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In this study, a novel experimental approach was devised to investigate shear dominant and combined opening-
shear planar delamination behaviours in composite laminates subjected to quasi-static out-of-plane loading.
The patterns of planar delamination growth were depicted through different inspection techniques, including
digital image correlation (DIC), C-scan, and microscopic observation. The artificially embedded delamination
propagated in the direction parallel to the fibre orientation of the layer above the mid interface, but migrated
to an upper interface in the direction transverse to the directing ply. A continuous stiffening process was
recognized with increasing delamination area. Furthermore, a numerical analysis based on virtual crack closure

technique (VCCT) indicated that the local mode II was dominant for delamination growth, while the local mode
III triggered delamination migration.

1. Introduction

As one of the most typical damage types in CFRP laminates, de-
lamination growth causes significant strength and stiffness degradation,
thus threatening the structural integrity [1,2]. Standard evaluation
methods have been successfully developed to characterize the delam-
ination behaviour of different fracture modes based on linear-elastic
fracture mechanics [3-5]. These experimental methods, which can be
referred to as one-dimensional (1-D) tests where delamination is forced
to propagate in one direction, are prone to quantify the fracture resis-
tance of unidirectional (UD) laminates since the damage mode is sim-
ple. However, the findings derived from the application of standardized
one-dimensional methodologies lack generalizability for characterizing
planar delamination behaviour in actual structural systems, primarily
attributable to the simplification of test configurations and the omission
of considerations regarding the intricate nature of multidirectional
delamination propagation.

In addition to the standardized tests, research efforts have been
made to investigate the effects of stacking sequence [6-9] and loading
conditions [10,11] on 1-D delamination behaviour. A characteristic
damage mechanism of multi-directional (MD) composite laminates that
is absent in UD laminates is delamination migration. The migration be-
haviours of 0°//6 interfaces under different loading conditions (mode
I [7,12-16], mode II [17,18], and mixed-mode [8,19-21]) have been
studied experimentally and numerically. Besides migration, fibre bridg-
ing was associated with tortuous delamination growth, causing an
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increasing R-curve behaviour [9,18,21-23]. Although these studies pro-
vided insights into the migration mechanism, they were still based on
1-D delamination tests. Delamination growth was forced to propagate
across the fibres at an angle of the ply orientation in MD laminates,
triggering different degree of ply splits and fibre bridging along the
delamination path [7]. This might not apply to planar delamination,
where the delamination direction tends to align with the directing
ply [6,24,25].

A semi-complex configuration was proposed to investigate planar
delamination behaviour in composite panels with embedded defects.
Among those, buckle-driven delamination behaviour of CFRP panels
has received considerable attention during the past few decades [25-
31]. The buckling-induced delamination growth, which was transverse
to the loading direction, was found to have close interaction with
matrix cracking and ply splits, causing local buckling and thus af-
fecting the global buckling behaviour. The fibre orientation at the
major delamination interface had a significant effect on the direction
of delamination growth and migration behaviour [25,32].

Since it was difficult to acquire the fracture parameters directly
through experiment, qualitative and quantitative analysis of the planar
delamination behaviour is limited. Therefore, analytical and numerical
methods have been proposed to investigate the strain/stress state and
local fracture mode at the delamination front.

Kollner [30,31] developed an analytical model to predict the critical
strain for buckle-driven delamination growth based on the estimated
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local energy release rate (ERR). Although the prediction matched the
experimental results, it was still insufficient to characterize progressive
matrix cracking and delamination migration associated with delam-
ination growth. To investigate planar delamination behaviour under
mode I loading condition, an experimental and numerical study was
performed by Cameselle-Molares et al. [33,34]. According to the nu-
merical investigation based on cohesive zone model (CZM), a 50%
increase in the total strain energy release rate (SERR), due to the effects
of in-plane stretching and progressive fibre bridging, was achieved in
comparison with that from double cantilever beam (DCB) tests [34].
Another experimental investigation of 2-D mode II delamination in
GFRP composite laminates has shown a longer fracture process zone
(FPZ) in 2-D delamination compared to 1-D [35]. Three stages in
the mode II planar delamination growth were recognized, including
delamination initiation, slow propagation, and rapid propagation. An
early study of Chatterjee’s [36] used a three-point bending test to
investigate shear dominant planar delamination behaviour of CFRP
panels with two elliptical pre-cracks. The analysis of the local SERR
distribution provided insights into the mechanisms of delamination
growth and migration. Efforts have also been made to explore planar
delamination behaviour in CFRP laminate panels under quasi-static and
fatigue out-of-plane indentation [37]. However, no detailed interpre-
tation of the observed planar delamination behaviour was provided
since the delamination growth was insufficient. There is still a lack
of a qualitative and quantitative evaluation method for characterizing
planar delamination behaviour of composite laminates.

