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A framework for knowledge-based map interpretation

Introduction

In the industrialized world, there is an urgent need for so-
lutions to drawing conversion. Drawing conversion is the
process of converting paper maps and drawings into a digi-
tal format which captures all relevant information. The in-
formation in maps, for example, can be digitally stored in
adedicated database called a Geographic Information Sys-
tem (GIS) whereas electric diagrams can be represented in
a CAD format. Considering the enormous amount of pa-
per information and its importance to a variety of industrial
branches, such as public utilities and the construction and
transport industry, efficient conversion of maps is a topic
of substantial interest to our society. Because both pur-
pose and nature of the conversion process differ with each
application, there is an urgent need for generally applica-
ble techniques for (semi-) automatic drawing conversion.
However, automatic drawing interpretation is not an easy
task. A digital image consists of an array of pixels and, al-
though simple for a human, it is not obvious how to extract
the image contents from this format.

The goal of the research described in this thesis is the
design and development of techniques which are capable
of automatic drawing interpretation. Because of the multi-
tude of map applications, the flexibility of these techniques
is a very important aspect of our research. Moreover, the
management of a company, such as a public utility, de-
pends heavily on information about the infrastructure. The
results of automatic interpretation should therefore be very
reliable. To obtain a reliable interpretation it is necessary
to utilize the available knowledge about the application.
Since maps are drawn according to specific drawing rules
using a limited set of symbols, for each type of map there is
much knowledge available prior to the interpretation. Be-
sides a priori knowledge about the map itself, there is also
knowledge about applicable image processing functions
and the interpretation strategy. For optimal interpretation
results, it is vital to represent all types of knowledge. The

knowledge representation format should therefore provide
for simple but effective means to model and manipulate
the knowledge. In addition to a knowledge representation
formalism, a mechanism is required to control the inter-
pretation process using all available knowledge. The in-
terpretation of an image is composed of a large number
of image processing steps. The control mechanism should
be able to make inferences, based on the a priori knowl-
edge and intermediate results, and guide the interpretation
in promising directions by execution of appropriate im-
age processing techniques with the proper parameter set-
tings. In summary, the purpose of this study is the develop-
ment of a flexible and generally applicable framework for
knowledge-based map interpretation. To obtain a reliable
and accurate description of the map contents, the frame-
work should provide methods to model and to manipulate
various kinds of knowledge as well as a reasoning mecha-
nism to control the image processing steps.

The first two sections concentrate on some important as-
pects concerning the design of such a framework. The fun-
damentals in the design of a control mechanism for image
interpretation are introduced in Section 1.1. Some basic
aspects of knowledge representation are discussed in Sec-
tion 1.2. Section 1.3 gives a detailed description of the ap-
plication which has been chosen to evaluate the techniques
and concepts developed during this study. The chapter is
concluded with an outline of the thesis.

1.1 Image interpretation

Image interpretation is the process of understanding the
contents of an image. In this process, a two or three dimen-
sional array of gray values has to be transformed into a de-
tailed high-level representation describing the individual
components and their relationships in the image. In each
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Image understanding

Object recognition

Measurements

Segmentation

Image enhancement

Image acquisition

Figure 1.1: In this image interpretation model the white
arrows represent a Sstrict bottom-up information flow,
whereas the grey arrows denote the top-down control of
the processing steps.

step of the interpretation, the enormous amount of low-
level pixel information has to be reduced, classified and
reorganized into an increasingly complex data structure.
Many operations are involved in this complex process and
it is therefore necessary to design a control strategy to or-
ganize the combined effort of the image processing oper-
ations. The key question in the design of such a control
strategy is whether the image data or a priori knowledge
should control the interpretation process. The remainder
of this section is devoted to this issue. For a general in-
troduction to both image processing and machine vision,
the reader is referred to Digital image processing by Gon-
zalez and Woods [2], Computer and robot vision by Haral-
ick and Shapiro [3, 4], and Image processing, analysis and

machine vision by Sonka, Hlavac and Boyle [6].

1.1.1 The traditional bottom-up strategy

In a bottom-up processing strategy, each step is based on
the results of the previous step. Fig. 1.1 shows the con-
ventional model in image interpretation as a sequence of
image operations. The white arrows represent the bottom-
up information flow between subsequent steps. The gray
arrows represent top-down information flow, but they are
left for the moment and will be discussed in Section 1.1.3.

All image processing begins with image acquisition by
means of an input device such as a scanner or a camera.
Following this step, the raw image data may be further
processed in an enhancement step to facilitate the process-
ing in succeeding steps. An example of enhancement is
a sharpening operation to compensate for the blur intro-
duced during the acquisition. The information in the (en-
hanced) image data is captured in an enormous number of
pixels. Such a low-level representation is not suitable for
direct automatic interpretation and more structure is added
in the segmentation step where corresponding pixels are
grouped together in regions. A simple example of seg-
mentation is thresholding; each pixel is classified as either
background or foreground, depending on whether its value
is below or above a fixed threshold. In the measurement
step, for each segmented region, one or more distinguish-
ing features are calculated, e.g. area, perimeter, and the
optical density of a region. Based on these features, an ob-
ject label can be assigned to the regions in the recognition
step. In the understanding step, the multiple recognitions
are combined and verified to form higher-level objects and
to obtain an understanding of the image.

This rather simple strategy is favorable if the process-
ing steps are more or less independent of the contents of
a specific image and if each step yields reliable results for
succeeding processing steps. However, if the image data is
noisy or ambiguous, the results of a processing step may
contain errors. Due to the static nature of the bottom-up
approach, subsequent steps may not be able to detect and
handle these errors, thus causing the errors to propagate
upwards along the processing path to the final understand-
ing step.

For more complex applications, a single algorithm
within each processing step may be insufficient. For exam-
ple, in an industrial application where images contain sev-
eral differently shaped machine parts, multiple recognition
algorithms are required. In a medical image, both areas
with poor contrast and high contrast may be found, each
requiring a different segmentation algorithm. However,
in a bottom-up approach, no model is available to deter-
mine when a specific algorithm should be used. As a con-
sequence, within a processing step a brute-force approach
may be inevitable where all available algorithms are em-
ployed, resulting in unnecessary processing and waste of
resources. In the worst case, each processing step may
needlessly generate large amounts of data which have to be
processed by all algorithms in the succeeding step, which,
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in their turn, generate even more data. When an applica-
tion becomes this complex, it is obvious that a need exists
for an application model to guide the interpretation process
and to select the appropriate algorithms when necessary.

1.1.2 A top-down strategy

A top-down control strategy is based on the hypothesize-
and-test concept. In this concept, the image interpreta-
tion process is based on an internal model which describes
what to expect in an image. From this model, hypothe-
ses are generated. A complex hypothesis may be split into
sub-hypotheses, which in their turn can be divided further
until a hypothesis can be either accepted or rejected using
only the image processing necessary for its verification.
The model guides the interpretation process in promising
directions through generation of the proper hypotheses.
Thus, a top-down approach may use the computational
resources more efficiently than a brute-force bottom-up
strategy. A top-down strategy therefore seems most ap-
propriate when dealing with complex applications or large
amounts of data.

This does not mean that top-down control is always su-
perior to bottom-up processing. The top-down strategy
also has important disadvantages. Since the model de-
scribes what to expect in an image, the interpretation pro-
cess only tries to verify the hypotheses issued from above.
The interpretation therefore only yields good results if the
image contains what the model describes. If the input
data changes even slightly, a top-down approach may be
unable to verify a single hypothesis. A bottom-up ap-

‘proach, however, uses fewer assumptions about the im-

age data and is therefore more robust to changes in image
contents. Furthermore, a top-down control strategy is very
complex in its design and implementation, because knowl-
edge about the application has to be modeled and repre-
sented, while requiring an inference mechanism to oper-
ate with the knowledge on all the processing levels. Fi-
nally, top-down control alone is never sufficient for image
interpretation and some bottom-up processing will always
be required. This can be explained as follows. A complex
hypothesis is recursively divided into sub-hypotheses and
this continues until the hypotheses can be verified directly
with prior information. However, in the case of image in-
terpretation there is no prior information about the exact
location or the shape of objects. This information can only
be extracted if at least some segmentation is performed in a
bottom-up processing step. Therefore, instead of focusing
on either a bottom-up or a top-down approach, it may be
more practical to develop a strategy which integrates both.

1.1.3 A combined approach

Neither top-down nor bottom-up processing yields a com-
plete solution to image interpretation. As discussed above,
a pure top-down approach is complex and its use is limited
to the restraints imposed by the internal model. A strict
bottom-up strategy may result in a brute-force approach

while errors propagate along with the processing. It seems
sensible to combine both strategies to get the best of both
worlds. In this scenario, a bottom-up strategy is favored
for initial processing and when its simplicity is sufficient.
Top-down processing is needed for efficient control and to
obtain additional results when bottom-up processing is in-
adequate or incorrect.

Fig. 1.1 shows the general idea of an approach which
allows bidirectional processing. The results of bottom-up
processing ascend to higher levels along the white arrows,
while top-down control actions are passed to lower lev-
els through the gray arrows. The following example illus-
trates the concept of bidirectional control.

If the basic segmentation step yields adequate results in
general, a bottom-up approach is most appropriate because
it is simple. Following segmentation, the bottom-up pro-
cessing proceeds with the measurement step and the ob-
Jject recognition step. The understanding step is then able
to verify the recognized objects with its internal applica-
tion model. When an inconsistency is detected between
two outcomes, the model could supply a possible cause
for this conflict, e.g. a poor segmentation which obstructs
the proper recognition of an object. Based on the model,
the interpretation process then returns to the segmentation
level to use an alternative segmentation algorithm or an-
other parameter setting for the image part under consider-
ation. At this point, bottom-up processing continues with
resegmentation, feature extraction and object recognition.
The interpretation process then resumes with the under-
standing step again.

From this example, it may be clear that a combination
of both bottom-up and top-down control is advantageous
as it provides a method to correct results from a lower-
level. In this scenario, the simplicity of bottom-up pro-
cessing is used when adequate and top-down control is em-
ployed when needed. Therefore, the combined approach
has been chosen as the underlying concept of the interpre-
tation strategy proposed in this thesis.

1.2 Knowledge representation

Knowledge is one of the key issues in this study. In this
section, a short overview of three of the most basic repre-
sentation formalisms is given. For a more thorough dis-
cussion on this important subject, the reader is referred to
the books on artificial intelligence by Rich and Winston
{5, 71.

Before we focus on the basic representation paradigms,
it is necessary to make a distinction between two types of
knowledge first. The two types which are generally distin-
guished are declarative knowledge and procedural know!-
edge. The former type represents knowledge as a collec-
tion of facts, sometimes accompanied by a limited set of
rules describing how to manipulate them. The latter type
represents knowledge about how and in which order things
should be done. Each of these types of knowledge has ad-
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vantages and limitations, but in general it is agreed that
both types are needed and most systems therefore employ
a combination of both. Within the context of image inter-
pretation, declarative knowledge may be used to describe
how objects look like, while procedural knowledge may be
more appropriate to describe when to search for a specific
object and which algorithm should be used.

The remainder of this section is dedicated to three basic
knowledge representation formalisms.

Semantic nets. A semantic net is a graph-like structure
where the nodes represent objects and the links describe
the relationships between them. Because both objects and
relationships can be of any type, the semantic net is a very
useful tool to model commonsense knowledge. By means
of special relationships, i.e. the Instance of and A kind of
relationships, it is possible that the properties of a concep-
tual object are inherited by its instances. Although seman-
tic nets are appropriate for representation of declarative
knowledge, they are less suited for representation of pro-
cedural knowledge. When considering their use for map
interpretation, the nodes may describe the various object
types in the map while the links represent the spatial rela-
tionships between them.

Frames. Frames may be regarded as complex semantic
nets which typically represent instances of object types.
However, frames are more structured than semantic nets as
all important information about the object is concentrated
in the so-called slots and fillers. Each slot describes an as-
pect of an object and may be filled by other frames, a de-
fault value, or procedural information. In the latter case,
a procedure is associated with a specific slot by means of
a mechanism called procedural attachment. These proce-
dures describe what to do when a particular slot is filled
with a value or how a value should be computed for a slot
when needed. Thus, a major weakness of semantic nets,
i.e. the difficulty to represent procedural knowledge, is at
least partly solved by the frame representation. Within the
context of map interpretation, a frame may represent an in-
stance of a map object where its slots represent informa-
tion about its features and spatial relationships with other
frames. Procedural attachment may be used to execute an
(image processing) procedure if the value of a specific fea-
ture is needed, or, to search for related objects if a concep-
tual object is instantiated.

Rules. In general, a rule can be viewed as a conditional
statement which is written as

if <condition> then <action>

The condition part describes the applicability of the rule
whereas the action part describes what to do when the con-
dition is true. This concept is easy to understand and its
intuitive use is appealing to many researchers. Moreover,
a rule-based system is very appropriate to model a data-
driven or bottom-up inference process. If the system is
provided with new information, its behavior will change.
Although the knowledge base is easy to extend with new

rules, it is difficult for the knowledge engineer to antici-
pate all consequences. For example, a rule which seems
appropriate for a specific inference, may also be applicable
in other unexpected situations. Therefore, an unstructured
rule base may easily become unpredictable, and some kind
of ordering is required to guarantee that the interpretation
will indeed converge to an acceptable outcome. A fre-
quently encountered solution to this problem is the concept
of meta-rules. Meta-rules are a special type of rules and
provide extra information about the applicability of other
rules, such as which rules are more important in a given
situation and should be executed first.

According to Davis and King [1], a rule based approach
is most suited for a domain with many independent states,
when the control flow consists of a sequence of indepen-
dent actions and the knowledge can be represented as a
collection of independent chunks of knowledge. When re-
garding map interpretation, there is much a priori knowl-
edge available about the structure and contents of the map.
Since the structure of the map is used to guide the interpre-
tation, neither the control flow nor the a priori knowledge
is independent. For this reason, a rule based approach may
be less appropriate. The nature of the knowledge to be rep-
resented, i.e. a network of objects and their spatial rela-
tionships, seems to be reflected most adequately by the se-
mantic network and the frame representation. In this the-
sis, the knowledge representation which is used is a hy-
brid structure which integrates both aspects of semantic
networks and frames, but for simplicity, it will be referred
to as the semantic network.

1.3 The application

The conversion of the paper utility maps from the PNEM
(a Dutch acronym for Provinciale Noordbrabantse En-
ergiemaatschappij) was chosen as the application to test
new techniques and methodologies developed within the
context of our research. The purpose of this section is
to introduce the problem and its current solution and to
briefly describe a proposal for an (semi-) automatic solu-
tion.

1.3.1 Outline of the problem

The PNEM provides most of the province of Noord-
Brabant with multiple services such as electricity, water,
gas and cable television. For each service, information
about position, structure and contents of the network in-
frastructure is drawn on paper maps. Basically, the maps
contain the relative position of the pipelines and conduits
with respect to distinctive landmarks such as the corners
of houses. Further, the maps contain information about
identification, type and covering of the network compo-
nents. Since the maps also provide information about
street names and house numbers, the location and contents
of the (usually) underground network can be exactly re-
constructed from the maps.
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For efficient management of the infrastructure, the in-
formation in the maps has to be available in a GIS. Cur-
rently, new maps are drawn within the GIS-environment
and the information is incorporated directly in the GIS. De-
spite the digital design of new maps, most existing infor-
mation is only available on paper. Therefore, there is a
great interest in techniques for efficient conversion of the
paper maps.

1.3.2 Advantages of a digital description

It is desirable to make the information in the maps avail-
able in a GIS, even at the expense of millions of guilders
in investments in the conversion process. The motivation
for this process is threefold. First, there is a need for ef-
ficient retrieval of symbolic, numeric and spatial informa-
tion. Manual retrieval of information from maps is, at the
least, time consuming. If a query involves thousands of
maps, e.g. How many kilometers of cable are covered with
this type of PVC in district X?, manual processing of the
maps may very well become a hopeless task. From this ex-
ample, it may be clear that a digital high-level description
in a GIS is vital for efficient management and maintenance
of the network infrastructure.

A second reason for conversion is the efficient mainte-
nance of the information in the maps. The infrastructure
drawn on the maps is not static, and contents of the maps
are often subject to change. It is therefore necessary to up-
date the paper maps on a regular basis. Updating a paper
map is a tedious and labor intensive process which requires
erasing and redrawing parts of the map. However, when
the maps are available in a GIS, manipulation of the in-
formation with the proper tools is easy and efficient while
changes can be incorporated directly into the GIS.

Modeling of the network capacity is the third important
advantage of a digital description. For example, if a pub-
lic utility has to transport a large quantity of water and the
optimal network route is required, a digital description of
structure, position and capacity of the network is neces-
sary.

1.3.3 Advantages of a knowledge-based ap-
proach

Eartier in this chapter, we explained the reasons to employ
knowledge in the conversion process. The advantages of
a knowledge-based approach for this specific application
will now be discussed in more detail.

In the Netherlands there are about 40 to 50 public utili-
ties, where each utility usually provides multiple services.
Each utility is independent and has its own drawing con-
ventions. Within a utility, different services are drawn on
different types of maps using a slightly different symbol
set. Even within a single service a further distinction can
be made. For example, gas is transported to local dis-
tribution centers through a high pressure network, while
for distribution to customers, a low pressure network is
used. Again, the drawings of both types of network are

based on slightly different drawing conventions. More-
over, itis possible that, over time, the drawing conventions
have been adjusted to meet new requirements. As a con-
sequence, in the Netherlands, and even for a single pub-
lic utility, there is an enormous variety in types of utility
maps. Because so many applications have to be consid-
ered, the flexibility of the interpretation system is most im-
portant. A knowledge-based approach may offer the flex-
ibility and facilitate the change to another type of map.
Most of the reprogramming of the application may be cir-
cumvented because it is sufficient to adjust the knowledge
base. A knowledge-based approach may therefore consid-
erably speed up development for the multitude of applica-
tions.

Due to years of intensive use in the field, the maps
may be wrinkled and stained, while often parts have been
erased and redrawn which has degraded the paper mate-
rial even further. Nevertheless, an automatic interpretation
system has to satisfy the high demands made upon its re-
liability. A system capable of converting the entire map
but with an error rate of 10% is not practical, as all results
have to be verified and corrected manually. However, a
system which correctly converts 80% of the information in
the maps leaving the remaining 20% to the operator could
achievea considerable speed-up of the conversion process.
In this context, knowledge about the structure of the map
and the appearance of objects could guide the automatic
interpretation into promising and reliable directions and
help to detect and reject inconsistent results. Knowledge
about the causes of these inconsistencies and possible so-
lutions could further increase the reliability. Even in the
case of the rejected classifications, it could still be possible
to generate alist of potential candidates to provide efficient
support during manual conversion.

1.3.4 Conversion of the maps

In this section, some definitions on positioning are given
first, followed by a discussion on existing conversion
methods. The section is concluded with a proposal to in-
tegrate an automatic conversion method with the current
conversion techniques.

1.3.4.1 Definitions

¢ A position in world coordinates of an object de-
scribes its position in the real world with respect to a
unique landmark. In the Netherlands, a widely used
coordinate system is the Rijksdriehoeksnet, a triangu-
lation network covering the Netherlands, where each
node represents the exact location of an outstanding
landmark such as a church tower.

¢ A position in map coordinates denotes the position
of a map object with respect to the cross-hairs drawn
on the border of the map.

¢ The relative position of a map object describes its
position with respect to other map objects. In the
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Figure 1.2: This fragment of a PNEM utility map shows
the relative positioning of the network with respect to the
houses.

PNEM application, the relative position is denoted
with an arrow and a dimension. Fig 1.2 shows an ex-
ample.

1.3.4.2 Conversion methods

The major aim of the conversion process is to reconstruct
the actual position of the network from the maps and to
store it in world coordinates in a GIS. Since each map rep-
resents a rectangular part of a district, one might expect
that a simple linear transformation should be sufficient to
transform map coordinates into world coordinates. Unfor-
tunately, the truth is - more complicated. For the objects in
the maps, a distinction has to be made between the relative
position and the position in map coordinates. Although
the relative positions in the maps contain few errors, the
position in map coordinates may be very unreliable and
therefore unsuitable for direct reconstruction. However,
the Dutch cadaster is making the position (in world coor-
dinates) of Dutch real estate available in a digital format.
This format will be referred to as the digital topography.
Thus, when the houses in the maps can be matched with the
corresponding houses in the digital topography, it should
be possible to reconstruct the precise position of the net-
work from its relative position to the houses and their exact
position in the digital topography.

The success of the conversion depends on the match be-
tween houses on the maps and the houses in the digital to-
pography. In some cases, when the positions of the objects
in map coordinates are inconsistent with the digital topog-
raphy, this match is not trivial and requires much operator
interaction. As a consequence, the quality of the maps, i.e.
the consistency with the digital topography, is one of the

main factors to determine the conversion speed as well as
the conversion method. At the moment, in practice, four
manual conversion methods are used.

Digitization. In this method the digital cadastral topogra-
phy is plotted accurately on stretch-free sheets. Using the
old maps, which contain the relative position of the net-
work with respect to the houses, a draftsman redraws the
accurate position of the network on the sheets. Following
this step, the stretch-free sheet is fixed on a digitization ta-
ble and the position of the network is traced with a dig-
itizer. Since the new map is redrawn exactly to scale, the
digitized map coordinates can be transformed directly into
world coordinates.

Redrawing the maps on the stretch-free sheets is the
bottle-neck of this approach and it makes it the slowest
of all available conversion methods. Conversion of an A0
map may take up to several days, and, as a consequence,
this method is used only for complicated situations when
the maps deviate widely from the digital topography and
only an operator can reconstruct the actual situation.

Reconstruction. In the reconstruction approach, the digi-
tal topography is drawn on a computer display. Using the
analog maps, the draftsman now draws the position of the
network on the display, in this way combining redrawing
and digitization in a single step. This approach is approx-
imately 40% more efficient than digitization. However, a
disadvantage of this approach is that the draftsman has to
divide his attention among the analog map, the computer
display, and an ASCII terminal for the display of alphanu-
merical information. If the draftsman is confronted with
many inconsistencies which require a lot of information
from other sources, it is more efficient to use the previous
method. Therefore, this approach is best suited if a limited
number of analog maps are involved and the information
in the maps is more or less consistent with the digital to-

pography.

Digital conversion. In the first step of this approach, the
draftsman directly traces the position of the network in the
original maps with a digitizer. Only the relative position
of the network with respect to the houses is expected to
be accurate, while the positions of the houses in map co-
ordinates are likely to contain mistakes. In a second step,
the system therefore tries to warp the digitized coordinates
on the digital topography. This complex and computation-
ally expensive process will only be successful if the maps
do not widely deviate from the digital topography, and this
method is therefore not appropriate for inconsistent maps.
However, if automatic warping is successful, digital con-
version is about twice as fast as digitization.

Improved reconstruction. The fourth approach is simi-
lar to reconstruction. The main difference is that the paper
maps are digitally scanned and the map image is plotted
together with the digital topography and the alphanumer-
ical information on the display of a workstation. This ap-
proach has the advantage that the attention of the operator
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no longer has to be divided among the maps and the dis-
play. The operator only has to concentrate on the work-
station and he can work more efficiently and more reliably
than in standard reconstruction. Improved reconstruction
has a performance similar to digital conversion but its use
in practice is limited by the high costs associated with the
specialized workstations.

If all paper maps have to be converted manually, the
entire conversion project will take several more years.
Therefore, there is a need to add an automatic method to
the existing conversion techniques. In an automatic con-
version method, improved reconstruction has to be com-
bined with digital conversion. In this case, the scanned
map is plotted on the display. The operator then selects
an area from the map and offers it to the computer system
for conversion. The conversion results are shown on the
screen and, if accepted by the operator, the map coordi-
nates are warped onto the digital topography. When the
system encounters a difficult part, it should reject it and
leave it to be classified by the operator. In such a case, the
system could still offer support by guiding the operator to
rejected parts and suggest potential solutions when avail-
able. Similar to reconstruction and digital conversion, this
method is not appropriate for very inconsistent maps. To
increase the potential use of the automatic conversion, the
current warping process has to be improved. This topic is
not within the scope of this thesis and will be reported else-
where. Nevertheless, if despite possible inconsistencies, it
is possible to warp the houses in the map on the digital to-
pography, a considerable speed-up can be achieved witha
reliable (semi-) automatic conversion method.

