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Abstract. The spatial distribution of the strength inside an earth-fill dam is identified by sounding tests. In this research, the 
Swedish Weight Sounding (SWS) test is employed, and the spatially high-density test is possible to identify the spatial 
correlation structure by the SWS. The correlation structure of an earth-fill could be identified accurately based on the sounding 
results, and the high resolution of the spatial distribution could be visualized by using the indicator simulation. Consequently, it 
has been verified the practical use  of the spatial distribution of the probability that the N-value is lower than the threshold  value, 
may be used for the maintenance of an earth-fill dam. 
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1. Introduction 

There are many earth-fill dams in Japan.  Some 
of them are getting old and decrepit, and 
therefore, have weakened.  Making a diagnosis 
of the dams is important to increasing their 
lifetime, and an investigation of the strength 
inside the embankments is required for this task.  
In the present research, the spatial distribution of 
the strength parameters of dilapidated earth-fills 
is discussed, and an identification method for the 
distribution is proposed.  Although the strength 
of the earth-fills is generally predicted from the 
standard penetration test (SPT) N-values, 
Swedish Wight Sounding  (SWS) tests (e.g. JGS, 
2004) are employed in this research as a static 
sounding method of obtaining the spatial 
distribution of the N-values. SWS tests are 
advantageous in that they make short interval 
examinations possible, because of their 
simplicity.   

In general, the identification of the spatial 
correlation of soil parameters is difficult, since 
the usual sampling intervals are greater than the 
spatial correlation.  Therefore, sounding tests are 
convenient for determining the correlation 
lengths. Tang (1979) determined the spatial 
correlation of a ground by cone penetration tests 
(CPT).  Cafaro and Cherubini (1990) also 
evaluated the spatial correlation with the CPT 
results.  Uzielli, et al. (2005) considered several 

types of correlation functions for the CPT results. 
Nishimura and Shimizu (2008) determined the 
correlation parameters of N-value at a coastal 
dyke with the maximum likelihood method. 

The information about the spatial correlation 
structures is important to perform the random 
field analyses. Fenton and Griffiths (2002), who 
analyzed the settlement of a footing on the 
ground, considering the spatial correlation 
structure of Young's modulus. In addition, 
Griffiths et al. (2002) calculated the bearing 
capacity by analyzing the random field of the 
undrained shear strength using the elasto-plastic 
finite element method. Bakker (2005) also 
analyzed the stability of a dyke using the elasto-
plastic model based on the random field of the 
undrained shear strength. Nishimura et al. (2010) 
applied the random field theory to the elasto-
plastic model and evaluated the risk of the earth-
fill dams. 

Firstly, the statistical models of the N-values 
are determined from the SWS tests results. For 
this task, the minimizing information criterion 
method is employed to evaluate the statistical 
model of an embankment, which involves the 
mean function and the covariance function.  The 
semi-variograms also are estimated. Then, N-
value distributions derived from sounding results 
are spatially interpolated with the indicator 
simulation (Deutsch and Journel 1992), which is 
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one of the geostatistical methods (Journel and 
Huijbregts, 1978). 

2. Statistical Model of N-values 

A representative variable for the soil properties, s 
is defined by Eq. (1) as a function of the location 
X=(x, y, z). Variable s is assumed to be expressed 
as the sum of the mean value m and the random 
variable U, which is a normal random variable in 
this study. 

 (1) 

The random variable function, s(X), is 
discretized spatially into a random vector 
st=(s1,s2,...,sM), in which sk is a point estimation 
value at the location X=(xk, yk, zk). The soil 
parameters, which are obtained from the tests, 
are defined here as St=(S1,S2,..., SM). Symbol M 
signifies the number of test points. Vector S is 
considered as a realization of the random vector 
st=(s1,s2,...,sM).  If the variables s1, s2,...,sM 
constitute the M - variate normal distribution, the 
probability density function of s can then be 
given by the following equation. 

