
Delft Center for Systems and Control

Multi-Agent Deep Reinforcement
Learning for Automated Highway
Driving

L.J. Bakker

M
as

te
ro

fS
cie

nc
e

Th
es

is

Multi-Agent Deep Reinforcement
Learning for Automated Highway

Driving

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

L.J. Bakker

June 21, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Recent advances in Deep Reinforcement Learning have sparked new interest in many differ-
ent research topics, including Automated Highway Driving where agents model autonomous
vehicles. The main advantage of Deep Reinforcement Learning is that the training algorithm
is adaptable to its environment. In highway driving, researchers often simplify the framework
of an agent by using lower level controllers and observers. However, agent observations do not
yet include lane change intentions of surrounding vehicles. Resulting agents were able to drive
on a maximum of three lanes and unfit to drive in lane changing environments. We aim to
simplify the current state-of-the-art agent frameworks even further to improve performance.
We also believe that observing other vehicles lane-change intent, or blinker status, is essential
for collision avoidance in a highway driving environment. In this paper, we try to implement
multi-agent Deep Reinforcement Learning on a six-lane highway, including lane changes. Af-
ter training, agents are able to avoid collisions while reaching destination lanes. Moreover, a
lane-selection strategy according to desired speed evolved from open freeway training.

Master of Science Thesis L.J. Bakker

2

L.J. Bakker Master of Science Thesis

Table of Contents

Preface 9

1 Introduction 1

2 Multi-Agent Deep Reinforcement Learning 5

2-1 Deep Reinforcement Learning Algorithm . 5

2-1-1 Problem formalization . 5
2-1-2 Q-Learning . 6

2-1-3 Deep Q-Networks . 7

2-2 Multi-Agent Algorithm . 8

2-2-1 Decentralized Partially Observable Markov Decision Process 9

2-2-2 From single- to multi-agent training . 9

3 Observations, actions and reward function of the agents 11

3-1 Observed state . 12
3-1-1 State vector . 12
3-1-2 Observation Grid . 12

3-2 Actions . 15
3-2-1 Adaptive Cruise Controller . 15

3-2-2 Passive agents . 16

3-2-3 Basic Agent . 16

3-2-4 Advanced agent . 17

3-3 Reward function . 18

Master of Science Thesis L.J. Bakker

4 Table of Contents

4 Highway simulator 21
4-1 Highway Reset . 22

4-1-1 Intended speed sampling . 22
4-2 Lane change maneuver . 23
4-3 Exit- and Open freeway scenario . 24

4-3-1 Exit scenario . 24
4-3-2 Open freeway scenario . 25

4-4 Training algorithm . 25

5 Numerical experiments 27
5-1 Training Process . 28
5-2 Exit scenario . 29
5-3 Open freeway scenario . 31

6 Conclusion and outlook 33
6-1 Conclusions . 33

6-1-1 Exit scenario . 34
6-1-2 Open freeway scneario . 34

6-2 Further research . 34
6-2-1 Other Deep Reinforcement Learning algorithms 34
6-2-2 Cooperative reward . 35
6-2-3 Randomized spawn times . 35
6-2-4 Observation errors . 35
6-2-5 Safety constraints . 35

Bibliography 37

Glossary 41
List of Acronyms . 41
List of Symbols . 41

L.J. Bakker Master of Science Thesis

List of Figures

2-1 deep Q-Network . 8

3-1 Observation grid example . 14

4-1 Highway Simulation time-stamp . 21
4-2 Intended speed distributions of passive agents per lane 22
4-3 Lane Change Maneuver (Equation 4-3) . 24

5-1 Mean test rewards during training in exit scenario 29
5-2 Mean test rewards during training in open freeway scenario 29
5-3 Exit scenario evaluation . 30
5-4 Lane Distributions of advanced agents . 31

Master of Science Thesis L.J. Bakker

6 List of Figures

L.J. Bakker Master of Science Thesis

List of Tables

3-1 State space of the agent . 12
3-2 Action Space of both agents . 17

4-1 Reward function hyper-parameters . 24

5-1 Hyper-parameters of training processes . 28

Master of Science Thesis L.J. Bakker

8 List of Tables

L.J. Bakker Master of Science Thesis

Preface

This manuscript is my Master of Science graduation thesis for the Delft Center for Systems and
Control (DCSC) at the Delft University of Technology (TU Delft). Even though automated
driving is an appealing subject to me, I arrived at this subject by coincidence. Now, it is
my believe that within the near future vehicles will be fully automated on highways without
human surveillance. Artificial Intelligence (AI) has also been a somehow forgone interest of
mine (educationally speaking) and, to no surprise, AI techniques are often used in automated
driving. I am happy to combine these two intriguing subjects and apply them in a, in my
opinion, creative and useful way.

I want to thank my supervisor Sergio Grammatico, for guiding me throughout this project
and for giving me the freedom to explore the topics most interesting to me.

Delft, University of Technology L.J. Bakker
June 21, 2019

Master of Science Thesis L.J. Bakker

10 Preface

L.J. Bakker Master of Science Thesis

Chapter 1

Introduction

While people have concerns about fully autonomous Self Driving Vehicles (faSDVs) [1], there
is a high potential in safety and efficiency improvements [2]. More and more companies are
trying to fully automate highway driving, including: Google, Tesla, Uber and TomTom.

While deterministic control is needed at a low-level to ensure safety, there is no deterministic
algorithm providing optimal efficiency of a high-level driving strategy on highways. One
of the main difficulties in deriving an efficient high-level decision making policy is that it
is impossible to simulate the highway environment exactly as it is. Since Reinforcement
Learning (RL) agents are adaptable to their environment, RL could be a useful tool for
providing a policy of more efficient high-level driving decisions in the, unknown, real life,
highway environment.

Recent improvements in Deep Reinforcement Learning (DRL) have proven a high potential
in game-like settings. Achieving human-level control on Atari games [3] and super-human
control in chess and game of Go [4]. It is even extended to multi-agent systems; Multi-Agent
Deep Reinforcement Learning (MADRL) algorithms [5], [6], [7].

Even though DRL is a relatively new research topic, some researchers have already tried
to implement DRL in Autonomous Driving (AD). The highway driving problem could be
modeled as a game with four major goals, in order of importance:

1. Drive safe

2. Reach the destination

3. Drive fast

4. Drive comfortable

A reward function could describe these goals and DRL could be applied to form a policy for
the control actions of an agent, where in this case the agent represents an autonomous vehicle.
The ultimate goal is then to find a highway driving policy that performs optimal on the above

Master of Science Thesis L.J. Bakker

2 Introduction

given goals, or at least better than human drivers. In this work, we train in a multi-agent
setting, but the policy we will derive is still a single-agent policy. Our long term goal is to
find a training algorithm or policy for individual vehicles that is theoretically implementable
and would perform well in real life highway situations.

End-to-end DRL algorithms for AD [8] have a high potential. The input is raw sensor informa-
tion, such as direct camera input. The action space is the steering angle and throttle-break
actuation. Those type of algorithms are however, currently unfit for an environment with
other vehicles because of problem complexity. Further improvements on Deep Reinforcement
Learning are needed.

More successful attempts have been made in [9], a truck on a three lane highway, and [7],
a multi-agent system of multiple agents on a highway. The actions and observations of the
agents are simplified by using lower-level controllers and observers. Both publications are
trained and simulated on a three lane highway. The system in [7] did not include lane
changes of non-ego-vehicles, [9] did. In [7], the crash rate was significantly higher.

We believe that improvements can be made on the simplification of the highway problem.
In this manuscript, we present a novel observation grid that will make the lane observations
of surrounding vehicles obsolete. Moreover, we split lateral control (lane change maneuvers)
and longitudinal control (Adaptive Cruise Control (ACC) controller) to simplify the agents
decisions even further.

The main improvement of our agents is that they observe non-ego lane change intent. At the
moment other agents decide to change lanes, this is observable to the surrounding agents.
In combination with the observation grid, all collisions will be predictable and therefore
preventable. We aim to achieve a zero collision rate after training.

We will present three classes of agents:

• Passive agent: Not able to change lanes.

• Basic agent: Only able to make lane change decision.

• Advanced agent: Able to change lanes and adjust its ACC controller.

The basic and advanced agent are trained in two multi-agent scenarios:

• Exit scenario: All agents want to reach their destination lane.

• Open freeway scenario: All agents drive on an open freeway, optimizing their speed
while aiming to drive in accordance with European driving guidelines; drive on the
right side and do not overtake on the right.

Similar to Radulescu in [7], we employ centralized training with decentralized execution. The
multi-agent system is a semi-homogeneous multi-agent system. All agents share the same
deep Q-Network (DQN). The policies could be slightly different, but the DQN determines
most of the policy. First we train in a single agent environment where non-ego vehicles are
passive agents. After training in this environment, we switch to multi-agent training. The

L.J. Bakker Master of Science Thesis

3

multi-agent initial policy is the train result of the single-agent setting. Initializing the multi-
agent policy with single agent training speeds up the training significantly and improves the
preformance [7].

In multi-agent training, all agents are of the same class (basic or advanced), and share the
same DQN. We split the agents into model agents and one training. The training agent is
used to update the DQN according to conventional DRL [3] and the model agents are used
to simulate the environment. This is different to Radulescu’s algorithm where all agents are
training agents.

Since agents observes each-others lane change decisions, it is an implicitly communicating
system where sequencing is important. By assigning the agent that decides its decisions last
to be the training agent, we ensure that the training agent has the most information possible
on the environment. We train agents to be able to react to other vehicles lane change decisions.
We chose to employ an individual (selfish) reward since it is easier to implement, the design
and investigation of a shared (cooperative) reward function is left for further research.

