with no Visual Studio experience
found the assignment easier and required less guidance than those who mentioned no prior
experience. The expectation would be that people with experience to find the assignment
easier but as can be seen in figure 3.21, it was almost the opposite. There is no clear evidence
why this happened.

VS Experience vs assignment difficulty

4 m 2c) | consider myself an experienced Visual Studio user

Answer
w

m 6d) | could have used more guidance

6b) The time allocated for too short for the assignment

Figure 3.21: How difficult was the assignment compared to prior experience?

Figure 3.22a is a good indication that the assignment was interesting. Three of the
participants rated the assignment with the maximum score, while the rest, except one, gave
arating of 4. The median rating of the assignment was 4. Also, four of the subjects strongly

45

3. USER STUDY AND SURVEY

6¢) The assignment was interesting 6e) | learned something new
5 5
5 4 g4
é 3 mmm |ndividual 2 3 mmm Individual
<2 e Median <2 e Ml edlian
1 1
12345678 123456738
(a) Answers to question post6¢ (b) Answers to question post6e
Figure 3.22: Benefits from the experiment
7b) The quality of the assignment was high 7¢) The quality of the survey was high
5 5
= 4 = 4
g 3 mmm [ndividual 2 3 mmmm [ndividual
2 2
<2 e [Vl elian <2 e Median
1 1
123456 738 123456738
(a) Answers to question post7b (b) Answers to question post7c

Figure 3.23: Experiment impression

believe that they learned something new while just 2 of them were neutral when answered
question post6e. The overall score for “I learned something new” was 4.5.

Both the assignment (figure 3.23a) and the survey (figure 3.23b) got a median rating of
4. This means that the quality was high but there was some place for improvement. The
individual answers are all above the middle point (3).

7d) The selected application (Jurassic) was appropriate

5
4
5] -
23 mmmm [ndividual
2
< — i
2 Median
1 4

Figure 3.24: Answers to question post7d

From figure 3.24 we can conclude that Jurassic was not a bad choice but some were

46

Experiment results and analysis

not completely satisfied. One of the participants expressed his concern that Jurassic is a
compiler and usually all the changes are high risk therefore, is not safe to assume, like the
assignment did, that some changes might be low risk; a compiler either works or does not.

7e) The conditions in which the experiment took place were
good

mmmm [ndividual

e \edian

Answer
- N w > (2]

Figure 3.25: Answers to question post7e

We took great care in optimizing the conditions in which the experiment took place.
The data in 3.25 confirms that the participants did not have any problems here. However,
the conditions can be always improved. One of the factors that might have influenced the re-
sponses and made the participants not give the full rating is the fact that the experiment took
place in a room where other students were working and there might have been distractions.

The median score of 4 in figure 3.26a shows that participants mostly enjoyed the exper-
iment while a similar score for the overall experiment satisfaction shows, in figure 3.26b
that the experiment was a success from the participant’s point of view.

3.4.3 Threats to validity

It is impossible to prove that the experiment actually revealed correctly the information it
was supposed to extract. In this section, a number of possible factors that might jeopardize
the validity of the experiment are presented. Two categories of threats are presented:

7a) | enjoyed the experiment 7f) My overall impression of the experiment is
good
5
5
4
3 Individual L 4
z 3 ndividua % 3 mmmm Individual
< — i j=
2 Median <, e Mediian
1 1
12345678 12345678
(a) Answers to question post7a (b) Answers to question post7f

Figure 3.26: Experiment impression

47

3. USER STUDY AND SURVEY

o The internal validity. “It is the basic minimum without which any experiment is
uninterpretable”, meaning that the information collected cannot be used to extract the
results

o The external validity. “Asks the question of generalizability”, meaning that the infor-
mation collected is correct but cannot be used to extrapolate the results.

Almost all the threats were identified by Campbell[4]. Therefore, in an attempt to avoid
excessive references, references to that book will be omitted in the next two sections.

Internal validity

The first problem with one-group pretest-posttest experiment is the effects of history (“the
specific events occurring between the first and second measurement in addition to the exper-
imental variable”). As mentioned in section 3.2.1, the experiment was conducted without
breaks between observation. It is believed that the time difference between the two obser-
vations (tests) had no impact on the actual results except that the participants may be a little
tired when filling the posttest.

A second rival variable for the selected experiment design is the maturation, or the
biological changes that happen with participants between observations. Because the TestN-
Force experiment was short, there is an infinite small chance that any major changes hap-
pened that might have impacted the results.

It might be that the participants were confronted with the effects of testing. During other
experiment, it was observed that the answers to a second test improved for all participants.
It could be that participants knew what to expect while doing the posttest but, there was no
evidence (major difference in responses) that this happened.

A real threat to the internal validity could have been the experience of the participants
with Visual Studio and C#. However, it turned out that the Java background of some partic-
ipants was more than sufficient to get them up to speed. However, there is no reason to not
believe that some participants had an advantage.

The conditions of the experiment were kept as constant as possible. All participants
worked in the same environment, got the same treatment - they were all offered water, they
all got assistance when needed but, only as much as to unblock them and then communica-
tion was neither too formal nor information.

