
Evolving a Search Procedure for Program Synthesis

Michał Okoń
Supervisor: Sebastijan Dumančić

EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

23-6-2022



Abstract

In recent months, researchers developed several
new search procedures to augment the process of
program synthesis. While many of them performed
better than their predecessors, the proposed solu-
tions are still far from ideal. One possible way
of overcoming the shortcomings of single search
methods is employing genetic algorithms, which
have been proven useful in many tasks of similar
scale. This paper aims to answer the question of
whether it is possible to utilize that sort of algo-
rithms to find an efficient combination of search
procedures in a program synthesis problem. An
implementation of a genetic algorithm is proposed
with parameters and operators chosen through a lit-
erature study and a series of experiments on three
different domains. To outline different approaches
to program synthesis, two fitness functions are ex-
amined. Finally, evolved search procedures are dis-
cussed and compared with the already existing so-
lutions. One of them in particular, namely a com-
bination of Brute and A* algorithms, manages to
surpass their singular counterparts in certain cases.

1 Introduction
The problem of program synthesis is often described as a task
that can completely revolutionize the field of Artificial Intel-
ligence and Computer Science in general [1]. The ability to
generate programs from examples could greatly reduce the
amount of work spent on engineering new software and help
improve the already existing solutions. Extensive research
has been performed on how programs can be generated. The
majority of the procedures can be reduced to defining the
space of the program (most often as a domain-specific lan-
guage) and using a variety of search techniques to find correct
and efficient programs[2]. One of the recent advancements
in the area, was the development of Brute [3]- an ILP (in-
ductive Logic Programming [4]) system that invents library
predicates using brute-force methods and, consequently, uses
best-first search with an example-dependent loss function to
build programs. Since the loss function may take different
values depending on how close our current outputs are to the
desired ones, Brute outperforms many already existing ILP
systems. However, there is still plenty of possibilities for
improvement and promising enhancements to this procedure
have been recently investigated.

In the last research project performed at TU Delft, stu-
dents examined a variety of different search procedures to
efficiently search through the program space containing al-
lowed programming expressions. The main goal was to im-
prove the search procedures used by Brute. Each of the algo-
rithms was tested on three domains proposed by the creators
of Brute[3]- robot path planning, ASCII (pixel) art, and string
transformations. The researched algorithms were A*[5], Very
Large Neighborhood Search with Variable-Depth Neighbor-
hood Search (Vlute)[6], Metropolis-Hastings[7] and Genetic
Algorithm (VanillaGP)[8].

From the obtained results, it is clear that the performance
of most methods is very domain-dependent and, even though
substantial improvements have been made, the algorithms of-
ten fail to provide satisfactory solutions. Each of the de-
veloped algorithms achieves a different ratio between explo-
ration (seeking the solution in the further unexplored areas)
and exploitation (searching the neighborhood of promising
regions), leading to performance varying from task to task.
Finding a method to eliminate part of the drawbacks, while
maintaining their positive traits, could lead to a great increase
in both the quality of found programs and the search speed.

One intriguing way to combine the singular powers of
those search procedures is through the means of genetic al-
gorithms. This subclass of evolution algorithms mimics the
evolutionary processes observed in nature. Starting from an
initial population of individuals, the algorithm advances from
one generation to another trying to perpetuate the most de-
sirable traits until an acceptable solution is found [9]. This
family of algorithms has found application in solving many
problems characterized by difficulty with finding solutions
using more tailored methods. The fields in which the Genetic
Algorithms have proven to be useful include Machine Learn-
ing, Combinatorial Optimisation, and Image Processing [10].
Having discovered an efficient way to encode a combination
of search procedures as a chromosome, one could, with help
of appropriate metrics, evaluate which sequences of methods
show the most promise and propagate their qualities into the
next generations using a range of genetic operators.

This leads to the formulation of the main research question:

Q: Is it possible to develop an efficient search procedure as a
combination of simpler procedures of various properties by

means of genetic algorithms?

