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SUMMARY
We investigated one-dimensional numerical dispersion curves and error behaviour of four finite-element
schemes with polynomial basis functions: the standard elements with equidistant nodes, the Legendre-
Gauss-Lobatto points, the Chebyshev-Gauss-Lobatto nodes without a weighting function and with. Mass
lumping, required for efficiency reasons and enabling explicit time stepping, may adversely affect the
numerical error. We show that in some cases, the accuracy can be improved by applying one iteration on
the full mass matrix, preconditioned by its lumped version. For polynomials of degree one, this improves
the accuracy from second to fourth order in the element size. In other cases, the improvement in accuracy
is less dramatic.
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 Introduction
While finite-difference methods for wave propagation are popular because of their simplicity, they fail
to accurately capture large material contrasts. Finite-element methods behave better if the mesh follows
sharp interfaces. Mass lumping allows for explicit time stepping without the need of inverting a large
sparse matrix. Here, we examine the numerical dispersion curves and error behaviour of four schemes
with polynomial basis functions: the standard elements with equidistant nodes, the Legendre-Gauss-
Lobatto points, the Chebyshev-Gauss-Lobatto nodes without a weighting function (Patera, 1984) and
with. The analysis is carried out for the first-order similar formulation of the wave equation.

Method
Elements A first-order formulation of the acoustic wave equation is

ρ
∂v
∂ t

=
∂ p
∂x

, c−2 ∂ p
∂ t

=
∂v
∂x

,

with particle velocity v(t,x) and pressure p(x, t) (actually without the minus sign) as function of time
t and position x. The density ρ(x) and sound speed c(x) will be taken as constant for the purpose of
analysis. We will not consider time stepping errors and only concentrate on the spatial discretisation.
Consider N elements bounded by positions x j = x0 + jh j, j = 0, . . . ,N. Each element has M+1 nodes
at relative positions xk, k = 0, . . . ,M, with x0 = −1 and xM = 1. Their corresponding global positions
are x jk = x j+ 1

2(xk+ 1) jh j. In the periodic case, the solution on xN is the same as on x0. The number
of degrees of freedom is Ndof =MN on a periodic grid both for the particle velocity and pressure. For
the finite-element basis functions ψk(x), we take the Lagrange interpolating polynomials of degree M
relative to the nodes, so ψk(xl) = δkl , the Kronecker delta. In each element, we have a local mass matrix
A and first-derivative matrix D, each with entries

Akl =
∫ 1

−1
w(x)ψk(x)ψl(x)dx, Dkl =

∫ 1

−1
w(x)ψk(x)

d
dx

ψl(x)dx.

The local lumped mass matrix, AL
kl = δkl∑Ml=0Akl is a diagonal matrix with values proportional to

quadrature weights. We consider several choice for the nodes: the standard element with equidistant
nodes xk = k/M, k = 0,1, . . . ,M (EQUI); the Legendre-Gauss-Lobatto points (LGL) that are the zeros
of (1− x2)P′M(x), the Chebyshev-Gauss-Lobatto points xk = −cos(πk/M) with an unweighted scalar

product (CGL) and with the weighting function w(x) = 1/
√

1− x2 (CGLw). Numerical quadrature
with weights AL

kk/∑Mk=0AL
kk is exact for polynomials up to degree q = 1+ 2floor(M/2) for CGL and

EQUI and degree q= 2M−1 for LGL and CGLw.

Mass matrix and defect correction With the local mass and first-derivative matrices, we can assemble
the global mass matrixM and derivative matrix D. A leap-frog time discretisation with time step Δt is

1
Δt
Mv(vn+1 −vn) = Dpn+1/2,

1
Δt
Mp(pn+3/2 −pn+1/2) = Dvn+1.

Here, the material properties are absorbed into the mass matrices and the superscript n denotes the
solution at time tn= t0+nΔt. The time-stepping stability limit for a leap-frog scheme is given by the CFL
number 2/

√
ρ(L(2)), with L(2) =M−1DM−1D and where ρ(·) now denotes the spectral radius. For time

stepping, we want to avoid the cost of inverting the full mass matrix and replace it by its lumped version.
Depending on the choice of nodes, this may or may not harm the spatial accuracy. Formally, the lumped
version should be exact for numerical quadrature of polynomials up to a degree of at least 2M−2. If its
accuracy is less, we can iterate with the lumped mass matrix as preconditioner. This approach resembles
defect correction (Stetter, 1978), which has the following convenient property. Consider two operators
L1 and L2 where Lk has an order of accuracy pk (k= 1,2) and p1 > p2. We can try to solve L1u= f with
the iterative scheme u−1 = 0, u j+1 = u j+L−1

