
Robust scheduling
in an uncertain environment

M.Wilson

Robust scheduling
in an uncertain environment

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Del

op gezag van de Rector Magni�cus prof.ir. K.Ch.A.M. Luyben;
voorzitter van het College van Promoties,

in het openbaar te verdedigen op
maandag 1 februari 2016 om 15:00 uur

door

Michel WILSON
informatica-ingenieur

geboren te Rozenburg (ZH), Nederland

Dit proefschri is goedgekeurd door de promotor:
Prof.dr. C. Witteveen

Samenstelling van de promotiecommissie:
Rector Magni�cus voorzitter
Prof.dr. C. Witteveen Technische Universiteit Del , promotor
Dr. T.B. Klos Technische Universiteit Del , copromotor

Onafhankelijke leden:
Prof.dr. K.I. Aardal Technische Universiteit Del
Prof.dr.ir. G.J.J.A.N. van Houtum Technische Universiteit Eindhoven
Prof.dr.ir. L.A.M. van Dongen Universiteit Twente
Dr. J. Boerkoel Harvey Mudd College, Claremont, CA, USA
Prof.dr.ir. H.J. Sips Technische Universiteit Del , reservelid

Overig lid:
B. Huisman MSc NedTrain, Utrecht

Published and distributed by: Michel Wilson
e-mail: m.wilson@tudelft.nl

ISBN: ---- NUR 

¿e research reported in this thesis has been funded by
NedTrain in the framework of the Applied Research &
Development Program ‘Rolling Stock Life Cycle Logistics’.

SIKS Dissertation Series No. 2016-06.
¿e research reported in this thesis has been carried out
under the auspices of SIKS, the Dutch Research School for
Information and Knowledge Systems.
Copyright © 2016 by Michel Wilson.
¿is work is licensed under the Creative Commons Attribution-NonCom-
mercial 3.0 Netherlands License.

You are free to share (to copy, distribute and transmit) and to remix (to adapt) this work under
the following conditions: (i) attribution— you must attribute the work in the manner speci�ed
by the author or licensor (but not in any way that suggests that they endorse you or your use
of the work), (ii) noncommercial— you may not use this work for commercial purposes; and
with the understanding that (i) any of the above conditions can be waived if you get permission
from the copyright holder, (ii) where the work or any of its elements is in the public domain
under applicable law, that status is in no way a�ected by the license, and (iii) in no way are your
fair dealing or fair use rights, or other applicable copyright exceptions and limitations, the
author’s moral rights or rights other persons may have either in the work itself or in how the
work is used, such as publicity or privacy rights, a�ected by the license.
¿is is a human-readable summary of the Legal Code, which can be found in full at
http://creativecommons.org/licenses/by-nc/3.0/nl/legalcode.

Printed in¿e Netherlands

http://creativecommons.org/licenses/by-nc/3.0/nl/legalcode

Preface

W
ith great satisfaction, and, admittedly, more than a little relief at
being �nished, I am writing this preface to my thesis. It has been a long
and at times di�cult journey resulting in something I am very proud of.

I’ve sometimes heard the �nishing of a thesis or the defence of one being referred
to as giving birth to one’s baby. Being a young father, I can certainly see some of
the parallels. But the di�erences are many, not in the least the fact that delivering
a thesis is (fortunately!) physically much less demanding than delivering a baby.
Another striking di�erence is that the delivery of this thesis marks the end of an
academic journey, whereas the true journey only begins a er one’s child is born.

Many people assisted me during this journey, for which I am grateful. I want
to start by thanking Arjan van Gemund, the supervisor for my master’s thesis,
who started me on this journey by steering me in the direction of a vacancy for
a PhD student at the Algorithmics group. ¿is is where I met Cees Witteveen, to
which I owemany thanks. Cees was always available for advice, and we hadmany
in-depth meetings discussing papers and chapters in progress, which bene�ted
greatly from his unwavering attention to detail. I also want to thank Tomas, who
joined in supervising me as co-promotor, at a slightly later stage. I enjoyed our
long discussions on the experimental analysis of algorithm and on the proper
design of experiments. I may have sighed at the extra experimental work his
critical eye caused, but at the end it is clear that the results I have obtained
are much improved. I also enjoyed our discussions on teaching, lecturing and
education in general.

¿e other colleagues in theAlgorithmics groupmademy time as PhD student
very pleasant. I want to thank my o�ce mates over the years: Pieter, Renze,
Adriaan and Jeroen, for givingme lots of survival tips for beginning PhD students,
some of which I’ve followed with good results, others which I’ve ignored to my
own detriment; Joris, for his happy moods and his love for his beautifully ugly
car, but also for ensuring that “our room” was ranked at the top of the indoor
karting competition; Gleb, for the interesting discussions on language, and for
all the odd discussions on Dutch culture and life in general; and of course Simon,
more or less my “successor” for this research project, with which I’ve had lots of
very interesting and deeply technical discussions on scheduling topics, a er each

iii

iv

of which the whiteboard looked evenmore arcane, but also on operating systems,
desktop user interfaces, and typesetting so ware. And of course I want to thank
all the other group members, Chetan, Hans, Léon, Marijn, Mathijs, Matthijs,
Peter, Shruti, Sicco, Yinqian, for all the engaging conversations that took place
during lunch or over co�ee. I especially want to thank Peter for all the extended
co�ee breaks, over which we discussed science, academia, life a er academia,
and life in general. And of course I want to thank Ronald, Simon and Jonathan
for working with me on their Master thesis, contributing to my research greatly,
and Erik, Jan, Erwin and Wilco for their work on the scheduling demonstrator
tool for their bachelor project.

I also am indebted the many people at NedTrain who helped me in my
research: Leo van Dongen for heading the research program as board member
of NedTrain, but also Bob Huisman for his day-to-day leadership in the research
program, for the many insightful discussions we had on my research, his useful
feedback onmywriting, and his social insight into some of the people I interacted
with. ¿e atmosphere among the group of people doing research at NedTrain
was very warm and cooperative, and I want to thank Joachim and Jorge, the
other PhD students in the group, as well as all the Master students which worked
at NedTrain, for the many enjoyable lunch walks we took, and for the broad
ranging discussions on all the di�ering �elds of research that were presented in
our little group. ¿e ideas and suggestions by Fred van Houten, Geert-Jan van
Houtum, Leo Kroon, and Rob Basten, prompted by my presentations during
the meetings of the steering group committee, also helped me in my research.
My work with Pim Op ’t Land and Mariëlle ten Have on data analysis of the
on-board diagnostic system of the virm train series gave me interesting insight
into the workings of the maintenance procedures at NedTrain. I enjoyed being
able to visit some of the NedTrain workshops, and I want to thank the engineers
I met there there, for being patient enough to explain their work to another one
of those ‘theoretical guys’ visiting them.

I am glad to have friends that did not grew too bored with me when I talked
about what occupied my mind, and I’m also glad for all the times when they
succeeded in getting my mind otherwise involved, be it by going to concerts,
having dinner, playing a game, or just by having a good talk. I want to thank
my parents as well, for supporting me all this time, and for bearing with me
during the explanations of what, exactly, I was doing all this time. And of course,
I want to express my gratitude to Simone, for her love, for always being at my
side and for believing in me at all times: even when I was in doubt myself you
never lost your trust in me. And, I want to thank Emma, our dear daughter, for
bringing joy in my life, and for teaching me lots of new things about �exibility
in planning.

Contents

Contents ⋅ v

List of Figures ⋅ vii

List of Tables ⋅ ix

List of Algorithms ⋅ xi

1 Introduction ⋅ 1
1.1 A bit of historical context ⋅ 1
1.2 Railway organizations ⋅ 3
1.3 Research program at NedTrain ⋅ 7
1.4 Research goals ⋅ 13
1.5 Outline and contributions ⋅ 15

2 Existing work ⋅ 17
2.1 Resource-constrained project scheduling ⋅ 17
2.2 Mixed Integer Linear Programming solutions ⋅ 22
2.3 Branch and bound methods ⋅ 24
2.4 Schedule Generation Schemes ⋅ 26
2.5 Precedence constraint posting ⋅ 28
2.6 Simple temporal networks ⋅ 31
2.7 Multi-agent scheduling ⋅ 38
2.8 Conclusions and research questions ⋅ 39

3 Measuring �exibility ⋅ 41
3.1 ¿e need for �exibility ⋅ 42
3.2 Flexibility of an stn ⋅ 43
3.3 Applications ⋅ 54
3.4 Conclusion and discussion ⋅ 62

4 Distributing �exibility to improve robustness ⋅ 65
4.1 Motivation ⋅ 66

v

vi Contents

4.2 Methods for distributing �exibility ⋅ 69
4.3 Experiments ⋅ 72
4.4 Conclusion and discussion ⋅ 83

5 Sequential �exibility ⋅ 85
5.1 Motivation ⋅ 87
5.2 Constraint posting ⋅ 88
5.3 Task grouping ⋅ 95
5.4 Execution of grouped schedules ⋅ 100
5.5 Experiments ⋅ 101
5.6 Conclusion and discussion ⋅ 108

6 Discussion ⋅ 111
6.1 Research questions ⋅ 111
6.2 Research goals and further research ⋅ 114

Bibliography ⋅ 117

Summary in English ⋅ 123

Summary in Dutch ⋅ 127

Curriculum vitæ ⋅ 131

SIKS dissertation series ⋅ 133

List of Figures

1.1 Railway organizations in the Netherlands. ⋅ 4
1.2 Map of service and maintenance locations ⋅ 5
1.3 An example of the interchange method ⋅ 10

3.1 Computing an interval schedule ⋅ 52

4.1 In�uence of delay length on violations ⋅ 76
4.2 In�uence of the number of delays on violations ⋅ 77
4.3 In�uence of delay length on tardiness ⋅ 77
4.4 In�uence of the number of delays on tardiness ⋅ 77
4.5 Violations versus �exibility loss for equalized and predecessor-based

distributions ⋅ 79
4.6 Violations versus �exibility loss for equalized and successor-based

distributions ⋅ 79
4.7 Violations versus tardiness for equalized, maximal-�exibility and

predecessor-based distributions ⋅ 80
4.8 Violations versus tardiness for equalized, maximal-�exibility and

successor-based distributions ⋅ 80
4.9 Number of violations with guaranteed �exibility ⋅ 82
4.10 Tardiness with guaranteed �exibility ⋅ 82

5.1 Performance of task grouping for di�erent values of γ ⋅ 104
5.2 Commitment versus robustness ⋅ 105
5.3 Lateness versus number and average group task size ⋅ 107

vii

List of Tables

1.1 Classi�cation of scheduling situations ⋅ 11

4.1 Flexibility loss of the di�erent �exibility distributions ⋅ 74
4.2 Average performance for the di�erent �exibility distributions ⋅ 75

5.1 Summary of the psplib benchmark instances. ⋅ 102
5.2 Characteristics of grouped schedules for di�erent parameters. ⋅ 103

ix

List of Algorithms

2.1 Serial schedule generation ⋅ 27
2.2 Parallel schedule generation ⋅ 27
2.3 Floyd-Warshall’s all-pairs shortest-path algorithm ⋅ 35
2.4 Bellman-Ford’s single-source shortest-path algorithm ⋅ 36

5.1 Operation to group tasks together. ⋅ 97
5.2 ¿e task grouping algorithm ⋅ 99

xi

Introduction 

In this chapter, an introduction will be given to the research presented in this
thesis. ¿e research is part of the rolling stock life cycle logistics applied research
and development program funded by Dutch railway industry companies. We
will start this introduction with a bit of historical overview, to illustrate some
of the reasons why such a program is needed in what seems to be a mature and
well-developed industry. A er this, we will discuss the general structure and
operation of the railway organizations in the Netherlands. Having knowledge of
the context in which the research is performed is important, because this context
has a signi�cant in�uence on the direction of the research, and on the choices
which are made.

A er discussing the railway organizations, the research program of which
this research forms a part will be described, along with the problems and context
inspiring the research. ¿ese problems will then be used to formulate a set of
research goals that are used to guide the research in this thesis.

1.1 A bit of historical context

Before turning to an explanation and motivation of the exact research presented
in this thesis, we start by taking a step back, to examine some of the historical
aspects of railway organizations, in general, and applied to the Netherlands in
particular. We do this to answer a question the reader might have about the
why of research on railway asset maintenance operations: what is the necessity
of performing this research, besides the obvious one of wanting to continually
improve upon the state of the art?

¿is is a valid question, since there is a long and rich history of railway
operations. ¿e earliest known evidence of railway operations dates back to
the 6th century bc in ancient Greece, in the form of a 6 km stretch of railway
used to transport boats in Corinth (Lewis, 2001). Starting in the 16th century,
narrow-gauge railways started to see a lot of use in themining industry (Agricola,
1556). But the real breakthrough came in the form of the steam engine. Early
steam engines used low-pressure steam, which made them large, bulky, and
unsuitable for non-stationary use. ¿e beginning of the 19th century saw the

1

2 1. Introduction

invention of high-pressure steam engines in Great Britain by Richard Trevithick,
among others (Kirby et al., 1956, p. 175–177). ¿is led to a rapidly developing
railway industry: in the 1950s more than 7 000 miles of track had been laid in
Britain alone (Wolmar, 2009, p. 99).

¿e railway sector is a mature industry, in part due to its age, and this would
indeed suggest that the problem of maintaining railway assets has been studied
extensively. But if we examine the more recent history of, in this case, Dutch
railway operations, an important change in operations is currently occurring.
In the past, the Dutch national railways developed rolling stock in very close
cooperationwithDutch industry. If we restrict ourselves to train sets, this already
started with the development of the �rst electrical train set in 1924 (Mat’24, 259
coaches produced in total), and continued with the development of the �rst
streamliner train sets (the diesel-electricalMat’34, as well as the electricalMat’35,
Mat’36 and Mat’40, totalling 508 coaches). For all of these train sets, the Dutch
railways collaborated closely with the Dutch companies of Werkspoor, Allan
and Beijnes in both design and construction (van Gestel et al., 1992, 1989).

¿is trend continued a er the war, which saw a lot of engines and train sets
being con�scated, not to be returned, or outright destroyed. ¿e new train series
Mat’46 was developed to replenish the supply of rolling stock (418 coaches total),
together with an e�ort to electrify a major part of the Dutch railway network.
Again, Werkspoor, and to a lesser extent, Allan and Beijes, were involved. Both
1954 and 1964 saw the introduction of newly designed train sets (Mat’54, 428
coaches, and Mat’64, 616 coaches), with Werkspoor as the main supplier. Due
to capacity problems, part of the production at Werkspoor was outsourced to
Düwag (sold to Siemens in 1989), in Germany. In 1972, Werkspoor ceased its
activity in the construction of railway stock, and its activities were taken over
by Talbot (taken over by Bombardier in 1995) in Germany (van Gestel et al.,
1997a,b).

More recent train sets developed in close cooperationwith theDutch railways
are the series sgm (Talbot, 1975, 240 coaches), icm (Talbot, 1977, 482 coaches),
dd-ar/ddz (Talbot, 1991, 308 coaches) and v-irm (Talbot/Bombardier, 1994 and
later, 872 coaches). Note that all these series, from Mat’24 all the way to v-irm,
were developed in cooperation with, and exclusively for, the Dutch railway. ¿e
year 2009 therefore marked an important change, with the introduction of the
slt (Bombardier/Siemens, 648 coaches). At �rst glance, this seems to be a train
set developed by familiar companies: Bombardier acquired Talbot, whichwas the
company to take over the activities of Werkspoor in ’72, and Siemens acquired
Düwag, which was tasked with producing a part of the Mat’64 train series. A
key di�erence however is that the slt series is an “o� the shelf ” train set, so to
speak: it is based, in large part, on the German train set br 425, developed by
Siemens and Bombardier (van Gestel et al., 1997a, RailWiki (ddar, virm, slt)).

¿is change in acquiring rolling stock—from actively cooperating with in-
dustry in the speci�cation of requirements and design, towards a role as buyer
of an existing design, albeit with adaptations—also brings important changes
towards maintenance operations (van Dongen, 2011). An evident one is the
gaining of technical knowledge required to perform maintenance. Cooperating

1.2. Railway organizations 3

in the development of a train set leads to a large build-up of technical knowledge,
whereas, when buying an existing design, one has to rely on the manufacturer of
that design to impart technical knowledge on maintenance engineers. A some-
what more subtle point is the interaction between train design and maintenance
capabilities: the capabilities of the maintenance organization can have in�uence
on design choices. Familiarity with certain procedures will be re�ected in design
choices, which will ease the complexity of maintenance operations.

Compounding the situation above is the increase in technical complexity of
trains. Due to technical progress, trains are computerized more and more, and
contain highly complex electrical systems for functions like traction, braking
and current conversion and control—systems that used to be largely mechanical
in nature in the past. In addition, more and more systems of a facilitating nature
are present in a train: hvac systems, passenger information systems, on-board
internet.

In light of the trends of buying existing train designs, and the increasingly
complex technical nature of these systems, it is evident that an applied research
and development program focused on the changing maintenance operations sur-
rounding these trains has merit, for more than the usual reason of a continuous
improvement upon the current state of the art—there is a clear change in the
environment in which maintenance operations take place.

1.2 Railway organizations

Another important part of the environment of a maintenance organization is
the system of railway organizations around it. To gain a better understanding of
how NedTrain operates, we look at how the system of railway organizations in
the Netherlands is structured. In Figure 1.1, the major railway organizations in
the Netherlands are depicted, together with their relationships.

It is important to keep inmind that this organizational structure has been sub-
ject to some large changes throughout history. As in many European countries,
the railway industry initially consisted of several di�erent pioneering compa-
nies. Gradually, these companies consolidated through a series of mergers and
take-overs, leading to the establishment of the Nederlandse Spoorwegen (NS, the
Dutch Railways), starting as a rate harmonization collective, which transformed
to an interest group in 1917, and to a state-owned company in 1938. ¿is process
started to reverse again in the period between 1995 and 2002, when the European
trend of privatization emerged, ending in the current situation.

In this situation, the railway infrastructure is organizationally separated
from the companies using it. All infrastructure is owned by ProRail, which is
still a state-owned company. ProRail is responsible for ensuring railway safety,
managing the railway timetables for all combined tra�c, and for infrastructure
maintenance and construction. Actual maintenance and construction work is
not performed by ProRail itself, but by several subcontractors working under
directions of ProRail. Examples of subcontractors used are Strukton, BAM and
VolkerRail.

4 1. Introduction

Infrastructure

ProRail
traffic control and infra-
structure management

Subcontractors

Strukton BAM

VolkerRail etc.

Passenger transport

NS Group

NS Stations
stations
& shops

NS Reizigers
NS Int’l
Abellio

NedTrain
maintenance

Veolia Arriva Connexxion

EETC Syntus

Railfreight

Captrain ERS Railways

DB Schenker RRF

ITL KombiRail

Figure 1.1
Railway organizations in the Netherlands.

NedTrain is a part of NS Group, which is the largest railway operator in the
Netherlands. NS Group can be decomposed in three important parts: railway
station exploitation, train maintenance and of course passenger transportation.
¿e railway station exploitation is performed by NS Stations. ¿is division is
tasked with the design and construction of new railway stations, the renovation
and modernization of existing railway stations, and with the managing of, for
example, shop concessions in the larger railway stations.

¿e majority of passenger trains running on the Dutch railway network are
operated by NS Reizigers (nsr). Other NS Group subsidiaries active in this �eld
are NS International, which operates international and high speed lines, and
Abellio, which operates some railways in the United Kingdom and in Germany.
Other passenger train operators active in the Netherlands are Veolia Transport,
Arriva (part of Deutsche Bahn), Connexxion, Syntus (partially owned by NS)
and Euro-Express Treincharter (eetc, operating several seasonal international
trains). Other users of the railway network are the various railfreight operators,
such as Captrain (owned by sncf, the national railway company of France), DB
Schenker Rail (owned by Deutsche Bahn, of which the former NS Cargo is now
part), ers Railways, and Rotterdam Rail Feeding.

¿e other company in this group is NedTrain, which performs rolling stock
maintenance. NedTrain is currently contracted to perform maintenance for the
rolling stock used by nsr and NS International. ¿e �eet used by these two
divisions has a size of around 3000 passenger carriages, of which some 250 are
under some form of maintenance at any one time. ¿ese maintenance activities
are scheduled with a time horizon of roughly two weeks, in which somewhere
between 20 and 30 trains are serviced in a single workshop, with approximately
40 tasks per train, resulting in a schedule containing between 800 and 1200
tasks.

Maintenance operations are spread out over 37 locations throughout the
Netherlands (see Figure 1.2 for amap). A distinction can bemade between service
locations and workshop locations; both perform di�erent types of maintenance.

1.2. Railway organizations 5

Maastricht

Onnen

Leidschendam

W
at

er
gr

aa
fs
m

ee
r

Eindhoven

Heerlen

Venlo

Vlissingen

Roosendaal

's Hertogenbosch

Leiden

Rotterdam

Dordrecht

Utrecht

Am
er

sf
oo

rt

Alkmaar

Den Helder

Enkhuizen

Haarlem

Hoorn

Hoofddorp

Lelystad

Zutphen

Deventer

Arnhem

Nijmegen

Zwolle

Hengelo

Enschede

Workshop location

Service location

Den Haag

Figure 1.2
Amap of the Netherlands, showing all (passenger) railway connections. All service and maintenance locations of
NedTrain are marked on the map.

6 1. Introduction

• At a service location (‘servicebedrijf ’ (SB) in Dutch) day-to-day maintenance
is performed. Such maintenance consists of cleaning, safety checks and
minor repairs, which are usually performed overnight in an single shi of
eight hours. Service locations are marked with small circles in Figure 1.2.

• At a workshop location (‘onderhoudsbedrijf ’ (OB) in Dutch) periodic main-
tenance is performed. Roughly every three months, a train undergoes a
mostly �xed set of preventive and corrective maintenance actions. ¿e usual
duration of such maintenance is approximately three days. Trains that break
down in service and cannot be repaired at location are also sent to service
locations. In Figure 1.2, workshop locations are marked with small squares.

Workshop locations are also used to perform refurbishments. Such
refurbishments are only executed once or twice in the lifetime of a train, to
signi�cantly extend its usable life.

¿e core task of NedTrain is guaranteeing �eet availability in the broadest
sense of the word. Firstly, this means that trains should have as few breakdowns
during service as possible. To ensure this, NedTrain has to focus on the quality
of their maintenance work. ¿e time at which maintenance is performed is im-
portant as well: a train should not be le running too long without maintenance,
since this raises the risk of a breakdown, lowering availability. On the other hand,
frequent maintenance has a negative impact on �eet availability as well. A second
aspect impacting availability is the number of trains undergoing maintenance at
the same time, and the length of the maintenance visits. If maintenance can be
performed quickly, fewer trains will be out of service for maintenance simulta-
neously, increasing availability for passenger transport. Such an increase might
mean that fewer trains are needed to guarantee a certain passenger transport
capacity. But, note that short maintenance times are only worthwhile if they can
be relied on: otherwise, the schedule of nsr will be disrupted, or insu�cient
passenger transport capacity will be available, resulting in �nes for NedTrain.

Maintenance activities are largely scheduled by hand. ¿is currently is a
feasible approach, since (scheduled) maintenance takes place only every three
months, and it is possible to schedule these activities with a lot of slack. In such a
three-monthly visit, a lot of tasks are clustered in a single visit. Durations of the
individual tasks that need to be performed in these visits are uncertain, but the
number of tasks is large, which reduces the variance. Combined with the allowed
slack in scheduling, this results in a feasible mode of operation. If this slack is
not enough, as a last resort it is sometimes possible to omit certain maintenance
activities.

However, there is a push for higher e�ciency, caused by various desires in
the organization with respect to maintenance operations:

• ¿ere is a desire to fragment maintenance visits into multiple, smaller, visits,
which can then be scheduled in o�-peak periods, so that more rolling stock
is available at peak periods.

1.3. Research program at NedTrain 7

• ¿ere is a desire to increase the e�ciency of maintenance operations by
reducing slack, so that a train in the workshop has less idle time.

• And lastly, there is pressure to avoid the last resort option of omitting activi-
ties.

To be able to support these wishes, it is important to have automated systems
that can support the scheduling of maintenance activities.

1.3 Research program at NedTrain

¿e previous two sections outline some of the changes NedTrain is facing with re-
gard to itsmaintenance operations. ¿e acquisition procedure of rolling stock has
changed—from a cooperation between operator and constructor, where knowl-
edge was transferred in both directions, towards a buyer/seller-relationship in
which knowledge is shared only reluctantly. ¿is change introduces new chal-
lenges in the �eld of maintenance: the structure, tooling or knowledge of a
certain maintenance organization might be ill-suited for the maintenance proce-
dures as devised by the constructor. ¿e scheduling of maintenance activities
is also faced with new challenges due to the changing environment: the desire
to split the large maintenance visits into multiple smaller visits increases the
importance of having accurate and �exible schedules.

In an e�ort to address these problemsNedTrain has initiated a broad research
e�ort. ¿e goal of the research program is to enable and support NedTrain in
being a leading rolling stock maintenance company (Huisman, 2009). ¿e
direction is governed by the key performance indicators for the �eet:

• total cost of ownership, or life cycle cost;
• availability of su�cient transport capacity;
• reliability of transport; and
• quality of transport.

¿e program is divided into three separate studies, which are closely interrelated.
¿e division is made using the various time scales of the processes involved in
the procuring, supporting and maintaining of rolling stock, and separate studies
are performed on strategic, tactical and operational aspects:

strategic At the strategic level, the decisions with the longest time scales are
made. ¿ese are decisions on the buying of rolling stock and their speci-
�cation—typically, rolling stock lasts about three to four decades, so that
decisions on this level can have a long-lasting impact on performance levels.
Another long-term strategic decision concerns the location of maintenance
workshops and the available equipment.

tactical With a time scale of about one to �ve years—between the strategic

8 1. Introduction

and operational level—the tactical level concerns the allocation and man-
agement of spare parts, human resources and maintenance tasks. With the
introduction of new rolling stock comes the option of contracting out some
of the maintenance work to the manufacturer. To evaluate the use of such
an option, decision makers need to have a good understanding of how such
changes in the supply chain in�uence the key performance indicators.

operational ¿e individual jobs where the actual maintenance work on the
rolling stock is performed lie on the operational level. ¿e scheduling of these
jobs is highly dynamic, owing to the dominant policy of condition-based
maintenance: parts are only repaired or replaced once they are defective or
once their condition has deteriorated below a certain threshold. ¿is creates
unforeseen �uctuations in workload and spare parts requirements, which
are currently dealt with by having su�cient bu�er stock, and by having a fair
amount of slack in the maintenance schedule.

¿e strategic aspects are investigated at the University of Twente, where research
is performed on assessing the supportability, in terms of maintenance and lo-
gistics, when acquiring new rolling stock (Parada Puig et al., 2011), and on the
decision to repair certain components of the train in the workshop itself, or
to replace them, and repair them in another more specialized shop. Tactical
aspects are investigated at the Technical University of Eindhoven, in the form of
a framework for spare parts planning and control (Arts, 2013).

¿is thesis will treat the last part, the operational aspects of maintenance.
First, an overview is given on the current situation and practices, since these
(partially) dictate some of the constraints on any approach used to solve the
problem.

1.3.1 Operational aspects of maintenance

In the current situation, the maintenance workload for each workplace is set in
advance in cooperation with nsr, and depends on the schedule of the rolling
stock. nsr decomposes its schedule into three di�erent levels:

rolling stock unit At the lowest level are the schedules of the rolling stock units
themselves (‘materieeleenheid’). Each such unit is (for practical purposes)
indivisible, and uniquely identi�ed by a number.

path Apath, sometimes (confusingly) called train, is the smallest indivisible task
a unit can carry out. A regular path connects two major nodes in the railway
network together and is used for the actual transport of passengers. ¿ere are
alsomaintenance paths, these lead from and to maintenance facilities. Each
path is to be executed by a rolling stock unit of a speci�ed type. Note also that
only one unit is to be assigned to each path. If passenger �ow dictates higher
capacity than a single unit can provide, the schedule contains additional
paths departing and arriving at the same time in the same locations.

1.3. Research program at NedTrain 9

circulation ¿e circulation (‘omloop’) is at the top of the scheduling structure.
¿ey connect paths together, such that they can be used to allocate the rolling
stock units. Two paths can be connected to each other in a circulation if the
arrival station of one path is identical to the departure station of the other,
and if the arrival time precedes the departure time. Each circulation has a
length of roughly three months, and has a maintenance path at the start and
at the end, such that timely maintenance is automatically performed.

As an example, take the 1723 train; this is the 07:08 intercity service departing
at¿eHague Central Station, arriving at Enschede at 09:32. In the train schedule,
this train is connected to some other train, departing from Enschede a er 09:32.
Such a pair of trains (t , t) is called a (regular) transition (Maróti and Kroon,
2007): both t and t are planned to be carried out by the same rolling stock unit,
and t is the earliest task a er t. In this fashion, a chain of trains is formed into
a circulation. ¿e rolling stock type of these trains (and hence of the circulation)
is icm (‘Intercity-materiaal’). ¿e 4011 is an example of such a unit, and could be
assigned to execute the train services in this circulation. Since the usual length of
a circulation is about three months, ending in a visit to a maintenance location,
each rolling stock unit visits a maintenance location every three months if the
schedule is executed without any disturbances.

In practice however, this rarely happens. Delays cause disturbances, which
then might cause material units to be switched to a di�erent circulation. ¿ere-
fore, it happens o en that a unit that needs maintenance has no maintenance
path scheduled in its circulation at that time. Additionally, when breakdowns
occur, a unit might need to undergo extra maintenance at the earliest possible
opportunity. To schedule maintenance visits, the circulation is modi�ed with in-
terchanges. For this, a small number of regular transitions n is considered, of the
form (t i , t′i) with  ≤ i ≤ n, where the arrival stations of all trains t i is the same,
such that the time intervals between arrival and departure of all trains overlap.
Two train units i and j participating in these transitions can be interchanged, by
removing their regular transitions and adding two custom transitions (t i , t′j)
and (t j , t′i). By extending this idea to more than two trains, and by applying it in
more than one location, interchanges can be added to divert rolling stock units
needing maintenance to a maintenance path in time. An example is depicted
in Figure 1.3: Some paths (the thick lines) on (parts of) three circulations (the
thin lines) are displayed. ¿e rolling stock unit assigned to the top le path has
developed a defect, and custom interchanges (the arrows) are added, to move
the unit to the path on the lower right, which leads to a maintenance location. It
must be noted that this approach only works for certain non-fatal defects, since
the rolling stock unit must still be capable of executing the passenger service of
the path leading towards the interchange to the maintenance path.

While the intricacies of how a rolling stock unit arrives at the maintenance
location are not the main focus of this research, it is important to keep some
of the details in mind. ¿ey impose some additional constraints on how the
problem is solved. Predictions on when units will visit a maintenance location

10 1. Introduction

unit w/ defect

maintenance path

time

Figure 1.3
An example of the

interchange method,
where one rolling stock

unit is routed to a
maintenance path

(adapted fromMaróti
and Kroon, 2007).

are based on the circulation they are currently running on. ¿is applies to
unscheduled maintenance work as well (ebk, ‘extra binnenkomst’ in Dutch),
and in this sense, unscheduled maintenance is scheduled as well, but only at a
very late moment. ¿e circulation method also highlights the importance of
meeting the deadlines: if the maintenance is not �nished in time, the unit cannot
depart the maintenance location to resume its service. If maintenance is not
ready in time, an interchange can be performed by switching the unit scheduled
for departure with an equivalent unit of the same time which might be �nished
earlier than planned.

1.3.2 Scheduling of maintenance

¿e actual scheduling of maintenance jobs is currently a labor-intensive task.
¿e base schedule is the same for every week. It contains arrival and departure
time of rolling stock units of a certain type, dictated by the circulations which
pass through a maintenance location. Using the type of the rolling stock unit, a
generic set of tasks is included for each unit. Roughly two weeks in advance, the
exact unit which will arrive in a slot is known: around this time a unit needing
maintenance is routed to a circulation sending it to amaintenance location in one
or two weeks time, using the interchange method described above. Additionally,
it is ‘�agged’; this means that this unit should not partake in any interchanges,
since this would disturb its path towards the maintenance facility. A disturbance
this late could cause di�culty adjusting the path back using interchanges, to
prevent this from happening the �agging method is used.

If problems have been reported for this unit, or if part of the maintenance
of last time was not completed, some maintenance tasks are known in advance.
¿e rest of the tasks to be performed is usually not known in advance. ¿is
might seem odd, since there is obviously a maintenance plan for each rolling
stock series describing which tasks need to be performed at which interval.
¿e di�culty however is that the tasks in this plan are o en loosely de�ned in
terms of either time or resource requirements. ¿e time requirements might
change with the amount of resources allocated to the tasks, or with the type
of resources allocated. Time requirements might also be location-dependent:
at one workshop, there might be more experience with some task, leading to
lower time requirements. But the biggest problem is that most maintenance
tasks are condition-based, and the condition of the rolling stock unit is generally

1.3. Research program at NedTrain 11

No uncertainty Uncertainty

No human recovery Smooth shop Stress shop
optimize support reactive scheduling

Human recovery Social shop Sociotechnical shop
schedule as advice schedule as framework

Table 1.1
A classi�cation of
scheduling situation
based on uncertainty and
human recovery (Wiers,
1997)

not known in advance. ¿ese tasks generally have the form of an inspection,
followed by some (conditional) corrective action. Consequently, this leads to
uncertainty with respect to the time needed to execute the task, and uncertainty
with respect to the resources required, in terms of personnel, equipment and
o en parts as well. Collectively, the issues described above can be referred to as
task uncertainty, and form one part of the scheduling problem.

Schedulers currently allocate workplace resources manually (i.e., tracks,
possibly of special type, and personnel of di�erent types) to the various (high-
level) tasks in the base schedule. Any information on the actual tasks to be
performed is of course used, but o en, little is known and the schedulers have
to rely on their own expertise to know how many maintenance engineers are
needed to ensure a task is completed on time. Problems are compounded by the
fact that the spare capacity that is theoretically available (per the base schedule
dictated by the train paths) is usually fully used by unexpected extra arrivals. ¿e
schedulers must also contend with unexpected capacity changes, for example
due to personnel taking sick leave. ¿ese issues form the second part of the
scheduling problem, resource uncertainty. Note that the task uncertainty also
contains an uncertainty with respect to resources. ¿e di�erence is that the
resource uncertainty caused by task uncertainty pertains to the resource usage,
as opposed to resource availability.

1.3.3 A classi�cation of scheduling situations

With the knowledge of some of the practical aspects of maintenance scheduling
in the NedTrain workshop, we now turn to the work ofWiers (1997), in which the
interaction between (automated) scheduling systems and human scheduling is
analyzed. Wiers uses the dimensions of uncertainty and human recovery are used
to distinguish between four stereotypical scheduling situations. Here, uncertainty
refers to task uncertainty as discussed above: incomplete information about the
tasks that need to be performed. Human recovery refers to the ability of the teams
executing the schedule in the workshop to compensate for this uncertainty, by
utilizing �exibility present in the schedule. Wiers makes a distinction between
the ability of operators to correct for uncertainty (human recovery) and the
authority they have to do so (autonomy).

In Table 1.1, the four stereotypical scheduling situations as described by
Wiers (1997) are shown. ¿e names of these situations refer to the distribution of
autonomy between the (central) scheduler, and the teams executing that schedule

12 1. Introduction

in the workshop. Each of the possible distributions has certain consequences for
the type of scheduling information system employed.

In the case of NedTrain, there is both a high uncertainty in the tasks to be
executed, as well as the opportunity for human recovery: given the autonomy,
the teams executingmaintenance tasks are o en able to adjust the schedule based
on information about the actual situation in the workshop. ¿e sociotechnical
shop is a good �t for this scheduling situation. In such a shop, schedules are
used as framework for execution. ¿ey are not executed exactly, so expensive
optimization of the schedule is to be discouraged.

1.3.4 ¿e future of maintenance operations: some requirements

¿e system as described in this section of the introduction is currently in op-
eration at NedTrain, and the research program of which this thesis forms a
part is intended to provide methods for future improvement in maintenance
operations. A reason for having a research program devoted to this improve-
ment is the change from in-house participation in the design phase of new train
sets to the procurement of train sets based on existing designs, as outlined in
Section 1.1. ¿e impact on the operational aspect of maintenance operations
is expressed in higher task uncertainty. Separately, another important change
to the operational aspect of maintenance operations currently being discussed
at NedTrain is o�-peak maintenance. Instead of taking a train out of revenue
service for two days every three months, it might be more advantageous to take
the train out of service for several shorter periods during those three months. If
these periods are restricted to fall within o�-peak times, this would lead to more
trains being available at peak hours. ¿is, in turn, would enable nsr to get by
with fewer total trains, which could be a substantial cost saving.

For this concept to be able to work, tight and quick scheduling is of the
essence. ¿e schedules need to be tight, because the o�-peak period is short. To
make good use of such a short period for maintenance, there should be little
slack in the schedule. Scheduling should also be quick: if disturbances cause
a di�erent set of trains to be at the workshop, it must be possible to adapt the
maintenance schedule for that day quickly.

Current scheduling systems employed at NedTrain are not quick and �exible
enough to adequately deal with the added requirements of o�-peak maintenance
operations. Assimilating new trains into the maintenance schedule is a time-
consuming process, which is currently made to work by utilizing the fact that
there is a lot of slack available to correct any deviations from the assumed work
load of each train. Hence, there is need for a so ware system based on smart
algorithms supporting the schedulers in a workshop. ¿e system should be
able to quickly form a work plan based on given information. ¿e scheduler
should be able to modify the resulting work plan, to take additional, implicit,
preferences and constraints into account. A complicating factor is the potentially
large processing time caused by the size and complexity of the problem. A
maintenance schedule usually covers two weeks of maintenance work, in which
between 20 and 30 trains are scheduled. Per train about 40 tasks are executed,

1.4. Research goals 13

using various resources, leading to a complex schedule containing between 800
and 1200 tasks.

An important requirement is that the work plan should be �exible, in the
sense that there is room for adaptation—it is unreasonable to assume that exact
task information is present before commencing work on a train. When this
information becomes available, for example if the need for extra work becomes
apparent a er an inspection has been performed on a certain component of
the train, we want to be able to integrate this task into the existing work plan,
without altering it. However, if an extra task, such as discussed above, or even
an extra train, needs to be added to an existing work plan, it is clear that the
desire for the plan to be unaltered will o en be an unreasonable assumption.
¿is leads us to the requirement of robustness: if the �exibility we have available
is insu�cient to integrate the extra tasks, we want the necessary adaptations to
the work plan to be as minimal as possible.

A last requirement is that the execution of the work plan by independently
working teams should be facilitated. Di�erent teams operate in the same work-
place concurrently—each teammight be performing maintenance operations on
a di�erent train. ¿e requirements of �exibility and robustness come into play
here as well. A team desires a certain measure of independence in executing its
part of the schedule, �exibility in the schedule is a property which can facilitate
this. Robustness, to counter the e�ects of the uncertainty in the schedule, is
especially important in a setting with multiple teams, as it is undesirable for
delays in one team to a�ect the other teams.

1.4 Research goals

¿e problems above sketch a dynamic environment in which a schedule continu-
ously evolves as new information comes in. Currently, the schedules contain a
fair amount of slack to cope with uncertain information and changing circum-
stances. Trains visit a workplace for maintenance for a longer period than strictly
necessary, which results in a sizeable number of trains being at a workshop at any
one time on which no maintenance work is performed. Workplace utilization
is therefore sub-optimal, but more importantly, fewer trains are available to
transport passengers. To satisfy a given transportation demand, more rolling
stock units are required. If, by reducing slack in the maintenance schedule, even
one train less has to be bought, this represents a substantial saving. In some
cases the available slack is still not enough to deal with an incident. In this case,
a workshop can opt to omit certain tasks. It depends on the type of task and on
safety regulations if this is possible. Schedulers start at a high level, with a base-
line schedule based on the schedule used by nsr. As more information becomes
available, this schedule is updated and re�ned, and resources are allocated to the
tasks to be performed.

While this approachwas satisfactory in the past, there is a demand to increase
the e�ciency of the scheduling process. Shorter maintenance times lead to
higher availability of the rolling stock, which in turn allows a smaller �eet to

14 1. Introduction

serve the same demand. As noted above, the cost saving of having a smaller
�eet is signi�cant. In the same vein, pilot studies are being conducted in which
the current, long, maintenance visit is replaced by several smaller visits to the
workshops—timed in such away to avoid the rush hour, in which �eet availability
demand is at its highest.

¿e scheduling process such as currently employed at NedTrain is based
on the requirement of having a fairly large amount of slack in the schedule to
be able to adapt to unforeseen circumstances. Additionally, it is a relatively
labor-intensive procedure, which involves a lot of manual work. Such a process
is well-suited if the tasks to be scheduled are of a static nature, but even in the
current situation this is not the case. ¿e timing of the depot visits is sometimes
uncertain, but also the exact set of tasks resulting from a visit can be uncertain:
inspection tasks can result in additional work. Frequent unexpected visits caused
by breakdowns create additional uncertainty. ¿e changing requirements to the
scheduling process will increase the load even more.