The main research question can be divided into several sub-
questions, which correspond to the sequence of measures I
will have to take to construct an adequate Genetic Algorithm.

• Q: How can we construct a genotype of a single speci-
men (chain of search procedures constituting one com-
bined search procedure)?

• Q: How do we evaluate the obtained search procedures?
In other words, how is fitness calculated?

• Q: How do we select the fittest individuals?

• Q: What genetic operators, and with what probability,
do we use to gradually improve the performance of the
program synthesizer?

Due to the inherent limitations of this research, the paper
mostly targets selecting two factors that seemed the most am-
biguous and influential- the mutation probability and fitness
functions, for different values of which the results are verified
experimentally. The rest of the parameters are picked through
the literature study.

In the following sections, I try to address each of the posed
issues. In the section 2, I summarize the premises of Pro-
gram Synthesis and Genetic Algorithms- the two main build-
ing blocks of this paper. Next, the details of the created so-
lution, as well as the justification for the made choices, are
outlined in the section 3. The setup of the experiments and

2



the discussion about the obtained results can be found in sec-
tion 4 with the concluding remarks and the perspective of fu-
ture work on this topic located in section 5. Lastly, section 6
contains the remarks about the responsible research.

2 Related Work
2.1 Program Synthesis
As mentioned in the introduction, Program Synthesis is a pro-
cess of finding a program in a specific programming language
to meet specifications representing the user intent [1]. The
user intent can take various forms such as natural-language
descriptions or logical specifications. In our case, the spec-
ifications are the sets of input and output such that for each
input, the desired output that the synthesized program should
return is given. A variety of heuristic loss functions (also
called distance functions) is employed to assess how close
the output returned by the synthesized programs lies to the
desired solutions.

The programming language comprises the search space.
When choosing the programming language to use, we should
aim to find a set of expressions that are both expressive (i.e.
working program can be constructed) and efficient (i.e. the
search space is small enough to support fast search proce-
dures). The solution described in this paper makes use of sets
of complex tokens, which are invented from more primitive
expressions building the Domain Specific Language (DSL).
Examples of those primitive expressions are functions such as
[MoveUp] or [DropBall] in the robot path planning domain.

To search the program space, a range of search procedures
is used. To fully present the scope and foundations of the re-
search, it is crucial to summarize the main search algorithms,
which will be the building blocks of evolved search chains.
The following subsections look at Brute and four new tech-
niques developed by the students in the course of the past
research project. Every technique shows a different level of
promise in each of the considered domains.

All the discussed algorithms consist of invent and search
phases. In the invent stage, complex tokens building the pro-
grams are invented from a set of primitive expressions. In
the original papers describing the implementation of the al-
gorithms, every one of them had a separate invent stage tai-
lored to the needs of the algorithm. While efficient in some
cases, this method did not support valid comparisons between
search procedures since the choice of invent methods had a
huge impact on the performance of search algorithms. In the
recent changes made to the code, the invent methods have
been made equal for each algorithm. Now, a static invent is
used, which invents thousands of tokens by pairing them or
simply utilizing single expressions along with control tokens
such as ’if’ statements. On an identical account, loss func-
tions are shared across the algorithms.

Brute
Brute starts building a program that aims to satisfy the given
specifications (input-output pairs) by extending an empty hy-
pothesis with new tokens [3]. To support the best-first search,
a priority queue is created based on the values returned by the
loss function; better-performing programs are put higher in

the polling priority, hence the greedy nature of the algorithm.
For each new program, every invented token is appended to
its end and the resulting output is compared to the desired
one using the loss function. The procedure continues until a
satisfactory program is found. In terms of performance, Brute
surpasses the Metagol- another very efficient program synthe-
sis system. One major deficiency of Brute is the tendency for
converging in local minima, especially in the larger domains.