Therefore, in this study, a novel experiment is proposed in order
to characterize planar delamination behaviour of CFRP composite lam-
inates under out-of-plane indentation. Two specimen configurations
are designed to examine planar delamination behaviour under mode
II and mixed-mode I/II loading conditions. To explore the effect of
different interfacial properties on the delamination behaviours, 0°//0°
and 0°//90° interfaces are considered. The pattern of delamination
growth was captured through 3D DIC analysis , ultrasonic scanning
(C-scan) , and cross sectional microscopy. In addition, initiation of de-
lamination growth and the corresponding critical load were determined
using an acoustic emission (AE) system , which provides a reference
critical displacement value for the initiation point of delamination
growth. Furthermore, a numerical analysis is conducted employing
a combined approach of the virtual crack closure technique (VCCT)
and 3D Hashin damage criterion. The numerical investigation aims
to understand the driving force governing both planar delamination
growth and delamination migration at the initiation point, rather than
simulating the progressive damage process. This research provides a
comprehensive analysis of the underlying mechanisms that control
planar delamination, thereby explaining the factors that contribute
to in-plane growth and migration in order to advance the assess-
ment methodologies for evaluating damage states and propagation
behaviours in CFRP composite laminates.

2. Experimental method
2.1. Material and specimen

The material used for manufacturing the specimens was the uni-
directional carbon fibre prepreg, M30SC-150-DT120-34F, provided by
Delta Tech Italy. The DT120 is a high toughened system suitable for
structural components of high impact performance and energy absorp-
tion requirements. The material properties are provided in Table 1.

Two distinct specimen configurations, named planar central loaded
split (PCLS) and planar central loaded opening (PCLO), were designed
to investigate shear dominant and opening-shear delamination be-
haviours, as illustrated in Fig. 1. For PCLO specimens, a circular hole
of 14 mm diameter was cut from the prepregs prior to curing. A
plastic cylinder with the same diameter as the hole was embedded

Composite Structures 339 (2024) 118137

Table 1

Material properties of M30SC-150-DT120-34F prepreg [38].
Mechanical properties Test method Value
Longitudinal tensile strength, X, (MPa) ASTM D 3039 3010.0

ASTM D 3039 145.0
ASTM D 3039 39.0
ASTM D 3039 6.4
ASTM D 6641 1020.0
ASTM D 6641 133.0
ASTM D 6641 138.0
ASTM D 6641 8.1

Longitudinal tensile modulus, G, ; (GPa)
Transverse tensile strength, Y, Z; (MPa)
Transverse tensile modulus, G,, ;, G337 (GPa)
Longitudinal compression strength, X, (MPa)
Longitudinal compression modulus, G, (GPa)
Transverse compression strength, Y., Z. (MPa)
Transverse compression modulus, G,, ¢, Gs; (GPa)

In-plane shear strength, S,,, S;; (MPa) EN 6031 95.6
In-plane shear modulus, G,,, G;; (GPa) EN 6031 3.38
Inter-laminar shear strength, .S,; (MPa) EN 2563 77.2

Table 2
Specimen configurations, symmetrical laminates are denoted by ¢ and
the PTFE insert is indicated by //.

Specimen label

Stacking sequence

PCLO(0//0) [(0/90/45/ — 45),//(0/90/45/ — 45),]
PCLO(0//90) [(90/0/45/ — 45),//(0/90/45/ — 45),]
PCLS(0//0) [(0/90/45/ — 45),//(0/90/45] — 45),]
PCLS(0//90) [(90/0/45/ — 45),//(0/90/45/ — 45),]

before curing to maintain the shape of the opening. In order to in-
troduce the pre-crack, a single layer of Polytetrafluoroethylene (PTFE)
with 18 mm diameter and 0.016 mm thickness, was embedded at
the middle interface for both types of specimens. The interfaces of
interest are 0°//0° and 0°//90°. Two different quasi-isotropic stack-
ing sequences with 16 plies were used in this research, as described
in Table 2. The upper and lower sub-laminates were balanced and
symmetrical, mitigating undesired deformation due to the coupling of
extension/bending/twisting.

2.2. Experimental setup

The experiment setup is shown in Fig. 2. The specimen was fully
constrained by the clamps with a rubber mat placed at the contact
area at both sides, preventing the specimen from slipping. An indenter
with 12 mm diameter and a slight curvature on the head was used.
Additionally, the same type of rubber mat (with 1.5 mm thickness)
was placed between the indenter and the PCLS specimens to further
distribute the applied loading [35]. Based on a preliminary numerical
assessment of the loading and the size of the fixture, an MTS machine
with 15 kN load cell was chosen. Quasi-static tests were conducted
under displacement control with a loading rate of 0.01 mm/s, with a
data acquisition frequency of 10 Hz.