¿is leads us to the �rst research goal, on the scheduling process itself:

rg1 ¿e scheduling process employed in the NedTrain workshops relies on a
large amount of slack to keep unexpected events under control. In addition,
it is labor-intensive and in�exible. In what way can this process be at least
partially automated? Note that automation alone is not su�cient: the process
of constructing and adapting a schedule has to be quick enough to make it
part of an interactive process, and it has to be �exible, to be able to adapt to
the incomplete and changing nature of the environment.

Automation of at least part of the scheduling process is an obvious solution
to decrease the labor-intensive nature of the process. ¿is in itself can be a part
of increasing the �exibility of the scheduling process: if the process to generate
a schedule is quick, and if a user is able to in�uence the generation process by
asserting di�erent preferences, a set of di�erent alternative schedules can be
created. ¿is also coincides with the idea that not all of the preferences of what
constitutes a “good schedule” can be encoded in a formal way—some form of
user intervention will always be necessary.

Having a portfolio of automatically generated schedules gives a form of
�exibility: if unexpected events occur, switching to a di�erent schedule might
still result in meeting imposed deadlines, even if the slack in the schedule is to
be reduced. But this seems a rather roundabout way of solving the problem:
�exibility in the process of creating schedules itself is important, but another
element of improvement is the �exibility in the schedules itself. If a schedule is
very rigid, any change in one of the tasks necessitates a restart of the scheduling
process, to partially or completely adapt to the new situation. In contrast, if the
schedule is �exible as well, adaptation to such a new situation could be much
easier.

rg2 Schedules, by their nature, prescribe a certain way to execute a set of tasks,
giving rise to a form of rigidity. To be able to adapt to uncertain events it is

1.5. Outline and contributions 15

desirable to reduce this rigidity.

a) As a primary goal, we want to have a schedule which prescribes task
execution in a �exible way, such that we can adapt to changing events
without needing to revise the schedule, and without having to resort to
using large amounts of slack.

b) As a secondary goal, we want the resulting schedule to be robust: if the
available �exibility is not enough to be able to adapt to some events, we
want the unavoidable revisions we have to make to continue executing
the needed tasks to be as minor as possible.

A �nal challenge is the interaction between uncertainty and the structure
in which the schedule is to be executed. Multiple independent teams in the
workplace cooperate to execute a single schedule. Some amount of independent
control for the teams operating in a workshop is desirable, especially in light
of the sociotechnical shop scheduling framework as discussed in Section 1.3.3.
A form of dependence between the teams is inevitable however, as they make
use of shared resources to execute their tasks. ¿is leads to situations where
uncertainties in the schedule cause problems in one team to a�ect the other
teams as well.

rg3 ¿e need to use shared resources to complete tasks, combined with uncer-
tainties in the schedule negatively a�ects the independence of the teams in
the workshop. Our goal is to construct schedules such that there is more
isolation between the teams, in terms of disturbances in the execution of the
schedule in one team not a�ecting the other teams.

Summarizing the goals above, we want to devise a method with which sched-
ules can be created, based on a �exible process (rg1), where the resulting schedules
are both �exible, in the sense that they can easily be adapted (rg2a), and robust,
in the sense that they are resilient to the e�ects of uncertain events (rg2b). Addi-
tionally, we want to improve the isolation between independent teams in terms
of disturbances—a disturbance in one team should have no e�ect on other teams
(rg3).

1.5 Outline and contributions

In Chapter 2, we will start by examining existing research in light of the research
goals introduced above. It is shown that the scheduling problem at NedTrain can
be mapped to the Resource-Constrained Project Scheduling Problem (rcpsp),
a well-studied scheduling problem. Several methods for solving the rcpsp are
described, and as it turns out, the Precedence Constraint Posting method (pcp),
which uses the Simple Temporal Network (stn) as a �exible way of representing
a set of solutions to an rcpsp instance, seems an especially good �t in light of the

16 1. Introduction

�rst problem statement. Nevertheless, at the end of the chapter, several research
questions are formulated in response to the other research goals. ¿ese research
questions will serve as a basis for the following chapters.

In Chapter 3 a start is made in answering the second research goal, by ex-
amining how we can transform our intuitive notion of �exibility into a method
to formally measure the �exibility of an stn. It is shown that existing methods
do not take the full e�ect of dependencies between tasks into account, resulting
in an over-estimation of the available �exibility. We present a new method to
measure �exibility that does not su�er from this problem. ¿ismethod also gives
a partial answer to the last research goal, on isolating teams jointly executing a
schedule—it turns out that our method to measure �exibility also results in an
optimally decoupled schedule, which is a schedule in which constraints between
tasks belonging to di�erent teams have been replaced by constraints within the
team itself, without losing �exibility. ¿is work has been published in Wilson
et al. (2013a) and has received a Distinguished Paper Award at the International
Joint Conference on Arti�cial Intelligent, a major conference in the computer
science community.

Chapter 4 examines the other half of the second research goal, on how to
ensure that �exible schedules are robust as well. We examine di�erent ways of
using the available �exibility in an stn, and analyze the e�ect this has on the
performance in terms of the robustness of the schedule. It is shown that distribut-
ing the �exibility in di�erent ways can have a signi�cant e�ect on performance.
In particular, it is shown that sacri�cing some total �exibility to improve the
equality of distribution has a positive e�ect. ¿is work has been published in
Wilson et al. (2013b).

Chapter 5 looks at the second research goal in a slightly di�erent way. ¿e
idea of being �exible in how a schedule prescribes the execution of tasks has so
far been interpreted as being �exible in the temporal aspect of execution. Here,
we examine if it is possible to also be �exible in the sequential aspect of execution.
We show that it is possible to postpone some of the ordering decisions of creating
a schedule to the time of execution, creating a new strategy of being �exible
in the prescription of schedule execution. It is shown that this interpretation
of �exibility also leads to schedules that are robust, as described by the second
research goal. ¿is work has been published in Wilson et al. (2012).

Finally, Chapter 6 summarizes the results presented in this thesis. ¿e re-
search goals introduced in this chapter are analyzed again, using the information
and results from the preceding chapters. We conclude that the contributions
made by this thesis constitute a theoretical framework on which a practical
solution to these problems can be built. Nevertheless, while giving answers to
the questions raised in this introduction, many more questions can still be raised.
¿erefore, we brie�y discuss some of the possible avenues of future research
prompted by some of those questions.

Existing work 

In the previous chapter, the scheduling problem present at NedTrain was in-
troduced, and we formulated three problem questions. In this chapter we will
investigate existing scheduling research, with a focus on research that might help
in answering these questions. Since there is a very large body of research with
scheduling as the subject, we will start with formalizing the scheduling problem
such as it occurs at the NedTrain workshops. It turns out that this problem
maps very well to the Resource-Constrained Project Scheduling Problem, o en
abbreviated as rcpsp. ¿erefore, it is solution methods and algorithms for the
rcpsp towards which we will turn next. We will pay special attention to Simple
Temporal Networks (stns), as these can be used to represent rcpsp solutions
in a �exible way. Lastly, we will review the material discussed in the light of the
problem questions presented in the previous chapter, and research questions
will be formulated to address unsolved problems.

2.1 Resource-constrained project scheduling

Let us �rst consider the basic scheduling problem at NedTrain. It consists of a set
of trains arriving and departing at a given time, with a set of maintenance tasks
to be performed on each of those trains. Some ordering constraints might be
present on these tasks, such that, for example, a cleaning task is carried out last,
and to complete a task one or more resources may be required, such as engineers
or special tools. ¿e aim is to �nd a time assignment to these tasks such that
all tasks are completed before the train departs, any ordering constraints are
respected, and the capacity of the available resources is never exceeded.

As already mentioned in the introduction, the Resource-Constrained Project
Scheduling Problem (rcpsp, see Hartmann and Briskorn (2010) for a good
overview of the basic problem and a lot of common extensions andmodi�cations
to it) closely resembles this problem. Additionally, it is a widely-studied problem,
both in operations research and in other research disciplines. ¿e basic rcpsp
considers a single project to be scheduled. ¿e basic rcpsp consists of the
following elements:

17

18 2. Existing work

tasks A set T of n tasks to be executed,1 where each task t i ∈ T has an associated
length l i ∈ R. Each of these tasks maps to a maintenance operation to be
carried out, in the case of NedTrain. ¿e lengths will be an approximation
in this case, since it is not always known in advance if a repair is needed, or
how long the repair will take. Note that we will restrict ourselves to using
deterministic task lengths.

precedences Aprecedence relation ≺ inducing a partial order on T ; the intuitive
interpretation of t i ≺ t j being that t i has to be �nished before t j can start.
¿e precedence relation is used to enforce certain orderings on maintenance
tasks: for example, one taskmight specify the removal of a certain component,
such that another component becomes accessible on which the second tasks
has to be performed.

resources A set R of m renewable resources, where each resource rk ∈ R has
integer capacity cap(rk) ≥ . ¿ese resources are used to model personnel
and special tools, both with limited availability, with which the maintenance
tasks are to be performed.

In some formalisms a distinction is made between renewable and con-
sumable resources. Renewable resources become available again a er a task
using them has completed, and can be used to model, for example, engineers
and tools. Consumable resources are lost upon completion of a task, and
can be used to model materials that are used in the construction of some
artefact. In our work, we assume such materials are always readily available
in a warehouse, and as such we will not include them in the model—we will
be dealing with renewable resources only.

resource consumption Lastly, the tasks need to be connected to the resources
they require: for each rk ∈ R and t i ∈ T , req(t i , rk) ∈ N speci�es the amount
that task t i requires of resource rk to be executed. If this number is zero, this
particular resource is not required.

In addition to the elements of the basic rcpsp, a release time s i ∈ R, and a
due time d i ∈ R are associated with each task t i , which are used to model, for
example, the time at which the train enters and leaves the workshop. To model
multiple trains, it can at times be convenient to use the Resource-Constrained
Multi-Project Scheduling Problem (rcmpsp), which is in essence a group of
rcpsps, whereby the set R of resources is shared among all projects. Each of
the projects then represents the maintenance work for a single train, and the
individual projects have release and due times that represent the times at which
the trains enter and leave the workshop.

A more formal de�nition of the scheduling problem at NedTrain can now
be formulated as follows:

1 Some scheduling formalisms allow the pre-emption of a task, meaning that the execution of
a task can be stopped when it is in progress, and resumed at a later time, sometimes at the cost of
slightly longer total execution time for that task. We will however assume that pre-emption is not
possible—once a task has been started, it can not be stopped before its completion time.

2.1. Resource-constrained project scheduling 19

De�nition 2.1 An instance of the resource-constrainedmulti-project schedul-
ing problem with release and due times can be speci�ed using a tuple
⟨T , ≺, R, l , s, d , req⟩, where T = {t , . . . , tn} is a set containing n tasks, ≺
a precedence relationship inducing a partial order over the tasks in t, R a set of
k resources rk , with cap(rk) ≥  specifying the capacity of that resource. ¿e
function l ∶ T → R de�nes the length of each task t i ∈ T , and the functions
s ∶ T → R and d ∶ T → R de�ne release times and due times for the tasks.
Lastly, req ∶ (T , R) → N speci�es the amount each task uses of the available
resources in R.

Example 2.1 Consider the (�ctional, and very short) maintenance visit of
train 8604. ¿is train will arrive in the workshop on Monday morning, at
08:00, and needs to return to revenue service at 12:00, a er the tasks that are
described below are performed:

• An exchange of the air compressor, due to air pressures being out of
tolerance. Besides an engineer, a winch is required to do the heavy li ing.
Roughly one hour of work is required.

• A routine check of the brake pad thickness, which takes 45 minutes if two
engineers work together.

• A veri�cation of the proper operation of the atb system (“automatische
treinbeïnvloeding”, a train protection system), which is to be performed
by an engineer by using specialized atb testing equipment on the train.
¿is check is expected to take around 30 minutes.

¿is can be modeled as an instance of the rcpsp, with a set T = {t , t , t}
of three tasks, for, respectively, the compressor exchange, the brake check,
and the atb veri�cation. If temporal information is speci�ed in minutes,
relative to Monday morning 08:00, we have s = s = s = , and d = d =
d = , to model release and due times such that the tasks take place when
the train is in the workshop. We set l = , l =  and l =  to model
the lengths.

Several resources can be identi�ed in the example: maintenance engineers,
a winch to do heavy li ing on the compressor, and atb test equipment. To
model this, we set r = , to indicate two engineers are available, and r = r = ,
to indicate one winch and one piece of test equipment. ¿e resource consump-
tion of the three tasks is modeled by setting req(t , r) = , req(t , r) =  and
req(t , r) =  for the engineers, and req(t , r) =  and req(t , r) =  for the
winch and test equipment, respectively.

Additionally, since the atb system is tightly coupled to the brake system,
there is a precedence constraint between the brake check and the atb check:
the latter can only be performed a er the brake check has been completed, so
we have t ≺ t.

20 2. Existing work

¿e goal of the rcpsp is to �nd a schedule for an instance of the problem.
Such a schedule is a function σ ∶ T → R, which assigns start times to all the
tasks t ∈ T , which satisfy all the constraints in the problem: release and due
times are respected, precedence relationships hold, and resource capacities are
not exceeded.

De�nition 2.2 A solution to an rcmpsp ⟨T , ≺, R, l , s, d , req⟩, also called a
schedule, is a function σ ∶ T → R assigning a start time to each task in T , such
that all the constraints in the problem are satis�ed: For each t i ∈ T , s i ≤ σ(t i) ≤
d i + l i , such that release and due times are satis�ed; for each tuple t i ≺ t j
we have σ(t i) + l i ≤ σ(t j), such that the precedence constraints are satis�ed;
and lastly, for any resource rk at any time point τ,∑t i∈active(τ ,σ) req(t i , rk) ≤
cap(rk), where active(τ, σ) = {t i ∶ τ ∈ [σ(t i), σ(t i) + l i]}, such that the
capacity of the available resources is never exceeded.

Example 2.2 Continuing the example started above, we note that the three
tasks cannot be executed at the same time, as this would require four engineers,
and only two are available. A solution is to start with t as soon as the train
enters the workshop, so we set σ(t) = . ¿e other two tasks can then be
started a er t has �nished, so we set σ(t) = σ(t) = σ(t) + l = . Now, σ
assigns starting times to all tasks, and we have a complete solution. Note that
this solution also satis�es the precedence constraint t ≺ t.

¿ere are many di�erent schedules that can solve a particular instance. In-
stead of simply treating the rcpsp as a constraint satisfaction problem, in which
we aim to �nd one single solution that satis�es all constraints, the rcpsp is
o en turned into an optimization problem, in which an objective function is
used to �nd an optimal solution. In nearly all scheduling models, the vector
(σ(t) + l , . . . , σ(tn) + ln) of completion times is used as input for the objective
function κ ∶ Rn → R that maps these vectors onto a one-dimensional scalar.
Many authors enforce a regularity condition

(σ(t) + l , . . . , σ(tn) + ln) ≤ (σ ′(t) + l , . . . , σ ′(tn) + ln) ⇒
κ(σ(t) + l , . . . , σ(tn) + ln) ≤ κ(σ ′(t) + l , . . . , σ ′(tn) + ln) (2.1)

on the objective functions used (Bartusch et al., 1988) that states that the objective
function must be nondecreasing in the completion times of the tasks, i.e., higher
completion times can never result in a lower objective function.2 Many di�erent
objective functions have been used in the literature (Hartmann and Briskorn,
2010), and for the common ones this condition holds:

makespan ¿emost basic and widely encountered objective function optimizes
the makespan of the solution, which is usually de�ned as the completion
2If earliness is to be penalized as well, for example in just-in-time production facilities, the

objective function is no longer regular (see Baker and Scudder (1990) for a review of such objective
functions).

2.1. Resource-constrained project scheduling 21

time of the latest task that is executed:

makespan(σ , T) = max
t i∈T

(σ(t i) + l i)

In multi-project problems, this objective function can be modi�ed to opti-
mize the average makespan of the individual projects.

lateness/tardiness If the constraints of the problem can not all be satis�ed, a
common strategy is to minimize the total lateness of the project. First, we
de�ne L i = σ(t i) + l i − d i as the lateness of task t i when executing schedule
σ . ¿en, we can de�ne the lateness of a solution σ as

lateness(σ , T) = ∑
t i∈T

L i .

¿e tardiness objective is similar, the di�erence is that it cannot be nega-
tive:

tardiness(σ , T) = ∑
t i∈T

max(, L i).

resource-based A di�erent kind of objective looks at the resource usage of the
solution, usually combined with makespan minimization. ¿e idea is that
the capacity of the resources is optimized as well; the lower the capacity
needed to execute a certain solution, the less investment is needed to make
these resources available.

¿e situation at NedTrain can be compared best to the tardiness objective
function, with a slight di�erence: for each train that is delivered late, a �xed
penalty is given, which does not depend on the amount of tardiness.

¿e rcpsp is an NP-complete problem, since it is a generalization of the job
shop scheduling problem, for which NP-completeness has been proven (Garey
et al., 1976; Blazewicz et al., 1983). Despite this fact, we will still start with a
discussion of optimal methods to solve the rcpsp, since the NP-completeness
has not withheld numerous researchers to come up with new and innovative
optimal solution methods. A er this, we will turn to non-optimal methods,
using heuristics to arrive at high-quality solutions. Many of these methods
however still result in a �xed schedule, which is undesirable in the highly dynamic
environment at NedTrain. ¿erefore, we will also turn to methods using a
di�erent, more �exible representation of rcpsp solutions.

Our discussion of rcpsp solution methods will take place in light of the
speci�c criteria of the NedTrain workshop planning problem:

• ¿e �rst of these is the performance of the method, or, to be exact, its ability
to arrive at a solution within a reasonable time frame. ¿e size of the problem
is an important factor for this criterion: if we are to plan ahead for two weeks,
we need to plan maintenance activities for roughly 40 trains. ¿e number of
tasks per train is variable, but if we take 10 tasks as average (which is a low
estimate), the number of tasks to be planned is 400—a substantial number.

22 2. Existing work

Compounding this problem is the need for interactivity: as already de-
scribed, it is desirable to let a planner interact with the planning so ware.
For this to work, the method must be able to quickly solve the problem: it is
unrealistic to ask the planner to wait more than a couple of minutes.

• ¿e second important criterion is the �exibility of the method. Due to the
uncertain nature of the tasks to be planned, changes and incidents during
execution of the schedule are to be expected. ¿e �exibility requirement
represents the desire that the schedule be easily and e�ciently adaptable to
overcome the consequences of such changes and incidents.

2.2 Mixed Integer Linear Programming solutions

A traditional method to provide exact solutions to the rcpsp is to encode it as a
Mixed Integer Linear Programming (milp) problem, and to use a general milp
solver to �nd a solution. Many di�erent encodings have been suggested in the
literature over the years. Two important and very di�erent encoding types will
be discussed below:

• (–) time indexed formulations, using binary decision variables x i t such
that x i t =  if and only if task t i starts at time t; and

• �ow-based formulations, which involve binary decision variables x i j and
continuous start-time variables S i , such that x i j =  if and only if S i + l i ≤ S j ,
meaning that t i precedes t j .

Note that whereas the �ow-based formulations use continuous time variables,
the time indexed formulations are restricted to time points in N. In the context
of task scheduling this is usually not a big limitation, since the start times of
tasks are usually measured at the scale of minutes. Especially in combination
with uncertainty, higher accuracy is not necessary.

Many milp-formulations are sensitive to the size of the problem horizon.
¿erefore, a preprocessing step is o en used to �nd the bounds [est(t i), lst(t i)],
whereby est(t i) is the earliest start time of t i , before which t i can never start, and
lst(t i) is the latest start time, a er which t i can no longer start. ¿ese bounds
are used to limit the scope of the search for a solution, and are based on the
precedence constraints and release and due times of the original problem. ¿ey
can be found in polynomial time (Koné et al., 2013).

In the following sections we will give a brief overview of both time-indexed
and �ow-based methods.

2.2.1 Time-indexed formulations

In these formulations, decision variables are used that are indexed by discrete
time. ¿e classical formulation is due to Pritsker et al. (1969), in which there is

2.2. Mixed Integer Linear Programming solutions 23

only one type of decision variable, x i τ , indexed by time and task index; x i τ =  if
task t i starts at time τ.

To give an impression of the structure of the constraints involved, we will
discuss the constraint used to encode a precedence constraint. First, note that
there is only one τ such that x i τ = , for a certain i—this is enforced by another
constraint. A precedence constraint between t i and t j can then be formulated as

lst(t j)

∑
τ=est(t j)

τx jτ ≥
lst(t i)

∑
τ=est(t i)

τx i τ + l i if t i ≺ t j . (2.2)

Since there is only one value for τ for which τx jτ = , the le summation is in
fact equal to the currently selected start time for t j . Similarly, τx i τ + l i is equal
to the currently selected end time for t i . ¿erefore, this constraint ensures that
t j starts at or a er the �nish of t i . Other constraints of the rcpsp are encoded
using a similar strategy.

¿e decision variables are indexed by both time and task index, this means
that the number of decision variables scales with the size of the temporal horizon.
As a result, this formulation is highly sensitive to the (temporal) size of the
problem, since larger problems involve larger numbers of decision variables.
¿is problem is partially mitigated by the high quality of the linear-relaxation
bounds available (Artigues et al., 2008). InMöhring et al. (2003), a method based
on a time-indexed formulation is used to solve well-known benchmark instances
of up to 120 tasks. ¿e time horizon size is shown to be the dominant factor in
the run time, and not all instances of this size can be solved to optimality. Still,
instances with 120 tasks are relatively small compared to the scheduling problems
that have to be solved at NedTrain, making this class of methods impractical.
Even if instances could be solved within a reasonable time frame, we still must
deal with the uncertain nature of the execution environment at NedTrain. An
exact solution to the scheduling problem has �xed time assignments, any change
would invalidate the schedule, leading to a time-consuming re-computation.

2.2.2 Flow-based formulations

Formulations based on resource �ows, such as described by Artigues et al. (2003),
exploit the fact that, in any feasible solution, any task t i using some amount of
resource rk transfers some or all of this resource to some other, unique, task t j
following it, when t i is done executing. In a practical situation such as a main-
tenance workshop this is also very obvious: a resource such as a maintenance
engineer will move from one task to a distinct next task, given by the schedule.
¿e model uses a set of continuous start-time variables S i for each task, and
to model the �ow of resources, decision variables f i jk are introduced. ¿ey
denote how many units of resource rk are transferred from task t i to t j , a er
t i has �nished executing. ¿e �ow of resources originates and terminates in
two special source and sink tasks t and tn+, with zero length, for which we set
req(t , rk) = req(tn+ , rk) = cap(rk) for all resources.

24 2. Existing work

Again, we will not discuss all the constraints involved, but we will use the
precedence constraint as an example. In this case, variables x i j are used:

x i j =
⎧⎪⎪⎨⎪⎪⎩

 if t i ≺ t j
 otherwise.

(2.3)

¿ese variables are used in the constraint

S j − S i −Mx i j ≥ l i −M ∀t i ∈ T ∪ {t},∀t j ∈ T ∪ {tn+}, (2.4)

whereM is an arbitrary large integer, usually set to the scheduling horizon size.
If t i ⊀ t j , this reduces to S j − S i ≥ l i −M, which is always true, given the large
value of M. If t i ≺ t j , this reduces to S j − S i ≥ l i , ensuring that t j starts at or
a er the �nish of t i .

Since this formulation uses continuous-time variables for the start times of
the tasks, the temporal horizon scaling problem encountered with the previous
formulation does not occur. But this formulation also has its problems: it is
di�cult to �nd high-quality linear-relaxation (lower) bounds, making it hard to
solve for problems that are large in the number of tasks. Applegate and Cook
(1991) show some numerical results for job shop problems with 10 tasks and 10
resources (machines); di�erent cuts are discussed, but for all of them there is still
a large gap between the lower bound and the optimal value. ¿is formulation is
therefore mainly of use for instances with large time horizon, which cannot be
solved within a reasonable time frame by time indexed formulations (Koné et al.,
2013). Nevertheless, instances with large number of tasks still form a problem
for this formulation, and as the NedTrain problems are large in both number of
tasks and problem horizon, it is clear that �ow-based formulations are unsuitable
as well.

2.3 Branch and bound methods

Next, we will discuss branch and boundmethods, which, in contrast to encoding
the rcpsp as a set of constraints to be satis�ed by a general milp solver, explicitly
construct a solution in the form of a schedule. ¿e general form of the branch and
bound procedure is that of a search tree: at each point in the search procedure
where multiple choices are available, branches are created for all of these choices.
Using a backtracking procedure, all of these branches are eventually evaluated.
¿e other key part of the algorithm is the bounding part: before exploring a new
branch, a lower bound is computed on the solution quality that this branch will
result in. If the computed bound is higher that the currently known best solution,
it is certain that none of the solutions resulting from this branch can improve
upon the current solution, and the branch is not explored. ¿e combination
of these mechanisms guarantees that an optimal solution will be found (given
enough computational power), possibly without exploring all solutions explicitly
(Demeulemeester and Herroelen, 2002).

2.3. Branch and bound methods 25

2.3.1 High-level algorithm

A competitive branch and bound procedure for solving the rcpsp was proposed
byDemeulemeester andHerroelen (1992), based on the time incrementing depth
�rst search procedure proposed by Christo�des et al. (1987). In these procedures,
schedules are constructed incrementally: during the execution of the algorithm,
a part of the tasks is assigned a starting time. Using the time assigned to the
latest task, the set of tasks can be divided into three sets: �nished tasks, tasks in
progress, and un�nished tasks. In the set of un�nished tasks, certain tasks are
said to be eligible: these are the tasks for which all predecessors are �nished. ¿e
start times for the �nished tasks are temporary as well, in the sense that these
can be delayed at a later time.

¿e current partial schedule is then extended by selecting a task from the set
of eligible tasks. In some cases, there is a unique task, or a unique combination
of tasks, which can be scheduled directly. If this is not the case, a resource
con�ict is at the root of this: some combinations of the eligible tasks and tasks
in progress result in resource over-subscription. ¿is leads to branching in the
tree of solutions: a set of tasks is picked to be delayed, by adding precedence
constraints between the last scheduled task and this set. ¿is procedure is
repeated until all the tasks have been added to the schedule.

In some cases however, not the whole schedule has to be constructed: the
algorithm keeps track of a lower bound for the makespan, and if it can be proven
that the current branch will not improve on this bound, it can be abandoned.
¿e tree is then traversed upwards, to �nd a decision point at which alternative
choices are still available. ¿e choice made in the abandoned branch is undone,
and an alternative choice is made. If we manage to �nd a complete solution, we
check if the upper bound is equal to the lower solution: if this is the case, we
have found the optimal solution.

Another method to e�ectively prune parts of the search space is the appli-
cation of dominance rules. ¿ese rules allow us to prove that, if they apply, the
current solution is dominated by another solution, and will never lead to an
optimal solution.

Demeulemeester and Herroelen (1997) introduces a set of lower bounds
and dominance rules that improve the performance markedly, creating a very
competitive method for �nding optimal solutions. Still, branch and bound
methods su�er from the general tractability problems associated with solving an
NP-complete problem to optimality as well, and due to the size of the NedTrain
problem instances, these methods are again impractical to use in this case.

For these reasons, we will next turn to heuristic methods to solve the rcpsp.
Such methods do not purport to �nd an optimal solution—o en, they cannot
even guarantee that a solution will be found. Still, in many common cases, these
methods are able to �nd a solution of reasonable quality in a fraction of the time
an exact method would need.

26 2. Existing work

2.4 Schedule Generation Schemes

¿e �rst heuristic methods we will discuss are the serial and parallel schedule
generation schemes (sgs, Hartmann (1999); Kolisch (1996)). A er this, we will
turn to more complex heuristic methods.

2.4.1 Serial sgs

¿e serial sgs is a greedy algorithm, which incrementally constructs a solution
σ in a single pass, by considering a single activity at a time and adding it to the
current solution. An outline of the sgs is shown in Algorithm 2.1. ¿e algorithm
works by considering the set D of all the eligible tasks (line 1), de�ned as

D = {t i ∶ σ(t i) is unde�ned ∧ ∀t j ≺ t i ∈ C[σ(t j) is de�ned]}, (2.5)

the set of tasks for which all predecessors have been scheduled. Using a priority
heuristic, the eligible tasks are ranked, and the task with the highest value is
chosen for execution (line 2). ¿e algorithm assigns the earliest time point to
this task at which all predecessors have completed execution (line 9) and all
resources required to execute this task are available (line 12, where Sτ = {t i ∶
σ(t i) ≤ τ < σ(t i) + l i} is the set of tasks scheduled to be executing at time τ).
¿is procedure is repeated, until there are no more eligible tasks in D. At this
point, all tasks are assigned a start time and the solution is complete.

¿e serial sgs can be implemented to work in O(nm) time, where n is the
number of tasks and m the number of resources: we do not need to consider all
time points, it is enough to merely consider those points at which a task starts or
ends.

2.4.2 Parallel sgs

¿e parallel sgs also constructs a schedule σ greedily, but instead of considering
a single task at a time, it considers as many tasks as possible at a time point,
before advancing it. ¿e set of eligible tasks for the parallel sgs is de�ned as

Dτ = {t i ∶ σ(t i) unde�ned ∧ ∀t j ≺ t i ∈ C[σ(t j) is de�ned ∧ σ(t j) + l j < τ]},
(2.6)

and contains all tasks for which the predecessors have been scheduled, and
�nished, at time point τ.

¿e outline is shown in Algorithm 2.2. ¿e parallel nature is evident in line 4:
every task in the eligible set is checked for feasibility, in the order speci�ed by
the heuristic, and all tasks that are feasible at time τ are added (line 15). Again,
since we only need to consider the starting and ending time points of the tasks,
the algorithm has a time complexity of O(nm).

2.4.3 Priority rules

¿e performance of both sgs approaches depends highly on the priority rule
used to pick the task to schedule next. Many di�erent rules have been proposed
in literature; a few of the more important ones are discussed below.

2.4. Schedule Generation Schemes 27

Algorithm 2.1: Serial schedule generation
 while D ≠ ∅ do
 t i = h(D)
 τ = −
 repeat
 τ ← τ + 
 prec-feasible← true
 res-feasible← false
 forall the {t j ∶ t j ≺ t i} do
 if σ(t j) + l j >= τ then prec-feasible← false

 end
 for τ ≤ τ′ ≤ τ + l i do
 if ∃rk[(∑t j∈Sτ′ req (t j , rk)) + req (t i , rk) > cap (rk)] then

res-feasible← false
 end
 until prec-feasible = true ∧ res-feasible = true
 σ(t i) ← τ
 end

Algorithm 2.2: Parallel schedule generation
 τ = 
 while ∃t i[σ(t i) is unde�ned] do
 D′

τ ← Dτ
 while D′

τ ≠ ∅ do
 t i = h(D′

τ)
 D′

τ ← D′
τ/{t i}

 prec-feasible← true
 res-feasible← false
 forall the {t j ∶ t j ≺ t i} do

 if σ(t j) + l j >= τ then prec-feasible← false
 end
 for τ ≤ τ′ ≤ τ + l i do
 if ∃rk[(∑t j∈Sτ′ req (t j , rk)) + req (t i , rk) > cap (rk)] then

res-feasible← false
 end
 if prec-feasible ∧ res-feasible then σ(t i) ← τ
 end
 τ ← τ + 
 end

28 2. Existing work

random Tasks are selected at random, each eligible task has an equal chance
of being picked. ¿is strategy is o en used for comparison purposes, to see
how much is gained by using a certain heuristic.

latest start time Alvarez-Valdes and Tamarit (1989) propose to calculate lst(t)
for each task, which is the latest starting time for t, given the temporal
constraints, such that t and all its successors can still �nish in time, assuming
unlimited resource capacity. If the heuristic needs to select a task to schedule,
it selects task t such that lst(t) is minimized. ¿e rationale is that this task
needs to be executed most urgently, to be able to �nish in time.

most total successors In the same paper, a di�erent rule is proposed as well,
which selects the task with the largest number of total successors to be
executed �rst. A slightly di�erent intuition of urgency holds for this task:
since this task has many successors, many tasks need this task to be �nished
to become eligible.

Randomization is o en employed in combination with the priority rules
described above. Tie breaking is one reason: o en, multiple tasks may have the
same priority, and a choice needs to be made. More importantly, randomization
may be employed to improve performance signi�cantly for certain pathological
cases, in which the rule persistently chooses exactly the wrong task.

It is clear from the complexity of the basic algorithms that both schemes scale
well, compared to the exact solution methods discussed earlier. It is expected
that problem sizes common for the NedTrain case are easily solvable with these
methods. ¿is seems to solve the questions raised by the �rst problem statement
at the end of the �rst chapter. One of the sgs schemes can be used to quickly
generate a set of solutions to a scheduling problem, reducing the labor-intensive
character of the scheduling process. ¿e solution itself however is still in the
form of �xed starting times assigned to each task. In light of the second prob-
lem statement, this is undesirable: such a �xed schedule would be invalidated
quickly in the highly dynamic environment of a maintenance workshop. We will
therefore discuss a method yielding a more �exible solution form next.

2.5 Precedence constraint posting

As discussed above, it is desirable to have a method to solve the rcpsp that is
based on heuristics, and that results in a solution in a �exible form. One such
family ofmethods is based on precedence constraint posting (pcp). ¿esemethods
can be seen as a transformation of the rcpsp into a much simpler problem, from
which in turn we can e�ciently derive multiple �xed-time solutions. ¿is is
exactly in line with the idea of the second problem statement: it is a �exible way
to prescribe task execution. Within the bounds of the simpli�ed problem, it is
easy to generate di�erent �xed-time schedules, which can be used to adapt to
changing circumstances, without completely generating a new solution.

2.5. Precedence constraint posting 29

¿e basic idea underlying pcp is to make a distinction between resource
constraints and temporal constraints. As it turns out, a problem having only
(non-disjunctive) temporal constraints is relatively easy to solve: �nding a �xed-
time schedule for such a problem can be done in polynomial time (Dechter et al.,
1991; Planken, 2013). ¿e method of constraint posting therefore tries to add
a set of precedence constraints that replace the resource constraints: if these
precedence constraints are satis�ed, the resource constraints will be satis�ed as
well. ¿e problem is thus transformed from one with resource and temporal
constraints to a problem with only temporal constraints. From the latter, we
can easily extract multiple �xed-time schedules, as will be discussed later. But,
the transformation is not symmetrical, owing to the NP-complete nature of
the original problem. While any solution to the transformed problem is also a
solution to the original problem, the reverse does not hold.

2.5.1 Finding resource con�icts

¿e �rst step in the algorithm is �nding resource con�icts. We will start with
a high-level discussion of pro�le-based approaches (Cesta et al., 1998, 2000).
¿ese methods focus on the resource pro�le of the problem: the resource use
over time by the tasks in the problem is computed, and based on the capacity of
each of the resources peaks are identi�ed that violate the resource constraints.
Precedence constraints are then added to the problem based on these peaks, in
an attempt to �atten them such that the resource capacity is no longer exceeded.

Pro�le-based methods
For a �xed time solution, computing the resource pro�le is conceptually very
simple: we know the exact start time for each task, and its length, so we can
determine which tasks are executing at each point in time. Combining this
information with the resource usage per task gives the total resource usage at a
certain time point. But in this case we do not have a �xed time schedule available,
as the whole point is to use a more �exible representation.

To still be able to construct a resource pro�le we make a distinction between
two tasks necessarily or possibly overlap. In the �rst case, the two tasks always
execute at the same time, for every possible �xed time schedule we can derive. In
the second case, there is at least one �xed time schedule where the two tasks over-
lap. Based on necessarily and possibly overlapping tasks, we can now compute
a lower and upper bound for the resource pro�le at each time point. ¿e lower
bound is based on all the tasks that necessarily execute at a time point—the
resource usage can never be lower than this. Correspondingly, the upper bound
is computed based on all the tasks that possibly overlap (Cesta et al., 1998).

Using the resource pro�le, we can identify peaks: time points at which a
certain set of tasks together consume more resources than available. It is at these
points that we need to add precedence constraints between tasks: by doing this,
we spread the execution of the tasks, lowering the contention for a resource. A
peak is said to be unresolvable if the lower bound resource pro�le of a resource is
higher than the available capacity of that resource. In this case, there are no �xed

30 2. Existing work

time solutionswe can generate that satisfy the resource capacity constraints at this
point in time. ¿is means that no solution can be found, and we can terminate
the search. Note that a solution might still exist: we are using a heuristic to arrive
at a solution, and the heuristic does not always make the right choices.

If the lower bound is equal to, or lower than the resource capacity, we know
that we can derive at least one feasible �xed-time solution. If the upper bound ex-
ceeds the resource capacity, some solutions will still exceed the resource capacity.
In the ideal situation, the upper bound resource pro�le never exceeds the allowed
capacity: this means that all solutions we can generate are resource-feasible.

Cesta et al. (1998) uses a pairwise method to compute the resource pro�les,
which is very quick but over-estimates the resource consumption; this results in
an over-constrained solution.

Example 2.3 Consider three tasks ta , tb and tc , all making use of a shared
resource with capacity two. If ta and tb can execute concurrently, and ta and
tc as well, a pair-wise method might conclude that the upper bound on the
resource use equals three, leading to the need for a temporal constraint. ¿is
might not be needed, since there might be a constraint such that tb ≺ tc .

Minimal critical sets
To overcome this over-estimation, a di�erent strategy, based onminimal critical
sets can be used. ¿e idea behind this method is that we want to �nd a critical set,
that is, a set of tasks (executing at a certain time point) that together exceeds the
resource capacity. If, in addition, this set isminimal, it means that by removing
just one task from this set, this set is no longer critical, meaning that the resource
con�ict caused by these tasks is solved. Removing a task is done in this case
by adding a precedence constraint such that this task no longer executes at the
chosen time point. If no (minimal) critical sets are present, all the �xed time
schedules we can generate are guaranteed to be resource-feasible.

Findingminimal critical sets however is a di�cult problem, as the number of
minimal critical sets is in general exponential in the size of the problem. Nonethe-
less, several good approximation algorithms have been proposed (Lombardi and
Milano, 2009b,a; Laborie and Ghallab, 1995).

2.5.2 Solving resource con�icts

Above, methods have been described allowing us to �nd the tasks involved in a
resource con�ict. ¿e next step in the algorithm, from which its name is derived,
is solving that con�ict by adding (posting) a precedence constraint—hence the
name, precedence constraint posting. In some of the possible variants we �rst
need to select two tasks between which we are going to post the constraint.
For example, in a pro�le-based method we select a contention peak containing
multiple (more than two) tasks. To �atten this peak, two tasks need to be selected.
Cheng and Smith (1996) proposes to look at the available �exibility, and to select
the pair of tasks for which the �exibility is lowest: the intuition is that we have to

2.6. Simple temporal networks 31

make a choice when it is still possible—if choices are made at other points in the
schedule, the �exibility for this choice might decrease even further, limiting our
options.

If a pair of tasks has been selected, the next decision is the direction of the
precedence constraint to add. In some cases, our decision is forced: one of the
directions might be temporally infeasible. In other cases, both options are still
open. In this case, a similar reasoning is used as above (Cheng and Smith, 1996;
Cesta et al., 1998): in order to preserve as many future choices as possible, we
select the ordering that removes as little �exibility from the schedule as possible.

2.5.3 Esta and chaining

An interesting variation on the pro�le-based method is proposed by Cesta et al.
(1998): instead of computing resource pro�le bounds to represent all possible
�xed-time schedules we can generate, the resource pro�le for a single �xed-
time assignment is computed, namely that of the earliest start-time assignment
(hence the name, esta). ¿e advantage is that the resource pro�le computation
is very quick and straight-forward, and as such we quickly arrive at a feasible
solution. ¿e downside is that only a single �xed-time schedule is guaranteed to
be resource-feasible.

Cesta et al. (1998) proposes, and Policella et al. (2007) extends chaining, a
method to convert such a schedule into a �exible one, in which we can again
generate multiple �xed-time schedules from a single solution. ¿e basic idea
of chaining is that a single �xed-time solution is taken, and all precedence
constraints are removed, and di�erent precedence constraints are added. ¿e
key is in adding the right precedence constraints: chaining looks at the resource
�ow between the tasks and adds precedence constraints that encode the transfer
of a resource between one task and the next. For each resource, a chain of tasks
is constructed in this way, ensuring that the capacity of the resource can never
be exceeded.

2.6 Simple temporal networks

¿e previous section introduced precedence constraint posting as a method
to transform the complex rcpsp into a simpler problem without resource con-
straints, representing a subset of the solution space, from which several �xed-
time solutions can be derived e�ciently. ¿is section will discuss the formalism
most commonly used, the Simple Temporal Network (stn). Note that many
authors also refer to the Simple Temporal Problem (stp)—however, as Planken
(2013) points out there is no single Simple Temporal Problem: instead, several
di�erent temporal queries can be formulated.

Recall that the idea of pcp is to remove all resource contention in an rcpsp
instance, resulting in an stn, which is a purely temporal representation, in which
resources do not play a role. Such an stn can be seen as a �exible solution to the
original rcpsp instance: from it, various solution assignments σ can be retrieved

32 2. Existing work

very e�ciently. ¿is intermediate step avoids re-solving the rcpsp instance every
time an incident occurs during execution of the computed solution.