 (2) 

in which mt=(m1,m2,...,mM) is the mean vector of 
random function st=(s1,s2,...,sM); and it is 
assumed to be given by the regression function in 
Eq. (3). In this research, a 2-D statistical model is 
considered, namely, the horizontal coordinate x, 
which is parallel to the embankment axis, and the 
vertical coordinate z are introduced here, while 
the other horizontal coordinate y, which is 
perpendicular to the embankment axis, is 
disregarded. 

                                (3) 

in which (xk, zk) are the coordinates of the 
position k where the function at that position, sk 

is given by Eq. (3) with the regression 
coefficients a0, a1, a2, a3, a4, and a5. 

C is the M×M covariance matrix, which is 
selected from the following four covariance 
functions in this study. 

 

                                     (4) 

in which the symbol [Cij] signifies an i-j 
���������	 �
	 ���	 ���
��
���	 �
�����	 �	 ��	 ���	
standard deviation, and lx and lz are the 
correlation lengths for the x and z directions, 
respectively. Parameter Ne is related to the 
nugget effect. The Akaike’s Information 
Criterion, AIC (Akaike 1974) is defined by Eq. 
(5), considering the logarithmic likelihood. 

 (5) 

in which L is the number of unknown parameters 
included in Eq. (2). By minimizing AIC (MAIC), 
the regression coefficients of the mean function, 
the number of regression coefficients, the 
��
��
��	����
�����	��	 the type of the covariance 
function, the nugget effect parameter, and the 
correlation lengths are determined. 

Because the correlation lengths of soil 
parameters are often short compared with the 
sampling or the testing interval, sometimes the 
correlation lengths cannot be determined using 
the aforementioned method. For such cases, the 
following two-step approach is proposed as a 
strategy for identifying the spatial correlation 
structure. First, the mean (trend) function and the 
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variances are determined by MAIC. 
Subsequently, the covariance Cij is determined 
from the semi-variogram. The semi-variogram is 
evaluated in the horizontal and vertical directions 
as individual functions of the sampling intervals. 

 (6) 

where �x, and �z are the semi-variaograms for the 
x, and the z axes, respectively, U(x,z) is a 
measured parameter at the point (x,z) from which 
the mean value is removed, namely, the value of 
(s(x��z)�m(x��z����	 �	 �x 
��	 �z are sampling 
intervals, and Nx and Nz are the number of 
sampling points for the x and the z axes, 
respectively.  

Next, the calculated semi-variograms are 
approximated by the following theoretical semi-
variogram functions, and the correlation lengths 
are identified. Since an exponential type of 
function (Eq. (4a)) is selected as the best fitting 
function by MAIC in many cases, it is also 
employed here. 

 

 (7) 

In Eq. (7), Cox and C0z are the parameters 
used for the nugget effect for the x and the z 
directions, respectively, and C1x, and C1z are the 
parameters used to express the shape of the semi-
variogram functions.  

Finally, the two-dimensional covariance Cij 
between two points i and j, is given as  

 (8) 

3. SWS Results and Geostatiscal Analyses 

3.1. In-situ Test Results 

Although high-density sampling is required in 
order to evaluate the spatial distribution of soil 
parameters, the amount of data is not sufficient 
in the general sampling plans.  In such cases, 
sounding is a convenient way to identify the 
spatial distribution structure of the soil 
parameters.  In this research, an embankment at 
Site A is analyzed, for which SWS tests were 
conducted at fifteen points, at 5 m intervals, 
along the embankment axis, as shown in Figure 1.  
Additional tests were conducted between x=18 m 
and x= 24 m with 2 m interval to identify the 
lateral correlation length. The soil profile for the 
embankment is categorized as intermediate soil, 
and consists of decomposed granite. 

Generally, the strength parameters are 
assumed based on standard penetration tests 
(SPT) N-values with the use of empirical 
relationships.  In this research, however, Swedish 
weight sounding (SWS) tests, which are simpler 
than SPT, are employed instead of SPTs.  Inada 
(1960) derived the relationship in Eq. (9) 
between the results of SPT and SWS.  Eq. (9) 
shows the relationship for sandy grounds, while 
Figure 2 shows the relationship between SWS 
and SPT N-values. 