14 A framework for knowledge-
based map interpretation

As discussed in the previous sections, a framework for
map interpretation should be able to combine both bottom-
up and top-down processing. Chapters 2 and 3 of this the-
sis are dedicated to the bottom-up part of the interpreta-
tion process. In Chapter 2, a new low-level representa-
tion is proposed to describe a binary image in terms of
its graphical primitives while Chapter 3 concentrates on a
recognition strategy to classify these primitives. In Chap-
ter 4, a knowledge-based approach to map interpretation
is presented. In this approach, a top-down control strat-
egy guides the interpretation process while bottom-up pro-
cessing is used for object recognition. In Chapter 5, this
concept is further refined with a top-down strategy to con-
trol the segmentation of the map image. The interpretation
system is evaluated on the PNEM application. The appli-
cability of top-down segmentation for aerial image inter-
pretation is then illustrated by a case study in Chapter 6.
Chapter 7, finally, discusses the concepts developed dur-
ing this research and gives directions for future research.
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A framework for knowledge-based map interpretation

An alternative to vectorization:
decomposing graphics into primitives

Abstract

In this chapter, a new method to describe graphics is pro-
posed as an alternative to the approach of vectorization.
Though vectorization has the advantage of reducing mem-
ory requirements as well as that of introducing an abstract
representation of the image, it has the disadvantage of
loss of morphological information and of introducing in-
accuracies. In the new approach, graphics are described
as a collection of primitives, which are obtained by de-
composition of the skeleton of the graphics, followed by
a reconstruction step in which each primitive is recon-
structed from a skeleton fragment. The proposed method
has the advantage of preserving morphological informa-
tion of the reconstructed primitives thus considerably fa-
cilitating their recognition.

Keywords: vectorization, graphics decomposition,
graphical primitives, graphics recognition.

2.1 Introduction

Recent years have seen an increasing use of computers for
engineering drawing applications. For many public util-
ity organizations, digital information is the primary source
for design, planning and maintenance. Despite the on-
going increase in the digital management of information,
the major part of communication still takes place on pa-
per. Paper however does not facilitate the management of
documents. Electronic handling of these documents is re-
quired to allow for easy storage, retrieval, reproduction,
exchange and editing. Even though most current work is
directly stored in digital form, there are still an enormous
number of paper-based drawings which need to be con-
verted. Mere digitization of these drawings into a raster

image by using a scanning device does not allow for effi-
cient management by means of a geographic information
system (GIS). As a consequence, digitization should be
followed by subsequent analysis where structure and ob-
jects are recognized in order to arrive at a complete and
compact description of the drawing.

Vectorization is an often encountered (first) step prior to
the recognition of structure and objects in line drawings,
e.g. [1,2,5,8,11, 12]. The advantages of vectorization are
obvious, namely reduction of memory requirements and
a more abstract description of the information in the im-
age. Further, vectorization enables efficient spatial reason-
ing on the objects in the image.

However, in spite of the attractive simplicity, rigorously
applying vectorization may introduce unwanted inaccura-
cies. Almost every technical drawing contains symbols
and objects which cannot be described both efficiently and
accurately through a vector representation. Vectorization
of small or curved lines, for example, may resultin a very
coarse estimation which may obstruct proper recognition.
Consider the drawing fragment in Fig. 2.1a with the cor-
responding vectorization in Fig. 2.1b. This fragment con-
tains several graphical objects, many of which have a very
specific appearance. Reducing these objects to a single
line discards important morphological information, which
complicates their proper recognition.

Even though vectorization is a useful method in the pro-
cess of interpreting technical drawings, mere vectoriza-
tion is not sufficient to describe all pixel information accu-
rately. Therefore, vectorization should be combined with
a method which preserves morphological object informa-
tion. In this chapter, a new method is proposed which
describes graphical objects in terms of their constructing
primitives thus providing a more abstract description of
the image while preserving morphological information.
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(a)

(b)

Figure 2.1: In (a) a fragment of a utility map is shown together with the corresponding vectorization in (b).

2.2 The algorithms

In this section, some definitions are given first, followed
by a discussion of some important aspects of the Euclidean
distance skeleton, which is an essential step in the de-
composition of a connected component into its primitives.
Next, a method is presented to decompose a component
through breaking up its skeleton. Finally, the algorithm
is explained to reconstruct a graphical primitive starting
from a skeleton fragment.

2.2.1 Definitions

The formal definitions of some terms and image process-
ing functions are introduced in this section.

e A primitive P is a connected component which is a
part of another connected component C, such that
PcC.

» disk(c, ), with center ¢ = (¢4, ¢y), and radius r is a
collection of pixels p = (px, p,) with the property that
disk(c,) = {p | (cx—p:)* + (¢, —py)* < P}

o The function dist(B,) = D calculates for each object
pixel in binary image B its pseudo-Euclidean dis-
tance to the background [3]. The distance is stored
as an integer value in the corresponding pixel in the
distance image D.

e The function cdt(B;, C) = D, calculates for the binary
image B, the constrained distance transform. For
each object pixel in image B, the distance to the back-
ground is calculated, taking in account the preset val-
ues in the constraint image C. The constrained dis-
tance transform is introduced in Section 2.2.4.1.

e The function skeleton(B3) = S calculates the pseudo-
Euclidean skeleton of the binary image B3 and stores
the result in binary image S [3].

¢ The function threshold(G,t) = B4 converts the grey
value image G into the binary image By, such that

o 0 ifGG, )<t
Vi,j B4(l,J)={ 1 othérvs{i)se

2.2.2 The pseudo-Euclidean distance skele-
ton

The algorithm to decompose a component into its primi-
tives is based on the following perception of the Euclidean
skeleton :

Given the function dist(p) stating the distance from a
pixel p to the background, and C, a connected compo-
nent. The Euclidean skeleton ES of component C can be
regarded as the smallest set of connected pixels with the
property that

| disk(p. dist(p)) = C @.1)

peES

Thus, a skeleton of a component comprises a minimal set
of connected pixels in such a way that the union of all pix-
els within the set of disks centered on the skeleton pixels,
with radii equal to the distance from each skeleton pixel
to the background, reconstructs the component [14]. The
pixels within such a disk are said to be associated with the
skeleton pixel at the center. The relationship between a
component and its Euclidean distance skeleton is also de-
picted in Fig. 2.2.
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(2)
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Figure 2.2: The relationship is shown between the arbitrary component in (a) and its Euclidean distance skeleton in (b)

together with four disks centered at the end points.

As a consequence, each component can be recon-
structed from its skeleton pixels, and the corresponding
distances to the background. However, reconstructing
only a fragment of the skeleton will result in a partial re-
construction of the component. Thus, decomposing the
skeleton into fragments and propagating these fragments
into partial reconstructions will effectively decompose the
component.

2.2.3 Skeleton decomposition

The complexity of a component is reflected in its topol-

_ogy, and, as a consequence, also in its skeleton. Therefore,
a decomposition of a component can be obtained through
a topological decomposition of its skeleton. Consider the
connected component in Fig. 2.3a. The skeleton of this
component in Fig. 2.3b is decomposed into fragments, us-
ing its branch points as intersections. To prevent fragmen-
tation of the component, small skeleton segments with a
branch point at one end and an end point at the other end
are eliminated.

Next, for each remaining skeleton fragment, all pixels
associated with the fragment are reconstructed resulting in
the basic primitives shown in Fig. 2.3c. To be able to show
each reconstructed primitive, the primitives in Figs. 2.3¢
and 2.3d are displayed in exploded view.

The little blobs at the end of the primitives in Fig.
2.3c are artifacts originating from the reconstruction of
the neighborhood of the branch point which lies inside the
component. The correct decomposition is obtained in the
following way. First, the distance to the background in the
branch point is determined, resulting in a value n. Next,
the first n pixels of each skeleton fragment starting in the

branch point are removed, resulting in the decomposition
shown in Fig. 2.3d.

2.2.4 The reconstruction algorithm

In Section 2.2.2, it was argued that (part of) an object
can be reconstructed from its skeleton by reconstructing
all disks with the center at a skeleton point, and a radius
equal to the distance from the center to the background.
Reconstructing these disks one by one for each skeleton
pixel would be computationally inefficient. An efficient
algorithm to reconstruct an object from its skeleton using
the constrained distance transform (CDT) was proposed
in [4]. This algorithm is based on the opposite approach
where, instead of generating the disks, for each pixel po-
sition in the image it is decided whether this pixel is part
of the object or not. The outcome depends on its distance
from the skeleton pixels and the radii of the disks cen-
tered at these skeleton pixels. The CDT provides an effi-
cient method to determine for each pixel in the image its
distance to the skeleton in proportion to the radii of these
disks. Thresholding the constrained-distance transformed
image will render the original object.

2.2.4.1 The constrained distance transform

The CDT is adopted from the distance transformation.
Conditions are added to the transformation which are spec-
ified through a grey value “constraint” image. Non-zero
points within this image are interpreted as preset values
for the distance transform values of the corresponding pix-
els, regardless of the result of the distance transform itself.
Distances between two points are locally increased by any
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Figure 2.3: The connected component in (a) is decomposed by propagating the fragments of its skeleton in (b) into the
primitives in (c). The blobs at the end are removed, resulting in the enhanced primitives in (d).

preset pixels on the shortest path between the two points,

Consider the example in Fig. 2.4a, in which the dark
pixels denote object pixels while the two white pixels form
the background. Figure 2.4b shows the distances of the
object pixels to the two background pixels according to
the standard chamfer 5x5 (5,7,11) distance transform [3]
with integer values 5(= 5v/1), 7(= 5\/5), and 11(= 5\/5)
for horizontally and vertically connected neighbors, diag-
onally connected neighbors, and neighbors connected by
the knights-move from chess. Next, conditions are added
to this transform by means of the preset values in Fig. 2.4c.
Note that value —7 is set to a background pixel, while value
—2 is the preset value for one of the object pixels. Figure
2.4d shows the effects of these two preset pixels on the dis-
tance values.

2.24.2 An example reconstruction

Next, the reconstruction of an example component using
the CDT is shown. For reasons of clarity, only the recon-

struction of a very small and simple component is shown.
Consider the component in Fig. 2.5a with its 5x5 (5,7,11)
chamfer distance values in Fig. 2.5b. Note that the dis-
tance values of the skeleton pixels are printed in bold face.

The skeleton pixels and the corresponding distance val-
ues are used to calculate the input images for the CDT. The
input comprises a binary image B and a grey value con-
straint image C. Image B and C are shown in Figs. 2.5¢
and 2.5d respectively. The algorithm to calculate B and C
is shown in pseudo-code:

D = distance(0); // Fig. 2.5b
S = skeleton(0); // Fig. 2.5b
B = -8S; // Fig. 2.5¢
D = - D;

C = DAS; // Fig. 2.5d

Next, the original input image is reconstructed using the
CDT:
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Figure 2.4: The constrained distance transform is illustrated by the example object in (a) and the constraints in (c). The
standard chamfer 5x5 (5,7,11) distance values are given in (b) while the constraint distances are presented in (d).

D, = cdt(B,C); // Fig. 2.5¢
R = threshold(D.,, 0);
R = =R; // Fig. 2.5¢

The constrained distance transform applied to the input
images B and C results in the output image D, depicted in
Fig. 2.5e. All pixels in D, with value less than zero are ob-
ject pixels. Thus, thresholding grey value image D, with
threshold O into binary image R will reconstruct the orig-
inal object. Inversion of image R will result in the recon-
struction shown in Fig. 2.5f. The light grey pixels in Fig.
2.5f denote the location where the reconstruction failed a
pixel, which is caused by small inaccuracies in the skele-
ton.

2.3 Discussion and results

2.3.1 Advantages

In this chapter, a new approach to describe graphical com-
ponents with application to the automatic interpretation of
technical drawings has been presented. Combined with
the conventional vectorization approach, a more complete
description is obtained which preserves morphological ob-
ject information and allows for easy geometric reasoning
as well. ‘

Decomposition of graphics into the constructing prim-
itives facilitates the automated interpretation of technical
drawings. The attractiveness of this approach is that all
primitives can be stored in separate bitmaps, which en-
ables the application of image processing algorithms on in-
dividual primitives.

The ability to apply image processing to a single prim-
itive opens the way to calculate attributes for individual
primitives. A vector-based object description does not
allow for the calculation of many useful attributes, e.g.
area, perimeter, attributes based on the minimal enclosing
rectangle [6, 9], and moment-based features [7, 10, 13].
Further, individual representation of primitives allows for
their recognition by using template matching. Template
matching in the original binary image will often yield erro-
neous results due to interference from neighboring primi-

tives, while representation of each primitive in a separate
bitmap does not have this disadvantage.

Another important advantage of the presented algorithm
is that it is generically applicable to all binary drawing im-
ages. Though in theory no user-defined parameters are
necessary to decompose the components, the practical im-
plementation requires two parameters to prevent unnec-
essary decomposition and the fragmentation of connected
components.

The first parameter determines whether a connected
component in the image will be offered for decomposition.
Only the graphical components which are constructed of
several primitives, usually the large components, have to
be decomposed. For the recognition of small objects, such
as characters, decomposition is not desired. Therefore, an
area threshold is applied to all components in the image,
and only those components with a pixel area above this
threshold will be offered for decomposition.

The second parameter determines which side branches
of the skeleton will be removed. If no branches are re-
moved, the algorithm will yield a very fragmented decom-
position. If, on the other hand, long branches are removed,
pixel information will be lost. Depending on the type of
drawing and the scanning density, a threshold for the min-
imum length of side branches has to be determined.

2.3.2 Drawbacks

The main practical drawback of component decomposi-
tion is that the algorithm is based on two distance transfor-
mations. As a consequence, the algorithm requires more
memory and more computations than a conventional vec-
torization algorithm.

To be able to make a comparison between vectorization
and component decomposition, concerning computation
time and memory requirements, three experiments were
carried out on a dec5000/240 with 64 megabytes of inter-
nal memory. In the experiments, two vectorization algo-
rithms and the component decomposition were tested on a
CAD drawing with a size of 2900x2400 pixels. The exam-
ple image given in Fig. 2.8a is a fragment of this drawing.

In the first experiment, the standard pseudo-Euclidean
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Figure 2.5: The reconstruction algorithm is explained by the example object in (a). The distance values of the object
pixels are given in (b) with the skeleton pixels printed in bold face. The images in (c) and (d) are input to the constrained
distance transform resulting in the output image (e). Thresholding (e) will yield the reconstructed object in (f).

distance skeleton was vectorized [3]. Because the pseudo-
Euclidean distance image is required for the calculation of
the skeleton, the vectorization process is computationally
expensive. Calculation of the distance image, the skeleton,
and the vectorization required 10 mega bytes of memory
and 72.6 seconds of computer time, resulting in 2110 line
segments.

In the second experiment, the drawing was first skele-
tonized using an algorithm based on the repeated thin-
ning of the components while preserving the connectiv-
ity of the remaining component pixels [7]. This type of
skeletonization has the advantage of being computation-
ally less expensive than calculation of the skeleton from
the distance image, however, in some situations, the skele-
ton will be less accurate than the pseudo-Euclidean skele-
ton. Skeletonization and vectorization required maximally
2.5 mega bytes of memory and 48.2 seconds of computer
time, while, due to a larger number of branch points in the
skeleton, 2213 lines were extracted.

The component decomposition algorithm was tested in
the third experiment. The entire decomposition costs 91.0
seconds and required a maximum of 17 mega bytes. After
decomposition, 745 primitives were reconstructed.

From the experiments, it can be concluded that com-

ponent decomposition will cost about twice the computa-
tion time needed for straightforward vectorization, while
memory costs are considerably larger. If a more accu-
rate vectorization, based on the Euclidean skeleton, is
demanded, both time and memory requirements will in-
crease drastically. In this case, the advantage of vector-
ization to component decomposition concerning compu-
tational costs and memory requirements will be consider-
ably smaller.

The second limitation of the decomposition algorithm is
a consequence of its dependency of the skeleton on decom-
position and reconstruction. For example, the occurrence
of small holes in a binary object will have dramatic con-
sequences for the skeleton, and therefore for the decom-
position into primitives too. Furthermore, the extraction
of meaningful primitives from an object as shown in Fig.
2.2a will also be difficult. However, these limitations are
also encountered when vectorizing the skeleton.

Therefore, to compare component decomposition with
vectorization is to weigh the extra computational costs and
memory requirements against the various advantages de-
scribed in Section 2.3.1.



An alternative to vectorization: decomposing graphics into primitives

19

©
(0
N
Q)
¥y

\

o
2\

Wn\ -
O
7\

(@

(b)

Figure 2.6: In (a) several of the characters are touching graphics. The decomposition is shown in (b).
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Figure 2.7: The utility map in (a) containing several complex symbols is decomposed into the primitives in (b).
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Figure 2.8: The CAD drawing in (a) is decomposed into the primitives in (b).
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Figure 2.9: The part of the electric diagram in (a) is decomposed into the primitives in (b).

2.3.3 Application examples

The algorithm has been tested on several applications.
From three applications, the resulting decomposition of a
complex situationis shown. The fourthexample shows the
decomposition of a complex curved symbol.

The first example to be considered is shown in Fig. 2.6a
where five characters of a street name are connected to
the graphics. Figure 2.6b shows the resulting decomposi-
tion in exploded view. Decomposition of the unconnected
characters is prevented by application of the area thresh-
old mentioned in Section 2.3.1. After decomposition of
the connected characters, it is in principle possible to clas-
sify the primitives either as part of the graphics or as part
of a character. However, the problem of recognition of
the characters reconstructed from these primitives still re-
mains.

The example in Fig. 2.7a is identical to the fragment in
Fig. 2.1. The size of the fragment in pixels is 300? and
the fragment is taken from a public utility map scanned
at a density of 300 dpi. It contains several very irregu-
lar and interconnected symbols. As can be seen in Fig.
2.7b, the reconstruction of the thick circular primitives is
not perfect. Even so, successful recognition of all individ-
ual primitives is, in principle possible, when based on sim-
ple attributes such as thickness, pixel area, and attributes
calculated from the minimum enclosing rectangle.

Fig. 2.8a shows a part of a CAD drawing (10242, 400
dpi). As can be seen in Fig. 2.8b, a nearly perfect re-
construction of the arrows is possible, which will facilitate
their recognition considerably. Even the arrow intersected
by the line at the left of the image may be recognized from
its two reconstructed primitives.

Figure 2.9, finally, shows the decomposition of a sin-
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gle complex curved symbol taken from an electric diagram
(300%x200, 400 dpi).

2.4 Conclusions

The proposed algorithm decomposes a graphical compo-
nent in terms of its constructing primitives through decom-
position of the skeleton, followed by a reconstruction step
that is based on the constrained distance transform. De-
scribing a component in terms of its primitives has the ad-
vantage that, at the expense of extra computation time and
memory requirements, morphological information is re-
tained, as opposed to a vector description. The main ad-
vantage of the described algorithm is that the recognition
of graphical primitives is facilitated considerably as it of-
fers the possibility to apply image processing techniques,
e.g. template matching and the calculation of attributes, to
individual primitives.

For this reason, we consider the decomposition of
graphics combined with a vector description a very useful
low-level method, which can be the basis of a system to
interpret complex technical drawings with irregular sym-
bols. Current research is concentrating on the further de-
velopment of such a system.
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a neural network

Abstract

In this chapter, a new technique is proposed for the reliable
classification of poor quality arrows in hand-drawn utility
maps. The classification uses a neural network which is
trained to distinguish arrows from other line symbols. A
line symbol is represented by a feature vector based on the
pseudo-Euclidean distances along the skeleton. The clas-
sification is evaluated with an independent test set.

Keywords: map interpretation, graphics recognition,
symbol recognition, neural network.

3.1 Introduction

One of the most frequently encountered object types in
technical drawings is the arrow. The reliable classification
of arrows is very important to the entire interpretation pro-
cess, because, in general, an arrow denotes a spatial rela-
tionship between two objects. Therefore, their classifica-
tion allows for the identification of other objects and their
spatial relationships.

Our research concentrates on the automatic conversion
of Dutch utility maps. In this chapter, we consider the
problem of distinguishing arrows in these maps from other
line symbols. Because all maps are drawn by hand, and
many maps are in poor condition, the arrows do not have a
regular shape. Ideally, the arrows should not be distorted
and the arrowheads would be solid triangles. A few ex-
amples of these are shown in Fig. 3.1a. However, most
arrows are irregular or distorted, and some examples are
depicted in Fig. 3.1b. A consequence of the irregular
shape of most arrows is the obstruction of their reliable
recognition when using standard techniques such as tem-
plate matching. Therefore, a classification method capa-

ble of handling irregularly shaped objects is required. In
this chapter, we present a new technique which can be em-
ployed to recognize arrows, which is based on the pseudo-
Euclidean distances along the skeleton used as a feature set
for a neural network.

3.2 Properties of the Euclidean dis-
tance skeleton

3.2.1 Definitions

In this section, we introduce five formal definitions which
are essential to describe the properties of the Euclidean
distance skeleton.

e A component is a collection of topologically con-
nected pixels.

o A skeleton segment §' is a subset of a skeleton S,
such that §’ is topologically connected and contains
no branch points.

e A primitive is a component reconstructed from a
skeleton segment.

® disk(c,r), with center ¢ = (¢4, ¢y), and radius r is a
collection of pixels p = (py, py) with the property that
disk(c,r) = {P | (ex _px)z + (Cy _py)2 < ’2}

e The function dist(By) = D calculates for each object
pixel in binary image B; its pseudo-Euclidean dis-
tance to the nearest background pixel [2]. The dis-
tance is stored as an integer value in the correspond-
ing pixel in the grey value distance image D.
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(@)

(b)

Figure 3.1: Some good quality arrows are shown in (a), while (b) shows some irregular arrows.

(@)

(b)

Figure 3.2: The relationship is shown between the arbitrary component in (a) and its Euclidean distance skeleton in (b)

together with four disks centered at the end points.

3.2.2 The pseudo-Euclidean distance skele-
ton

The recognition of the arrows is based on the following
perception of the Euclidean skeleton:

Given the function dist(p) which states the distance
from a pixel p to the background, and C, acomponent. The
Euclidean skeleton ES of component C can be regarded as
the smallest set of connected pixels with the property that

| disk(p, dist(p))= C (3.1)

peES

Thus, a skeleton of a component comprises a minimal
set of connected pixels such that the union of all pixels
within the set of disks centered on the skeleton pixels, with
radii equal to the distance from each skeleton pixel to the
background, reconstructs the component [6]. The rela-
tionship between a component and its Euclidean distance
skeleton is also depicted in Fig. 3.2.

3.2.3 Decomposition and reconstruction

Each component can be reconstructed from its skeleton
pixels and the corresponding distances to the background.
However, reconstruction of only a fragment of the skele-
ton will result in a partial reconstruction of the component.
Thus, decomposition of the skeleton into fragments and
the propagation of these fragments into partial reconstruc-
tions will effectively decompose the component. In [4]
we described an algorithm to decompose graphical objects
into their constructing primitives while preserving mor-
phological information. In this section, we briefly outline
this algorithm.

The algorithm decomposes the binary input image into
primitives in two steps. In the first step, a distinction is
made between large and small components in the image,
based on the area of the components. After this separa-
tion step, each small component is stored as an individual
image, while the large components, which usually consist
of connected graphical symbols, are broken down into ba-
sic primitives in the second step. In this step, each large




Finding arrows in utility maps using a neural network 27

P — " .