2 (f−L1u j), where j= 0,1, . . . denotes the iteration count,
not the time step. Convergence is obtained if the operatorG= I−L−1

2 L1 has a spectral radius ρ(G)< 1.
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 Table 1 Leading error terms in the dispersion curves for a polynomial basis of degree M and various
sets of nodes, using the full or lumped mass matrix or lumped with one iteration based onG. Its spectral
radius ρ(G) is given, as well as the CFL number without and with mass lumping.
M nodes full lumped 1 iteration ρ(G) CFL (full) CFL (lumped)

1 LGL − 1
180ξ 4 − 1

6 ξ 2 − 1
30 ξ 4 2/3 2/

√
3 = 1.155 2

2 1
270 ξ 4 − 4

270 ξ 4 − 4
945ξ 4 3/5

√
2/3 = 0.471 2/3 = 0.667

3 − 81
39200ξ 8 − 27

2800 ξ 6 − 6
2800 ξ 6 4/7 0.278 0.365

4 128
496125 ξ 8 − 1024

496125 ξ 8 − 4096
6449625ξ 8 5/9 0.188 0.239

5 −9765625
19179224064 ξ 12 −78125

67060224 ξ 10 − 15625
50295168ξ 10 6/11 0.138 0.171

3 CGL see LGL − 333
10240 ξ 4 − 21

1460 ξ 2 3/5 see LGL 0.311

4 8
1395 ξ 8 − 1042

35397ξ 4 5/7 0.198

5 − 231125
134217728)ξ

4 5115
4502764 ξ 2 0.966 0.132

1 CGLw − 1
24 ξ 2 − 1

6 ξ 2 − 1
24 ξ 2 1/2 1.414 2

2 CGLw 1
30 ξ 2 − 2

135 ξ 4 1
48 ξ 2 1/2 0.426 2/3

3 CGLw 9
1280 ξ 4 − 9

320 ξ 4 − 9
5120 ξ 4 1/2 0.213 0.354

4 CGLw − 1
405ξ 4 − 32

4725 ξ 6 − 1
530ξ 4 1/2 0.132 0.224

5 CGLw − 625
344064ξ 6 625

258048 ξ 6 −625
1032192 ξ 6 1/2 0.0909 0.155

3 EQUI see LGL − 42
295 ξ 2 − 42

295ξ 2 0.651 see LGL 0.369

4 40
1137 ξ 4 56825

157068 ξ 4 (1.72) 0.184

5 −92807
312500 ξ 4 33740850

26406233 ξ 2 (1.96) 0.125

In a finite-difference context, the order of accuracy of u j is min(p2,( j+1)p1), which suggests that a few
iterations will often suffice to get a sufficiently accurate though not necessarily fully converged result.
In our case, we can take the lumped mass matrix for L2 =ML and the full mass matrix as L1 =M.
However, for degreeM > 1, the eigenvalues and eigenvectors are mixed up in a non-trivial way (Mulder,
1999) and the property that the accuracy increases by an order p1 per iteration may be lost.

Dispersion The numerical dispersion of the finite-element scheme can be analyzed by considering
the eigenvalues of the first-order operator M−1D or (ML)−1D when discretized on a sufficiently fine
periodic mesh with constant material properties and a constant element size h. Alternatively, we can
use the fact that the elements are translation-invariant if all is constant and perform a Fourier transform
on the solution. We then have to take the M degrees of freedom inside an element as a vector and do a
transform on each component over the N elements. This results in a small M×M matrix in the Fourier
domain. However, we can go one step further and also involve the M individual components. These
are aliased but still can be considered separately by looking at the eigenvalues of the M×M block and
unwrapping the result (Mulder, 1999). This produces a discrete approximation iκ to the exact operator
iξ , where ξ = k(xN− x0)/(NM) = kh/M ∈ [−π,π] is scaled version of the wavenumber k. The relative
dispersion error can than be characterized by κ/ξ − 1. Note that the error in the dispersion curve does
not tell the full story, because errors in the eigenvectors also play a rôle.