Training resulted in four different DQN agents, a basic and advanced agent in both the exit
and open freeway scenario. In the exit scenario, agents are tested on their success rate of
reaching their destination lane for multiple highway lengths. In the open freeway scenario,
agents lane distributions are plotted on their corresponding maximum speed (intended speed
of the ACC controller) and their average speed is compared.

We aim to to form, to the authors knowledge, the first non-colliding highway system including
lane-changes optimized with RL techniques. Moreover, we want to expand the highway size
of three lanes from previous literature to six lanes.

First, in chapter 2, we will present the training algorithm we employed, in both the single-
and multi-agent setting. Then, in chapter 3, the framework of the agents are presented. I.e.
the way the agent observes the highway, what actions it can choose from and the reward it
receives after executing the chosen action. In chapter 4, we present the highway simulator
and training algorithm. In chapter 5, we present some experimental results. And finally, in
chapter 6, we state some conclusions and further research possibilities.

Master of Science Thesis L.J. Bakker

4 Introduction

L.J. Bakker Master of Science Thesis

Chapter 2

Multi-Agent Deep Reinforcement
Learning

In this chapter, we present the algorithm that is used to train an autonomous driving vehicle
(agent) to drive in a single and multi-agent setting. For the single-agent setting, we use a basic
Deep Reinforcement Learning (DRL) algorithm similar to [3]. For the multi-agent setting, we
use the same single-agent algorithm to train a shared policy by employing centralized training
with decentralized execution, much like Radulescu in [7]. The difference is that our algorithm
should be suited to a system where agents observe each other’s lane changing decisions; a
communicating system where sequencing is important. In the first section, we present the
single-agent learning algorithm. In the second section, we present the algorithm given by
Radulescu and our modification to it.

2-1 Deep Reinforcement Learning Algorithm

In this section, we present the algorithm used for the initial single-agent training. First,
we formalize the single-agent highway driving problem as a Partially Observable Markov
Decision Process (POMDP). Then, we present the algorithm that is used to train in the
single-agent case, by first giving an introduction to Q-Learning, and then explaining the deep
Q-Network (DQN) learning algorithm [3], which is the algorithm we used.

2-1-1 Problem formalization

The Highway simulator (chapter 4) transforms the continuous highway driving problem into a
discrete time planning problem. The agent chooses and executes a high-level discrete control
action every two seconds. A commonly used formalization of discrete time planning tasks of a
single-agent system is a Markov Decision Process (MDP). We can include partial observability
of the state of the agent by reformulating the formalization as a POMDP.

Master of Science Thesis L.J. Bakker

6 Multi-Agent Deep Reinforcement Learning

In the single-agent case, where the non-ego vehicles are ’passive’ agents (subsection 3-2-2),
the problem can be formalized as a POMDP.
A POMDP is a tuple of: M = {H,A, T,R, S, Z, γ}

• H is a set of states h of the environment (Highway)

• A is a finite set of actions a of the agent (Autonomous Vehicle actions)

• T is transition probability function to the next state P(h′|h, a) (The model)

• R is the immediate reward function H ×A→ R (Feedback to the agent)

• S is the set of (observed) states s of the agent

• Z is the observation probability function dependent on the highway state and previous
action P(s′|h′, a)

• γ ∈ {0, 1} is a discount factor (representing the optimization horizon of an agent)

The POMDP operates as follows. At each time-step, the highway is in some unobserved state
h. The agent chooses an action a and the highway is simulated for two seconds. On the next
time-step: The state of the highway is changed to the future state h′ according to the highway
simulation (formalized as transition probability function P), the agent observes its own state
s′ (formalized as observation probability function Z) and receives a reward r according to
R. The mapping of the agent from observations to actions, i.e., the decision the agent makes
given the current state, is called the policy π: a = π(s).
Reinforcement Learning is based on the Reward hypothesis: "All goals can be described by the
maximization of the expected cumulative reward" [10], where the reward is a scalar feedback
value. It is common to use a discounted cumulative reward, the return Gt:

Gt =
∞∑

k=1
γk−1rt+k (2-1)

Where t is the current time-step, rt+k is the reward on future time-steps t+ k and γ ∈ (0, 1)
is the discount factor. The discount factor ensures that future rewards are discounted more.
The sampling time of our simulator is two seconds. At each time-step, the agent chooses an
action according to the current observation s and policy π: a = π(s). After two seconds it
receives a new observation s′ and reward r. Together this forms an experience, e = {s, a, r, s′}.
In Reinforcement Learning (RL), the policy is updated iteratively using the experiences of
the agent, to optimize the return.

2-1-2 Q-Learning

Q-Learning is a commonly used value-based RL algorithm [11]. It is the basis for DRL, and
therefore, a brief introduction to Q-Learning follows.
The Q-value (Q), also known as action value, is an estimation of the return of the agent,
given the current observed state s, taking action a and then following policy π.

Q(s, a) = E[Gt|st = s, at = a, π] (2-2)

L.J. Bakker Master of Science Thesis

2-1 Deep Reinforcement Learning Algorithm 7

Where policy π(s) would determine all actions after the current one (at = a) is executed.
Q(s, a) is an estimation for multiple reasons: The current state of the highway h, the model
T = P(h′|h, a) and the observation function Z = P(s′|h′, a) are unknown to the agent. More-
over, T and Z are probability functions.

Let us define the optimal policy π∗(s) as the policy that maximizes the return. The optimal
Q-value can then be defined as Q ∗ (s, a) = E[Gt|st = s, at = a, π∗]. If the optimal Q-
value of each action is known, it is best to pick the action with the highest return; follow a
greedy-policy:

π(s) = argmaxa[Q(s, a)] (2-3)

If a greedy policy is expected, we could estimate the return as follows:

Gt = r + γ arg max
a′

Q(s′, a′). (2-4)

The stationary Bellman optimality equation holds for all actions and states if the optimal
policy and Q-value are found [11]:

Q∗(s, a) = r + γmax
a′

Q∗(s′, a′) (2-5)

In Q-learning the return is optimized by iteratively bootstrapping the temporal difference
error (Equation 2-6). It is an update of the expected return using the error of the bellman
optimality equation:

Q(s, a) = Q(s, a) + α[Gt −Q(s, a)] (2-6)
Q(s, a) = Q(s, a) + α[r + γmax

a′
Q(s′, a′)−Q(s, a)] (2-7)

Where α is the learning rate. One experience e = {s, a, r, s′} is sufficient information to
update Q(s, a) for one iteration (Equation 2-7).

If the agent follows a greedy policy, the algorithm is likely to end up in local optima. This
can be avoided by incorporate some exploration of the agent into the training process. We
use an ε-greedy policy during training:

π(s) =
{
random action with probability ε
argmaxa[Q(s, a)] with probability1− ε

(2-8)

Where ε ∈ (0, 1) is the exploration fraction. We anneal ε from 1 to 0.05 during single-agent
training to start with more exploration and end with more exploitation.

2-1-3 Deep Q-Networks

In DRL, a DQN is used to estimate the Q-value [3]. A DQN is a deep learning network with
weights and biases θ [12]. The input neurons are all the observations the agent makes on time-
step t; the state (st) of the agent. The output neurons are the Q-values per individual discrete
action choice. I.e., every output node corresponds to its own action choice and represents the
expected return of that action, given the current state st.

Master of Science Thesis L.J. Bakker

8 Multi-Agent Deep Reinforcement Learning

Figure 2-1: deep Q-Network

See Figure 2-1. In this case, the agent has three observation variables and two action choices.
Input neurons st are the observed state of the agent. Output neurons Q(s, a1) and Q(s, a2)
are the estimated return of the agent (Q-values) for observation s and action choice a1 and
a2 respectively.
The Q-value (output of the DQN) is dependent on weights and biases θ. Q(s, a) can be
reformulated as: Q(s, a, θ). A key factor in DRL is the use of a target network with stored
weights θ−: Q(s, a, θ−). Every k iterations, the target network is updated θ− = θ. Essentially
freezing the Q-Network in terms of estimation of the future return.
Another key factor of DRL is the use of an experience replay memory. At each time instance,
experience et = {s, a, r, s′} is stored in replay memory Dt = {e1, e2, · · · , et}. A mini-batch M
∼ U(Dt) of batch-size m (a tuning hyper-parameter) is uniformly sampled from the replay
memory. Let us define eM

i as the i-th experience in mini-batchM . θ is trained by minimization
of the error of the Bellman equation, done by stochastic gradient descent on a Mini-batch of
experiences. The following Loss function (L) is minimized:

L(θ) =
m∑

i=1
[(r + γmax

a′
Q(s′, a′, θ−)−Q(s, a, θ))2](s,a,r,s′)=eM

i
(2-9)

We use the Adam optimizer of Tensorflow [13] with a learning rate of 2.5e−5 to minimize the
loss function over each batch. The target of the DQN: r+ γmaxa′ Q(s′, a′, θ−) is determined
with a target network, reducing direct correlations of Q(s, a, θ).

2-2 Multi-Agent Algorithm

In this section, we present our modification of single-agent DRL towards multi-agent learning.
Similar to Radulescu et al. [7]; Deep Reinforcement Learning in a multi-agent homogeneous
open population, we employ centralized training with decentralized execution. First, we present
the formal problem setting for our multi-agent system, then, the way Radulescu et al. tried
to solve this for a multi-agent highway problem, and finally, our modification to it.