IJ—-—
I

(a)

©

Figure 3.3: The connected component in (a) is decomposed by propagating the fragments of its skeleton in (b) into the

primitives in (c) which are shown in exploded view.

object is skeletonized using the pseudo-Euclidean distance
skeleton [2]. The skeleton is then searched for short seg-
ments which are removed to prevent fragmentation of the
components in a later phase. Next, the skeleton is decom-
posed into its segments using the branch points as breaking
points. The pixels in the original binary image which be-
long to a specific skeleton segment are reconstructed using
the constrained distance transform [5]. Each skeleton seg-
ment is reconstructed in this way and the result is stored in
a separate bitmap. An example of such a reconstruction is
shown in Fig. 3.3.

3.3 Recognition strategy

If a primitive, such as a line symbol, can be reconstructed
from its skeleton pixels and the corresponding distance
values, then the skeleton and the distance values provide
a compact but complete description of the line symbols
which can be used for their classification. In general, the
shape of an arrow is determined by a line which is con-
nected to one or two triangularly shaped arrowheads. Af-
ter skeletonization each arrow will be reduced to a sin-
gle skeleton segment. Thus, each arrow can be described
by one skeleton segment and the corresponding set of dis-
tance values. As the set of distance values, or distance pro-

Figure 3.4: An arrow is shown together with its skeleton
and its distance profile.

file, provides an accurate description of the object shape
along the skeleton, it is feasible to train a neural network to
distinguish arrows from other line symbols using the dis-
tance profile. An example arrow, its skeleton and some
of its distance values are depicted in Fig. 3.4. The most
prominent feature of an arrow is its (more or less) triangu-
larly shaped head which is located at one or at both ends.
To be able to discriminate between arrows and other line
symbols, a subset of the distance values, i.e. the distance
values taken from both ends of the skeleton fragment that
represent the arrowheads, should be sufficient.

3.4 Experiments and results

34.1 Data acquisition

Three original utility maps were used for our experiments.
From each map, two US-Legal (8.57x14”) sized parts were
scanned in grey value at a density of 400 dpi. Next, each
grey value image was automatically thresholded [7] to ob-
tain a binary image. From the first two maps, line sym-
bols were selected and randomly distributed over a train-
ing set and a test set. From the third map, which was
drawn by an independent team of draftsmen, a second test
set was selected. The utility maps comprised five differ-
ent types of line symbols; pipeline segments, house seg-
ments, road segments, single-headed arrows, and double-
headed arrows. Earlier experiments proved that with reg-
ular attributes such as length and average thickness, only
the house segments and the road segments were misclas-
sified as arrows and vice versa [3]. Therefore, the two
arrow types, the house segments, and the road segments
were manually selected to compose one training set and
two independent test sets. For each set, the samples from
the four classes were then distributed over an arrow class
and a non-arrow class. The composition of the sets is given
in Table 3.1.

As discussed in the previous section, the distance val-
ues taken from both ends, which represent the profile of the
arrowheads, were used as a feature set for the neural net-
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total | total total single | double | house road
aITows | nOn-arrows | arrows | arrows | segments | segments
Training set || 235 119 116 64 55 79 37
Test set #1 235 118 117 64 54 79 38
Test set #2 254 138 116 98 40 66 50
Table 3.1: The composition of the training and test sets.
work. The number of distance values required to be able
to distinguish between arrows and non-arrows depends on ——— msannill
the maximum length of the arrow heads and the scanning e vem—— .'__,.'

density. A scanning density of 400 dpi and the maximum
length of the arrowheads requires approximately 40 dis-
tance values to describe an arrowhead. From the skele-
ton, the first 40 and last 40 distance values were used. If
a skeleton fragment contained less than 40 pixels, the re-
maining distance values were set to 0. The length of the
skeleton fragment and the maximum distance value were
added as additional features thus bringing the entire fea-
ture set to a total of 82 features.

3.4.2 Network training

A fully connected feedforward network was used for the
experiments. The network was trained by using backprop-
agation with conjugate-gradient optimization [1]. One
training set and two test sets were used. During training,
after each 10 iterations, the network was evaluated by us-
ing the first test set. The training was continued until the
network converged. Since the resulting network after con-
vergence does not necessarily perform best on an indepen-
dent test set, the network that performed best on the first set
was selected and then evaluated by using the second test
set.

classified as correct
“ arrow  non-arrow | %
arrow 116 2 98.3
non-arrow ” 4 113 96.6

Table 3.2: The optimal performance on the first test set
with an overall performance of 97.5%.

classified as correct
1 arrow  non-arrow | %
arrow 127 11 92.0
non-arrow “ 0 116 100

Table 3.3: The performance on the second test set with an
overall performance of 95.7%.

Figure 3.5: The rejected arrows from the second test set.

3.4.3 Results

Several experiments were performed by varying the num-
ber of hidden units and the initial random setting of the
weights. In general, we observed that the performance of
the network did not depend much on the number of hid-
den units, only the number of required iterations increased
strongly with the number of hidden units. The best perfor-
mance on the first test set was obtained when using 10 hid-
den units. After only 70 iterations, the network was able
to classify 97.5% of the test samples correctly, while the
performance on the training set was 100%. The confusion
matrix is shown in Table 3.2. To be able to predict the clas-
sification performance in an operational interpretation sys-
tem, this network was evaluated by using the second (inde-
pendent) test set. In this experiment, the network correctly
classified 95.7% of the objects. The confusion matrix for
this experiment is presented in Table 3.3. This table shows
that the network did not accept any road or house segments
as arrows, and therefore the network can make a reliable
distinction between arrows and other line symbols at the
cost of 8% rejected arrows.

3.5 Discussion and Conclusions

In this chapter, a system has been proposed for the classi-
fication of irregular, poor quality arrows taken from hand-
drawn Dutch public utility maps. The classification uses a
neural network which is trained with a feature set based on
the pseudo-Euclidean distances along the skeleton. From
the experiments, we conclude that it is possible to reliably
distinguish arrows from other line symbols. In earlier ex-
periments [3] arrow recognition proved to be problemati-
cal when using features such as average width, length, as-
pect ratio, etc. While 14% of the arrows remained unclas-
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sified, still 5% of the objects recognized as arrows were
classified incorrectly. The neural network, however, when
evaluated by using the second test set, rejected 8% of the
arrows, but no line symbols other than arrows were ac-
cepted.

The misclassified arrows from the second test set are
shown in Fig. 3.5. The analysis of these arrows is not un-
ambiguous. Some arrows are distorted, and one misclas-
sification is caused by the use of an incorrect pen size, but
others have a good appearance. This last category of mis-
classifications is most likely due to the small sample size
behavior of the network.

An important advantage of the presented approach is
that it should be applicable to many other drawing appli-
cations containing solid arrows. However, itis yet unclear
how to use the current approach to classify symbols other
than arrows, because arrows have the advantage that they
can be recognized by the arrowhead. The arrowhead can
be represented by a feature set composed of a limited set
of pixels and their distance values. For symbols which do
not have such a prominent feature, it is not trivial to de-
sign such a feature set. Therefore, our future research in
this area will concentrate on further development of our
approach for the classification of other line symbols and
making the arrow classifier available in an operational map
interpretation system.

Acknowledgments

The maps used in this research were placed at our disposal
by the Provinciale Noordbrabantse Energiemaatschappij
(PNEM), a Dutch public utility. The financial support of
Shell Nederland towards participation in this conference
is gratefully acknowledged.

Bibliography

[1]1 E. Barnard and R.A. Cole. A neural-net training
program based on conjugate-gradient optimization.
Technical Report CSE 89-014, Oregon Graduate Insti-
tute of Science and Technology, Beaverton, OR, July
1989.

[2] G.Borgefors. Distance transformations in arbitrary di-

mensions. Computer Vision, Graphics and Image Pro-
cessing, 27:321-345, 1984.

[3]1 JE. den Hartog, TK. ten Kate, and J.J. Gerbrands.
Knowledge-based interpretation of public utility
maps. accepted for publication in Computer Vision
and Image Understanding, 1995.

[4] J.E. den Hartog, TK. ten Kate, J.J. Gerbrands, and
G. van Antwerpen. An alternative to vectorization:
decomposition of graphics into primitives. In Third
Annual Symposium on Document Analysis and Infor-
mation Retrieval (Las Vegas), pages 263-274, April
1994.

[5] L. Dorst and P. Verbeek. The constrained distance
transform: a pseudo-Euclidean recursive implementa-
tion of the Lee algorithm. In Signal processing I11I: the-
ories and applications, pages 917-920, Amsterdam,
1986. North-Holland.

[6] U. Montanari. A method for obtaining skeletons us-
ing a quasi-Euclidean distance. Journal of the ACM,
15:600-624, 1968.

[71 T.W. Ridlerand S. Calvard. Picture thresholding using
an iterative selection method. IEEE Trans. Systems,
Man and Cybernetics, 8(8):630-632, August 1978.




30

Chapter 3




A framework for knowledge-based map interpretation 31

4507

Knowledge-based interpretation of
utility maps

This chapter is based on the following paper:

J.E. den Hartog, TK. ten Kate and J.J. Gerbrands, Knowledge-based interpretation of public utility maps. Accepted for
publication in Computer Vision and Image Understanding, 1995.



32

Chapter 4




A framework for knowledge-based map interpretation

Knowledge-based interpretation of

utility maps

Abstract

In this chapter, a knowledge-based approach to the in-
terpretation of public utility maps is presented. The in-
terpretation is based on two types of a priori knowledge
which are represented in a semantic network. The seman-
tic network provides an efficient representation for rea-
soning with a priori knowledge and interpretation resulls.
An interpretation system for maps based on the semantic
network is described. In this system, a top-down control
mechanism is integrated with a bottom-up object recogni-
tion strategy. The interpretation system has been tested on
public utility maps, and the results are presented and eval-
uated.

Keywords: map analysis, knowledge-based drawing in-
terpretation, knowledge-based image analysis, graphics
recognition.

4.1 Introduction

In recent years there has been an increasing use of com-
puters in engineering applications. For many public util-
ity organizations, digital information is the primary source
for design, planning and maintenance. Despite the ongo-
ing increase in the digital management of spatial informa-
tion, the major part of communication is still based on pa-
per maps. Paper, however, does not facilitate the manage-
ment of spatial information. Electronic handling of this in-
formation is required to allow for easy storage, retrieval,
reproduction, exchange and editing. Even though most
current work is directly stored in digital form, an enor-
mous amount of paper maps still exists which needs to
be converted. Mere digitization by means of a scanning

device is not sufficient to provide for efficient manage-
ment by means of a geographic information system (GIS).
As a consequence, digitization has to be succeeded by a
step in which structure and objects are recognized. At the
moment, three approaches to achieve an interpretation of
structure and objects can be distinguished. In the first ap-
proach a human operator manually points out each object.
Clear disadvantages of this approach are the many man
years involved and therefore the high costs of the con-
version process, while, due to the monotonous work, 2%
to 3% of the interpretation contains errors. In the sec-
ond approach, the digitized maps are vectorized. Vector-
ization combined with an efficient user interface requires
fewer manual operations, thus achieving some speed-up
of the tedious conversion process. In the third approach,
the recognition of objects and structure is automated, and
only in complex or conflicting situations is the operator in-
volved. It is estimated that in the Netherlands alone, man-
ual conversion of the maps at the cadaster, the telecommu-
nication service and the public utilities could take about
10,000 man years. It should be clear that the third ap-
proach is the most promising method to accomplish a
conversion of current analog maps within the near future
and with a substantial reduction of the conversion costs.
Therefore, there is a considerable interest in the research
to explore new techniques for automatic conversion.

In the next section, current approaches and techniques
for automatic map and drawing interpretation are dis-
cussed. Section 4.3 describes three concepts for the con-
version of line drawing images into a high-level descrip-
tion. The results are presented and discussed in Section
4.4. In Section 4.5, the results are discussed. Section 4.6,
finally, contains some concluding remarks and our sugges-
tions for future research.
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Figure 4.1: The three basic concepts.

4.2 Related work

In the past five years the knowledge-based interpreta-
tion of line drawings and other data, like angiograms
and aerial images, has emerged as an important research
topic. Though all these approaches are called “knowledge-
based”, the meaning of this term differs enormously.
Knowledge can be implicit and hidden in the source code
[7, 24, 28] or made more explicit by using rules [16, 33,
36]. It can be task specific [4, 7, 18, 35] or more general
[12, 31, 33, 36]. And sometimes the knowledge is partly
composed of formerly derived results, e.g. [16].

Despite the research efforts in knowledge-based inter-
pretation, most of the research in the area of document
analysis still concentrates on the design of specific algo-
rithms rather than on image understanding [9, 13, 21, 23,
32,37, 38]. Regarding line drawings, a common approach
to convert a rasterized line drawing into an object descrip-
tion is to develop application specific algorithms to extract
the objects from the image, and apply these algorithmsin a
static bottom-up sequence [1, 2, 3, 4, 5, 20, 25, 26, 30, 34].
An often encountered first step in such a sequence is sep-
arating the text symbols from the graphics, using features
like the size and collinearity of the text [4, 20, 26]. Follow-
ing this step, the text can be classified by an OCR mod-
ule, and the remaining graphics are approximated by us-
ing vectorization. Graphical objects can then be extracted
by grouping appropriate vectors [3, 4, 16, 18, 20]. Some
knowledge-based approaches to group vectors into objects
using a rule-based system have been described in the lit-
erature [16, 34]. However, rule-based reasoning is tra-
ditionally also bottom-up, and the main disadvantage of
a bottom-up interpretation is the difficulty of guiding the
interpretation process and to correct mistakes made at a
lower level. Due to their bottom-up nature, many drawing
interpretation systems have no method to guide the inter-
pretation process.

An interesting approach to the knowledge-based inter-
pretation of drawings is Anon, a schema-based system de-

scribed by Joseph and Pridmore [19]. This system com-
prises a set of schemas which represent the entities to be
recognized in the image. Each schema consists, among
others, of a geometrical object description and a num-
ber of C-functions to interface with the image processing
stages. The geometrical description has to be satisfied by
the results of image processing before the instantiation of
aschema class. In this concept, all declarative knowledge,
i.e. the geometrical object specification, is represented by
the program code, which requires reprogramming when
the applicationis changed. Procedural knowledge in Anon
consists of a set of 191 rules. An LR(1) grammar is used
as an interpreter to limit the number of applicable rules.
However, no mechanism like meta rules is described to or-
der or select the applicable rules.

Work on automatic drawing interpretation has been re-
ported by Pasternak and Neumann [27]. An adaptable
drawing interpretation system named Adik is described
which uses an explicit format to represent knowledge.
However, only the declarative part of the knowledge is
made explicit. A specification language is used to repre-
sent the knowledge needed to group geometrical entities,
such as lines, into high level objects. The specification
language used in Adik reduces the time to adapt the in-
terpretation to other applications significantly. However,
the procedural knowledge is not made explicit. In Adik,
the interpretation sequence, i.e. the order in which ob-
ject classes are instantiated, is determined automatically
by the availability of the geometric components of the ob-
Jects. An object is only instantiated if all components are
detected while no control mechanism exists for generating
hypotheses for the interpretation process.

From this overview, it may be concluded that relatively
little research on knowledge to guide the interpretation
of drawings has been reported. We propose to enhance
the control of the interpretation process by utilizing task-
specific knowledge. Combining the task-specific knowl-
edge with derived results renders the possibility for a top-
down approach in which goals are generated for the inter-
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Figure 4.2: The connected component in (a) is decomposed by propagating the fragments of its skeleton in ( b) into the

primitives in (c) which are shown in exploded view.

pretation process. Selecting the most promising goals first
opens the way to control and guide the interpretation.

For technical drawings in particular, a knowledge-based
approach to interpretation seems appropriate, as technical
drawings are usually highly structured documents drawn
according to explicit drawing conventions, using a limited
and well known set of symbols. Using knowledge about
the structure of the drawings, such as the spatial relation-
ships between objects, appears to be useful for effectively
steering the interpretation and detecting errors and incon-
sistencies in the interpretation. Providing a mechanism
for control of the interpretation order of the drawing may
therefore lead to a successful drawing interpretation sys-
tem. In the next section we propose a first step towards the
development of such a system.

4.3 Concepts

The aim of our research is to develop a system which al-
lows for easy adaptation to other drawing applications. In
this chapter, an initial approach to an application indepen-
dent interpretation mechanism is proposed. Further, the
use of an explicit representation of the knowledge is pro-

Figure 4.3: A piece of a utility map.

posed to allow for the easy adjustment of the prior knowl-
edge, thereby enhancing the flexibility of the system.

To avoid confusion about what is meant by knowledge,
a definition to be used in the remainder of this chapter is
given first. This definition should not be regarded as a uni-
versal definition of knowledge. The intention is to provide
a clear and unambiguous definition of the knowledge used
by the proposed system.

Definition: Knowledge is the information known about
the application in advance, which is used for the auto-
matic interpretation and which is represented in an ex-
plicit way.

As a first step towards a more generic interpretation of
technical drawings, three basic concepts are proposed:

1. Primitive extraction. A representation of the binary
image by its connected components.

2. Explicit knowledge representation. Separation of
application-specific knowledge from the implemen-
tation using a dedicated knowledge specification lan-
guage.

3. Contextual reasoning. A mechanism for both
bottom-up and top-down interpretation of the image
based on prior knowledge about document structure
and appearance of map objects.

These three concepts and their mutual relationships are
shown in Fig. -4.1. In this figure, the concepts are repre-
sented by the ellipses while the arrows represent informa-
tion flow between the concepts. First, the binary input im-
age is processed and the contents of the low-level bitmap
are described as a set of primitive objects. The concept of
primitive extraction is presented in Section 4.3.1.

The knowledge specification which describes all a pri-
ori knowledge about the application is represented by a
semantic network where each node denotes a geometrical
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Figure 4.4: The concept of contextual reasoning is shown as a cycle of three alternating processes.

description of an object type which may occur in the im-
age, while the links in the network construct spatial rela-
tionships between object types.

Both the extracted primitives and the semantic network
are input for the interpretation process. The interpreta-
tion is based on the concept of contextual reasoning which
combines a bottom-up approach to object recognition with
a top-down approach to interpretation control. Object
recognition as well as interpretation control require knowl-
edge which is provided by the semantic network. The ge-
ometrical description represented by the nodes of the net-
work is necessary to classify the primitives, while the spa-
tial relationships are used to generate new goals.

For comprehensibility of the knowledge specification
language, the concept of contextual reasoning is explained
first in Section 4.3.2, followed by a discussion on explicit
knowledge representation in Section 4.3.3.

4.3.1 Primitive extraction

As discussed in Section 4.2, skeleton vectorization is an
often encountered step in the interpretation of maps, en-
gineering drawings and other line drawings [2, 4, 11, 16,

18, 20]. Advantages of vectorization are obviously reduc-
tion of memory requirements and a more abstract descrip-
tion of the information in the image. Further, vectorization
allows for efficient spatial reasoning on the objects in the
image.

However, in spite of the attractive simplicity, rigorous
vectorization may introduce unwanted inaccuracies. Al-
most every technical drawing contains symbols and ob-
Jects which cannot be described both efficiently and accu-
rately by means of a vector representation. The vectoriza-
tion of small or curved lines for example, may result in a
very coarse estimation which may obstruct proper recog-
nition. Consider the drawing fragment in Fig. 4.3 which
contains several graphical objects. Most of these objects
have a very specific appearance. Reducing these objects
to a single line discards important morphological informa-
tion and this complicates their proper recognition.

Though vectorization is a useful technique in the pro-
cess of interpreting technical drawings, mere vectoriza-
tion is not sufficient to describe all pixel information accu-
rately. Therefore, vectorization should be combined with
a method which preserves morphological object informa-
tion. We developed a method to decompose graphical ob-
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Figure 4.5: An example of a semantic network.

jects into their constructing primitives while preserving
morphological information [8].

The algorithm decomposes the binary input image into
primitives in two steps. First, a distinction is made be-
tween large and small connected components in the im-
age, based on the area of the components. Following this
separation step, each small component is stored in an indi-
vidual image, while the large components, which usually
consist of connected graphical symbols, are processed fur-
ther. In the next step these remaining components are bro-
ken down into basic primitives.

In this step, each large object is skeletonized using the
pseudo-Euclidean distance skeleton [6]. The skeleton is
then searched for short segments which are removed to
prevent fragmentation of the components in a later phase.
Next, the skeleton is decomposed into its segments us-
ing the branch points as breaking points. The pixels in
the original binary image belonging to a specific skeleton
segment are reconstructed using the constrained distance
transform [10]. Each skeleton segment is reconstructed in
this way and the result is stored in a separate bitmap. An
example of such a reconstruction is shown in Fig. 4.2.

Describing a component in terms of its primitives has
the advantage that no morphological information is lost,
as opposed to a vector description. Another advantage
is that all primitives can be stored in separate bitmaps,
which enables the application of image processing algo-
rithms on individual primitives. This opens the way to cal-
culate features for individual primitives using image pro-
cessing. A vector-based object description which reduces
primitives to single lines does not allow for the calculation
of many useful features for individual primitives, e.g. area,
perimeter, features based on the minimal enclosing rectan-
gle [14, 17], and moment-based features [15, 22]. Further-
more, individual representation of primitives allows for
their recognition by using template matching. Template
matching in the original binary image will often yield er-
roneous results due to interference with neighboring prim-
itives, while representation of each primitive in a separate
bitmap does not have this disadvantage. Therefore, the de-
scribed approach to low-level processing is a very impor-
tant basis for the remaining interpretation process.

4.3.2 Contextual reasoning
4.3.2.1 Bottom-up versus top-down

The concept of contextual reasoning is based on alternat-
ing a top-down process, a bottom-up process and a process
for inconsistency detection to obtain a reliable interpreta-
tion of the drawing in an efficient way. The control cycle
of these three processes is shown in Fig. 4.4.

The bottom-up process receives a search action from a
top-down process to search for a specified object type in
a restricted area. A priori knowledge describing the ge-
ometry of the object type searched for is available to the
bottom-up process. All primitives overlapping with the
search area are matched with this geometric specification.
If the features of the primitive correspond with the geomet-
rical specification, the primitive is offered as a candidate
for classification to the verification process. If no inconsis-
tencies with former results are detected, the search results
in an identification and a series of new search actions will
be added to the search list.

The mechanism to generate new search actions is based
on the perception that each object type is related to other
object types. For example, an arrow usually depicts a dis-
tance between two objects, e.g. a house and a pipeline.
Furthermore, related to an arrow is a dimensioning, a nu-
merical representation of the depicted distance. Thus, de-
tection of an object immediately generates expectations
about other objects in its neighborhood, which are very
suitable to generate new goals for the interpretation pro-
cess. When an arrow is detected, search actions for a
house, a pipeline, and the objects which make up the di-
mensioning are generated for a small region of interest
(ROI) around the arrow. Each time a new object is de-
tected, the top-down process collects all related object
types and generates new search actions for the search list.
The search list is sorted on the priorities associated with
each search action. The priority for a search action is de-
fined by the user who can assign priorities to the relation-
ships between the objects. Each search action generated
from a relationship is assigned the corresponding priority
and inserted in the search list. The search action at the top
of the search list is then distributed to the bottom-up pro-
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Figure 4.6: The interpretation sequence.

cess which tries to detect new objects in the assigned ROI
in the image. Because a search for an object is based on
contextual evidence, and the search area is restricted to a
small and confined part of the image, the number of search
operations as well as the number of incorrect object classi-
fications will be reduced, thus rendering the interpretation
more efficient and reliable than non-contextual straightfor-
ward approaches to object classification.

The object types and their spatial relationships construct
a semantic network where the links make up the procedu-
ral part of the knowledge, while the nodes represent declar-
ative knowledge. Each node in the network represents a
description of the geometry of one object type, while each
link represents a spatial relationship between two object
types. A small example of a semantic network is shown
in Fig. 4.5.