In order to visualize planar delamination growth, different inspec-
tion methods were integrated in the experimental system as shown in
Fig. 2-(b). 3D digital image correlation (3D DIC) technique was used to
continuously capture the surface information throughout the loading
process (Fig. 2-(c)). According to the recommendations of Correlated
Solutions, Inc., a random speckle pattern was applied at the top surface
of the panel for DIC analysis. Two cameras with a 23 mm focal length
were installed on the top of the crosshead of the MTS test frame.
The speckle images were taken every 5 s. The 3D DIC also provided
measurement of the true out-of-plane displacement (referred to as “de-
flection” in the following text) of the PCLS-R specimens. After testing,
different C-scan devices were used to capture the delaminated area.
First, through-transmission ultrasonic scanning system was used to cap-
ture the entire projected delamination area based on signal attenuation,
establishing reference data for DIC measurements. In order to cap-
ture the delamination depth, pulse-echo ultrasonic scanning facilitated
by the Dolphitech technology (Dolphicam2 platform) was employed.
This method furnished time-of-flight (TOF) images featuring a colour-
coded thickness mapping. Finally, cross-sectional observations were
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also performed with a KEYENCE VK-X3000 laser confocal microscope
to investigate the mechanisms of planar delamination.

An AE system with four sensors attached at the bottom of the spec-
imens was used to detect the initiation of the embedded delamination,
as illustrated in Fig. 2-(d). The AE sensors (Vallen Systeme, VS900-M)
with a high sensitivity over a wide frequency range were used. The
sampling rate for AE recordings was 10 MHz. The AE data was analysed
to determine the critical load and provide reference to the initial state
of delamination initiation for numerical investigation.

2.3. Experimental procedure

For PCLO specimens, two different loading strategies were applied:
single step and multi-step. For single step test, the displacement was
increased monotonously until failure of the specimen. In the multi-
step tests, the displacement was increased to a pre-defined level, after
which the specimen was removed from the fixture and scanned to track
delamination growth. The specimen was then reassembled in the fixture
and loaded to a higher displacement level. Before starting each step,
the specimens were loaded to 20 N to ensure an initial contact. The
initial 20 N force was set to be the zero point in the force-displacement
behaviour. This process was repeated with incremental displacement
levels until failure. For PCLS specimens, only the single step tests
were conducted. Additionally, a pre-loading procedure was executed
to induce a separation between the PTFE insert and the sub-laminates,
introducing a proper pre-crack for all specimens.

3. Numerical modelling

In order to provide insights into the mechanisms of planar delami-
nation behaviour, a finite element (FE) model was developed by using
Abaqus, as illustrated in Fig. 1-(d). The virtual crack closure technique
(VCCT) was used to extract the distributions of local SERRs and stress
tensors, enabling qualitative analysis of the local fracture mode. To
prevent shear locking due to bending deformation, 3D linear elements
of 8 nodes with incompatible modes (C3D8I) were used for the upper
and lower sub-laminates parts. The mid interface between the two parts
was bonded by introducing the VCCT contact except for the region of
the PTFE insert. The mesh size is set to 0.45 mm at the delamination
front, and is subsequently increased to 2.5 mm within the central
region to optimize computational efficiency by reducing the number
of elements. Since the main objective of this study does not involve an
exhaustive modelling of the progressive damage process, delamination
growth was not allowed in VGCT by setting G, = 10000 kJ/m?(i =
I,11,111). The local SERRs were calculated based on a one-step VCCT
method which used a fixed coordinate system aligned with the directing
ply [39] to provide an intuitive illustration of the dominant fracture
mode at the initial delamination front.

To simulate the occurrence of possible intra-laminar damage, a
3-D Hashin-type criterion was implemented through an Abaqus user-
subroutine (UMAT) [40,41]. In order to differentiate two types of
intra-laminar damage, the delamination failure criterion was replaced
by a concise failure criterion proposed by Huo [42]. The criterion
suggested that only the shear stress component o5 dictated matrix
cracking along the fibre direction in a shear dominant damage scenario.
In the current study, the effects of the opening stress o3; on delamina-
tion type of failure was not negligible for PCLO specimens. The criterion
was therefore, modified to the following form:

2 2
<@> +<ﬂ> >1, ifoy >0

Zr Si3 'e))
013 .
—>1, if o33 <0
Si3

For the specimen with rubber protection, the rubber mat was mod-
elled using 6-node hybrid elements (C3D6H) with a hyperelastic mate-
rial behaviour. The average mesh size of the rubber part is 0.2 mm. The
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Fig. 3. Force-displacement curves of the specimens subjected to single step loading.
PCLS-R denotes the specimens with rubber protection.

polynomial properties of strain energy potential of the rubber material
were adopted. The material properties of the rubber were numerically
adjusted to fit the hyperelastic behaviour, C;, = 4, Cy; = 0.03, and
Dy, = 0.001 [43]. A friction parameter with a value of 0.3 was set
in the contact properties and assigned to the rubber/indenter and
rubber/specimen interfaces.