2.6.1 ¿e stn formalism

¿e Simple Temporal Network (stn) was introduced by Dechter et al. (1991),
and has become a commonly used temporal problem representation, with the
advantage that solutions can be obtained e�ciently. It consists of a pair S =
(X , C), where X = X , X , . . . , Xn is a set of time point variables, and C is a set
of constraints. Each constraint C i j may only contain a single interval, of the
form X j − X i ≤ c i j . Like in the rcpsp, the goal is to �nd a schedule for the events
in X , that is, a function σ ∶ X → R that assigns a non-negative value to every
time point in X , such that all constraints in C are satis�ed. Unlike the rcpsp,
resource usage is not considered, i.e., there are no concurrency constraints other
than those speci�ed in C. If a schedule does not exist, the stn is said to be
inconsistent, and consistent otherwise. Note that there might be many di�erent
schedules satisfying the stn, as such an stn can be seen to encode a family of
schedules. ¿is is a desirable property in the case of NedTrain, since this can be
used to adapt to changing circumstances during execution. In order to be able to
express absolute time constraints, the time-point X, also denoted by z, is used.
It represents a �xed reference point on the time line, usually having the value .

Example 2.4 As an example, consider the three tasks introduced in Exam-
ple 2.1. ¿e start time of each task is modeled using time point variables
X , X , X for t , t , t. ¿e release and due times are modeled using con-
straints relative to X. For the release time, we add X −X i ≤  for i ∈ {, , }.
For the due time, the task lengths have to be considered as well. Recall that
we have l = , l =  and l = , and due times of d i =  for i ∈ {, , }.
¿is yields the constraints X − X ≤ , X − X ≤  and X − X ≤ .

Next, we encode the precedence constraints from the problem. In Ex-
ample 2.1, the constraint t ≺ t is formulated explicitly. Additionally, in
Example 2.2, we have that “the other two tasks can then be started a er t
has �nished”, so this implies t ≺ t as well. ¿e �rst constraint is encoded as
X − X ≤ , and the second constraint as X − X ≤ , again taking into
account the task length l = .

2.6.2 Graph representation

A stn can be represented as a directedweighted constraint graph, this is the origin
of the “network” in stn. Each node in this graph represents a time point variable,
and an edge X i → X j with weight c i j represents a constraint X j − X j ≤ c i j . For
simplicity, the edges X i → X j and X j → X i are o en combined into a single
edge, labeled with an interval, to represent the constraint X j − X i ∈ [−c ji , c i j].

2.6. Simple temporal networks 33

Example 2.5 Continuing the previous example, if the stn instance described
is transformed into its equivalent graph representation, we obtain the following
graph:

X

X

X

X

(−∞, ]

(−∞, ]

[, ][, ]

[, ]

As there is no constraint limiting X − X and X − X, these weights have
been set to −∞.

¿e graph representation is very helpful in �nding constraints implied by
the set C of constraints, interpreting the weights c i j on the arcs as lengths of the
path from X i to X j . If C contains the constraints X j −X i ≤ c i j and Xk −X j ≤ c jk ,
then there exists a path from X i via X j to Xk having a length c i j + c jk . ¿is
means Xk − X i ≤ c i j + c jk is an implied constraint, even though C may not have
contained a constraint limiting Xk − X i .

Example 2.6 We return to the example described above, to demonstrate
implied constraints. ¿e distance X − X is not limited by any constraint,
however, we have

X − X ≤  ∧ X − X ≤ ,

which implies

(X − X) + (X − X) ≤ ⇔ X − X ≤ .

In similar fashion, other constraints can be derived for the example. ¿is
procedure is also called constraint tightening. If all constraints are tightened as
much as possible, we obtain the so-calledminimal stn:

34 2. Existing work

X

X

X

X

[−, ]

[−, ]

[, ][, ]

[, ]

2.6.3 Algorithms

Exploiting the parallel between path lengths and constraints, an obvious pro-
cedure to �nd the tightest constraints, and thus the minimal stn, is to use an
algorithm that computes the shortest paths in a graph, such as Floyd-Warshall
(Floyd (1962), see Algorithm 2.3). ¿is algorithm runs in Θ(n), and the tightest
constraints it �nds are represented as the elements of the (n+)×(n+) distance
matrix DS , containing for every pair of time-point variables X i and X j the length
of the shortest path in the distance graph between X i and X j .Using this minimal
network, a solution can be extracted using any time point variable as starting
point.

Other algorithms exists, which are more e�cient (but more complex). One
such algorithm is Snowball (Planken et al., 2011), which runs in O(nwd), where
wd is the graph width induced by a vertex ordering d.

¿eorem 2.1 (Dechter et al., 1991) An stn is consistent if, and only if, its
associated graph representation does not contain any negative cycles.

Proof. Assume the stn contains a negative cycle C = X , . . . , Xk = X. ¿e
sum of the inequalities represented by the edges in C yields X −X < , which
can never be satis�ed.

If there is no negative cycle, the shortest path between any pair of nodes is
well-de�ned. For any pair of nodes X i and X j , the shortest paths satisfy the
equation

d j ≤ di + c i j , (2.7)

2.6. Simple temporal networks 35

Algorithm 2.3: Floyd-Warshall’s all-pairs shortest-path algorithm
Input: An stp S = (X , C)
Output: A distance matrix DS

 Initialize all entries in (n + ) × (n + )matrix DS to∞
 for i ∶=  to n do
 DS[i , i] = 
 end
 foreach X j − X i ≤ c i j ∈ C do
 DS[i , j] = c i j
 end
 for k ∶=  to n do
 for i ∶=  to n do

 for j ∶=  to n do
 DS[i , j] ∶= min(DS[i , j],DS[i , k] + DS[k, j])
 end
 end
 end

which can be rewritten as

d j − di ≤ c i j . (2.8)

From this, it can be seen that assigning X j = d j and X i = di satis�es the
constraint X j − X i ≤ c i j . Note that these are the entries DS[, i] and DS[, j]
in the distance matrix DS . ¿erefore, the tuple

X = (d , . . . , dn) (2.9)

is a solution to the entire stn. Since X i −X ≤ d j , this tuple contains the latest
starting times lst(X i) for all time point variables X i ∈ X (assuming X = ).
Similarly, it can be shown that the tuple

X = (−d , . . . ,−dn) (2.10)

is a solution containing the earliest starting times est(X i) for all time point
variables.

If we are only interested in the paths from a single source, for example to
check the consistency of an stn instance, a more e�cient procedure is to use the
Bellman-Ford algorithm (see Algorithm 2.4), which computes the shortest paths
to all nodes from a single source. ¿is algorithm runs in Θ(nm) time (with
n = ∣X ∣ and m = ∣C∣) and can be used to obtain an earliest start time solution by
�rst running this algorithm, and then using Equation 2.9. In the loop starting at
line 5, the distance matrix is updated at most ∣X ∣ times, since a path can never be

36 2. Existing work

Algorithm 2.4: Bellman-Ford’s single-source shortest-path algorithm
Input: An stn S = (X , C)
Output: A distance list D, relative to X, or inconsistent

 for i ∶=  to n do
 D[i] ∶= ∞
 end
 D[X] ∶= 
 repeat ∣X ∣ times
 foreach X j − X i ≤ c i j ∈ C do
 D[X j] = min(D[X j],D[X i] + c i j)
 end
 end

 foreach X j − X i ≤ c i j ∈ C do
 if D[X j] > D[X i] + c i j then return inconsistent
 end
 return D

longer than the total number of nodes in the graph. In line 11, an inconsistency
can be detected. If, a er ∣X ∣ updates, a shorter distance is still possible, this can
only be caused by a negative cycle.

¿e following theorem plays an important role in the dispatching of an stn: it
describes howwe can construct one of themany �xed-time schedules represented
by the stn, by picking a start time for one time point variable satisfying the
shortest path constraints, and then extending this partial solution variable by
variable, until all time point variables have been assigned a value.

¿eorem 2.2 (Dechter et al., 1991) Let S = (X , C) be a consistent stn. Any
instantiation of a subset Xk ⊂ X of k variables ( ≤ k < n) that satis�es all the
shortest path constraints applicable to Xk is extensible to any other variable.

Proof. Our proof will be by induction on ∣Xk ∣ = k.
For k = , X consists of a single variable X i , instantiated to v i . We need

to show that we can �nd an assignment X j = v j for any other variable X j that
satis�es the shortest path constraint between X i and X j . ¿e value v j must
satisfy

−d ji ≤ v j − v i ≤ d i j . (2.11)

We know that d ji + d i j ≥ , since a consistent stn does not have any nega-
tive cycles, hence we can conclude that there exists a value v j that satis�es
Equation 2.11.

Now, assume the theorem holds forXk . We need to show that it also holds
for Xk+. Without loss of generality, let Xk = {X , . . . , Xk}, and let {X i = v i ∶
 ≤ i ≤ k} be an assignment that satis�es the shortest path constraints among
the variables in Xk . Let Xk+ ∉ Xk . Now we need to �nd a value Xk+ = vk+

2.6. Simple temporal networks 37

that satis�es the shortest path constraints between Xk+ and all variables in
Xk :

−dk+, i ≤ vk+ − v i ≤ d i ,k+ (2.12)

for i = , . . . , k, or,

vk+ ≤ min{v i + d i ,k+ ∶  ≤ i ≤ k}, (2.13)
vk+ ≥ max{v i − dk+, i ∶  ≤ i ≤ k}. (2.14)

Now, suppose that the minimum over the set above is attained at i, and the
maximum is attained at j. ¿en, we know that vk+ must satisfy

v j − dk+, i ≤ vk+ ≤ v i + d i ,k+ . (2.15)

Since, again, we know that v i and v j satisfy the constraint between X i and
X j , we have

v j − v i ≤ d i , j . (2.16)

Since d represents a shortest path constraint, we also have

d i , j ≤ d i ,k+ + dk+, j . (2.17)

Combining Equations 2.16 and 2.17, we get

v j − dk+, i ≤ v i + d i ,k+ . (2.18)

¿erefore, we can conclude that there exists at least one value vk+ that satis�es
Equation 2.15.

¿e following corollary can be directly derived from this theorem, and
contains two important properties that hold for stns and their schedules:

Corollary 2.1 Let S = (X , C) be an stn and DS its distance matrix. For
i = , . . . , n, let lst(X i) = DS[, i] and est(X i) = −DS[i , ]. ¿en, for every
schedule σ for S, and every X ∈ X , it holds that σ(X) ∈ [est(X), lst(X)].
Moreover, given any X ∈ X and v ∈ [est(X), lst(X)], there exists a schedule
σ for S such that σ(X) = v.

¿is shows the �exible nature of an stn: regardless of which value v ∈
[est(X), lst(X)] we pick for X, we are guaranteed to be able to �nd a sched-
ule in which X starts at the selected time. So, in this sense, the stn formalism
�ts well with the second problem statement: we can quickly derive �xed-time
solutions from an stn, making it a �exible method to prescribe task execution.
Combined with precedence constraint posting, we are able to �exibly prescribe
the execution of an rcpsp instance.

38 2. Existing work

2.7 Multi-agent scheduling

Proposition 2.1 shows that multiple �xed-time schedules can be constructed for a
single stn, but the process bywhich these schedules are constructed is centralized.
¿is is the source of the third problem statement: o en, and especially in the
case of NedTrain, a schedule has to be executed by multiple teams. ¿is does
not combine well with the need for central control over the schedule execution:
we would rather have a form of decentralized execution.

To map the model of the stn to the idea of decentralized execution, we can
distribute the tasks in X over a set of m agents A , . . . ,Am . Each agent A i is
responsible for the execution of a subset Xi ⊆ X of events, where these subsets
are mutually disjoint, i.e., Xi ∩ X j = ∅ when i ≠ j. If the schedule we want to
execute is �xed, i.e., a function σ ∶ X → R, this poses no particular problem. But
in the case of NedTrain, it is desirable for the teams executing their schedule to
have some form of �exibility: due to the uncertainty present in the tasks it is
desirable if a team has at least partial control over the exact start times of the
tasks it needs to execute. ¿is is a more di�cult problem, because here, we want
agent A i to determine σi ∶ Xi → R for the stn3 S i = (Xi ∪{z}, Ci), derived from
the original stn S = (X , C) solving the rcpsp instance, where Xi is the subset
of time point variables assigned to A i , and Ci = X 

i ∩ C is the set of constraints
from C restricted to the time point variables in Xi . ¿is problem is known as
the Temporal Decoupling Problem (Hunsberger, 2002).

De�nition 2.3 Let S = (X , C) be a consistent stn. Suppose that X − {z} =
{Xi}mi= is partitioned in m subsets Xi . ¿en the temporal decoupling prob-
lem is to �nd m stns S i = (Xi ∪ {z}, Ci) such that, whenever σ , . . . , σm
are independently constructed schedules for the individual stns S , . . . , Sm ,
respectively, their merge σ = ⋃m

i= σi is a schedule for the original stn S.

¿e problem is that, while we want the agents to be able to independently
pick σi , we also want the merge σ = ⋃m

i= σi of the individual schedules to be
a valid total schedule for the original S. If we take an inter-agent constraint,
i.e., a constraint X j − X i ≤ c i j for which X i ∈ Xa and X j ∈ Xb with a ≠ b,
this constraint is considered by neither Aa nor Ab in determining σa and σb , it
might very well be that σb(X i) − σa(X j) > c i j . Hunsberger (2002) proposes an
iterative procedure, using the distance matrix DS of the original problem S. In
this procedure, each inter-agent constraint X j − X i ≤ DS[i , j] is made obsolete
by tightening the intra-agent constraints X j − z ≤ DS[, j] and z−X i ≤ DS[i , ].
¿ese tightenings consist in selecting values δ i , and δ i , such that

• X j − z ≤ δ i , ≤ DS[, j],

• z − X i ≤ δ i , ≤ DS[i , ], and
3Note that we consider the execution of a �exible solution here. Hence, it su�ces to only

consider the stn decoupling problem.

2.8. Conclusions and research questions 39

• δ i , + δ i , ≤ DS[i , j].

If we add the new constraints X j − z ≤ δ i , ≤ DS[, j] and z − X i ≤ δ i , ≤
DS[i , ] to S while making sure that the resulting system remains consistent,
the e�ect of adding these constraints is that an inter-agent constraint X j − X i =
(X j − z) + (z − X i) ≤ δ i , + δ i , ≤ DS[i , j] is now implied by the new, tighter,
intra-agent constraints. Hence, the inter-agent constraint can be removed from
the updated stn. Applying this procedure for every non-implied inter-agent
constraint ensures that all inter-agent constraints are implied by intra-agent
constraints and the resulting system is a temporal decoupling.

2.8 Conclusions and research questions

In this chapter, the exact scheduling problem as faced by NedTrain has been
formalized, and a few of the many approaches proposed during the years have
been discussed. It is clear from the nature of the problem that exact solution
methods are not feasible. ¿is is re�ected in the sizes of the problems solved
by such methods: they are much smaller than the problems NedTrain are faced
with. We are thus forced to turn to heuristic methods to solve this problem.
Classical methods such as the serial and parallel schedule generation schemes
are able to solve problems of the scale NedTrain requires, but they fail to o�er
the �exibility required during the execution of the schedule, since they give �xed
execution times for each task.

Simple temporal networks o�er an elegant way to represent this �exibility,
while avoiding the complexity of the original rcpsp. Constraint postingmethods
form the bridge between these two worlds: they transform the rcpsp problem
into an stn, which can then be used to execute the tasks in a �exible way. ¿e stn
o�ers a quick way to adapt the execution, since new solutions can be computed
quickly.

An important consideration is the amount of �exibility present in such an
stn. Intuition suggests that this �exibility plays an important role in the ability
of a schedule to adapt to changing events, but how we can compare di�erent
stns, and how we can quantify this ability, remains unclear. ¿is gives rise to
our �rst research question:

rq1 What criteria encapsulate our intuitive notion of the concept of �exibility,
as applied to solutions of scheduling problems, and can we devise a method
to measure �exibility, conforming to these criteria?

Having de�ned what �exibility is, the next question that arises is how to
actually make use of said �exibility. It is natural to assume that, given a certain
solution, there are multiple ways of distributing the available �exibility. Given
the goal of attaining a robust schedule, i.e., a schedule in which a disturbance
in one task has low impact on the rest of the schedule, we can ask which of the
possible distributions yields the highest robustness:

40 2. Existing work

rq2 Given a schedule with a certain potential �exibility, in what ways can this
�exibility be used best to achieve a schedule with high robustness?

So far, our discussion on �exibility has focused on the temporal aspect of
schedules. If we include the sequential aspect of schedules, it might be possible
to increase the �exibility, leading to higher levels of robustness:

rq3 Inwhatway can the concept of temporal �exibility of a schedule be extended
to include some sequential �exibility?

Another important aspect of the scheduling process at NedTrain is that main-
tenance is performed on multiple trains in parallel, by independent teams. ¿is
can be abstractly represented as amulti-agent scheduling problem. An important
concern here is the independence of the teams—ensuring their independence
can be mapped to decoupling in multi-agent systems. ¿e natural concern here
is keeping teams independent in the face of uncertain events:

rq4 How can our earlier work on ensuring robustness of entire schedules be
applied to the decoupling of multi-agent schedules, in which we strive to de-
couple in such a way that disturbances in the schedule of one agentminimally
a�ect the schedules of the other agents?

Measuring �exibility 

¿e �rst problem statement from Chapter 1 describes the need for a �exible
automated process that solves the scheduling problem at NedTrain. In Chapter 2
it is shown that the rcpsp formalism matches well with the scheduling problem
at NedTrain, and precedence constraint posting (Cesta et al., 1998; Lombardi
and Milano, 2009b) is a method matching the requirement of a �exible process:
it solves the rcpsp heuristically, meaning that it is quick enough to be used
interactively, and the result has the form of a Simple Temporal Network (stn).
From this stn, multiple �xed-time schedules can be derived very e�ciently, as
described in the previous chapter—this shows that the requirement of having a
process resulting in a �exible schedule is satis�ed.

It is intuitively clear that such an stn can be called �exible, since it can
be used to encode a range of possible schedules. But how �exible is a given
stn exactly? And how can two stns be compared with each other in terms
of �exibility? ¿ese questions are summarized in the �rst research question,
which will be answered in this chapter by exploring what criteria encapsu-
late this intuitive notion of �exibility, and by determining the �exibility of an
stn, as representation of both intermediate and �nal schedules in the prece-
dence constraint posting process. One strategy, which seems very straight-
forward, is to compare the range of possible schedules. But this only serves
to replace our question by a di�erent one, namely how exactly we can deter-
mine this range. Ideally, we would want to have a metric with which we can
measure the �exibility of an stn. Such a metric can then be used to evalu-
ate di�erent stn solutions produced by precedence constraint posting algo-
rithms, or even as a heuristic, to guide the process of precedence constraint
posting.

¿ere are several existing metrics attempting to do this, but we will show
that they all overestimate the �exibility contained in a certain schedule, by not
fully taking into account dependencies among tasks. A new method is presented
here, which does take dependencies into account more completely, yielding a
�exibility metric that better conforms to the intuitive properties such a metric
should have.

41

42 3. Measuring flexibility

3.1 The need for flexibility

¿e primary reason for wanting to have a �exible schedule is the limited preserv-
ability of a �xed-time schedule. Start times of tasks are determined o�-line,
before execution starts, which means that unforeseen disturbances during the
execution can prevent certain tasks from starting at their predetermined time.
Delaying the start of these tasks is not always the best option, since this will cause
the delay to spread to other parts of the schedule, which can ultimately lead to a
violation of the due time of certain tasks. A single disturbance could therefore
be a reason to modify or completely recompute the schedule. However, there
might not be enough time to compute a new schedule each time a disturbance
occurs. Additionally, commitments might have been made already on the basis
of the old schedule, which might have to be broken if the new schedule takes
e�ect.

Some techniques that try to incorporate �exibility in their schedule already
exist (see Policella et al., 2004, 2005). ¿ey ensure �exibility in the o�-line
phase of schedule construction, but a transformation is still needed to ensure
e�cient execution (Smith, 2003). To avoid such a time-critical transformation,
we propose the construction of an interval schedule, an assignment of time
intervals to tasks, such that we are free to choose a speci�c starting time out of
the interval for a task, without running the risk of violating any of the imposed
scheduling constraints. If this is possible, this interval corresponds to the intuitive
concept of �exibility we have with respect to scheduling this task.

Using time intervals in lieu of �xed time assignments has been proposed
before: if a scheduling formalism is decomposable, we can attain �exibility by as-
signing an interval of time points to a task (see Dechter et al., 1991; Dechter, 2003;
Pollack and Tsamardinos, 2005; Policella et al., 2004). A scheduling problem is
decomposable if, for any partial schedule satisfying the constraints, there exists
a complete schedule extending that partial schedule, satisfying all constraints.
Note that this property is useful in the case of working with interval schedules:
If there is an interval It from which all values are valid starting times for a task t,
satisfying the constraints, we are sure that we can extend this partial schedule to
a complete one. As we can start from any task t, it has o en be proposed that
these intervals are representative of the �exibility of the system. While intuitively
appealing, this idea is not su�cient to construct �exible schedules, since decom-
posability does not imply that these intervals are independent. Decomposability
allows us to determine the �exibility of two tasks in isolation, but it does not
allow us to determine the �exibility of the combination of these two tasks.

A di�erent reason to investigate alternatives to �xed-time schedules is the
presence of events in the problem that are not under control of the agent ex-
ecuting the schedule (see Vidal and Fargier, 1999; Pollack and Tsamardinos,
2005). For such events, we might only know the interval in which they will take
place, not the exact time. Even having an exact schedule can only be a partial
assignment of time points, in such a way that the schedule does not violate the
imposed constraints, for any realization of the events not under control of the
executing agents. ¿is can be seen as �exibility required by an external party, and

3.2. Flexibility of an stn 43

in this case it also seems like a natural solution to use time intervals to represent
the events not under our control.

3.2 Flexibility of an stn

To start our discussion on �exibility, we begin by examining what our intuitive
notion of this concept might translate to, in the context of the stn. Intuitively,
the �exibility of an stn S = (X , C) refers to the amount of freedom we have
in assigning values to the time point variables in X . Earlier, we de�ned a �xed
schedule σ for an stn as an assignment σ ∶ X → R satisfying all the constraints
in C. Such a schedule, however, is just an arbitrary �xed assignment among
a large set of possible alternative assignments also satisfying the constraints.
¿erefore a single �xed schedule does not o�er any indication of the �exibility
we have in assigning values to the variables of the stn it has been derived from.
We are thus interested in other types of solutions, which do give an indication of
the �exibility.

3.2.1 Using earliest and latest starting times

If we want �exibility to indicate our freedom of choice, then one option for
de�ning the �exibility for scheduling event X is to use the di�erence lst(X) −
est(X) = �exN(X). ¿e total �exibility of an stn S then could be de�ned as

�exN(S) = ∑
X∈X

�exN(X). (3.1)

Obviously, �exN(S) can be computed in O(n) time. We also know that
�exN(X) gives an exact measure of the �exibility of event X, since for every
choice v ∈ [est(X), lst(X)], there exists a schedule σ for S such that σ(X) = v
(see Proposition 2.1). However, although for every individual event, �exN(X)
o�ers a precise measure of its �exibility, using the sum �exN(S) of these �exibil-
ities has a serious disadvantage, due to dependencies that might exist between
starting times of events. To see this, consider the following example:

Example 3.1 Consider the stns S and S shown on the next page, where S
speci�es the concurrent execution of k =  events within  time units, while S
speci�es the sequential execution of k =  consecutive events, i.e., X should
not occur before X, while X should not occur before X and all should occur
within  time units.

Note that both in S and in S, for each i ∈ {, , }, est(X i) =  and
lst(X i) = . Hence,

�exN(S) =  ×  =  = �exN(S). (3.2)

So, according to the measure �exN , S and S have the same �exibility, which,
of course, is counterintuitive: For each event X i in S we can determine its

44 3. Measuring flexibility

starting time between  and  independently from the other events. So, the
total �exibility, expressed as the amount of choice we have in selecting a
starting time for an event equals  ×  = .

X

X

X

X

X

X

X

X

[−, ]

[−, ]

[−, ]

[, ]

[, ]

[, ]

[, ]

[, ]

[, ]

[, ]

[, ]

[, ]

S S

¿e choice for the starting time of an event X i in S, however, may in�u-
ence the choice of the starting time of the next event X i+. More precisely, if v,
v and v are the latest starting times for the events X, X and X, respectively,
in S, it is clear that

 ≤ v ≤ v ≤ v = . (3.3)

Hence, the �exibility of X is v − , the �exibility of X is v − v and the
�exibility of X is  − v. So, the total �exibility of S equals

�ex(S) = v + (v − v) + ( − v) = . (3.4)

¿erefore, the �exibility of S should come out as only 
 of the �exibility of

S. Generalizing S and S to systems containing k concurrent and sequential
events, respectively, we see that the freedom to schedule in S equals �ex(S) =
 × k, while the �exibility of S is independent of k and remains �ex(S) = .
Hence, if k goes to in�nity, the ratio of the real �exibilities of S and S goes
to in�nity:

lim
k→∞

�ex(S)
�ex(S)

= lim
k→∞

 × k


= ∞. (3.5)

while their ratio according to �exN is exactly 1:

lim
k→∞

�exN(S)
�exN(S)

=  × k
 × k

= . (3.6)

We conclude that the �exN metric seriously overestimates the �exibility of
stns similar to S.

3.2. Flexibility of an stn 45

Using upper and lower bounds for every pair of events
One reason �exN fails is that it is not able to deal with dependencies between
timed events. To overcome this disadvantage, we have to incorporate information
about the dependencies between two events. ¿is was proposed in the de�ni-
tion of �exibility by Hunsberger (2002) and others (Policella et al., 2005, 2007).
Hunsberger de�ned his �exibility metric, which we will denote by �exH(S), by
taking into account not only the apparent �exibility lst(X) − est(X) of every
event X, but also the �exibility between pairs of events X i and X j . Since the
distance matrix DS contains the entries DS[i , j] and DS[j, i] such that

−DS[j, i] ≤ X j − X i ≤ DS[i , j] (3.7)

are the strongest constraints implied by C w.r.t. the temporal di�erence X j − X i ,
we can de�ne the �exibility associated with this di�erence as the length of the
corresponding interval:1

�exH(X i , X j) = DS[i , j] + DS[j, i]. (3.8)

Now the �exibility of the system S can be de�ned by taking �exN(S) and adding
to it the sum of all these �exibilities for every distinct pair of time-points,2 i.e.,

�exH(S) = �exN(S) +
n
∑
i=

n
∑
j>i

�exH(X i , X j). (3.9)

If there is a dependency between two events X i and X j , this will result in
a lower value of DS[i , j] + DS[j, i]. Hence, dependencies among events will
have an in�uence on �exH , allowing us to account for its impact on �exibility. It
turns out this metric is indeed an improvement, compared to the naive metric
�exN . But, the next example shows that �exH also has serious shortcomings
with respect to dependencies.

Example 3.2 Consider again the stns S and S, as described in the previous
example. According to �exH , the �exibility of S equals

�ex(S) =  ×  +  ×  = , (3.10)

while the �exibility of S equals

�ex(S) =  ×  +  ×  = . (3.11)

So, according to the Hunsberger metric �exH , S has a �exibility equal to

 of the �exibility of S. ¿is seems to be an improvement with respect to

1Although Hunsberger de�ned the inverse of �exibility, i.e., rigidity of an stn, that is not
relevant for our discussion at hand, since we assume a �nite time horizon for an stn: this avoids
the problem of in�nitely sized intervals.

2Actually, Hunsberger took the square root of the sum of the squares of these �exibility
measures per pair, divided by (n × (n − )/), the total number of di�erent pairs of time-points.

46 3. Measuring flexibility

the previous �exibility metric �exN assigning the same �exibility to S and
S. However, generalizing S and S to systems containing k concurrent and
sequential events, respectively, we observe that

�exH(S) =  × k + (k

) ×  =  × k , (3.12)

while

�exH(S) =  × k + (k

) ×  =  × k − k


. (3.13)

¿is means that for larger values of k, the ratio between �exH(S) and
�exH(S) converges to 2:

lim
k→∞

�exH(S)
�exH(S)

= lim
k→∞

 × k

 × k−k


= . (3.14)

¿e ratio of the real �exibilities of S and S (see Equation 3.5 in the previous
example) goes to in�nity if k goes to in�nity. We conclude that this metric is
also not able to capture the dependencies between the �exibilities of events in
a satisfactory way.

3.2.2 Rationality postulates: towards a suitable �exibility metric

Having demonstrated the shortcomings of �exN and �exH , we will now analyze
these in more detail. We will do this by stating some simple rationality postulates
(Alchourrón et al., 1985), characterizing these metrics. Using this characteriza-
tion, an additional “independence” postulate is introduced, which represents the
idea that the �exibility of one event should be independent of all other events.
Having characterized the properties a metric should have to conform to the
intuitive notion of �exibility, a suitable �exibility metric �ex is derived, and we
show that it can be computed in an e�cient way.

Rationality postulates for �exN
We take �exN as main representative of the two metrics discussed above. ¿e
metric is de�ned as the sum of intervals, where each such interval [aX , bX]
indicates the �exibility of an event X. Flexibility is interpreted as the ability to
pick a starting time for the event, which means that for every choice v ∈ [aX , bX]
as starting time for X, there is a schedule σ for S such that σ(X) = v. Obviously,
there are many such intervals [at , bt] we can choose, including trivial choices
having aX = bX . Since our aim is to determine themaximum available �exibility
for a certain stn, we want the sum of these interval sizes to be maximal.

¿e postulates below capture the essence of a naive �exibility metric such
as �exN for an stn S = (X , C). We go one step further, and claim that for all
metrics �exn that satisfy these postulates, it holds that �exn = �exN , such that
we can say that �exN is completely characterized by these postulates.

3.2. Flexibility of an stn 47

If we let S = (X , C) be an stn, a naive �exibility metric �exn is characterized
by the following postulates:

F ¿e �exibility �exn(X) of the temporal reference event X ∈ X is equal to
zero.

Comment ¿e temporal reference point should be �xed.

F ¿e �exibility �exn(X) of an event X ∈ X − {X} is a nonempty interval
[a, b] such that any v ∈ [a, b] can be chosen as a starting time σ(X) = v in
some schedule σ for S.

Comment It must be ensured that the intervals are not too large: all
points must be valid start times.

F Let ∣[a, b]∣ denote the size b − a of the interval [a, b]. ¿en,

�exn(S) = ∑
X∈X

∣�exn(X)∣ (3.15)

is the maximal value that can be obtained for all functions

�ex ∶ X → {[m, n] ∶ −∞ < m ≤ n < ∞} (3.16)

satisfying postulates F–F.
Comment ¿is postulate ensures that we take a solution yielding maxi-

mal interval sizes, since we want to determine the maximal available �exi-
bility. Trivial solutions, like �xed time assignments, also satisfy the �rst two
postulates, and these must be avoided if there are better choices.

Next, wewill show that these postulates uniquely characterize �exN , meaning
that for all possible metrics �exn satisfying F–F, we have �exn = �exN :

Proposition 3.1 Let S = (X , C) an stn, and let �exn be a �exibility metric
satisfying F–F. ¿en, �exn = �exN .

Proof. It is clear that �exN satis�esF–F. Let �exn be anymetric satisfyingF–
F. In order to satisfy F, observe that for any X ∈ X , with �exn(X) = [a, b],
by Proposition 2.1 we must have

est(X) ≤ a ≤ b ≤ lst(X). (3.17)

But that implies, by F and F,

�exn(S) = ∑
X∈X

�exn(X) = ∑
X∈X

(lst(X) − est(X)) = �exN(S). (3.18)

48 3. Measuring flexibility

Rationality postulates for �ex
As has been shown using the examples in the previous sections, the results given
by �exN are counter-intuitive in the presence of dependencies between events,
which results in an over-estimation of the �exibility. ¿e underlying reason is
the formulation of F: If we have a single �exibility interval [a i , b i] for X i ∈ X ,
we are indeed guaranteed to be able to �nd a schedule σ for any v i ∈ [a i , b i],
having σ(X i) = v i . ¿is does however no longer hold if we want to make k > 
simultaneous choices v , . . . , vk in the intervals [a , b], . . . , [ak , bk]3.

A simple postulate F′ can be added to the existing set of postulates F–F
to remedy this de�ciency. We will prove that any �exibility metric satisfying this,
and the previous set of postulates, satis�es the (missing) requirement that for
any series (v , . . . , vn) of choices v i ∈ [a i , b i] = �ex(X i) we are guaranteed to
be able to �nd a schedule σ for S such that σ(X i) = v i .

¿e complete set of postulates for a suitable �exibility metric for an stn
S = (X , C), conforming to our intuitive notions of the concept, is thus:

F ¿e �exibility �exn(X) of the temporal reference event X ∈ X is equal to
zero.

F ¿e �exibility �exn(X) of an event X ∈ X − {X} is a nonempty interval
[a, b] such that any v ∈ [a, b] can be chosen as a starting time σ(X) = v in
some schedule σ for S.

F′ For some X i , X j ∈ X with �ex(X i) = [a i , b i] and �ex(X j) = [a j , b j], there
exists a schedule σ for S such that σ(X i) = v i and σ(X j) = v j , for every
v i ∈ [a i , b i] and every v j ∈ [a j , b j].

Comment ¿is implies independence between the �exibility intervals
for X i and X j : a choice for σ(X i) has no impact on the available choices for
σ(X j).

F Let ∣[a, b]∣ denote the size b − a of the interval [a, b]. ¿en,

�exn(S) = ∑
X∈X

∣�exn(X)∣ (3.19)

is the maximal value that can be obtained for all functions

�ex ∶ X → {[m, n] ∶ −∞ < m ≤ n < ∞} (3.20)

satisfying postulates F–F′.

¿e new postulate F′ ensures independence for any pair of �exibility in-
tervals. We will now show that this is su�cient to ensure independence of all
�exibility intervals, in case there are more than two:

3We assume, without loss of generality, that v =  is picked as reference time point.

3.2. Flexibility of an stn 49

Proposition 3.2 Let S = (X , C) be an stn. For any metric �ex′ satisfying
F–F′ it holds that for every series (v , . . . , vn) of choices, with v i ∈ �ex′(X i)
for i ∈ [, n], there exists a schedule σ for S such that σ(X i) = v i .

Proof. Let �ex′ be a metric satisfying F–F′, and let (v , . . . , vn) be a series
of arbitrary choices, with v i ∈ �ex′(X i) for i ∈ [, n]. De�ne a function
σ ∶ X → R by σ(X i) = v i∀X i ∈ X . Suppose, on the contrary, that σ is not a
valid schedule for S. ¿en, there must exist a constraint X j −X i ≤ c i j ∈ C such
that

σ(X j) − σ(X i) = v j − v i > c i j . (3.21)

By Postulate F′ however, there exists a schedule σ ′ for S such that σ ′(X i) = v i
and σ ′(X j) = v j . ¿erefore,

σ ′(X j) − σ ′(X i) = v j − v i ≤ c i j , (3.22)

and we have derived a contradiction. ¿erefore, σ must be a schedule for
S.

¿is shows that the �exibility property, missing in �exN and �exH , can be
repaired easily, by adding a postulate ensuring independence of the �exibility
intervals. Having characterized the essential properties of our new �exibility
metric �ex, we will now show how to actually compute the �exibility �ex(S) of
an stn S.

3.2.3 Computing the �exibility of an stn

As remarked already, we wish to depart from the idea of having �xed time
assignments in a schedule σ for an stn S. Instead, we would like to have an
interval schedule for S, having the property that we can freely choose a start time
value v i from within the interval for every event X i , such that the combination
of all those values comprises a schedule σ ′ for S. As a start, we will de�ne this
notion of an interval schedule formally:

De�nition 3.1 Given an stn S = (X , C), a set IS = {I i = [l i , u i] ∶ X i ∈ X}
of (non-empty) intervals for the time point variables X i ∈ X is an interval
schedule for S i�, for every X i ∈ X and every v i ∈ [l i , u i], the assignment σ
de�ned by σ(X i) = v i is a schedule for S.

Any �exibility metric satisfying the postulates F–F′ de�nes an interval
schedule Is = {I i ∶ X i ∈ X} for an stn S by de�ning the correspondence
Is = {�ex(X i) ∶ X i ∈ X}:

Proposition 3.3 Let S = (X , C) be an stn. ¿e function �ex ∶ X → {[m, n] ∶
−∞ < m ≤ n < ∞} satis�es the postulates F–F′ i� the set of intervals
IS = {�ex(X i) ∶ X i ∈ X} is an interval schedule for S.

50 3. Measuring flexibility

Proof (if). Suppose IS = {�ex(X i) ∶ X i ∈ X} is an interval schedule for
S. ¿en any series of choices (v , . . . , vn) from the given intervals I i in the
interval schedule implies that the assignment σ(X i) = v i is a schedule. In
particular, this means that σ(X) = . Hence, we have I = [, ], satisfying
F. For all i ≥ , this property also immediately implies that F and F′ are
satis�ed.
(only-if). Suppose �ex ∶ X → {[m, n] ∶ −∞ < m ≤ n < ∞} satis�es the
postulates F–F′. By Proposition 2.1 and De�nition 3.1, it follows that IS =
{�ex(X i) ∶ X i ∈ X} is an interval schedule for S.

From this proposition it follows that if we want to compute a �exibilitymetric
for an stn S = (X , C), satisfying F–F, we must be able to

1. �nd an interval schedule IS = {[l i , u i] ∶ X i ∈ X} for S, such that

2. the sum∑X i∈X
(u i − l i) ismaximal.

¿e �rst problem, that of computing an interval schedule, is solved by a
transformation of the given stn S, to another stn S′. We will show that any
solution to S′ can be used to construct an interval schedule for S.

¿e second problem is solved by realizing that any stn, such as S′, can be
expressed as a set of linear expressions. A linear programming approach can
then be used to solve the problem, and if we set the maximization of the sum of
the interval sizes as objective, we are able to e�ciently �nd an interval schedule
that is maximal.

Computing interval schedules for an stn
As a start in computing an interval schedule for an stn S = (X , C), we will state
a useful relationship between the bounds of an interval in a schedule IS for S,
and the constraints occurring in C. Intuitively, as a consequence of requiring
independent intervals, if there exists a constraint X j − X i ≤ c i j ∈ C, then the
intervals I i and I j should be such that independent choices for v i ∈ I i and v j ∈ I j
will not lead to a violation of this constraint. ¿e following proposition states that
the independence property is preserved if this constraint is satis�ed whenever
v j takes itsmaximal value in I j , while v i takes itsminimal value in I i :

Proposition 3.4 Let S = (X , C) be an stn. A set IS = {[l i , u i] ∶ X i ∈ X}
of intervals for the variables in X is an interval schedule for S i�, for all
(X i , X j) ∈ X , X j − X i ≤ c i j ∈ C implies u j − l i ≤ c i j .

Proof (if). Suppose the implication holds for all (X i , X j) ∈ X . To show that
IS is an interval schedule for S, we choose an arbitrary value v i ∈ [l i , u i] for
every X i ∈ X , and we let σ be de�ned by σ(X i) = v i for all X i ∈ X .

We show that σ is a schedule for S. Suppose, on the contrary, that it is not.
¿en σ violates some constraint in C, meaning that there exists a constraint

3.2. Flexibility of an stn 51

X j − X i ≤ c i j ∈ C such that σ(X j) − σ(X i) > c i j . But this implies

c i j < v j − v i ≤ u j − l i , (3.23)

as v i ≤ u j and v i ≥ l j .
On the other hand, since X j − X i ≤ c i j ∈ C, by the assumed implication,

we have
u j − l j ≤ c i j . (3.24)

Combining 3.23 and 3.24 we derive a contradiction, so σ cannot violate any of
the constraints in C. Hence, σ is a schedule for S.
(only-if). Suppose IS is an interval schedule for S. Take some X j − X i ≤ c i j .
By the de�nition of IS there is a schedule σ for S such that σ(X j) = u j and
σ(X i) = l i . But then u j − l i ≤ c i j .

¿is result is signi�cant, since it allows us to know which constraints the end-
points of an interval schedule IS have to satisfy for it to be valid. ¿e proposition
assumes that these endpoints are given, but they could just as well be variables
that have to satisfy these constraints. So instead of using the endpoints l i and u i
for X i , we specify two variables, X−i and X

+
i , representing the lower bound l i

and the upper bound u i of the interval I i , respectively.
For each constraint X j − X i ≤ c i j ∈ C in the original problem, using Propo-

sition 3.4, we know we have to add the constraint X+j − X−i ≤ c i j . We also add
the constraint X−i − X+i ≤ , to ensure the interval bounds are valid. And lastly,
to ensure that X+ and X− form a valid reference time point, we add a reference
time point X′, and the constraints X′ − X− ≤  and X+ − X′ ≤ , which ensure
that X′ = X+ = X− .

Note that all constraints constructed in this matter have the form of the
temporal constraints admitted in an stn. ¿e set of variables and constraints
together form another stn S′, which we will call the double stn. Using Proposi-
tion 3.4 we show that schedules for this double stn can be used to construct an
interval schedule for the original stn, S:

Proposition 3.5 Let S = (X , C) be an stn. Consider the double stn S′ =
(X ′ , C′) derived from S as follows:

X ′ = {X+i , X−i ∶ X i ∈ X} ∪ {X′} (3.25)
C′ = {X+j − X−i ≤ c i j ∶ X j − X i ≤ c i j ∈ C} ∪

{X−i − X+i ≤  ∶ X i ∈ X} ∪
{X′ − X− ≤ , X+ − X′ ≤ } (3.26)

¿en, for every solution σ of S′, the set IS = {[σ(X−i), σ(X+i)] ∶ X i ∈ X}
is an interval schedule for S.