L.J. Bakker Master of Science Thesis

2-2 Multi-Agent Algorithm 9

2-2-1 Decentralized Partially Observable Markov Decision Process

A POMDP describes a single-agent system, to include multi-agent decision making, we
extended the formalization to a Decentralized Partially Observable Markov Decision Pro-
cess (Dec-POMDP) [14]; this is the formal problem setting of our multi-agent highway prob-
lem. In this work, we simulate the highway as a homogeneous open population, so the
formalization is slightly compressed compared to a broader statement found in [14].

Our Dec-POMDP is a tuple of: M = {D,H,A, T,S, O,R, γ}, where

• D = {1, · · · , n} is a finite set of agents

• H is a set of highway states h

• A = Ai, (i ∈ D) is a set of joint action spaces A of all agents

• T is transition probability function P(h′|h, a)

• R is the immediate reward function H ×A→ R (feedback of an agent)

• S = Si, (i ∈ D) is the set of joint observation state spaces Si of all agents

• Z is the observation probability function P(s′|h′, a)

• γ ∈ {0, 1} is a discount factor (representing the optimization horizon of the agents)

Our Dec-POMDP operates as follows. At each time-step, the highway is in some unobserved
state h. All agents observe their state si and initialize their action ai according to observation
probability function Z and the homogeneous policy π respectively. After two seconds of
execution, the highway will end up in state h′. Agents receive their own reward ri according
to R and observe their new state si according to Z.

The difference with the broad Dec-POMDP formulation in [14] is: In their formulation,
agents can employ individual policies π and the reward function is a central feedback signal
representing system-wide performance. In our case, all agents share the same homogeneous
policy π and employ an individual (also homogeneous) selfish reward function R. While
the goal is to form a policy that optimizes the sum of all agent rewards (broad definition
of Dec-POMDP), we try to do it by maximizing the selfish reward of individual agents,
designed to promote good system-wide driving behavior: Agents are non-cooperative, each
agent receives its selfish reward feedback.

2-2-2 From single- to multi-agent training

As stated earlier, we use centralized training with decentralized execution on our homogeneous
multi-agent system. The single-agent learning algorithm of section 2-1 is used to train the
shared policy of all the agents. In our case, an individual agent stores its experience in the
replay memory. The replay memory (of the individual agent) is used to update the DQN
according to the loss function (Equation 2-9). The DQN is shared by all the agents in the
system.

Master of Science Thesis L.J. Bakker

10 Multi-Agent Deep Reinforcement Learning

First, we train the policy in a single-agent setting, where the non-ego vehicles are passive
agents. After completing the single-agent training process, we use the resulting policy as the
starting policy of the multi-agent system. According to Radulescu, homogeneous multi-agent
learning via policy reuse from a single agent training yields better results and is much faster
than learning from scratch in this type of setting.

There is one major difference in our system compared to that of Radulescu. Agents observe
and display each other’s lane changing decisions. In our algorithm, we need to initialize agents
sequentially. Meaning that at each time-step, agents will observe their environment si and
initialize their action ai = π(si) one at a time. The current agent can observe all previously
initialized agent’s lane change decisions. Agents that still need to initialize their actions are
observed as non-lane changing agents by the current agent.

To optimize the centralized training efficiency, we split the agents into one ’training’ agent
and other ’model’ agents. We assign the agent that initializes its action last as the training
agent. All previously initialized agents are model agents. This way, the training agent has full
information of non-ego lane change decisions, and the homogeneous DQN is trained to adapt
to non-ego lane change decisions. This DQN is shared by the training and model agents.

Let us give an example of action initialization during a time-step. The first agent considers
all other agents as non-lane-changing during the time-step, and decide its action accordingly.
The next agent knows the decision of the previous agent and considers all other agents to be
non-lane-changing, and so on.

If following the optimal policy:

• Safe actions will remain safe
Agents avoid collision with previously initialized agents. If a lane change seems safe
in the current situation, it is safe after the initialization of other agents, even while
incorrectly predicting other vehicles lane-change intent.

• There is always a safe option
Since previous agents assume the current agent to keep its lane and avoid collisions
accordingly, the safe option of not changing lanesis always available for the currently
deciding agent, even if it is the last one.

An additional advantage of splitting the agents into model agents and one training agent, is
that model agents do not need to explore the action space. Only the training agent needs
to perform exploration. Model agents drive according to the greedy policy (Equation 2-3),
whereas the training agent drives according to the ε-greedy policy (Equation 2-8). Because of
this, model agents simulate the environment more accurately. Only the agent that updates
the shared DQN needs to perform exploration. A disadvantage is that filling up the replay-
memory takes longer. Only one experience is stored during a time-instance of the highway.
Whereas when all agents are training agents, every agent stores its experience in the replay
memory and multiple training iterations could be applied on one time-step of the environment.

L.J. Bakker Master of Science Thesis

Chapter 3

Observations, actions and reward
function of the agents

In this chapter, we present the framework of the deep Q-Network (DQN) agents. In Deep
Reinforcement Learning (DRL), an agent determines its action based on the observations st

it makes at time instance t and its policy π: at = π(st). π is optimized on the return. The
state space is a vector of continuous variables, and the action space consists of discrete action
choice options.

We designed three agent classes: A ’passive’ agent, a ’basic’ agent, and an ’advanced’ one,
where the difference lies mostly in the control actions. First, we present the state space
(section 3-1), surrounding vehicles are observed in an observation grid yielding a couple of
advantages. Then in section 3-2, an Adaptive Cruise Control (ACC) controller is presented to
determine longitudinal acceleration with a sampling time of 0.1 seconds without the need for
agent actions. In the following section, we present the three different action agent classes. A
passive agent has no action choices, a basic agent can choose between lane change maneuvers,
and an advanced agent includes additional action choices that adjust the ACC controller. In
the final section of this chapter, we present the reward function that is used to give feedback
on the desired driving policy of the agents.

The design goal of the state and action space was to simplify the highway driving problem
as much as possible by reducing action and state space complexity and size without losing
performance. The reward function is there to reinforce the four driving goals:

1. Drive safe

2. Reach the destination

3. Drive fast

4. Drive comfortable

Master of Science Thesis L.J. Bakker

12 Observations, actions and reward function of the agents

Table 3-1: State space of the agent

State Description
s1 Speed v (m/s)
s2 Intended speed vint (m/s)

s3 · · · s8 Current lane (six bools)Ego states


s9 · · · s14 Destination lane(s) (six bools)

s15 Distance (long.) ∆x
s16 Speed Difference ∆v
s17 Changing left (bool)V1


s18 Changing right (bool)

V2 · · ·V12
{

s19 · · · s62
...

3-1 Observed state

The observed state of an agent is a vectorization of some high-level data input, observed by
lower-level observers. In this work, we assume perfect tracking for all states.

3-1-1 State vector

Let us divide the states of the agent into two groups: ego states and surrounding states. The
ego states consist of the agent’s current speed, intended speed of the ACC (subsection 3-2-1),
the current lane, and the destination lane(s). The surrounding states consist of the speed
difference, longitudinal location difference, and the lane change intention (blinker status) of
the surrounding vehicles. Agents observe twelve surrounding vehicles via an observation grid,
explained in subsection 3-1-2 (Observation grid).

The speed and location difference of surrounding vehicles could be measured with object
detection algorithms, see [15], [16] and [17] for some examples. For some lane change detection
algorithms refer to [18], [19] and [20], where prediction of future lane changes is accurate up
to 93%. We leave modeling of the observation errors and researching the best object- and
lane change intent- detection algorithm for further research.

The current and desired speed states are real values. The current lane and destination lane
is a commonly used one-hot representation, a logical vector of zeros and ones. Since there
is a maximum of 6 lanes, the state of the lane is a vector of six states where the state
corresponding to the current lane is equal to one, and the other states are equal to zero. Same
for the destination lane(s). Since there could be multiple destination lanes, the destination
lane vector could consist of multiple ones.

See Table 3-1. Vi is observed vehicle i where i corresponds to its location in the Observation
grid presented in the next section in Figure 3-1b.

3-1-2 Observation Grid

In [9], vehicles are observed by order of proximity, making the surrounding states subject to
object interchangeability. A convolutional neural network was used to solve this problem. In

L.J. Bakker Master of Science Thesis

3-1 Observed state 13

this work, we aim to reduce the state vector complexity by using the objects state vector
indices to our advantage. By using an observation grid, the agents induce the lane of sur-
rounding vehicles from the indices in the state vector, making lane observations of observed
vehicles obsolete. Moreover, a small change in the location of surrounding vehicles leads to
big changes in the state vector because of the strict sorting of vehicles.

See Figure 3-1a and Figure 3-1b, an example of a state of the highway and the state of
the highway including the observations of the agent respectively. We divide the observed
surroundings of an agent into ten areas, five lanes and two per lane, one in front and one
behind the agent. Every region contains at least one observed vehicle, the two areas in front
of- and on adjacent lanes of- the agent contain two observed vehicles each.

Per observation region, we observe the vehicle(s) closest to the agent. If there is no vehicle
inside an observation area, the agent observes a ’phantom vehicle’ on the saturation distance
with a speed difference of zero. If a lane inside the observation grid is an off-road lane (e.g., if
the agent is driving in the leftmost lane there are no lanes to the left), we fill the corresponding
vehicle states with phantom vehicles.

The numbers in Figure 3-1b are there for explanation purposes and will from now on corre-
spond to its location in the observation grid, e.g., vehicle 7 (V7) is referred to as the observed
vehicle directly in front of the agent A brief explanation of the observations per lane follows:

On two lanes to the left: The agent should observe one vehicle behind and one vehicle in
front at all times. There is only one lane to the left of the agent. The observed lane is a
phantom lane. The agent observes the vehicle behind it as phantom vehicle 1 (V1), and
in front as phantom vehicle 2 (V2). Both phantom vehicles are driving on the saturation
distance with a speed difference of zero and have no lane change intentions.