To gain further control of the top-down interpretation
process, the user is allowed to assign priorities to specific
search actions. In Fig. 4.5 the highest priority, i.e. prior-
ity 1, is assigned to the most important search actions. The
priority mechanism is very useful to increase the reliabil-
ity of the interpretation. By assigning highest priority to
search actions for object types which are known to be rec-
ognized reliably, the number of misclassifications will fur-
ther decrease.

4.3.2.2 Anexample

Next, the process of contextual reasoning will be demon-
strated with an example. Consider the drawing fragment
in Fig. 4.7. In this very small part of a utility map, six

object types and eight objects can be distinguished: two
pipeline segments, one arrow, two house segments, a dec-
imal point, a digit, and a dash. The events in Fig. 4.6 cor-
respond with the numbers in Fig. 4.7. The interpretation
sequence in Fig. 4.6 starts with an initial search action for a
reliably recognized object type, in this example a pipeline
segment. From this action event #1 results: a pipeline
segment is found. Next, the search list is updated using
the relationships represented by the semantic network in
Fig. 4.5. The search actions in the list are sorted on prior-
ity and the search action at the top of the list is processed
first. Note that a smaller value denotes a higher priority,
thus spatial relationships with priority value 1 will gener-
ate search actions with the highest priority. In the case of

pipeline segment pipeline segment

6
-7

S

dimensioning

house segment

house segment

Figure 4.7: An example image.
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Figure 4.8: An example object with its MAER.

search actions with equal priority numbers, the order of the
generated search actions is chosen arbitrarily. In this case,
the detection of a pipeline segment results in search actions
for two object types: a pipeline segment and an arrow. Be-
cause the search action for the pipeline segment has high-
est priority, this action is put at the top of the list. Again
a pipeline segment is searched and found. Consequently,
the search list is updated and two new search actions for a
pipeline segment and an arrow are added to the list. Next,
it appears that the search action in front of the list is unsuc-
cessful: no pipeline segment can be detected. Therefore,
no new actions are added to the search list and the interpre-
tation continues with the next action to search for an arrow.
The interpretation, i.e. processing of the search list, con-
tinues until the search list is empty (event #11).

4.3.2.3 Detection of inconsistencies

Even when both object recognition and control of the inter-
pretation process are excellent, it is still not realistic to as-
sume perfect recognition of all objects. An A0-sized map
(1 square meter or 1600 square inches) contains thousands
of objects, and therefore it is more than likely that, due to
noise or poor quality of the map, some objects will be mis-
classified.

Primarily, these misclassifications will increase the
costs of the interpretation process because of the enormous
problem of detection afterwards. Therefore, it is impor-
tant to be able to detect misclassifications early, during
interpretation. The automatic finding of errors is based
on detecting inconsistencies, either between two or more
results, or inconsistencies between results and a priori
knowledge.

There are several options available to detect these in-
consistencies. For example, each object could be clas-
sified by two independent classification algorithms. In
the case of conflicting outcomes, a third classifier could
make the final decision. To validate the OCR, recognized
words could be matched with a dictionary of the applica-
tion, while OCR of dimensionings could be validated us-
ing the length of the corresponding arrow.

Because the aim of the research is to develop a gener-
ically applicable system, research has concentrated on a
generic method which is based on the detection of contex-
tual inconsistencies. The method is based on the percep-
tion that three types of spatial relationships may be distin-
guished:

1. The optional relationship.
2. The essential relationship.

3. The negative relationship.

An optional relationship between two objects indicates
that if the first object is found, it is likely to find the second
in its vicinity. An essential relationship implies that if the
first object is found, the related object must be found also.
An example of an essential relationship is the arrow which
is always accompanied by a dimensioning. The negative
relationship, finally, is the opposite of the essential rela-
tionship. If this type of relationshipis shared by two object
instances, a misclassification has occurred. For example, a
pipeline segment cannot have a distance to a house of less
than 0.5 meters.

The essential and the negative relationships provide a
simple and generically applicable mechanism to detect in-
consistencies in the interpretation. Each time an object
is found which shares one of these two relationships with
other object types, these object types are searched first. If
the outcome is inconsistent, either the help of an operator
is invoked, or the inconsistent classification is rejected.

4.3.3 Explicit knowledge specification

The development of a system for knowledge-based image
interpretation consists of a laborious cycle of design, im-
plementation, testing and redesign. However, if the sys-
tem implementation and the application knowledge are
separated, the time needed to develop the interpretation
system can be reduced significantly. Separating knowl-
edge and the program code, by making the knowledge ex-
plicit in a special knowledge-representation format, en-
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ables flexible adaptation of knowledge. Adjusting knowl-
edge at run time will bypass the tedious trajectory of re-
compilation and linking. Furthermore, knowledge repre-
sented in a specification language will offer much more in-
sight in the behavior of the system than when obfuscated
by statements of program code. Nevertheless, the major
advantage of the ability to edit knowledge in an easy and
flexible way is the potential gain concerning the effort to
convert the system to another application. Tedious repro-
gramming can often be avoided because mainly the ex-
plicit task-specific knowledge has to be edited to suit the
new application.

As discussed in the previous section, the reliability as
well as the efficiency of the interpretation depend on the
control of the interpretation. Therefore, especially flexible
manipulation of procedural knowledge is important when
developing an interpretation system.

In Section 4.3.2, a control mechanism for the interpreta-
tion was presented. The control, i.e. the generation of new
goals for the search list and processing of the search list, is
based on the semantic network constructed by the spatial
relationships among the objects. In the remainder of this
section, a method for the explicit representation of the se-
mantic network is presented. Two types of objects within
the network are distinguished at the moment:

1. Nodes, describing the geometry of the object types.

2. Arcs, describing the spatial relationships between the
object types.

4.3.3.1 Geometric object description

Currently, a geometric specification consists of a name,
a set of numerical features, and for each feature a range
of the allowed values. To describe each object type, a
standard set of features is provided. Some important fea-
tures are based on the minimum area enclosing rectangle
(MAER) of the object, described in [14, 17]). The MAER
of a primitive allows for the calculation of a set of rota-
tion invariant features, but it also provides a method to esti-
mate the orientation of an arbitrary primitive. An example
primitive with its MAER and some features to be calcu-
lated from the MAER are shown in Fig. 4.8. The complete
set of standard feature types is listed below.

¢ The minimum, maximum and average width along
the skeleton.

¢ The length of the skeleton.
¢ The area of the object.

e The eccentricity, i.e. the ratio of the length of the ma-
jor axis to the length of the minor axis of the MAER.

¢ The density, i.e. the ratio of the area of the primitive
to the area of the MAER.

¢ The orientation of the major axis of the MAER to the
X-axis.

e The width and height of the MAER.

It is not necessary to define all possible features for all
objects. For example, for a digit, it is not very meaningful
to define the features concerning the width along the skele-
ton. Therefore, only a specification of significant features
is required. Some examples of a geometrical description
are shown below.

DEFINE GEO_SPEC

objname Arrow

max_width [4.0, 7.5]

avg_width [1.4, 7.0]

length [60.0, 1000.0]}

area {150, INF]

eccentricity [10.0, INF]
ENDDEF

DEFINE GEO_SPEC

objname PIPELINE_SEGMENT

max_width [12.0, 16.0]

avg_width [12.0, 14.0]

length [60.0, INF]

area [200, INF]
ENDDEF

DEFINE GEO_SPEC

objname DECIMAL_POINT
area [5, 50]
eccentricity [1.0, 1.25]
maer_width [2.0, 5.0]
maer_height [2.0, 5.0]

ENDDEF

The first geometrical description describes an arrow. In
this case, an arrow is described by six geometrical features,
and for each feature a range describing the minimum and
maximum allowed value is given. For the length, the area,
and the eccentricity only a minimum value is given. To
provide optimal flexibility, the user can easily attach new
features to an object type.

4.3.3.2 Spatial relationship description

Similar to the geometrical object description, the spatial
relationship also consists of a set of features describing the
properties of the relationship between two objects. The
following set of spatial features is provided by the current
implementation:

o The type of the relationship, i.e., optional, essential,
or negative.

¢ Two identifiers specifying the first object and the re-
lated object.

¢ The priority of the search action resulting from the re-
lationship.
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o The radius of the ROI to search for the related object.

e The angle between two objects based on the orienta-
tion of the MAERs.

* The angle between two objects based on the vector-
ization of the skeletons.

o A feature to specify whether the two objects should
overlap.

o A feature to specify whether the first object should be
inside the related object, and vice versa.

The knowledge descriptions of some of the spatial rela-
tionships in Fig. 4.5 are given below:

DEFINE REL_SPEC

From PipelineSegment

To Arrow

Type Optional

Priority 4

Radius 5

VecAngle [85.0, 95.0]
ENDDEF

DEFINE REL_SPEC

From PipelineSegment

To PipelineSegment

Type Optional

Priority 3

Radius 5

VecAngle [-5.0, 5.0]
ENDDEF

DEFINE REL_SPEC

From Arrow
To DecimalPoint
Type Essential
Priority 2
Radius 30

ENDDEF

DEFINE REL_SPEC

From DecimalPoint
To Digit
Type Essential

Priority 1
Radius 10
ENDDEF

Similar to the geometrical object specification, the spatial
relationship description also provides a mechanism to ex-
pand the set of features.

4.4 Results

4.4.1 Experiments

The developed techniques were applied to a set of public
utility plans. These plans are hand drawn to a scale of 1
to 500 and they represent the position of the pipeline sys-
tem with respect to landmarks, for example the corner of
a house.

Two AO-sized original plans were available for our ex-
periments, but due to hardware limitations only US-Legal
(8.57x14”) sized parts were taken from these maps. From
each map, two parts were scanned in grey value at a density
of 400 dpi, followed by an automated isodata-like thresh-
olding algorithm [29] to obtain binary images.

From the four available binary images, two images (one
from each utility map) were used to optimize the interpre-
tation system while the remaining two images were used
for testing and evaluation. There was no overlap between
the images used to optimize the system and the images
used to evaluate the system.

For an applicable interpretation system, itis very impor-
tant to reduce the probability of errors. However, decreas-
ing the probability of misclassifications will, in general, in-
crease the probability of a reject. In the experiment, the
spatial relationships between the object types were used
to detect inconsistencies in the classification. In the case
of a detected inconsistency, the classification was rejected
to reduce the number of misclassifications. As a conse-
quence, the number of rejects increased considerably.

All experiments were carried out on a SUN Sparcstation
10 equipped with 128 megabytes of memory. A part of one
of the test images is shown in Fig. 4.9.

4.4.2 Evaluation

Regarding interpretation of the public utility plans, five
main symbols have to be recognized automatically:
pipeline segments, house segments, arrows and the dots
and digits of the dimensionings. The dimensionings are
either composed of a dot and three digits or a dot, a digit
and a dash. In this evaluation of the experiments, the
dashes and the digits were regarded as one symbol type.

For each object type, the recognition was manually cat-
egorized into one of the four following classes:

1. correct, the percentage of the correctly classified ob-
jects (with respect to the total number of objects in
that specific class).

2. reject, the percentage of the objects which remained
unclassified (with respect to the total number of ob-
jects in that specific class).

3. misclassification, the proportion of all the incorrectly
classified objects (with respect to the total number of
objects in that class).

4. false accepts, the proportion of objects from other
classes which were accepted incorrectly (with respect
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total | correct | rejects | misclass. | false accepts
% % % %o
pipelinem. || 3.4m | 93.2 6.8 0.0 3.0
pipeline # 221 | 69.7 30.3 0.0 2.7
arrows 154 | 78.6 20.1 1.3 1.6
houses m. 42m | 790 179 3.1 03
houses # 173 | 74.6 225 29 0.6
dim. dots 151 | 76.8 232 0.0 4.1
dim. digits 437 | 734 253 13 0.0

Table 4.1: The classification results using contextual reasoning.

classification

type pipeline arrow house dim. dots dim. digits unclassified

% % % % % %
pipeline m. 93.2 6.8
pipeline # 69.7 303
arrows 78.6 1.3 20.1
houses m. 23 0.8 79.0 179
houses # 23 0.6 74.6 22.5
dim. dots 76.8 23.2
dim. digits 0.2 1.1 734 25.3

Table 4.2: The confusion matrix of the results using contextual reasoning.

to the total number of accepts for this specific class).
Note that generally a false accept will also be counted
as a misclassification of an other object class.

An interpretation system should minimize the number of
misclassifications and false accepts, because many incor-
rectly classified objects will make manual verification of
all results necessary. Though rejects also require operator
interaction, they are less severe shortcomings of the inter-
pretation, because the operator only has to focus on the un-
classified primitives instead of all classified primitives.
The interpretation is based on the classification of the
primitives which are extracted froin the binary image (Sec-
tion 4.3.1), which makes it difficult to evaluate the recog-
nition of all object types in a uniform way. In general,
arrows, and the dots and digits from the dimensionings
are represented by a single primitive. However, houses
and pipelines are always represented by several primitives,
and, as a consequence, it may happen that these objects are
partly recognized. A partial recognition can be evaluated
in two ways: by the proportion of the number of recog-
nized primitives with respect to the total number of prim-
itives which make up the object, or; by the proportion of
the length of the recognized primitives with respect to the
total length of the primitives composing the object. The
former method of evaluation is related to the number of in-
teractions to correct the result, whereas the latter method
is related to the conversion throughput. Both evaluation
methods are relevant measures of the performance of the
system, depending on whether the interést is focused either

on the number of corrective actions or on the unit length to
be reclassified. For this reason, it is sensible from a prac-
tical point of view to provide both figures for the object
types house and pipeline. The results of the recognition
using contextual reasoning are presented in Table 4.1. The
misclassifications are shown as a confusion matrix in Ta-
ble 4.2.

In addition to the evaluation of the overall recognition
performance it is equally important to evaluate the effect
of the contextual reasoning mechanism. For this reason, a
second experiment was carried out to evaluate global ob-
Ject recognition thereby leaving out knowledge about spa-
tial relationships. In this experiment, a global search was
made for each object type starting with the pipeline which
is recognized best. After detection of the pipeline, the ar-
rows, which are recognized second best, were searched,
followed by the house segments, and the dimensioning
dots and digits respectively. The results of this experiment
are shown in Table 4.3.

Estimates of the public utility which provided the plans
indicate that an operator using existing (manual) tech-
niques, is capable of converting 200 meters of pipeline
an hour (0.4 meter of drawn pipeline including arrows,
dimensionings etc.). The two test images comprised ap-
proximately 3.4 meters of drawn pipeline, which is equiv-
alent to 1700 meters of pipeline, or approximately one
day’s manual conversion. Automatic classification of the
objects in these images, including segmentation and pre-
processing, required about 30 minutes of computing time.
One should bear in mind that this does not include manual
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Figure 4.9: A part of a test image
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total | correct | rejects | misclass. | false accepts
%o % % %
pipelinem. || 34m [ 932 6.8 0.0 3.0
pipeline # 221 | 69.7 303 0.0 2.7
arrows 154 | 859 135 0.6 5.0
houses m. 42m | 850 122 29 6.8
houses # 173 | 82.7 15.6 1.7 159
dim. dots 151 | 943 5.7 0.0 204
dim. digits 437 { 932 5.5 1.3 54.2

Table 4.3: The classification resuits using a global search.

conversion of the rejected objects (about 20%) and OCR
of the dimensionings.

Important aspects to consider are the causes of the re-
jects and the misclassifications. For rejects, the following
causes can be distinguished:

1. The set of geometrical features was inadequate to rec-
ognize all objects of a specific type.

2. No related objects were detected in the context, and,
consequently, no search action was made.

3. The contextual reasoning mechanism could not de-
tect an essential relationship and rejected the classi-
fication.

4. Poor segmentation of the grey value image.

For the misclassifications three causes can be distin-
guished:

1. The set of geometrical features was inadequate to
make a perfect distinction between all object classes.

2. Poor segmentation of the grey value image.

3. Violation of the drawing conventions by the drafts-
man.

Due to intra-class variance of the objects, it was not pos-
sible to classify all objects reliably with the current set of
geometrical features. Approximately 70% of all rejected
pipeline segments and a third of the unclassified arrows
can be explained by an inadequate feature set, while this
only accounts for 10% of the rejected dimensioning sym-
bols.

Many of the unclassified objects were never searched as
a consequence of a reject of related objects, while some
correctly classified objects were still rejected because an
essential relationship could not be detected. Lack of con-
textual evidence is the direct cause for approximately 75%
of all unclassified dots and digits, and 30% of the arrows
and house segments which remained unrecognized. From
this it can be concluded that a large number of rejects
is a consequence of the contextual reasoning mechanism.
However, the results of leaving out the contextual reason-
ing mechanism are shown in Table 4.3. A global search for

all objects reduces the number of rejects, but at the cost of
a significant increase in the number of false accepts.

Though insufficient contextual evidence might be the
direct cause for many rejects, this originates in approxi-
mately 40% of the cases from a poor global segmentation.
Especially the segmentation of small objects, i.e. the di-
mensioning dots and digits, proved to be prone to error.
Almost 7% of the dimensioning dots were not classified
due to an inadequate segmentation, and as a consequence,
many dimensioning digits remained unclassified.

When considering the misclassifications, three causes
can be identified. Violation of the drawing conven-
tions was only encountered in the experiment once, when
some house segments were classified as pipeline segments.
These misclassifications were caused by the use of an in-
correct pen size by the draftsman. Very few misclassifica-
tions are caused by an incorrect segmentation (5% to 10%
of all misclassifications) while all other misclassifications
can be explained by limitations of the current feature set.

4.5 Discussion

Though work on a number of successful systems has been
reported in the literature [4, 11, 16, 19, 26, 27, 34] no ob-
jective evaluation strategy has been described. As aconse-
quence, it is very hard to make a quantitative comparison
with other work. Therefore, we first concentrate on some
qualitative aspects of the proposed system.

45.1

The proposed system is based on three concepts, which of-
fer a number of advantages over earlier systems. Describ-
ing the binary image in its constructing primitives offers
an abstract representation of the image which supports the
interpretation based on high-level spatial reasoning. Be-
cause low-level pixel information is preserved, the recog-
nition of individual primitives is facilitated.

Another important advantage is the control mechanism
based on spatial relationships between the objects. We
conclude that this is a very flexible and efficient method
to guide the interpretation and detect inconsistencies. Fur-
ther, making both declarative and procedural knowledge
available in an explicit format is a powerful concept which

Advantages
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yields a significant reduction in the time and effort required
to adapt the system to a specific application. In contrast
with rule-based systems which usually require hundreds of
rules, e.g. [19], the set of spatial relationships provides a
compact knowledge description to guide the interpretation
process.

4,5.2 Current limitations

In the current system, the input binary image is decom-
posed into its primitives. Following this step, the prim-
itives are recognized by using knowledge about the ge-
ometrical appearance of object types and the spatial re-
lationships between them. Though primitives are recog-
nized within their context and are labeled as, for example,
digits, arrows, house segments, it is difficult with the cur-
rent knowledge specification to describe higher-level com-
plex object types consisting of multiple simple objects.

An example of such a complex object type is the dimen-
sioning which consists of several simple objects, i.e. adec-
imal point and two or three digits. A dimensioning and
an arrow in their turn make up an even higher-level object
indicating a specific distance between two other objects.
The knowledge framework as presented in this chapter can
describe the spatial relationships between primitives, but
for better understanding of the image it is desirable to be
able to describe the hierarchical relationships between ob-
jects. Furthermore, even though in our current application
the number of spatial relationships is limited compared to
rule-based systems, it is possible that for other applica-
tion areas with more complex objects or larger sets of ob-
jects the number of spatial relationships in the knowledge
specification will drastically increase. When the spatial
relationships are organized in a hierarchical framework,
unnecessary generation of search actions can be avoided,
thus resulting in a more efficient interpretation. Therefore,
it will be necessary to extend the current knowledge spec-
ification and contextual reasoning mechanism to allow for
a hierarchical partitioning of the knowledge base.

Another limitation of the current system is its depen-
dency on the quality of the binary image. The binary im-
age is decomposed into primitives, but the output qual-
ity of the decomposition algorithm depends on the qual-
ity of the skeleton. For example, the occurrence of small
holes in a binary object will have dramatic consequences
for the skeleton, and therefore also for the decomposition
into primitives. However, the same limitations are en-
countered with vectorization-based interpretation systems.
Therefore, to improve the performance, it is important to
concentrate on the development of a system which is able
to use the gray level image when, due to a poor segmenta-
tion, the binary image is noisy or distorted.

4.6 Conclusions

From the experiments, we conclude that a fully automatic
interpretation of these plans is not yet possible. However,

an overall object recognition of approximately 80%, an er-
ror rate of about 2% and a reject rate of 20% make a con-
siderable speed-up of the manual conversion process fea-
sible, and part of our current research is therefore directed
at developing a large-scale interpretation system based on
the results of this research.

A poor segmentation and an inadequate feature set were
identified as the two main causes for the rejects and mis-
classifications. It is therefore important to develop new
geometrical features and to improve the segmentation to
reduce the number of rejects and misclassifications. A
better global segmentation can be obtained by enhancing
the grey value image or by developing other segmentation
techniques. However, contextual reasoning offers a mech-
anism to make predictions about the occurrence of objects
in limited parts of the image. In the case of an inconsis-
tent outcome, this information could be used to correct the
local segmentation.

In the current implementation, the system can reject ob-
ject classifications or invoke operator help in the case of
inconsistencies. A next step towards a fully automated
drawing interpretation system is to develop knowledge-
based techniques to handle inconsistencies. Therefore,
our future research will concentrate on new techniques
for knowledge-based segmentation and inconsistency han-
dling, and the representation of, as well as the reasoning
with, hierarchical relationships.
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Knowledge-based segmentation for
automatic map interpretation

This chapter is based on the following paper:

J.E. den Hartog, T.K. ten Kate and J.J. Gerbrands, Knowledge-based segmentation for automatic map interpretation. Part
of this chapter has been published in Proc. of the Graphics Recognition Workshop, (Penn State), August 1995. A full copy
is currently under review.
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A framework for knowledge-based map interpretation

Knowledge-based segmentation for
automatic map interpretation

Abstract

In this chapter, a knowledge-based framework for the top-
down interpretation and segmentation of maps is pre-
sented. The interpretation is based on a priori knowl-
edge about map objects, their mutual spatial relationships
and potential segmentation problems. To reduce computa-
tional costs, a global segmentation is used when possible,
but an applicable top-down segmentation strategy is cho-
sen when errors in the global segmentation are detected.
The interpretation system has been tested on utility maps
and the experiments show that when a top-down resegmen-
tation strategy is used to correct errors in the global seg-
mentation, the recognition performance is improved sig-
nificantly.

Keywords: map analysis, drawing interpretation,
knowledge-based segmentation.

5.1 Introduction

Our research concentrates on the automatic conversion of
Dutch utility maps and in this chapter we consider the
problem of obtaining a correct segmentation of the grey
value map images. Over the past eight years a number
of interpretation systems for line drawings have been de-
scribed in literature. In most of the reported work, the seg-
mentation process is assumed to be trivial as a binary scan-
ning process is employed [21], or simple techniques such
as thresholding are applied [19, 22]. Furthermore, many
of the interpretation systems have no strategy to handle
segmentation errors and therefore assume good quality bi-
nary images to be processed [1, 15, 26]. In some work,
the problem of an imperfect preprocessing result is recog-

nized. These systems approximate the graphics by using
vectorization and try to solve local errors which might be
due to the segmentation, such as broken lines, by using
techniques based on merging collinear vectors separated
by a small gap, e.g. [14, 18]. Though such an approach
might be successful in more or less simple situations with
carefully drawn high quality maps, the result might be less
satisfactory for more complex applications. For example,
due to years of intensive use the maps may be wrinkled and
stained, while often parts have been erased and redrawn,
leaving traces of ink on the linen material.