A*
A procedure that utilizes a heuristic-based search to alleviate
the greedy nature of Brute [5]. The search algorithm operates
on a graph where nodes are states (e.g. state of the board in
the robot path planning) and the edges are tokens that lead to
the specific state. In addition to the domain-specific heuris-
tic loss function, the number of steps taken to current states is
also considered in the node cost calculation. The cost of a sin-
gle path is treated as the cost of a token assigned to the edge.
This leads to favoring more concise programs and mitigates
the problem of being stuck in local minima. Those improve-
ments result in a drastic growth of performance in the part of
the domains.

Very Large Neighborhood Search with Variable-Depth
Neighborhood Search (Vlute)
When searching through the program space, each potential
program is assigned a depth depending on how many transi-
tion and control tokens are used to construct it [6]. At each
stage, the algorithm keeps track of the best-found solution
(gauged by the loss function) and tries to destroy and rebuild
potential programs by removing and inserting a part of the
building tokens. Depending on the parameters, if a better so-
lution has not been found for long enough, the allowed max-
imum depth is increased, consequently enlarging the search
space.

Metropolis-Hastings
A Metropolis-Hastings-based algorithm is constructed with
the stationery distribution dependent on the domain-specific
cost functions and each of the mutations is assigned a prob-
ability of occurring [7]. On each iteration, a change in the
structure of the code might transpire. The better the pro-
gram obtained from performing such mutation compared to
the previous program, the higher the probability of transition.
Because of its random nature, this algorithm manages to out-
perform other algorithms in the robot path-planning domain.

VanillaGP
A direct and very simplistic genetic programming approach
to the problem of program synthesis. The initial population
is generated as a set of single tokens [8]. Consequently, in-
dividuals for breeding are selected based on a roulette wheel
selection procedure [10] with fitness calculated as a reverse
of the domain-specific cost function. Mutations include op-
erations such as removing or adding new tokens. One should
not confuse this genetic programming process with the one
developed in this paper since they are unrelated.

2.2 Genetic Algorithms
The main premise of the genetic algorithms is not hard to
comprehend since they resemble the processes that we ob-

3



serve in nature. With the problem encoded as a set of chro-
mosomes, we move from one generation of individuals to
another while trying to preserve traits that are the most fa-
vorable [9]. The following subsection will focus on a gen-
eral description of this process, while the details regarding
the case-specific implementation of the genetic algorithm are
described in the methodology.

Coming up with the proper coding of a problem is the first
and perhaps most crucial step of a genetic algorithm. Chosen
encoding directly impacts other stages of the process such as
the kind of genetic operators that can be employed. The prob-
lems need to be represented as a set of parameters (called
genes), which in turn are structured in the sequences called
chromosomes [10]. The chromosome has usually been de-
scribed as binary strings so that the cardinality of used sym-
bols is minimal. However, using floating-point representation
is also fairly common.

With the properly encoded problem, the initial generation
of chromosomes is populated with random individuals. In
each generation, the fittest individuals are selected by first
calculating their fitness - value signifying how close to the
desired solution, a given individual resides and then selecting
the ones who get the chance to pass on their genes. The fit-
ness calculation method is highly problem-specific [9], there-
fore, the details of my implementation are described in the
methodology section.

The next step is to select the individuals to reproduce.
While choosing the selection procedure, I have considered
the three most common approaches: Proportional Roulette
Wheel Selection, Rank-Based Roulette Wheel Selection, and
Tournament Selection. Since incorporating genetic program-
ming in finding a search procedure for program synthesis is a
novel and unexplored problem, the final decision was based
on the experiments performed in the domain of TSP (Travel-
ling Salesman Problem) [11]. In the paper, it was discovered,
that the Tournament Selection strategy manages to discover
efficient solutions with a smaller number of generations and
faster execution time of one iteration than two other strate-
gies. However, this only applies to small populations. Since
the sizes of the populations employed in the program synthe-
sis problem are rather limited, Tournament Selection has been
chosen. The way the Tournament Selection strategy functions
is simple. First, some number of individuals is randomly se-
lected from the population. Next, a specimen with the highest
fitness is chosen from this pool to become one of the parents
of the future generation [11].