On the left adjacent lane: The nearest vehicle behind the agent is vehicle 3 (V3). The
agent observes two vehicles in front, on an adjacent lane. It observes the nearest vehicle
V4, and the second nearest is a phantom vehicle V5.

On the current lane: The agent observes the nearest vehicles behind and nearest in front
as V6 and V7 respectively.

On the right adjacent lane: There is no vehicle behind the agent, it observes phantom
vehicle V8. There are three vehicles in front of the agent. The agent observes the two
closest vehicles; V9 and V10. Vehicles are observed through their center-location in the
observation grid, that is why V9 is observed as a vehicle in front of the agent.

On two lanes to the right: The agent observes the closest vehicle behind the agent V11,
and the closest vehicle in front V12.

Some advantages of the observation grid are:

1. More compact observations. State values have a corresponding location in the envi-
ronment, making lane observations of surrounding vehicles obsolete. In this work, the
maximum amount of lanes is six. Since the lane observations is a one-hot represen-
tation, this would result in six extra state indices per observed vehicles. By using an
observation grid, we can reduce the state vector size from 136 to 62.

Master of Science Thesis L.J. Bakker

14 Observations, actions and reward function of the agents

(a) Real highway state

(b) Observed highway state

Figure 3-1: Observation grid example

L.J. Bakker Master of Science Thesis

3-2 Actions 15

2. More direct correlation with environment. When using the order of proximity for the
surrounding vehicles, a small change in the surroundings can lead to a big change in
the state since the order of the observed vehicles could change.

3. Implementable. In [9], a fixed amount of vehicles are observed, but there is no use of
phantom vehicles. There is no intuitive solution for an empty highway. Our phantom
vehicles provide a way to fill the state space on an empty highway. Moreover, in the
simulation, we only observe vehicles that are close to the agent. In [9], observed vehicles
could be located too far away from the agent to observe them in real life.

3-2 Actions

The actions of the agent are high-level driving decisions, carried out by lower-level controllers.
In this work, we assume perfect tracking of a reference signal created by the simulator pre-
sented in chapter 4. For some path following algorithm examples, refer to [21], [22]. We
assume perfect tracking of the reference signal and leave errors and design of the tracking
algorithm for further research.

We have split the dynamics in the simulation into longitudinal and lateral control systems.
The lateral dynamics of the basic agent is determined with the lane change maneuver it
chooses. The ACC controller we present in subsection 3-2-1 determines the longitudinal
dynamics of the agents. In the final section of this chapter, we present the different action
spaces for the three agent classes; passive, basic, and advanced agents.

All agents are unable to choose off-road lane changes. I.e., on the leftmost lane, the agent can
not change lane to the left, on the rightmost lane, the agent can not change lanes to the right.
The ε-greedy and greedy policy are both restricted to only possible actions. Moreover, the
estimation of the target network: r+ γmaxa′ Q(s′, a′, θ−) only considers the possible actions
of the next state s′. If on the next state s′ the agent is on the leftmost lane, the action of
changing left is not considered in maxa′ Q(s′, a′, θ−). This way, the action space is restricted
to only on-road actions during simulations and training.

3-2-1 Adaptive Cruise Controller

In this work, we separated lateral and longitudinal control, simplifying the action space of the
agent. We simulate real-time longitudinal control of the agent with an ACC controller based
on [23]. The ACC controller is a lower level controller carrying out higher level decisions of
the agent. The controller uses a ’target’ vehicle, usually the vehicle directly in front of the
agent, to determine its acceleration. The target vehicle can be set to multiple vehicles, as
explained in section 3-2. For explanation purposes, assume in this section, the target vehicle
to be the vehicle directly in front. As a result of the ACC controller, the agent slows down
when it approaches a target vehicle driving at a lower speed, and the agent increases its speed
to the intended speed vint when the target vehicle accelerates or disappears.

An important concept for this ACC controller is the Time In-between Vehicles (TIV), also
known as inter-vehicular time. TIV is a common risk indicator. It is the time it takes for
the agent to cover the distance towards the target vehicle; x̄−x

v . Let us define the desired

Master of Science Thesis L.J. Bakker

16 Observations, actions and reward function of the agents

TIV and reference distance as tref and rref = v ∗ tref respectively. The ACC controller uses a
desired TIV of tref = 2 s. If the agent drives at a distance of x = x̄− rref, the TIV will be two
seconds. The ACC controller uses rref as the target distance to control the agent towards a
’safe’ driving distance, where TIV is equal to tref = 2 s.
It is a feedback controller with as input: the intended speed of the ego vehicle (vint), the
acceleration of the target vehicle (ā) and the location and speed of the ego vehicle; x, v, and
the target vehicle; x̄, v̄. The output is the acceleration of the ego vehicle v̇. In this work, the
ACC controller employs a sampling-time of 0.1 s.
Two accelerations are calculated and used to determine the acceleration of the ego vehicle.

Free acceleration v̇free : It is used to accelerate towards an intended speed of vint if the
target vehicle is far away.

v̇free = k(vint − v) (3-1)
with k as a constant factor.

Reference acceleration v̇ref : It is used to decelerate towards a safety distance of rref if
the target vehicle is close by.

v̇ref = kaā+ kv(v̄ − v) + kd(x̄− x− rref) (3-2)

with ka, kv and kd as constant factors.

v̇ is then determined by taking the minimum of v̇ref and v̇free and bounding it between −3 m/s2

and 2 m/s2:
v̇ = min[v̇ref, v̇free]; −3 < a < 2 (3-3)

We employed k = 0.3, ka = 1.0, kv = 0.58 and kd = 0.1 in this work. According to [23]:
This resulted in the most smooth and fast reaction of the controller without leading to unsafe
situations compared to the other settings, while keeping k = 0.3 and ka = 1.0 in accords with
earlier microscopic-traffic simulation model (MIXIC) literature.

3-2-2 Passive agents

A passive agent is an agent that is unable to change lanes. It does not contain a state- or
action space. It is purely controlled by the ACC controller presented in subsection 3-2-1.

3-2-3 Basic Agent

A basic agent’s action space consists of three maneuver choices: change lane to the left, stay
in the current lane, and change lane to the right. The target vehicle of the ACC controller
is the vehicle directly in front, on the current lane (V7) at all times. During a lane change,
when the agent crosses the lane border, the vehicle directly in front and on the new current
lane is used as the target vehicle (V7 is another vehicle because of the lane change).
If the agent chooses to stay in the current lane, it maintains the center of the lane as the lateral
location of the agent. If an agent decides to change lanes, the agent follows a trigonometric
S-function from the center location of the current lane to the center location of the adjacent
lane in two seconds (see section 4-2). Taking two seconds to change lanes is reasonably
comfortable at all allowable speeds.

L.J. Bakker Master of Science Thesis

3-2 Actions 17

Table 3-2: Action Space of both agents

Passive Agent
a1 Stay in current lane

Basic Agent
a1 Change lane to the left
a2 Stay in current lane
a3 Change lane to the right

Advanced Agent
a1 Change lane to the left
a2 Stay in current lane
a3 Change lane to the right
a4 Set V3 as target vehicle
a5 Set V4 as target vehicle
a6 Set V8 as target vehicle
a7 Set V9 as target vehicle

Neural Network design

Both DQNs (basic and advanced) have two rectified linear units (ReLU) hidden layers with
256 neurons each. The input layer is the size of the observation state: 62. The output layer
is the size of the number of actions: 3 for the basic agent.

3-2-4 Advanced agent

The advanced agent’s action space includes additional options for choosing the target vehicle
of the ACC controller from its surroundings. Instead of the vehicle directly in front (V7), it
could also choose the target vehicle to be a vehicle on adjacent lanes. Namely: V3, V4, V8
and V9 (see Figure 3-1b). Since we only use longitudinal measurements, the ACC controller
works the same as in subsection 3-2-1.
For an overview of the action space of both agents see Table 3-2. ai is action choice i. Vi is a
vehicle in the observation grid where index i corresponds to its place in the observation grid,
shown in Figure 3-1b.
The advanced agent can efficiently adjust its speed with a relatively long action sampling-time
of two seconds. When the agent chooses a target vehicle, it remains the target vehicle for
the action span of two seconds. If the agent selects a lane change maneuver, V7 is set as the
target vehicle. At the moment the agent crosses the lane border, the target vehicle switches
automatically to the new vehicle directly in front of the agent.
The desired longitudinal TIV towards target vehicles on adjacent lanes (tref) is changed to
one second, half the tref when the target vehicles is the vehicle directly in front (two seconds).
This TIV ensures that when the agent chooses adjacent vehicles as its target vehicle, the
agent drives longitudinally in the middle of the vehicles on adjacent lanes, allowing for better
merging.
Moreover, the lowest reference acceleration v̇ref between the chosen target vehicle and if the
target vehicle is V7 is used. This way, the agent does not collide with the vehicle in front of

Master of Science Thesis L.J. Bakker

18 Observations, actions and reward function of the agents

it if it suddenly decides to slow down, even when an adjacent vehicle is used as the target
vehicle.
Let us give an example of when the agent would like to change lanes behind V3 (vehicle left
behind): It would first choose a4 (follow V3) until V3 passes and changes to V4 (vehicle left
in front). The action choice should now change to a5 (follow vehicle left in front) until the
agent drives at a TIV of tref = 1 s. At that point, a lane change maneuver would be safe, and
the agent should pick action a1 (change lanes left).