  (9) 

Figure 1. Plan view of embankment and testing interval. 
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in which NSWS is the N-value derived from SWS, 
NSW is the number of half rations and WSW is the 
total weight of the loads (N).  Based on this data, 
the variability of the relationship is evaluated in 
this study, and the coefficient of variation is 
����������	 
�	 ������	 	 ���	 ����������	 �-limits 
are also shown in Figure 2 with broken lines.  
Considering the variability of the relationship, 
the SPT N-value, NSPT is modeled by 

 (10) 

3.2. Statistical Model 

The mean function and the covariance function 
of the SWS N-value, NSWS, are determined with 
MAIC, and the mean is exhibited in Figure 3.  
The mean and the covariance functions given by 
Eqs. (3) and (4) were examined, and the 
optimum functions are determined as Eqs. (11) 
and (12).  The horizontal correlation length lx is 
identified as being approximately 10 m, and the 
vertical one lz, is 2.66 m. Compared with the 
published values (Phoon and Kulhawy 1999, 
Tang 1979, DeGroot and Beacher 1993, 

Nishimura et al. 2010), the horizontal one is 
reasonable, and vertical one is rather large. The 
horizontal length, however, and almost three 
times the vertical one, and the values could be 
accepted by the fact that the horizontal length is 
much greater than the vertical one. 

  (11) 

  (12) 

To check the correlation structures, the 
semi-variograms for the horizontal and vertical 
directions are calculated. Figure 4 shows the 
semi- variograms. The semi-variogram values of 
�x = 2, 5, and  10m, �z =0.25, 0.5, 0.75, 1.0, 
1.25 m are employed to identify the approximate 
functions of Eq. (7) for the horizontal and 
vertical directions respectively, since the 

� � SWSrSPT NN 	354.01��

 
Figure 3. Distributions of SWS N-value. 

 
(a) Horizontal 

 

 
(b) Vertical 

Figure 4. Semi-variograms and approximate functions. 

 
Figure 2. Relationship between SWS results and SPT N-
values. 
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accuracy of the semi-variogram values are high 
within the range of the small values of �x and �z.  
The optimum result is represented by the 
following function values. 

 

The lateral correlation length is identified as 
being almost three times that of the MAIC, while  
the vertical length is determined as the value 
similar to that of the MAIC. There is the 
tendency generally that the variogram exhibits 
the relatively longer correlation distance, 
compared with the MAIC, since the correlation 
length is identified along the single coordinate in 
the case of the variogram. 

3.3. Interpolated N-values 

As for the mean and the covariance functions, 
Eqs. (11) and (12) are employed for the 
embankment. In the Monte Carlo simulation, 
random numbers for NSWS are generated through 
the indicator simulation.  Then, random numbers 
for NSPT are created by considering the error 
factor �R in Eq. (10).  The spatial statistical 
values for NSPT are discussed below. 

Figures 5 presents the analytical results. 
Figures 5 (a), (b), and (c) correspond to the mean, 
the standard deviation, and the probability that 
the N-values are smaller than 2.0, respectively. 

According to Figures 5(a), around depth z = 
3-4 m, x =30-40 m, the lowest value is detected. 
Corresponding to Figure 5(a), the highest value 
of probability is obtained at the same location in 
Figure 5(c). The standard deviation value is 
positively correlated to the mean value, namely, 
the location of high mean N-value has high 
standard deviation as shown in Figure 5(b). 

4. Conclusions 

(1) With minimum lateral interval of SWS 
of 2 m, the spatial correlation structures of N-
values inside the embankment could be evaluated 
accurately. 

(2) Correlation structures were obtained by 
two approaches, MAIC and semi-variogram, and 
the difference of two results was acceptable. 

(3) The spatial distribution of the probability 
that the N-value is lower than the threshold value 
(=2m, in this paper) has been calculated with the 
indicator simulation, and the weakened area 
could be identified visually.  The spatially 
distribution of the probability can be used for the 
health monitoring of the inside of an 
embankment. 
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(a) Mean (NSPT) 

 
(b) Standard deviation (NSPT) 

 
(c) Probability (NSPT <2) 

Figure 5. Statistical values of  NSPT by indicator simulation. 
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