After the selection, a range of mutation operators is used
to recombine and mutate the selected parents. First, the
crossover operators are applied with a certain probability,
which is usually situated between 0.6 and 1.0 [12], to the pairs
of parents. The crossover operators combine the genotype of
two parents to create a new individual sharing part of their
traits. If the crossover does not occur, parents simply move on
to the next generation in unchanged forms. After the recom-
bination stage, each resulting individual has a predetermined
chance of being subjected to mutation by applying modifica-
tions to one or more of the genes. The probability of mutation
is usually set between 0.01 and 0.05, however, the literature
tends to sharply disagree in that matter[12], which is why it

is encouraged to elect those values experimentally.
The whole process described above is repeated until a

given number of iterations has passed or the desired solution
is found. Since it is hard to define a point in the evolution
process, when we are fully satisfied with the outcome, the
generation limit is established experimentally and declared
as a point after which no significant progress is observed.

3 Methodology
The following section describes the process of constructing a
genetic algorithm suited for finding a search procedure used
in program synthesis. It looks into methods of defining a
chromosome, generating the initial population, calculating
fitness, selecting the best individuals, performing mutation
and crossover operations, and evaluating the final program.
The procedure described here is later verified experimentally.

3.1 Defining a chromosome
Even though chromosomes have traditionally been defined as
binary strings, nothing stands in the way of using other forms
of representation, such as more meaningful non-numeric or
floating-point ones. That way, one can access a vast range of
real-number operators, discussed in the coming sections, that
are more problem-specific and easier to reason about [13].

With that in mind, two versions of problem encoding have
been considered. Both of them are expressed as an ordered
list of pairs with each pair consisting of a search procedure
and a number. Consecutive procedures begin searching the
program space from the point their predecessor left off. The
difference between those two methods lies in what the num-
ber represents. In the first considered version, the number was
an integer corresponding to the number of iterations each al-
gorithm is executed for. Unfortunately, due to the lack of a
consistent definition of what an iteration is and varying ex-
ecution times of a single iteration in the existing codebase,
this method turned out to be highly inefficient. In that case,
generating a balanced initial population was extremely diffi-
cult. The second version alters the definition of the number
in a pair. Now, the number is a float depicting the maximum
execution time per task (timeout) instead of the iterations.
Since time is a metric that remains unambiguous across dif-
ferent search methods and domains, one can easily investigate
the whole process and employ meaningful mutation opera-
tors. Unfortunately, this method also makes the solution con-
strained to the system the experiments were performed on, as
the computation speed differs across different computers. To
alleviate this issue, the specifications of the used computing
cluster are presented in the appendix .1. An example of the
final chromosome can be seen in figure 1.

Figure 1: Example of a chromosome represented as a chain of search
procedures paired with their timeouts. First, Brute is executed for
0.3 seconds, then A* for 0.4 seconds and MCTS for 0.5 seconds.

4



3.2 Generating the initial population
Having defined the chromosome encoding, the next task is to
invent a method of generating the initial population. Several
main rules need to be kept in mind. Firstly, each search proce-
dure should be given an equal chance regarding the execution
time and frequency of appearance. That is where our way of
encoding the problem proves useful. Since each search pro-
cedure is assigned an execution time, fairness can be achieved
by randomly selecting a search procedure with an equal prob-
ability each and assigning the execution time from a uniform
distribution that is identical for every search.

Extremely long search procedures do not only add unnec-
essary complexity but also obscure the understanding of the
resulting search chains. The second important rule is to en-
sure that the chromosomes do not grow to unreasonable sizes.
This can be accomplished by both implementing safe genetic
operators, which will be discussed later, and introducing ap-
propriate constraints to the initial populations. One simple
constraint, that deals with the posed issue, is implementing an
upper boundary on the size of a chromosome. Before search
procedures are sampled, the size of a chromosome is deter-
mined by selecting a random number from the range of 1 to
the maximum size. In the early experiments, the maximum
sequence size of around 5 appears to give the most valuable
results.