Neural Network design

Both DQNs (basic and advanced) have two ReLU hidden layers with 256 neurons each. The
input layer is the size of the observation state: 62. The output layer size is the number of
actions: 7 for the advanced agent.

3-3 Reward function

The reward function is given in Equation 3-4. There is no shared reward between agents;
agents are non-cooperative. The training agent tries to optimize its own (selfish) reward func-
tion. The Open Freeway Cooperation rewards are there to reinforce good system-wide driving
performance when vehicles cannot pass on the right side, by using single-agent stimulation.
In this work, two scenarios are simulated with different reward functions: An exit scenario
where all agents want to drive towards a particular target lane, and an open freeway scenario
where all agents drive freely on the open highway. See section 4-3 for more information on
the difference between these scenarios.

r = ω1rd + ω2rc︸ ︷︷ ︸
Drive safe

+ ω3rr︸ ︷︷ ︸
Reach destination

+ ω4rs︸ ︷︷ ︸
Drive fast

+ ω5rl︸︷︷︸
Drive comfortable

+ ω6rp + ω7rt︸ ︷︷ ︸
Open Freeway Cooperation

(3-4)

Danger penalty rd: 1 if the agent was in danger during the action, 0 if not. The agent is
in danger if the TIV of the agent and a vehicle in the same lane (in front or behind) is
below 0.5 s. A negative ω1 will result in avoidance of dangerous driving behavior. We
used, ω1 = −5 for both scenarios.

Collision penalty rc: 1 if collided during the action, 0 if not. A negative ω2 will result in
a collision avoidance, we used ω2 = −5 for both scenarios. Note that when an agent
collides, they will also be in danger; TIV = 0. So the reward will be ω1 + ω2 = −10

Target lane penalty rt: 0 if the vehicle is on a destination lane, 1 if not. Negative ω3
results in a faster reaching of destination lanes, we used ω3 = −1 for both scenarios.

Speed reward rs: This is the speed of the vehicle normalized between the minimal and
maximal speed:

rs = v − vmin
vmax − vmin

(3-5)

. A positive ω4 reinforces faster driving strategies. We used ω4 = 1

L.J. Bakker Master of Science Thesis

3-3 Reward function 19

Lane change penalty rl: 1 if changing lane, 0 if not. Negative ω5 results in less lane chang-
ing and more comfortable driving, we used ω5 = −1 for both agents.

keep Right penalty rr: rr linearly scales from 0 to 1 for all six lanes. 1 if on the leftmost
lane, 0, if on rightmost lane. Because of 6 lanes, rr scales with 0.2 per lane. Negative
ω6 > −ω1 results in more driving on the right side of slow vehicles. We used ω6 = 0 in
the exit scenario and ω6 = −0.5 in the open freeway scenario.

Overtake penalty ro: 1 if agent overtook a vehicle on the right side during the action, 0 if
not. Positive ω7 results in less passing on the right, faster vehicles move to left lanes,
and slower vehicles move to right lanes (because of rr). We used ω7 = 0 in the exit
scenario and ω7 = −5 in the open freeway scenario. The agent can only observe vehicles
up to two lanes to the side, overtaking on the right is only penalized if the agent can
observe the vehicle that is overtaken. Keeping true to the design-goal of excluding
explicit communication

Since it is not possible for agents to choose off-road lane changes (section 3-2), we do not need
to include penalties for driving off-road.

Master of Science Thesis L.J. Bakker

20 Observations, actions and reward function of the agents

L.J. Bakker Master of Science Thesis

Chapter 4

Highway simulator

In this chapter, we present the 2-D highway environment created in Python. It is a loop of
500 m containing six lanes with lane width 3.6 m. All Vehicles are automated driving vehicles
modeled as either: passive, basic, or advanced agents with a state and action space described
in chapter 3. They are simulated as rectangles with vehicle length 3.2 m, vehicle width 1.8 m
and center-location x and y.

We first present how we initialized the simulation on each episode. We use a ’passive agent’
as model agents in single-agent simulation and basic or advanced agents for model agents in
multi-agent simulation. After that, we present the reward function and its hyper-parameters,
and finally, the two training scenarios and their corresponding weights in the reward function.

See Figure 4-1. This figure is a time-stamp of the highway simulation. We changed aspect
ratios and vehicle lengths for display purposes. The red vehicle is the training agent, and
the transparent red area is the observation area of the training agent. White vehicles are
unobserved vehicles, blue vehicles are observed vehicles, and blue transparent vehicles are
phantom vehicles. If the simulation is in a multi-agent setting, every vehicle is an agent with
its observation area, observed vehicles, and phantom vehicle.

Figure 4-1: Highway Simulation time-stamp

Master of Science Thesis L.J. Bakker

22 Highway simulator

Figure 4-2: Intended speed distributions of passive agents per lane

4-1 Highway Reset

At the start of a simulation episode, we initialize the highway by removing all previously
active agents and spawning new random agents. One training agent and either passive agents
(single-agent system) or model agents (multi-agent system). Let us define this as ’reset’ of
the highway. The episode runs until the training agent reaches the end of the highway given
by Lw. Then, we reset the highway and start simulating a new episode.

The amount of spawned vehicles are sampled linearly from 2 < n < 54 (maximum of 9 per
lane). They are distributed randomly over the highway loop. Their lane is randomized (max
9 per lane) and they are distributed longitudinally on each lane by using a random vector
with a minimum difference and fixed sum representing each vehicles longitudinal location on
the lane. The way their speed is sampled is stated in the next subsection.

4-1-1 Intended speed sampling

The intended speed of training and model agents are uniformly randomly sampled from
vmin = 90 km/h to vmax = 120 km/h. For passive agents we sample intended speeds to model
the highway in a similar way as the traffic flow model in [24]. Intended speed sampling
distributions per lane for passive agents are shown in Figure 4-2.

All speed distributions are normal distribution with an area of 1. Mean µi is linearly sampled
from vmin = 90 km/h to vmax = 120 km/h for each lane i, and standard deviation σ = 30/5 = 6
is one fifth of the speed difference on the highway. These speed distributions result in a
highway where vehicles are generally driving faster on the left lane and slower on the right.
The starting speed of the vehicles is equal to the sampled intended speed but will change due
to the Adaptive Cruise Control (ACC) controller during simulation.

L.J. Bakker Master of Science Thesis

4-2 Lane change maneuver 23

Intended speed of advanced and basic agents are uniformly randomly sampled from vmin =
90 km/h to vmax = 120 km/h.

4-2 Lane change maneuver

A trigonometric S-function is used to simulate lane change maneuvers. This function is used
to simulate the lateral position of a vehicle during a lane change. The goal is for the vehicle
to end up in the center of an adjacent lane along a smooth and realistic path after tchange = 2
seconds.

First let us define ∆x and ∆xend as:

∆x = x− xstart (4-1)
∆xend = v ∗ tchange (4-2)

. Where xstart is the longitudinal position of the vehicle at the start of a lane change. In
this work, a lane change maneuver will take tchange = 2 seconds. The maneuver should be
completed when ∆x = ∆xend.

The S-function used in this manuscript is given in Equation 4-3, resulting in Figure 4-3 if the
agent would drive at a constant speed.

y = ystart + ∆yleft/right

∆yleft(∆x) = −[cos(π∆x
∆xend

)− 1] ∗ 0.5Lw (0,∆xend)

∆yright(∆x) = [cos(π∆x
∆xend

)− 1] ∗ 0.5Lw (0,∆xend)

(4-3)

y is the lateral location of the vehicle, ystart is the lateral position of the vehicle at the start
of a lane change (middle of the current lane) and Lw is the lane width in meters.

Since the maneuver is dependent on the speed, all lane change maneuvers take a ’comfortable’
two seconds.

Master of Science Thesis L.J. Bakker

24 Highway simulator

Figure 4-3: Lane Change Maneuver (Equation 4-3)

Table 4-1: Reward function hyper-parameters

Hyper Parameters ω1 ω2 ω3 ω4 ω5 ω6 ω7
Exit scenario -5 -5 -1 1 -1 0 0

Freeway scenario -5 -5 -1 1 -1 -0.5 -0.5

4-3 Exit- and Open freeway scenario

The highway driving problem is split up into two tasks. One is reaching a destination lane,
and the other is driving on an open freeway as fast as possible without breaking European
traffic regulations.

See the table of tuning choices ω in Table 4-1. ω1 · · ·ω5 are similar for both scenarios. Tuning
choices of ω6 and ω7 will be explained below and is different for the different driving scenarios.

4-3-1 Exit scenario

The exit scenario simulates a part of the highway where there are multiple exits. All agents
have their destination lane. They want to reach this lane while maintaining their intended
speed. The destination lane is sampled during highway initialization and is a random lane that
is not the current lane. This scenario involves a high amount of lane changing. Keeping right
and overtaking rules are unimportant when trying to reach a destination lane; ω6 = ω7 = 0.

L.J. Bakker Master of Science Thesis

4-4 Training algorithm 25

4-3-2 Open freeway scenario

The open freeway scenario simulates a part of the highway where there are no exits and where
agents can drive freely on an open highway. Agents choose their preferred lanes according
to their intended speed. The destination lane is set to be all lanes on the highway. The
destination lane state is a vector of six ones.

In the open freeway scenario, the entire highway consists of destination lanes. We assumed
vehicles are only allowed to overtake on one side, in our case, the left side. Hence ω6 = −5,
resulting in vehicles with high intended speed driving on the left lanes. Driving on the left
side is penalized by scaling the reward from 0 to ω5 = −0.5 making slower vehicles drive on
the right side.