External validity

The first threat to the external validity of the experiment was mentioned by one of the
participants. He believes that the assignment was designed in such a way that it highlights
the strong points of TestNForce. While such a decision could have a major impact on the
experiment, we consider that Jurassic was not selected to put TestNForce in a good light.
An important attention was paid to selecting it, as described in section 3.2.3, and the tool
was selected for the simple fact that it was suitable for being used with the prototype. Any
application can be used, equally well, with TestNForce as long as it is written and C# and it
uses mstest.

48

Summary

The experience of the participants could jeopardize the external validity of the experi-
ments. However, it is believed that the participants are at least at the level of the average
developers in the industry. They proved, by the fast adoption of Visual Studio and by
understanding the advantages and disadvantages of TestNForce, that the prior mentioned
experience is not a limitation for them.

3.5 Summary

In this chapter, two research questions were answered. This was possible because of the
results obtained through the meanings of a user study. Also, it can be concluded that TestN-
Force is useful and it offers a good user experience.

Another fact observed in this chapter is the quality of the experiment. The participants
were satisfied with the quality of the experiment but they agree, together with us, that there
is room for improvements.

49

Chapter 4

Related Work

This related work section presents the existing approaches in establishing the link between
the test code and the code under test. The second part gives an overview of the existing
support, in Integrated Development Environments (IDE), for establishing this link.

4.1 Traceability

The scientific literature for establishing the link between tests and the code under test can be
divided in two categories. Based on the type of the analysis approach there is static analysis
[17, 16] and dynamic analysis [10]. Static analysis is usually fast but might lack some
information that is available only at runtime; for example, if code is generated on-the-fly
(at runtime), then static analysis might ignore it. On the other hand, dynamic analysis can
take as long as the program to run, but there is none or little uncertainty about the accuracy
of the result[7]. The fact that dynamic analysis is more reliable and much more difficult is
also supported by Greevy and Ducasse[13] who found that it is challenging to develop tools
which are able to process large volumes of trace data.

The method presented in this paper falls into the dynamic analysis category. However,
static analysis methods are presented in this section because the output of those approaches
is the same.

The most simple static analysis approach is to exploit the Naming Conventions (NC)[2]
like naming schema for test methods; for example: if the tested method is called “Add”
then the test should be named “TestAdd” or “AddTest”. Exploiting the test’s names can
provide information about which method is covered by a particular test. However, while this
method is powerful and able to give good results for those tests which cover one method,
it will only identify the method that matches the test name in the case that more than one
method is tested. Also, NC based tools’ results can be altered when refactoring legacy code
if methods are renamed but tests are not updated; usually this happens when developers are
not aware of the relation between unit tests and the code they change[8].

Similar to the previous method, Fixture Element Types (FTE) are presented in [2]. They
allow programmers to explicitly mark the units under test. This is an easy and cheap method
of traceability that works as long are FTE are properly maintained. Van Rompaey and

51

4. RELATED WORK

Demeyer[17] use Static Call Graphs to determine the methods under test. The results might
not be conclusive because they tested it on just three systems, but the precision seems to
be under 25%. Their paper compares different static analysis methods and they got to the
conclusion that NC is the best choice as long as the naming conventions can be applied.

Many times, helper functions are used in test cases to prepare the environment. A naive
approach, would consider that the calls to helper methods are part of the code under test
since are called from the unit test. Van Rompaey and Demeyer[17] have come up with a
method called Last Call Before Assert (LCBA) that is able to ignore calls to helper methods
from the test chain. They assume that the call to the methods under test is the call just before
the assert statement. In this way, they ignore any setup calls done in the test prologue and
increase the accuracy of the result.

However, LCBA is subject to poor outcomes if developers use assert statement to val-
idate the environment or if the last call before assert is not to the method under test. To
overcome the second deficiency, Qusef, Oliveto and De Lucia[16] developed an extension
for LCBA based on Data Flow Analysis. Instead of analyzing just the call before assert,
they try to identify all statements before assert that affect directly or indirectly the method
under test. The authors mention that results could be improved further, for polymorphic
contexts, by using dynamic analysis.

All the previous methods are static and try to overcome the fact that runtime information
is not available. It is clear that static analysis is a limitation for many. Important research is
conducted in this field in order to provide hardware support for dynamic analysis[14] and to
improve the existing techniques. However, a major limitation for dynamic analysis is that it
requires (partially) compilable code[10].

To the best of our knowledge, the closest approach to our approach has been presented
in [10]. The tool developed by Galli et. al. is based on a similar technique but the outcome
of the analysis is used, in our case, for establishing the link between tests and code, while
in the case of the other paper, test ordering is the goal. Their technique is as follows: before
running the tests, the authors instrument the code with trace methods. After running each
test individually and aggregating the results, they form groups of tests and try to create a
hierarchical relation between them.

4.2 Support in IDEs

IDEs don’t provide very much support for tracing unit tests and their associated code.
Eclipse Java Development Tools' allows developers to navigate between unit tests and code
under test. However, this feature is available only if tests are created using a special wizard.
Such a constraint reduces the usability of the feature and might prevent the integration with
automated build systems.