4. Results
4.1. Force—displacement behaviour and compliance analysis

The force—displacement curves are shown in Fig. 3. The force was
plotted against both the deflection measured by DIC analysis and the
displacement applied by the MTS machine. According to Fig. 3, the
reaction force increased exponentially as the out-of-plane displacement
increased, revealing a constant stiffening process in all specimens.
The force—deflection curves of PCLO specimens exhibits good concur-
rence with the force-displacement curves, indicating that the deflection
measured by DIC is reliable in terms of representing the true out-
of-plane deformation of the specimens. For PCLS-R(0//90) specimen,
the force—deflection curve also shows good agreement with the force—
displacement curve of PCLS(0//90) without rubber mat. The force—
deflection curves effectively mitigates the influence of the rubber on
the force-displacement response of PCLS-R specimens. To distinguish
between PCLS-R and PCLO specimens, “deflection” is used to denote
true out-of-plane deformation for PCLS-R specimens. The term “dis-
placement” is employed for PCLO specimens, given the equivalence
between deflection and displacement in this type of specimens.

To provide clearer illustration of the stiffening process, the compli-
ance and stiffness variations were calculated and were plotted against
the displacement for PCLO specimens, and the deflection for PCLS-R
specimens. Note that the compliance and stiffness of PCLS-R speci-
mens were calculated based on the deflection of the specimens in-
stead of the applied displacement by MTS machine. As shown in
Fig. 4(a), the compliance of all specimens decreased as the displace-
ment/deflection increased. Initially, the PCLS(0//90) specimen demon-
strates a compliance level similar to that of the PCLO specimens.
However, with increasing loading, a more rapid decrease in the com-
pliance of the PCLS(0//90) specimen is illustrated. By eliminating the
influence of the rubber on the stiffness of the system, the PCLS-R
specimens exhibit an overall higher stiffness in contrast to the PCLO
specimens, while exhibiting a good alignment with the behaviour
of PCLS(0//90) at higher loading level (Fig. 4(b)). The compliance
and stiffness, computed from the displacement data obtained via the
MTS machine, displayed heightened sensitivity to the instant change
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Fig. 6. Force—displacement and compliance curves of PCLO(0//90) specimen subjected to multi-step loadings.

in the force-displacement behaviour. The peaks and drops in the com-
pliance and stiffness curves actually corresponded to surface cracking.
However, delamination growth did not cause significant degradation
in the stiffness. The force continued to increase after the occurrence of
surface cracking.

Similar stiffening process can be observed for PCLO specimens
subjected to multi-step loadings. As shown in Figs. 5(a) and 6(a), the
curves with different colours indicates different loading steps with
different load levels. For single step test of direct failure, the damage
evolution with increasing displacement resulted in a more softened
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force-displacement behaviour (as shown by the dash line). For multi-
step tests, within a lower displacement range, the force-displacement
curve shifted downwards from that of the previous loading step, which

is ascribed to the presence of pre-existing damage within the specimen.
However, as displacement increased, the force-displacement curves
exhibit a notable upward shift compared to the previous loading step.
As illustrated in Figs. 5(b) and 6(b), the small differences in compliance
can be attributed to misalignment of the specimen assembly for differ-
ent loading steps. However, there is no significant degradation in the
overall stiffness of the specimens despite a larger initial delamination
has been formed.

4.2. Planar delamination patterns

Planar delamination patterns of five specimens configurations sub-
jected to the single step loading are shown in Fig. 7, while the delami-
nation patterns of the PCLO specimens subjected to multi-step loading
are shown in Fig. 10. The 3D DIC analysis and the through transmission
C-scan were utilized to capture the projected delamination area, while
the TOF C-scan was capable of capturing delaminations at different
depths. Significant surface cracking along the fibre direction of the top
layer was captured with DIC cameras, and was defined as specimen
failure as it caused rapid decrease in stiffness.