52 3. Measuring flexibility

S = (X , C) S′ = (X ′ , C′)

schedule σ ′ for S′IS = {[σ ′(X−i), σ ′(X+i)] ∶ X i ∈ X}

Figure 3.1
Computing an interval

schedule IS for S by using
a schedule σ ′ for a double

stn S′.

Proof. First, remember that we always assume a given stn S to be consis-
tent. We will start with showing that S′ is consistent, too. If we take an
arbitrary schedule σ for S and construct an assignment σ ′ for S′, by letting
σ ′(X+i) = σ ′(X−i) = σ(X i) for every X i ∈ X , it is obvious that σ ′ will satisfy
all constraints in C′. Hence, S′ is consistent.

Since S′ is consistent, we can assume some arbitrary schedule σ ′ for S.
We show that {[σ ′(X−i), σ ′(X+i)] ∶ X i ∈ X} is an interval schedule for S. If
we take some arbitrary constraint X j − X i ≤ c i j ∈ C, by Proposition 3.4, it is
su�cient to show that σ ′(X+j) − σ ′(X−i) ≤ c i j . But this is immediate, since by
construction of C′, we know that X+j − X−i ≤ c i j is a constraint in C, and σ ′ is
a schedule for S′.

In Figure 3.1, a commutative diagram is shown, depicting the suggested route
to compute an interval schedule for an stn S, using the construction of the
double stn.

Example 3.3 Consider the stn S presented in Example 3.1. Let stn S′ =
(X ′ , C′) be the double stn derived from S where

X ′ = {X′ , X− , X− , X− , X− , X+ , X+ , X+ , X+ } (3.27)
C′ = {X+i − X−j ≤  ∶  ≤ i < j ≤ } ∪

{X+j − X−i ≤  ∶  ≤ i < j ≤ } ∪
{X+ − X−i ≤  ∶ i = , , } ∪
{X+i − X− ≤  ∶ i = , , } ∪
{X−i − X+i ≤  ∶ X i ∈ X} ∪
{X+ − X′ ≤ , X′ − X− ≤ } (3.28)

One possible solution is

σ ′(X−) =  σ ′(X+) = 
σ ′(X−) =  σ ′(X+) = 
σ ′(X−) =  σ ′(X+) = 
σ ′(X−) =  σ ′(X+) = 

3.2. Flexibility of an stn 53

¿is schedule can be used to construct the following interval schedule for S:

IS = {[, ], [, ], [, ], [, ]}. (3.29)

Computing a maximal interval schedule for an stn
In the previous section we introduced the concept of a double stn S′, with
which it is possible to e�ciently �nd interval schedules for the original stn S.
Finding an arbitrary interval schedule is however not su�cient to determine the
�exibility of an stn: the sum of the sizes of the intervals found is not necessarily
maximal, as required by F. We have thus to devise a method to �nd those
solutions σ ′ to the double stn S′ that maximizes the sum of the interval sizes.

It is easy to see that the following LP-formulationwill solve thismaximization
problem, and thus also the problem of computing �ex(S):

¿eorem 3.1 Let S = (X , C) be an stn. ¿en �ex(S) can be computed by
solving the following linear program:

max ∑
X i∈X

(X+i − X−i) (3.30)

subject to X−i ≤ X+i ∀X i ∈ X
X+j − X−i ≤ c i j ∀(X j − X i ≤ c i j) ∈ C
X+ = 
X− = 

(3.31)

Proof. Let S = (X , C) be an stn. ¿e constraints of the lp correspond to
the constraints of the double stn S′. Hence, any solution σ ′ of this set of
constraints can be used to create an interval set for S. So, according to Propo-
sition 3.3, the function �ex de�ned as

�ex(X i) = [σ ′(X−i), σ ′(X+i)] ∀X i ∈ X (3.32)

satis�es F–F′. Maximizing the sum of the sizes of the intervals∑X i∈X
(X+i −

X−i) thus obtained guarantees that this function also satis�es the last postu-
late, F.

Example 3.4 Applying the �exibility metric �ex to the stns S and S from
our earlier example results in the following �ex functions:

1. For S, we have �ex(X i) = [, ] for i = , ,  and �ex(S) =  ×  = .

54 3. Measuring flexibility

2. For S, we have �ex(S) = ; one possible �ex function is �ex(t) = [, ],
�ex(t) = �ex(t) = [, ].

So as intended, this �exibility function will assign  ×  �exibility units to S,
while assigning  units to S.

3.3 Applications

In this sectionwewill discuss two applications of the �exibilitymetric introduced
in this chapter. ¿ey are both focused on some of the problems encountered in
dynamic schedule execution environments, such as found at NedTrain.

First, we apply the results of our �exibility metric to the temporal decoupling
problem, in distributed scheduling, and we show that a globally optimal decou-
pling of an stn can be obtained. Next to being optimal, we also show that the
�exibility of the subsystems is not a�ected, refuting a widespread belief in this
research area.

A second application is in the �eld of the Simple Temporal Network with
Uncertainty (stnu). Here, we show how the double stn construction can be
applied to yield an elegant solution to the problem of strong controllability and
its generalizations, in stnus.

3.3.1 Decoupling without loss of �exibility

When events have to be scheduled in a distributed environment, stns are o en
used as well (see Hunsberger, 2002; Boerkoel and Durfee, 2011, 2012; Brambilla,
2010). An stn S = (X , C) is called distributed if the events in X are distributed
over k agents A ,A , . . . ,Ak , such that each individual agent A i is responsible
for scheduling a (non-empty and disjoint) subset Xi ⊆ X − {X} of events.4
Together, we assume that the set A = {A ,A , . . . ,Ak} of agents induces a
partition {Xi}ki= of X , i.e., the union of all sets Xi equals X − {X}, meaning
that all time point variables are controlled by an agent.

¿emain reason for modeling the scheduling of the eventsX as a distributed
environment is the assumption that the agents A i act as autonomous schedulers—
each agent A i wants to determine its own schedule σi ∶ Xi → R for the set Xi
of tasks assigned to it, independent of the other agents. ¿e problem with the
requirement of autonomously scheduling agents however is that we still have to
ensure, no matter what choices the agents make in constructing their individual
schedule σi , that the composition of all these schedules satis�es all constraints
C in the global stn S = (X , C). ¿is means that, for every agent A i , we have
to �nd an stn S i − (Xi ∪ {X}, C′i) such that the merge σ = ⋃k

i= σi of these
individual schedules always constitutes a valid schedule for the global stn S.

4Note that the reference time point X is excluded: it is �xed, and hence no agent controls it.

3.3. Applications 55

¿is problem, of ensuring that the merge σ of individual schedules σi for the
stns S i controlled by the agents, is known as the Temporal Decoupling Problem
Hunsberger (2002).

De�nition 3.2 Let S = (X , C) be an stn. Suppose that X − {z} = {Xi}ki= is
partitioned in k subsets Xi . ¿en the temporal decoupling problem is to �nd k
stns S i = (Xi ∪ {X}, C′i) such that, whenever σ , . . . , σk are independently
constructed schedules for the individual stns S , . . . , Sk , respectively, their
merge σ = ⋃k

i= σi is a schedule for the original stn S.

¿e heart of the problem are constraints involving events X i and X j that
belong to di�erent agents A f and Ah . ¿ese agents may choose schedules σ f and
σh , respectively, that satisfy their own private constraints C f and Ch , respectively,
but violate an inter-agent constraint X j−X i ≤ c i j by setting σ f (X j)−σh(X i) > c i j .

Example 3.5 Suppose that in the stns S and S of our earlier examples,
we have three agents A, A and A, where A i is responsible for scheduling
event X i , with i = , , . Suppose that in S i = (X , Ci) we simply assign
the constraints relating to X i to A i . ¿is means that each agent A i only
needs to take care of the subset Ci = { ≤ X i − X ≤ ,  ≤ X − X i ≤ }.
Hence, agent A might choose σ(X) = , A might choose σ(X) = , and
A might choose σ(X) = . Each of these assignment satis�es the local
constraints, but together they violate the inter-agent constraints: for example,
while X − X ≤  ∈ C, we have σ(X) − σ(X) > .

Hunsberger (2002) gave an elegant solution to this problem. Assuming
a minimal stn has been computed for the stn to be decomposed (i.e., the
distance matrix DS is known), he proposed an iterative procedure that basically
makes each inter-agent constraint X i − X j ≤ DS[j, i] obsolete by tightening the
associated intra-agent constraints X i − X ≤ DS[, i] and X − X j ≤ DS[j, ].

¿ese tightenings consist in selecting values δ i , and δ i , such that

1. X i − X ≤ δ i , ≤ DS[, i],

2. X − X j ≤ δ i , ≤ DS[j, ], and

3. δ i , + δ i , ≤ DS[i , j].

Now, if we add the new constraints

X i − X ≤ δ i , ≤ DS[, i] (3.33)

and
X − X j ≤ δ i , ≤ DS[j, ] (3.34)

56 3. Measuring flexibility

to S, while making sure that the resulting system remains consistent, the e�ect
of adding these constraints is that an inter-agent constraint X i − X j ≤ DS[i , j] is
implied by the additional, tighter, inter-agent constraints, since we have

(X i − X j) = (X i − X) + (X − X j) ≤ δ i , + δ i , ≤ DS[i , j]. (3.35)

¿e result is that such an inter-agent constraint can be removed from the up-
dated stn. Applying this procedure for every non-implied inter-agent constraint
ensures that all inter-agent constraints are implied by intra-agent constraints and
the resulting system is a temporal decoupling. All the inter-agent constraints
can be safely removed from the stn, and the resulting system is a temporal
decoupling of S.

Example 3.6 Again referring to the two stn instances S and S, note that
in S, every inter-agent constraint − ≤ X i − X j ≤ ,  ≤ i ≠ j ≤ , is already
implied by the intra-agent constraints  ≤ X i − X ≤  and  ≤ X j − X ≤ ,
since

X i − X j = (X i − X) + (X − X j) ≤  +  = .

¿erefore, S is in fact already a decoupled stn.
In S, however, we can achieve a decoupling by tightening the intra-agent

constraints to (for example):

 ≤ X − X ≤   ≤ X − X ≤   ≤ X − X ≤ .

¿e reader might verify that by these tightenings indeed every inter-agent
constraint is now implied.

An arbitrary decoupling, however, is not always what we want, since the
added constraints may limit the resulting �exibilities of the subsystems S i . As
a result, the sum∑k

i= �ex(S i) of the �exibilities of the subsystems S i could be
considerably less than the �exibility �ex(S) of the original system.

Example 3.7 To illustrate this �exibility loss due to decoupling, consider the
decoupling of the stn S as discussed in Example 3.6. We know that for the
original stn, we have �exN(S) = , �exH(S) =  and �ex(S) = . If
we compute the sum of the �exibilities of all the subsystems S, i it is evident
that the given decoupling a�ects the �exibility of the system, regardless of the
metric considered:


∑
i=
�exN(S, i) =  +  +  =  < 


∑
i=
�exH(S, i) =  +  +  +  +  +  =  < 


∑
i=
�ex(S, i) =  +  +  =  < 

3.3. Applications 57

It is a popular belief in the research community that an optimal decoupling
i.e., a decoupling that would maximize the �exibilities of the subsystems, would
still su�er from some �exibility loss. In the literature we are aware of (e.g.,
Hunsberger, 2002; Boerkoel and Durfee, 2011, 2012) several experiments have
been performed to measure this loss of �exibility. However, the metrics used all
have been based on the �exN and �exH metrics discussed above.

Instead of using this metric we try to �nd a decoupling that maximizes
the sum∑k

i= �ex(S i) of the �exibilities of the induced subsystems S i , and we
consider it an optimal decoupling if the ratio (∑k

i= �ex(S i))/�ex(S) is maximal.
Contrary to the popular beliefs in the research community we will show now

that

1. an optimal decoupling can be obtained in O(k)-time using the �exibility
metric we discussed before, and

2. this optimal decoupling need not a�ect the �exibility of the system, i.e., we
have∑k

i= �ex(S i) = �ex(S).

Proposition 3.6 Let {S i}ki= be an optimal decoupling of an stn S. ¿en
∑k
i= �ex(S i) = �ex(S).

Proof. Consider the set of intervals {[l i , u i] ∶ X i ∈ X} occurring as solutions
of the lp from¿eorem 3.1. Given the set A = {A i}ki= of k agents, let Cinter ⊆ C
be the set of all inter-agent constraints, and for i = , . . . , k, let Ci ⊆ C be the set
of constraints restricted to Xi . For every inter-agent constraint X j − X i ≤ c i j ,
where X i occurs in S i and X j occurs in S j , with i ≠ j, add the constraint
X j − X ≤ u j to Ci and add X − X i ≤ −l j to C j . We show the following.

Claim 1 ¿e resulting systems {S i}ki= constitute a decoupling of S, and

Claim 2 ¿e sum of the �exibilities �ex(S i) of the systems S i in the decou-
pling {S i}ki= equals �ex(S).

¿ese claims, together, obviously imply the proposition.

Proof of Claim 1 Suppose, on the contrary, that the merge σ of individual
schedules σi violates a constraint in C. ¿is must be an inter-agent con-
straint X j − X i ≤ c i j where X i occurs in S i and X j occurs in S j (i ≠ j). So
we must have

σ j(X j) − σi(X i) > c i j , (3.36)

but since σi satis�es all constraints in Ci , it follows by construction that
σi(X i) ≥ l i , and similarly, σ j(X j) ≤ u j . ¿erefore,

σ j(X j) − σi(X i) ≤ u j − l i . (3.37)

58 3. Measuring flexibility

Observe that, since X j − X i ≤ c i j , the constraint X+j − X−i ≤ c i j occurs in
the lp formulation. Since X+j = u j and X−i = l i occur in the solution of
this lp, we also know that u j − l i ≤ c i j . Hence, by (3.37),

σ j(X j) − σi(X i) ≤ c i j , (3.38)

contradicting (3.36).

Proof of Claim 2 Let S′ = (X ′ , C′), where X ′ = ⋃k
i=Xi and C′ = ⋃k

i= Ci ∪ C.
Note that �ex(S′) = ∑k

i= �ex(S i). Since Xi = X and C ⊆ C′, it is easy to
see that

�ex(S′) =
k
∑
i=
�ex(S i) ≤ �ex(S). (3.39)

Let IS = {[l i , u i] ∶ X i ∈ X} be an interval schedule for S = (X , C) realizing
maximum �exibility. For every subsystem S i = (Xi , Ci), consider the set

IS i = {[l i , u i] ∈ IS ∶ X i ∈ Xi}, (3.40)

being the restriction of IS to Xi . We show that for each i = , . . . , k, IS i is
an interval schedule for S i . First, let σi be such that l j ≤ σi(X j) ≤ u j for
every X j ∈ Xi . We show that σi is a valid schedule for S i . So consider an
arbitrary constraint X j − X i ≤ c i j ∈ Ci . We consider the following cases:

X j = X In this case, X − X i ≤ c i ∈ Ci . If this constraint occurs in C,
too, we know that  − l i ≤ c i since X − X−i ≤ c i occurs in the lp.
Since σl(X i) ≥ l i , it follows that  − σi(X i) ≤ c i and σi satis�es the
constraint

If this constraint does not occur in C, then it is added in the de-
composition. ¿erefore, c i = −l i . Since σi(X i) ≥ l i , it follows that
 − σi(X i) ≤ −l i = c i and σi satis�es the constraint in this case as
well.

X i = X In this case, X j − X ≤ c j . Again, we have two sub-cases. If
X j −X ≤ c j occurs in C, we know that u j − ≤ c j since X+j −X ≤ c
occurs in the lp. Since σi(X j) ≤ u j , it follows that σi(X j) ≤ c j and
the constraint is satis�ed.

If this constraint does not occur in C, again, it is added to achieve
the decomposition. ¿en, c = u j , and since σi(X j) ≤ u j we have
σ(X j) ≤ c, and the constraint is satis�ed.

X i ≠ X , X j ≠ X In this case X j − X i ≤ c i j must occur in C. Hence
X+j −X−i ≤ c i j occurs in one of the conditions in the lp and u j− l i ≤ c i j .
Since σi(X j) ≤ u j and σ j(X i) ≥ l i , we have σi(X j)− σi(X i) ≤ c i j and
σi satis�es the constraint.

3.3. Applications 59

¿is shows that σi is a valid schedule for S i , so, for each i = , . . . , k, IS
is an interval schedule for S i . But, then it follows that for each i = , . . . , k,
we have

∑
I j∈IS j

∣I j ∣ ≤ ∑
X j∈Xi

�ex(X j) = �ex(S i) (3.41)

Summing over i = , . . . , k, we derive that

�ex(S) =
k
∑
i=
∑
I j∈IS j

∣I j ∣ ≤
k
∑
i=

∑
X j∈Xi

�ex(X j) =
k
∑
i=
�ex(S i) (3.42)

Now Claim 2 follows from Equations 3.39 and 3.42.

Example 3.8 Consider Example 3.6 again. A decoupling for S realizing maxi-
mum �exibility can be created by adding the following decoupling constraints:

X − X ≤  X − X ≤ − X − X ≤  X − X ≤ −.

¿e sum of �exibilities of the subsystems equals the �exibility of the original
system.

3.3.2 Strong controllability in the stnu

In the Simple Temporal Problem with Uncertainty (stnu) the stn is extended
with an explicit distinction between executable and contingent events. ¿is is an
explicit way of modeling uncertainty: ¿e set X E contains the executable events,
which are controlled by an agent executing the schedule, and the setX C contains
the contingent events, which are controlled by an external entity beyond our
control, such as nature itself.

Given this distinction between X C and X E , we can de�ne the strong control-
lability problem:

Given: An stnu S = (X C ∪ X E , C), where ∣X C ∣ = m and ∣X E ∣ = n.
Question: Is there a choice of (scheduled) time point values v , . . . , vn for
the events X i ∈ X E such that for every choice of time points w i , . . . ,wm for
events X j ∈ X C , the function σ de�ned by σ(X i) = v i for X i ∈ X E and
σ(X j) = w j for X j ∈ X C is a schedule for S?

In other words, is it possible to construct an assignment a priori for the
executable events in X E , which will result in a valid schedule for S for any
possible execution of the events in X C that are beyond our control?

60 3. Measuring flexibility

While it has been shown (see Vidal and Fargier, 1999) that this problem
is tractable, we would like to show how our approach to �exibility can handle
this problem in a very natural way, even extending the concept of strong con-
trollability to a more general one. While the actual distinction in an stnu is
between contingent and requirement links between events, for our purposes
here we will focus on the events themselves instead, distinguishing between
required �exibility of an event, and computed �exibility. ¿e former refers to
the contingent events, controlled by nature, and the latter to the events under
control of the executing agent. For each contingent event X i we only know a
lower bound l i and an upper bound u i on the time of its occurrence. It is easy to
see that we can re-cast this in terms of an interval schedule, such as introduced
above, by stating that for each such event X i ∈ X C , its required �exibility equals
ICi = [l i , u i]. ¿e next step then follows quite naturally, as instead of asking for
the existence of a �xed schedule for the executable events in X E , we ask for a
maximal interval schedule for these events:

Given: An stnu S = (X C ∪ X E , C), where ∣X C ∣ = m and ∣X E ∣ = n.
Question: Is there a set IE of intervals IEi for the events X i ∈ X E such that
for the set IC of required �exibility intervals ICj , X j ∈ X C , the set IE ∪ IC is a
maximal interval schedule for S extending IC?

Note that in the case that X C = ∅, this problem reduces to that of �nding
a maximal interval schedule for an stn to obtain �ex(S), as discussed in the
previous section.

A simple solution to this problem can be given by a slight modi�cation to
our original method, which obtains a maximal interval schedule for S by using
the double stn method, and solves an lp with maximization of the �exibility as
the objective function. In order to represent the given (partial) interval schedule
IC in our method,

1. we should add required values for the lower bound variable X−i and the upper
bound variable X+i for every X i ∈ X C in the construction of the double stn,
to ensure that the given �exibility interval ICi has its required width, and

2. we should restrict the objective function to the sum of the di�erences (X+i −
X−i) where X i ∈ X E , as the di�erences (X+i − X−i) for X i ∈ X C are �xed.

Adapting the formulation from¿eorem 3.1, it is easy to see that the following
lp formulation will solve this problem:

Proposition 3.7 Let S = (X E ∪X C , C) be an stnu, where for each X i ∈ X C

the uncertainty of X i is given by the interval ICi = [l i , u i]. ¿en there exists
a solution to the strong controllability problem for S if the following linear

3.3. Applications 61

program has a solution:

max ∑
X i∈X E

(X+i − X−i)

subject to X−i ≤ X+i ∀X i ∈ X
X+j − X−i ≤ c i j ∀(X j − X i ≤ c i j) ∈ C

X−i = l i ∀X i ∈ X C

X+i = uI ∀X i ∈ X C

X+ = 
X− = 

Moreover, if there is a solution, we are guaranteed to have a maximum
�exible schedule for S extending IC .

Proof. Let S = (X E ∪ X C , C) be an stnu. ¿e constraints of the lp are as
least as tight as the constraints of the double stp S′, such as in¿eorem 3.1, so
any solution σ ′ of this set of constraints can be used to create an interval set
I = IE ∪ IC satisfying the constraints of S′, which guarantees that at least one
solution exists.

We know that this interval set will have ICi = [l i , u i] for every X i ∈ X C ,
guaranteeing us that any assignment within these bounds satis�es the con-
straints in S′, therefore, we can conclude that the solution that has been proven
to exist is a solution to the strong controllability problem.

Lastly, since the intervals given by IC are �xed, and the size of the intervals
for IE is maximized, we are guaranteed that the solution we have found has
maximal �exibility.

¿is approach to solving the strong controllability problem can be general-
ized further. Suppose we have an instance of the strong controllability problem
for which no schedule σ exists, solving it. Instead of stopping here, we might ask
if it is possible to �nd a set ofmaximal subintervals I′Ci ⊑ ICi for the contingent
events X i ∈ X C such that a schedule does exist. ¿e reason for this generalization
is obvious: if we manage to �nd a subset of these intervals that covers a large
portion of the original intervals, there is a high probability that a chosen schedule
for the executable events does not violate the constraints.

¿is problem can be simply solved by another modi�cation to the lp for-
mulation. In this case, we want to �nd a solution minimizing the total sum of
di�erences between the lower and upper bounds obtained, and the lower and
upper bounds required by the contingent events. ¿e following linear program

62 3. Measuring flexibility

achieves this:

min ∑
X i∈X C

((u i − X+i) − (X−i − l i))

subject to X−i ≤ X+i ∀X i ∈ X
X+j − X−i ≤ c i j ∀(X j − X i ≤ c i j) ∈ C

X−i ≥ l i ∀X i ∈ X C

X+i ≤ u i ∀X i ∈ X C

X+ = 
X− = 

3.4 Conclusion and discussion

In this chapter, the �rst research question was investigated, asking which criteria
encapsulate our intuitive notion of �exibility, and how to devise a method mea-
suring that �exibility. For the �rst part of this question, the rationality postulates
F through F introduced in this chapter provide a rigorously de�ned answer to
this question, based on the concept of an interval schedule, in which each time
point variable has an associated interval from which a value can be picked. ¿e
�exibility of the schedule is then de�ned as the sum of all the interval sizes. ¿e
most signi�cant contribution here is postulate F′, describing the independence
requirement. As Proposition 3.2 shows, satisfying this postulate indicates that
all the choices made in assigning time point variable values from such intervals
are independent from each other. Assigning a value to a time point variable has
no impact on the range of choices for any of the other intervals. Hence, we can
be assured that the sum of the sizes of these intervals is representative of the
�exibility we can make use of while executing the schedule.

¿e second major contribution is ¿eorem 3.1, which shows a method to ac-
tually calculate the sum of these interval sizes, hereby answering the second part
of the research question. A side result of the method is a valid interval schedule
for the original stn, which can be used to e�ciently execute the schedule under
dynamic circumstances.

Besides schedule execution, two other applications are discussed as well. ¿e
�rst application is in the optimal decoupling of multi-agent schedules, partially
answering the fourth research question, asking how to decouple schedules in
such a way that disturbances in the schedule in one agent have low impact on the
other agents. We disprove the wide-spread belief in the research community that
the temporal decoupling of an stn leads to a reduction of the available �exibility,
based on the �exibility de�nition using our rationality postulates: we show that
our earlier result on the creation of maximally �exible interval schedules can be
applied to create a temporal decoupling for an stn.

3.4. Conclusion and discussion 63

¿e second application is in solving the strong controllability problem for the
stnu, the Simple Temporal Network with Uncertainty. Here, uncertain events
are modeled explicitly, as contingent events over which the executing agent
has no control. Our method to �nd interval schedules can be adapted to this
problem, by explicitly assigning the required �exibility to these contingent events,
and then �nding a maximally �exible interval schedule for the controllable
events. Additionally, we generalize the notion of �nding a solution to the strong
controllability problem. If a solution cannot be found, our method can, with
another adaptation, �nd a solution that maximizes the probability of a consistent
schedule, by �nding new interval bounds for the contingent events, encapsulating
the largest possible portion of the original intervals still resulting in a solution.

3.4.1 Discussion

As can be seen from Example 3.4, presenting an interval schedule with maximal
�exibility, and Example 3.8, presenting a decoupling with maximal �exibility,
interval schedules and decouplings can be obtained in many, sometimes unfair,
ways. In both these examples, one event, and one agent, respectively, gets all the
available �exibility, leaving none for the other events or agents. ¿is indicates
that there are multiple ways to make use of the available �exibility in a schedule,
which shows the need for the second research question, asking how �exibility
can be used best to achieve a schedule with high robustness. In the next chapter
we will therefore investigate modi�cations to the lp formulation presented in
¿eorem 3.1, with the aim of in�uencing the �exibility distribution to improve
fairness and robustness.

Another extension of the work in this chapter, of which the careful reader
might have already realized the possibility, lies in the computation of the �exibil-
ity for general linear systems of the form Ax ≤ b, as has already been done (see
Witteveen et al., 2014). ¿is o�ers the possibility to compute sets of solutions
for this system, guaranteeing that any choice from within this set preserves
the maximum value of the objective function. Moreover, the extension from
schedule �exibility to schedule decoupling can also be made in this case, giving
e�cient solutions for decoupling problems, such as analyzed by Brodsky et al.
(2005).

Distributing �exibility to
improve robustness 

In the previous chapter, a method for constructing a maximally �exible interval
schedule for an stn was introduced, answering the �rst research question. But
as already mentioned in the discussion section, there is more to the �exibility
of a schedule than simply maximizing it: o en, the distribution of available
�exibility is very lopsided. We therefore continue exploring the concept of the
�exibility of a schedule in this chapter, turning to the second research question:
we analyze the e�ect of di�erent ways of distributing the available �exibility
over the schedule, with the goal of achieving high robustness. Flexibility and
robustness are two interrelated concepts. Flexibility, as discussed in the previous
chapter, is the ability of a schedule to adapt to unexpected events without changes,
for example by utilizing the intervals assigned to each task to adapt to the new
situation.

It is clear that some events have such a disruptive nature that this is no longer
possible. In this case the schedule has to be changed to adapt, usually by delaying
tasks and starting them at a later time than intended. We de�ne the robustness of
a schedule as the ability of a schedule to withstand such disruptions—the fewer
the number of tasks that have to be delayed outside their planned execution
time to accommodate disruptions the more robust the schedule is. O en, a
schedule is not only used to plan the execution of the tasks itself, but also for the
reservation of resources to be used by the tasks, or to make commitments with
external parties involved in the execution of tasks. If tasks have to be delayed
to accommodate unexpected events, such commitments are put at risk, which
is undesirable. If the distribution of �exibility is lopsided, parts of the schedule
have very low �exibility, and disturbances will be much more disruptive. In this
chapter we will examine ways to arrive at a distribution of �exibility in which
this problem is reduced, in an attempt to increase the robustness.

¿is chapter starts with a motivation, which shows using examples why
there is a need to pay attention to how the available �exibility in a schedule is
distributed over the individual tasks. In the next section, methods are proposed
to actually achieve certain distributions of �exibility, with the aim of improving
the robustness of the schedule during execution. ¿ese methods are then tested
using a simulated execution of the schedule, and the results are discussed and
explained.

65

66 4. Distributing flexibility to improve robustness

4.1 Motivation

In the previous chapter, we introduced a new method for measuring the �exi-
bility of an interval schedule, which represents a set of solutions to a resource-
constrained project scheduling problem instance: the original rcpsp is trans-
formed into an stn, by using constraint posting techniques that add temporal
constraints to eliminate resource constraints; for this stn we construct a solution
in the form of an interval schedule, which then also serves as a solution for the
original rcpsp instance. Many di�erent interval schedules can be found for a
single stn, however. To calculate the �exibility of the stn, an interval schedule
is found that maximizes the sum of the sizes of the intervals, and hence the
�exibility. But even using this objective, many di�erent interval schedules are
still possible. Looking back to the original problems as discussed in Chapter 1,
one of the motivations for our work is the need for robust schedules, i.e., sched-
ules that are resistant, to a certain extent, to external disturbances. Next to their
use in dispatching tasks for execution, schedules are o en also used to reserve
resources needed for the execution of a task at some time point in the future, or
to make commitments to external parties needed to execute a task. ¿is is were
robustness comes into play: when disturbances are present, it is important to
still be able to rely on the predictions of a schedule, such that commitments that
have been made based on the schedule can be honored. Robustness is therefore
operationalized as the ability of a schedule to dispatch the tasks as planned, even
when disturbances are present. It is in this light that this chapter will evaluate
the di�erent interval schedules that can be constructed for a given stn transfor-
mation of the original planning problem. To motivate this more clearly, let us
look at the following example.

Example 4.1 Consider an rcpsp instance containing �ve tasks t , . . . , t,
where for all i, s i = , d i =  and l i = , i.e., all tasks have length 1, and
they have to execute within the time interval [, ]. Resource constraints
dictate that none of the tasks can execute in parallel, such that one stn trans-
formation for this problem would be Sseq = (X , C), with

X = {X , X , . . . , X}

representing the reference time point X and the start times for the tasks, and

C = {X − X i ≤  ∶ i = , . . . , } ∪
{X i − X ≤  − l i =  ∶ i = , . . . , } ∪
{X i − X i+ ≤ −l i = − ∶ i = , . . . , }

representing, respectively, the release time constraints, due time constraints,
and precedence constraints enforcing one particular sequential execution of
the tasks. Below, the temporal network for this problem is shown (to reduce
clutter, the constraints between a point and X are shown as a label on that
time point).

4.1. Motivation 67

X X X X X

[, ] [, ] [, ] [, ] [, ]

[,∞] [,∞] [,∞] [,∞]

As the reader might verify, we have �ex(Sseq) =  for this simple example.
Two possible interval schedules achieving this �exibility score are

Ir = {[, ], [, ], [, ], [, ], [, ]},

a schedule placing all available �exibility at the “rightmost” time point X, and

I l = {[, ], [, ], [, ], [, ], [, ]},

which places all �exibility at the “le most” time point X (for both, X ∈ [, ]).
Both schedules have the same amount of total �exibility, but I l is much more
vulnerable if task processing times are increased due to unexpected delays:
for every task except X such a delay has a direct e�ect on the makespan of
the schedule. In contrast, Ir is much less vulnerable to delay with regard to
the makespan of the schedule, since all �exibility is placed at the end of the
schedule.

As the example shows clearly, simplymaximizing the �exibility is not enough
if we are interested in robustness of the schedule: Both Ir and I l satisfy the
objective of maximal �exibility, but one of them is much better at guaranteeing
we can satisfy the imposed deadline than the other. Besides satisfying a due
date, or guaranteeing a certain makespan, however, there might be other aspects
in which we could want to ensure robustness, as motivated by the following
example.

Example 4.2 Suppose that in the case of the scheduling problem outlined in
the example above, task t requires some sort of special tool, or an outside
contractor, which has to be reserved at some time point well before executing
the task itself. For both the interval schedules I l and Ir , as presented in the
previous example, there is a risk that tasks preceding t have an impact on the
starting time of t, causing it to be started outside of the interval I assigned to
it. While this might have no impact on the deadline of the entire schedule, any
previous commitment made to reserve the aforementioned special resource
will be violated.

A schedule tailored to this speci�c situation is

I = {[, ], [, ], [, ], [, ], [, ]},

where all available �exibility is given to t, which gives a high certainty that,
whatever the delays occurring, it will be possible to execute it in the planned
interval.

68 4. Distributing flexibility to improve robustness

¿e above assumes a priori knowledge of which task(s) have external
commitments that are to be honored. We can generalize this idea for situations
where this is not known in advance, and try to improve the likelihood that the
actual execution of a task t i takes place in its assigned interval I i , such that
any (prior) commitments related to the execution of t i will be honored. If, in
our example, the delays to be expected are small relative to the task length (i.e.,
the delay is rarely larger than the length of the actual task), a more equalized
distribution of �exibility over the schedule, such as in a schedule like

Ie = {[, ], [, ], [, ], [, ], [, ]},

has a much lower risk of tasks execution outside their assigned interval due to
delays. Note that we still have �ex(Ie) = , meaning that the �exibility is still
maximal.

We can even go a step further, and state that sacri�cing some of the available
�exibility, as seen over the total schedule, can be bene�cial, if it improves the
distribution of �exibility over the rest of the schedule. ¿e following example
provides a concrete motivation for this claim.

Example 4.3 Consider a variation on the rcpsp instance presented in Exam-
ple 4.1, in which t is split into three sub-tasks that can be executed in parallel,
given the available resources. ¿e temporal network for one possible stn
transformation Spar = (X , C) is shown below.

X

X

X

X X X X

[, ]

[, ]

[, ]

[, ]

[, ] [, ] [, ]

[,∞]

[,∞]

[,∞]

[,∞]

[,∞]

[,∞]

[,∞] [,∞]

Maximizing �ex(Spar) yields, in this case, the unique interval schedule

Ipar = {[, ], [, ], [, ], [, ], [, ], [, ], [, ]}.

For this schedule, we have �ex(Ipar) = , but note that all �exibility is con-
centrated in the parallel part of the schedule, i.e., in tasks t, t and t. ¿e
sequential part of the schedule receives no �exibility at all. Recalling the ar-
gument made in Example 4.2, there might be valid reasons for wanting to
have a more equalized distribution of �exibility over the tasks. A schedule

4.2. Methods for distributing �exibility 69

that achieves this for this example is

I′par = {[, ], [, ], [, ], [, ], [, ], [, ], [, ]},

in which every task has an equal amount of �exibility. Note, however, that
�ex(I′par) = : in global terms, this schedule o�ers lower �exibility. However,
if honoring overall commitments made prior to execution is a concern, it is
clear that I′par is to be preferred over Ipar: �exibility is distributed more evenly,
such that the sequential parts of the schedule have higher robustness than
when using Ipar.

From these examples, it is clear that there is more to it than maximizing
the �exibility of a schedule if our goal is to achieve some form of robustness.
Moreover, we observe that, even if we keep our aim of having maximal global
�exibility, there may be multiple schedules satisfying that goal, with di�ering
properties regarding robustness during execution. Finally, sometimes there is
a clear case to be made for sacri�cing a certain amount of (global) �exibility,
to be able to improve the distribution of �exibility over all individual tasks in
a schedule. In the following section, we will formalize this notion of �exibility
distribution.

4.2 Methods for distributing flexibility

As a �rst step in formalizing the distribution of �exibility over interval methods,
we note that, while our aim is to distribute �exibility more equally, it is undesir-
able to enforce a strictly uniform distribution of �exibility—this could easily lead
to schedules with unreasonably low or even zero �exibility: If there is a single
task with low or zero �exibility, this would enforce this level of �exibility to all
other tasks, needlessly reducing �exibility.

Equalizing �exibility To make this idea more explicit, we start by examining
the intervals Ia and Ib assigned to two time point variables Xa and Xb in some
stn S = (X , C) over which we need to distribute �exibility. Our goal is to
discriminate between two situations, in which the total �exibility is equal, but in
which the distribution di�ers. In this case, we would like to di�erentiate between
∣Ia ∣ = ∣Ib ∣, and ∣I′a ∣−ε < ∣I′b ∣+ε. While ∣Ia ∣+∣Ib ∣ = ∣I′a ∣+∣I′b ∣, the �rst assignment is
to be preferred, since the distribution of the �exibility is more equal. Minimizing
this deviation ε bears resemblance to the idea of least squares minimization, in
which the squared residual error of a curve as compared to a set of data points is
minimized. ¿erefore, we propose to use the objective function

min ∑
X i∈X

((lst(X i) − est(X i)) − (X+i − X−i)) , (4.1)

which is used to minimize the squared di�erence between the maximally avail-
able �exibility for each time point variable X i , and the actual �exibility received

70 4. Distributing flexibility to improve robustness

in the interval schedule. ¿is will result in equalization of �exibility, since distri-
bution of a certain amount of �exibility over multiple time point variables will
yield a lower score than if all �exibility were concentrated on a single variable.
¿is equation replaces Equation 3.30 in¿eorem 3.11.

¿e above assumes that all tasks in a scheduling problem are equal, in terms
of �exibility requirements. In practice, this is not always the case. If it is known
in advance that some tasks are more susceptible to disturbances, this should be
re�ected in the �exibility distribution of the schedule, by favoring these tasks.
Similarly, the structure of the dependency network connecting the tasks in the
schedule can also have in�uence on the consequences of a disturbance. As an
example, if a certain task t i has a large number of predecessors, the chances
that at least of them will su�er a delay is higher. Assigning more �exibility to
the associated time point X i as a prevention can increase the robustness of the
schedule.

In�uencing the �exibility distribution Re�ecting this desire to more directly
in�uence the �exibility distribution, we introduce the objective function

min ∑
X i∈X

w(X i) ⋅ ((lst(X i) − est(X i)) − (X+i − X−i)) , (4.2)

a weighted objective function, wherew ∶ X → R is a weight function in�uencing
the amount of �exibility X i should have. ¿e higher w(X i), the more �exibility
is given to X i , at the expense of tasks with a weight lower than w(X i).

An obvious choice for w would be some function representing a priori
knowledge of delay probabilities for the tasks in the schedule. If it is known
in advance that a certain task is highly probable to be delayed, it makes sense
to give it a higher weight, to ensure that additional �exibility is available for it.
However, we will assume that no such information is available beforehand, and
that we will have to use other properties to in�uence the weight per time point
variable. One evident property that we could use is of course the structure of the
network of tasks surrounding a time point variable X i , in particular the number
of predecessors and successors.

To start, we consider the number of predecessors X i has. Our rationale is
that a time point variable with more predecessors has a higher risk of being
impacted by a delay, since any of those predecessors could incur a delay that
might propagate to X i . A basic weight function w(t i) based on the number of
predecessors of X i can be de�ned as

w(X i) = ∣{X j ∶ X j ≺ X i}∣. (4.3)

¿is function simply counts the number of predecessors X i has, and assigns that
value to w(X i).

1Instead of a linear programming problem, we are now confronted with a quadratic program-
ming problem. But as it turns out, the functions to be optimized are convex, making the use of
the ellipsoid method possible, which solves this problem in polynomial time.

4.2. Methods for distributing �exibility 71

A disadvantage might be that this function heavily biases the “tail end” of the
schedule: time point variables at the end of the schedule invariantly have more
predecessors than those at the beginning. Furthermore, we can pose that a delay
at the very beginning has a low chance of reaching the very end of a schedule.
Time points in between will usually also have some �exibility, which absorbs the
delay, especially if the delay is small. In the most extreme case, we could propose
to use the function

w(X i) = ∣{X j ∶ X j ≪ X i}∣, (4.4)

where ≪ is the immediate predecessor relation, i.e., X j ≪ X i if, and only if,
X j ≺ X i and there is no Xk such that X j ≺ Xk ≺ X i , with i ≠ j ≠ k. ¿is function
hence only counts the direct predecessors of a time point variable X i and uses
that value to assign a value to w(X i).

It might be desirable to have a weight distribution between these two ex-
tremes, i.e., we want to account for some of the non-direct predecessors, but not
for all of them, in how we assign weight to time point variables. To this end, we
can generalize our weight function to

w(X i) = ∑
X j∈pre(X i)

max( −
distance(Xj , Xi) − 

φ
, ), (4.5)

where pre(X i) = {X j ∶ X j ≺ X i} contains the set of predecessors of X i ,
distance(X j , X i) is the length of the shortest path between X j and X i (i.e., the
number of precedence constraints connecting them), and φ is a discounting
factor. For φ = , this function reduces to that of Equation 4.4, counting only
the direct predecessors. In general, for φ = j, predecessors up to j steps re-
moved from X i are considered, where their value is discounted linearly, i.e., a
predecessor removed j steps contributes a weight of / j to the total value of
w(X i).

Next to arguing that more predecessors cause more delay, and we should
have more �exibility for time point variables that have more predecessors, we
could as well reason more pro-actively: time point variables that have a high
number of successors are at risk of propagating a delay to many other points in
a network, hence we should give more weight to such variables.