For Microsoft Visual Studio, the Test Impact Analyzer does a similar job as TestNForce.
Jetbrains? provides two solutions, ReSharper and dotCover which, combined, can add trace-

I'http://eclipse.org/idt
Zhttp://www. jetbrains.com

52

Support in IDEs

ability features to Visual Studio. dotCover is still in Beta stage and the integration is not
complete.

The most common approach for identifying the link between tests and code under test
is to do a full test run and analyze the coverage results. This is the approach used by the
Visual Studio Test Impact Analyzer and by TestNForce.

53

Chapter 5

Conclusions and Future Work

In the first chapter, a number of four research questions were proposed. Now, at the end,
it is possible to answer them. Below, we present the answer to each of them and give any
insightful findings:

1. Question 1. Can such a tool be implemented using the currently available tools? As
it turned out, such a tool can be implemented using C# and the tools provided by
Visual Studio. The implemented solution is not the ideal one and, as described in
section 2.3.6, there are better, but more complicated ways of doing it. However, the
question was “if”” not “how” such a tool can be implemented, therefore we consider
this question answered.

2. Question 2. Is the tool usable from a performance point of view? During the de-
velopment process, we encountered a lot of performance issues similar to the ones
described in section 5.2. Most of them were overcome and the application perfor-
mance is above the expected threshold. Some might find TestNForce slow, but there
is a certain amount of time under which the analysis time cannot drop because of
external factors like the compilation time. Overall, TestNForce responds fast to user
queries and spends an acceptable amount of time building the index.

3. Question 3. Is the tool useful for developers and testers? Once we considered TestN-
Force good enough to be used by others, outside the development team, we conducted
an user study. A number of developers, that had some test experience, used the tool
and expressed their opinion about it. It turned out that TestNForce was mostly useful
for the participants and they all used it, with success, to complete the tasks.

4. Question 4. Is the tool offering a good user experience? The user study evaluated
TestNForce from a usability perspective too. Because of its simple interface, the
participants considered the interface intuitive, simple and pleasant. The simplified
interface is the result of many hours of brainstorming and sessions of trial-and-error
for deciding what can be done without user intervention. The final user interface has
just three menu items which we believe is over our best expectations.

55

5. CONCLUSIONS AND FUTURE WORK

5.1 Contributions

We have made the following contributions:

e We have created TestNForce, a tool for establishing the link between tests and code

under test. This tool helps developers to identify the tests that must be executed in
order to validate code changes.

e We have conducted an user study that revealed developers opinion about TestNForce

and the degree to which TestNForce helped them solve programming assignments.

5.2 Memorabilia

This section is dedicated to remarkable events that happened during the development of
TestNForce.

56

1. One line of code that improved the performance 3 times. After TestNForce was first

run for Jurassic, a “showstopper” (an issue that will prevent TestNForce from being
shown to and used by developers) was revealed: building the index took one hour
and 45 minutes. This value was over our worst case estimations and it could have
been something that proved that implementing TestNForce is something that cannot
be done. After about two weeks of digging and debugging, an issue was found in the
index builder. The problem was the instead of checking if a method is covered by
test methods, the index building was checking the method against all other methods
leading to a complexity of O(n?) instead of O(n+ m) where m << n. After applying
the fix which was simple Linq Where predicate, a one line of code fix, the indexing
time decreased to 28 minutes. After checking if the results are still correct it became
clear that TestNForce was back on track and it is something that can be implemented.

. What do Monroe and TestNForce have in common?. When the development of Test-

NForce started, we had no idea about all the features that will be included in the final
version. Choosing a good name in the beginning is difficult especially when the final
goal is not fully defined. Spending time on it would be counterproductive. Therefore,
TestNForce was called project codename “Monroe”, a temporary name before a more
appropriate one can be found. Internally, in the code, there are many references to
namespaces starting with “Monroe”.

. The Pareto principle holds for TestNForce . The Pareto principle, also known as the

80:20 rule, applies to TestNForce development. Most of the features of TestNForce
and the basic “happy path” were created in about 2 months. The rest of the devel-
opment time (approx. 8 months) was dedicated to adding the rest of the features,
handling special cases, tuning the performance and checking the correctness of the
results. At least in terms of code, a minimum of 80% of it was written in the two
months.

Future work

5.3 Future work

Based on the answers given to the questions in the fifth section of the post test and based
on the features that were cutoff because of schedule, a number of features will be added to
TestNForce in the future.

1. Navigation from the covering tests window fto the actual test code. This was the
biggest pain point for experiment participants. All of them noticed the lack of nav-
igation from the tests list to the test code. Implementing this feature will require a
big number of changes because the current index has no information about the files
in which the tests reside. There are a number of unanswered problems that will have
to be solved before starting the coding phase. One of the most complicated ques-
tions is “What happens if the file that holds the test is renamed/moved?”. Similar
scenarios involved renamed/moved tests and changes to name/location, in general.
No matter what the complexity is, the navigation is a number one priority on the
“vNext backlog”. Adding the feature will give many benefits. In terms of user expe-
rience, developers will no longer be disturbed by unusual workarounds. In terms of
completion, TestNForce will get closer to what the users expect from such a product.