4-4 Training algorithm

We used the highway simulator presented in this chapter as the environment of the agents.
During training, the training agent uses an ε-greedy policy to determine its action and ex-
plore the environment. During test simulations, the training agent uses the greedy policy to
simulate full exploitation.

See the training algorithm in Algorithm 4.1. First, we initialize the Replay Memory by using
random actions for the training agent until the replay memory has the same size as the batch
size so that we can sample a batch.

Then every training step, we first anneal ε towards εmin. This is done by linearly annealing
from the start value εstart to end value εmin within the percentage of exploration iterations
(half) of the total iteration (106 ∗ 0.5 = 5e5 iterations). After half of the total iterations, ε
remains equal to ε = εmin. εstart, εmin and the number of exploration iterations are tuning
hyper-parameters of the training process, describing the amount of exploration of the training
agent.

Every iteration, after ε annealing, the agents sequentially initialize their actions. When the
system is a single agent system, there are no model agents; only the training agent needs to
be initialized. Note that in the multi-agent setting, we initialize the training agent after the
model agents.

After the initialization of the actions, we simulate the highway for two seconds and store the
experiences. If the highway is in a terminal state, we reset the highway, and the experience
is not stored.

After simulating and updating of the replay-memory, we sample a mini batch M and update
the DQN weights and biases with Equation 2-9.

Then, if the current iteration is a multitude of the Test iteration (ktest), a tuning hyper-
parameter), a test simulation is run for ntest iterations (another tuning hyper-parameter).
We do this is to observe how well the system would perform if the training agent would not
do any exploration. I.e., we stop training every ktest iterations and perform a test of ntest
iterations to evaluate the state of the current deep Q-Network (DQN). If the mean reward of
the test (R̄) is the highest yet, we store the DQN as the best performing one.

Master of Science Thesis L.J. Bakker

26 Highway simulator

Separately, if the current iteration is a multitude of the target network update (kupdate), the
target network’s weights and biases are updated to be the same as the current Q-network.
We freeze the Q-network that estimates the future rewards.

The hyper-parameters used for the training algorithm are different in exit- and open freeway
scenario and single- and multi-agent training. We will present them in section 5-1

Algorithm 4.1 Training Loop
Reset Highway
Instantiate Replay Memory: D0
while Iteration < Training Length do
Anneal ε towards εmin
for All model agents do
Observe model agent state: s
Determine greedy action: a = π(s) (Equation 2-3)
If lane change, put on blinkers

end for
Observe training agent state: sk

Determine ε-greedy action: ak = π(sk) (Equation 2-8)
Simulate highway for 2 s
if In terminal state then
Reset Highway

else
Get Reward of training agent: rk

end if
if Previous experience was not terminal then
Store previous experience in Replay-Memory Dk += {sk−1, ak−1, rk−1, sk}

end if
Sample mini-batch from Replay-Memory: M ∼ U(Dk)
Update Q-Network with M (Equation 2-9)
if Iteration is a multitude of Test Iteration (ktest) then
Simulate highway for ntest iterations where training agent follows a greedy-policy
Get mean Reward of the completed test: R̄
if R̄ is highest yet then
Store current (best performing) DQN

end if
end if
if Iteration is multitude of Target Network update (kupdate) then
Update target network: θ− = θ

end if
Iteration += 1

end while

L.J. Bakker Master of Science Thesis

Chapter 5

Numerical experiments

In this chapter, we present some numerical experiments we performed in the Highway simula-
tor. First, we present the training results in the four different training settings, two scenarios
with two agent classes each. We then present a multi-agent simulation experiment for exit
scenario training and a multi-agent simulation experiment for open freeway scenario training
where all agents drive according to full exploitation policies.

We trained four deep Q-Network (DQN) agents. The basic and advanced agent in an exit
scenario and the basic and advanced agent in an open freeway scenario, first in a single-agent
setting, and then used the single-agent policy as an initial policy for multi-agent training.
After training, we tested the resulting agents in some evaluation experiments, where the
training agent also followed the greedy policy (same as model agents) instead of ε-greedy
policy during training. Exit scenario agents are evaluated on their percentage of success to
reach their destination lane for differing highway lengths. Open freeway scenario agents are
trained on their lane distribution corresponding to their intended speed. We only evaluate
the performance of multi-agent systems since the single-agent system is not realistic.

Both the exit scenario and open freeway scenario experiments involved zero collisions.

Master of Science Thesis L.J. Bakker

28 Numerical experiments

Table 5-1: Hyper-parameters of training processes

Exit scenario Open freeway scenarioHyper-Parameters Single Multi Single Multi
Total iterations 106 106 106 106

Learning rate 2.5e−5 1e−5 2.5e−5 1e−5

Batch size 256 256 256 256
Test iteration (ktest) 104 104 104 104

Test length (ntest) 104 104 104 104

discount factor (γ) 0.85 0.85 0.95 0.95
Target network update (kupdate) 5e4 1 5e4 1

ε-start 1 0.2 1 0.2
ε-min 0.05 0.005 0.05 0.005

Exploration fraction 0.5 0.5 0.5 0.5

5-1 Training Process

For training, we used the algorithm given in section 4-4 (Training algorithm). The hyper-
parameters we used can be found in Table 5-1. Hyper-parameters were found be excessive
testing and trial and error.

As stated in the previous chapter, we ran a performance simulation every ktest = 104 training
iterations, and simulated the highway for ntest = 104 test iterations. In Figure 5-1 and 5-2, we
plotted the mean rewards of the test simulations according to their current training iteration,
in the exit and open freeway scenario, respectively. We stored the DQN that resulted in the
maximal test reward (R̄max) as the best performing one.

Although training shows an increasing performance trend, the mean rewards of performance
simulations fluctuated a lot. Those large fluctuations are due to the randomness of simula-
tions; the number of vehicles on the highway and the intended speed of the training agent are
random. Even though there are many episodes in the 104 test iterations, it would be better to
have a fixed amount of vehicles during testing, and a fixed intended speed in the exit scenario
case. This way, the randomness would be lower and R̄max would correlate better with the
best performing DQN. We did not implement this due to the time constraints of the project.

See Figure 5-1. In a single-agent exit scenario, advanced agents perform slightly better than
basic agents. This result is intuitive since advanced agents can adjust their speed towards
driving behind surrounding vehicles, allowing for better merging. However, the difference
between performance in the multi-agent exit scenario is not significant. This result could be
due to a multitude of reasons, one being that the problem is too difficult to solve with the
presented Multi-Agent Deep Reinforcement Learning (MADRL) algorithm.

See Figure 5-2. In the open freeway scenario single-agent case, basic and advanced agents
have similar performance. In the multi-agent case, basic agents perform better than advanced
agents. One could expect a better performance of the advanced agent since it has all the
options of the basic agent plus some additional ones. However, when the agents are selfish,
additional actions could result in a worse performing multi-agent system. Basic agents have
a more cooperative driving behavior; they do not slow down but wait till there is room to

L.J. Bakker Master of Science Thesis

5-2 Exit scenario 29

(a) Single-agent training (b) Multi-agent training

Figure 5-1: Mean test rewards during training in exit scenario

(a) Single-agent training (b) Multi-agent training

Figure 5-2: Mean test rewards during training in open freeway scenario

change lanes, whereas advanced agents slow down sometimes to not overtake on the right or
change lanes faster, decreasing overall system performance.

5-2 Exit scenario

To evaluate the performance of the exit scenario agents, we tested the success rate of the exit
scenario agents on different highway lengths. All agents are driving as model agents; they
employ a greedy policy. A highway reset is done in the same way as described in section 4-1;
with a different amount of agents each episode. Let us define success as an agent being on a
destination lane at the moment the training agent reaches the end of the highway and failing
as not reaching it or colliding. In this section, we tested the success rate (success to fail ratio)
and the collision rate (collision to non-collision) over a multitude of highway lengths.

We simulated twenty-one different highway lengths. Lengths are linearly sampled from 0 to
10 km, with a difference of 500 m per sample. Each highway length was simulated for 100
episodes, i.e., the training agent reached the end of the highway 100 times for each highway

Master of Science Thesis L.J. Bakker

30 Numerical experiments

Figure 5-3: Exit scenario evaluation

length. During each episode, we keep track of the collision amount, zero collisions occurred.
At the instance the agent reaches the destination, all agents are tested if they are on one of
their destination lane (success) or not (fail), resulting in a success rate per episode and an
average success rate per highway length over 100 episodes, plotted in Figure 5-3.

Figure 5-3 shows a slightly higher success rate of the advanced agent compared to the basic
agent for a short highway. We expected this result because of the ability of the advanced
agent to adjust its speed. A notable outcome is that the advanced agent system does not
converge to a 100% success rate. After ±5 km, the advanced agent’s success rate increases
slower compared to the basic agent’s success rate. In theory, the advanced agent should be
able to achieve a 100% success rate. We can conclude that a sub-optimal solution is reached.

Nevertheless, the success rate is significantly higher than the success rate in previous liter-
ature’ ±80%, where the other 20% was collision rate [7]. They employed a similar setting
but on a smaller (less complex) three-lane highway. In our simulation, no collisions occurred.
However, the agent did not reach its destination within the highway length sometimes.