¿erefore, we can de�ne

w(X i) = ∣{X j ∶ X i ≺ X j}∣, (4.6)

a weight function that assigns to w(X i) a value equal to the total number of
successors of X i . Similar objections can be raised here as for Equation 4.3, which
counts all predecessors, so here we can also de�ne

w(X i) = ∣{X j ∶ X i ≪ X j}∣, (4.7)

a function counting only the direct successors, in similar vein to Equation 4.4,
and of course

w(X i) = ∑
X j∈succ(X i)

max( −
distance(Xi , Xj) − 

φ
, ), (4.8)

72 4. Distributing flexibility to improve robustness

where succ(X i) = {X j ∶ X i ≺ X j} is the set of successors of X i .

4.3 Experiments

In Examples 4.1 and 4.3 the main motivation behind the ideas in this chapter
was sketched: maximizing the �exibility of a schedule need not be the same as
maximizing the robustness of that schedule. One reason, demonstrated in the
�rst example, is that multiple such schedules can be constructed, which will
have di�erent properties during execution. An even more compelling reason is
outlined in Example 4.3: maximizing can lead to very skewed distributions of
�exibility, which in turn will have a negative impact on the robustness. While
these examples prove the existence of such e�ects, more general conclusions
cannot be drawn from them. For this reason, this section presents hypotheses
and results from simulation experiments designed to see if these hypotheses
indeed hold.

A �rst hypothesis is that the problem outlined by the examples in the mo-
tivation is not a contrived example, but that sacri�cing �exibility to improve
the �exibility distribution has a positive e�ect on the robustness of a schedule
in general. Several new distributions have been proposed in this chapter, the
next question is therefore which of these distributions works best. ¿e hypoth-
esis is that network structure plays a role in the propagation of disturbances,
and that adapting the distribution to that structure has a positive e�ect on the
performance. It is unclear from the theory how to adapt the distribution: one
hypothesis is that tasks with many predecessors bene�t from receiving more
�exibility, another hypothesis is that tasks with many successors bene�t instead.

To test these hypotheses, we will be performing simulation experiments, in
which an interval schedule constructed using one of the proposed �exibility
distribution methods will be executed repeatedly. For each execution, a set of
tasks will be picked that will be arti�cially delayed by increasing their execution
time. To evaluate the robustness of an interval schedule, we will be focussing on
howwell the simulated execution adheres to the original intervals. If a task has to
start outside its assigned interval, this is seen as a violation. ¿e more violations
an interval schedule has, the lower its robustness. ¿e rationale behind this idea
is that it is our aim to construct a robust schedule, which can be used as a basis
to make commitments. If a task starts outside its assigned interval, due to an
unforeseen delay, this violates such a commitment.

We start by examining the overall performance, averaged over all experi-
ments performed, then wewill zoom in and analyze the e�ect of di�erent types of
delay. In particular, we will vary both the number of tasks a�ected by delay, and
the severity of the delay itself. It is expected that there will be a clear correlation
between increasing both of these parameters and the performance of the interval
schedules. It is unclear however which of these will have the biggest impact.

Lastly, we will perform amore extended analysis of the relationships between
sacri�cing �exibility and increasing robustness, and between the trade-o� of
constraint violations and schedule tardiness. For the �rst relationship, two

4.3. Experiments 73

opposing forces are at work: On one side, we expect that sacri�cing �exibility
will improve performance, as this is the idea behind the equalized �exibility
distribution. On the other side, if too much �exibility is lost, schedule execution
performance will eventually drop. For the second relationship, we refer back to
Example 4.1: From these examples it is clear that if �exibility is placed at the end,
we can expect lower tardiness. But, this also means that the other tasks have
lower �exibility, which leads us to expect that more constraints will be violated.

Note that we are not able to compare the results optimizing our �exibility
metric to the metrics discussed in Section 3.2, since those metrics do not provide
us with an interval schedule.

4.3.1 Setup of Experiments

Task scheduling problem instances are obtained from the psplib instances
(Kolisch and Sprecher, 1996; Kolisch et al., 1998), whereby only the network
part of the instance is used—all resource constraints are ignored. Four sizes are
available (30, 60, 90 and 120 tasks), we will concentrate on the set with 120 tasks.
Since the instances contain no due date, a due date is imposed by taking the
earliest start time schedule of the instance, and increasing the end time of this
schedule by 10.

¿e unexpected delays that we simulate are controlled by two parameters.
¿e �rst parameter controls the number of tasks that are delayed. For each set
of simulations, a �xed number of tasks are delayed. We delay between 10 and
50 of the tasks in the schedule, in steps of 10, for a total of 5 di�erent settings.
¿e second parameter controls the amount of delay, relative to the length of the
selected task. ¿e delay is implemented by increasing the processing time of
the selected task, without updating the schedule to take this increased time into
account. ¿is way, an accurate simulation can be performed of an unexpected
delay, ofwhich no a priori information is known. ¿eprocessing time is increased
by a factor between 10 and 100 in steps of 10, and between 100 and 200
in steps of 25, for a total of 14 di�erent settings.

Having created an interval schedule for a problem instance, and having
selected the tasks to be delayed, simulation is performed by dispatching the tasks
of the instance in their assigned intervals. We choose to dispatch a task as soon as
possible, within the constraints of its assigned interval. ¿is accurately simulates,
for instance, most production environments, in which personnel executing tasks
is expected not to sit around idling when tasks are available to be executed. Since
the tasks to be delayed are selected randomly, the interval schedule resulting
from each combination of parameters is simulated 150 times for each setting of
the delay parameters.

¿e performance of a simulated schedule execution is measured by determin-
ing the number of schedule violations occurring during execution. A violation
occurs as soon as a task has to be started outside its execution interval. ¿e size
of the violation is equal to the distance of the upper bound of the execution
interval, and the realized start time of the task.

74 4. Distributing flexibility to improve robustness

Table 4.1
Flexibility loss of the di�erent �exibility distributions

Distribution Flexibility Flexibility loss

average std.dev average std.dev

Maximal (.) . .  
Equalized (.) . . . (.%) .
Weighted, direct predecessors (.) . . . (.%) .
Weighted, discounted (φ = 5, .) . . . (.%) .
Weighted, all predecessors (.) . . . (.%) .
Weighted, direct successors (.) . . . (.%) .
Weighted, all successors (.) . . . (.%) .

Example 4.4 Consider for example two tasks X and X, with l = , l = 
and X ≪ X. If σi(X) = [, ] and σi(X) = [, ], we will start X at time
point 0. If X is now delayed, such that l ′ = , X cannot be started in σi(X).
We start X at the earliest possible time, which is directly a er X ends at time
point 5. ¿is is counted as a violation, of size  −  = , since the upper bound
of σ(X) is 4.

4.3.2 Comparing Flexibility Distributions

We start with an overall comparison of the performance of the di�erent �exi-
bility distributions proposed, averaged over the full range of delay parameters
on all instances, as discussed in the previous section. ¿e di�erent �exibility
distributions proposed in Section 4.2 are compared with the one resulting from
the �exibility metric introduced in¿eorem 3.1, havingmaximal �exibility. Since
there may be many di�erent distributions maximizing the �exibility for a cer-
tain stn, we pick one which also maximizes Equation 4.1. ¿is means that the
maximally �exible distribution we use is as equalized as possible, such that we
do not give unfair disadvantage to this distribution.

In Table 4.1, the resulting average �exibility is shown for each of the �exi-
bility distributions, as well as the loss, when comparing the �exibility of each
distribution to the maximal �exibility. We see that the price we have to pay in
terms of �exibility loss to equalize �exibility is not very high: 95 of the available
�exibility is retained. If we modify the equal distribution by applying a weight
function w however, we see that the more w deviates from an equal distribution,
the more �exibility we lose.

In Table 4.2, the average performance over all delay parameters is sum-
marized for the di�erent �exibility distributions, in terms of the number of
violations, and the tardiness relative to the (undelayed) makespan. Here, we
see that equalizing the �exibility gives an advantage in terms of the number
of violations, even at the price of some �exibility loss. From this we can thus

4.3. Experiments 75

Table 4.2
Average performance for the di�erent �exibility distributions

Distribution Violations Tardiness, 

average std.dev average std.dev

Maximal (.) . . . .
Equalized (.) . (−.%) . . (−.%) .
Weighted, direct predecessors (.) . (.%) . . (−.%) .
Weighted, discounted (φ = 5, .) . (+.%) . . (−.%) .
Weighted, all predecessors (.) . (+.%) . . (−.%) .
Weighted, direct successors (.) . (−.%) . . (.%) .
Weighted, all successors (.) . (−.%) . . (+.%) .

conclude that sacri�cing some �exibility can indeed improve the performance
of schedule execution.

For the weighted �exibility distributions, this is not the case everywhere,
contrary to our expectations. Weight functions distributing more �exibility to
tasks withmore predecessors (Equations 4.3, 4.4 and 4.5) lead to a higher number
of violations, on average, but to a slight decrease in the average tardiness (i.e., the
�nish time of the latest task, as compared to the undelayed schedule). It is easy
to understand why this happens: all these distributions, to a greater or lesser
extent, concentrate �exibility in tasks with many predecessors. Tasks at the end
of the schedule of course have more predecessors than tasks at the beginning,
so this leads to a concentration of �exibility at the end of the schedule. A delay
occurring anywhere in the schedule can thus be more easily absorbed by the
tasks at the end of the schedule, but this comes at the price of more violations,
for the tasks between the delayed task and the end of the schedule.

For the weight functions distributing more �exibility to tasks with more
successors (Equations 4.6 and 4.7) we see the reverse, for the exact same reason.
Tasks near or at the end of the schedule will have lower �exibility, explaining
the slightly higher average tardiness. ¿e number of violations is lower however,
and from this we can conclude that it is better to distribute �exibility in such a
way that delays can be compensated for immediately, before they spread to other
tasks.

¿ese numbers are all averages however, taken over all delay parameter
combinations (i.e., number of tasks delayed, amount of delay per task). In the
next section we will more closely analyze the in�uence these parameters have
for the various distributions.

4.3.3 In�uence of Delay Parameters on Performance

So far, we have discussed the performance of interval schedules averaged over all
delay parameters used. Wewill now examine the dependency of the performance
of the various �exibility distributions, in terms of the number of violations and

76 4. Distributing flexibility to improve robustness

    










delay length, 

#
vi
ol
at
io
ns

maximal �exibility equalized
w, # direct predec. w, total # predec.

    










delay length, 

#
vi
ol
at
io
ns

maximal �exibility equalized
w, # direct succ. w, total # succ.

Figure 4.1
In�uence of delay length on violations, for a delay in 10 of the tasks.

the tardiness, on both the number of tasks delayed and the amount of delay
inserted.

In Figure 4.1 the e�ect of the length of the delay (relative to the task a�ected)
is shown, for a constant number (10, relative to the total number of tasks) of
delayed tasks. ¿e same picture emerges as from the summarized data: equally
distributed �exibility consistently outperforms interval schedules having maxi-
mal �exibility, and interval schedules where �exibility is concentrated on tasks
with many predecessors (right part of the �gure). It can also be seen that maxi-
mally �exible schedules are in�uenced more for smaller delay lengths, relative to
the other distributions. A possible explanation is that these schedules have more
tasks with no �exibility at all: a delay has to propagate through all such tasks,
until a task with enough �exibility is reached to absorb it. For the distributions
concentrating the �exibility on tasks withmany successors (le part of the �gure),
we see that they perform almost identical to the equalized distribution. ¿is
suggests that the slight performance increase we observed in Table 4.2 occurs
for a higher number of delayed tasks only.

In Figure 4.2 the e�ect of the number of delayed tasks (relative to the instance
size) is shown, for a �xed amount of delay (10, relative to the task a�ected).
¿e e�ects are largely similar to the e�ect of the length of the delay. Again,
maximally �exible schedules are less a�ected by larger percentages of tasks
delayed; the possible explanation is the same, as a large percentage of small
delays give similar e�ects as a small percentage of large delays. ¿e number
of violations increases more slowly for larger percentages of delayed tasks; a
possible explanation is that, due to re-convergence in the task graph, the e�ects
of additional delays have less impact on the number of violations: if one delay
already causes a series of violations, an additional delay cannot cause more
violations in that path. Interestingly enough, here, we also see (right �gure) that
distributions concentrating �exibility on tasks with many successors perform
virtually identical to distributions with maximal �exibility. We must therefore

4.3. Experiments 77

    










delayed tasks

#
vi
ol
at
io
ns

maximal �exibility equalized
w, # direct predec. w, total # predec.

    










delayed tasks

#
vi
ol
at
io
ns

maximal �exibility equalized
w, # direct succ. w, total # succ.

Figure 4.2
In�uence of the number of delays on violations, for a delay length of 10.

    






delay length, 

ta
rd
in
es
s,


maximal �exibility equalized
w, # direct predec. w, total # predec.

    






delay length, 

ta
rd
in
es
s,


maximal �exibility equalized
w, # direct succ. w, total # succ.

Figure 4.3
In�uence of delay length on tardiness, for a delay in 10 of the tasks.

    








delayed tasks

ta
rd
in
es
s,


maximal �exibility equalized
w, # direct predec. w, total # predec.

    








delayed tasks

ta
rd
in
es
s,


maximal �exibility equalized
w, # direct succ. w, total # succ.

Figure 4.4
In�uence of the number of delays on tardiness, for a delay length of 10.

78 4. Distributing flexibility to improve robustness

conclude that the advantage for these distributions we see in Table 4.2 occurs
when both the number of tasks delayed and the size of the delay is large.

Next to the number of violations during execution, the tardiness is also of
importance. In Figures 4.3 and 4.4, the dependence of the tardiness on the di�er-
ent delay parameters is shown. ¿e results closely follow the summarized data
in Table 4.2, and the relative performance of the distributions is not dependent
on the delay parameters.

4.3.4 In�uence of Flexibility on Performance

¿e discussion in the previous section centers on the relationship between the
chosen distribution and the performance, in terms of violations and tardiness.
It already shows that, sometimes, sacri�cing some �exibility compared to the
maximum achievable can give performance improvements for these criteria.
Now, we will analyze this in somemore detail by comparing the relative �exibility
of certain instances to the relative performance on that instance, in terms of the
number of violations. To be exact, 60 instances are selected at random, and the
�exibility loss using the various distribution methods is computed, compared
to the maximum achievable using Equation 3.30. ¿e �exibility loss is plotted
on the horizontal axis, and on the vertical axis the performance is shown, also
relative to the performance, for a representative setting of the delay parameters
(30 of the tasks are delayed by 30, other settings yield comparable results).
¿e data is separated across multiple graphs, to improve legibility.

In Figure 4.5 the data for equalized �exibility is shown, as well as the data for
distributions based on the number of predecessors. For both the equalized dis-
tribution as well as the distribution based on the number of direct predecessors,
the graph shows a correlation between the loss of �exibility and the performance.
For the distribution based on the total number of predecessors, this correlation
is almost indiscernible.

At �rst glance, this correlation appears to be in the wrong direction: the less
�exibility remains, the higher the performance improvement, as compared to
the maximally �exible schedule for the same instance. If we examine the basic
idea behind the distribution of �exibility, this result does make sense a er all:
if an instance has a lot of parallel sections, the maximally �exible schedule will
have more concentrations of �exibility, as demonstrated in Example 4.3. ¿ese
concentrations are distributed when using the equalized objective function, and
this will result in a relatively large di�erence in �exibility, but also in improved
performance. In other words: the more a schedule can be changed using our
equalized �exibility distribution, compared to a maximally �exible schedule, the
higher the performance increase will be.

We do see a decrease in performance for the distributions based on the
number of predecessors, compared to equalized �exibility distribution; this was
also re�ected in the previous section. ¿e distributions based on the number of
successors are shown in Figure 4.6, and here we also see the slight increase in
performance, compared to the equalized distribution. For both distributions,
the correlation between �exibility loss and performance holds. Here, we also see

4.3. Experiments 79

. . . . . . . 
.

.

.



.

.

.

.

�exibility, relative

vi
ol
at
io
ns
,r
el
at
iv
e

equalized
w, direct predec.
w, total predec.

Figure 4.5
Relative number of
violations versus loss of
�exibility, for 30 delay
in 30 of the tasks, for
equalized �exibility and
distributions based on
predecessors.

. . . . . . . 
.

.

.



.

.

.

.

�exibility, relative

vi
ol
at
io
ns
,r
el
at
iv
e

equalized
w, direct succ.
w, total succ.

Figure 4.6
Relative number of
violations versus loss of
�exibility, for 30 delay
in 30 of the tasks, for
equalized �exibility and
distributions based on
successors.

80 4. Distributing flexibility to improve robustness

       











violations

ta
rd
in
es
s

equalized
maximal �exibility
w, # direct predec.
w, total predec.

Figure 4.7
Violations versus

tardiness, for 30 delay
in 30 of the tasks, for
equalized and maximal

�exibility, and for
distributions based on

predecessors.

       











violations

ta
rd
in
es
s

equalized
maximal �exibility
w, # direct succ.
w, total succ.

Figure 4.8
Violations versus

tardiness, for 30 delay
in 30 of the tasks, for
equalized and maximal

�exibility, and for
distributions based on

successors.

4.3. Experiments 81

that deviating too far from the equalized distribution results in larger �exibility
losses, which eventually begin to impact the performance, as seen in the results
for the distribution based on the total number of successors.

4.3.5 Violations Versus Tardiness

As can already be seen from the data in Table 4.2, there is a relationship between
the number of violations and the tardiness of a schedule, which can be noted
especially in the distributions based on the number of predecessors. If �exibility
is concentrated at the tasks at the end of the schedule, there ismore slack available
in this portion to compensate delays that would otherwise lead to tardiness. But,
this also leads to more violations in the �rst part of the schedule. Conversely, a
more equalized distribution avoids these violations, at the cost of tardiness.

In Figure 4.7 this trade-o� is visualised for 60 instances simulated using 30
delay in 30 of the tasks. ¿e di�erence between the schedules with equalized
�exibility and the two weighted distributions based on the number of prede-
cessors is very clear: an equalized schedule optimizes towards a low number
of violations, a schedule weighted using the total number of predecessors op-
timizes towards low tardiness, and a schedule weighted using the number of
direct predecessors compromises between the two. ¿is graph shows again that
maximizing the �exibility o�ers the worst performance of the di�ering �exibility
distribution: it neither scores good on tardiness nor on the number of violations.

Next, we look at the two distributions based on the number of successors,
these are also compared with the equalized �exibility distribution and the distri-
bution with maximal �exibility, in Figure 4.8. Irregardless of the fact that, using
a distribution based on the number of successors, less �exibility is concentrated
at the end of the schedule, the tardiness does not increase a lot. ¿e distribution
based on the number of direct successors o�ers a slight increase in terms of the
number of violations, with (almost) equal tardiness. Only when we deviate even
more, by basing the distribution on the total number of successors, we indeed
see a slight increase in the tardiness. ¿is e�ect is visible even more in Table 4.2,
this is caused by the fact that delay parameters causing more extreme delays are
represented here as well.

¿e likely cause for the di�erence between Figures 4.7 and 4.8 lies in the
di�erent focus of the two distribution types. If we concentrate �exibility at the
end of the schedule, we manage to lower tardiness, but the consequence is that
more violations occur before delays are absorbed by the available �exibility. ¿e
other distributions, focussing on the number of successors, manage to decrease
the number of violations slightly. While there might be less �exibility near the
end of the schedule, the higher risk of tardiness is compensated by the lower
propagation of delay.

4.3.6 Flexibility guarantees

A downside to the approach discussed so far is that all methods based on the ob-
jective function from Equation 4.1 focus onminimizing �exibility loss di�erences,

82 4. Distributing flexibility to improve robustness

    










delay length, 

#
vi
ol
at
io
ns

equalized equalized w. min. �ex

    










delayed tasks

#
vi
ol
at
io
ns

Figure 4.9
In�uence of guaranteed �exibility on the number of violations, for a delay in 10 of the tasks (le) and for a delay of
10 (right)

    






delay length, 

ta
rd
in
es
s,


equalized equalized w. min. �ex

    








delayed tasks

ta
rd
in
es
s,


Figure 4.10
In�uence of guaranteed �exibility on tardiness, for a delay in 10 of the tasks (le) and for a delay of 10 (right)

without taking into account the absolute value of the resulting �exibilities.

Example 4.5 Consider two time point variables Xa and Xb , with lst(Xa) −
est(Xa) =  and lst(Xb) − est(Xb) = . Imagine that, due to the surrounding
network structure, applying the linear programming method presented in
the previous chapter combined with the objective function from Equation 4.1,
both Xa and Xb lose two units of �exibility. Both time points are treated
equally in terms of �exibility loss, but Xa has two units of �exibility remaining,
whereas Xb has no �exibility at all.

As can be seen from this example, the method based on Equation 4.1 might
result in tasks receiving no �exibility at all. A method to avoid this problem is to
add constraints of the form

X+i − X−i ≥ f (4.9)

4.4. Conclusion and discussion 83

to all time point variables, which forces the allocation of at least f units of
�exibility to each of them. Note however that large values of f might make
the problem infeasible. A simple solution is to adapt our linear program, again,
using a new objective function that is able to �nd the largest value of f we can
use:

max min
X i∈X

∣(X+i − X−i)∣. (4.10)

¿is objective function �nds an interval schedule in which the smallest interval
is as large as possible. It is easy to see that the problem remains feasible if we
use this value for f , forcing all intervals to be at least this size: the solution
found when using the objective function in Equation 4.10 is one such solution
for which these constraints all hold. ¿ere might however still be many di�erent
solutions for this new problem. To �nd the most suitable one, we can use the
original objective function from Equation 4.2 combined with any of the weight
functions, to distribute the remaining �exibility over the time point variables:
�rst, we use a linear program to �nd the highest lower bound on the �exibility
per task, and then this bound is enforced using additional constraints. ¿e rest
of the �exibility can then be distributed using any of the other methods. In this
case, we choose to equalize the �exibility, and we compare the results with and
without the lower bound enforcing a minimal amount of �exibility.

In Figure 4.9 we see that this approach works extremely well if the amount of
delay is small. ¿is is to be expected: small delays can be absorbed immediately,
if the minimal amount of �exibility is high enough. ¿e right part of the �gure
shows that, for a small amount of delay (10, in this case), the number of delayed
tasks has almost no in�uence on the performance at all. If delays are larger, there
is a small performance penalty if a minimal amount of �exibility is enforced per
task—the likely cause is a smaller total �exibility, over the entire instance.

¿e same trend is shown for the e�ect on the tardiness, in Figure 4.10. It is
less apparent, since the tardiness is relatively low already, for small delay lengths
(le �gure), but on the right it is clear that there is a large in�uence on the
tardiness if delays are small enough, independent of the amount of tasks delayed.

4.4 Conclusion and discussion

¿is chapter investigated the second research question, which asks how available
�exibility can be best distributed over the tasks in a schedule, to achieve high
robustness. ¿e need for this is �rst illustrated using examples, and di�erent
distributions are proposed and analyzed in an experimental setting. ¿ese
experiments show that some, but not all our intuitions behind these distributions
are valid.

Our idea of equalizing the �exibility distribution over the tasks in the sched-
ule is shown to have positive in�uence on both the number of violations, i.e.,
the number of tasks executing outside their assigned interval, as well as on the
tardiness of the schedule, i.e., how much the deadline of the original schedule

84 4. Distributing flexibility to improve robustness

was exceeded due to delay. Our idea to further improve the robustness by allocat-
ing more �exibility to certain tasks, based on either the number of predecessors
or the number of successors, showed that concentrating �exibility based on
predecessors improves the performance with regard to the tardiness, at the cost
of a larger number of violations. Concentrating �exibility based on the number
of successors however is shown to decrease the number of violations with little
e�ect on the tardiness. ¿e likely explanation for the �rst e�ect is that �exibility
is concentrated at the end of the schedule, and as such any delays can be absorbed
before the �nal task of the schedule is executed, at the cost of more propagation
through the schedule. ¿e likely explanation for the fact that tardiness does not
su�er if �exibility is concentrated based on the number of successors is that it
reduces violations, and thus the spread of delay over the schedule, before the
�nal task is executed.

If the delays are known to be small, the best performance is obtained however
by guaranteeing that a certain minimal amount of �exibility is allocated to every
task in the schedule. We propose a method to maximize this enforced minimal
amount of �exibility, and the experiments show that this distribution performs
very good, with almost no violations at all, if the delays are reasonably small.

4.4.1 Discussion

¿e idea of robustness discussed in this chapter is important in the context
of schedule execution at NedTrain, since here, we have highly uncertain task
durations, combinedwith the use of shared resources by independently operating
teams. If the schedules used are not robust in the face of the uncertain execution
times, subsequent tasks in the schedule will be delayed. Resources can be the
cause of such a delay propagation, as these might not be freed in time to start
the next task. ¿ey can however also be a reason to want to avoid delays: if
some type of (external) commitment has been made for a resource needed for a
certain task, like the hiring of special machinery or extra personnel, delays can
lead to penalties. ¿e independently operating teams at NedTrain are another
reason to strive to avoid the spread of delay: if unforeseen circumstances lead to
extra work for one team, it is desirable if this has no e�ect on the schedule for
the other teams, since this would lessen their independence.

¿is chapter, as well as the previous one, focused exclusively on the level
of the stn and the properties of, and e�ects on execution performance of the
di�erent interval schedules that can be constructed for those stns. ¿e original
problem that we are trying to solve, however, is the more complex rcpsp, which
is reduced using precedence constraint posting to an stn as a convenient and
�exible solution representation. Important to note is that a single rcpsp instance
can be reduced to many di�erent stns—this is an important direction for further
research: instead ofmaximizing the �exibility of a single stn solution to an rcpsp
instance, it might be a much better strategy to modify the choices that are made
in the precedence constraint posting process such that a di�erent stn is obtained
that admits an interval schedule with more �exibility.

Sequential �exibility 

In solving the rcpsp in a �exible way, the previous two chapters explored the
temporal �exibility of simple temporal networks, which are used to represent a
set of solutions to an rcpsp instance. Chapter 3 explored the intuition behind the
concept of temporal �exibility, in an e�ort to answer research question 1. We have
discovered that existing methods do not conform to these expectations and we
introduced a newmethod tomeasure the �exibility of a simple temporal network.
¿e second research question represents our our aim to use the �exibility present
in a solution to create robust solutions for the scheduling problem at NedTrain,
and this question is explored in Chapter 4, where various ways to distribute
�exibility over a simple temporal problem are tested for their performance in
this regard.

A shared feature of the previous chapters (and research questions 1 and 2)
is that they did not focus on the rcpsp directly: both are based on a �exibility
measure for the stn. An rcpsp instance was converted to an stn, and using our
�exibility metric, this in turn was converted into an interval schedule, yielding
an e�cient and �exible method of executing a portfolio of temporal solutions
for the original rcpsp instance. ¿is chapter will focus on the third research
question, and explore how we can extend the concept of temporal �exibility to
include a form of sequential �exibility. For this, we need to move a level up, to
the conversion of an rcpsp instance to an stn.

We start by noting that the �exibility of the solution of an rcpsp instance,
in the form of an stn, is determined by the temporal constraints in that stn,
and if this stn is the result of a reduction from an rcpsp instance obtained
using constraint posting techniques, we can make a distinction between two
types of temporal constraints: one part of the constraints stems from temporal
constraints in the original rcpsp instance, such as due times and precedence
constraints between tasks, and the other part of the constraints is added by
the reduction procedure to eliminate resource contention. ¿e second type
of constraint usually originates from heuristic solution procedures. Di�erent
types of heuristics can be employed, some even with di�erent parameters. ¿is
means that there are many di�erent choices, and hence many di�erent sets of

85

86 5. Sequential flexibility

constraints, which will all result in an stn that contains solutions1 for the same
associated rcpsp instance. Some of these choices will be more arbitrary than
others, based on the information the heuristic is able to provide. To brie�y recap,
constraint posting is an iterative process, consisting of the following steps:

• Compute the resource usage pro�le of the current stn, and identify resource
contention peaks, i.e., places in the current solution where the combined
resource usage of the executing tasks exceeds the capacity of that resource.

• Select a pair of tasks contributing to said resource contention peak, select an
ordering for these two tasks, and add (post) a precedence constraint to the
stn enforcing this ordering.

¿ese steps are repeated until the resource pro�le as computed in the �rst step
no longer contains any resource contention peaks.

One obvious research avenue is to tune or develop heuristics that are able to
make these decisions in such a fashion that the �exibility of the resulting stn is
as high as possible. However, in this chapter a di�erent approach is proposed:
instead of making these choices and arriving at an stn where these constraints
are �xed, we present an approach in which these choices are postponed—this
results in a schedule in which these choices can be made during execution time,
giving the agent executing the schedule the �exibility to re-order the tasks before
dispatching them. To distinguish this from the �exibility discussed in the previ-
ous chapters, we propose to call the earlier form of �exibility temporal �exibility,
as this form is concerned with the exact time at which the tasks can start, and to
call this form of �exibility sequential �exibility, to indicate that the �exibility lies
in the possibility to re-order the sequence of tasks

Being able to (partially) determine the order of tasks at the time of execution
�ts well within the goal of wanting to have a schedule that is �exible in the face of
uncertainty. Imagine that a maintenance engineer at NedTrain has to start with
a certain task, which he has to perform together with a colleague with certain
special skills. If this colleague is unavailable, because he is still working on a
prior, delayed, task, it is very natural for the maintenance engineer to decide to
start with another task �rst, for which the second engineer is not needed. ¿e
e�ects of swapping the execution order of these tasks will however propagate
through the schedule. In this chapter we will formalize this concept of �exibility
in such a way that it can be encoded in a solution to the rcpsp, to be used during
execution of the schedule to combat the spread of delays due to uncertainty. ¿e
method we use, in short, consists of creating grouped tasks at certain points in
the constraint posting procedure, instead of adding precedence constraints. Such
a grouped task is a placeholder, representing any ordering of the tasks contained
therein. At execution time, the �nal order can be determined.

1Note that we are only interested in stns in which all solutions are also solutions to the
original rcpsp. ¿ere are also many stns in which only part of the solutions are solutions to the
original rcpsp, other solutions are resource-infeasible.

5.1. Motivation 87

A er this introduction, this chapter will continue with a slightly more de-
tailed motivation of why and how we want to achieve sequential �exibility. Hav-
ing motivated the why of sequential �exibility, we �rst describe the existing
method of constraint posting, on which our idea is based. ¿en, task grouping
itself is described, the actual method we propose to achieve sequential �exibility,
and we follow this formal description by a section containing experiments to
gain further insight into how task grouping achieves the desired �exibility. ¿e
chapter is ended with a conclusion and discussion.

5.1 Motivation

Just as in the previous chapters, we continue to aim at building schedules that
are prepared for possible disruptions to occur. Instead of having a �xed start
time assignment σ ∶ T → R, we want to have a set S of schedules with which we
are able to react to unforeseen circumstances during execution—if a delay in a
task would cause the current schedule σ ∈ S to violate some of the constraints,
we are then able to �nd a di�erent σ ′ ∈ S that performs better under the new
circumstances. In the previous chapters we introduced the concept of interval
schedules, which can be seen as a restricted form of such a set of schedules S
for a certain rcpsp problem: they only allow schedules σ in which the order
of tasks is an extension of the partial ordering as de�ned by the stn reduction
from the original rcpsp problem, i.e., only those schedules adhering to the extra
precedence constraints added by the constraint posting procedure are admitted.

To li this restriction, this chapter examines the method by which the rcpsp
is converted into an stn. We will base our method on the class of precedence
constraint posting methods, as described in Chapter 2. ¿ese methods are well-
suited in the context of our problem: since they are based on heuristics, the
are able to quickly provide a solution, and the solution is in the form of an stn,
which is a �exible representation of multiple, �xed-time solutions.

A central component of constraint posting methods is the resolution of
resource con�icts between two tasks. If a resource con�ict is detected between
two tasks t and t′, constraint posting tries to remove this con�ict by adding
(posting) an additional precedence constraint between t and t′, adding either
t ≺ t′ or t′ ≺ t. Selection of the tasks t and t′ betweenwhich a constraint is posted,
as well as the direction of this constraint, is based on heuristics. Sometimes,
however, the heuristic to decide on the direction of the constraint does not
indicate a very strong preference for one direction or the other, and it is not
clear which choice is the best one to make. A er suitable pairs of tasks t and
t′ are selected, our approach is therefore to group these tasks together without
specifying the exact order (t before or a er t′). In this way, the resource con�ict
is (partially) solved, since the tasks are no longer allowed to execute concurrently,
but the order is not speci�ed, since the group is constructed in such a way that
either order is still possible. Note that this principle can be applied recursively:
one, or both, of the tasks t and t′ being grouped can be a grouped task itself. Note
that the original grouping is not kept in such a case, i.e., groups with more than

88 5. Sequential flexibility

two tasks do not contain sub-groups or any other form of hierarchy. ¿is way, the
�nal result can contain groups with an arbitrary number of tasks. At execution
time we can pick any ordering we like for the tasks within these groups—in this
way, the solution can be seen to represent a large set of possible schedules for
the original rcpsp instance.

To summarize, an agent executing a classical non-grouped schedule only
has two available options to handle delayed tasks: adhering to the schedule
and delaying successive tasks as well, or generating a new, di�erent schedule.
Our approach construct a schedule with grouped tasks, which allows a third
option: re-ordering the tasks in a task group such that execution of this group
can commence with a di�erent task without changing the global characteristics
of the schedule. In this chapter we will explore the possibilities of this grouping
approach to absorb disruptions that might happen during execution of the
schedule.

5.2 Constraint posting

Before discussing task grouping, we will brie�y recap the resource-constrained
project scheduling problem (rcpsp), which is the problem we are solving, and
how precedence constraint posting works.

¿e rcpsp consists of the following components:

• A set T with n tasks, where task t i ∈ T has a length l i ∈ R.

• A precedence relation ≺ inducing a partial order on T ; the intuitive interpre-
tation of t i ≺ t j is that t i has to be �nished before t j can start.

• A set R of m renewable resources, where each resource rk ∈ R has integer
capacity cap(rk) ≥ .

• For each rk ∈ R and t i ∈ T , req(t i , rk) ∈ N speci�es the number of units task
t i needs of resource rk in order to be executed.

In addition to these constraints, we also have a release time s i ∈ R, and a due
time d i ∈ R, which are in this case used to model when a train enters and leaves
the workshop. ¿e classical goal for the rcpsp is to �nd a start time assignment
(schedule) σ ∶ T → R such that both the precedence relations and the resource
constraints are satis�ed. In our case this is also the �nal goal, but we would like
there to be an intermediate step, in the form of a set of schedules S from which
we can (e�ciently) derive a multitude of �nal solutions σ .

Example 5.1 As a running example throughout this chapter, we will use a
simple rcpsp instance containing �ve tasks using two di�erent resources,
ra and rb . ¿e capacities of the resources are cap(ra) =  and cap(rb) = ,

5.2. Constraint posting 89

respectively. ¿e length and resource usage of the tasks are shown in the
following table:

task t1 t2 t3 t4 t5
length     
use of ra     
use of rb     

¿e �ve tasks share a common release time of , and a due time of . In
addition, there are three precedence constraints between the tasks: t ≺ t,
t ≺ t and t ≺ t. ¿e temporal information from this example is combined
in the following diagram:

time         

t

t

t

t

t

In this diagram, the earliest starting times of the tasks are calculated based
on the given precedence constraints. For example, since we have t ≺ t, and
l = , we can derive est(t) = , the earliest starting time of t. Instead of
the latest starting time, the diagram displays the latest ending time of a task,
since this makes the diagram easier to read.

Note that the location of the tasks along the lines indicating their earliest
start time and latest end time is but one of many possible locations, and any
combination of locations together represents a schedule σ . ¿ese schedules,
however, do not necessarily present a resource-feasible solution. While some
of the start times satisfying the temporal constraints will yield a resource-
feasible solutions, many others do not. In fact, the shown assignment is
resource-infeasible, since t, t and t execute concurrently, and req(t , ra) +
req(t , ra) + req(t , ra) =  >  = cap(ra).

To �nd schedules that satisfy both the temporal and the resource constraints,
some techniques have already been discussed in Chapter 2. ¿e technique most
suited to our purposes is precedence constraint posting, such as described by
Cesta et al. (1998): due to its heuristical nature, it is able to solve large problems
very quickly, and it is able to represent solutions in a �exible way, because it
is essentially a reduction from the original rcpsp to an stn. ¿is reduction
works by adding precedence constraints to the original problem speci�cation

90 5. Sequential flexibility

such that any start time assignment respecting the combined set of precedence
constraints results in a resource-feasible schedule. ¿is is a reduction to an stn
in the sense that any solution to the stn is also a solution to the original rcpsp
instance. However, the reduction is one-way: not all solutions to the rcpsp
instance necessarily have a counterpart in the stn constructed by constraint
posting.

In this section we will describe the existing constraint posting techniques
uponwhich our task groupingmethod is based. ¿e constraint posting technique
starts with constructing a provisional schedule for the problem instance, taking
into account only the temporal constraints. ¿ese constraints are represented
using an stn. In such a representation, for each task t i a time point variable X i
is introduced. Additionally, the time point variable X is introduced as reference
point (usually, X = ). To represent the release and due time constraints, we
add the constraints X − X i ≤ −s i and X i − X ≤ d i − l i , respectively. ¿ese
constraints ensure that the start time of t i is at or a er the release time, and that
the end time of t i (i.e., the start time represented by X i , plus the length l i of
the task) is at or before the due time, respectively. To represent a precedence
constraint t i ≺ t j , we add the constraint X i − X j ≤ −l i , to ensure that the start
time of t j is at or a er the end time of t i .

Example 5.2 Applying this transformation to our running example, the re-
lease time and due time constraints are represented by

X1 − X0 ≤ 75 − 23 = 52 X0 − X1 ≤ 0
X2 − X0 ≤ 75 − 25 = 50 X0 − X2 ≤ 0
X3 − X0 ≤ 75 − 23 = 52 X0 − X3 ≤ 0
X4 − X0 ≤ 75 − 20 = 55 X0 − X4 ≤ 0
X5 − X0 ≤ 75 − 20 = 55 X0 − X5 ≤ 0,

and the precedence constraints in the problem are represented by

X1 − X3 ≤ −23
X2 − X4 ≤ −25
X2 − X5 ≤ −25.

A solution to such an stn can be produced e�ciently, as outlined inChapter 2.
In particular, like is done in Cesta et al. (1998), one can obtain the earliest
start time solution that satis�es all the temporal and precedence constraints of
the rcpsp instance in polynomial time. Using such an initial schedule σ , the
constraint posting technique aims to satisfy the resource constraints as well, by

5.2. Constraint posting 91

posting additional precedence constraints. To do so, for every resource rk its
resource usage pro�le with respect to the current schedule σ is computed. Such a
pro�le indicates for every time point the total amount of resource rk required, if
each task t i is started at time σ(X i).

More exactly, given a resource rk and the set Tk = {t j ∈ T ∣ req(t j , rk) > }
of tasks using this resource, the demand of this resource rk at time τ is de�ned
as

Dk(τ) = ∑
t j∈Tk

δ j(τ) ⋅ req(t j , rk), (5.1)

with

δ j(τ) =
⎧⎪⎪⎨⎪⎪⎩

 when σ(X j) ≤ τ < σ(X j) + l j
 otherwise.

(5.2)

¿is equation sums the resource usage for rk for all tasks executing at time point
τ. Usually, Dk is only computed for the time points τ corresponding to the start
times of the tasks t i ∈ T of the current solution. ¿is is more e�cient, because
we want to compute the resource pro�le to know at which time points a resource
becomes oversubscribed—this can only happen at the time points at which a
task is started: resource use is constant over the duration of a task, meaning that
the start time points are the only time points at which resource oversubscription
can occur.

Example 5.3 Applying this technique to the earliest start time solution of
our example (this is the solution represented in the diagram in Example 5.1),
we arrive at the following resource pro�les, for ra and rb :

     






 ra
rb

time

¿e capacity for each of the resources is indicated by the dashed lines,
for ra , and for rb . Note that, for clarity, the resource pro�le is shown as a
line, whereas in fact it is only computed at the start point of the tasks using
the resources. It can be seen that the resource capacity of ra is exceeded using
this schedule.

Now the constraint posting method focuses on the peaks in this pro�le. Such
a peak is a point in time where the use of a resource rk increases, and is above
its available capacity cap(rk). Formally, the set of tasks forming a peak on rk at
time point τ is de�ned as

Ck ,τ = {t j ∈ Tk ∣ δ j(τ) = }, (5.3)

92 5. Sequential flexibility

where
Dk(τ) > cap(rk). (5.4)

¿e peakCk ,τ represents a resource constraint violation, or a con�ict, on resource
rk at time point τ, and contains all tasks contributing to this resource constraint
violation.

Example 5.4 Continuing the previous example, there are two peaks using the
current schedule: what looks like one violation of ra are actually two violations,
�rst by t combined with t starting at time 23, Cra , = {t , t}, and then by
t, t and t starting at time 25, Cra , = {t , t , t}.