2. Console version of TestNForce . Even though it was not the most desired feature,
the console version will give almost endless possibilities for TestNForce. Once the
console version will be available, TestNForce will no longer be tied to Visual Stu-
dio. Software engineers can then use TestNForce in their build systems, in their own
custom checkin gates and even in their own helper scripts. The console version was
prototyped, but not released with the current version of TestNForce because of insuf-
ficient support of commands. Only a small number of operations are supported by the
current console version and there are some stability issues too, stability issues caused
by the lack of Visual Studio instance.

3. Integration with the Visual Studio test platform. Currently, TestNForce uses mstest,
but not in the same way as Visual Studio does. Unifying the two will allow devel-
opers to run tests only once and update both the index and check if there are any
regressions. Moreover, once the integration is completed, TestNForce can take ad-
vantage of custom attributes and other reporting features of the VS test platform. To
the best of the author’s knowledge, the integration is not yet possible, but there are
rumors that extension points will be provided in future versions of Visual Studio.

57

[1]

(2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Bibliography

Thomas Ball. The concept of dynamic analysis. In Oscar Nierstrasz and Michel
Lemoine, editors, Software Engineering ESEC/FSE 99, volume 1687 of Lecture Notes
in Computer Science, pages 216-234. Springer Berlin, Heidelberg, 1999.

K. Beck and E. Gamma. Test infected: Programmers love writing tests. Java Report,
3(7):51-56, 1998.

Bruno Cabral, Paulo Marques, and Luis Silva. Rail: code instrumentation for .net.
In Proceedings of the 2005 ACM symposium on Applied computing, SAC 05, pages
1282-1287, New York, NY, USA, 2005. ACM.

D.T. Campbell and J.C. Stanley. Experimental and quasi-experimental designs for
research. Rand McNally, 1973.

Y.F. Chen, D.S. Rosenblum, and K.P. Vo. Testtube: A system for selective regression
testing. In Proceedings of the 16th international conference on Software engineering,
pages 211-220. IEEE Computer Society Press, 1994.

AM. Dean and D. Voss. Design and analysis of experiments. Springer texts in statis-
tics. Springer, 1999.

Michael D. Ernst. Static and dynamic analysis: synergy and duality. In proceed-
ing:996821, pages 35-35, New York, NY, USA, 2004. ACM.

Michael Feathers. Working Effectively with Legacy Code. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2004.

M. Fowler. Patterns of enterprise application architecture. The Addison-Wesley sig-
nature series. Addison-Wesley, 2003.

Markus Galli, Michele Lanza, Oscar Nierstrasz, and Roel Wuyts. Ordering broken unit
tests for focused debugging. In ICSM ’04: Proceedings of the 20th IEEE International
Conference on Software Maintenance, pages 114—123, Washington, DC, USA, 2004.
IEEE Computer Society.

59

BIBLIOGRAPHY

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

60

Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm. Design Patterns
CD: Elements of Reusable Object-Oriented Software, (CD-ROM). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1998.

Boby George and Laurie Williams. A structured experiment of test-driven develop-
ment. Information and Software Technology, 46(5):337 — 342, 2004. Special Issue on
Software Engineering, Applications, Practices and Tools from the ACM Symposium
on Applied Computing 2003.

Orla Greevy and Stephane Ducasse. Correlating features and code using a compact
two-sided trace analysis approach. Software Maintenance and Reengineering, Euro-
pean Conference on, 0:314-323, 2005.

Markus Mock. Dynamic analysis from the bottom up. In ICSE Workshop on Dynamic
Analysis, pages 13-17, 2003.

Alan Page and Ken Johnston. How We Test Software at Microsoft. Microsoft Press,
2008.

Abdallah Qusef, Rocco Oliveto, and Andrea De Lucia. Data flow based traceability
recovery between unit tests and classes under test. In 26th International Conference
on Software Maintenance (ICSM), IEEE, 2010.

Bart Van Rompaey and Serge Demeyer. Establishing traceability links between unit
test cases and units under test. Software Maintenance and Reengineering, European
Conference on, 0:209-218, 2009.

G. Rothermel and M.J. Harrold. Empirical studies of a safe regression test selection
technique. Software Engineering, IEEE Transactions on, 24(6):401-419, 1998.

G. Rothermel, R.H. Untch, C. Chu, and M.J. Harrold. Prioritizing test cases for re-
gression testing. IEEE Transactions on software engineering, pages 929-948, 2001.

P.G. Zachary. Showstopper! The breakneck race to create Windows NT and the next
generation at Microsoft. E-Rights/E-Reads Ltd, 2009.

A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen. Mining software
repositories to study co-evolution of production x00026; test code. In Software Testing,
Verification, and Validation, 2008 Ist International Conference on, pages 220 —229,
april 2008.

Appendix A

Experiment Documents

61

A. EXPERIMENT DOCUMENTS

A.1 Usability survey

AppWithTests [namespace]
Program [class]

Main [method]

Add [method]

Subtract [method]

*Marking an inner node includes all the children.

Date

Put an ‘X’ in the cell if you consider it should be included in the result.
The code model:

1. For each of the following selection ranges, specify what should be included in the result.

Selection

[nsp]
AppWithTests

[cls] Program

[mtd] Main

[mtd] Add

[mtd] Subtract

1

6

8

10

15

10-13

17

15-26

15-24

8-15

22

Thank you!