One last parameter that needs to be fixed is the size of
the population of a single generation, which should be high
enough to explore distant areas of the search space and not
become stagnated in local minima. At the same time, per-
forming a full program synthesis on hundreds of tasks is very
computationally expensive, therefore, I need to strike a bal-
ance between a meaningful variety of the genome and feasi-
ble computation cost. The population of size between 20 and
40 seems to fit into both of those categories with an exception
of the robot path planning domain which allows employing
as high as 100 individuals per generation.

3.3 Calculating fitness
With the initial population generated, one needs to construct
a way to evaluate the specific individuals. The evaluation
should be based on the outcome of a search synthesizer em-
ploying the search procedure of the specimen under evalua-
tion. To perform training and evaluation, examples derived
from three different domains have been used, which have al-
ready been extensively utilized for experiments by other re-
searchers in the field of program synthesis [3]. Those do-
mains are: robot path planning, string transformations, and
ASCII art. For each task, consisting of one or more ex-
amples, a separate program is found. To assess how close
the output given by the program is to the correct solution,
example-based domain-specific loss functions are employed
(e.g. Manhattan distance in the robot domain). The outcome
returned by a run chain of algorithms consists of the fraction
of successfully solved examples. Furthermore, the summed
timeout of every search procedure is looked at.

The formula of the first proposed fitness function devel-
oped (the strong one) can be seen in equation 1, where ws

is the success weight and ws ∈ [0; 1], wt is the time weight
and wt ∈ [0; 1], succ is the fraction of successfully solved

examples, and time is the total timeout as defined above. In
the experiments, both of the weights are set to 0.5. To avoid
rewarding synthesizers that quickly arrive at incorrect solu-
tions, the score for the timeout (awarding search procedures
that are fast) is only awarded if the evolved program manages
to successfully solve all the given examples.

fitstrong =

{
ws ∗ succ if succ < 1
ws ∗ succ+ wt ∗ 1

time if succ = 1
(1)

It is important to notice that the time is the upper limit of
how long the execution can take per task and the search pro-
cedures cease execution the moment a suitable program is
found. In the earlier versions of the genetic algorithm, the
actual execution time was considered as a metric for evalua-
tion, which resulted in a discrepancy between what the chro-
mosome represented (genotype) and how it was reflected in
the behavior of a search synthesizer (phenotype). Due to this
ambiguity, sequences with longer execution times were often-
times favored over shorter ones, which obstructed the genetic
process.

For the reasons, that should become more evident in the
next section of this paper, one more fitness evaluation method
has been considered (the weak one), as seen in equation 2,
and applied to the tasks from the String and Pixel domains.
Contrary to the first one, this method focuses on finding a
balance between the number of solved tasks and speed instead
of aiming to solve all the tasks. Both of the proposed fitness
functions will be evaluated in the next section.

fitweak =

{
succ
time if succ ≥ 0.5
0 if succ < 0.5

(2)

With fitness calculated, another crucial stage of the genetic
algorithm is employing a selection strategy. As described in
the related work section, Tournament Selection seems to be
the most applicable, given the relatively small size of the pop-
ulation. Because of this and the promising results in an initial
evaluation, this method has been chosen as the selection strat-
egy.

3.4 Genetic operators
Two simple methods of recombining the parents have been
examined - one-point crossovers[10] and two-point crossover
[13]. In the one-point variant, two chromosomes are cut in
one random point each and their genotypes are exchanged.
Unfortunately, since the resulting exchanged parts can be of
different sizes, this may lead to the creation of extremely
long chromosomes. To bypass this obstruction, two-point
crossovers are implemented, which are proven to give an im-
provement compared to one-point crossovers [13]. Now, both
chromosomes are cut at two points with equal distance be-
tween them, and the cut-out fragments are swapped. This
way, recombination is performed without changing the initial
size of the chromosomes.