The most commonly used technique of thresholding in-
troduces the problem of determining the optimal global
threshold [20, 23]. If the threshold value is too low, small
objects are lost, while a high threshold value results in
noisy images and smearing of the objects. Often, there is
no optimal threshold level which avoids smear and loss
of objects. In such a case, a practical solution is to de-
termine a sub-optimal threshold which minimizes both ef-
fects. Better results may be obtained by using local adap-
tive threshold techniques, e.g. [3, 8], but these techniques
suffer from a variety of disadvantages. For example, usu-
ally a threshold is calculated from a window of interest.
If the size is too small, these algorithms tend to empha-
size noise or paper texture in regions without foreground
pixels. In the case of larger windows, the algorithm be-
comes computationally expensive and it may have the
same drawbacks as global threshold techniques.

An interesting approach to top-down interpretation and
segmentation of drawing images is Anon, a schema-based
system described by Joseph and Pridmore [13]. This sys-
tem comprises a set of schemas which represent the enti-
ties to be recognized in the image. Each schema consists,
among others, of a geometrical object description and a
number of C-functions to interface to the image process-
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ing stages. The geometrical description has to be satis-
fied by the results of image processing before the instanti-
ation of a schema class. This paper is one of the first to ob-
serve that there is a need for top-down segmentation strate-
gies in drawing conversion. In Anon, all objects, with-
out exception, are extracted by means of top-down seg-
mentation. A typical AQ-sized drawing (1 square meter
or circa 1600 square inches) contains thousands of objects
and if all these objects have to be extracted by means of
top-down segmentation the system may become very slow
and thus obstruct a practical solution.

Even if the initial global segmentation contains many
errors, it still contains useful information which should
not be discarded. Hence, a more realistic approach might
be to develop a strategy which combines both bottom-up
and top-down segmentation techniques. The computation-
ally cheap global segmentation is used when possible, but
specialized top-down segmentation techniques are utilized
when needed.

In this chapter, a knowledge-based strategy is proposed
which combines low-level bottom-up processing with top-
down segmentation. The low-level preprocessing is dis-
cussed first. The top-down segmentation is embedded in a
framework for contextual reasoning which is described in
Sec. 5.3. In Sec. 5.4 the ideas underlying top-down seg-
mentation are introduced, while the organization and rep-
resentation of the knowledge is discussed in Sec. 5.5. The
top-down segmentation is illustrated with two examples in
Sec. 5.6. The experiments and the results are then given in
Sec. 5.7. The advantages and limitations of our approach
are discussed in Sec. 5.8 and in Sec. 5.9 our conclusions
are given.

5.2 Preprocessing

Although the top-down segmentation strategy can correct
errors made during bottom-up segmentation, the initial
preprocessing is still important to the final interpretation
result. The preprocessing to obtain a good low-level de-
scription of the image contents consists of the following
steps:

1. Sharpening to enhance the blurred original image.
2. Binarization.
3. Removal of holes in the graphics.

4. Decomposition of the graphics into primitives.

5.2.1 Image sharpening

The use of standard linear filters such as the Laplacian
operator to sharpen the blurred image (e.g. [10]) has the
advantage of computational efficiency. Disadvantages of
these algorithms are the tendency to amplify noise and the
necessity of clipping or scaling to make the resultant pixels
span the range < 0,255 >. In this section, we give a brief
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Figure 5.1: The result of morphological filtering in the
one-dimensional case is shown. The continuous line rep-
resents an 80 pixels wide horizontal scanline. The result
after filtering is represented by the dashed line.

description of an algorithm which uses standard grey value
morphology which does not have these disadvantages.

Grey value morphology is based on grey value dilations
and erosions. In the case of a grey value erosion, for ex-
ample, the image is scanned with a moving structuring
element. The minimum value within the structuring ele-
ment is calculated for each image position. This local min-
imum value is then stored in the pixel that corresponds
with the center of the structuring element. For an exten-
sive description of mathematical morphology the reader is
referred to [24].

In the algorithm which was proposed first by Kramer
[16], for each pixel the local grey value minimum and
maximum within a structuring element is computed. The
algorithm simply consists of replacing the grey value of
each pixel by its local minimum or maximum, whichever
of the two is closer in value. The result of the filter in the
one-dimensional case is shown in Fig. 5.1.

Kramer showed that repeated filtering always con-
verges, although usually many iterations are needed for
complete convergence. However, after a small number of
iterations, only few pixel values will change. For the util-
ity maps only 3 iterations with a 3x3 window are sufficient
for near-complete convergence. Further, it was found that
filtering with a 3x3 sized window and a small number of
iterations yielded better results than filtering once with a
larger window. This is illustrated in Fig. 5.2. In Fig. 5.2a,
a blurred dimension is shown. Applying the filter once
with a 7x7 window results in a poor contrast between the
main digit and the dot (Fig. 5.2b). The result with a 3x3
window after 3 iterations is shown in Fig. 5.2c.

5.2.2 Thresholding with hysteresis

In the introduction, the advantages and disadvantages of
local algorithms [3, 8] and global threshold algorithms [20,
23] were discussed. Another approach to obtain an initial
segmentation is thresholding with hysteresis [4, 25). In
this method, a segmentation is obtained in two steps. In
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Figure 5.2: The small original 64> map image in (a) is sharpened with the morphological filter with window size 7x7.
The result in (b) shows that the main digit and the dot have become connected. Filtering with window size 3x3 results in
(c) after three iterations.
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Figure 5.3: The original 200> map image in (a) is thresholded at a level for the optimal extraction of the graphics. The
binary image in (b) shows that this may result in a noisy image. However, if the image is thresholded with hysteresis this

results in the much less noisier image shown in (c).

the first step, all pixels are classified as one of three pos-
sible categories by using a high and a low threshold. If a
pixel has a grey value below the low threshold, it is clas-
sified as a definite object pixel while pixels with grey val-
ues above the high threshold are classified as definite back-
ground. The pixels with values between the high and the
low threshold remain to be processed further in the second
step.

Though the remaining pixels usually are object pixels,
they frequently correspond to noise or stains in the map.
Only if they are connected to any of the definite object pix-
els are they considered to be object pixels too. Because the
previous image sharpening step reduces the number of ac-
tual grey levels in the image, the thresholding step will be
less sensitive to the selection of the threshold values. Fig.
5.3 shows an example of global thresholding and thresh-
olding with hysteresis.

5.2.3 Hole removal

After thresholding the grey value image, the binary image
is processed to remove small holes. First, based on the
area, for each object a distinction is made between small
objects such as characters and large objects such as the
graphics. Holes are only likely to occur in small objects,
e.g. digits such as a 6 or a 9. Therefore, small holes in the
graphics can be regarded as noise and are removed.

5.24 Decomposition of the graphics into
primitives

Skeleton vectorization is an often-encountered step in the

interpretation of maps, engineering drawings and other

line drawings [1, 2, 9, 11, 12, 15]. However, in spite of the

attractive simplicity, rigorous vectorization may introduce

unwanted inaccuracies. In Fig. 5.4a, a piece of graphics
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Figure 5.4: Vectorization of the graphics in (a) results in the binary image in (b). The reconstructed primitives are dis-

played in exploded view in (c).

from a utility map is shown with its vectorization in Fig.
5.4b. Reducing the graphical objects to vectors discards
the morphological information required to recognize the
various objects. In [7] we described an algorithm which
decomposes a binary image into its constructing primi-
tives. In the remainder of this chapter, we refer to a prim-
itive as the most basic image component that consists of a
set of connected pixels without any meaning attached to it
yet. Fig. 5.4c shows the resulting primitives. To be able
to display individual primitives, the primitives are shown
in the exploded view.

Describing graphics in terms of primitives has the ad-
vantage that no morphological information is lost, as op-
posed to a vector description. Another advantage is that
all primitives can be stored in separate bitmaps, which en-
ables the image processing of individual primitives with-
out interference from the neighborhood in the original im-
age. As a consequence, it is possible to calculate many
useful features for individual primitives, which is not
possible with a vector-based description. The primitive-
based description clearly facilitates object recognition
when compared to a vector description and it forms the ba-
sis for the remaining interpretation process.

5.3 Contextual reasoning

The strategy to combine both bottom-up and top-down
image processing is implemented in a framework pro-
vided by a knowledge-based map interpretation system de-
scribed in [6]. This system guides the interpretation by
means of contextual reasoning.

The concept of contextual reasoning is based on alter-
nating a top-down process to generate search actions, a
bottom-up process to recognize objects and a process to
verify the results. The interpretation cycle consisting of
these three processes is shown as part of a larger process
in Fig. 5.5. The bottom-up process receives from the top-
down process a search action, i.e. a task to search for a
specified object type in a restricted area. All primitives

overlapping with the search area are matched with an a
priori geometric specification consisting of a list of fea-
tures and for each feature a range of allowed values. If the
primitive corresponds with the geometrical specification,
it is offered as a candidate for classification to the verifi-
cation process. If no inconsistencies with former results
are detected, the search results in an identification and new
search actions are added to the search list.

The mechanism to generate new search actions is based
on the perception that each object type is related to other
object types. For example, in many applications a distance
between two objects is depicted by an arrow and a dimen-
sion, a numerical representation of the depicted distance.
Thus, detection of an object immediately generates expec-
tations about other objects in its neighborhood, which are
very suitable to generate new goals for the interpretation
process.

For example, in the case of detection of an arrow, search
tasks for related objects, such as the dimension, are gen-
erated for a small region of interest (ROI) around the ar-
row. Each time a new object is detected, the top-down
process collects all related object types and generates new
search tasks for the search list. The search task at the top
of the search list is then distributed to the bottom-up pro-
cess which tries to detect new objects in the assigned ROL.
Because a search for an object is based on contextual evi-
dence and the search area is restricted to a small and con-
fined part of the image, both the number of search actions
and the number of incorrect object classifications are re-
duced, thus rendering the interpretation both efficient and
reliable.

5.4 Top-down segmentation

5.4.1 Inconsistency-based resegmentation

The concept of top-down segmentation is integrated
within the contextual reasoning framework. During
contextual reasoning, inconsistencies can be detected
between recognized objects and prior knowledge. In
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Figure 5.5: The concept of contextual reasoning and resegmentation

our application area we experienced that inconsistencies
are often due to a poor initial segmentation. If knowl-
edge about inconsistencies and potential segmentation
problems is used during interpretation to improve the
local segmentation, many inconsistencies may be solved
automatically.

54.1.1 Inconsistency detection

The utility maps considered in our research are 10 to 30
years old and have been used in field work. As a conse-
quence, the maps are often wrinkled and stained and it is
more than likely that, due to noise or poor segmentation,
many objects are misclassified or rejected from classifica-
tion. These misclassifications and rejects slow down the
interpretation process considerably as the results from the
automatic interpretation have to be verified manually. It is
therefore important to be able to detect and solve misclas-
sifications and rejects during the interpretation instead of
afterwards.

Because the aim of the research is to develop a system
with a broad application area, our research has concen-
trated on a method based on the detection of contextual in-
consistencies between results and prior knowledge. The

method is based on the perception that three types of spa-
tial relationships between objects may be distinguished:

1. The optional relationship.
2. The essential relationship.
3. The negative relationship.

An optional relationship between two objects indicates
that if the first object is found, it is likely that the second
will be found in its vicinity. For our application, most of
the relationships are optional, but a substantial part of the
relationships is essential. An essential relationship implies
that if the first object is found, the related object must be
present too. An example of an essential relationship is the
arrow which always has a dimension. The negative rela-
tionship is the opposite of the essential relationship. In this
case two objects should not share a specific spatial rela-
tionship. For example, the distance between a conduit and
a house should not be less than 0.5 meters.

5.4.1.2 Inconsistency handling

The concept of inconsistency handling is based on knowl-
edge about the causes of specific inconsistencies. For ex-
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ample, each house has a number. Thus, if a house has been
found but the number cannot be detected, in general there
are three possible causes for this inconsistency:

1. The classification of the house is wrong.
2. The draftsman did not write the number on the map.

3. The house number cannot be recognized due to poor
segmentation.

Knowledge about these causes can help to solve the incon-
sistency without the assistance of the operator. To check
whether the classification of the house is correct an alter-
native detection method is applied first. If the second tech-
nique confirms the classification of the house it is assumed
that the segmentation of the house number is poor. In this
case, the local segmentation could be improved by using
specific algorithms with parameter settings tailored to an
optimal segmentation of small objects such as digits. If
resegmentation does not result in the recognition of the
house number, this might be due to a violation of the draw-
ingrules and the system should invoke operator assistance.

The interpretation cycle is shown in Fig. 5.5. Each filled
ellipse represents a sub-process within the interpretation
process. If, for a given search action, the outcome of ob-
ject recognition is such that the verification process de-
tects an inconsistency, a message is passed to the search
action generation process. This process then searches in
the knowledge base for a segmentation method to solve the
inconsistency. If a method is available, it is passed to the
object recognition process which sends the segmentation
action to the resegmentation process. Next, the resegmen-
tation process gathers the segmentation algorithm and the
corresponding parameter settings from the semantic net-
work and, as a next step, executes the segmentation action.
After resegmentation, the resulting primitives are added to
the existing list of primitives and the object recognition
process then again executes the search action which led to
the inconsistency. If the resegmentation was successful the
inconsistency will no longer be detected. If the inconsis-
tency is not solved, the classification causing the inconsis-
tency is rejected and it remains to be classified by the op-
erator afterwards.

5.4.2 Directly processing the grey value im-
age

If it is known a priori that the initial segmentation cannot
properly segment certain object types, it is inefficient to
use the inconsistency mechanism for resegmentation. A
better approach is to process the grey value image directly
to find the objects. The interpretation process is therefore
extended with the addition of grey value objects. When
searching a grey value object, a segmentation method and
a geometrical object description are passed to the object
recognition process. Object recognition then passes the
segmentation action to the resegmentation process and af-
ter resegmentation it tries to match the segmentation result
with the object description.

5.5 Knowledge representation

Flexible manipulation of the knowledge is important when
developing an interpretation system. For this purpose, an
explicit knowledge representation language has been de-
veloped. In this section, the merits of explicit knowledge
are discussed first and are followed by some relevant as-
pects of the language.

5.5.1 Explicit knowledge

Public utilities usually provide multiple services such as
electricity, water, gas and cable television, and for each
service a different type of map is used. Besides the multi-
ple services, multiple networks are used for the transporta-
tion of a single service. For example, gas is transported to
local distribution centers through a high pressure network,
while for distribution to customers a low pressure network
is used. All these types of networks are drawn on different
maps. The possible variety in maps becomes wider when
the drawing conventions change in time or when services
are taken over from other public utilities.

Because many applications have to be considered even
for a single public utility, flexibility of interpretation is one
of the most important goals in our research. Although the
symbols and structure of the maps are more or less similar
for the various applications, it may be clear that an inter-
pretation scheme for one type of map cannot be used di-
rectly for other maps. However, the concepts underlying
the interpretation are shared by all map applications. If a
priori knowledge about an application is separated from
the implementation, it should be relatively easy to tailor an
interpretation system to other applications.

In our system, the knowledge has been separated from
the implementation by means of a knowledge specification
language. All a priori knowledge about the application is
read from a file at run time and converted into an inter-
nal data structure. This data structure is a hybrid structure
which is referred to in this chapter as the semantic network.
All knowledge can be adapted at run time, and, as a conse-
quence, the time needed to develop an interpretation sys-
tem is reduced significantly as reprogramming can be cir-
cumvented.

5.5.2 Basic objects and relationships

The concept of contextual reasoning is based on the as-
sumption that all objects in a map are interrelated. Ba-
sically, the procedural knowledge used by the contextual
reasoning mechanism should specify when to search and
where to search for an object, while the declarative knowl-
edge should describe how to recognize objects. The pro-
cedural knowledge is represented by the spatial relation-
ships between objects. The declarative knowledge is rep-
resented as a feature-based geometry description for each
object type.
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Figure 5.6: The search area is based on the extension of
the MAER of an object.

5.5.2.1 Object descriptions

Object recognition is based on matching each applicable
primitive, i.e. each primitive overlapping with the search
area, with an allowed range of attribute values in the object
description. The description offers a large set of standard
features such as area, length, width along the skeleton and
a set of features based on the minimum area enclosing rect-
angle (MAER). For a detailed overview of all attributes the
reader is referred to [6].

The syntax of the object description is simple as is
demonstrated in the following example describing the ob-
ject type double headed arrow:

DEFINE OBJECT

objname DoubleArrow

id 10

max_width [4.0, 7.5]

avg_width [1.4, 7.0]

length [60.0, 1000.0]

maer_ratio [0.0, 0.4)]

maer_width [0.0, 20.0]

my_func [-17.1, 22.5]
ENDDEF

Besides the standard set of attributes, it is easy to expand
the object description by the addition of new functions.
This is illustrated in the example above where a new func-
tion is added named my_func.

5.5.2.2 Relationship descriptions

The description of the relationships between objects (Sec.
5.4.1.1) is similar to the object description. The standard
attributes of the relationship description include a unique
id, the object names of the two object types involved, the
type of the relationship, a priority number and a specifica-
tion of the search area. Analogous to the object descrip-
tion, a set of standard relational features is provided, such

as inclusion and angle. Again, the user can extend the set
of features by adding new functions.

DEFINE RELATION

id 100

from DoubleArrow
to Dimensioning
type Essential
priority 3

search_area <70,0>
my__rel_ func [2.1,
ENDDEF

2.3]

The example indicates that if a double-headed arrow is
found, it is likely to find a dimension in its vicinity. Based
on this relationship, a search action for the dimension is

.generated and added to a search action list which is sorted

on the priorities of each search action. In this case, the
search action is assigned priority 3. The search area is
based on the MAER of the previously detected object. The
search area has two arguments, dx and dy, specifying the
extension of the width and the length of the search area re-
spectively. Fig. 5.6 shows an example.

5.5.3 Knowledge for resegmentation

The knowledge needed for resegmentation of the grey
value image is represented in a way similar to the previous
examples. The segmentation knowledge has to be tailored
to optimally extract a single object which cannot be found
by using the initial segmentation. Since the resegmenta-
tion will be carried out locally, the knowledge description
has to provide an argument to specify the size and the lo-
cation of the part of the image to be segmented. It should
also be possible to specify the image processing functions,
their arguments and the execution order of the functions.

DEFINE GRAY OBJECT

id 20
from DoubleArrow
to House

reseg_area <10,100>

median_filter 5 5
local_thresh 31 31 0.4

max_width [3.0, 5.0)

avg_width [2.6, 3.4}

my_house_func [1.0, 4.0}
ENDDEF

In the example above, the knowledge specification for
the optimal segmentation and recognition of a grey value
object is shown. The segmentation description is applica-
ble to the situation when a double-headed arrow is found
and a house segment is searched directly in line with the ar-
row. The part of the image to be resegmented is calculated
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Figure 5.7: An arrow with its head drawn on the front and
the tail drawn on the back.

from the MAER of the arrow and the reseg-area specifi-
cation. Each image processing function that is defined in
the knowledge specification, is succeeded by an argument
list. In the example, two image processing techniques are
applied to the grey value image. First, the image is pro-
cessed with a median filter to remove the paper texture.
Next, the filtered image is segmented by using a local and
specialized thresholding algorithm. The binary image that
results contains new primitives which are added to the list
of existing primitives. If the resegmentation was success-
ful, a search action for the house using the description in
the remainder of the object specification should result in
its recognition.

5.6 Two examples

The application for our research is introduced first and is
followed by two examples to illustrate the top-downreseg-
mentation process.

5.6.1 The application

The main concern of the public utility is to convert the po-
sition of the pipelines and conduits on their maps to a dig-
ital description in world coordinates acceptable by a GIS.
Currently, we consider the conversion of the low-voltage
electricity maps. On these maps, the relative position of
the conduit is depicted by the perpendicular distance be-
tween the conduit and clearly distinctive landmarks such
as the corners of the houses. On the utility maps, the dis-
tance between two points is represented by an arrow and
a dimension. A dimension consists of multiple objects
which can be categorized as either a dot or a digit. Since
the exact location of the houses can be obtained in a digital
format from the Dutch cadaster, the recognition of the con-
duit, houses, arrows and their dimensions should be suffi-
cient to reconstruct the exact position of the conduit.
Unfortunately, this rather simple model has to be ex-
tended. Often, objects such as houses and roads are drawn
on the back of the map, while some arrows are drawn par-

tially on the front and partially on the back. Fig. 5.7 shows
an example where the head of the arrow is drawn on the
front while its tail consists of the outline of a road drawn
on the back. Fig. 5.3 shows the even more difficult case
where the head of the arrow is drawn on the front while its
tail is also part of a house drawn on the back. The main rea-
son for drawing objects on both sides of the paper is effi-
ciency when updating the maps. The electricity infrastruc-
ture is not static and both the positions and contents of the
conduits are often subject to change. Itis, therefore, neces-
sary to update the paper maps regularly. For the draftsman,
redrawing the situation on a map is much more convenient
if the most static part of the objects on the maps, i.e. roads
and real estate, are drawn on the other side.

5.6.2 Example #1, segmentation of the di-
mension

The dimension is a very important object type to recog-
nize properly as it represents the numeric value of the dis-
tance indicated by an arrow. The position of the conduit
is indicated on the map by an arrow depicting its distance
to the houses. The proper segmentation of the arrow and
its dimension is thus vital for the success of the interpre-
tation. However, the global segmentation is optimized for
the graphics in the image and as a consequence the seg-
mentation of the dimensions is often less adequate.

A dimension is made up of either three or four digits and
a dot, or, a digit, a dash and a dot. For the reliable recog-
nition of the dimension all these symbols have to be seg-
mented correctly, but due to the global segmentation, small
objects may be lost or separate objects may become con-
nected. Fig. 5.8a shows the grey value image of a conduit
segment and, perpendicular to it, an arrow with its dimen-
sion. Fig. 5.8b shows that the initial segmentation results
in an acceptable segmentation of the arrow while the seg-
mentation of the dimension results in the loss of small ob-
jects.

After recognition of the conduit, a search action is gen-
erated for the double-headed arrow. When the arrow is de-
tected, the proper recognition of the dimension will fail
due to its poor segmentation. In this situation where a
double-headed arrow is drawn perpendicular to the con-
duit, a specific drawing rule requires the dimension to be
drawn approximately midway between the arrow heads
on either the left-hand or the right-hand side of the ar-
row. Therefore, a very specific resegmentation action for
the dimension can be generated for a small neighborhood.
In this example, the blurred original image is sharpened
only once and then thresholded at an appropriate thresh-
old level. The result of local resegmentation is shown in
Fig. 5.8c.

5.6.3 Example #2,
houses

segmentation of the

The second example is a more complex segmentation
problem. In Fig. 5.9a, an arrow and its dimension are
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Figure 5.8: The grey value image of an arrow and its dimension is shown in (a). The global segmentation in (b) shows
a poor segmentation of the dimension. A local specialized segmentation results in (c).
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Figure 5.9: The grey value image in (a) shows an arrow, its dimension and, drawn on the back, the outline of a house.
Global segmentation results in (b) while in (c) the result after a local specialized segmentation is shown.

shown together with the fragment of the front of a house.  rectly in line with the arrow and a strip perpendicular to
The house fragment is drawn on the back of the map.  the arrow. Therefore, two object specific resegmentation
There are two causes for the more difficult segmentation  actions can be generated for limited parts of the image.
of the graphics on the back. The maps are often made of ~ From the detected house segments new segmentation ac-
linen and there is interference between the texture of the  tions can be generated to detect other house segments. In
linen and the objects drawn on the back of the map. Com-  this case, the resegmentation procedure consists of tworel-
pared to the objects on the front, the range of possible grey ~ atively expensive operations. To prevent distortion by the
values is much wider for the objects on the back. A sim-  paper texture, a standard median filter is applied. After fil-
ple and cheap global threshold operation would result in  tering the texture, a local threshold operation [3] is applied
either a very poor segmentation of the houses or a very  which leads to the result shown in Fig. 5.9c¢.

noisy image. Thresholding with hysteresis, which is used

for the initial segmentation, would discard the houses en-

tirely. The result of thresholding the image witha global 5.7 Experiments and results

threshold value is shown in Fig. 5.9b.

o 5.7.1 Data acquisition
Similar to the first example, knowledge about the con-

text of the houses can be used to generate top-down seg-  Two original 30-year-old linen maps were available for our
mentation actions. For example, if the conduit, the double-  experiments. These AO-maps are hand-drawn to a scale of
headed arrow and its dimension are found, the region of 1 to 500. Each map was scanned in 256 grey values at a
where to expect the house is limited to a small strip di-  density of 400 dpi. The first map was used to optimize the
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ground correct misclass. rejects
truth # % # % # %
Conduitm 8.10m | 790m 97.6 0 0.0 0.20m 24
Conduit # 712 620 87.1 0 00 92 129
Front arrows # 463 339 732 0 0.0 124 268
Back arrows # 96 0 090 0 0.0 96 100.0
Houses m 732m | 4.50m 615 [ 0.05m 0.7 |277m 378
Houses # 535 315 58.9 0 00 220 41.1
Dim. digit # 1310 649 495 6 05 655 50.0
Dim. dot # 440 216 49.1 2 05 222 505

Table 5.1: Recognition performance with resegmentation.

interpretation system while the second map was used for
testing and evaluation. There was no overlap between the
maps.