A resource constraint violation can be lowered by posting a precedence
constraint between a pair of tasks t i , t j ∈ Ck ,τ . As a consequence of posting this
constraint, we ensure that the resource peak causing the violation is lowered and
spread. Note that the peak is not necessarily solved, only reduced. Such a set of
tasks {t i , t j} is called a (pairwise) con�ict. Now, we de�ne

d(t i , t j) = lst(t j) − (est(t i) + l i) (5.5)

to represent the maximally allowed temporal distance between two tasks t i and
t j (also known as the slack) in the current problem speci�cation. In other words,
d(t i , t j) is the temporal distance between t i and t j if we start t i as early as
possible, and t j as late as possible. Remark that, usually, d(t i , t j) ≠ d(t j , t i). For
a given set {t i , t j}, we can de�ne four possible con�ict cases (Oddi and Smith,
1997):

1. d(t i , t j) <  ∧ d(t j , t i) < ,

2. d(t i , t j) <  ∧ d(t j , t i) ≥ ,

3. d(t j , t i) <  ∧ d(t i , t j) ≥ , and

4. d(t i , t j) ≥  ∧ d(t j , t i) ≥ ,

¿e �rst case is pairwise unresolvable: t i cannot �nish before t j must start, and
t j cannot �nish before t i must start; this means that this con�ict cannot be
resolved. ¿e second and third conditions are pairwise uniquely resolvable: there
is only one feasible ordering, the decision is unconditional. ¿e last condition is
pairwise resolvable: both orderings are possible, and a choice needs to be made.

Example 5.5 To �atten the peaks listed in Example 5.4, we pick two tasks from
both sets, and post a constraint between them. In this case we will choose to
add the constraints t ≺ t and t ≺ t. Note that both pairs are of the fourth
type, both orderings are possible. ¿is will result in a new temporal network,
yielding the following solution diagram (in the format of Example 5.1):

5.2. Constraint posting 93

time         

t

t

t

t

t

In this solution, no peaks exceeding the resource capacity are present, so
additional constraints do not have to be posted. Note that this is caused by the
simplicity of this example, usually a peak needs more than a single constraint
to be eliminated completely.

Summarizing, the structure of a constraint posting method generally has the
following form:

1. Using a provisional schedule σ , compute the resource usage pro�le over time
and select a resource peak violating the resource capacity.

2. Select two (partially) concurrent tasks t i , t j contributing to the selected peak.

3. Decide on adding a precedence constraint between these tasks: t i ≺ t j or
t j ≺ t i .

4. Add this precedence constraint, and solve the underlying stn to generate a
new schedule.

5.2.1 Heuristics in constraint posting

At three di�erent points in the outline above, choices must be made:

1. a peak must be chosen,

2. a pair of (partially) concurrent tasks within this peak must be selected, and

3. a direction for the precedence constraint between these tasks must be de-
cided.

To make these choices, heuristics are employed.
To select a peak, we look at the overcommitment each peak represents. ¿e

peak that exceeds the capacity of a resource by the largest amount is chosen �rst.
Intuitively, this points the algorithm towards the areas where resource contention

94 5. Sequential flexibility

is largest. In many algorithms (e.g., Cesta et al. (1998)), this step is omitted, and
the algorithm selects a task pair from all peaks in the current solution. We opted
to limit task pair selection to a single peak for two reasons. First, this causes
the algorithm to give priority to the largest overcommitment on a resource. ¿e
intuition behind this is that such a peak usually requires a lot of constraints to
be entirely �attened—the more constraints are added to the problem the less
�exibility remains, and the higher the chance that the problem cannot be solved
anymore. A second reason is that the number of task pairs grows rapidly with
the number of tasks from which the algorithm can choose, so limiting ourselves
to the tasks in a single peak gives a performance increase.

Within a peak, a con�ict {t i , t j}, which is a pair of (partially) concurrent
activities, must be chosen. Recall the four di�erent con�ict types described
before. If all con�icts in this peak are of the �rst type, we can immediately
conclude that the instance is no longer solvable without backtracking. If there
are con�icts of the second or third type (i.e., con�icts that can only be resolved
in one way), we select the con�ict for which

ωres(t i , t j) = min(d(t i , t j), d(t j , t i))

is lowest (Cesta et al., 1998). ¿e lower this value, the closer the two tasks are
to being forced into a resource-consistent state. In other words, the temporal
�exibility we lose by posting a constraint between these two tasks is the lowest.

For con�icts of the fourth type (i.e., con�icts that can be resolved both ways),
we cannot completely rely on this measure to select a con�ict to resolve.

Example 5.6 Consider two con�icts {ta , tb} and {tc , td}, for which the tem-
poral distance d(ta , tb) = d(tb , ta) = , but d(tc , td) =  and d(td , tc) =
. Here, ωres(ta , tb) =  and ωres(tc , td) = . However, it is clear that
{ta , tb} has less temporal �exibility in which it can be resolved than {tc , td}:
d(td , tc) =  indicates that posting td ≺ tc leaves a very large amount of
�exibility in the schedule.

¿erefore, ωres is adapted to be biased towards con�icts that have similar
slack in both directions (Cheng and Smith, 1996):

ω′res(t i , t j) =
min(d(t i , t j), d(t j , t i))√

S
, (5.6)

with

S =
⎧⎪⎪⎨⎪⎪⎩

min(d(t i ,t j),d(t j ,t i))
max(d(t i ,t j),d(t j ,t i))

for max(d(t i , t j), d(t j , t i)) ≠ 
 otherwise

(5.7)

Example 5.7 For {ta , tb}, we have S = , resulting in ω′res(ta , tb) = . But,
for {tc , td}, we have S = /, resulting in ω′res(tc , td) = /

√
/ ≈ ..

¿is results in {ta , tb} being selected for resolution before {tc , td}.

5.3. Task grouping 95

As shown by the example, constraints that are close to being unresolvable
in both directions are now selected for resolution �rst. If other constraints are
posted �rst instead, we risk reducing the �exibility of this constraint even further,
turning it into an unresolvable con�ict. If this happens, the only way to arrive
at a solution is to backtrack, which is highly undesirable. Our algorithm, like
many other constraint posting algorithms, does not perform backtracking due
to reasons of e�ciency, and will simply give up if an unresolvable con�ict is
encountered.

¿e last step is to determine a direction for the constraint to be posted
between the selected tasks. For {t i , t j}, we post t i ≺ t j if d(t i , t j) > d(t j , t i),
and t j ≺ t i otherwise. ¿e intuition for this decision is that we want to preserve
the largest amount of temporal �exibility.

To summarize, the three decisions are made using the following criteria:

1. Select the peak with the largest amount of resource overcommitment.

2. Within this peak, select the con�ict with the least amount of scheduling
�exibility le .

3. Post a constraint preserving the largest amount of �exibility.

¿is way, the algorithm focuses on the most critical part of the problem, where
it tries to make decisions keeping the amount of �exibility remaining as high as
possible.

5.3 Task grouping

In the preceding section, the technique of constraint posting has been described,
with which the rcpsp can be solved easily, up to the scale of the problems that are
present at NedTrain. However, �exibility still remains low: while the technique
of interval schedules can be used, as described in the previous chapter, to give the
schedule some amount of temporal �exibility, the added dependency constraints
impose a certain rigidity on the ordering of the tasks. Ideally, we would like to
have sequential �exibility as well, such that we are not forced to use a certain
ordering, decided in advance, at execution time—conditionsmight have changed,
making another ordering more attractive.

¿erefore, this section introduces an addition to the precedence constraint
posting method, one by which we can include multiple execution orderings in
a solution to an rcpsp problem instance. ¿e method operates on the basis of
the idea of task grouping: instead of posting a constraint between two tasks and
enforcing an ordering, the two tasks are grouped together in an encapsulating
group task, which reserves resources such that both execution orders remain
feasible at execution time. ¿e concept of grouping is recursive, meaning that
such an encapsulating group task can take part in another grouping operation,

96 5. Sequential flexibility

resulting in a group task containing three tasks, which can be executed in any
order at execution time.

¿is section starts by describing the exact procedure by which tasks are
grouped together, followed by a description of the procedure by which such a
schedule can be executed, i.e., how this sequential �exibility can actually be used.

5.3.1 ¿e grouping operation

We propose to extend the constraint posting technique by adding the operation
of grouping two tasks together, forming an encapsulating group task, as an
alternative to posting a precedence constraint to the schedule: instead of always
adding such a constraint we o�er the possibility to group two tasks t i and t j
together in order to postpone the decision on their ordering to the time of
execution of the schedule. ¿e grouping Group(t i , t j) of t i and t j results in a
composite task t i , j where t i and t j are executed sequentially without specifying
the exact order: either t i is executed �rst, and t j second, or execution starts with
t j , and t i is second. Group(t i , t j) consists of the following steps:

1. Both t i and t j are removed from T , and the composite task t i , j is added to
T instead.

2. Release time, due time and duration of this group task t i , j are computed as
follows:

s i , j = max(s i , s j), (5.8)
d i , j = min(d i , d j), (5.9)
l i , j = l i + l j . (5.10)

For the release time, the maximum of the release times of t i and t j is taken.
¿is ensures that t i , j can start with either t i or t j . If the minimumwere taken,
we would be forced to commence with the earliest task of the two, during
execution. In similar vein, the minimum of the due times d i and d j is taken.
For the task length of t i , j , the sum of l i and l j is used, since the two tasks are
to be executed sequentially.

3. A similar reasoning is used behind the resource usage of the grouped task.
Since the ordering of the two tasks is not known until execution time, the
grouped task is given a resource pro�le that ensures that either task can
run at any time within the time limits of the grouped task. Hence, for each
resource rk , we compute the resource usage of the group task to be equal to
the maximum of the resource usage of the individual tasks:

req(t i , j , rk) = max{req(t i , rk), req(t j , rk)}. (5.11)

Note that this creates aworst-case resource pro�le, which ensures that enough
resources are available to execute either t i or t j at any time during t i , j .

5.3. Task grouping 97

4. Lastly, when forming a grouped task, existing precedence constraints must
be updated. All constraints of the form tk ≺ t l with l = i or l = j are replaced
by tk ≺ t i , j , and all constraints of the form t l ≺ tk with l = i or l = j are
replaced by t i , j ≺ tk . ¿is means that all tasks that were constrained to take
place before (respectively, a er) either t i or t j are now constrained to take
place before (respectively, a er) t i , j instead.

¿ese steps are formalized in Algorithm 5.1.

Algorithm 5.1: Operation to group tasks together.
 function Group(t i , t j):
 T ← T − {t i , t j}
 l i , j ← l i + l j
 s i , j ← max(s i , s j)
 d i , j ← min(d i , d j)
 forall the rk ∈ R do
 req(t i , j , rk) ← max{req(t i , rk), req(t j , rk)}
 end
 forall the tk ≺ t l ∶ l = i ∨ l = j do

 C ← C − {tk ≺ t l}
 C ← C ∪ {tk ≺ t i , j}
 end
 forall the t l ≺ tk ∶ l = i ∨ l = j do
 C ← C − {t l ≺ tk}
 C ← C ∪ {t i , j ≺ tk}
 end
 T ← T ∪ {t i , j}
 end

To show that the grouping operation has no e�ect on the validity of the
solution space, we need the following proposition:

Proposition 5.1 Any temporally and resource-feasible start time assignment
σ for the tasks in a group task is a temporally and resource-feasible start time
assignment for the tasks in the original problem as well.

Proof. To start, we note that since l i , j = l i + l j , the tasks contained in the
group can be executed sequentially during the time the group is scheduled for
execution. For any of the tasks t l with l ∈ {i , j} in the task group, we have

σ(t l) ≥ s i , j = max(s i , s j) ⇒ σ(t l) ≥ s i ∧ σ(t l) ≥ s j , (5.12)

showing that the release time constraint is satis�ed.
Similarly, we have

σ(t l) + l l ≤ d i , j = min(d i , d j) ⇒ σ(t l) + l l ≤ d i ∧ σ(t l) + l l ≤ d j , (5.13)

98 5. Sequential flexibility

showing that the due time constraint is satis�ed.
For the resource constraints, we know that req(t i , j , rk) of capacity is

available for resource rk during the execution of t i , j , since σ is a resource-
feasible assignment. Since

req(t i , j , rk) = max(req(t i , rk), req(t j , rk)) ≥ req(t l , rk), (5.14)

we know that there must also be enough capacity available to execute t l (l ∈
{i , j}).

Lastly, for the precedence constraints, for any of the tasks t l for which
there is a constraint tk ≺ t l in the original problem, we have tk ≺ t i , j , such
that

σ(tk) + lk ≤ σ(t i , j) ≤ σ(t l), (5.15)

showing that the precedence constraint is satis�ed. Similarly, if we have t l ≺ tk
in the original problem, we have t i , j ≺ tk , such that

σ(t l) + l l ≤ σ(t i , j) + l i , j ≤ σ(tk). (5.16)

Now that we have speci�ed how to group two tasks together, we need to be
able to select two suitable tasks in an rcpsp on which to perform this grouping.
For this, we must �nd two tasks that should be executed sequentially, due to
resource constraints, and for which the exact execution order is not very im-
portant. ¿is idea bears some resemblance to the stochastic procedure used by
Oddi and Smith (1997): here, for tasks that cannot be executed in parallel but
for which the heuristic used has low discriminatory power, a random ordering is
chosen. Instead, in this case our grouping method will simply replace such tasks
with a grouped task.

More precisely, while we normally would post t i ≺ t j if d(t i , t j) > d(t j , t i),
and t j ≺ t i otherwise, we now employ a threshold parameter γ, enforcing
a minimal di�erence before the algorithm turns to posting a constraint. If
∣d(t i , t j) − d(t j , t i)∣ ≤ γ, we decide to group t i and t j into the composite task
t i , j using the procedure outlined above.

In Algorithm 5.2, the structure of the resulting algorithm is shown. Note that
task grouping and constraint posting are interleaved: if the chosen con�ict falls
below the threshold γ, the tasks are grouped, otherwise, a constraint is posted.
¿is is possible because both constraint posting and task grouping are essentially
problem transformations:

• constraint posting takes one rcpsp instance, and returns another rcpsp
instance, with an additional precedence constraint.

• task grouping takes one rcpsp instance and returns another rcpsp instance,
with two tasks replaced by one other task representing a task group.

5.3. Task grouping 99

Algorithm 5.2: Using task grouping and constraint posting to solve an
rcpsp instance
 while the rcpsp instance contains a peak do
 p ← largest peak
 if p is unresolvable then terminate
 {t i , t j} ← SelectConflict(p)
 if ∣d(t i , t j) − d(t j , t i)∣ ≤ γ then
 Group(t i , t j)
 else if d(t i , t j) > d(t j , t i) then
 add t i ≺ t j
 else

 add t j ≺ t i
 end
 end

Example 5.8 Consider again the con�icts from Example 5.4. An alternative
way of resolving themwould be to �rst post the constraint t ≺ t. For the next
peak, we can, among other options, choose to post t ≺ t (as done before) or
t ≺ t. From a temporal perspective, there is little di�erence between the two
options. ¿erefore, we choose to apply Group(t , t) to the problem, which
results in the following transformation:

before Group(t4 , t5) task t1 t2 t3 t4 t5
length     
use of ra     
use of rb     

a er Group(t4 , t5) task t1 t2 t3 t4,5
length    
use of ra    
use of rb    

Note that the length of t, is the sum of the lengths of t and t, and that t,
uses rb over its entire length—even though t does not need this resource.

Graphically, this solution looks as follows:

time         

t

t

t

t,

100 5. Sequential flexibility

Now, consider an execution where t is delayed. Using the solution in
Example 5.5, task t will be delayed too, due to the precedence constraint.
However, t cannot start until t is �nished either, due to the use of rb , so
this task, and t, will be delayed as well. Contrast this with the solution in
this example: here, the agent executing the schedule can still choose to start
with t instead. ¿is task does not need rb , and, since cap(ra) = , t can
execute concurrently with t. Hence, if t is not delayed past the end of t, the
makespan of this instance is not in�uenced at all.

5.4 Execution of grouped schedules

Having de�ned how to build a schedule containing sequential �exibility, in the
form of grouped tasks, this section describes how to execute such a schedule,
and to make use of this �exibility. Execution of a schedule containing grouped
tasks di�ers from that of a normal schedule, since at run time, an ordering needs
to be determined for the tasks contained in a group. If a schedule is executed
without any tasks being delayed, executing a group task is trivial: since the group
task has ensured that resources needed by any task in that group are available
for the duration of that group, any ordering picked is guaranteed to be feasible.

When tasks are delayed during their execution special precautions need to
be taken, both for normal and for grouped tasks: the start of tasks succeeding
the delayed task might need to be delayed, since the delayed task might now
�nish a er the planned start time of these tasks. As concurrent execution is not
possible, due to either resource constraint violations, or violations of precedence
constraints present in the original problem, any task that can not start at its
planned time is added to the end of a queue of pending tasks. Whenever a task
�nishes executing, this queue is examined �rst, in order, to see if any of these tasks
are now eligible to be started. Notice that this causes delay propagation: resources
freed by the �nished task might be claimed by one of the pending tasks, resulting
in tasks that would otherwise be able to start being added to the pending queue.

Grouped tasks can be executed using this mechanism as well: a grouped task
is in essence a set of pending tasks, one of which can be executed at the start
time of that grouped task. ¿is means that, if a grouped task is encountered, all
tasks in the group are added to the pending queue, and then the �rst eligible
task in the queue is selected for execution. Recall that at any time a task �nishes,
the queue is examined again for eligible tasks. ¿is ensures that all tasks from
the group are executed eventually.

Note that the order in which the tasks from a group are added to the queue
can be determined at execution time. ¿is is the mechanism by which grouped
tasks achieve sequential �exibility: the tasks can be added to the pending queue
in any order, and if there are no delays, the construction of the schedule ensures
that they can be executed in sequence. If there are delays, the mechanism of
picking eligible tasks from the queue ensures that the group task is automatically
reordered to adapt to the changed circumstances during execution.

5.5. Experiments 101

Example 5.9 To show how delays are handled during the execution of a
schedule, consider the (grouped) schedule shown in Example 5.8. Assume
that t is lengthened by 20, such that its length will be l ′ = . ⋅ l = ..
Execution proceeds normally, until time point 25, when t and t, are to be
started. Task t depends on t to be �nished, so we cannot execute this task
now, and we add it to the queue of postponed tasks.

While t, does not directly depend on t, it does make use of rb , which
is still in use by t at its start time. If t, was a normal task, we would have
to delay its execution, but in this case, we can make use of the option to re-
order the execution of this group task: if we choose to execute t before t,
no delay is necessary, since t does not make use of rb . For larger group tasks
we check for all tasks in the group if all needed resources are available, and if
all predecessors have �nished. From the set of tasks for which this holds, we
pick one (here, only t is eligible), and the rest (in this case, t) is added to the
queue of postponed tasks.

At time point 27.6, t is �nished, and the queue of postponed tasks is
examined. Task t can not start, since t is still executing, but t can now be
started, such that it �nishes at time point 50.6. ¿e last task in the queue is t,
which can be started a er t has �nished. Since the start time of t was not
delayed, t �nishes at the scheduled time.

5.5 Experiments

As shown in the preceding section, task grouping o�ers increased �exibility in
executing a schedule. ¿is is demonstrated by the increased number of topolog-
ical orderings allowed by such a schedule, as well as by Example 5.8 in which
execution-time reordering is demonstrated. Recall, however, that our reason for
constructing �exible schedules was born out of a desire to improve robustness
during execution, if delays were to be expected. Both these observations o�er a
basis for the hypothesis that schedules using task groups are more robust when
delays are present. To test this hypothesis, this section presents experiments
using simulated executions, with delays, of such schedules.

We start with a description of how the experiments are setup. A er this, we
begin with a general analysis of the structure of the schedules resulting from our
experiments, which is followed by a series of experiments to determine if our
method indeed leads to higher robustness, and under which circumstances and
by which mechanism it does so.

5.5.1 Setup of experiments

Tobe able to simulate schedule executions andmeasure the e�ect of task grouping
on the robustness, wemust be able to construct these schedules, with andwithout
task groups. For this, the well-known benchmark instances from psplib are
used (see Kolisch and Sprecher (1996); Kolisch et al. (1998) for an in-depth

102 5. Sequential flexibility

Name Number of tasks Number of instances

j  
j  
j  
j  

Table 5.1
Summary of the psplib
benchmark instances.

discussion of the design of these instances). From this set we use the single-
mode instances only.2 Note that the psplib benchmark instances were originally
designed to explore the various levels of di�culty of rcpsp instances, therefore
the instances in the benchmark have a high variety, as di�erent parameters
potentially a�ecting the di�culty of the instances are varied over the instances.
For each parameter combination, ten instances are included in the benchmark
set. Van Nijs and Klos (2014) analyze these instance complexity issues further,
and improvements are suggested to generate instances that are more constant
over some of the complexity parameters. However, for our purposes, having
a varied set of instances is bene�cial, since this will show the performance
improvement independent of instance di�culty parameters. Table 5.1 presents a
short summary of the properties of the instances contained in this benchmark.

5.5.2 Characteristics of grouped schedules

To convert these rcpsp instances into schedules, Algorithm 5.1 is used. If γ = 
is used as threshold, the grouping operation is never applied. When γ > , the
algorithm creates group tasks in an opportunistic fashion: tasks are grouped
whenever the heuristic that decides on their ordering falls below the threshold γ.
¿e number of group tasks in the solution is thus dependent on the combination
of the structure of the problem, and the value of γ—there is nomethod to directly
control the number or size of group tasks in the solution. Since the idea behind
task grouping was to create groups to add �exibility, it is natural to start with
an analysis examining the structure of the schedules created by the algorithm,
in terms of the number of grouped tasks, and the size of these groups. ¿e
hypothesis here is clear: for higher values of γ, more and bigger groups are
expected in the resulting schedule.

In Table 5.2 these data are summarized for γ ∈ {, , , }. ¿e threshold
parameter has a clear e�ect on both the number of group tasks as well as on the
number of tasks in a group: the higher the threshold the more grouping takes
place, up to a certain level, con�rming our hypothesis. ¿e di�erence between
γ =  and γ =  is much higher than the di�erence between γ =  and γ = , and
since values of γ >  give little additional bene�t in terms of number of group
tasks and size of task groups, further experiments have been limited to schedules
constructed using γ ≤ .

2Multi-mode instances havemultiple versions of each task, with a di�erent length and di�erent
resource usage pattern. ¿ese represent a di�erent type of scheduling problem, outside of the
scope of our research, and are thus not used in the experiments.

5.5. Experiments 103

Table 5.2
Characteristics of grouped schedules for di�erent parameters.

Average number of group tasks Average group size

Set γ = 2 γ = 4 γ = 6 γ = 8 γ = 2 γ = 4 γ = 6 γ = 8

j . (.) . (.) . (.) . (.) . . . .
j . (.) . (.) . (.) . (.) . . . .
j . (.) . (.) . (.) . (.) . . . .
j . (.) . (.) . (.) . (.) . . . .

An interesting observation is that in general, the (relative) number of group
tasks gets lower as instances get bigger, except for the instances in the j120 set. A
likely cause for this di�erence is the di�erent set of resource strength parameters
used in generating the instances. ¿e resource strength parameter RS sets the
capacities of the resources of an instance (Kolisch and Sprecher, 1996), as the
ratio between the minimally needed capacity (i.e., the capacity needed to be
able to sequentially execute each task) and the highest possible capacity (i.e., the
capacity needed to be able to execute the schedule without any additional leveling
constraints). ¿e sets j30, j60 and j90 use RS ∈ {., ., ., .}, whereas j120
uses RS ∈ {., ., ., ., .} (Kolisch et al., 1998) — this is also the reason
that j120 has more instances. ¿e (on average) lower resource strength for the
j120 instances lead tomore resource peaks, which in turn lead tomore constraints
being posted and tasks being grouped.

5.5.3 Robustness

¿emain purpose of task grouping, increasing the �exibility of the schedules
to improve the robustness during execution, is investigated next. To analyze
the robustness, a certain percentage of the tasks in the constructed schedule is
selected, and their lengths are extended to simulate a delay. ¿ese schedules are
then executed as described in Section 5.4. For every instance, a percentage of
the tasks is delayed with a constant factor. Each instance is simulated 150 times,
where the tasks to be delayed are selected at random. ¿e robustness is measured
by how well execution adheres to the schedule: tasks that complete a er their
projected �nish time are counted as late, and the robustness of a schedule is
measured as the average number of late tasks over all simulated executions. Note
that this di�ers from the concept of violations as used in the previous chapter:
in that chapter, we counted how o en a task had to be executed outside of its
assigned interval. As we do not use intervals here, this approach is not applicable,
and we resort to counting the number of tasks that fail to �nish at their scheduled
time.

¿e delays inserted during execution are characterized by two parameters:
the number of tasks that are delayed for a given execution, and the amount of
delay given to each of these tasks. ¿e �rst parameter, the number of delayed

104 5. Sequential flexibility









    

 of tasks with a delay

la
te
ta
sk
s,
av
er
ag
e


ungrouped
γ = 
γ = 
γ = 
γ = 

(a) Increasing the number of delayed tasks. ¿e delay per task
is kept constant, at 10.









   

 of delay inserted per delayed task

la
te
ta
sk
s,
av
er
ag
e


(b) Increasing the amount of delay of tasks. ¿e number of
delayed tasks is kept constant, at 20.

Figure 5.1
¿e e�ect of delay characteristics on the robustness of executed schedules, for various settings of the grouping
threshold parameter γ. Simulations are performed on all psplib instances, shown is the average percentage of late
tasks.

tasks, is taken from the set {%, %, %, %, %}, relative to the total
number of tasks in the instance. ¿e second parameter, the amount of delay in
a task, is taken from the set {%, %, %, %}, relative to the length of the
task receiving the delay.

¿e e�ect of these parameters on the performance, in terms of robustness, is
investigated separately. We start by �xing the delay per task at 10, and varying
the number of tasks with a delay. ¿e results are shown in Figure 5.1(a). ¿e
number of tasks that complete in time generally drops rapidly when increasing
the number of delayed tasks, which is in line with expectations. ¿e performance
of grouping increases for larger values of γ; the cause is the larger number of
groups present in the solution. For a low number of tasks with a delay, γ has
less e�ect on the performance. A reason might be that all the delays that can
be absorbed are already absorbed with a low number of groups—adding more
groups does not give an increase in performance in this case.

Similarly, in Figure 5.1(b), the predictability for increasing the amount of
delay in each task is shown, for a delay in 20 of the tasks. A similar, but more
pronounced, e�ect is seen for simulations where only 5 delay is inserted in a
delayed task: adding more groups, by increasing γ, has only very little e�ect.

We have so far analyzed the performance of the algorithm by looking at the
delay parameters and the various values for γ. While the γ parameter can be used
to indirectly in�uence the formation of groups by the algorithm, as evidenced

5.5. Experiments 105

       












number of commitments

la
te
ta
sk
s,
av
er
ag
e


Figure 5.2
¿e relationship between the number of commitments and the robustness. Results are shown for the j120 set, with
20 of the tasks delayed by 10. For each level of commitment, a box and whiskers plot is shown representing the
distribution of the percentage of late tasks. If less than ten instances are available for a given level, the individual
results are shown.

by Table 5.2, the e�ects we witness are not directly coupled to this parameter, but
to its result: a higher participation of tasks in groups. ¿is higher participation
can be viewed as a reduction of the level of commitment present in the schedule:
if we have a task group containingm tasks, this is a single commitment, whereas
m separate tasks representm separate commitments. Our hypothesis is thus that
schedules with lower commitment levels will show an increase in performance
in terms of robustness. Since the size of the problem also determines the level of
commitment in the resulting schedule, we will restrict ourselves to the j120 set: as
discussed before, these instances have, on average, lower resource strength, and
contain more/bigger resource peaks, leading to more complex solutions. We also
opt to �x the delay parameters at a delay of 10 per task, for 20 of the tasks.

In Figure 5.2 the lateness percentage is shown for the various levels of com-
mitment present in all solutions for the j120 instances. Solutions with equal levels
of commitment are grouped together, represented by a box plot. ¿is means that
all schedules constructed without task grouping are represented by the box plot
on the far right. ¿e schedules constructed using γ >  are represented by the
other box plots, depending on the amount of grouping that took place.

¿ere is indeed a clear correlation between the level of commitment and
the lateness, with diminishing returns for lower levels of commitment. A more
interesting observation is that the lateness distribution for the ungrouped so-
lutions has a lower median than that of the �rst few boxplots of the solutions
containing a low number of task groups. ¿ere is apparently a common factor

106 5. Sequential flexibility

in the structure of these instances that makes them both less amenable to the
creation of task groups and more susceptible to the e�ects of delay. A possible
reason might be the existence of a larger number of precedence constraints in
the original problem. ¿ese may lead to longer chains of tasks in the solution,
which result in more tasks being a�ected by delay propagation. At the same time,
instances with more precedence constraints have a lower number of tasks in
parallel during the construction of the schedule, resulting in fewer opportunities
to group tasks together.

5.5.4 Solution structure

An astute reader may have already observed that the preceding analysis based on
the level of commitment neglects an important distinction in the structure of the
solution. Schedules with a similar level of commitment can have a very di�erent
composition in terms of task groups: one solution might have only a few larger
groups, whereas another solution might contain many smaller groups. From
our earlier discussion of the e�ect of task groups on the �exibility, it would seem
that increased group sizes would have more e�ect than an increased number of
groups:

Example 5.10 Consider a task group with m >  tasks. At execution time,
such a group permits m! possible orderings. If we now divide these tasks over
two smaller, sequentially executed groups of size m/ the number of possible
orderings is reduced, to  ⋅ (m/)!.

As the number of groups is also dependent on the number of tasks in the
problem, we again restrict our analysis to the j120 set, with delay parameters
�xed to the same values as earlier, a delay of 10 per task, for 20 of the tasks.

In Figure 5.3 the lateness is plotted relative to both the number of groups and
the average size of the groups. ¿ese two solution structure parameters form
a discrete, two-dimensional space. At each point in this space where solutions
are present, a circle is plotted, where its size is scaled according to the average
lateness for solutions at this point. As a visual aid, the circles are also given a
shade of gray according to the quartile in which they belong.

Looking at the �gure, it is clear that both the number of groups as well as
the size of the groups contributes to decreasing the lateness percentage. What is
surprising, however, is that our hypothesis that the increased �exibility o�ered
by a smaller number of large groups as compared to a larger number of smaller
groups should lead to higher robustness and thus lower lateness does not seem
to hold. To validate this visual impression, the Spearman rank-order correlation
was calculated between both average group size and number of groups, and
the lateness. For the group size, a correlation of ρ = −. was found, and for
the number of groups, a correlation of ρ = −. was found. ¿is con�rms
the visual impression that having more groups has a more consistent e�ect on
lateness than having large groups.

An explanation for why our hypothesis does not seem to hold lies in the
di�erence between �exibility and robustness. While a schedule with few large

5.5. Experiments 107

 .  .  . 











lateness (avg’d)
1st quartile
2nd quartile
3rd quartile
4th quartile

average size of group task

nu
m
be
ro
fg
ro
up

ta
sk
s

Figure 5.3
Lateness versus both the
number and average size
of group tasks. Results
are shown for the j120 set,
with 20 of the tasks
delayed by 10.

group tasks might have high �exibility, this �exibility is necessarily concentrated
in the areas containing these large groups. Our method of assessing robustness is
based on introducing delays in a schedule during execution, and measuring how
many tasks are a�ected by these delays. Since these delays can be inserted at any
location in the tasks, a delay might impact many other tasks before a task group,
which can absorb it by reordering as demonstrated by Example 5.8, is reached.
If the schedule contains more, smaller task groups, less tasks will be a�ected,
explaining the higher correlation between the number of tasks and lateness.

Example 5.11 To illustrate this e�ect, consider the schedule depicted below
(for clarity, the lengths of the tasks are not shown). Imagine that an unexpected
event causes t to be delayed. ¿is delay propagates to both t and t, and then
further down the schedule. ¿e background of a�ected tasks is colored. Tasks
all the way up to, and including, t are a�ected. ¿e single, large group task
t,,, is not in the “path” of the delay, and therefore cannot absorb it.

t
t

t
t t

t t

t,,,

108 5. Sequential flexibility

Contrast this with the schedule below, for the same network structure, in
which two smaller group tasks are present. Here, only t and t are a�ected,
and then group task t, can absorb the delay.

t
t

t

t,

t t t,

t t

5.6 Conclusion and discussion

¿is chapter presents a novel way to create �exible schedules, addressing the
third research question raised by this thesis. ¿e method works by creating
solutions to scheduling problems containing groups with multiple tasks in them.
¿e order of the tasks in a group is not �xed in the solution, and can be freely
determined at execution time. ¿is serves a dual purpose: it answers the needs
of the third research question, by giving a method with which it is possible to
e�ciently represent solutions to the rcpsp containing sequential �exibility, and
it gives another way of constructing schedules that are robust in the presence of
uncertainty.

¿e algorithm we present forms task groups based on a threshold parameter
γ. Experiments con�rm our expectation that higher values of γ lead to both
more and bigger groups. Independent control of these parameters is not possible
with the current form of the algorithm. Simulating executions of schedules with
delays demonstrates that schedules with group tasks are better able to combat
the spread of those delays. Larger values of γ lead to better performance in
that regard: fewer tasks are started late as a result of the simulated delays in the
execution of the schedule.

Since γ o�ers no direct control of either the number or the size of groups, we
next looked at the level of commitment versus the lateness. Each task, whether
it is a grouped task or a normal one, is seen as one commitment, to represent
the �exibility we still have in executing a grouped task. In this way, the more
tasks take part in a grouping operation, either in the form of more groups, or
bigger groups, the lower the total level of commitment in the schedule. ¿ere is
indeed a clear correlation between commitment and lateness, but it also leads to
the next question: what in�uences the performance more, the number of groups
or the size of the groups?

¿is question leads to a rather surprising result. Our initial hypothesis was
that bigger groups will give higher robustness, since they o�er higher �exibility:
if we split a big group in two smaller, sequential groups, the number of possible
orderings is made smaller. ¿e experiments show however that the reverse is

5.6. Conclusion and discussion 109

true: the number of groups has a bigger e�ect on the robustness than the size of
the groups. An explanation for this e�ect is that the origin of a delay is random.
In an instance with few large groups, such a delay might impact a large number
of (ungrouped) tasks before a task group that can absorb it, by reordering, is
reached.

5.6.1 Discussion

¿e concept of task grouping o�ers a lot of opportunities for future research.
¿e experiments show that the number of groups in the schedule o�ers a good
indication of the performance in terms of late tasks. Using the current method
however, it is hard to directly control the number of groups. ¿is could be very
desirable in a situation in which we want to ensure that the resulting schedule
has a certain amount of sequential �exibility, be it to combat uncertainty or to
o�er autonomy to an executing agent. ¿e current method is opportunistic in
performing the grouping operation: tasks are grouped only if the heuristic, using
the threshold parameter γ, indicates so. For some situations it would be more
practical to determine the number of required groups beforehand, and to have a
method that would perform grouping operations until that level was reached.

A second important point that has so far not been addressed is the selection
of the tasks to be grouped. In essence, two opposing objectives can be identi�ed
here. On the one hand, it is bene�cial if tasks to be grouped have a similar
resource usage. ¿is way, the over-estimation of resource usage for the group
task will be kept to a minimum, such that the makespan will be less a�ected. On
the other hand, to be able to prevent delay propagation, tasks in a group should
have as diverse a resource usage as possible. ¿is way, if one resource is still in
use due to a delay, the probability that a task can be found in a group that does
not use this resource is higher. Di�erent policies for selecting tasks to group
should therefore be tested, to see if these e�ects are indeed present.

Discussion 

¿e research presented in this thesis was undertaken in the context of the applied
research and development program at NedTrain, which performs the mainte-
nance operations for the rolling stock of the Dutch national railway services. It
focuses on the planning challenges encountered at the operational level, dealing
with the scheduling of maintenance jobs in a single workplace.

¿e changing environment of the railway industry introduces new challenges
to maintenance operations. Two developments are discussed that present new
challenges to maintenance operations at the operational level. In the past, new
rolling stock was developed in very close cooperation with national industries,
leading to a large build-up of knowledge among engineers long before the new
stock was taken into service. In modern railway operations, there is a preference
to buy existing designs, tailored to the local speci�cations. Combined with
higher complexity of on-board systems, this leads to maintenance operations
being more di�cult and less predictable. A second development is the increased
need for punctuality due to the desire to have multiple smaller maintenance
visits such that trains are only in workshops during o�-peak hours. ¿e inherent
uncertainties in the maintenance jobs tend to average out if a visit is fairly long,
but this e�ect is lost if the visits are made much shorter. For such visits it is
therefore important to have a �exible method of planning, with �exible results.

In this last chapter, we want to re-examine the research goals as introduced
in the �rst chapter, and evaluate if these goals were met. To do this, we work
back by �rst re-examining the research questions together with the answers as
presented in this thesis. ¿en, we turn to the research goals, and also re-examine
them, to see if they have been met. Along the way, some insights on future
research avenues will be presented.

6.1 Research questions

We will start by re-examining the research questions presented at the end of the
second chapter, and we will compare them with the research presented in this
thesis.

111

112 6. Discussion

¿e nature of the scheduling problem at NedTrain is such that �exibility, to
be used during execution of a schedule, is of high importance. Existing research
shows that the Simple Temporal Network (stn) can be used as a �exible solution
representation for an instance of the Resource-Constrained Project Scheduling
Problem (rcpsp), which is able to capture the most important aspects of our
scheduling problem. But from this existing literature it is not clear how to
quantify the �exibility of a solution exactly, or how to compare two solutions
to the same problem based on their �exibility. ¿erefore, we posed our �rst
research question:

rq1 What criteria encapsulate our intuitive notion of the concept of �exibility,
as applied to solutions of scheduling problems, and can we devise a method
to measure �exibility, conforming to these criteria?

¿e rationality postulates F, F, F′ and F introduced in Chapter 3 capture
this notion of �exibility. Of special interest is our contribution of F′, which
states that the �exibility of one task has to be independent of the chosen start
time of any of the other tasks: picking a certain start time for one task should
not reduce the �exibility of another task.

Applying these postulates to existing metrics, we discovered that these
severely over-estimate the available �exibility, and we introduced a new measure
that better takes into account dependencies between tasks, satisfying F′. ¿is
measure is constructive: as a result of calculating the �exibility of an stn we
arrive at an assignment of intervals to tasks. Such an assignment has the property
that the intervals are independent: a choice in one interval has no e�ect on the
available choices in any of the other intervals.

Having determined how �exible a certain solution is, the next question is
how to best make use of this �exibility. Our goal here is to arrive at a robust
schedule—a schedule in which a disturbance in one task has low impact on the
rest of the schedule.

rq2 Given a schedule with a certain potential �exibility, in what ways can this
�exibility be used best to achieve a schedule with high robustness?

¿e experiments performed in Chapter 4 show that the best way to distribute
�exibility depends on the exact aim. Amore even distribution of �exibility lowers
the number of violations (i.e., tasks executing outside their assigned interval
because of a delay), and lowers the tardiness (i.e., how severely the deadline of
the schedule is violated because of delays). If this distribution is skewed such that
tasks having more predecessors receive more �exibility, the e�ect on tardiness is
more pronounced, while the number of violations increases.

One result we encountered is contradictory at �rst glance: using a solution
with lower �exibility can improve the robustness when executing the schedule.
¿is seems to contradict our desire that our measure of �exibility corresponds
to intuition, such as expressed in the �rst research question. ¿e e�ect occurs
because sometimes, a higher global level of �exibility can be achieved if multiple

6.1. Research questions 113

tasks or regions of a schedule are ‘sacri�ced’ in terms of available �exibility
such that one (or a few) tasks can be allocated more �exibility. ¿e result is a
solution with high level of �exibility, concentrated in only a small part of the
schedule. ¿e apparent contradiction is caused because our operationalization of
the intuitive idea of �exibility is applied at a global scale, looking at the complete
schedule. ¿e e�ects in�uencing robustness operate at a much more local scale:
for a certain disturbance, only tasks that are successors of the delayed tasks are
in�uenced.

So far, we have solely considered the temporal aspect of �exibility in a sched-
ule. ¿e third research question extends the scope of our research to sequential
�exibility:

rq3 Inwhatway can the concept of temporal �exibility of a schedule be extended
to include some sequential �exibility?

In answering the previous research questions, we considered solutions at the
level of the stn. For the third research question, we widen our scope to include
the conversion of an rcpsp to an stn, andwe propose a task grouping extension to
the stn with which not only temporal �exibility can be encoded, but sequential
�exibility as well. Constraint posting normally adds precedence constraints
between tasks to convert resource constraints into temporal constraints. Our
task grouping extension adds the option to group two tasks together, enforcing
sequential execution (and thus avoiding a resource con�ict), but allowing the
order of the two tasks to be decided upon at execution time. Experiments show
that this method can give improvements to robustness during execution as well.

¿e last research question focuses on the workplace structure of parallel
maintenance by independent teams. Ensuring team independence can be seen
as an instance of the decoupling problem in multi-agent scheduling. Here, again,
our focus is on robustness: we want disturbances in the execution of the schedule
of one team to have minimal e�ects on the other teams in the workplace.

rq4 How can our earlier work on ensuring robustness of entire schedules be
applied to the decoupling of multi-agent schedules, in which we strive to de-
couple in such a way that disturbances in the schedule of one agentminimally
a�ect the schedules of the other agents?

Our work in Chapter 3 in answering the �rst research question yielded a method
to construct interval schedules, and as it turns out, the fact that these intervals are
constructed to be independent enables such a schedule to serve as a decoupling,
precisely because of this independence, thereby answering the last research
question as well. Additionally, we show that our method to construct an interval
schedule by de�nition leads to an optimal decoupling: an optimal decoupling
has no loss of �exibility compared to the original schedule. As our decoupling
is derived directly from the interval schedule constructed to achieve maximal
�exibility it is intuitively evident that the decoupling is optimal.