With 3D DIC analysis, the planar delamination process was mon-
itored according to the variation in the surface curvature. Although
the delaminated region was vague with lower deflection, the presented
contour of the surface curvature at the maximum loading corresponded
well with the C-scan results. Through TOF C-scan, the growth of the em-
bedded delamination can be observed by filtering the close-to-surface
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damage. A clear delamination pattern was observed in PCLS-R speci-
mens compared to PCLS(0//90) specimen without rubber protection.
Multiple delaminations occurred at different interfaces in PCLS(0//90)
specimen as shown in different colours in TOF C-scan image. In contrast
to PCLS-R(0//0), larger delamination growth was observed in PCLS-
R(0//90). The embedded delamination growth mainly consisted of
three parts. First, a rectangular shape delamination shown in deep
orange, of which the width was approximately the same as the diameter
of the embedded delamination. Second, the symmetrical semicircle
delamination area which initiated from the boundary of the rectangular
delamination, as shown in light orange. The two parts were actually
positioned at two adjacent interfaces according to the thickness colour
map. The first part was recognized as embedded delamination growth
along the ply orientation above the mid interface, while the second part
represented migrated delamination growth along an adjacent upper ply.
The planar delamination patterns of different initial interfaces were the
same but 90° rotated.

The amount of the initial and migrated delamination growth (mea-
sured as the maximum delamination width at two interfaces), together
with the projected delamination area was measured according to the
DIC and C-scan images, respectively. As shown in Fig. 8, delamination
growth measurements obtained through various inspection methods
exhibit consistent trends, even in the presence of inherent measure-
ment errors in DIC analysis due to the vague delamination boundary.
Although with lower loading level, the delamination growth observed
in PCLO specimens surpassed that of the PCLS specimens. The differ-
ence between DIC and C-scan measurements can be attributed to the
following factors: first, the unclear correlation between the surface cur-
vature and the actual interlaminar delamination; second, the marginal
distortions within the DIC images due to the usage of angled camera
settings. In addition, DIC measured delamination area based on surface
curvature is not capable of identifying and measuring delaminations at
different interfaces, resulting in an underestimation of the total delami-
nation area when an overlapping of multiple delaminations presents. A
comprehensive analysis is imperative to address these challenges within
the DIC measurement to achieve higher accuracy in measurement of
delamination growth with DIC analysis.

Despite the factors mentioned above, the delamination growth was
roughly measured using DIC throughout the loading process and cor-
related with the stiffness variations. As shown in Fig. 9, a consistent
delamination growth pattern is observed across different specimen con-
figurations, which can be separated into slow and fast growth stages.
However, in the case of PCLS-R(0//0), with significant discrepancies
in both the initial and migrated delamination extents, the two stages
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were not as obvious as the others. In fact, the delamination at the
initial 0°//0° interface exhibited a delayed progression compared to
the migrated delamination at the 0°//90° interface. At the slow growth
stage, the stiffness of the specimen shows a rapid increase, accompanied
by a minor extent of delamination area. Subsequently, the onset of fast
delamination growth led to a diminishing rate of stiffness increment.
This phenomenon contrasts with the observations presented in [35],
where a sudden decrease in stiffness, marked by a rapid increase in
compliance, occurred with the extension of the delamination area. The
difference can be mainly attributed to a different boundary condition,
specifically whether boundary slippage is permitted or not. The current
experimental setup precludes any form of slipping at the clamping area,
leading to a persistent rise in stiffness.

Furthermore, similar delamination pattern was also depicted in
PCLO specimens subjected to either single step or multi-step loadings.
As shown in Fig. 11, a gradual onset of delamination growth occurs at a
lower displacement level, followed by an accelerated propagation phase
that commences at a higher displacement level, closer to the maximum
loading.

4.3. Cross-sectional observation

Focusing on the embedded delamination growth, the typical planar
delamination pattern evolved from the PTFE insert is illustrated in
Fig. 12. The embedded delamination growth followed the ply ori-
entation above the mid interface, while the migrated delamination
growth aligned with the upper ply. The smaller semicircle shapes
of delamination distributed at the diagonals were actually a second
delamination migration. In order to provide a clearer understanding of
the damage mechanisms, cross-sectional observation was performed for
all specimens subjected to single step loading. The central cross section
was chosen to be parallel to the ply orientation along which the initial
delamination propagated (A — A’) or migrated (B — B’).

As shown in Fig. 13, the initial delamination propagated aligning
with the fibres of the layer above the mid interface, corresponding to
the rectangular part depicted in TOF C-scan. For PCLS(0//90) with-
out rubber, except for the embedded delamination, multiple matrix
cracks and delaminations occurred at different interfaces in both the
upper and lower sub-laminates. In contrast, much less matrix cracks
and delaminations occurred in PCLS-R specimens due to the rubber
protection. For PCLO specimens, both intra-laminar and inter-laminar
damage occurred at the contact region in the upper sub-laminates.
Multiple delaminations evolved at the interfaces above the embedded
delamination.