5.7.2 Evaluation of the experiments

To be able to compare the results of top-down segmen-
tation with straightforward bottom-up segmentation, it is
important to develop an evaluation strategy for the seg-
mentation. In literature, several approaches to segmen-
tation evaluation have been proposed, such as a unifor-
mity criterion for regions [17], visual criteria for map im-
ages [27] and a criterion based on the accuracy of measure-
ments compared to measurements from a reference image
[28]. In this chapter, however, we consider a specific ap-
plication and the aim is to improve the recognition per-
formance. To evaluate the top-down segmentation of the
utility maps we therefore propose an evaluation criterion
based on the recognition performance on the segmented
objects. The main assumption in this approach is that an
improvement of the segmentation stage will lead to an in-
crease in the number of correctly classified objects. An
important advantage of a recognition-based evaluation is
the possibility to quantify the segmentation performance.
Moreover, if the classification of each object in the test set
is made available once as part of the ground truth, the ex-
perimental results can be evaluated automatically.

For each object class, the evaluation is limited to the fol-
lowing cases:;

1. correct, the percentage of correctly classified objects
withrespect to the total number of objects in that spe-
cific class.

2. reject, the percentage of the objects which remained
unclassified with respect to the total number of ob-
jects in that specific class.

3. misclassification, the proportion of all the incorrectly
classified objects with respect to the total number of
objects in that specific class.

4. false accepts, the proportion of objects from other
classes which were accepted incorrectly with respect
to the total number of accepts for this specific class.

Note that in general a false accept may be counted as
a misclassification of another object class.

To calculate the above classification statistics automati-
cally, the list of primitives is compared with the ground
truth. For each vector and for each symbol in the ground
truth the overlapping primitive is searched first. There are
four options:

1. No overlapping primitive could be found and the
number of rejects is increased by one.

2. The overlapping primitive remained unclassified and
again the number of rejects is increased by one.

3. The overlapping primitive was wrongly classified
and the number of misclassifications is increased by
one.

4. The overlapping primitive was classified correctly
and the number of correct classifications is increased

by one.
correct | false accepts
# %

Conduit m 7.90m | 0.00m 0.0
Conduit # 620 1 02
Front arrows # 339 0 00
Back arrows # 0 0 00
Houses m 450m | 0.30m 6.3
Houses # 315 27 179
Dim. digit # 649 13 20
Dim. dot # 216 12 53

Table 5.2: The false accept rate with resegmentation.

correct | false accepts

# %

Housesm || 4.50m | 0.02m 0.5
Houses # ” 315 { 2 06

Table 5.3: The false accepts for houses when corrected for
the border effect.
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ground correct misclass. rejects
truth # % |# % # %
Conduit m 8.10m | 790m 976 | 0 0.0 [ 0.20m 2.4
Conduit # 712 620 87110 0.0 92 129
Front arrows # 463 339 73210 0.0 124  26.8
Back arrows # 96 0 000 0.0 96 100.0
Houses m 7.32m 0 0010 0.0 | 7.32m 100.0
Houses # 535 0 00]0 0.0 535 100.0
Dim. digit # 1310 392 299 |6 0.5 912 69.6
Dim. dot # 440 125 284 |1 0.2 314 714

Table 5.4: Recognition performance without resegmentation.

Following this step, the primitives which were labeled as
objects of a specific class, but could not be matched with
the ground truth, can then be classified as false accepts.

5.7.3 Results

The interpretation is based on the classification of the
primitives which are extracted either from the binary im-
age (Sec. 5.2.4) or during top-down resegmentation. In
general, arrows, as well as the dots and digits are repre-
sented by a single primitive. However, houses and con-
duits are usually represented by several primitives, and as
a consequence, it may happen that these objects are only
partially recognized. A partial recognition can be evalu-
ated in two ways: by the number of recognized primitives
with respect to the fotal number of primitives which make
up the object, or by the length of the recognized primitives
with respect to the total length of the primitives compos-
ing the object. The former method of evaluation is related
to the number of interactions to correct the result, whereas
the latter method is related to the conversion throughput.
Both evaluation methods are relevant measures of the per-
formance of the system, depending on whether the interest
is focused on the number of corrective actions or on the
length to be reclassified. From a practical point of view, it
seems sensible to provide both results for the object types
house and conduit. In the result tables the performance in
meters is denoted with an m while the performance in the
number of primitives is marked with a #.

correct | false accepts
# %

Conduit m 790m | 0.00m 0.0
Conduit # 620 1 02
Front arrows # 339 0 00
Back arrows # 0 0 00
Houses m 0.00m | 0.00m 0.0
Houses # 315 0 00
Dim. digit # 392 5 13
Dim. dot # 125 8 6.0

Table 5.5: The false accept rates without resegmentation.

In Table 5.1 and Table 5.2 the recognition performance
with contextual reasoning and top-down segmentation is
presented. Besides evaluation of the overall recognition
performance, it is equally important to evaluate the effect
of the top-down resegmentation. Therefore, the recogni-
tion performance has to be compared with an interpreta-
tion strategy without top-down resegmentation. Table 5.4
and Table 5.5 show the recognition performance on the
same data that was used in the first experiment, however,
without using knowledge about top-down resegmentation.
In this case, it was not possible to detect any of the objects
drawn on the back of the map or to solve inconsistencies
automatically.

Since the conduit is the thickest entity in the image and
is always drawn on the front of the map, it is the easiest
object to segment and to recognize and therefore no top-
down segmentation strategy was needed. As can be ex-
pected, the recognition performance did not change with-
out resegmentation and remained at 97% and 87% respec-
tively without any misclassifications and almost no false
accepts. The difference in performance on the conduit
measured in length and number of primitives can be ex-
plained by the highrejection rate of very short conduit seg-
ments.

Most of the arrows are drawn on the front but about
20% are drawn partially on the front and partially on the
back. Because of their different appearance, we decided
to distinguish between “front arrows” and “back arrows”
in the result tables. None of the back arrows were de-
tected, and their detection is still one of the major problems
which remains to be solved. Their proper recognition is
obstructed by the difficulty in recognizing the small-sized
arrow heads reliably. These arrows often lack a clear con-
text from which they can be detected. If the arrow heads
cannot be recognized, it is very difficult to generate an ac-
curate and successful segmentation action for the tail.

Even when a distinction is made between the front ar-
rows and the back arrows, still 27% of the front arrows
remain unclassified. Several causes can be identified for
these rejects. The main cause is the contextual reasoning
mechanism; an arrow is only searched if the related ob-
ject was detected earlier. Thus, if the related object was
not found, the arrow cannot be recognized either. Another
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cause of rejects is the decomposition process. Arrows are
often intersected by lines and, as a consequence, such an
arrow is decomposed into multiple primitives, which may
obstruct its recognition.

In the maps used for the experiment, all houses are
drawn on the back and can therefore only be extracted with
resegmentation. Approximately 60% of the houses are de-
tected correctly and only a very small number are misclas-
sified, but the rate of false accepts is considerable (6.3%
and 7.9% resp.). Approximately 90% of these false ac-
cepts can be explained by the existence of a border effect.
The outline of the map-area is drawn on the back of each
map. Unfortunately, this border is drawn with the same
pen that is used to draw the houses. In the rare cases where
an arrow is just within the map area and very close to the
border, the top-down resegmentation for the house results
in segmentation of the border. The rest of the border is
found too from these initial border segments. Table 5.3
shows that if the false accept rate for the houses is cor-
rected for this border effect, the number of false accepts
drops to 0.5%. The reject rate of approximately 40% can
be explained entirely by the contextual reasoning mecha-
nism. Since the interpretation fails to classify a significant
number of arrows, no segmentation actions were gener-
ated to detect the related houses. Furthermore, about 15%
of the houses on the map are not related to any other ob-
jects and cannot be found with the contextual reasoning
approach.

About half of the dimension digits and dots are correctly
classified while very few are misclassified. Again, the
rather high rejection rate can be explained almost entirely
by the contextual reasoning mechanism. The dimensions
are only searched if the corresponding arrow is found, but
all of the arrows drawn on the back and 27% of the front
arrows remain unclassified. The false accept rate of the
dimension dots is caused mainly by transposition of the
dot and dash in a dimension. If a dimension represents
a whole number, it consists of a main digit, a dot and a
dash. Sometimes these dashes are very small and easily
mistaken for a dot. The misclassified digits in Table 5.1
are all classified as a dot, thus causing 50% of the falsely
accepted dots. The importance of top-down resegmenta-
tion for the dimensions is clearly illustrated by Table 5.4.
If only the initial segmentation is available, the recognition
performance drops to 29%.

The computational costs are acceptable. The process-
ing of an AO-sized map, scanned in grey value at 400 dpi
(16400%x14000), on a Sun Sparc 20, including preprocess-
ing, interpretation and resegmentation requires approxi-
mately 45 minutes.

5.8 Discussion

The proposed generic framework allows for the represen-
tation of knowledge for the detection and handling of seg-
mentation problems. Multiple specialized segmentation
algorithms can be used during interpretation where each

algorithm is applied only when necessary. Since limita-
tions of the initial segmentation can be corrected during
the interpretation, it is possible to obtain a significant in-
crease in the final recognition performance. The reseg-
mentation framework, which is driven by generic events
such as inconsistencies and object detections, should be
applicable to other application areas. Its use for the recog-
nition of roads in aerial images has been demonstrated in
a case study described in [5] (see also Chapter 6).

The explicit representation format allows the design of
a resegmentation strategy at run time. This conctpt in-
creases the system’s flexibility and yields a significant re-
duction in the time and effort required to adapt the knowl-
edge to a specific application.

The current concept has some limitations. The param-
eter specification of the image processing functions in the
knowledge file can only handle static predefined parame-
ters. The flexibility could be improved if during the inter-
pretation the parameter values can be adapted to local vari-
ations in the map.

In the current concept of top-down segmentation, the
generation of resegmentation actions strongly depends on
contextual evidence. If the context for these actions be-
comes more complex, it is no longer possible to describe
the context in the current knowledge base. This limitation
is clearly demonstrated by the inability to detect any of the
“back arrows”.

5.9 Conclusions

A new framework has been presented which guides the in-
terpretation and segmentation by using a priori knowledge.
Because the framework allows the combination of multi-
ple segmentation algorithms, each specialized in the seg-
mentation of a specific object, the local segmentation of
objects can be improved when needed. In the experiments,
a significant increase in the recognition performance was
obtained by using top-down segmentation.

The results indicate that a fully automatic system is not
yet feasible; however, the developed techniques can be
very useful to assist the operator in a semi-automatic envi-
ronment. During semi-automatic conversion, the operator
selects parts of the image which appear to be suitable for
automatic conversion. The results of the automatic inter-
pretation are displayed and can then be accepted, rejected
or manually adjusted by the operator. In the latter case, the
system can assist again by guiding the operator to incon-
sistent or rejected parts of the image. If the operator solves
an inconsistent situation or reject, the automatic interpre-
tation may continue again.

From the experiments, we conclude that the current
model for knowledge representation is too limited to han-
dle very complex situations. In the model, all procedu-
ral knowledge is represented by spatial relationships. As
the model becomes more and more complex, and the num-
ber of spatial relationships and potential inconsistencies
increases, the need to further structure the knowledge base
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Knowledge-based updating of maps
by interpretation of aerial images

6.1 Introduction

In the preceeding chapters, the research concentrated on
the development of techniques and methods for automatic
map interpretation. Because the main concept of contex-
tual reasoning is based on the assumption that the objects
in the image share clear spatial relationships, the proposed
framework should apply to a broader range of problems.
The spatial relationships are used to generate hypotheses
for the interpretation process, to verify its results, and to
control the low-level segmentation. It therefore seems log-
ical to explore the potential of contextual reasoning for
other areas. In this chapter, we concentrate on the interpre-
tation of aerial images. Aerial images of urban areas are
usually highly structured as they contain carefully planned
and constructed man-made objects. A road network, for
example, is built according to strict construction rules de-
scribing aspects such as the maximum curvature of a road,
the optimal angle between a speedway and an exit, etc.
However, the interpretation of aerial images is far from
trivial for several reasons. An aerial image may contain
many objects, densely packed in a small area, while only
a small number of these objects is relevant. Furthermore,
a complex object, such as a road network, is composed
of many different and specialized elements, e.g. roads,
lanes, bridges and fly-overs. Each of these objects may
require a specialized segmentation and recognition strat-
egy. Finally, a single object type, e.g. a house, may ap-
pear in the aerial image in a wide range of manifestations,
in a different context and on a different scale. Thus, a
knowledge-based approach to the interpretation of these
complex images using some kind of contextual reasoning
strategy seems appropriate, if not necessary.

The development of techniques for interpretation of
aerial images is driven by a clear demand from the sup-

pliers of geographical information. In the management of
geographical information, a shift has taken place from the
production of analog maps to storage of digital informa-
tion in a Geographic Information System (GIS). A GIS
provides a flexible environment to edit and manipulate the
information, while new information can be added easily.
Because a GIS allows for the easy combination of multiple
information sources, it is possible to discover the relation-
ships between geographic entities and to exploit the data
better and more efficiently than ever possible with analog
maps. To be effective for most applications, however, a
GIS requires accurate and up-to-date data. An example
of such an application is monitoring of the enviroment.
Mankind is causing rapid ecological and environmental
changes, and the major part of the data about these changes
is acquired from aerial photographs and satellite images.
The photogrammetric processing of the data, however, is
the major bottleneck in the supply of geographical infor-
mation. In the current process, each relevant object is out-
lined manually in the photographs, which is a labor inten-
sive and time consuming task. To be able to support fast
decision-making on geographical issues, there is an urgent
need for automatic methods and techniques to collect in-
formation from these images efficiently and reliably.

6.2 Related work

Automatic interpretation has been a research topic for
more than two decades now. One of the first influential pa-
pers on this subject was published by Bajscy and Tavakoli
in 1976 [1]. In their strict bottom-up approach, poten-
tial road pixels are found by applying a simple threshold
based on the expected intensity of road pixels. The resultis
then scanned for pixels with the proper intensity profile us-
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ing templates. In the next phase, probable road points are
linked based on constraints about the maximum distance
between such two points. Another line of early research
concentrated on roaditracking. In road tracking, the inter-
pretation starts from parts of the road, also called seeds,
which are already known. From these seeds, the related
parts of the road are found using some general road model
about the shape of theroad [5] or the intensity [11]. A more
recent approach to road tracking, using two independent
methods based on road edges and the intensity profile per-
pendicular to the road, has been reported by McKeown and
Denlinger [10]. The main disadvantage of road tracking is
that the interpretation requires the road seeds to start from.
Furthermore, if the road tracking algorithm fails and “wan-
ders oftf”, it is not possible without additional knowledge,
to detect and recover from this situation.

To be able to detect and correct the potential flaws
of these specific algorithms, the research in the eight-
ies concentrated on knowledge-based systems. Sev-
eral knowledge-based approaches have been proposed for
aerial image interpretation. In MISSEE, which was de-
scribed by Glicksman [6], the interpretation is based on
a semantic network consisting of schemata and the bi-
nary links between them. For a detailed description of the
schema concept, the reader is referred to the work reported
by Hanson and Riseman [7]. Instantiation of a schema,
i.e. recognition of an object represented by the schema,
leads to the evaluation of other related schemata. A lim-
itation of this approach is that MISSEE strictly separates
image processing and high-level reasoning as the interpre-
tation expects a segmented image which is used through-
out the entire process. A similar approach is SIGMA,
which has been reported by Matsuyama and Hwang [9].
SIGMA is a frame-based system where each frame rep-
resents knowledge about an object class. Spatial relation-
ships with other objects are represented by means of pro-
cedural attachment. When a frame is instantiated, the at-
tached procedure is used to generate a hypothesis about a
related object. As opposed to MISSEE, SIGMA does not
depend on an initial segmentation as hypotheses are han-
dled by the top level of the interpretation which combines
and delegates them through an intermediate level to a low-
level vision module. A disadvantage all these systems and
methods have in common, is their lack of reliability and
accuracy. This is partly caused by the fact that they all,
at some stage during processing, depend on an initial seg-
mentation. In the next section, we will concentrate on an-
other interpretation concept which does not have this dis-
advantage.

6.3 The concept for updating

As was discussed above, all methods and systems reported
so-far lack sufficient reliability and accuracy to make them
operational in a production system. In this section, we pro-
pose an approach to increase the reliability of aerial im-
age interpretation using existing information from a GIS.

Only a few authors (e.g. [8, 12, 13]) use existing maps as
a knowledge source for aerial image interpretation. This
is the more surprising if we realize that outdated maps
are often present and the locations of the objects in these
maps create a logical framework to search for new ob-
Jects. Thus, when using existing maps, new objects may
be found more reliably and more accurately. In a recent
paper, Yu and Berthod [13] described an approach which
uses information from a GIS to improve the segmentation
of urban areas. Their technique is based on pixel labeling
using Markov random fields and the a priori information
from the GIS is used to construct a binary mask image to
initialize the pixel labeling process. A different approach
is described by van Cleynenbreugel et al. [12]. In their pa-
per, information from a GIS about the type of terrain un-
der study, is used to classify potential road segments. For
example, in a case-study concerning a mountainous area,
only those road candidates are accepted which more or less
follow the contour lines of a digital terrain model provided
by the GIS.

In this chapter, we explore techniques for automatic up-
dating of map information by the interpretation of aerial
images, and we therefore assume that the changes in the
image have a very specific relationship to the outdated
maps. In contrast with van Cleynenbreugel et al. [12],
we use the information from the outdated maps to be
able to skip the potentially unreliable bottom-up segmen-
tation, Furthermore, compared to the approach by Yu and
Berthod, we define higher-level spatial relationships than
the local relationships between single pixels. The a priori
map information is employed by a knowledge-based inter-
pretation strategy to generate specific top-down segmenta-
tion actions. The control of this interpretation strategy is
presented hereunder.

6.4 Control strategy

The classic hypothesize-and-test paradigm has been
adopted as the control strategy for this application. In the
first step, the top-down approach is based on potentially
outdated map information, stored in a GIS, to generate
hypotheses to detect what has changed in the image. A
hypothesis is verified by a top-down search action. Each
action consists of a restricted region of interest in the grey
value domain, an image processing technique and the
corresponding parameter values which are optimized for
segmentation of the specific requested type. The results of
the top-down segmentation are matched with an a priori
object model which consists of a collection of geometrical
properties for each object type. If the match succeeds, it
is assumed that the object did not change. If the match
fails, however, the object is assumed to have changed. An
example of such a change is a lane of a highway which
has been extended by the addition of an exit. Following
its detection, the possible change has to be verified by
checking related objects. In this case, the change of the
lane has to be verified by detection of the exit. Detection
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Figure 6.1: The concept of contextual reasoning is depicted as a cycle of four sub-processes.

of the exit, in its turn, will lead to new hypotheses about
the presence of other related objects.

The generation of hypotheses is based on the concept of
contextual reasoning which has been described in [3, 4].
Contextual reasoning consists of an interpretation cycle of
four subsequent processes which all use a priori knowl-
edge. Figure 6.1 shows the information flow between the
processes. The core of the interpretation process is the
knowledge base as it provides all subprocesses with vi-
tal information. We have chosen the semantic network as
knowledge representation formalism because it reflects the
graph-like nature of the knowledge which mostly consists
of objects and their spatial relationships. For more infor-
mation on this representation format, the reader is referred
to [3, 4]. In the model shown in Fig. 6.1, the interpretation
starts with hypothesis generation to detect differences be-
tween the image and the outdated situation. The segmen-
tation process then receives specific search actions to seg-
ment the objects present in the outdated situation. Follow-
ing segmentation, the results are matched with the object
models and verified with the information retrieved from
the GIS to detect possible changes. After change detec-
tion, new objects are searched in the image starting from
the detected changes. Each time a new object or an object
which has changed is found, new hypotheses about the oc-
currence of related objects are generated.

The generation of search actions, based on a priori

known spatial relationships, is a powerful mechanism
to control the interpretation process. By generating the
proper goals, it is possible to combine a variety of image
processing techniques in an effective way. Further control
is provided by the essential spatial relationship. An es-
sential relationship implies that if an object is found, the
related object must be present too. For example, an exit
of the highway should always end in some type of node.
The essential relationship provides a simple and generi-
cally applicable mechanism to detect inconsistencies in the
interpretation. Each time an object is found which shares
this relationship with another object type, the related ob-
ject type is searched first. In the case of an inconsistent
outcome, i.e. therelated object could not be detected, there
are several options. For example, the classification which
led to the inconsistency could be rejected. However, if
there is a priori knowledge about the cause of the inconsis-
tency, a top-down search action could be generated to ob-
tain new results and solve the inconsistency. Finally, if this
approach fails, the help of the operator could be invoked.

6.5 Case-study

A prototype system has been implemented to update aroad
map of the Dutch highways from a large-scale scanned
aerial photograph with a ground resolution of 1.60 meters
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(a)

(b)

Figure 6.2: The aerial photograph which represents the current situation is presented in (a). In (b), the digital map of

the old situation is projected on the photograph in white.

per pixel. The road network can be regarded as an abstract
graph-like structure consisting of arcs and nodes. Exam-
ples of nodes are crossings and fly-overs. Arcs are road
segments such as lanes and exits, starting and ending in ei-
ther different nodes or the image border. In this chapter we
will refer to arcs and nodes as general types representing
arbitrary types of road segments and their junctions,

In this case-study, a rather simple scene and a simpli-
fied road model are used. The two lane highway, which is
shown in shown in Fig. 6.2a, is assumed to have been ex-
tended by the addition of several on-ramps and exits. The
available digital road map, which represents the old situ-
ation, is shown in Fig. 6.2b. In this figure, the a priori
known roads are depicted in white. To update the map,
two successive tasks are distinguished. First, all changes
have to be detected, followed by a top-down search start-
ing from the changed parts for all related roads of the net-
work.

6.5.1 Change detection

Basically, the roads are regarded as arcs in the graph com-
posed by the road network. In the first part of the inter-
pretation, we are primarily interested in whether a part of
any arc changed into a node, which might be caused by the
construction of a new exit or an on-ramp. When consider-
ing their representation in the grey value domain, a road,
i.e. an arc, can be distinguished by its characteristic grey
value profile. A node, however, may be detected by the
lack of such a profile. Figure 6.3 shows two example pro-
files. Analogous to the work reported by McKeown [10],
we assume in this case-study that an arc can be defined

completely by such a set of profiles. To derive the profile
set, the image is first resampled perpendicularly to the axis
of the roads present in the GIS. The profile set can then be
extracted easily as each column of pixels in the resampled
image represents a single profile.

For successful detection of changes, it is sufficient to
match the profile set taken from the resampled image with
a simple profile model derived from the GIS. An example
of such a profile model is shown in Fig. 6.4. The criterion
for the presence of an arc is based on the cross-correlation
between the model and the profile set from the resampled
image which should exceed a predefined threshold value.
If the cross-correlation does not exceed this threshold for
a significant part of the arc, the presence of a node is as-
sumed. In the example given in Fig. 6.5, on each lane two
parts are detected which have possibly changed into nodes.