Results
We compared the various spatial discretisations in terms of their dispersion curves, obtained by Fourier
analysis, as well by set of numerical experiments. As an example, Figure 1 shows dispersion curves
for polynomials of degree M = 3 on Legendre-Gauss-Lobatto points (LGL). For reference, Figure 1(a)
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 depicts the result without mass lumping. With lumping, the deviation from the exact dispersion curve,
the straight line, increases, but not so much at the smaller values of η = ξ/(2π). With one iteration of
G = I− (ML)−1M, the result is improved. For the smaller wavenumbers, we have analytically deter-
mined the asymptotic error behaviour. by taking the leading term in the series expansion of κ/ξ −1 for
the eigenvalue that is valid at small ξ . The results are listed in Table 1 for various cases. For degree
M = 1 andM = 2, the standard element (EQUI), the Legendre-Gauss-Lobatto points (LGL) and the un-
weighted Chebyshev-Gauss-Lobatto (CGL) points all provide the same results. The same is true when
the full mass matrix is used. Then, the choice of nodes does not matter. The exception is the weighted
scheme with Chebyshev-Gauss-Lobatto nodes (CGLw), where the weighting functions changes the out-
come. Note that for the latter, the error analysis did not involve a weighted norm. Figure 2 show
dispersion curves for degree M = 3.

Interestingly, the LGL scheme without mass lumping has a fourth-order error instead of the usual
second-order. In the finite-difference world, Lele (1992) found the same behaviour. Without lump-
ing and just a single iteration, this fourth-order behaviour is recovered, albeit with a larger error constant
and not necessarily on a finite-difference grid with constant mesh spacing.
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Figure 1Dispersion curves for Legendre-Gauss-Lobatto points and M= 3 without (a) and with (b) mass
lumping and (c) after one iteration.
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Figure 2 Dispersion curves for degree M = 3 and CGLw without (a) and with (b) mass lumping and (c)
after one iteration.

In addition to the above dispersion-curve analysis, we have performed a set of numerical experiments in
the form of a Ricker pulse travelling around once on a periodic domain. The reason is that the error is
not only described by the dispersion curves, which measure the error in the eigenvalues, but also by the
error in the eigenvectors for degrees M > 1.

The pulse, the second-derivative of a Gaussian, was centred at 0.74 and had a standard deviation of
0.0375 on the interval of length 1. The simulation ran at at a fraction of 10−3 times the maximum time
step dictated by the CFL condition to avoid the imprint of the time stepping error. Since finite-difference
methods are known to suffer from abrupt changes in the grid spacing, we used two difference spacing
hL and hR and set h j = hL for j = 0, 1

2N−1, h j = hR for j = 1
2N,N−1, N chosen even and hL = 0.8hR.

Figure 3 plots the maximum errors in u(t,x) for a varying number of degrees of freedom without and
with mass lumping and with one extra iteration for polynomial degreesM = 1 to 5.



                                                                                                                                 

77th EAGE Conference & Exhibition 2015 
IFEMA Madrid, Spain, 1-4 June 2015 

1-4 June 2015 | IFEMA Madrid

 

10
−3

10
−2

10
−8

10
−6

10
−4

10
−2

10
0

1/N
dof

M
ax

im
um

 e
rr

or

Legendre

1
2
3
4
5

(a)

10
−3

10
−2

10
−8

10
−6

10
−4

10
−2

10
0

1/N
dof

M
ax

im
um

 e
rr

or

Legendre   [0 iterations]

1
2
3
4
5

(b)

10
−3

10
−2

10
−8

10
−6

10
−4

10
−2

10
0

1/N
dof

M
ax

im
um

 e
rr

or

Legendre   [1 iterations]

1
2
3
4
5

(c)

Figure 3 Maximum error in u as function of the inverse number of degree of freedom, 1/Ndof, for the
Legendre-Gauss-Lobatto nodes (LGL) with the full mass matrix (a), its lumped version (b), or with one
iteration (c).
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Figure 4 Maximum error in u as function of the inverse number of degree of freedom, 1/Ndof, for the
Chebyshev-Gauss-Lobatto nodes with weighting (CGLw) with the full mass matrix (a), its lumped ver-
sion (b), or with one iteration (c).

Conclusions
We have compared four finite-element schemes with polynomial basis functions for the first-order
formulation of the acoustic wave equation, using Legendre-Gauss-Lobatto nodes, Chebyshev-Gauss-
Lobatto without and with weighting function or the standard element. Mass lumping, desired for nu-
merical efficiency since it allows for explicit time stepping, tends to decrease the spatial accuracy. The
remaining accuracy is best for the Legendre-Gauss-Lobatto nodes. In some cases, the accuracy can be
improved by applying one iteration on the full mass matrix, preconditioned by its lumped version. For
polynomials of degree one, this improves the accuracy from second to fourth order in the element size.
In other cases, the improvement in accuracy is less dramatic.
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