File: AppWithTests/Program.cs

result? What is the reason why you consider this approach more appropriate?

2. For the second selection method (just declaration selection). Would you expect to get
detailed information about the leaf nodes if selecting an inner node or just the aggregated

3. What if a class/namespace splits over multiple files? The result should include only the
current file or all occurrences?

4. [optional] Do you see another alternative for invoking the action? If yes, please describe it
briefly.

62

Pretest

A.2 Pretest

Pre-test

In this short survey, a number of questions regarding your experience and attitude towards software
development and testing will be asked, in order to get an impression of your skills and expectations.
Fill each field with an answer and then save the document. You might encounter words that look like
links. Move the mouse cursor over them to get more information.

Candidate ID: Type ID

1. Please tell us about yourself. This information will not be published; is only needed to put
your answers to the next questions in a context.

1a) What is your age? Type age here

1b) What is your educational background? Type education background here

1c) At which university(ies) did you studied? Type names here, separated by comma

1d) What is your current occupation?

Type occupation here

Please tell us about your software development experience. Rate each of the statements
on a scale from 1 (totally disagree) to 5 (totally agree) to indicate to what extent they

apply to you.

2a) | consider myself an experienced developer

Choose rating

2b) What is (are) the development environment(s) that
you are experienced with

Type here, separate by comma

2c) | consider myself an experienced Visual Studio user

Choose rating

2d) What is (are) the programming language(s) that you
are experienced with

Type here, separate by comma

2e) | consider myself experienced with a .NET language

Choose rating

2f) | consider myself an experienced C# programmer

Choose rating

2g) | worked before on large scale software projects

Choose rating

2h) | understand the challenges that arise in software
projects

Choose rating

2i) | consider myself familiar with Jurassic

Choose rating

Please tell us about your testing experience. Rate each of the statements on a scale from 1
(totally disagree) to 5 (totally agree) to indicate to what extent they apply to you. For the

last question, type a percentage value.

3a) | consider myself an experienced tester

Choose rating

3b) | write tests for most of the code | am writing

Choose rating

3c) What kind of tests you did in the past?

Type here, separate by comma

3d) | believe that is better to deliver fast, with possible
defects than to spend extra time on testing

Choose rating

3e) | believe that one-man projects don’t require
automated tests

Choose rating

3f) Is it common that the size of the test code to be
greater than the size of the tested code

Choose rating

3g) | believe that the amount of resources spent on
developing and maintaining test code can be greater than

Choose rating

63

A. EXPERIMENT DOCUMENTS

64

those spent for the tested code

3h) How much code coverage is considered “good”? Type value%

Please tell us what you think about the tool described below. Rate each of the statements
on a scale from 1 (totally disagree) to 5 (totally agree) to indicate to what extent they
apply to you.

With a test impact tool, one should be able to decide what tests to run
after changing the code. In other words, the tool will provide a list of tests
that are relevant for the change. Such a tool will inform the developer
about the tests that cover the code she/he changed. Furthermore, upon
check-in (commit) to the version control system, the tool will prevent this
action if tests corresponding to the changed code were not executed and,
optionally, updated.

4a) | think that | would use such a tool Choose rating

4b) | think that such a tool reduces testing time Choose rating

4c) | think that such a tool reduces the overall development Choose rating
time

4d) | think that such a tool might be annoying Choose rating

4e) | think that such a tool is solving a real problem Choose rating

4f) | heard of/used such a tool in the past (could be for any language, not necessarily .NET
ones). If the answer is “yes”, give some details about it:

Type answer here

Posttest

A.3 Posttest

Post-test

Now you know about TestNForce and what it (cannot) do. In this short survey, a number of
questions about the experiment and TestNForce will be asked. Fill each field with an answer and
then save the document. You might encounter words that look like links. Move the mouse cursor
over them to get more information.

Candidate ID: Type ID

1. Please tell us about general impression about TestNForce. Rate each of the statements on
a scale from 1 (totally disagree) to 5 (totally agree) to indicate to what extent they apply to

you.
1a) | like TestNForce Choose rating
1b) TestNForce is annoying/intrusive Choose rating
1c) TestNForce is useful Choose rating

2. Please tell us about your assignment experience with TestNForce. Rate each of the
statements on a scale from 1 (totally disagree) to 5 (totally agree) to indicate to what

extent they apply to you.

2a) TestNForce helped me complete the assignment Choose rating
2b) My test identification result improved with Choose rating
TestNForce

2c) TestNForce makes me more confident when changing Choose rating
unknown code

3. Please tell us about experience with TestNForce and TFS. Rate each of the statements on a
scale from 1 (totally disagree) to 5 (totally agree) to indicate to what extent they apply to

you.
3a) The checkin policy for test enforcement is good Choose rating
3b) The integration between TestNForce and TFS is good Choose rating
3c) The checkin policy is too restrictive Choose rating

3d) It should not be possible to bypass the checkin policy Choose rating

4. Please tell us about the usability experience of TestNForce. Rate each of the statements on
a scale from 1 (totally disagree) to 5 (totally agree) to indicate to what extent they apply to

you.
4a) TestNForce is easy to use Choose rating
4b) TestNForce is slow Choose rating
4c) The checkin policy for TFS is easy to use Choose rating

4d) The integration between TestNForce and Visual Choose rating
Studio is good

4e) The messages provided by TestNForce/checkin policy Choose rating
were meaningful and useful

4f) 1 would prefer TestNForce as a standalone tool Choose rating

65

A. EXPERIMENT DOCUMENTS

66

Please tell us to which extent, the following features should be added to TestNForce. Rate
each of the statements on a scale from 1 (totally disagree) to 5 (totally agree) to indicate
to what extent they should be added.