6.5.2 Further interpretation

The contextual reasoning mechanism is based on the spa-
tial relationships between the parts which compose the
road network. In this case-study we concentrate on two
low-level basic spatial relationships between arcs and
nodes:

1. Nodes are always connected to three or more arcs.

2. Arcs start and end in either two different nodes or a
node and the image border.

The first essential spatial relationship defines that if a
new node is found which is not yet connected to three or
more arcs, at least one new arc has to be found. The arc is
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Figure 6.3: An example of a profile set is shown in (a). The profiles are taken from a part of the aerial image which
has been resampled perpendicular to the axis of the road. The grey value of the road is significantly higher than its
background, while the profile of the node, which is presented in (b), clearly lacks such a prominent feature.

searched in a rectangular area starting from the center of
the node and oriented in a direction with high probability
of finding a new arc. For example, it is known a priori that
the angle between an exit and a highway never exceeds a
certain value. A new node which is detected on a high-
way arc is most likely due to the construction of an exit.
This immediately generates expectations as to where and
in which direction to search for the exit. However, if no
arc is detected within the initial search area, the direction
is gradually adapted. For each direction, the search area is
resampled perpendicular to its axis followed by the extrac-
tion of a profile set. The profile set is then matched with the
profile model of the expected arc provided by the semantic
network. In the example, three of the nodes are confirmed
by the presence of arcs. This result is shown in Fig. 6.6a.
The fourth node, however, is located at the image border
and its presence cannot be confirmed by the detection of
an arc, and as a consequence, its detection is rejected.

Intensity —

Figure 6.4: An example of a profile model derived from the
GIS.

The second spatial relationship defines thatif the node at
the end of a new part of an arc is not yet detected, the arc is
extended until either the node is found or the image border
is reached. The rest of the arc is found by defining a rect-
angular search area that elongates the arc. The search area
is again resampled perpendicular to the axis and the result
is matched with the profile model of the arc. This process
is repeated until a node is found. The adaptations to the di-
rection of the search area and its length are based upon the
result of the segmentation. For more details, the reader is
referred to [2]. In the case-study, contextual reasoning re-
sults in prolongation of the new arcs until the image border
is reached. Figure 6.6b shows the final result.

Figure 6.5: Possible new nodes, which are shown in black,
are identified on the arcs during change detection.
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(a)

(b

Figure 6.6: The new arcs, shown in white in (a), which are related to the new nodes, are identified during contextual
reasoning. The final result of the interpretation is shown in (b).

6.6 Discussion and conclusions

In this chapter, we have presented a concept for the inter-
pretation of aerial images as a potential solution to the au-
tomatic updating of maps. In contrast with previous work,
a priori information from an outdated digital map is used
to obtain initial results for the interpretation process. Thus,
it is possible to circumvent potentially unreliable bottom-
up processing and to generate accurate top-down search
actions to detect changes in the infrastructure. After the
initial change detection, the contextual reasoning mech-
anism continues the interpretation. Based on the results
and a priori knowledge about applicable image process-
ing techniques and the spatial relationships between ob-
jects, the new parts of the road are searched only in re-
stricted parts of the image with appropriate segmentation
algorithms. As a consequence, the use of computationally
expensive algorithms can be limited to small parts of the
image.

In the case-study, the results have been shown for a
rather simple scene in the aerial photograph. For such a
straightforward situation, the use of a road model com-
posed of arcs and nodes is sufficient. However, knowl-
edge about the types of the various parts of the road net-
work and their mutual spatial relationships is necessary
to handle more complex situations and to tailor the im-
age processing techniques accurately to the specific ob-
ject types. The current knowledge specification therefore
has to be extended with new objects and spatial relation-
ships as well as object-specific image processing knowl-
edge. Our future research therefore has to concentrate on
the development of a more elaborate model to describe

complex situations and to recognize other important object
types such as fly-overs, speed-ways, etc. To improve the
accuracy of the top-down segmentation, this model should
include knowledge about the standards for road construc-
tion. Furthermore, roads which are not connected to the
road network, due to the limited size of the aerial image,
will not be found. To solve this problem, the interpretation
framework should be extended with methods for combin-
ing neighboring photographs. Notwithstanding the current
limitations, we have shown that the applicability of con-
textual reasoning is not restricted to maps which creates
important prospects for new lines of research.
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Discussion and conclusions

In this thesis, a framework for knowledge-based map in-
terpretation has been proposed. The framework is based
on three concepts, namely the low-level description of the
graphics, the explicit representation of the knowledge and
the contextual reasoning mechanism. In this chapter, both
the merits and the limitations of these concepts are dis-
cussed. Following this discussion, our final conclusions
are given.

7.1 Decomposition of the graphics

In Chapter 2 a new low-level method based on decompos-
ing graphics was proposed as an alternative to the conven-
tional method of vectorization to represent the graphics in
the map. The main advantage of this approach is that com-
pared to standard vectorization the morphological infor-
mation is retained. Instead of approximating the graph-
ics with a vector description, the graphics are decomposed
into graphical primitives where each primitive is stored in
a separate bitmap. As a consequence, it is possible to ap-
ply image processing algorithms to individual primitives
and to calculate discriminating features. The primitive-
based description therefore facilitates object recognition
whereas with a plain vector description this is a difficult
task, if possible at all.

The decomposition method also has an important draw-
back. Similar to vectorization, the decomposition method
depends on the skeleton, and anomalies in the skeleton
may therefore have drastic consequences for the resulting
primitives. However, the same limitations are encountered
with vectorization. This is illustrated in a practical situ-
ation with the example in Fig. 7.1. After the decompo-
sition of the graphics, the vertical arrow will be decom-
posed into two separate primitives; a more or less trian-
gularly shaped object and a thin straight line representing

the head and the tail respectively. The current interpre-
tation process is based on the classification of primitives,
but in this case, the arrow-head is small and often distorted
thereby obstructing its proper recognition. Even when us-
ing the context of these arrows, itis very difficult to design
a reliable recognition strategy for them. A solution to this
frequently encountered situation has to be found in the de-
velopment of detectors which do not depend on the skele-
ton. This subject is not within the scope of this thesis and
it therefore remains an important topic for future research.

In Chapter 2, we also found that the distance trans-
forms which are used by the decomposition algorithm are
expensive in computational costs and memory require-
ments. The straightforward implementation based on the
constrained distance transform can be improved signifi-
cantly. For the standard distance transformation and skele-
tonization, the method described by Verwer [5] can be
used. In this method, the distance transformation and the
skeletonization are combined in a single step while instead
of a large grey value image, a memory-efficient bucket
data structure is used. Further, for the binary image a spe-
cial data structure is used which stores the pixels in bit-
words where each bitword contains 32 pixels. Instead of
processing single pixels, all processing is carried out on
the bitwords, thus allowing the processing of 32 pixels in
parallel [3, 4]. As a consequence, the decomposition can
be sped up considerably, while memory requirements are
drastically decreased. Experiments with the new imple-
mentation indicate that a binary A0-sized map (400 dpi,
16400x 14000 sq. pixels) can be decomposed on a Sun
Sparc 20 in approximately 200 seconds thereby requiring
less than 110 mega bytes of memory. Since the decompo-
sition step is the most expensive in terms of memory costs,
it is possible to process AO-sized drawings on a profes-
sional PC equipped with sufficient memory.

Based on the above discussion, we conclude that the de-
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Figure 7.1: The vertical arrow is touching two horizon-
tal arrows. The decomposition step will split this arrow in
two primitives which are very difficult to recognize individ-
ually.

composition of graphics is an important first step in the in-
terpretation of maps and its application is no longer limited
to expensive workstations. Nevertheless, there are situa-
tions in the maps when neither decomposition nor vector-
ization is sufficient for reliable object recognition and fu-
ture research should therefore aim at the development of
complementary recognition strategies.

7.2 Explicit knowledge

In Chapter 1, we discussed the potential importance of a
knowledge-based approach. The large variety of potential
applications within a single utility requires a flexible solu-
tion. In this thesis, we proposed the separation of knowl-
edge and implementation by using an explicit knowledge
representation language (KRL).

When compared to a rigid implementation where all
knowledge is hidden in program code, this approach ap-
pears to be advantageous. Because all knowledge can be
adapted at run time, and a mechanism is provided to add
new functionality, the time needed to develop an inter-
pretation system is reduced significantly as laborious re-
programming can be circumvented. Moreover, the KRL
is simple and dedicated to a single task, and its use is
therefore more restricted than a general-purpose program-
ming language such as C, but it also offers more insight
in the behavior of the system than a general-purpose lan-
guage. Even though the KRL decreases the time needed
to develop an interpretation system, the fine-tuning of
the knowledge may still be a conscientious task requiring
many experiments. To further reduce development time
and to facilitate the design of the knowledge base, it is
necessary to explore methods and techniques for efficient
knowledge acquisition. For example, an operator could se-
lect a collection of objects or pairs of objects. From these
examples, it should be possible to generate parts of the
knowledge file automatically.

In the current implementation, the object description

consists of a list of features, and for each feature a range
of allowed values is given. To classify a primitive as an in-
stantiation of an object type, its features should be within
the allowed ranges given by the object description. In
other words, if an object is described by n features, the
list of features constructs an n-dimensional feature space
where the ranges of allowed values represent a rectangular
n-dimensional sub-space containing all possible objects.
This recognition model assumes that all features are com-
pletely independent, but in general this will not be true.
Therefore, a more sophisticated recognition scheme is re-
quired to improve the recognition performance. There are
two possibilities to tackle this problem,; to concentrate on
developing specialized detectors such as the arrow detec-
tor described in Chapter 3, or to develop a recognition
strategy which allows for the specification of relationships
between features.

Another limitation of the current KRL concerns the set-
ting of the parameters for resegmentation. The current
KRL can only handle static predefined parameters for the
image processing functions specified in the knowledge de-
scription file. The flexibility of the resegmentation could
be improved significantly if the parameter settings of the
image processing could be adapted during the interpreta-
tion. To support run time parameter adaptation, the KRL
should therefore provide means to model a priori knowl-
edge about segmentation results and, in the case the results
are inadequate, how to adapt the parameters to further im-
prove the segmentation.

For all the experiments carried out in this study, the a
priori knowledge was modeled with a single semantic net-
work. However, even in a single map, parts may differ
from each other considerably. For example, in the case that
a map represents a suburban area with a transformer sta-
tion, most of the map will contain standard objects such as
conduits, houses and dimensions. However, at the trans-
former station, the map may become very complex as the
main conduit branches out into sub-conduits, and for each
conduit the contents are depicted. For these different sit-
uations, different interpretation strategies are required. If
these strategies have to be merged in a single representa-
tion, this will yield an obscure and unmanageable model.
For an operational system, the use of multiple knowledge
description files may be a better approach. In the auto-
matic conversion method, which was discussed in Chapter
1, the operator selects an area suitable for automatic con-
version. In the case that the map contains different situa-
tions, a practical solution may be to provide the operator
with a number of interpretation strategies, and each time
the operator selects an area, he or she also selects the most
appropriate interpretation model.

During the research described in this thesis, the KRL
proved to be a promising concept which allows for the
easy and flexible development of an interpretation system.
Although the current object recognition scheme provides
a mechanism to add new functionality easily, the current
editor-based user interface is too limited and the develop-
ment of efficient tools for knowledge acquisition is a topic
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Figure 7.2: A section of an altitude map. The altimetries are distributed randomly over the map and do not share a clear

relationship with each other or other objects.

for future developments. Furthermore, the object recogni-
tion is not perfect and its improvement remains an impor-
tant subject of future research.

7.3 Contextual reasoning

The reasoning mechanism, described in this thesis, is a
generic concept based on the spatial relationships between
the objects, and it should apply to most map applications as
well as other structured data. Its potential use for the inter-
pretation of aerial images was demonstrated with a case-
study in the previous chapter. In Chapter 4, it was shown
that contextual reasoning is a simple but useful mechanism
to guide the interpretation into promising directions and to
verify its outcomes. Experiments indicated that without
contextual reasoning, the amount of false accepts increases
drastically. In Chapter 5, this concept was extended witha
method to control the resegmentation process when neces-
sary, which proved to be successful in the reported experi-
ments. We therefore conclude that contextual reasoning is
an important concept which can aiso be used to combine
the joined effort of multiple specialized segmentation al-
gorithms in an efficient way.

Although contextual reasoning proved to be successful,
there are still some limitations. Contextual reasoning is
based on a single concept shared by almost all map ap-
plications, namely that each object has one or more spa-
tial relationships with other objects. Using the spatial re-
lationships, the contextual reasoning mechanism decides
which objects need to be searched and which actions have
to be undertaken when a relationship is or is not found.
In some applications, however, this concept may be only
partly valid. This is illustrated by the example in Fig. 7.2,
which shows a small part of an aititude map. This map in-
dicates the altitude of an area in meters. The altimetries are
distributed more or less randomly over the map and do not
share a clear spatial relationship with other object types.
Thus, for this type of map, the relationship model is not

applicable and contextual reasoning will therefore not be
useful for its reliable interpretation.

A more serious drawback is that the interpretation sys-
tem suffers from myopia. To explain this, first a distinction
has to be made between simple and composite objects. A
simple object is a primitive with an object label attached
to it, for example a digit, an arrow or a piece of the con-
duit. A composite object, however, is composed of mul-
tiple simple objects. A dimension, for example, may be
composed of three digits and a dot. An arrow and a di-
mension compose a more complex composite object. The
knowledge file, however, only describes binary spatial re-
lationships between simple objects, and it is therefore not
possible to obtain an understanding of the structure of the
map at a high level. Furthermore, in the current concept
all relationships are binary, but within a composite object
poly-relationships may be distinguished. For example, a
dimension is presently described as a set of two binary re-
lationships between a dot and a digit, and, a digit and a
digit. However, this is not sufficient for a complete de-
scription of the dimension. To improve both the interpre-
tation process and the resulting map description, it should
be possible to describe composite objects as a hierarchy of
simple objects in terms of poly-relationships.

Another direction for improvement may be found in the
integration of contextual reasoning with inexact reason-
ing. Presently, if an object is detected, no certainty mea-
sure is attached. The object is simply assumed to be cor-
rect until proof of the contrary is indicated by an incon-
sistency. However, the inconsistency detection is not in-
fallible, and misclassifications may slip through. Inexact
reasoning may offer a method to solve ambiguous situa-
tions. For example, in the current concept it is not possi-
ble to model the behavior of the system if, for a classifi-
cation, both conflicting and supporting evidence exists. In
this case, inexact reasoning tries to make a decision based
on a statistical model. An example is the assignment of a
certainty factor (CF) to each hypothesis, similar to the ap-
proach taken in the MYCIN project [2]. In this approach,
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the certainty factor represents the belief in the hypothe-
sis, and the CF is affected by the available evidence. The
decision of whether to accept or reject the classification
is based on the value of CE. If CF is positive, the clas-
sification is believed to be true. If CF is negative there
is stronger evidence against the classification and it is re-
jected consequently.

An inexact reasoning approach immediately raises a
number of important questions:

o How should the required statistical model be ob-
tained?

o How should probabilities propagate along with the
interpretation?

o How can it be determined whether two events are in-
dependent and may be handled as independent evi-
dence?

o For which situations is inexact reasoning appropri-
ate?

Aninitial discussion on these problems can be found in Ar-
tificial intelligence by Rich [1]. The last question, how-
ever, is of special importance and therefore it is here dis-
cussed further. According to Rich, statistical reasoning is
only appropriate when the relevant world is really random,
or when there is not enough information to support exact
decisions in the deterministic world. However, if the lack-
ing information is due to an inadequate model of the deter-
ministic world, then this should never be compensated by
inexact reasoning. Since the maps are certainly not drawn
at random, we can therefore restrict ourselves to the ques-
tion of whether there is indeed a lack of information, or that
the current model is inadequate.

Of course, there is some randomness in the maps. Dur-
ing image acquisition, the analog signal from the sensor,
i.e. a scanner, is converted to a digital representation. In
this step, the original image may be distorted as noise is
added, and shading and blur are introduced. Moreover, a
digital image is only adiscrete approximation of a continu-
ous world, and as a consequence, measurements in the im-
age are always inaccurate to some extent. Further, most
objects are hand-drawn and the variance in the shape of
many objects can only be modeled statistically. It there-
fore seems a logical step to use statistical techniques for
object recognition. However, all objects are recognized
within their context, and the uncertainty affects the struc-
ture of the map to a much lesser extent than the appear-
ance of the objects. It is therefore not yet clear whether it
is meaningful to model contextual knowledge also statisti-
cally. As was discussed above, the current model is clearly
restricted in its ability to model the context and to recog-
nize complex composite objects. It therefore seems sensi-
ble that future research, concerning contextual reasoning,
should focus first on improving the deterministic model,
instead of directly assuming a lack of information and ap-
proximating the world with a statistical model.

74 Conclusions

The goal of the research described in this thesis was the
development of a flexible and generally applicable frame-
work for knowledge-based map interpretation. For a reli-
able and accurate interpretation, the framework has to pro-
vide methods to model and to manipulate various kinds of
knowledge as well as a reasoning mechanism to control the
image processing steps. From the results described in this
thesis-we conclude that this goal is reached. The frame-
work proposed in this thesis is a promising and flexible
approach to map interpretation. The experimental results
reported in Chapters 4 and 5 indicate that the framework
provides an effective mechanism to guide the interpreta-
tion and the segmentation. The objects are recognized re-
liably but at the cost of a significant reject rate. The fully
automatic interpretation of maps is therefore not yet fea-
sible, however, integration within a semi-automatic envi-
ronment should be possible.

7.5 Towards an operational system

Because the development of a system for fully automatic
drawing interpretation is not realistic within the coming
few years, future developments should aim at incorpora-
tion of automatic techniques within an operator-assisted
conversion system. The improved reconstruction, which
was described in Chapter 1, seems most suitable for in-
tegration with automatic interpretation. In such an inte-
grated approach, the operator maintains control of the con-
version process by selecting the parts of the map which ap-
pear to be suitable for automatic conversion. The interpre-
tation results are displayed on the monitor and the opera-
tor then either accepts, rejects, or manually corrects them.
In the latter case, the system can provide efficient support
and guide the operator to the parts of the map where prob-
lems were encountered. Currently, the TNO Institute of
Applied Physics is involved in a research project, together
with the Delft University of Technology and the University
of Amsterdam, to develop an operational semi-automatic
conversion system for the PNEM. For more details on the
PNEM application, the reader is referred to Chapter 1. In
this project, the research concentrates on a number of top-
ics, i.e. improved object recognition, reasoning method-
ologies, the man-machine interface, the interface between
the automatic interpretation and the GIS, and improvement
of the warping process mentioned in Chapter 1. The sys-
tem should become operational early 1997.

7.6 Other research directions

From the case-study presented in Chapter 6, we conclude
that the applicability of the interpretation framework is not
limited to maps and it should be extendable to other areas.
Since the interpretation relies heavily on a priori knowl-
edge of the spatial relationships between objects, the in-
terpretation framework can only be expected to be effec-
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tive for structured images such as the aerial images of road
networks. However, the current framework expects initial
results to guide the interpretation. In the map application,
for example, the results are provided by the initial segmen-
tation, while in the road application, a database provides
the old situation as a start for the interpretation process.
Therefore, expanding the use of the framework to other
less structured domains where initial results are not avail-
able, e.g. medical imagery, is not trivial, and this remains
an important topic for future research.
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A framework for knowledge-based map interpretation

Summary

In the industrialized world, there is an urgent need for so-
lutions to drawing conversion. Many institutions, such
as public utilities, have large numbers of paper maps to
record information about their properties and infrastruc-
ture. To exploit the full benefit of computers in the man-
agement of the infrastructure, it is necessary that the infor-
mation in the maps is made available in a digital format.
For example, if the management of a public utility requires
an estimate of the costs and the time needed to replace a
specific type of conduit in a particular area, finding the an-
swer may require a manual query involving thousands of
maps. However, if the information about the location and
the contents of the conduit is available in a Geographic In-
formation System (GIS), an automated query should pro-
vide all required information within minutes. However,
current methods to convert the paper maps are labor inten-
sive and, as a consequence, they are also very expensive.
Therefore, there is a great interest in the development of
automatic techniques to speed up the conversion of maps.

The goal of the research described in this thesis is the
design and development of techniques which are capa-
ble of automatic drawing interpretation. Such automatic
techniques should satisfy two important demands. First,
the automatic conversion should be very reliable as er-
rors in the interpretation may seriously affect later process-
ing. Secondly, the conversion techniques need to be flexi-
ble and easy adaptable because of the enormous diversity
of applications which need to be converted. Even within
a single public utility, there are usually a number of ap-
plications, such as water, gas, low-voltage and high volt-
age networks, etc. To meet both requirements, we have
chosen for a knowledge-based approach to automatic con-
version in this study. To obtain a reliable interpretation,
it is necessary to employ all available knowledge about
the application. Since maps are drawn according to spe-
cific drawing rules using a limited set of symbols, for each
type of map there is much knowledge available prior to
the interpretation. The use of knowledge about applicable
image processing functions and the optimal interpretation
strategy further increases the reliability of the results. A
knowledge-based approach also facilitates the change to
another type of map. Most of the reprogramming of the
application may be circumvented because it is sufficient to
adjust the knowledge base. A knowledge-based approach
may therefore considerably speed up development for the
multitude of applications.

Within this study, a framework has been developed for
knowledge-based map interpretation which integrates a
dedicated knowledge representation language, image pro-

cessing, and a reasoning mechanism. In Chapter 1, some
basic aspects concerning the design of such a framework
are discussed and a detailed description of the application
is given. Chapters 2 and 3 concentrate on the preprocess-
ing needed to be able to recognize objects in the maps. In
Chapter 2, a new low-level representation is proposed as
an alternative to the standard approach of vectorization.
The main advantage of this approach is that, compared
to standard vectorization, the morphological information
is retained. Instead of approximating the graphics with a
vector description, the graphics are decomposed into their
graphical primitives where each primitive is stored in a
separate bitmap. As a consequence, it is possible to ap-
ply image processing algorithms to individual primitives
and to calculate discriminating features. The primitive-
based description therefore facilitates object recognition
whereas with a plain vector description this is at the least a
difficult task, if possible at all. During the decomposition
process, a compact and complete set of features is calcu-
lated. In Chapter 3, this feature set is used as the input for
a neural network for the recognition of arrows. The experi-
ments with the neural net indicate that with these features,
it is possible to classify arrows very reliably, although at
the expense of 8% reject.

Chapter 4 focuses on the use of knowledge to guide the
interpretation process by means of contextual reasoning.
The a priori map knowledge consists of the objects which
oceur in the maps, their shape, and their interrelationships.
The concept of contextual reasoning is based on the ob-
servation that each object type is related to other object
types. For example, an arrow usually depicts a distance be-
tween two objects, e.g. a house and a conduit. Further, re-
lated to an arrow is a dimensioning, a numerical represen-
tation of the depicted distance. Thus, detection of an object
immediately generates expectations about other objects in
its neighborhood, which are very suitable to generate new
goals for the interpretation process. If in the map image the
conduit is found, it is no longer necessary to search in the
entire image for houses and arrows as these objects only
appear in the direct neighborhood of the conduit. After de-
tection of the conduit, the system can search directly for
arrows. Each time an arrow is found, there should be a cor-
responding dimensioning. In the case that both the arrow
and its dimensioning are found, a house is expected at the
other end of the arrow.

However, often the situation occurs where the system
expects an object which cannot be detected. For example,
an arrow is always accompanied by a dimensioning, but
sometimes the arrow is recognized while its dimensioning
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cannot be found. Usually, there are three possible causes
for such an inconsistency:

o The recognition of the arrow is incorrect.

¢ The segmentation of the dimensioning is incorrect
causing, for example, the loss of small objects.

o The draftsman violated the drawing rules.