114 6. Discussion

6.2 Research goals and further research

Having discussed how the research questions posed at the end of Chapter 2 have
been answered, we will now turn to the research goals formulated at the end of
Chapter 1, and we will compare the answers to the research questions with the
original goals.

¿e �rst research goal is to determine a way in which the scheduling process
at NedTrain workshops can be automated.

rg1 ¿e scheduling process employed in the NedTrain workshops relies on a
large amount of slack to keep unexpected events under control. In addition,
it is labor-intensive and in�exible. In what way can this process be at least
partially automated? Note that automation alone is not su�cient: the process
of constructing and adapting a schedule has to be quick enough to make it
part of an interactive process, and it has to be �exible, to be able to adapt to
the incomplete and changing nature of the environment.

¿is goal is already partially met by existing research discussed in Chapter 2,
since the scheduling problem at NedTrain can be represented as a Resource-
Constrained Project Scheduling Problem, for which Precedence Constraint
Posting is a �exible process resulting in a �exible solution.

¿e requirement of having a �exible process is solved by this method, but
as stated in the second research goal, the requirement of a �exible and robust
solution needs further research:

rg2 Schedules, by their nature, prescribe a certain way to execute a set of tasks,
giving rise to a form of rigidity. To be able to adapt to uncertain events it is
desirable to reduce this rigidity.

a) As a primary goal, we want to have a schedule that prescribes task execu-
tion in a �exible way, such that we can adapt to changing events without
needing to revise the schedule, and without having to resort to using
large amounts of slack.

b) As a secondary goal, we want the resulting schedule to be robust: if the
available �exibility is not enough to be able to adapt to some events, we
want the unavoidable revisions we have to make to continue executing
the needed tasks to be as minor as possible.

¿ese goals are investigated with the �rst three questions. ¿e answer to rq1 gives
a method to prescribe task execution in a non-rigid way, by assigning intervals
to each task. ¿is method is further investigated in answering rq2, when we
determine how the �exibility in a schedule can be used most e�ectively. And
�nally, rq3 investigates a di�erent method of achieving non-rigid prescription of
task execution, by postponing some ordering decisions to execution time. Exper-
iments performed using the proposed methods show that clear improvements

6.2. Research goals and further research 115

in robustness can be achieved when delays are present during the execution of a
schedule.

¿e answer to in particular the second research question raises an important
question for further research, as we show that there is a discrepancy between
�exibility and robustness: our answer to the �rst research question gives an
e�cient method to determine the �exibility of a schedule a priori—but the
experiments performed to determine the robustness show that high �exibility
does not translate directly to high robustness. It would be advantageous to have
a method by which the (expected) robustness of a solution could be measured
directly, especially if such a metric could then be used as optimization target.

Our investigation of the third research question yielded the concept of task
grouping, to also have a form of sequential �exibility. An interesting approach
for future research would be to combine this concept with the construction of
interval schedules, such as introduced in this thesis as well. ¿is combination
would give even more robustness during execution. Another limitation of the
task grouping approach is that while a group task can contain an arbitrary
number of tasks, they have to be executed sequentially. One could think of
more advanced group task constructions, where such tasks can also contain
parallel components. ¿is would create more opportunities to use the grouping
operation, at the expense of a more complex algorithm.

¿e last research goal describes the need for isolation between teams in the
workplace that make use of shared resources.

rg3 ¿e need to use shared resources to complete tasks, combined with uncer-
tainties in the schedule negatively a�ects the independence of the teams in
the workshop. Our goal is to construct schedules such that there is more
isolation between the teams, in terms of disturbances in the execution of the
schedule in one team not a�ecting the other teams.

¿is is translated to the decoupling problem, which is a well-known problem in
scheduling research. ¿e answer to rq1 shows that it is possible to decouple a
schedule without loss of �exibility: the �exibility is calculated using an interval
schedule that maximizes �exibility, and we prove that such an interval schedule
is in itself a decoupling.,

However, as already described in the preceding section, our decoupling
strategy focuses on individual tasks instead of teams. ¿is method works well
if each executing agent is in control of a single task, but in real-life situations
agents are o en in control of a group of tasks. An adaptation of our method to
only consider the constraints between such groups of tasks is fairly straightfor-
ward. ¿e expected bene�t of such an adaptation is that more �exibility can be
allotted to these inter-agent constraints, leading to better isolation between the
agents: a delay in one agent has a higher chance of being absorbed by inter-agent
constraints if the available �exibility on these constraints is higher.

116 6. Discussion

6.2.1 ¿e greater context

When placing the results of our research in the greater context of the mainte-
nance scheduling problem at NedTrain, some additional opportunities for future
research can be identi�ed.

Real-life problem sets
All experiments performed in this thesis use synthetic benchmark instances
from the psplib set of scheduling problems. ¿is set of instances is constructed
with variation in mind: it is constructed as a full factorial design using several
instance parameters. ¿e advantage is that this leads to varied instances, showing
that our methods work in very di�erent settings. ¿e disadvantage is that there
are relatively few instances per parameter combination. An important validation
step would be the use of problem instances more closely resembling the actual
scheduling problems present in the NedTrain workplaces.

Stochastic extensions
As has been noted at many points in this thesis, the uncertainty in the tasks
to be executed is one of the major problems. ¿e approach taken has been to
hedge against the uncertainty by ensuring that the schedules contain enough
�exibility to adapt to the uncertainty. If the amount of uncertainty is known
beforehand, one of the obvious opportunities for extension is to make use of this
information to better control schedule execution: the start time and duration
of tasks can be extended with probabilistic information, enabling us to make
informed predictions about schedule deadline violation probabilities. Mountakis
(2015) presents a proof-of-concept of this idea, where techniques for timing
analysis of complex digital integrated circuits are adapted to analyse schedules
with tasks having probabilistic information.

Interactive constraint posting
Another important direction for future research in constraint posting methods
is their use in interactive environments. Precedence constraint posting methods
take a temporal and resource constrained network of tasks, and add temporal
constraints to eliminate the resource constraints step by step—the end result
is a purely temporal problem. ¿e form of this temporal problem is identical
to the temporal part of the problem used as input, which shows that constraint
posting is well-suited for iterative or interactive environments: adding resource
constraints or removing unsuited temporal constraints can be followed by an-
other application of the algorithm resulting in a new solution. ¿is thesis has
not investigated the e�ects of such a scheme on the �exibility and robustness.
Such interactive usage is important if our methods are to be used in a workshop—
o en, not all the constraints of the scheduling problem can be encoded in an
rcpsp instance, and manual corrections might be necessary. Intuition suggests
that having high �exibility would be of use in this case, but more research is
needed to validate this claim.

Bibliography

Agricola, G. De Re Metallica. 1556. English translation by H. C. Hoover and
L. H. Hoover (Dover Publications, 1950).

Alchourrón, C. E., Gärdenfors, P., and Makinson, D. On the logic of theory
change: Partial meet contraction and revision functions. Journal of Symbolic
Logic, 50(2):510–530, 1985.

Alvarez-Valdes, R. and Tamarit, J. M. Heuristic algorithms for resource-
constrained project scheduling: A review and an empirical analysis. In R. Słow-
iński and J. Węglarz, editors, Advances in project scheduling, pages 113–134.
Elsevier, Amsterdam, 1989.

Applegate, D. and Cook, W. A computational study of the job-shop scheduling
problem. ORSA Journal on Computing, 3(2):149–156, 1991.

Artigues, C., Koné, O., Lopez, P., Mongeau, M., Néron, E., and Rivreau, D. Com-
putational experiments. In C. Artigues, S. Demassey, and E. Néron, editors,
Resource-Constrained Project Scheduling: Models, Algorithms, Extensions and
Applications, pages 98–102. Wiley-ISTE, 2008.

Artigues, C., Michelon, P., and Reusser, S. Insertion techniques for static and
dynamic resource-constrained project scheduling. European Journal of Opera-
tional Research, 149(2):249–267, 2003.

Arts, J. J. Spare parts planning and control for maintenance operations. Ph.D.
thesis, Eindhoven University of Technology, 2013.

Baker, K. R. and Scudder, G. D. Sequencingwith earliness and tardiness penalties:
A review. Operations Research, 38(1):22–36, 1990.

Bartusch, M., Möhring, R. H., and Radermacher, F. J. Scheduling project net-
works with resource constraints and time windows. Annals of Operations
Research, 16(1):199–240, 1988.

Blazewicz, J., Lenstra, J. K., and Rinnooy Kan, A. H. G. Scheduling subject to
resource constraints: Classi�cation and complexity. Discrete Applied Mathe-
matics, 5(1):11–24, 1983.

117

118 Bibliography

Boerkoel, J. C. and Durfee, E. H. Distributed algorithms for solving the multia-
gent temporal decoupling problem. In Proceedings AAMAS. 2011.

Boerkoel, J. C. and Durfee, E. H. A distributed approach to summarizing spaces
of multiagent schedules. In Proceedings AAAI. 2012.

Brambilla, A. Arti�cial Intelligence in Space Systems: Coordination ¿rough
Problem Decoupling in Multi Agent Planning for Space Systems. Lambert
Academic Publishing, 2010.

Brodsky, A., Kerschberg, L., and Varas, S. Optimal constraint decomposition for
distributed databases. In Proceedings ASIAN 2004, pages 301–319. 2005.

Cesta, A., Oddi, A., and Smith, S. F. Pro�le-based algorithms to solve multiple
capacitated metric scheduling problems. In Proceedings of the Fourth Inter-
national Conference on Arti�cial Intelligence Planning Systems, pages 214–223.
1998.

Cesta, A., Oddi, A., and Smith, S. F. Iterative �attening: A scalable method for
solving multi-capacity scheduling problems. In Proceedings of the National
Conference on Arti�cial Intelligence, pages 742–747. 2000.

Cheng, C.-C. and Smith, S. F. A constraint satisfaction approach to makespan
scheduling. In Proceedings of the 4th International Conference on Arti�cial
Intelligence Planning Systems, pages 45–54. 1996.

Christo�des, N., Alvarez-Valdes, R., and Tamarit, J. M. Project scheduling with
resource constraints: A branch and bound approach. European Journal of
Operational Research, 29(3):262–273, 1987.

Dechter, R. Constraint processing. Morgan Kaufmann, 2003.

Dechter, R., Meiri, I., and Pearl, J. Temporal constraint networks. Arti�cial
Intelligence, 49(1-3):61–95, 1991.

Demeulemeester, E. and Herroelen, W. A branch-and-bound procedure for
the multiple resource-constrained project scheduling problem. Management
Science, 38(12):1803–1818, 1992.

Demeulemeester, E. L. and Herroelen, W. Project Scheduling: A Research Hand-
book, volume 49 of International Series in Operations Research &Management
Science. Kluwer, 2002.

Demeulemeester, E. L. and Herroelen, W. S. New benchmark results for the
resource-constrained project scheduling problem. Management Science,
43(11):1485–1492, 1997.

van Dongen, L. A. M. Maintenance engineering: instandhouding van verbindin-
gen. 2011. Inaugurele rede ter gelegenheid van de benoeming tot deeltijdhoog-
leraar Maintenance Engineering aan de faculteit Construerende Technische
Wetenschappen van de Universiteit Twente op donderdag 9 juni 2011.

Bibliography 119

Floyd, R. W. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345,
1962.

Garey, M. R., Johnson, D. S., and Sethi, R. ¿e complexity of �owshop and
jobshop scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

van Gestel, C., van Reems, B., and Tempelman, L. Dieseltreinen in Nederland.
De Alk, Alkmaar, 1989.

vanGestel, C., vanReems, B., andTempelman, L. Elektrische treinen inNederland:
Deel 1. De Alk, Alkmaar, 1992.

vanGestel, C., vanReems, B., andTempelman, L. Elektrische treinen inNederland:
Deel 2. De Alk, Alkmaar, 1997a.

vanGestel, C., vanReems, B., andTempelman, L. Elektrische treinen inNederland:
Deel 3. De Alk, Alkmaar, 1997b.

Hartmann, S. Project Scheduling Under Limited Resources: Models, Methods and
Applications. Springer-Verlag, 1999.

Hartmann, S. and Briskorn, D. A survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of Opera-
tional Research, 207(1):1 – 14, 2010.

Huisman, B. Applied research & development program ‘rolling stock life cycle
logistics’ at NS/NedTrain. Technical report, NedTrain, 2009.

Hunsberger, L. Algorithms for a temporal decoupling problem in multi-agent
planning. In Proceedings of the Eighteenth National Conference on Arti�cial
Intelligence (AAAI-2002). 2002.

Kirby, R. S., Withington, S., Darling, A. B., and Kilgour, F. G. Engineering In
History. McGraw-Hill Book Co, New York, 1956.

Kolisch, R. Serial and parallel resource-constrained project scheduling methods
revisited: ¿eory and computation. European Journal of Operational Research,
90(2):320 – 333, 1996.

Kolisch, R., Schwindt, C., and Sprecher, A. Benchmark instances for project
scheduling problems. In Handbook on Recent Advances in Project Scheduling,
pages 197–212. Kluwer, 1998.

Kolisch, R. and Sprecher, A. PSPLIB – a project scheduling problem library.
European Journal of Operational Research, 96:205–216, 1996.

Koné, O., Artigues, C., Lopez, P., andMongeau, M. Comparison of mixed integer
linear programming models for the resource-constrained project scheduling
problem with consumption and production of resources. Flexible Services
and Manufacturing Journal, 25(1-2):25–47, 2013.

120 Bibliography

Laborie, P. and Ghallab, M. Planning with sharable resource constraints. In
Proceedings of the 14th International Joint Conference on Arti�cial Intelligence,
pages 1643–1649. Citeseer, 1995.

Lewis, M. J. T. Railways in the greek and roman world. In A. Guy and J. Rees,
editors, Early Railways. A Selection of Papers from the First International Early
Railways Conference, pages 8–19. 2001.

Lombardi, M. and Milano, M. A precedence constraint posting approach for
the RCPSP with time lags and variable durations. In Proceedings of the 15th
international conference on Principles and practice of constraint programming,
pages 569–583. 2009a.

Lombardi, M. and Milano, M. Precedence constraint posting for the RCPSP
with uncertain, bounded durations. In Proceedings of the 15th international
conference on Principles and practice of constraint programming, pages 569–583.
2009b.

Maróti, G. and Kroon, L. Maintenance routing for train units: The interchange
model. Computers & Operations Research, 34(4):1121–1140, 2007.

Möhring, R. H., Schulz, A. S., Stork, F., and Uetz, M. Solving project scheduling
problems byminimum cut computations. Management Science, 49(3):330–350,
2003.

Mountakis, K. S. Stochastic Scheduling of Train Maintenance Projects. Master’s
thesis, Del University of Technology, 2015.

de Nijs, F. and Klos, T. A novel priority rule heuristic: Learning from justi�cation.
InProceedings International Conference onAutomated Planning and Scheduling
(ICAPS 2014). 2014.

Oddi, A. and Smith, S. F. Stochastic procedures for generating feasible schedules.
In Proceedings of the National Conference on Arti�cial Intelligence, pages 308–
314. John Wiley & Sons Ltd., 1997.

Parada Puig, J. E., Hoekstra, S., Huisman, B., and Van Dongen, L. A. M. Sup-
portability and purchasing decisions for capital assets: Positioning paper. In
IET and IAM Asset Management Conference. London, 2011.

Planken, L. Algorithms for Simple Temporal Reasoning. Ph.D. thesis, Del
University of Technology, 2013.

Planken, L. R., de Weerdt, M. M., and van der Krogt, R. P. Computing all-pairs
shortest paths by leveraging low treewidth. In Proceedings of the Twenty-�rst
International Conference on Automated Planning and Scheduling (ICAPS-11),
pages 170–177. AAAI Press, 2011. Honourable mention for best student paper.

Policella, N., Cesta, A., Oddi, A., and Smith, S. F. From precedence constraint
posting to partial order schedules: A CSP approach to robust scheduling. AI
Communications, 20(3):163–180, 2007.

Bibliography 121

Policella, N., Smith, S. F., Cesta, A., and Oddi, A. Generating robust schedules
through temporal �exibility. In Proceedings of the 14 International Conference
on Automated Planning & Scheduling, ICAPS’04. 2004.

Policella, N., Wang, X., Smith, S. F., and Oddi, A. Exploiting temporal �exibility
to obtain high quality schedules. In Proceedings of the Twentieth National
Conference on Arti�cial Intelligence, AAAI-05. 2005.

Pollack, M. E. and Tsamardinos, I. E�ciently dispatching plans encoded as
simple temporal problems. In I. Vlahavas and D. Vrakas, editors, Intelligent
Techniques for Planning. IDEA Group Publishing, 2005.

Pritsker, A. A. B., Waiters, L. J., and Wolfe, P. M. Multiproject scheduling with
limited resources: A zero-one programming approach. Management Science,
16(1):93–108, 1969.

RailWiki (dd-ar). DD-AR – Treinstammen DD-AR. http://www.railwiki.
nl/index.php/DD-AR_-_Treinstammen_DD-AR, 2014. Accessed: 2014-11-16.

Smith, S. F. Is scheduling a solved problem? In Proceedings of the Multi-
Disciplinary International Conference on Scheduling ¿eory and Applications
(MISTA), pages 3–18. Springer, 2003.

Vidal, T. and Fargier, H. Handling contingency in temporal constraint networks:
from consistency to controllabilities. Journal of Experimental &¿eoretical
Arti�cial Intelligence, 11(1):23–45, 1999.

Wiers, V. C. S. Human–computer interaction in production scheduling: Analysis
and design of decision support systems for production scheduling tasks. Ph.D.
thesis, Eindhoven University of Technology, 1997.

Wilson, M., Klos, T., Witteveen, C., and Huisman, B. Flexibility and decoupling
in the simple temporal problem. In Proceedings of the 23rd International Joint
Conference on Arti�cial Intelligence. 2013a.

Wilson, M., Witteveen, C., and Huisman, B. Enhancing predictability of sched-
ules by task grouping. In 20th European Conference on Arti�cial Intelligence.
2012.

Wilson, M., Witteveen, C., Klos, T., and Huisman, B. Enhancing �exibility and
robustness in multi-agent task scheduling. In Proceedings OPTMAS workshop.
2013b.

Witteveen, C., Wilson, M., and Klos, T. Optimal decoupling in linear constraint
systems. In Proceedings of the Twenty-Eighth AAAI Conference on Arti�cial
Intelligence (AAAI-14), pages 2381–2387. AAAI Press, Menlo Park, CA, 2014.

Wolmar, C. Blood, Iron, and Gold: How the Railways Transformed the World.
Atlantic Books, 2009.

http://www.railwiki.nl/index.php/DD-AR_-_Treinstammen_DD-AR
http://www.railwiki.nl/index.php/DD-AR_-_Treinstammen_DD-AR

Summary

¿is thesis presents research on scheduling in an uncertain environment, which
forms a part of the rolling stock life cycle logistics applied research and develop-
ment program funded by Dutch railway industry companies. ¿e focus therefore
lies on scheduling of maintenance operations on rolling stock in the railway
industry.

¿e �rst chapter describes some of the history of the Dutch railways, focusing
on the rolling stock used, and it introduces the context in which NedTrain, a
major Dutch rolling stock maintenance company, operates. While maintenance
of rolling stock is not a new problem, recent changes in the �eld are identi�ed in
this chapter which introduce new challenges: the �rst is the declining involve-
ment of maintenance experts in the procurement of new rolling stock, the second
is the on-going demand for increasing e�ciency. Based on this discussion, the
goal of this thesis is to devise a method with which schedules can be created
based on a �exible process. ¿e schedules resulting from this method are to be
both �exible, meaning that they can be adapted easily, and robust, meaning that
they are resilient to the e�ects of uncertain events. Lastly, our goal is to create
the schedules in such a way that the e�ects of disturbances in one team have
little or no e�ect on any other teams in the same workshop.

Chapter 2 examines existing research in the context of the formulated re-
search goals. It is shown that the well-known Resource-Constrained Project
Scheduling Problem (rcpsp) can be mapped to the problem of scheduling main-
tenance tasks on trains in theNedTrain workshops. ¿emost importantmethods
to solve the rcpsp are discussed, among which are many exact methods. Both
the scale of the problem and the requirement of having a �exible schedule instead
of a �xed time assignment for the tasks prohibit using these methods. Among
the heuristic methods discussed, the Precedence Constraint Posting method
turns out to be an especially good �t: it is able to solve large-sized problems
very quickly, and it uses a Simple Temporal Network (stn) as a way of represent-
ing many di�erent solutions to the original problem, o�ering a lot of �exibility.
Based on the research discussed, research questions are formulated to answer
the research goals.

• ¿e �rst question asks how to de�ne criteria encapsulating the notion of

123

124 Summary in English

�exibility as posed by our research goals, and how to measure the �exibility
of a schedule.

• ¿e second question asks howwe canmake the best use of available �exibility
to attain robustness.

• ¿e third question asks if there is also a way to extend the concept of temporal
�exibility to include a form of sequential �exibility.

• ¿e last question asks how we can use our work on robustness to decouple
schedules, ensuring that disturbances in the schedule for one agent have no
impact on any other agents.

¿e third chapter investigates criteria corresponding to our intuitive notion
of �exibility in scheduling. ¿e concept of interval schedules serves as a basis
for this investigation: the idea is that each task in the schedule is assigned an
interval from which its start time can be picked, and the length of all these
intervals serves as a representation for the �exibility of the schedule. We show
that �exibility measures in existing research lead to an over-estimation of the
total available �exibility, because dependencies between tasks are not taken into
account properly: simply adding the interval sizes for two dependent tasks causes
over-estimation, because the picked time for one task can reduce the interval size
for another task. Our �rst major contribution is an independence requirement
for the creation of these intervals: we state that intervals should be constructed
in such a way that any choice in one interval has no impact on the available
choices in any of the other intervals. Our second major contribution is a method
to actually construct such intervals, which results in a valid interval schedule
for an stn, allowing e�cient schedule execution under dynamic circumstances.
Additionally, we note that an interval schedule can also serve as a mechanism to
decouple a schedule, giving a partial answer to the last research question.

In the fourth chapter, we investigate how to make use of the available �exi-
bility to ensure that schedules are robust. We show that having a maximal total
amount of �exibility does not imply that the schedule is as robust as possible:
maximization might lead to a very skewed distribution of �exibility over the
schedule. Di�erent ways of distributing �exibility over a schedule are proposed
and analyzed in an experimental setting. From the experiments it can be clearly
concluded that sacri�cing some of the total �exibility to improve the distribution
of �exibility can have a positive in�uence on the robustness of the schedule.
We also propose a di�erent maximization strategy: one which maximizes the
minimum of the interval sizes for the schedule. ¿is strategy is shown to work
especially well for small delays.

So far we only discussed strategies concerning temporal �exibility, i.e., those
in which start times remain �exible instead of �xed. Chapter 5 introduces a novel
representation of solutions for planning problems in which not all ordering
decisions needed to avoid resource contention are made in advance. ¿is is
achieved by grouping tasks which need to be executed sequentially together, in

125

such a way that either ordering of the tasks remains feasible during execution
time. An analysis using simulation experiments shows that this technique results
in higher robustness, at the cost of somewhat lower resource utilization. ¿e
proposed algorithm to construct such schedules o�ers limited control over the
size of the grouped tasks. ¿e experiments show a slightly counter-intuitive
results: schedules with larger groups o�er lower robustness than those with
smaller groups. A plausible explanation is the fact that delays can occur at any
place in a schedule. Having multiple smaller groups instead of a few very large
ones increases the chance that such a delay can be compensated for using a task
group.

Samenvatting

Dit proefschri bevat onderzoek naar planning in een onzekere omgeving, en
maakt onderdeel uit van het “rolling stock life cycle logistics applied research and
development program”, ge�nancierd door bedrijven in de Nederlandse spoorsec-
tor. Het accent ligt derhalve op het plannen van de onderhoudswerkzaamheden
aan rollend materieel in de spoorwegindustrie.

Het eerste hoofdstuk beschrij een deel van de geschiedenis van de Neder-
landse spoorwegen, gaat in op het gebruikte materieel en beschrij de context
waarbinnen NedTrain, één van de belangrijkste onderhoudsbedrijven van Ne-
derlands spoorwegmaterieel, functioneert. Ondanks het feit dat het onderhoud
van rollend materieel geen nieuw probleem is, worden in dit hoofdstuk recente
veranderingen geïdenti�ceerd die leiden tot nieuwe uitdagingen: de eerste is de
afnemende betrokkenheid van onderhoudsexperts bij de aankoop van nieuwe
treinen, de tweede is de alsmaar toenemende wens naar het verhogen van de e�-
ciëntie. Het doel van dit proefschri is derhalve het verzinnen van een methode
waarmee planningen kunnen worden gemaakt op basis van een �exibel proces.
De planningen die deze methode oplevert moeten zelf zowel �exibel als robuust
zijn, wat betekent dat ze makkelijk kunnen worden aangepast, maar ook dat
ze bestand zijn tegen de e�ecten van onvoorziene gebeurtenissen. Bovendien
moeten deze planningen een zodanige structuur hebben dat de e�ecten van
verstoringen in het ene team weinig of geen e�ect hebben op andere teams in de
werkplaats.

Hoofdstuk 2 behandelt bestaand onderzoek in samenhang met de geformu-
leerde onderzoeksdoelen. Er wordt aangetoond dat het welbekende “Resource-
Constrained Project Scheduling Problem” (rcpsp, projectplannen met beperkt
aanwezige hulpbronnen) goed correspondeert met het probleem van het plannen
van onderhoudstaken op treinen binnen de werkplaatsen van NedTrain. De
belangrijkste methoden voor het oplossen van het rcpsp worden besproken.
Een aantal van deze methoden zijn exact; echter, dergelijke methoden zijn niet
inzetbaar vanwege de schaal van het probleem en de eis voor het hebben van
een �exibele planning in plaats van vaste starttijden voor de diverse taken. On-
der de methoden op basis van heuristieken blijkt de “Precedence Constraint
Posting” methode (een methode op basis van het incrementeel toevoegen van
ordeningsrelaties) bijzonder goed te passen bij deze eisen: zij is in staat proble-

127

128 Summary in Dutch

men van grote afmeting zeer snel op te lossen, en zij maakt gebruik van een
Simple Temporal Network (stn) als methode om een scala aan verschillende
oplossingen voor het originele probleem te bevatten, wat een grote mate van
�exibiliteit oplevert. Op basis van het besproken onderzoek worden vervolgens
onderzoeksvragen geformuleerd om te beantwoorden aan de onderzoeksdoelen.

• De eerste vraag is hoe criteria kunnen worden gede�niëerd die de intuïtieve
notie achter �exibiliteit omvatten, zoals gesteld door de onderzoeksdoelen,
en hoe de �exibiliteit van een planning kan worden gemeten.

• De tweede vraag is hoe we het beste gebruik kunnen maken van bovenge-
noemde �exibiliteit om tot een robuuste planning te komen.

• De derde vraag is opwelkewijze het idee van �exibiliteit in de tijd kanworden
uitgebreid om ook een vorm van �exibiliteit qua ordening te omvatten.

• De laatste vraag is hoe het resultaat van robuustheid kan worden ingezet
voor het “ontkoppelen” van planningen, waarbij het doel is dat verstoringen
in de planning voor de ene partij geen e�ect hebben op andere deelnemende
partijen.

In het derde hoofdstuk wordt ingegaan op de criteria die corresponderen
met de intuïtieve notie van �exibiliteit in planning. Het concept van een interval-
planning fungeert als basis voor het onderzoek: het idee is dat elke taak in de
planning een interval krijgt toegekend waaruit de starttijd kan worden gekozen.
De lengte van al deze intervallen gee een maatstaf voor de �exibiliteit van de
planning. Er wordt aangetoond dat �exibiliteitsmaten uit bestaand onderzoek
leiden tot een overschatting van de totaal beschikbare �exibiliteit. De oorzaak is
dat afhankelijkheden tussen taken onvoldoende in beschouwing worden geno-
men: het simpelweg optellen van de intervallengtes van twee afhankelijke taken
leidt tot een overschatting, aangezien de gekozen starttijd voor de ene taak het
beschikbare interval van de andere taak kan beïnvloeden. De eerste bijdrage is
een onafhankelijkheidseis voor het opstellen van deze intervallen: de intervallen
moeten worden gekozen op zodanige wijze dat een keuze in één interval geen
invloed hee op de beschikbare keuzes in willekeurig welk ander interval. De
tweede bijdrage is een methode om daadwerkelijk dergelijke intervallen op te
stellen, hetgeen resulteert in een geldige intervalplanning voor een stn, waarmee
e�ciënte uitvoer van taken bewerkstelligd kan worden, ook in een dynamische
omgeving. Ten laatste wordt opgemerkt dat een intervalplanning ook als mecha-
nisme kan dienen om een planning te ontkoppelen, hetgeen ten dele de laatste
onderzoeksvraag beantwoordt.

In het vierde hoofdstuk wordt onderzocht hoe gebruik te maken van de
beschikbare �exibiliteit zodanig dat planningen robuust zijn. Er wordt getoond
dat het hebben van een maximale hoeveelheid �exibiliteit niet impliceert dat
een planning zo robuust als mogelijk is: maximaliseren kan leiden tot een zeer
scheve verdeling van �exibiliteit over de planning. Verschillende manieren om

129

�exibiliteit te verdelen over een planningworden geïntroduceerd en geanalyseerd
door middel van experimenten. Uit de experimenten kan worden geconcludeerd
dat het opo�eren van een deel van de totale �exibiliteit ter bevordering van de
verdeling een positieve invloed kan hebben op de robuustheid van een planning.
Ook wordt een nieuwe strategie van maximalisatie voorgesteld: één waarbij de
minimaal voorkomende intervalgrootte wordt gemaximaliseerd. Deze strategie
werkt met name goed bij het voorkomen van kleine vertragingen.

Tot dusver zijn slechts strategieën besproken die betrekking hebben op tem-
porele �exibiliteit, dat wil zeggen, strategieën waarbij de starttijden van taken
�exibel zijn in plaats van vast. Hoofdstuk 5 introduceert een nieuwe wijze om
oplossingen van planningsproblemen vast te leggen waarbij niet alle ordeningsbe-
slissingen ter voorkoming van overgebruik van hulpbronnen volledig vast liggen.
Dit wordt bereikt door het groeperen van taken die achtereenvolgend moeten
worden uitgevoerd, op zodanige manier dat beide volgordes nog mogelijk zijn tij-
dens de uitvoer van de planning. Een analyse van deze techniek met behulp van
simulatie toont aan dat op deze wijze een grotere robuustheid wordt verkregen,
ten koste van een wat lagere benutting van de hulpbronnen. Het voorgestelde
algoritme biedt beperkte controle op de grootte van de gegroepeerde taken. De
experimenten geven een ietwat tegen-intuïtief resultaat: planningen met grotere
groepen resulteren in een lagere robuustheid dan planningen met kleinere groe-
pen. Een verklaring voor dit feit is dat verstoringen op elke willekeurige plaats
in de planning op kunnen treden. Het hebben van meerdere kleine groepen in
plaats van slechts enkele grotere vergroot de kans dat een dergelijke vertraging
opgevangen kan worden met de �exibiliteit in een groep.

Curriculum vitæ

Michel Wilson was born in Rozenburg on Saturday, April 18, 1981. From 1994 to
1997 he received secondary education at osg ‘De Ring van Putten’ in Spijkenisse,
and from 1997 to 1999 at csg ‘Blaise Pascal’, also in Spijkenisse, where he ob-
tained his vwo diploma. Starting in the fall of 1999, he attended six months of
community college at Green River Community College, in Auburn, wa, usa.

In the fall of 2000, Michel started his education at Del University of Tech-
nology, beginning with a bachelor in Technical Informatics, followed by a master
in Computer Science, specializing in So ware Technology. As a master student,
he researched the application of spectrum-based fault localization techniques to
hardware systems, supervised by prof.dr.ir. A.J.C. van Gemund, resulting in an
MSc degree in January 2010.

Michel began his work as PhD researcher in February 2010, at the Algo-
rithmics group of the faculty of Electrical Engineering, Mathematics and Com-
puter Science, also at Del University of Technology, under the supervision
of prof.dr. C. Witteveen and dr. T.B. Klos. In this period, he published �ve
peer-reviewed papers as principal author, one of which received an ijcai Dis-
tinguished Paper Award. During his time as PhD researcher, Michel was also
involved in the teaching of courses o�ered by the Algorithmics group, and he
supervised threeMSc students. InMay 2014 he started work atWest IT Solutions
B.V. in Del .

In his spare time, Michel likes to tinker around with electronics and small
embedded devices. Starting as a child, when his parents gave him an old manual
slr camera, he has been interested in photography. As a child he was also already
interested in trains and railroads. ¿is interest was revived during his time as
PhD researcher, in which he enjoyed the collaboration with NedTrain, and the
opportunities to visit maintenance workshops.

131

SIKS dissertation series

1998
 Johan van den Akker (CWI) DEGAS—An Active, Temporal Database of Autonomous Objects
 Floris Wiesman (UM) Information Retrieval by Graphically Browsing Meta-Information
 Ans Steuten (TUD) A Contribution to the Linguistic Analysis of Business Conversations within
the Language/Action Perspective

 Dennis Breuker (UM)Memory versus Search in Games
 E.W.Oskamp (RUL) Computerondersteuning bij Stra oemeting

1999
 Mark Sloof (VU) Physiology of Quality Change Modelling; Automated modelling of Quality
Change of Agricultural Products

 Rob Potharst (EUR) Classi�cation using decision trees and neural nets
 Don Beal (UM)¿e Nature of Minimax Search
 Jacques Penders (UM)¿e practical Art of Moving Physical Objects
 Aldo de Moor (KUB) Empowering Communities: A Method for the Legitimate User-Driven
Speci�cation of Network Information Systems

 Niek J.E. Wijngaards (VU) Re-design of compositional systems
 David Spelt (UT) Veri�cation support for object database design
 Jacques H.J. Lenting (UM) Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation.

2000
 Frank Niessink (VU) Perspectives on Improving So ware Maintenance
 Koen Holtman (TUE) Prototyping of CMS Storage Management
 Carolien M.T. Metselaar (UVA) Sociaal-organisatorische gevolgen van kennistechnologie; een
procesbenadering en actorperspectief.

 Geert de Haan (VU) ETAG, A Formal Model of Competence Knowledge for User Interface
Design

 Ruud van der Pol (UM) Knowledge-based Query Formulation in Information Retrieval.
 Rogier van Eijk (UU) Programming Languages for Agent Communication
 Niels Peek (UU) Decision-theoretic Planning of Clinical Patient Management
 Veerle Coupé (EUR) Sensitivity Analyis of Decision-¿eoretic Networks
 Florian Waas (CWI) Principles of Probabilistic Query Optimization
 Niels Nes (CWI) Image Database Management System Design Considerations, Algorithms and

Architecture
 Jonas Karlsson (CWI) Scalable Distributed Data Structures for Database Management

2001
 Silja Renooij (UU) Qualitative Approaches to Quantifying Probabilistic Networks
 Koen Hindriks (UU) Agent Programming Languages: Programming with Mental Models
 Maarten van Someren (UvA) Learning as problem solving

133

134 SIKS dissertation series

 Evgueni Smirnov (UM) Conjunctive and Disjunctive Version Spaces with Instance-Based
Boundary Sets

 Jacco van Ossenbruggen (VU) Processing Structured Hypermedia: A Matter of Style
 Martijn van Welie (VU) Task-based User Interface Design
 Bastiaan Schonhage (VU) Diva: Architectural Perspectives on Information Visualization
 Pascal van Eck (VU) A Compositional Semantic Structure for Multi-Agent Systems Dynamics.
 Pieter Jan ’t Hoen (RUL) Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

 Maarten Sierhuis (UvA)Modeling and Simulating Work Practice BRAHMS: a multiagent
modeling and simulation language for work practice analysis and design

 Tom M. van Engers (VUA) Knowledge Management: ¿e Role of Mental Models in Business
Systems Design

2002
 Nico Lassing (VU) Architecture-Level Modi�ability Analysis
 Roelof van Zwol (UT)Modelling and searching web-based document collections
 Henk Ernst Blok (UT) Database Optimization Aspects for Information Retrieval
 Juan Roberto Castelo Valdueza (UU)¿e Discrete Acyclic Digraph Markov Model in Data
Mining

 Radu Serban (VU)¿e Private Cyberspace Modeling Electronic Environments inhabited by
Privacy-concerned Agents

 Laurens Mommers (UL) Applied legal epistemology; Building a knowledge-based ontology of
the legal domain

 Peter Boncz (CWI)Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications
 Jaap Gordijn (VU) Value Based Requirements Engineering: Exploring Innovative E-Commerce
Ideas

 Willem-Jan van den Heuvel (KUB) Integrating Modern Business Applications with Objecti�ed
Legacy Systems

 Brian Sheppard (UM) Towards Perfect Play of Scrabble
 Wouter C.A. Wijngaards (VU) Agent Based Modelling of Dynamics: Biological and

Organisational Applications
 Albrecht Schmidt (Uva) Processing XML in Database Systems
 Hongjing Wu (TUE) A Reference Architecture for Adaptive Hypermedia Applications
 Wieke de Vries (UU) Agent Interaction: Abstract Approaches to Modelling, Programming and

Verifying Multi-Agent Systems
 Rik Eshuis (UT) Semantics and Veri�cation of UML Activity Diagrams for Work�ow Modelling
 Pieter van Langen (VU)¿e Anatomy of Design: Foundations, Models and Applications
 Stefan Manegold (UVA) Understanding, Modeling, and Improving Main-Memory Database

Performance

2003
 Heiner Stuckenschmidt (VU) Ontology-Based Information Sharing in Weakly Structured
Environments

 Jan Broersen (VU)Modal Action Logics for Reasoning About Reactive Systems
 Martijn Schuemie (TUD) Human-Computer Interaction and Presence in Virtual Reality
Exposure ¿erapy

 Milan Petkovic (UT) Content-Based Video Retrieval Supported by Database Technology
 Jos Lehmann (UVA) Causation in Arti�cial Intelligence and Law—A modelling approach
 Boris van Schooten (UT) Development and speci�cation of virtual environments
 Machiel Jansen (UvA) Formal Explorations of Knowledge Intensive Tasks
 Yongping Ran (UM) Repair Based Scheduling
 Rens Kortmann (UM)¿e resolution of visually guided behaviour
 Andreas Lincke (UvT) Electronic Business Negotiation: Some experimental studies on the

interaction between medium, innovation context and culture
 Simon Keizer (UT) Reasoning under Uncertainty in Natural Language Dialogue using

Bayesian Networks
 Roeland Ordelman (UT) Dutch speech recognition in multimedia information retrieval
 Jeroen Donkers (UM) Nosce Hostem—Searching with Opponent Models

135

 Stijn Hoppenbrouwers (KUN) Freezing Language: Conceptualisation Processes across
ICT-Supported Organisations

 Mathijs de Weerdt (TUD) Plan Merging in Multi-Agent Systems
 Menzo Windhouwer (CWI) Feature Grammar Systems—Incremental Maintenance of Indexes

to Digital Media Warehouses
 David Jansen (UT) Extensions of Statecharts with Probability, Time, and Stochastic Timing
 Levente Kocsis (UM) Learning Search Decisions

2004
 Virginia Dignum (UU) A Model for Organizational Interaction: Based on Agents, Founded in
Logic

 Lai Xu (UvT)Monitoring Multi-party Contracts for E-business
 Perry Groot (VU) A¿eoretical and Empirical Analysis of Approximation in Symbolic Problem
Solving

 Chris van Aart (UVA) Organizational Principles for Multi-Agent Architectures
 Viara Popova (EUR) Knowledge discovery and monotonicity
 Bart-Jan Hommes (TUD)¿e Evaluation of Business Process Modeling Techniques
 Elise Boltjes (UM) Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

 Joop Verbeek (UM) Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale expertise

 Martin Caminada (VU) For the Sake of the Argument; explorations into argument-based
reasoning

 Suzanne Kabel (UVA) Knowledge-rich indexing of learning-objects
 Michel Klein (VU) Change Management for Distributed Ontologies
 ¿e Duy Bui (UT) Creating emotions and facial expressions for embodied agents
 Wojciech Jamroga (UT) Using Multiple Models of Reality: On Agents who Know how to Play
 Paul Harrenstein (UU) Logic in Con�ict. Logical Explorations in Strategic Equilibrium
 Arno Knobbe (UU)Multi-Relational Data Mining
 Federico Divina (VU) Hybrid Genetic Relational Search for Inductive Learning
 Mark Winands (UM) Informed Search in Complex Games
 Vania Bessa Machado (UvA) Supporting the Construction of Qualitative Knowledge Models
 ¿ijs Westerveld (UT) Using generative probabilistic models for multimedia retrieval
 Madelon Evers (Nyenrode) Learning from Design: facilitating multidisciplinary design teams

2005
 Floor Verdenius (UVA)Methodological Aspects of Designing Induction-Based Applications
 Erik van der Werf (UM)) AI techniques for the game of Go
 Franc Grootjen (RUN) A Pragmatic Approach to the Conceptualisation of Language
 Nirvana Meratnia (UT) Towards Database Support for Moving Object data
 Gabriel Infante-Lopez (UVA) Two-Level Probabilistic Grammars for Natural Language Parsing
 Pieter Spronck (UM) Adaptive Game AI
 Flavius Frasincar (TUE) Hypermedia Presentation Generation for Semantic Web Information
Systems