Despite the embedded delamination growth, an elongated delami-
nation was formed at the top 1/2 interface for all specimens, shadowing
the delaminations underneath it. In TOF C-scan, the elongated delami-
nation at the top interface was shown in navy blue. Such delamination
was initiated from the matrix crack at a lower layer and propagated
along the fibre direction of the top layer. According to the DIC analysis,
the elongated delamination propagated together with the embedded
delamination growth, which eventually induced the surface crack at
the top interface, causing significant stiffness degradation.

As measured by both C-scan and DIC (Fig. 8), the size of the embed-
ded delamination growth of PCLS specimens was smaller than that of
PCLO specimens. This can primarily be ascribed to the distinct fracture
modes governing delamination growth in the two specimen config-
urations. In contrast to PCLO specimens, PCLS specimens exhibited
a more extensive and densely distributed shear-induced micro-crack
region (Fig. 14). In the case of PCLS specimens, the observed mode II
delamination growth was a result of micro-crack coalescence near the
crack front due to shearing [11,44]. A smaller region of shearing effect
was presented in the PCLO specimen, indicating a shorter coalescence
process. Furthermore, the interface also had influence on the formation
of shear cracks. For PCLO(0//0), shearing-induced cracks remained
undetected. The boundary between the two adjacent 0° layers exhibited
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Fig. 16. Matrix cracks and delamination migration behaviours of (a) PCLS(0//0),
(b) PCLO(0//90) specimens at C-C’ cutting plane.

ambiguity. As depicted in Fig. 14, the intact 0° interface revealed a
higher incidence of fibre nesting and a diminished presence of resin-
rich regions where the shear cracks typically form. In contrast, at the
0°//90° interface, shear-induced matrix cracks were more prone to
initiate and propagate within the resin-rich region, signifying a higher
likelihood of micro-crack coalescence, which subsequently culminates
in the formation of delamination.

The cutting plane B — B’ (Fig. 15) provides the observation of
delamination migration at the embedded delamination front. For all
specimens, migration initiated at the tip of the PTFE insert and then
terminated at an upper interface where the directing crack plane was
not parallel to the fibre direction. The observation verified that the two
delamination regions observed from TOF C-scan corresponded to de-
lamination growth at two adjacent interfaces. The initial delamination
would propagate at the region where the fibre direction of the upper
layer was parallel to the normal direction of the delamination bound-
ary, but would migrate at the place where the fibre direction of the
upper layer was perpendicular to the normal direction of the delamina-
tion boundary. As delamination propagated, the migrated delamination
could again jump to an upper interface.

However, it was unclear, how the initial delamination propagated
at the location where the fibre direction had a certain angle with
the normal direction of the boundary. Therefore, the cutting plane
C — C' was used to explore the migration behaviour of a shifted
cross section. As shown in Fig. 16, the initial delamination would
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propagate at the mid interface first. When the delamination joined
with the major matrix crack, it would jump and then propagate at an
upper interface. Although multiple matrix cracks were formed along the
delamination path, migration was not induced immediately. According
to Canturri [45], analysis of the local fracture mode provided more
insights into the mechanisms of migration and delamination growth.
Therefore, in this study, analysis of the local SERRs was also performed
to present further interpretation for the observed planar delamination
behaviour.

4.4. Determination of planar delamination initiation using AE

AE was used to provide a referable critical loading level for numer-
ical investigation of planar delamination initiation. Multiple indicators
can be utilized to detect damage commencement, for example the
first high energy or high counts, the first increase in the gradient
of accumulative energy or counts, or the first significant drop of the
sentry function curve. However, which of those indicators provides the
most accurate results is determined by the users’ prior experience [46].
Since it was not the objective of this study to give a comprehensive
understanding of the AE features and indicators, cumulative counts and
cumulative energy were selected as they were sufficient for estimating
the initiation of planar delamination.

As shown in Fig. 17, the accumulative AE counts and energy were
plotted against the displacement recorded by the MTS machine, to-
gether with the applied force. In this particular analysis, the displace-
ment is employed for all specimens since it provides an estimation of
the applied critical displacement for numerical analysis. In the case of
PCLS-R specimens, a notably reduced number of AE hits were recorded,
indicating diminished damage attributed to the rubber protection. The
corresponding displacement of the first substantial increase in the
gradient of accumulative AE counts and energy was identified as the
critical displacement for the numerical analysis. The determined critical
displacements were summarized in Table 3. The first significant in-
crease in the cumulative counts did not align with the pattern observed
in cumulative energy for PCLS specimens. In fact, it was difficult to
determine a distinct elevation in the cumulative counts, even when the
curves were magnified for closer examination. This suggests that the
cumulative counts curve displays lower sensitivity towards the initia-
tion of delamination growth, specifically the formation of micro-cracks,
yet exhibits a heightened sensitivity towards the rapid progression of
delamination.
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Fig. 17. Determination of the initiation of planar delamination in specimens with single-step loading: (a) PCLO(0//0), (b) PCLO(0//90), (c) PCLS-R(0//0), (d) PCLS-R(0//90),
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4.5. Numerical investigation

In order to investigate the mechanisms of the initiation of delam-
ination and migration, analysis of the local SERR and stress state at
the delamination front was conducted through finite element (FE) mod-
elling using Abaqus/Standard. All the numerical results were extracted
at the respective critical displacement level for the configuration being
modelled, as given in Table 3.