Since we included speed in the reward function, advanced agents might not choose to adjust
their Adaptive Cruise Control (ACC) controller towards slower driving, despite it being ben-
eficial for changing lanes earlier. A higher discount factor γ would result in a higher success
rate since the agent receives a destination reward on every time-step, while safety rewards are
occasional. A disadvantage of a higher γ is that safety rewards would be of less significance,
and some collisions start to occur. Since safety is the number one priority, we chose to em-
ploy a slightly lower than usual discount factor γ = 0.85. Agents choose safe driving behavior
above going to their destination lane and sometimes fail to reach their destination lane, even
for a length of 10 km. If agents were constraint to choose only safe actions (see chapter 6),
the discount factor could be much higher (e.g., γ = 0.99), and since there would not be a
need for any disproportionately high collisions or danger reward in the reward function, the

L.J. Bakker Master of Science Thesis

5-3 Open freeway scenario 31

(a) Basic Agent system
(average speed 99.3 km/h)

(b) Advanced Agent system
(average speed 95.4 km/h)

Figure 5-4: Lane Distributions of advanced agents

performance should be higher as well.

We failed to prove the benefit of using the advanced agent in an exit scenario. However, we
still believe that they are better suited for this scenario compared to the basic agent. We
believe that a 100% success rate is achievable when we would use another training algorithm,
tuned the hyper-parameters better or trained for longer. Further research would be needed
to prove this.

5-3 Open freeway scenario

For the open freeway scenario, we set the destination lanes state of the agents to all lanes
on the highway. Agents are driving freely on the highway. During the evaluation, when the
training agent reached the end of the highway, a highway reset was done in the same way
as described in section 4-1; with a random amount of agents each episode. The highway
length was constant; 10 km. Agents are grouped according to their intended speed, uniformly
sampled from 90 to 120 km/h. We split the intended speeds into 20 groups of equal speed
spacing. If an agent has a speed of 90-91.5 km/h it is part of group 1, and 91.5-93 km/h it is
part of group 2 etc.

Each intended speed group contains multiple agents that ended up in a particular lane. At
the end of each episode, we checked the intended speed of each agent and the lane it is in, and
we updated the intended speed and lane distributions. After 5000 episodes, the lane amounts
per group are normalized and plotted, resulting in Figure 5-4.

Faster vehicles are driving on the left side, and slower vehicles are driving on the right side.
Training already showed the higher performance of basic agents. The average speed in the
basic agent system is higher compared to the advanced agent system. Therefore the lane
distributions of basic agent systems are more extreme.

Both lane distributions show an insightful behavior of the agents. The basic agent shows
the best lane sorting behavior. Remember that the number of agents during simulation are
randomized. On an empty highway, even the fastest vehicles are driving on the right side,

Master of Science Thesis L.J. Bakker

32 Numerical experiments

that is the reason some agents are ending up in lane 1 in the group with the highest intended
speed. For slow vehicles, it is never optimal to drive on lane 6. It still occurred in the
advanced multi-agent system.

The advanced agent has a less desirable speed distribution. This result is due to the ability of
an advanced agent to slow down and not pass a slower vehicle on a left adjacent lane; there is
no reason to go to the left lane. Two factors are keeping the low performance of the advanced
agent in existence:

• Not sorting of the lanes by the intended speed is the reason the system has a low average
speed.

• A low average speed makes the sorting of fast advanced agents by intended speed re-
dundant since the agent can slow down to not overtake vehicles on the right side.

In the basic agent system, agents can not slow down. They need to change lanes to the left
in order not to overtake. The need of changing lanes is the reason the system performance
increases significantly for basic agent systems.

In the open freeway scenario, agents intended speed was sampled uniformly from 90 to
120 km/h. The maximal possible average speed of a system in the open freeway scenario
would be 120−90

2 = 105 km/h, if all agents were driving on their maximal speed (intended
speed) at all times. An average speed of 105 km/h is not achievable since vehicles on the
same lane with different intended speeds would collide. The average speed of the basic agent
system: 99.3 km/h, was a result above the author’s expectation and could well be close to
optimal. There is a clear benefit of a basic agent above an advanced agent in the open freeway
scenario.

L.J. Bakker Master of Science Thesis

Chapter 6

Conclusion and outlook

In this chapter, we present some conclusions and possible further research examples.

6-1 Conclusions

We presented two novel deep Q-Network (DQN) agents that model autonomous highway
driving vehicles, and employed non-cooperative homogeneous Multi-Agent Deep Reinforce-
ment Learning (MADRL) to optimize their policy in two scenarios, one where agents tried
to reach their destination lanes; exit scenario, and one where agents did not; open freeway
scenario. Basic agents were limited to lane-changing maneuvers. Advanced agents were able
to influence the Adaptive Cruise Control (ACC) controller as well, i.e., able to slow down if
needed.

Agents can observe non-ego lane change intentions, and by observing vehicles on two lanes
on each side, all collisions are observable and therefore preventable. Zero collisions occurred
during experiments, which is the primary goal of the highway driving ’game’. We have proven
the usefulness of observing lane change intent of surrounding vehicles. Moreover, agents
incorporate an observation grid to observe surrounding vehicles, reducing the state size by
making lane observations of the surrounding vehicles obsolete, and providing more structure
to the state of the agent.

The agents’ framework, i.e., the observations, actions, and reward, are (theoretically) imple-
mentable. They do not rely on explicit communication, observe all information within 150 m
longitudinally and two lanes to the side laterally. Even the reward function is observable for
the agent. It is only dependent on the observed states and the control actions of the agent.
Finding the exact implementation methods is left for further research.

The resulting policies could be used as a policy for a vehicle that drives on real highways.
Continuing the learning process on real highways will, however, lead to collisions. We have
already constrained the agent not to drive off-road without use of the reward function. In
the further research section (section 6-2), we propose to constrain the actions of vehicles to

Master of Science Thesis L.J. Bakker

34 Conclusion and outlook

only safe actions, even during exploration. Then, vehicles could employ the learning process
presented in this work on real highways. A basic agent in an open freeway scenario shows the
most potential in terms of efficiency improvements. In the exit scenario, deterministic control
seems more fit compared to our presented learning algorithm.

6-1-1 Exit scenario

In the exit scenario, the system performed better in terms of safety and reaching the desti-
nation than the multi-agent system in [7]. The maximal success rate of the advanced agent
on a six-lane highway was 98%, compared to the 80% success rate in [7] with a collision rate
of 20%.

Even though we still believe that advanced agents are better suited in this scenario than a
basic agent, we failed to prove this. No 100% success rate was reached, even for distances as
long as 10 km. An optimal policy of the advanced agent should result in a 100% success rate.

6-1-2 Open freeway scneario

The basic agent trained in an open freeway scenario could be useful. Even though the agents
are selfish, the vehicles showed a sound lane selection strategy according to their desired
speeds, resulting in a well-performing six-lane multi-agent system. Lane distributions showed
a similar driving behavior of the best performing three-lane system in [25]. The main advan-
tage compared to other lane-selection literature is that this multi-agent learning algorithm is
adaptable to any highway environment. Advanced agents performed worse in the open free-
way scenario because they optimize a selfish reward in a multi-agent system. Slowing down
sometimes has a positive effect on the individual return of the agent, but a negative effect on
system-wide return.

6-2 Further research

A multitude of further research possibilities arose from this work. We present them in this
section.

6-2-1 Other Deep Reinforcement Learning algorithms

The advanced agent in an exit scenario converged to a sub-optimal solution. Prioritized
replay sampling [26] and dueling networks [27] could improve performance, but in a multi-
agent setting where the policy entirely influences the environment, this is uncertain. We
recommend to employ other, more state-of-the-art, Deep Reinforcement Learning (DRL)
algorithms and investigate the performance of the resulting agents.

Multiple random seeds could also improve performance. The initialization of the DQNs
weights and biases is random; the DQN is updated towards a random local optimum. This
is a common problem in deep learning and solved by training multiple times and using the
best performing one.

L.J. Bakker Master of Science Thesis

6-2 Further research 35

6-2-2 Cooperative reward

In this work, agents employ a selfish reward function. It would be interesting to investigate
similar systems with a cooperative reward, e.g., a reward function including surrounding
vehicle speeds. Moreover, when the reward is cooperative, we could include additional blinker
actions to the action space of the agent. Agents currently activate their blinkers only when
they execute a lane change. We propose to investigate the inclusion of separate blinker actions
in a cooperative multi-agent setting. Agents can communicate their lane change intent before
changing lanes. Assertiveness is then reinforced by the reward function, but only when it is
also beneficial for the surrounding vehicles since the reward is cooperative.

6-2-3 Randomized spawn times

Some parts of the simulator are still unrealistic. In the presented multi-agent system, all
agents initialize their actions at the same time instance. In real life, however, agents determine
their actions on a random time instance. Further system simulations should be set up with
random agent spawning times. Sequencing happens automatically, and it is possible to use
more conventional homogeneous multi-agent deep reinforcement learning [7], without splitting
model and training agents. Randomizing spawn times could even increase performance since
assigning the last agent as a training agent could result in agents being too reactive. When
driving in real life, assertiveness is needed. If other agents do not react to the training agent
(because they already decided their current action), assertiveness is not reinforced.

6-2-4 Observation errors

Observations are currently assumed to be of zero error. In current state-of-the-art literature,
lane change intentions are predicted correctly up to 93% of the time [28]. However, if the lane
change is already activated, lane change intention could be observed with a higher success
rate, but with a delay. In our system, lane changes are observed correctly 100% of the time,
and at the moment of initialization.

Perfect tracking of the speed and location of surrounding vehicles are also unrealistic. We
propose in further research, to investigate what happens when errors are included in the
simulation when the agents are optimized in this setting. We recommend to use a recurrent
neural network [29] to maintain high performance in simulations that include errors.