5a) Support for other programming languages Choose rating

Sb) Possibility to exclude certain parts of the project from Choose rating
checking

5c) Incremental update of index Choose rating
5d) Static code analysis Choose rating
5e) Integration with the test platform in Visual Studio Choose rating
5f) More configuration options Choose rating

Please tell us about your experience with the assignment, during the experiment. Rate
each of the statements on a scale from 1 (totally disagree) to 5 (totally agree) to indicate
to what extent they apply to you.

6a) The assignment was too hard for me Choose rating
6b) The time allocated for too short for the assignment Choose rating
6¢) The assignment was interesting Choose rating
6d) | could have used more guidance Choose rating
6e) | learned something new Choose rating

Please tell us about your overall experience during the experiment. Rate each of the
statements on a scale from 1 (totally disagree) to 5 (totally agree) to indicate to what
extent they apply to you.

7a) | enjoyed the experiment Choose rating
7b) The quality of the assignment was high Choose rating
7¢) The quality of the survey was high Choose rating
7d) The selected application (Jurassic) was appropriate Choose rating
7e) The conditions in which the experiment took place Choose rating
were good

7f) My overall impression of the experiment is good Choose rating

If you have any further remarks, findings, suggestions or other input, now is the time to
express them.
Type additional comments here

1 would like to receive a copy of the experiment’s outcome: Type e-mail address here

Assignment

A4 Assignment

Assignment for the new employee

Candidate ID: Type ID

Welcome to Monroe Corporation! Our corporation develops the best software in the industry. Our
new and revolutionary product is Jurassic, which is a .NET compiler for JavaScript. We have quite a
few developers working on this product but, currently, they are all in Bahamas for a team building
event; to be frank, everyone is there now. Without them, we cannot develop new features and no
one can make you a proper training — that’s why you are actually reading this note instead of having
someone presenting the company. Anyway, make yourself confortable and feel like home — there is
some water on the table; feel free to take a bottle.

We plan to add some new features in Jurassic but since you are too new here, we can’t ask you to
start implementing them. However, we would like you to get familiar with the product and test code
that we have. While doing that, we would like you to try to estimate the cost (in terms of affected
functionality) of our new features.

To be frank, there are a few more things that you should know about our process. We hate
documentation and that’s why we don’t write anything; however, we test a lot and prefer to use the
tests as demo/documentation for what we do. We have a lot of tests, 344 to be more precise and
they are quite stable. There are also a few bugs in the product so only 328 of them pass.

When we change some code, we run tests to validate the change. Because it would be
overwhelming to run all tests each time, we got a tool called TestNForce that helps us identify the
tests that are impacted by changes. It is quite a simple tool that integrates in Visual Studio 2010.

I, the writer of the document, don’t know too many about this tool but one of my fellow developers
helped me write a short guide. Apparently, there are 4 possible actions:

e Update the mapping index

e See what tests should be run after changing the code
e See what tests cover a specific method

e Checkin the code with TestNForce validation

The test mapping is needed before being
. . Dats Tools Test | Analyze Window Help
able to run TestNForce. It will compile the code,]

run all tests and create a file with the “tnf”

Update test mapping

extension, next to solution file (the *.sIn file). e
,) % Load Metadata File...
You don’t have to update the test mapping

W3 Create New TestList... priable{string name)
because we did it for you before leaving — we . L.
. ') i) encountered rsing the
knew that is a time consuming operation, it fion contain Debug » hction contai
. by reference ..
takes around 25 minutes, and we want you to be | #51 Manags Test Controlers...
. - sariabl i i
as productive as possible. To recreate the [f[°07[%| TeeacheTed Setting: >
. . . . folecc/oo d Edi Test Settings »
mapping, just select the corresponding option -
g name) Windows >

from the “Test” menu, in Visual Studio.

67

A. EXPERIMENT DOCUMENTS

68

To see what tests need to be run, all
Data Tools Test | Apaleseddbiadag Hr

FCl | b [oe you have to do is to invoke the “What tests
= e

5 do I need to run?” option from the Test menu
of Visual Studio. This will lead to a list of test
that you need to execute in order to validate
your code changes. If no changes are done,

you will get just a message.

%4 Load Metadata Fike...
@ Creats Mew Test List... Juekiatzbgnane)

encountered Ron bsing the

To see what tests cover a

ic method right click the Returns a string representing this object.

mm

speci

method name and choose “Show A string representing this object. </returns»
. ” [ISFunction(Name = "toString")]

covering tests” from the context

public string ToSisdwme
menu. This will create a list of tests {
return this

that cover that method or will) Refactor 3
display just a message if no tests Organize Usings »
cover the method or the index is not] CreateUni Tests..

up to date. R -

The test mapping window will show either the tests that were affected by your changes or the tests
that cover a specific method. If you do more changes after this list is populated, you will need to
invoke again the “Show covering tests”/”What tests should | run?” menu item.