As shown in Fig. 18, the predicted damage patterns, as visual-
ized through cross-sectional views of the numerical models, exhibited
similarity to the damage patterns observed in Fig. 13. The observed
damage patterns can be considered as a consequence of progressions of
the predicted damage modes. For PCLO specimens, different types of
failure only occurred at the upper sub-laminates prior to delamination
propagation. For PCLS(0//90) specimen lacking rubber protection, the
occurrence of intra-laminar damage was apparent, particularly con-
centrated in the central region. Conversely, PCLS-R(0//0) specimen
displayed significantly diminished predicted damage due to the rubber,
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which facilitated broader contact and, subsequently, a more uniform
distribution of stress. For all specimens, matrix failure in the mid-upper
ply predominantly occurred perpendicular to the upper ply orientation,
serving as a primary factor contributing to the observed migration
phenomenon.

The distribution of the local SERRs along the embedded delam-
ination front was then analysed, as shown in Fig. 19. The overall
local fracture mode for PCLS specimens was mainly mixed mode II/III.
The pure G;;, distributed following the upper ply orientation, dictated
delamination growth, while pure G;; induced delamination migration
in the direction transverse to the upper ply orientation. For PCLO
specimens, a localized mixture of mode I, mode II, and mode III was
evident. Along the direction of delamination growth parallel to the
fibres, a prevailing presence of mixed mode I and mode II was observed.
Local mixed mode I and mode III dictated migration in the direction
transverse to the upper ply orientation. The distribution of G; aligning
with the directing ply highlighted an elevated influence of mode I on
the onset of delamination growth.
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Fig. 18. Illustration of distinct damage patterns of different specimen configurations. The value of the damage variables corresponded to the severity of different failure modes.
The predicted damage state corresponds to the critical displacement levels given in Table 3.
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(b) PCLS(0//90), (c) PCLO(0//0), (d) PCLO(0//90). G, indicates the total local SERR: G, = G, + G;; + G;;.

The stress tensors at the artificial delamination boundary were
extracted, as shown in Fig. 20. Significant in-plane stretching (o)
was predicted in the direction of the fibre orientation. The maximum
principal stress (MPS), overlapping with o, is critical for delamination
initiation. The shear induced micro cracks (Fig. 14) can be facilitated
by a combination of 6,3, 6;; and o3;. On the other hand, a combination
of 6,3, 05, and o33 dictated delamination migration. The in-plane shear
stress o, of a diagonal distribution could promote the inter-fibre matrix
cracking along the fibre direction, thereby promoting the evolution of
the migration boundary.
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5. Discussion
5.1. Stiffening behaviour

According to the force-displacement behaviour and compliance
analysis, a constant stiffening behaviour for all specimens subjected
to single step loading was observed as shown in Figs. 3 and 4. The
curves did not appear to be responding to the stiffness degradation due
to delamination growth. One plausible explanation for this stiffening
phenomenon can be attributed to the increasing external force required
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Table 3 area demands increased external force, thereby inducing augmented in-

Critical displacement determination by AE. For PCLO(0//0), the lower prediction was
adopted.

Specimen label 8¢ ap (Accumulative energy) S¢c.ac (Accumulative counts)

PCLO(0//0) 1.79 mm 1.77 mm
PCLO(0//90) 1.47 mm 1.47 mm
PCLS-R(0//0) 4.91 mm -
PCLS-R(0//90) 3.79 mm -
PCLS(0//90) 4.62 mm -

to counterbalance caused by in-plane tension (or stretching) in the
specimen. This would result in more elastic potential energy storage
in the system. In contrast, only a relatively minor portion of energy
dissipated, attributed to delamination growth and matrix cracking.
Moreover, 2-D delamination growth is multidirectional, signifying
its advancement along contours. In contrast to the unidirectional de-
lamination growth of beam-like specimens, such as double cantilever
beam (DCB) or end notched flexure (ENF) configurations with uniform
widths, the contour-wise delamination growth exhibits a nonlinear
trend as the contour perimeter increases. By examining the energy
dissipation on a per-unit-contour and per-unit-width basis, it becomes
evident that the energy requisites for promoting unit contour-wise de-
lamination growth are increasing, while the energy for unit width-wise
delamination growth remain constant as the delamination propagates.
Furthermore, the energy required for crack growth across distinct
locations of the delamination contour exhibit variability, since the
fracture energy is dependent on the mode mixity and interface angles,
both of which exhibit variation along the contour. Consequently, the
contour-wise delamination growth contributes to heightened fracture
resistance. For instance, the last loading step of the multi-step tests
has an enlarged “pre-crack” region due to the advancement of the
initial delamination (Fig. 10). The expansion of a larger delamination
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plane stretching that contributes to the observed stiffening behaviour
(Figs. 5 and 6).