6-2-5 Safety constraints

We did not investigate deterministic safety constraints in this multi-agent highway environ-
ment. System-wide safety and liveness (the possibility to reach your destination while em-
ploying the safety constraints) could then be analyzed. In [30] for instance, safety and liveness
are proven within a zero-error Model Predictive Control (MPC) setting. System-wide safety
and liveness could even be investigated in a multi-agent environment that includes the above-
suggested observation errors (subsection 6-2-4).

If the agents were constrained to choose only safe actions, performance could be significantly
improved. If the agent could observe that a lane change is unsafe deterministically, it is not

Master of Science Thesis L.J. Bakker

36 Conclusion and outlook

necessary to train on these decisions. No (disproportionately high) safety penalty is needed in
the reward function. Training would purely focus on optimizing the driving efficiency, whereas
safety would then be ’handled’ with deterministic control. Constraining actions to be safe
in a deterministic way, and applying DRL to optimize efficiency in the safe action domain,
is our primary recommendation for future applications of Deep Reinforcement Learning on
Automated Highway Driving. Also, non-ego lane change intentions should be observed by the
agent.

L.J. Bakker Master of Science Thesis

Bibliography

[1] B. Schoettle and M. Sivak, “A survey of public opinion about autonomous and self-driving
vehicles in the us, the uk, and australia,” 2014.

[2] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: oppor-
tunities, barriers and policy recommendations,” Transportation Research Part A: Policy
and Practice, vol. 77, pp. 167 – 181, 2015.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the game of
go with deep neural networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[5] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning to communicate with
deep multi-agent reinforcement learning,” in Advances in Neural Information Processing
Systems, pp. 2137–2145, 2016.

[6] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and
R. Vicente, “Multiagent cooperation and competition with deep reinforcement learning,”
PloS one, vol. 12, no. 4, p. e0172395, 2017.

[7] R. Radulescu, M. Legrand, K. Efthymiadis, D. M. Roijers, and A. Nowé, “Deep multi-
agent reinforcement learning in a homogeneous open population,” 2018.

[8] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “Deep reinforcement learning frame-
work for autonomous driving,” Electronic Imaging, vol. 2017, no. 19, pp. 70–76, 2017.

[9] C.-J. Hoel, K. Wolff, and L. Laine, “Automated speed and lane change decision making
using deep reinforcement learning,” arXiv preprint arXiv:1803.10056, 2018.

[10] S. David, “Advanced topics: Reinforcement learning.” University Lecture, 2015.

Master of Science Thesis L.J. Bakker

38 Bibliography

[11] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,
1992.

[12] Y. Bengio, “Learning deep architectures for ai,” Foundations and Trends R© in Machine
Learning, vol. 2, no. 1, pp. 1–127, 2009.

[13] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale machine learning,” in
12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
16), pp. 265–283, 2016.

[14] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized POMDPs.
SpringerBriefs in Intelligent Systems, Springer, May 2016.

[15] B. Leibe, K. Schindler, N. Cornelis, and L. Van Gool, “Coupled object detection and
tracking from static cameras and moving vehicles,” IEEE transactions on pattern analysis
and machine intelligence, vol. 30, no. 10, pp. 1683–1698, 2008.

[16] C.-C. Wang, C. Thorpe, and A. Suppe, “Ladar-based detection and tracking of moving
objects from a ground vehicle at high speeds,” in IEEE IV2003 Intelligent Vehicles
Symposium. Proceedings (Cat. No. 03TH8683), pp. 416–421, IEEE, 2003.

[17] R. W. Wolcott and R. M. Eustice, “Visual localization within lidar maps for automated
urban driving,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 176–183, IEEE, 2014.

[18] J. Schlechtriemen, A. Wedel, J. Hillenbrand, G. Breuel, and K.-D. Kuhnert, “A lane
change detection approach using feature ranking with maximized predictive power,” in
2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 108–114, IEEE, 2014.

[19] D. D. Salvucci, “Inferring driver intent: A case study in lane-change detection,” in
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 48,
pp. 2228–2231, SAGE Publications Sage CA: Los Angeles, CA, 2004.

[20] S. Patel, B. Griffin, K. Kusano, and J. J. Corso, “Predicting future lane changes of other
highway vehicles using rnn-based deep models,” arXiv preprint arXiv:1801.04340, 2018.

[21] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle
models for autonomous driving control design,” in 2015 IEEE Intelligent Vehicles Sym-
posium (IV), pp. 1094–1099, IEEE, 2015.

[22] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steering
control for autonomous vehicle systems,” IEEE Transactions on control systems technol-
ogy, vol. 15, no. 3, pp. 566–580, 2007.

[23] B. Van Arem, C. J. Van Driel, and R. Visser, “The impact of cooperative adaptive cruise
control on traffic-flow characteristics,” IEEE Transactions on Intelligent Transportation
Systems, vol. 7, no. 4, pp. 429–436, 2006.

[24] T. Nagatani, “Kinetic segregation in a multilane highway traffic flow,” Physica A: Sta-
tistical Mechanics and its Applications, vol. 237, no. 1-2, pp. 67–74, 1997.

L.J. Bakker Master of Science Thesis

39

[25] D. E. Moriarty and P. Langley, “Learning cooperative lane selection strategies for high-
ways,” AAAI/IAAI, vol. 1998, pp. 684–691, 1998.

[26] J. Zhai, Q. Liu, Z. Zhang, S. Zhong, H. Zhu, P. Zhang, and C. Sun, “Deep q-learning with
prioritized sampling,” in International Conference on Neural Information Processing,
pp. 13–22, Springer, 2016.

[27] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Freitas, “Dueling
network architectures for deep reinforcement learning,” arXiv preprint arXiv:1511.06581,
2015.

[28] K. Li, X. Wang, Y. Xu, and J. Wang, “Lane changing intention recognition based
on speech recognition models,” Transportation research part C: emerging technologies,
vol. 69, pp. 497–514, 2016.

[29] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regularization,”
arXiv preprint arXiv:1409.2329, 2014.

[30] K.-D. Kim and P. R. Kumar, “An mpc-based approach to provable system-wide safety
and liveness of autonomous ground traffic,” IEEE Transactions on Automatic Control,
vol. 59, no. 12, pp. 3341–3356, 2014.

Master of Science Thesis L.J. Bakker

40 Bibliography

L.J. Bakker Master of Science Thesis

Glossary

List of Acronyms

MIXIC microscopic-traffic simulation model

DCSC Delft Center for Systems and Control

TU Delft Delft University of Technology

AI Artificial Intelligence

RL Reinforcement Learning

MPC Model Predictive Control

TIV Time In-between Vehicles

faSDVs fully autonomous Self Driving Vehicles

MDP Markov Decision Process

POMDP Partially Observable Markov Decision Process

DQN deep Q-Network

DRL Deep Reinforcement Learning

ReLU rectified linear units

AD Autonomous Driving

MADRL Multi-Agent Deep Reinforcement Learning

ACC Adaptive Cruise Control

Dec-POMDP Decentralized Partially Observable Markov Decision Process

Master of Science Thesis L.J. Bakker

42 Glossary

List of Symbols

α Learning rate
ε Exporation fraction
εmin Minimal (end value) exploration fraction
εstart Starting exploration fraction
γ Discount factor
ω Tuning paramter of reward function
π Policy: mapping of state to action of the agent
θ Weights and biases of Deep Q-Network
θ− Weights and biases of target network

R̄ Mean performance simulation reward
v̄ Speed of target vehicle
x̄ Longitudinal location of target vehicle
A Set of joint action spaces
M Partially Observable Markov Decision Process
S Set of joint (observation) state spaces
M Decentralized Partially Observable Markov Decision Process
A Finite set of actions of an agent
a Action of an agent
D Finite set of agents
Dt Replay Memory: history of all experiences
e Experience: tuple of state, action, reward and next state
Gt Return: discounted expected cumulative future reward
H A set of states of the highway
h State of the highway
h′ Next state of the highway
ktest Performance simulation iteration
kupdate Target network update iteration
L Loss function
Lw Lane width
M Mini-batch of randomly sampled experiences from replay memory
ntest Amount of iterations per performance simulation
Q Q-value: expected return given the current state and action
R Reward function
r Feedback reward (scalar value)
S Set of (observed) states of an agent
s (Observed) state of an agent
s′ Next state of the agent
T Transition probability function

L.J. Bakker Master of Science Thesis

43

v Speed of a vehicle
Vi Observed vehicle i in the observation grid
vint Intended speed of a vehicle
x Longitudinal location of the agent
xstart Longitudinal position at the start of a lane change
y Lateral location of the agent
ystart Lateral position at the start of a lane change
Z Observation probability function

Master of Science Thesis L.J. Bakker

44 Glossary

L.J. Bakker Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Preface

	Main Matter
	Introduction
	Multi-Agent Deep Reinforcement Learning
	Deep Reinforcement Learning Algorithm
	Problem formalization
	Q-Learning
	Deep Q-Networks

	Multi-Agent Algorithm
	Decentralized Partially Observable Markov Decision Process
	From single- to multi-agent training

	Observations, actions and reward function of the agents
	Observed state
	State vector
	Observation Grid

	Actions
	Adaptive Cruise Controller
	Passive agents
	Basic Agent
	Advanced agent

	Reward function

	Highway simulator
	Highway Reset
	Intended speed sampling

	Lane change maneuver
	Exit- and Open freeway scenario
	Exit scenario
	Open freeway scenario

	Training algorithm

	Numerical experiments
	Training Process
	Exit scenario
	Open freeway scenario

	Conclusion and outlook
	Conclusions
	Exit scenario
	Open freeway scneario

	Further research
	Other Deep Reinforcement Learning algorithms
	Cooperative reward
	Randomized spawn times
	Observation errors
	Safety constraints

	Appendices
	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