+hic rachad - Falcas

100% = 4

TestMForce

Tests covering the selected code:

3

Ls
UnitT ests. LexerT ests. Divisiondmbiguity)
UnitT ests. ParserT ests. AutomaticS emicolonlnzertion()
UnitT ests.ErrorTests. Constructor)
UnitT ests. ErrorTests. ProtatypeChain()
UnitT ests. ErrorTests.baString()
UnitT ests. Reah/orldT ests. Modlphatumeric])
UnitT ests. EwpressionT ests. UnaryPlus()

To checkin your code, right click the solution node in “Solution explorer” and choose “Checkin”.
This will pop up a new window and you will be able to submit the code to the source control server.
In the Policy warnings section you can check if all the TestNForce policies are satisfied. In order to
satisfy all policies, you must include the *.tnf file in your checkin and the file should be up to date
(have the modification date greater or equal to the latest changed c# source code file).

Assignment

Check In - Policy Warnings FHE

” 1, TF10139: The following check-in policies have: not been satisfied ”

Source Files

Description

Work Ttems
=4
Check-in
Nokes

2

Palicy
Warnings

Check In Cancel |

VA

In case you see this message, update the test mapping file from the Test menu

One more thing: it is your first work days therefore don’t spend too much time on this assignment.
Go home early. We think that 60 minutes are enough for the first workday.

Feel free, to ask additional information/assistance if you need at any point of the experiment.

[The rest of this page was intentionally left blank]

69

A. EXPERIMENT DOCUMENTS

70

1.

Before you dig into more investigations, we want you to understand why we use
TestNForce. Look in the file Jurassic\Jurassic\Compiler\Emit\MethodOptimizationHints.cs
from the Jurassic solution at the function HasVariable (line 36). Now try to identify the tests
that cover this method without using TestNForce and take notes about your findings. After
you are done, use TestNForce to see the tests that cover this method. Compare your
findings.
a. Hints:
e On your desktop you have “VS2010” which is without TestNForce and
“VS2010 TestNForce” which includes TestNForce.
e Jurassic is located in <your candidate folder>\jurassic and you need to open
Jurassic.sln in Visual Studio.
e Incase you don’t see the solution explorer, try View -> Solution Explorer
e Don't try to run all tests because it takes a long time and this will not help
you solve this problem
e Try to use “Find references” to see which method covers the method that
covers the method that covers.......

We want to support new data types in Jurassic. This will require some conversions from the
new data types to existing ones. However, we don’t know yet if this is a feature with a great
risk. Usually we consider great risk those changes that affect many areas, functions, tests,
etc. Could you please figure out first what methods we need to change and what tests we
would have to run (and maybe fix) if we make this change?
a. Hints
o First try to understand what the changes that are required are and how this
can be implemented.
o After you identify the methods, try to get the tests that cover them and
decide if this is a great risk change.
e A good starting point might be the class Jurassic.Compiler.EmitConversion

| know that | told you that you will not have to code anything but we changed our mind
because as you got here, probably you know more about Jurassic than we do. We have some
buggy code in jurassic\Jurassic\Compiler\Binders\BinderU'tilities.cs; the function that makes
trouble is ResolveOverloads. It was written by our old developer that left the company 2
years ago and nobody knows what happened to him. Someone tried recently to change the
function and did more damage actually; the tests for it fail. Try to fix it and make sure the
tests that cover it pass.
a. Hints:

o Is more debugging that coding

o It must be some simple fix; the developer did only minor changes

e Try to understand what happens there based on comments

o Use the comments that the old developer left in the function.

Assignment

e Use TestNForce to detect the tests that need to be executed in order to
validate your changes

Try to checkin your changes to our server.
a. Hints:
® You will not be able to do it until you rebuild the test index.
e Try to understand if the checkin window is user friendly

Rebuild the TestNForce index (in case you didn’t do it at step 4) so that our next developers
will have the latest information about coverage.
a. Hints:
o Take a look at the Output window and get an impression about the quality
of the information presented.
o |t takes approx. 25 minutes to complete.
e Don’t wait for it to finish. Tell us that you’re done. We have more tasks for
you.