Additionally, fibre bridging, which could potentially occur at the
delaminated interfaces, could also contribute to the stiffening mech-
anism [33,35]. However, no evidential bridging effects were demon-
strated in the current experiment with CFRP composite laminates. A
more insightful understanding of the bridging effect could potentially
be achieved through fractographic examinations, which yield valuable
insights into the crack surface characteristics.

5.2. Mechanisms of planar delamination propagation and migration

From the experimental observation, delamination growth seemed to
be dependent on the interface properties such as the fibre orientations
and the composition of the resin and fibres along the delamination
front. Despite those, the overall delamination patterns of different
specimen configurations were rather similar.

As illustrated in Fig. 12, delamination growth in the middle or mi-
grated interface was directed by the fibre orientation of the upper ply.
The major matrix crack, initiated at the boundary of the PTFE insert,
would propagate in the directing ply, causing a migration boundary.
The migrated delamination could again jump to an upper interface
as external loading increased. Hypothetically, an upper limit 6,,,, for
the occurrence of migration and a lower limit 6,,, for delamination
growth can be characterized. Matrix cracks may occur in the range
between 6,,,, and 6,,,, but no migration would be triggered. The em-
bedded delamination would traverse the intra-laminar matrix cracks,
creating a more critical crack front and thus preventing delamination
migration. Similar findings were also presented in Canturri’s study of
buckle-driven delamination [25].

The calculated local SERRs and stress tensors may offer a solely
qualitative analysis of the driving force governing the initiation of
progression and migration of planar delamination, rather than being



W. Tu et al.

sufficient to quantitatively characterize the actual fracture energy and
to determine the driving force for planar delamination growth. A
reliable numerical or analytical method is indispensable for acquir-
ing an intrinsic comprehension of the delamination behaviour. Since
the present study did not encompass the comprehensive modelling
of the progressive damage evolution, a prospective avenue for future
research involves the development of an approach adept at capturing
both matrix and delamination expansions. This could be achieved by
incorporating CZM to simulate interlaminar delamination and utiliz-
ing an energy method-based criterion to predict intralaminar damage
evolution [47].

6. Conclusions

In this study, a novel experimental method was developed to in-
vestigate the planar delamination behaviour of CFRP composite lami-
nates under quasi-static out-of-plane loading. The planar delamination
pattern was captured using DIC analysis, C-scan and cross-sectional
microscopy. Numerical investigation of the local SERR and stress distri-
butions provided insights into the mechanisms of delamination growth
and migration phenomena in the CFRP panel. The following aspects can
be concluded based on the experimental and numerical investigation:

» Despite the progression of the artificially embedded delamination,
a consistent trend of stiffening was observed due to in-plane
stretching. Two discernible stages within the planar delamination
behaviour are revealed: a slow growth stage marked by a rapid
increase in stiffness, followed by a subsequent stage of accel-
erated delamination growth with a comparatively more grad-
ual increase in stiffness. Consequently, the force-displacement
behaviour proved inadequate for detecting and characterizing
delamination growth.

The fibre orientation and composition of the fibres and ma-
trix at the delamination front possess significant influence on
the development of shear-induced microcracks, thus affecting
the delamination pattern. The artificially embedded delamination
propagated in the direction where the fibre orientation of the
layer above the crack interface was parallel, but initially migrated
to an upper interface at the place where the fibre was perpendicu-
lar. Delamination migration would continue to extend parallel to
the fibre direction within the directing ply, creating a migration
boundary below which delamination migration is inhibited.

For shear dominant delamination, local mode II was found to
stimulate delamination growth aligning to the directing ply ori-
entation, while delamination migration perpendicular to the ply
orientation was induced by local mode III. In combined opening-
shear mode, a more pronounced influence of mode I on delami-
nation growth was evident.

Further investigation on the tomography of the delamination sur-
face holds the potential to yield a comprehensive understanding of the
planar delamination mechanisms. This investigation is slated for subse-
quent studies. Moreover, a numerical model capable of quantitatively
characterizing planar delamination growth and migration will also be
developed, which may aid in the evaluation of fracture tolerance and
design of composite structures.
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