 Richard Vdovjak (TUE) A Model-driven Approach for Building Distributed Ontology-based
Web Applications

 Jeen Broekstra (VU) Storage, Querying and Inferencing for Semantic Web Languages
 Anders Bouwer (UVA) Explaining Behaviour: Using Qualitative Simulation in Interactive

Learning Environments
 Elth Ogston (VU) Agent Based Matchmaking and Clustering—A Decentralized Approach to

Search
 Csaba Boer (EUR) Distributed Simulation in Industry
 Fred Hamburg (UL) Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen
 Borys Omelayenko (VU)Web-Service con�guration on the Semantic Web; Exploring how

semantics meets pragmatics
 Tibor Bosse (VU) Analysis of the Dynamics of Cognitive Processes
 Joris Graaumans (UU) Usability of XML Query Languages
 Boris Shishkov (TUD) So ware Speci�cation Based on Re-usable Business Components

136 SIKS dissertation series

 Danielle Sent (UU) Test-selection strategies for probabilistic networks
 Michel van Dartel (UM) Situated Representation
 Cristina Coteanu (UL) Cyber Consumer Law, State of the Art and Perspectives
 Wijnand Derks (UT) Improving Concurrency and Recovery in Database Systems by Exploiting

Application Semantics

2006
 Samuil Angelov (TUE) Foundations of B2B Electronic Contracting
 Cristina Chisalita (VU) Contextual issues in the design and use of information technology in
organizations

 Noor Christoph (UVA)¿e role of metacognitive skills in learning to solve problems
 Marta Sabou (VU) Building Web Service Ontologies
 Cees Pierik (UU) Validation Techniques for Object-Oriented Proof Outlines
 Ziv Baida (VU) So ware-aided Service Bundling—Intelligent Methods & Tools for Graphical
Service Modeling

 Marko Smiljanic (UT) XML schema matching—balancing e�ciency and e�ectiveness by means
of clustering

 Eelco Herder (UT) Forward, Back and Home Again—Analyzing User Behavior on the Web
 Mohamed Wahdan (UM) Automatic Formulation of the Auditor’s Opinion
 Ronny Siebes (VU) Semantic Routing in Peer-to-Peer Systems
 Joeri van Ruth (UT) Flattening Queries over Nested Data Types
 Bert Bongers (VU) Interactivation—Towards an e-cology of people, our technological

environment, and the arts
 Henk-Jan Lebbink (UU) Dialogue and Decision Games for Information Exchanging Agents
 Johan Hoorn (VU) So ware Requirements: Update, Upgrade, Redesign—towards a ¿eory of

Requirements Change
 Rainer Malik (UU) CONAN: Text Mining in the Biomedical Domain
 Carsten Riggelsen (UU) Approximation Methods for E�cient Learning of Bayesian Networks
 Stacey Nagata (UU) User Assistance for Multitasking with Interruptions on a Mobile Device
 Valentin Zhizhkun (UVA) Graph transformation for Natural Language Processing
 Birna van Riemsdijk (UU) Cognitive Agent Programming: A Semantic Approach
 Marina Velikova (UvT)Monotone models for prediction in data mining
 Bas van Gils (RUN) Aptness on the Web
 Paul de Vrieze (RUN) Fundaments of Adaptive Personalisation
 Ion Juvina (UU) Development of Cognitive Model for Navigating on the Web
 Laura Hollink (VU) Semantic Annotation for Retrieval of Visual Resources
 Madalina Drugan (UU) Conditional log-likelihood MDL and Evolutionary MCMC
 Vojkan Mihajlovic (UT) Score Region Algebra: A Flexible Framework for Structured

Information Retrieval
 Stefano Bocconi (CWI) Vox Populi: generating video documentaries from semantically

annotated media repositories
 Borkur Sigurbjornsson (UVA) Focused Information Access using XML Element Retrieval

2007
 Kees Leune (UvT) Access Control and Service-Oriented Architectures
 Wouter Teepe (RUG) Reconciling Information Exchange and Con�dentiality: A Formal
Approach

 Peter Mika (VU) Social Networks and the Semantic Web
 Jurriaan van Diggelen (UU) Achieving Semantic Interoperability in Multi-agent Systems: a
dialogue-based approach

 Bart Schermer (UL) So ware Agents, Surveillance, and the Right to Privacy: a Legislative
Framework for Agent-enabled Surveillance

 Gilad Mishne (UVA) Applied Text Analytics for Blogs
 Natasa Jovanović (UT) To Whom It May Concern—Addressee Identi�cation in Face-to-Face
Meetings

 Mark Hoogendoorn (VU)Modeling of Change in Multi-Agent Organizations
 David Mobach (VU) Agent-Based Mediated Service Negotiation

137

 Huib Aldewereld (UU) Autonomy vs. Conformity: an Institutional Perspective on Norms and
Protocols

 Natalia Stash (TUE) Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive
Hypermedia System

 Marcel van Gerven (RUN) Bayesian Networks for Clinical Decision Support: A Rational
Approach to Dynamic Decision-Making under Uncertainty

 Rutger Rienks (UT)Meetings in Smart Environments; Implications of Progressing Technology
 Niek Bergboer (UM) Context-Based Image Analysis
 Joyca Lacroix (UM) NIM: a Situated Computational Memory Model
 Davide Grossi (UU) Designing Invisible Handcu�s. Formal investigations in Institutions and

Organizations for Multi-agent Systems
 ¿eodore Charitos (UU) Reasoning with Dynamic Networks in Practice
 Bart Orriens (UvT) On the development an management of adaptive business collaborations
 David Levy (UM) Intimate relationships with arti�cial partners
 Slinger Jansen (UU) Customer Con�guration Updating in a So ware Supply Network
 Karianne Vermaas (UU) Fast di�usion and broadening use: A research on residential adoption

and usage of broadband internet in the Netherlands between 2001 and 2005
 Zlatko Zlatev (UT) Goal-oriented design of value and process models from patterns
 Peter Barna (TUE) Speci�cation of Application Logic in Web Information Systems
 Georgina Ramírez Camps (CWI) Structural Features in XML Retrieval
 Joost Schalken (VU) Empirical Investigations in So ware Process Improvement

2008
 Katalin Boer-Sorbán (EUR) Agent-Based Simulation of Financial Markets: A modular,
continuous-time approach

 Alexei Sharpanskykh (VU) On Computer-Aided Methods for Modeling and Analysis of
Organizations

 Vera Hollink (UVA) Optimizing hierarchical menus: a usage-based approach
 Ander de Keijzer (UT)Management of Uncertain Data—towards unattended integration
 Bela Mutschler (UT)Modeling and simulating causal dependencies on process-aware
information systems from a cost perspective

 Arjen Hommersom (RUN) On the Application of Formal Methods to Clinical Guidelines, an
Arti�cial Intelligence Perspective

 Peter van Rosmalen (OU) Supporting the tutor in the design and support of adaptive e-learning
 Janneke Bolt (UU) Bayesian Networks: Aspects of Approximate Inference
 Christof van Nimwegen (UU)¿e paradox of the guided user: assistance can be
counter-e�ective

 Wauter Bosma (UT) Discourse oriented summarization
 Vera Kartseva (VU) Designing Controls for Network Organizations: A Value-Based Approach
 Jozsef Farkas (RUN) A Semiotically Oriented Cognitive Model of Knowledge Representation
 Caterina Carraciolo (UVA) Topic Driven Access to Scienti�c Handbooks
 Arthur van Bunningen (UT) Context-Aware Querying; Better Answers with Less E�ort
 Martijn van Otterlo (UT)¿e Logic of Adaptive Behavior: Knowledge Representation and

Algorithms for the Markov Decision Process Framework in First-Order Domains.
 Henriette van Vugt (VU) Embodied agents from a user’s perspective
 Martin Op ’t Land (TUD) Applying Architecture and Ontology to the Splitting and Allying of

Enterprises
 Guido de Croon (UM) Adaptive Active Vision
 Henning Rode (UT) From Document to Entity Retrieval: Improving Precision and

Performance of Focused Text Search
 Rex Arendsen (UVA) Geen bericht, goed bericht. Een onderzoek naar de e�ecten van de

introductie van elektronisch berichtenverkeer met de overheid op de administratieve lasten van
bedrijven.

 Krisztian Balog (UVA) People Search in the Enterprise
 Henk Koning (UU) Communication of IT-Architecture
 Stefan Visscher (UU) Bayesian network models for the management of ventilator-associated

pneumonia
 Zharko Aleksovski (VU) Using background knowledge in ontology matching

138 SIKS dissertation series

 Geert Jonker (UU) E�cient and Equitable Exchange in Air Tra�c Management Plan Repair
using Spender-signed Currency

 Marijn Huijbregts (UT) Segmentation, Diarization and Speech Transcription: Surprise Data
Unraveled

 Hubert Vogten (OU) Design and Implementation Strategies for IMS Learning Design
 Ildiko Flesch (RUN) On the Use of Independence Relations in Bayesian Networks
 Dennis Reidsma (UT) Annotations and Subjective Machines—Of Annotators, Embodied

Agents, Users, and Other Humans
 Wouter van Atteveldt (VU) Semantic Network Analysis: Techniques for Extracting,

Representing and Querying Media Content
 Loes Braun (UM) Pro-Active Medical Information Retrieval
 Trung H. Bui (UT) Toward A�ective Dialogue Management using Partially Observable Markov

Decision Processes
 Frank Terpstra (UVA) Scienti�c Work�ow Design; theoretical and practical issues
 Jeroen de Knijf (UU) Studies in Frequent Tree Mining
 Ben Torben Nielsen (UvT) Dendritic morphologies: function shapes structure

2009
 Rasa Jurgelenaite (RUN) Symmetric Causal Independence Models
 Willem Robert van Hage (VU) Evaluating Ontology-Alignment Techniques
 Hans Stol (UvT) A Framework for Evidence-based Policy Making Using IT
 Josephine Nabukenya (RUN) Improving the Quality of Organisational Policy Making using
Collaboration Engineering

 Sietse Overbeek (RUN) Bridging Supply and Demand for Knowledge Intensive Tasks—Based
on Knowledge, Cognition, and Quality

 Muhammad Subianto (UU) Understanding Classi�cation
 Ronald Poppe (UT) Discriminative Vision-Based Recovery and Recognition of Human Motion
 Volker Nannen (VU) Evolutionary Agent-Based Policy Analysis in Dynamic Environments
 Benjamin Kanagwa (RUN) Design, Discovery and Construction of Service-oriented Systems
 Jan Wielemaker (UVA) Logic programming for knowledge-intensive interactive applications
 Alexander Boer (UVA) Legal ¿eory, Sources of Law & the Semantic Web
 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin) Operating Guidelines for Services
 Steven de Jong (UM) Fairness in Multi-Agent Systems
 Maksym Korotkiy (VU) From ontology-enabled services to service-enabled ontologies (making

ontologies work in e-science with ONTO-SOA)
 Rinke Hoekstra (UVA) Ontology Representation—Design Patterns and Ontologies that Make

Sense
 Fritz Reul (UvT) New Architectures in Computer Chess
 Laurens van der Maaten (UvT) Feature Extraction from Visual Data
 Fabian Gro�en (CWI) Armada, An Evolving Database System
 Valentin Robu (CWI)Modeling Preferences, Strategic Reasoning and Collaboration in

Agent-Mediated Electronic Markets
 Bob van der Vecht (UU) Adjustable Autonomy: Controling In�uences on Decision Making
 Stijn Vanderlooy (UM) Ranking and Reliable Classi�cation
 Pavel Serdyukov (UT) Search For Expertise: Going beyond direct evidence
 Peter Hofgesang (VU)Modelling Web Usage in a Changing Environment
 Annerieke Heuvelink (VUA) Cognitive Models for Training Simulations
 Alex van Ballegooij (CWI) "RAM: Array Database Management through Relational Mapping"
 Fernando Koch (UU) An Agent-Based Model for the Development of Intelligent Mobile Services
 Christian Glahn (OU) Contextual Support of social Engagement and Re�ection on the Web
 Sander Evers (UT) Sensor Data Management with Probabilistic Models
 Stanislav Pokraev (UT)Model-Driven Semantic Integration of Service-Oriented Applications
 Marcin Zukowski (CWI) Balancing vectorized query execution with bandwidth-optimized

storage
 So�ya Katrenko (UVA) A Closer Look at Learning Relations from Text
 Rik Farenhorst (VU) and Remco de Boer (VU) Architectural Knowledge Management:

Supporting Architects and Auditors
 Khiet Truong (UT) How Does Real A�ect A�ect A�ect Recognition In Speech?

139

 Inge van de Weerd (UU) Advancing in So ware Product Management: An Incremental
Method Engineering Approach

 Wouter Koelewijn (UL) Privacy en Politiegegevens; Over geautomatiseerde normatieve
informatie-uitwisseling

 Marco Kalz (OUN) Placement Support for Learners in Learning Networks
 Hendrik Drachsler (OUN) Navigation Support for Learners in Informal Learning Networks
 Riina Vuorikari (OU) Tags and self-organisation: a metadata ecology for learning resources in

a multilingual context
 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin) Service Substitution—A Behavioral

Approach Based on Petri Nets
 Stephan Raaijmakers (UvT)Multinomial Language Learning: Investigations into the Geometry

of Language
 Igor Berezhnyy (UvT) Digital Analysis of Paintings
 Toine Bogers (UvT) Recommender Systems for Social Bookmarking
 Virginia Nunes Leal Franqueira (UT) Finding Multi-step Attacks in Computer Networks using

Heuristic Search and Mobile Ambients
 Roberto Santana Tapia (UT) Assessing Business-IT Alignment in Networked Organizations
 Jilles Vreeken (UU)Making Pattern Mining Useful
 Loredana Afanasiev (UvA) Querying XML: Benchmarks and Recursion

2010
 Matthijs van Leeuwen (UU) Patterns that Matter
 Ingo Wassink (UT)Work �ows in Life Science
 Joost Geurts (CWI) A Document Engineering Model and Processing Framework for
Multimedia documents

 Olga Kulyk (UT) Do You Know What I Know? Situational Awareness of Co-located Teams in
Multidisplay Environments

 Claudia Hau� (UT) Predicting the E�ectiveness of Queries and Retrieval Systems
 Sander Bakkes (UvT) Rapid Adaptation of Video Game AI
 Wim Fikkert (UT) Gesture interaction at a Distance
 Krzysztof Siewicz (UL) Towards an Improved Regulatory Framework of Free So ware.
Protecting user freedoms in a world of so ware communities and eGovernments

 Hugo Kielman (UL) A Politiele gegevensverwerking en Privacy, Naar een e�ectieve
waarborging

 Rebecca Ong (UL)Mobile Communication and Protection of Children
 Adriaan Ter Mors (TUD)¿e world according to MARP: Multi-Agent Route Planning
 Susan van den Braak (UU) Sensemaking so ware for crime analysis
 Gianluigi Folino (RUN) High Performance Data Mining using Bio-inspired techniques
 Sander van Splunter (VU) Automated Web Service Recon�guration
 Lianne Bodensta� (UT)Managing Dependency Relations in Inter-Organizational Models
 Sicco Verwer (TUD) E�cient Identi�cation of Timed Automata, theory and practice
 Spyros Kotoulas (VU) Scalable Discovery of Networked Resources: Algorithms, Infrastructure,

Applications
 Charlotte Gerritsen (VU) Caught in the Act: Investigating Crime by Agent-Based Simulation
 Henriette Cramer (UvA) People’s Responses to Autonomous and Adaptive Systems
 Ivo Swartjes (UT)Whose Story Is It Anyway? How Improv Informs Agency and Authorship of

Emergent Narrative
 Harold van Heerde (UT) Privacy-aware data management by means of data degradation
 Michiel Hildebrand (CWI) End-user Support for Access to

Heterogeneous Linked Data
 Bas Steunebrink (UU)¿e Logical Structure of Emotions
 Dmytro Tykhonov Designing Generic and E�cient Negotiation Strategies
 Zul�qar Ali Memon (VU)Modelling Human-Awareness for Ambient Agents: A Human

Mindreading Perspective
 Ying Zhang (CWI) XRPC: E�cient Distributed Query Processing on Heterogeneous XQuery

Engines
 Marten Voulon (UL) Automatisch contracteren
 Arne Koopman (UU) Characteristic Relational Patterns

140 SIKS dissertation series

 Stratos Idreos (CWI) Database Cracking: Towards Auto-tuning Database Kernels
 Marieke van Erp (UvT) Accessing Natural History—Discoveries in data cleaning, structuring,

and retrieval
 Victor de Boer (UVA) Ontology Enrichment from Heterogeneous Sources on the Web
 Marcel Hiel (UvT) An Adaptive Service Oriented Architecture: Automatically solving

Interoperability Problems
 Robin Aly (UT)Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval
 Teduh Dirgahayu (UT) Interaction Design in Service Compositions
 Dolf Trieschnigg (UT) Proof of Concept: Concept-based Biomedical Information Retrieval
 Jose Janssen (OU) Paving the Way for Lifelong Learning; Facilitating competence development

through a learning path speci�cation
 Niels Lohmann (TUE) Correctness of services and their composition
 Dirk Fahland (TUE) From Scenarios to components
 Ghazanfar Farooq Siddiqui (VU) Integrative modeling of emotions in virtual agents
 Mark van Assem (VU) Converting and Integrating Vocabularies for the Semantic Web
 Guillaume Chaslot (UM)Monte-Carlo Tree Search
 Sybren de Kinderen (VU) Needs-driven service bundling in a multi-supplier setting—the

computational e3-service approach
 Peter van Kranenburg (UU) A Computational Approach to Content-Based Retrieval of Folk

Song Melodies
 Pieter Bellekens (TUE) An Approach towards Context-sensitive and User-adapted Access to

Heterogeneous Data Sources, Illustrated in the Television Domain
 Vasilios Andrikopoulos (UvT) A theory and model for the evolution of so ware services
 Vincent Pijpers (VU) e3alignment: Exploring Inter-Organizational Business-ICT Alignment
 Chen Li (UT)Mining Process Model Variants: Challenges, Techniques, Examples
 Withdrawn
 Jahn-Takeshi Saito (UM) Solving di�cult game positions
 Bouke Huurnink (UVA) Search in Audiovisual Broadcast Archives
 Alia Khairia Amin (CWI) Understanding and supporting information seeking tasks in multiple

sources
 Peter-Paul van Maanen (VU) Adaptive Support for Human-Computer Teams: Exploring the

Use of Cognitive Models of Trust and Attention
 Edgar Meij (UVA) Combining Concepts and Language Models for Information Access

2011
 Botond Cseke (RUN) Variational Algorithms for Bayesian Inference in Latent Gaussian Models
 Nick Tinnemeier (UU) Organizing Agent Organizations. Syntax and Operational Semantics of
an Organization-Oriented Programming Language

 Jan Martijn van der Werf (TUE) Compositional Design and Veri�cation of Component-Based
Information Systems

 Hado van Hasselt (UU) Insights in Reinforcement Learning; Formal analysis and empirical
evaluation of temporal-di�erence learning algorithms

 Base van der Raadt (VU) Enterprise Architecture Coming of Age—Increasing the Performance
of an Emerging Discipline.

 Yiwen Wang (TUE) Semantically-Enhanced Recommendations in Cultural Heritage
 Yujia Cao (UT)Multimodal Information Presentation for High Load Human Computer
Interaction

 Nieske Vergunst (UU) BDI-based Generation of Robust Task-Oriented Dialogues
 Tim de Jong (OU) Contextualised Mobile Media for Learning
 Bart Bogaert (UvT) Cloud Content Contention
 Dhaval Vyas (UT) Designing for Awareness: An Experience-focused HCI Perspective
 Carmen Bratosin (TUE) Grid Architecture for Distributed Process Mining
 Xiaoyu Mao (UvT) Airport under Control. Multiagent Scheduling for Airport Ground Handling
 Milan Lovric (EUR) Behavioral Finance and Agent-Based Arti�cial Markets
 Marijn Koolen (UvA)¿eMeaning of Structure: the Value of Link Evidence for Information

Retrieval
 Maarten Schadd (UM) Selective Search in Games of Di�erent Complexity
 Jiyin He (UVA) Exploring Topic Structure: Coherence, Diversity and Relatedness

141

 Mark Ponsen (UM) Strategic Decision-Making in complex games
 Ellen Rusman (OU)¿eMind ’ s Eye on Personal Pro�les
 Qing Gu (VU) Guiding service-oriented so ware engineering—A view-based approach
 Linda Terlouw (TUD)Modularization and Speci�cation of Service-Oriented Systems
 Junte Zhang (UVA) System Evaluation of Archival Description and Access
 Wouter Weerkamp (UVA) Finding People and their Utterances in Social Media
 Herwin van Welbergen (UT) Behavior Generation for Interpersonal Coordination with Virtual

Humans On Specifying, Scheduling and Realizing Multimodal Virtual Human Behavior
 Syed Waqar ul Qounain Ja�ry (VU)) Analysis and Validation of Models for Trust Dynamics
 Matthijs Aart Pontier (VU) Virtual Agents for Human Communication—Emotion Regulation

and Involvement-Distance Trade-O�s in Embodied Conversational Agents and Robots
 Aniel Bhulai (VU) Dynamic website optimization through autonomous management of design

patterns
 Rianne Kaptein (UVA) E�ective Focused Retrieval by Exploiting Query Context and Document

Structure
 Faisal Kamiran (TUE) Discrimination-aware Classi�cation
 Egon van den Broek (UT) A�ective Signal Processing (ASP): Unraveling the mystery of

emotions
 Ludo Waltman (EUR) Computational and Game-¿eoretic Approaches for Modeling Bounded

Rationality
 Nees-Jan van Eck (EUR)Methodological Advances in Bibliometric Mapping of Science
 Tom van der Weide (UU) Arguing to Motivate Decisions
 Paolo Turrini (UU) Strategic Reasoning in Interdependence: Logical and Game-theoretical

Investigations
 Maaike Harbers (UU) Explaining Agent Behavior in Virtual Training
 Erik van der Spek (UU) Experiments in serious game design: a cognitive approach
 Adriana Burlutiu (RUN)Machine Learning for Pairwise Data, Applications for Preference

Learning and Supervised Network Inference
 Nyree Lemmens (UM) Bee-inspired Distributed Optimization
 Joost Westra (UU) Organizing Adaptation using Agents in Serious Games
 Viktor Clerc (VU) Architectural Knowledge Management in Global So ware Development
 Luan Ibraimi (UT) Cryptographically Enforced Distributed Data Access Control
 Michal Sindlar (UU) Explaining Behavior through Mental State Attribution
 Henk van der Schuur (UU) Process Improvement through So ware Operation Knowledge
 Boris Reuderink (UT) Robust Brain-Computer Interfaces
 Herman Stehouwer (UvT) Statistical Language Models for Alternative Sequence Selection
 Beibei Hu (TUD) Towards Contextualized Information Delivery: A Rule-based Architecture for

the Domain of Mobile Police Work
 Azizi Bin Ab Aziz (VU) Exploring Computational Models for Intelligent Support of Persons

with Depression
 Mark Ter Maat (UT) Response Selection and Turn-taking for a Sensitive Arti�cial Listening

Agent
 Andreea Niculescu (UT) Conversational interfaces for task-oriented spoken dialogues: design

aspects in�uencing interaction quality

2012
 Terry Kakeeto (UvT) Relationship Marketing for SMEs in Uganda
 Muhammad Umair (VU) Adaptivity, emotion, and Rationality in Human and Ambient Agent
Models

 Adam Vanya (VU) Supporting Architecture Evolution by Mining So ware Repositories
 Jurriaan Souer (UU) Development of Content Management System-based Web Applications
 Marijn Plomp (UU)Maturing Interorganisational Information Systems
 Wolfgang Reinhardt (OU) Awareness Support for Knowledge Workers in Research Networks
 Rianne van Lambalgen (VU)When the Going Gets Tough: Exploring Agent-based Models of
Human Performance under Demanding Conditions

 Gerben de Vries (UVA) Kernel Methods for Vessel Trajectories
 Ricardo Neisse (UT) Trust and Privacy Management Support for Context-Aware Service
Platforms

142 SIKS dissertation series

 David Smits (TUE) Towards a Generic Distributed Adaptive Hypermedia Environment
 J.C.B. Rantham Prabhakara (TUE) Process Mining in the Large: Preprocessing, Discovery, and

Diagnostics
 Kees van der Sluijs (TUE)Model Driven Design and Data Integration in Semantic Web

Information Systems
 Suleman Shahid (UvT) Fun and Face: Exploring non-verbal expressions of emotion during

playful interactions
 Evgeny Knutov (TUE) Generic Adaptation Framework for Unifying Adaptive Web-based

Systems
 Natalie van der Wal (VU) Social Agents. Agent-Based Modelling of Integrated Internal and

Social Dynamics of Cognitive and A�ective Processes.
 Fiemke Both (VU) Helping people by understanding them—Ambient Agents supporting task

execution and depression treatment
 Amal Elgammal (UvT) Towards a Comprehensive Framework for Business Process Compliance
 Eltjo Poort (VU) Improving Solution Architecting Practices
 Helen Schonenberg (TUE)What’s Next? Operational Support for Business Process Execution
 Ali Bahramisharif (RUN) Covert Visual Spatial Attention, a Robust Paradigm for

Brain-Computer Interfacing
 Roberto Cornacchia (TUD) Querying Sparse Matrices for Information Retrieval
 ¿ijs Vis (UvT) Intelligence, politie en veiligheidsdienst: verenigbare grootheden?
 Christian Muehl (UT) Toward A�ective Brain-Computer Interfaces: Exploring the

Neurophysiology of A�ect during Human Media Interaction
 Laurens van der Wer� (UT) Evaluation of Noisy Transcripts for Spoken Document Retrieval
 Silja Eckartz (UT)Managing the Business Case Development in Inter-Organizational IT

Projects: A Methodology and its Application
 Emile de Maat (UVA)Making Sense of Legal Text
 Hayrettin Gurkok (UT)Mind the Sheep! User Experience Evaluation & Brain-Computer

Interface Games
 Nancy Pascall (UvT) Engendering Technology Empowering Women
 Almer Tigelaar (UT) Peer-to-Peer Information Retrieval
 Alina Pommeranz (TUD) Designing Human-Centered Systems for Re�ective Decision Making
 Emily Bagarukayo (RUN) A Learning by Construction Approach for Higher Order Cognitive

Skills Improvement, Building Capacity and Infrastructure
 Wietske Visser (TUD) Qualitative multi-criteria preference representation and reasoning
 Rory Sie (OUN) Coalitions in Cooperation Networks (COCOON)
 Pavol Jancura (RUN) Evolutionary analysis in PPI networks and applications
 Evert Haasdijk (VU) Never Too Old To Learn—On-line Evolution of Controllers in Swarm-

and Modular Robotics
 Denis Ssebugwawo (RUN) Analysis and Evaluation of Collaborative Modeling Processes
 Agnes Nakakawa (RUN) A Collaboration Process for Enterprise Architecture Creation
 Selmar Smit (VU) Parameter Tuning and Scienti�c Testing in Evolutionary Algorithms
 Hassan Fatemi (UT) Risk-aware design of value and coordination networks
 Agus Gunawan (UvT) Information Access for SMEs in Indonesia
 Sebastian Kelle (OU) Game Design Patterns for Learning
 Dominique Verpoorten (OU) Re�ection Ampli�ers in self-regulated Learning
 Withdrawn
 Anna Tordai (VU) On Combining Alignment Techniques
 Benedikt Kratz (UvT) A Model and Language for Business-aware Transactions
 Simon Carter (UVA) Exploration and Exploitation of Multilingual Data for Statistical Machine

Translation
 Manos Tsagkias (UVA)Mining Social Media: Tracking Content and Predicting Behavior
 Jorn Bakker (TUE) Handling Abrupt Changes in Evolving Time-series Data
 Michael Kaisers (UM) Learning against Learning—Evolutionary dynamics of reinforcement

learning algorithms in strategic interactions
 Steven van Kervel (TUD) Ontologogy driven Enterprise Information Systems Engineering
 Jeroen de Jong (TUD) Heuristics in Dynamic Sceduling; a practical framework with a case

study in elevator dispatching

143

2013
 Viorel Milea (EUR) News Analytics for Financial Decision Support
 Erietta Liarou (CWI)MonetDB/DataCell: Leveraging the Column-store Database Technology
for E�cient and Scalable Stream Processing

 Szymon Klarman (VU) Reasoning with Contexts in Description Logics
 Chetan Yadati (TUD) Coordinating autonomous planning and scheduling
 Dulce Pumareja (UT) Groupware Requirements Evolutions Patterns
 Romulo Goncalves (CWI)¿e Data Cyclotron: Juggling Data and Queries for a Data
Warehouse Audience

 Giel van Lankveld (UvT) Quantifying Individual Player Di�erences
 Robbert-Jan Merk (VU)Making enemies: cognitive modeling for opponent agents in �ghter
pilot simulators

 Fabio Gori (RUN)Metagenomic Data Analysis: Computational Methods and Applications
 Jeewanie Jayasinghe Arachchige (UvT) A Uni�ed Modeling Framework for Service Design.
 Evangelos Pournaras (TUD)Multi-level Recon�gurable Self-organization in Overlay Services
 Marian Razavian (VU) Knowledge-driven Migration to Services
 Mohammad Sa�ri (UT) Service Tailoring: User-centric creation of integrated IT-based

homecare services to support independent living of elderly
 Jafar Tanha (UVA) Ensemble Approaches to Semi-Supervised Learning Learning
 Daniel Hennes (UM)Multiagent Learning—Dynamic Games and Applications
 Eric Kok (UU) Exploring the practical bene�ts of argumentation in multi-agent deliberation
 Koen Kok (VU)¿e PowerMatcher: Smart Coordination for the Smart Electricity Grid
 Jeroen Janssens (UvT) Outlier Selection and One-Class Classi�cation
 Renze Steenhuizen (TUD) Coordinated Multi-Agent Planning and Scheduling
 Katja Hofmann (UvA) Fast and Reliable Online Learning to Rank for Information Retrieval
 Sander Wubben (UvT) Text-to-text generation by monolingual machine translation
 Tom Claassen (RUN) Causal Discovery and Logic
 Patricio de Alencar Silva (UvT) Value Activity Monitoring
 Haitham Bou Ammar (UM) Automated Transfer in Reinforcement Learning
 Agnieszka Anna Latoszek-Berendsen (UM) Intention-based Decision Support. A new way of

representing and implementing clinical guidelines in a Decision Support System
 Alireza Zarghami (UT) Architectural Support for Dynamic Homecare Service Provisioning
 Mohammad Huq (UT) Inference-based Framework Managing Data Provenance
 Frans van der Sluis (UT)When Complexity becomes Interesting: An Inquiry into the

Information eXperience
 Iwan de Kok (UT) Listening Heads
 Joyce Nakatumba (TUE) Resource-Aware Business Process Management: Analysis and Support
 Dinh Khoa Nguyen (UvT) Blueprint Model and Language for Engineering Cloud Applications
 Kamakshi Rajagopal (OUN) Networking For Learning; ¿e role of Networking in a Lifelong

Learner’s Professional Development
 Qi Gao (TUD) User Modeling and Personalization in the Microblogging Sphere
 Kien Tjin-Kam-Jet (UT) Distributed Deep Web Search
 Abdallah El Ali (UvA)Minimal Mobile Human Computer Interaction
 ¿an Lam Hoang (TUe) Pattern Mining in Data Streams
 Dirk Börner (OUN) Ambient Learning Displays
 Eelco den Heijer (VU) Autonomous Evolutionary Art
 Joop de Jong (TUD) A Method for Enterprise Ontology based Design of Enterprise Information

Systems
 Pim Nijssen (UM)Monte-Carlo Tree Search for Multi-Player Games
 Jochem Liem (UVA) Supporting the Conceptual Modelling of Dynamic Systems: A Knowledge

Engineering Perspective on Qualitative Reasoning
 Léon Planken (TUD) Algorithms for Simple Temporal Reasoning
 Marc Bron (UVA) Exploration and Contextualization through Interaction and Concepts

2014
 Nicola Barile (UU) Studies in Learning Monotone Models from Data
 Fiona Tuliyano (RUN) Combining System Dynamics with a Domain Modeling Method

144 SIKS dissertation series

 Sergio Raul Duarte Torres (UT) Information Retrieval for Children: Search Behavior and
Solutions

 Hanna Jochmann-Mannak (UT)Websites for children: search strategies and interface
design—¿ree studies on children’s search performance and evaluation

 Jurriaan van Reijsen (UU) Knowledge Perspectives on Advancing Dynamic Capability
 Damian Tamburri (VU) Supporting Networked So ware Development
 Arya Adriansyah (TUE) Aligning Observed and Modeled Behavior
 Samur Araujo (TUD) Data Integration over Distributed and Heterogeneous Data Endpoints
 Philip Jackson (UvT) Toward Human-Level Arti�cial Intelligence: Representation and
Computation of Meaning in Natural Language

 Ivan Salvador Razo Zapata (VU) Service Value Networks
 Janneke van der Zwaan (TUD) An Empathic Virtual Buddy for Social Support
 Willem van Willigen (VU) Look Ma, No Hands: Aspects of Autonomous Vehicle Control
 Arlette van Wissen (VU) Agent-Based Support for Behavior Change: Models and Applications

in Health and Safety Domains
 Yangyang Shi (TUD) Language Models With Meta-information
 Natalya Mogles (VU) Agent-Based Analysis and Support of Human Functioning in Complex

Socio-Technical Systems: Applications in Safety and Healthcare
 Krystyna Milian (VU) Supporting trial recruitment and design by automatically interpreting

eligibility criteria
 Kathrin Dentler (VU) Computing healthcare quality indicators automatically: Secondary Use

of Patient Data and Semantic Interoperability
 Mattijs Ghijsen (VU)Methods and Models for the Design and Study of Dynamic Agent

Organizations
 Vinicius Ramos (TUE) Adaptive Hypermedia Courses: Qualitative and Quantitative

Evaluation and Tool Support
 Mena Habib (UT) Named Entity Extraction and Disambiguation for Informal Text: ¿e

Missing Link
 Kassidy Clark (TUD) Negotiation and Monitoring in Open Environments
 Marieke Peeters (UU) Personalized Educational Games—Developing agent-supported

scenario-based training
 Ele herios Sidirourgos (UvA/CWI) Space E�cient Indexes for the Big Data Era
 Davide Ceolin (VU) Trusting Semi-structured Web Data
 Martijn Lappenschaar (RUN) New network models for the analysis of disease interaction
 Tim Baarslag (TUD)What to Bid and When to Stop
 Rui Jorge Almeida (EUR) Conditional Density Models Integrating Fuzzy and Probabilistic

Representations of Uncertainty
 Anna Chmielowiec (VU) Decentralized k-Clique Matching
 Jaap Kabbedijk (UU) Variability in Multi-Tenant Enterprise So ware
 Peter de Cock (UvT) Anticipating Criminal Behaviour
 Leo van Moergestel (UU) Agent Technology in Agile Multiparallel Manufacturing and Product

Support
 Naser Ayat (UvA) On Entity Resolution in Probabilistic Data
 Tesfa Tegegne (RUN) Service Discovery in eHealth
 Christina Manteli (VU)¿e E�ect of Governance in Global So ware Development: Analyzing

Transactive Memory Systems.
 Joost van Ooijen (UU) Cognitive Agents in Virtual Worlds: A Middleware Design Approach
 Joos Buijs (TUE) Flexible Evolutionary Algorithms for Mining Structured Process Models
 Maral Dadvar (UT) Experts and Machines United Against Cyberbullying
 Danny Plass-Oude Bos (UT)Making brain-computer interfaces better: improving usability

through post-processing.
 Jasmina Maric (UvT)Web Communities, Immigration, and Social Capital
 Walter Omona (RUN) A Framework for Knowledge Management Using ICT in Higher

Education
 Frederic Hogenboom (EUR) Automated Detection of Financial Events in News Text
 Carsten Eijckhof (CWI/TUD) Contextual Multidimensional Relevance Models
 Kevin Vlaanderen (UU) Supporting Process Improvement using Method Increments

145

 Paulien Meesters (UvT) Intelligent Blauw. Met als ondertitel: Intelligence-gestuurde politiezorg
in gebiedsgebonden eenheden.

 Birgit Schmitz (OUN)Mobile Games for Learning: A Pattern-Based Approach
 Ke Tao (TUD) Social Web Data Analytics: Relevance, Redundancy, Diversity
 Shangsong Liang (UVA) Fusion and Diversi�cation in Information Retrieval

2015
 Niels Netten (UvA)Machine Learning for Relevance of Information in Crisis Response
 Faiza Bukhsh (UvT) Smart auditing: Innovative Compliance Checking in Customs Controls
 Twan van Laarhoven (RUN)Machine learning for network data
 Howard Spoelstra (OUN) Collaborations in Open Learning Environments
 Christoph Bösch (UT) Cryptographically Enforced Search Pattern Hiding
 Farideh Heidari (TUD) Business Process Quality Computation—Computing Non-Functional
Requirements to Improve Business Processes

 Maria-Hendrike Peetz (UvA) Time-Aware Online Reputation Analysis
 Jie Jiang (TUD) Organizational Compliance: An agent-based model for designing and
evaluating organizational interactions

 Randy Klaassen (UT) HCI Perspectives on Behavior Change Support Systems
 Henry Hermans (OUN) OpenU: design of an integrated system to support lifelong learning
 Yongming Luo (TUE) Designing algorithms for big graph datasets: A study of computing

bisimulation and joins
 Julie M. Birkholz (VU)Modi Operandi of Social Network Dynamics: ¿e E�ect of Context on

Scienti�c Collaboration Networks
 Giuseppe Procaccianti (VU) Energy-E�cient So ware
 Bart van Straalen (UT) A cognitive approach to modeling bad news conversations
 Klaas Andries de Graaf (VU) Ontology-based So ware Architecture Documentation
 Changyun Wei (UT) Cognitive Coordination for Cooperative Multi-Robot Teamwork
 André van Clee� (UT) Physical and Digital Security Mechanisms: Properties, Combinations

and Trade-o�s
 Holger Pirk (CWI)Waste Not, Want Not!—Managing Relational Data in Asymmetric

Memories
 Bernardo Tabuenca (OUN) Ubiquitous Technology for Lifelong Learners
 Loïs Vanhée (UU) Using Culture and Values to Support Flexible Coordination
 Sibren Fetter (OUN) Using Peer-Support to Expand and Stabilize Online Learning
 Zhemin Zhu (UT) Co-occurrence Rate Networks
 Luit Gazendam (VU) Cataloguer Support in Cultural Heritage
 Richard Berendsen (UVA) Finding People, Papers, and Posts: Vertical Search Algorithms and

Evaluation
 Steven Woudenberg (UU) Bayesian Tools for Early Disease Detection
 Alexander Hogenboom (EUR) Sentiment Analysis of Text Guided by Semantics and Structure
 Sándor Héman (CWI) Updating compressed column-stores
 Janet Bagorogoza (TiU) Knowledge Management and High Performance; ¿e Uganda

Financial Institutions Model for HPO
 Hendrik Baier (UM)Monte-Carlo Tree Search Enhancements for One-Player and Two-Player

Domains
 Kiavash Bahreini (OUN) Real-time Multimodal Emotion Recognition in E-Learning
 Yakup Koç (TUD) On Robustness of Power Grids
 Jerome Gard (UL) Corporate Venture Management in SMEs
 Frederik Schadd (UM) Ontology Mapping with Auxiliary Resources
 Victor de Graa� (UT) Geosocial Recommender Systems
 Junchao Xu (TUD) A�ective Body Language of Humanoid Robots: Perception and E�ects in

Human Robot Interaction

2016
 Syed Saiden Abbas (RUN) Recognition of Shapes by Humans and Machines
 Michiel Christiaan Meulendijk (UU) Optimizing medication reviews through decision support:
prescribing a better pill to swallow

 Maya Sappelli (RUN) Knowledge Work in Context: User Centered Knowledge Worker Support

146 SIKS dissertation series

 Laurens Rietveld (VU) Publishing and Consuming Linked Data
 Evgeny Sherkhonov (UVA) Expanded Acyclic Queries: Containment and an Application in
Explaining Missing Answers

 Michel Wilson (TUD) Robust scheduling in an uncertain environment

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	A bit of historical context
	Railway organizations
	Research program at NedTrain
	Research goals
	Outline and contributions

	Existing work
	Resource-constrained project scheduling
	Mixed Integer Linear Programming solutions
	Branch and bound methods
	Schedule Generation Schemes
	Precedence constraint posting
	Simple temporal networks
	Multi-agent scheduling
	Conclusions and research questions

	Measuring flexibility
	The need for flexibility
	Flexibility of an stn
	Applications
	Conclusion and discussion

	Distributing flexibility to improve robustness
	Motivation
	Methods for distributing flexibility
	Experiments
	Conclusion and discussion

	Sequential flexibility
	Motivation
	Constraint posting
	Task grouping
	Execution of grouped schedules
	Experiments
	Conclusion and discussion

	Discussion
	Research questions
	Research goals and further research

	Bibliography
	Summary in English
	Summary in Dutch
	Curriculum vitæ
	SIKS dissertation series