To be able to detect these types of inconsistencies, the
model is extended with essential and negative rélation-
ships. The arrow which is always accompanied by a di-
mensjoning is an example of an essential relationship.
The negative relationship indicates that two object types
should never share a specific relationship. For example, a
conduit cannot have a distance to a house of less than 0.5
meters.

Most inconsistencies are due to a poor global segmen-
tation. To be able to solve these inconsistencies automat-
ically, the model is further refined with knowledge about
image processing in Chapter 5. In the new model, both
the cause of the inconsistency (the global segmentation)
and its solution (a new, object-specific segmentation) can
be represented. For example, in the case of the arrow and
the missing dimensioning, the system first verifies with an
alternative classification technique whether the detection
of the arrow is correct. If the arrow’s recognition is con-
firmed, the inconsistency is assumed to be caused by a poor
global segmentation. The system then opts for resegmen-
tation. Because the dimensioning is always drawn on ei-
ther the left or the right side of the arrow, the resegmenta-
tion is limited to this area to minimize computational costs.
Following resegmentation, the interpretation process re-
tries to detect the dimensioning. If this succeeds, the inter-
pretation continues, while the arrow is rejected otherwise.

The developed concepts were evaluated with utility
maps from a Dutch public utility. In the experiments de-
scribed in Chapter 4, we found that contextual reasoning
is successful in guiding the interpretation process and in
detecting potential errors. With contextual reasoning, the
number of erroneous classifications decreased drastically
when compared to a straightforward approach without use
of contextual evidence. However, contextual reasoning
reduces the number of errors at the cost of a significant
increase of rejects. The experiments in Chapter 5 show
that by using knowledge-based resegmentation, many in-
consistencies, which otherwise led to rejects, can be pre-
vented. For example, with knowledge-based segmenta-
tion, it is possible to increase the percentage of recognized
dimensionings more than 65%.

In Chapter 6, the applicability of the developed concepts
for aerial image interpretation is explored. Aerial im-
ages are usually highly structured as they contain carefully
planned and constructed man-made objects. A complex
object, such as a road network, is composed of many dif-
ferent and specialized elements, e.g. roads, lanes, bridges
and fly-overs, and all these objects share specific spatial
relationships with each other. Each of these objects may

require a specialized segmentation and recognition strat-
egy. Thus, a knowledge-based approach to the interpreta-
tion of these complex images using some kind of contex-
tual reasoning strategy seems appropriate. The potential
use of contextual reasoning for this specific domain is il-
lustrated with a case-study.

The developed framework and the experimental results
are discussed in Chapter 7. The main conclusion is that
the framework proposed in this thesis is a promising and
flexible approach to map interpretation. The experimental
results indicate that the framework provides an effective
mechanism to guide the interpretation and the segmenta-
tion. The objects are recognized reliably but at the cost
of a significant reject rate. The fully automatic interpreta-
tion of maps is therefore not yet feasible, however, a con-
siderable speed-up can be achieved by providing efficient
support to the operator with the developed automatic tech-
niques.

Because the development of a system for fully auto-
matic drawing interpretation is not realistic within the
coming few years, future developments should aim at in-
corporation of automatic techniques within an operator-
assisted conversion system. Currently, the TNO Institute
of Applied Physics is involved in a research project, to-
gether with the Delft University of Technology and the
University of Amsterdam, to develop an operational semi-
automatic conversion system for a Dutch utility which
should become operational early 1997.

Summary of the thesis A framework for knowledge-based
map interpretation.

Author: Jurgen den Hartog, June 1995,




Een raamwerk voor kennisgestuurde kaartinterpretatie

Samenvatting

Veel instellingen in Nederland, zoals bijvoorbeeld nutsbe-
drijven, beheren enorme archieven met kaartmateriaal. De
mogelijkheden van de steeds verder oprukkende automa-
tisering kunnen echter niet worden benut zolang de infor-
matie in deze kaarten niet voor de computer beschikbaar
wordt gemaakt. Dit probleem zal worden toegelicht aan
de hand van een voorbeeld: stel, het management van een
electriciteitsbedrijf wil een precieze schatting maken van
de hoeveelheid tijd en geld die nodig is voor de vervan-
ging van een bepaald type leiding. Dit komt in de praktijk
neer op het handmatig nalopen van het volledige kaartbe-
stand, wat wel 10.000 kaarten kan bedragen, zodat het ant-
woord enige ti}d op zich kan laten wachten. Als daarente-
gen alle relevante informatie over het netwerk in een da-
tabase beschikbaar is, dan hoeft een gerichte automatische
zoekactie slechts enkele minuten te duren. De conclusie is
dat voor het efficiént beheren van allerlei geografische in-
formatie de conversie van kaartmateriaal naar een digitaal
formaat noodzakelijk is.

De huidige conversietechnieken zijn zeer arbeidsinten-
sief en daardoor zeer duur. Bij één van deze technicken
wordt de informatie op de kaart door de tekenaar overge-
tekend op een beeldscherm waarbij de tekenaar zijn aan-
dacht moet verdelen over één of meer kaarten én het beeld-
scherm. De handmatige conversie van alle kaarten en te-
keningen van de nutsbedrijven, PTT Telecom, de gemeen-
ten, enz. Kkost naar schatting 10.000 manjaar werk, wat
neerkomt op ongeveer 1 miljard gulden. De ontwikke-
ling van automatische technieken die dit tijdrovende en
kostbare proces kunnen versnellen heeft dan ook een grote
maatschappelijke relevantie.

De doelstelling van het in dit proefschrift beschreven
onderzoek is de ontwikkeling van dergelijke automatische
technieken. In de praktijk komt automatische kaartconver-
sie allereerst neer op het scannen van de kaarten. Tijdens
het scan-proces wordt de papieren kaart omgezet naar een
numerieke representatie: het digitale beeld. Vervolgens
moeten in het digitale beeld de afzonderlijke objecten en
hun onderlinge structuur worden herkend met behulp van
digitale beeldverwerking.

Voor succesvolle toepassing van automatische conver-
sietechnieken moeten deze betrouwbare resultaten ople-
veren, aangezien fouten in de geografische database door
kunnen werken in de hierop gebaseerde besluitvorming.
De betrouwbaarheid van de interpretatie wordt vergroot
door alle beschikbare relevante voorkennis over de kaar-
ten te benutten. Deze voorkennis beslaat kennis over de
vaste tekenregels, de te volgen interpretatiestrategie en
bruikbare beeldverwerkingstechnieken. Het gebruik van

kennis maakt een interpretatiesysteem bovendien flexibe-
ler, mits deze is beschreven in een makkelijk manipuleer-
bare vorm. Vanwege de grote diversiteit aan te conver-
teren kaarten is dit eveneens een belangrijk aspect. Om
op een efficiénte manier een betrouwbaar interpretatiesys-
teem te bouwen is in dit onderzoek een raamwerk ont-
wikkeld waarin een eenvoudige kennis-representatietaal is
geintegreerd met een redeneermechanisme en een beeld-
verwerkingssysteem.

Het principe van kennisgestuurde interpretatie zal wor-
den uitgelegd nadat eerst is ingegaan op de voorbewerkin-
gen die nodig zijn om herkenning van objecten mogelijk
te maken. De grafische objecten in een kaart zijn meestal
met elkaar verbonden en vormen een‘“klont” pixels waarin
door de computer weinig structuur ontdekt kan worden.
Een veel gebruikte methode om herkenning mogelijk te
maken is vectorisatie. De klont pixels wordt benaderd met
een graafachtige structuur, opgebouwd uit rechte lijnen en
hun verbindingspunten, zoals bijvoorbeeld te zien is in fi-
guur 2.1 van hoofdstuk 2. Een vectorisatie is meestal een
redelijke benadering van de grafische topologie, maar de
benadering van verschillend gevormde objecten met een
rechte lijn gaat ten koste van de morfologische informatie
wat de herkenning bemoeilijkt. Als alternatief voor vecto-
risatie onderzochten wij het opdelen van graphics in primi-
tieven, zoals bijvoorbeeld te zien is in figuur 2.3 en figuur
2.6. Deze methode geeft een abstracte representatie van
de topologie, echter zonder verlies van de zo belangrijke
morfologische informatie.

Tijdens het opdelen van de grafische structuur in primi-
tieven wordt een compacte en volledige set kenmerken be-
rekend. Deze set van ongeveer 80 getalswaarden blijkteen
grafisch symbool te kunnen representeren zonder verlies
van morfologische informatie. Kenmerkend voor bijvoor-
beeld een pijl zijn de driehoekige verdikkingen aan één of
beide uiteinden die zijn verbonden door een dunne, rechte
lijn. In hoofdstuk 3 wordt vitgelegd hoe deze kenmerkver-
zameling wordt berekend en hoe een neuraal netwerk hier-
mee getraind kan worden. Uit de experimenten met het
neurale netwerk blijkt dat pijlen met een grote betrouw-
baarheid herkend kunnen worden.

In hoofdstuk 4 wordt een eerste concept beschreven om
met behulp van kennis de interpretatie te sturen. Kennis-
gestuurde kaartinterpretatie kan met het volgende simpele
praktijkvoorbeeld wat inzichtelijker worden gemaakt:

Een electriciteitsbedrijf tekent op zijn kaarten de positie
van de electriciteitsleiding ten opzichte van de huizen die
ermee van electriciteit worden voorzien. Bij onderhoud
van een stuk leiding wordt eerst de straat en het dichtst
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bij gelegen huis opgezocht. Uitgaande van de gevel kan
dan eenvoudig de plaats van de ondergrondse leiding wor-
den gevonden. Op de kaarten komen de volgende objecten
voor:

o Leidingen, die worden weergegeven door een dikke
en regelmatige rechte lijn.

e De gevels van huizen, gerepresenteerd door een
rechte hoekige lijn. Binnenin het huis is vaak een
huisnummer getekend.

¢ Bematingen, die de afstand tussen leiding en huis
aangeven. Een bemating wordt getekend als een pijl
met een getal dat de door de pijl weergegeven afstand
tot op een decimeter nauwkeurig weergeeft.

Bij deze applicatie bestaat de voorkennis dus onder ande-
ren uit informatie over welke objecten er zijn, hoe ze er-
uit zien en in welke samenhang ze voorkomen. Als bij-
voorbeeld eerst in het kaartbeeld de leiding is gezocht én
gevonden, dan is het niet meer nodig om in het gehele
beeld naar de andere objecten te zoeken. Immers, de hui-
zen en de bematingen komen alleen in de buurt van de lei-
ding voor en zoekacties naar deze objecten kunnen daarom
hiertoe beperkt worden. Nadat de leiding gevonden is,
kan het interpretatiesysteem gericht gaan zoeken naar pij-
len. Telkens als er een pijl is gevonden dan moet daar ook
een getal bij staan. Als zowel pijl als getal zijn gevonden
dan moet aan de andere kant zich een huis bevinden. Na
detectie van het huis kan in het kleine gebied binnen het
huis naar een huisnummer worden gezocht. Op deze ma-
nier treedt er een soort sneeuwbaleffect op waarbij elk ge-
vonden object weer tot nieuwe zoekacties leidt die op hun
beurt weer nieuwe zoekacties kunnen veroorzaken. De ba-
sis van de interpretatie is dus een van te voren opgesteld
model waarin wordt beschreven welke objecten voorko-
men en welke spati€le relaties ze onderling delen.

Maar dan rijst vervolgens de vraag hoe te handelen als
het beeld niet aan dit model blijkt te voldoen. Het is bij-
voorbeeld bekend dat een bemating altijd uit een pijl en
een getal bestaat. Maar soms kan wel de pijl worden ge-
vonden maar niet het getal. Voor een dergelijke tegenstel-
ling tussen model en beeld zijn drie mogelijke oorzaken:

o De herkende pijl is geen echte pijl.

o Beeldruis verstoorde de voorbewerkingen op het
beeld, waardoor bijvoorbeeld de cijfers in het getal
aan elkaar gegroeid zijn of juist zoek zijn geraakt.

o Het getal is niet volgens de regels getekend.

Om dit soort fouten te kunnen detecteren is het model uit-
gebreid met twee soorten spati€le relaties: de essentiéle en
de inverse relatie. De pijl die altijd samen met een getal
voor moet komen is een voorbeeld van een essentiéle re-
latie. Een inverse relatie geeft juist het tegenovergestelde
aan: twee objecten mogen niet op een bepaalde manier sa-
men voorkomen. Een leiding mag bijvoorbeeld wel langs

de huizen lopen, maar niet naar binnen gaan. Met behulp
van dit model kan de kennis over potenti¢le tegenstellin-
gen op een eenvoudige manier gemodelleerd worden. De
enige voorwaarde voor toepasbaarheid van dit model is dat
de objecten in de kaart duidelijke spatiéle relaties met el-
kaar delen.

In hoofdstuk 5 wordt verder ingegaan op het afhandelen
van gevonden tegenstellingen. Heel vaak ligt de oorzaak
bij de segmentatiestap van de voorbewerking. Segmenta-
tie van kaarten komt grofweg neer op het onderscheiden
van voorgrond en achtergrond. Het originele kaartbeeld
bestaat uit een enorme verzameling pixels. Elk pixel re-
presenteert de grijswaarde van een zeer klein vierkant ge-
biedje in de kaart. Idealiter is deze grijswaarde een be-
trouwbare maat voor de hoeveelheid inkt binnen dit ge-
bied. Er blijken echter allerlei factoren te zijn die het
scanproces verstoren. Zo is het bijvoorbeeld niet moge-
lijk om de meting van de intensiteit tot precies het gewen-
ste pixel te beperken omdat omliggende pixels de meting
beinvloeden. Verder is het kaartmateriaal van wisselende
kwaliteit en tot slot worden de kaarten vaak aan beide kan-
ten betekend. Kortom, het is niet triviaal om inkt van pa-
pier te onderscheiden en één enkele eenvoudige segmen-
tatiestap is niet afdoende. Maar ook hier kan het gebruik
van kennis soelaas bieden. Door in het model zowel de
oorzaak van de tegenstellingen (de segmentatiestap) als de
oplossing hiervoor (een nieuwe, gespecialiseerde segmen-
tatiestap) te modelleren, kan het systeem een belangrijk
deel van de problemen volautomatisch oplossen. Op lei-
dingkaarten wordt bijvoorbeeld vaak het bematingsgetal
niet herkend door een slechte segmentatie. De hieruit vol-
gende tegenstelling wordt als volgt opgelost: Omdat het
getal altijd links of rechts van de pijl staat, kan nadat de pijl
is gevonden een nieuwe segmentatiestap worden beperkt
tot een klein gebied aan weerszijden van de pijl. Hierdoor
blijven de rekenkosten beperkt. Na de hersegmentatie, ge-
specialiseerd in optimale extractie van het getal, wordt op-
nieuw geprobeerd het getal te vinden. Als dit lukt dan gaat
de interpretatie weer gewoon door en anders wordt aange-
nomen dat de pijl foutief herkend is en wordt deze herken-
ning vervolgens verworpen.

Uiteraard zijn er ook experimenten uvitgevoerd om een
indicatie te krijgen hoe het systeem in een praktijkomge-
ving zou werken. Uit deze experimenten blijkt dat het re-
deneren met relaties een goede manier is om de interpre-
tatie te sturen en ongerechtigheden in de interpretatie te
ontdekken. Het aantal foutieve classificaties blijkt af te
nemen, vergeleken met een rechttoe-rechtaan interpretatie
die geen gebruik maakt van kennis over de samenhang van
objecten. Wel neemt het het aantal ongeclassificeerde ob-
jecten sterk toe, maar hier blijkt het mechanisme voor her-
segmentatie succesvol te zijn. Met kennisgestuurde her-
segmentatie is het bijvoorbeeld mogelijk om het percen-
tage van herkende bematingsgetallen met meer dan 65%
te verbeteren.

Uit dit alles kan de conclusie worden getrokken dat het
ontwikkelde raamwerk het mogelijk maakt om op een re-
delijk eenvoudige en flexibele manier de kennis over een
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bepaald type kaart te modelleren. Het redeneren met re-
laties levert een betrouwbare interpretatie op waarbij ty-
pische foutpercentages tussen de 0% en de 1% liggen.
Het blijkt echter niet mogelijk om de gehele kaart auto-
matisch te interpreteren. Het aantal niet geclassificeerde
objecten kan per type sterk verschillen. De leiding zelf
kan bijvoorbeeld vrijwel volledig worden gevonden ter-
wijl van de pijlen ongeveer driekwart wordt gedetecteerd.
De belangrijkste conclusie van dit onderzoek is dan ook
dat met het huidige systeem volautomatische kaartinter-
pretatie nog niet haalbaar is, maar dat het zeker mogelijk is
om de handmatige conversie aanzienlijk te versnellen met
behulp van semi-automatische technieken.

Op dit moment is er een project gaande waarbij de Tech-
nisch Physische Dienst van TNO, in samenwerking met
de faculteiten Technische Natuurkunde en Electrotechniek
van de Technische Universiteit Delft, en de faculteit Wis-
kunde en Informatica van de Universiteit van Amsterdam,
een semi-automatisch conversiesysteem gaat ontwikkelen
voor de PNEM, de Provinciale Noordbrabantse Energie-
maatschappij. In dit project zal ondermeer aandacht wor-
den besteed aan de verdere ontwikkeling en verbetering
van het redeneermechanisme en de symboolherkenning.
De huidige symboolherkenning is te afhankelijk van de
opdeling in primitieven zoals beschreven in hoofdstuk 2.
Hoewel dit een zeer bruikbare abstracte representatie op-
levert zijn er situaties waar er behoefte is aan andere me-
thoden van objectherkenning. Een tekortkoming van het
huidige redeneermechanisme is dat het niet mogelijk is om
samengestelde objecten te representeren en als zodanig te
herkennen. Toekomstig onderzoek zou zich dan ook deels
moeten richten op zowel een verbetering van het kennis-
model als aanpassing van de redeneerstrategie. Verder is
er behoefte aan technieken om tegenstrijdige informatie te
hanteren, waarbij het gebruik van inexacte redeneertech-
nieken van belang kan zijn. Een ander belangrijk punt van
aandacht binnen het project is de koppeling tussen het con-
versiesysteem enerzijds en het geografisch informatie sys-
teem anderzijds, zodat het mogelijk wordt om de informa-
tie uit de geinterpreteerde kaarten efficiént op te slaan. Het
is de bedoeling dat het te ontwikkelen systeem begin 1997
wordt ingezet binnen het lopende conversie-project van de
PNEM.

Het ontwikkelde raamwerk is gebaseerd op algemene
principes en het zou daarom bruikbaar kunnen zijn voor
andere toepassingen. Omdat het huidige interpretatie-
systeem volledig afhankelijk is van kennis over de spati€le
relaties tussen objecten, kan van dit concept alleen ver-
wacht worden dat het bruikbaar is voor gestructureerde
beelden. De potenti€éle mogelijkheden voor het vinden van
wegen in luchtfoto’s zijn in hoofdstuk 6 met een case-
study aangetoond. Het huidige interpretatie-systeem ver-
wacht echter wel initi€le resultaten om de interpretatie te
sturen. Bij de kaartinterpretatie worden de eerste resulta-
ten verkregen door een initi€le segmentatie, terwijl een da-
tabase met daarin de oude wegsituatie voor een vliegende
start zorgt bij de interpretatie van luchtfoto’s. De toepas-
sing van de ontwikkelde methoden op minder gestructu-

reerde beelden zonder initiéle resultaten is daarom een an-
der belangrijk onderwerp voor vervolgonderzoek.

Samenvatting behorende bij het proefschrift A framework
Jor knowledge bases map interpretation.
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Tot slot

Hoewel de promovendus in een promotie-onderzoek moet laten zien dat hij in staat is om zelfstandig onderzoek te doen,
is een promotie nooit het werk van één enkel persoon. In zijn directe omgeving zijn daar allereerst de begeleiders. Ik zelf
heb het geluk gehad om van diverse kanten sturing, kritiek, ideeén, kortom begeleiding te krijgen. Hiervoor wil ik als
eerste Jan Gerbrands en Eric Backer bedanken, niet in de laatste plaats voor het bewaken van de grote lijn en de planning
van ditonderzoek. Als TPD-er heb ik het grootste deel van het onderzoek “aan de overkant” verricht waar ik de dagelijkse
begeleiding kreeg van Ton ten Kate. Ton, jouw stimulerende en altijd kritische begeleiding zijn voor mij enorm waardevol
geweest. De fijne samenwerking maakte al die “5-minuten-projectjes” meer dan goed. Albert Vossepoel en Bob Duin
van de vakgroep Patroonherkennen wil ik graag bedanken voor de vele vruchtbare discussies tijdens de KGB-zittingen.

Bij de TPD kan ik twee soorten collega’s onderscheiden: de collega’s waarmee je samenwerkt en de collega’s die je
van je werk houden. Dit laatste onder meer met squash, onderhandelingen over de toekomst van Europa, jongleren en
onzinnige weddenschappen met een vlaai als inzet. Beide soorten collega’s zijn even hard nodig en gelukkig bleek er
tussen beide ook een behoorlijke overlap te zijn. Speciaal wil ik Marlies de Gunst en Bernardus Holtrop bedanken. De
samenwerking met jullie heeft in belangrijke mate bijgedragen aan mijn onderzoek, mijn proefschrift, mijn software en
zelfs mijn conditie, maar ik wil jullie vooral bedanken voor alle vriendschap en gezelligheid, zowel binnen als buiten
werktijd, die voor mij minstens zo belangrijk zijn geweest. Met Rik Janssen deelde ik bijna 4 jaar lang de kamer en een
voorkeur voor de enige echte tekstverwerker. Rik, bedankt voor de hulp als ik weer eens problemen had met ISIEX.

Ook buiten het werk zijn er mensen die indirect een belangrijke bijdrage hebben geleverd. Marcel bedank ik voor
zijn vriendschap in de afgelopen jaren. Henk en Tinie hebben me van jongs af aan gestimuleerd om te studeren en dit
werk is ook daarvan het resultaat. Met mijn “grote” broer deel ik dezelfde interesses voor de belangrijke dingen in het
leven. Roland, in de afgelopen periode heb je meer voor mij betekend dan slechts de voorkant van dit proefschrift. Tot
slot wil ik Marina bedanken. Zonder jou had ik dit boekje waarschijnlijk drie maanden eerder af gehad maar dan waren
de afgelopen drie jaar nooit zo bijzonder geweest.
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10.

STELLINGEN

behorende bij het proefschrift

A framework for knowledge-based

map interpretation

door

Jurgen den Hartog

. Een gedegen evaluatie bij al het onderzoek over kaartinterpretatie zou de toepasbaarheid hiervan

aanzienlijk vergroten.

. Het modelleren van kennis over kaarten is belangrijker dan het ontwikkelen van robuuste algo-

ritmen.

. Eén leidingkaart zegt meer dan duizend vectoren.

Hoofdstuk 2 van dit proefschrift.

. Het verkrijgen van een goede segmentatie van kaartmateriaal is vrijwel nooit triviaal en deze

essenti€le stap blijft ten-onrechte onderbelicht in de literatuur.
Hoofdstuk 5 van dit proefschrift.

De Amerikaanse spelling is logischer dan de Britse en zou daarom voorkeurspelling moeten zijn
in de wetenschap.

. De grootste obstakels van professioneel PC-gebruik zijn de slechte standaardisatie van de hard-

ware en Microsoft Corporation.

. Uit de besluitvorming rond de uitbreiding van Schiphol en de aanleg van de Betuwelijn blijkt

dat in Nederland niet alleen kennis maar ook desinformatie macht is.

. Een drastische beperking van de vleesconsumptie is de gezondste en ecologisch meest verant-

woorde oplossing voor het wereldwijde tekort aan voedsel.

. Met de huidige groei van het verkeer op Internet zal men ook op de digitale snelweg van 9 tot

5 in de file staan.

Een proefschrift op A4-formaat steekt ook in milieu-vriendelijkheid uit boven een proefschrift
op standaardformaat.