71

A. EXPERIMENT DOCUMENTS

A.5 Pretest results

Question

1a) What is your age? 27 26 23 27 26 27 27 25
Bachelor Advanced PhD Informatics, Bsc. Science
Computer Computer Software Computer MSc Computer Masters Computer
1b) What is your educational background? Science science Engineering Science Computer Science student Science
School of
Technology
and North South
Universit: Uni it Delft
TUDelft, o”__w\“wm_wm«\ Managemen u. :_<ma_o“ University, c2<m_‘mm: Hogeschool
1c) At which university(ies) did you studied? University " tofleiria Valladolid, . Bangladesh. ¥ Zuyd, TU
. Greece, TU Macedonia, of
Leiden (Portugal), TU Delft TUDelft, Delft
Delft X K TU Delft Technology
University Holland
of Leicester
(UK)
M.Sc. MS
c ¢ Self
Student Student Student,
. X Msc. employed,
1d) What is your current occupation? Master Computer PhD Student PhD student Intern Student
) Student owner of IT
TuDelft Science, Researcher consultanc
Thesis work at SIG ¥
2a) | consider myself an experienced developer 4 B 4 4 3 3 4 4
2b) What i the devel t envi t(s) that Eclipse,)) VSand Netb A . . ’
) a A_m (are) .m evelopment environment(s) that you clipse Eclipse, Vim .m: m. eans Eclipse, VIM VS, Eclipse Eclipse, VS VS, Eclipse
are experienced with Borland Eclipse eclipse, VS
2c) | consider myself an experienced Visual Studio user 2 2 3 3 1.1 4 4 3
. . Java, Java, C,
2d) What is (are) the programming language(s) that you are C, Java, C, Python, C#, Java, Java, C, C++,
R X Haskell, C, C# and Java Python, R, Java, C#
experienced with Python Java C++ C#
C++ Stratego
2e) | consider myself experienced with a .NET language 1.1 2 4 3 1.1 3 4 4
2f) | consider myself an experienced C# programmer 1.1 2 4 3 1.1 3 4 3
2g) | worked before on large scale software projects 2 2 4 3 2 4 3 2
2h) I understand the chall that arise in soft
VA understand the challenges that arise in software 4 3 4 4 5 4 4 4
projects
2i) | consider myself familiar with Jurassic 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
3a) | consider myself an experienced tester 2 2 4 3 2 3 3 2
3b) | write tests for most of the code | am writing 1.1 2 3 2 3 4 2 2

72

Pretest results

3c) What kind of tests you did in the past?

3d) | believe that is better to deliver fast, with possible
defects than to spend extra time on testing
3e) | believe that one-man projects don’t require automated

tests
3f) Is it common that the size of the test code to be greater

than the size of the tested code

3g) The amount of resources spent on developing and
maintaining test code can be greater than those spent for
the tested code

3h) How much code coverage is considered “good”?

Manual

40%

Unit,
Integration

75%

Unit

85%

Unit

100%

Unit,

Unit testing Integration,

1.1

11

90%

Acceptace

82.50%

Unit

1.1

70%

4a) | think that | would use such a tool

4b) | think that such a tool reduces testing time

4c) | think that such a tool reduces the overall development
time

4d) | think that such a tool might be annoying

4e) | think that such a tool is solving a real problem

4f) | heard of/used such a tool in the past (could be for any
language, not necessarily .NET ones).

No

No

4
4

3
4

No

73

A. EXPERIMENT DOCUMENTS

A.6 Posttest results

Question

1a) | like TestNForce
1b) TestNForce is annoying/intrusive
1c) TestNForce is useful

2a) TestNForce helped me complete the assignment
2b) My test identification result improved with TestNForce
2c) TestNForce makes me more confident when changing unknown

3a) The checkin policy for test enforcement is good

3b) The integration between TestNForce and TFS is good
3c) The checkin policy is too restrictive

3d) It should not be possible to bypass the checkin policy

4a) TestNForce is easy to use

4b) TestNForce is slow

4c) The checkin policy for TFS is easy to use

4d) The integration between TestNForce and Visual Studio is good
4e) The messages provided by TestNForce/checkin policy were
4f) | would prefer TestNForce as a standalone tool

5a) Support for other programming languages

5b) Possibility to exclude certain parts of the project from checking
5c) Incremental update of index

5d) Static code analysis

5e) Integration with the test platform in Visual Studio

5f) More configuration options

6a) The assignment was too hard for me

6b) The time allocated for too short for the assignment
6c) The assignment was interesting

6d) | could have used more guidance

6e) | learned something new

7a) | enjoyed the experiment

7b) The quality of the assignment was high

7¢) The quality of the survey was high

7d) The selected application (Jurassic) was appropriate

7e) The conditions in which the experiment took place were good
7f) My overall impression of the experiment is good

AP WWDHS WENWNNINBENWEUINWRENWDBRINN WNWMLBRIBENSD

U s WHUARARUNUNWNDBDDRWWSRWULOUEWULIEN G BV BB R D

U b Ubd D DBIBENDRLPNWOUWUULWWIE WD WNUOIWWWWAOOVONDOV

W woulwadh pPpWWUWERIWUWUWRWEWWWARIWWWWIWLUL VU W DS

o NN Nk AR RPRPWW WU 00w s woE o0ouou oo unlu e u

AP WHPAWPHPRUOUWPEWWOLEDUSSBINWOLDDWOUULIN D WWIEAS DWW

AP PP DPOWRLPBPENNWEAENUNSBINGDESPWEAINPDPWWIdOIDWSHS

S D DD UDHIUDWONNDOODDSOUOUINNDSDNNOIWWDBSIDWSRIUUN D

74

Appendix B

Glossary

DTO: Data Transfer Object

Memorabilia: Matters or events worthy to be remembered; points worthy of note
TFS: Team Foundation Server

TNF: TestNForce

vNext: Next/future version of a software product

VS: Visual Studio

75