In the case of mutation operators, a vaster range of methods
have been employed. The implemented mutations are:

• re-sampling a search procedure of one random gene
• re-sampling the execution time of one random gene

5



• adding a new random gene to the chromosome

• removing one of the genes from the chromosome

• multiplying the execution time of one random gene by a
constant

To ensure that radical mutations are less likely to take place,
the first four mutations have 12.5% chance of occurring if a
mutation takes place. The last one, being the least revolution-
ary, has 50% chance of happening.

3.5 Final evaluation of selection procedures
To assess how well different genetic methods perform, I mea-
sure how fast the genetic algorithm converged to the final re-
sults and what the capacity of those results is. In other words,
I verify how efficient different meta-parameters (such as the
probability of mutations and fitness functions) are based on
the time the entire evolution process took and how well the
best-obtained program performs. That way, I can select the
best-performing parameters and operators.

4 Experiments and Results
To assess how well different search algorithms perform and
provide a valid comparison to my experiments, I first measure
the execution time of separate search algorithms in each of the
domains. Then, several experiments are performed with the
main focus put on selecting appropriate values for mutation
probabilities and comparing two different fitness functions,
since both of those factors are very difficult to deduct based
solely on the literature study. With these means, I can verify
if the solution proposed in the methodology section is func-
tional and answer the research question of whether it is possi-
ble to evolve a search procedure for the program synthesizer.

4.1 Robot path-planning

Figure 2: Average execution times of single algorithms in the robot
path-planning domain, which managed to successfully solve a task.
Green dots denote the minimum time, in which a search algorithm
managed to solve a task. The red dots denote the maximum time.
LNS stands for the Large Neighborhood Search, MH for Metropolis-
Hastings, AS for A*.

Robot path-planning domain is the simplest and the least
computationally demanding of all the tested domains. There-
fore, it provides a good test ground for parameter tuning. The
main goal is to steer the robot around a square board so that
it picks up the ball and delivers it to the goal location. To
calculate how close we are to the solution, an improved loss
heuristic is used as described in [5]. Execution times, under-
stood as the average amount of time a search algorithm needs
to find a successful program, can be seen in figure 2. I decided
to exclude the VanillaGP algorithm from the evaluation in this
domain as its efficiency was incomparably worse than the rest
of the algorithms. Each of the selected algorithms managed to
solve each task. However, the execution times differ greatly
with A* and Metropolis-Hastings exceeding Brute and Large
Neighborhood Search in terms of performance.

The genetic procedure has been first run with the settings
described in the methodology section. The tournament se-
lection procedure has been used with a crossover rate of 0.8.
Based on the execution times from the figure 2, the initial exe-
cution times of random search procedures have been sampled
from a uniform distribution ranging from 0 to 0.1 for each of
the search procedures. The size of generations was set to 100,
to provide sufficient variety in the genotypes, along with the
total number of generations of 50 and the maximum length of
a chromosome sequence of 6. The evolution has been carried
out on a set of 50 tasks of varying difficulty.

Mutation probability is one of the parameters, which value
could not be directly derived from previous papers because of
its dependence on the kind of genetic operators used and the
domain. My initial hypothesis stated, that, since the kinds
of applied mutations are not very radical (i.e. the degree
of gene modification is not high), the mutation probability
should be higher than the one proposed in the papers (from
0.01 to 0.05).

To verify this statement, for different values of this parame-
ter ranging from 0.01 to 0.2, several evolution processes have
been run. In order to compensate for the randomness of the
evolution, those experiments have been repeated 10 times and
the results for each value of the mutation probability have
been averaged. The best-performing programs found for each
of the parameters can be seen in the table 1. Each of them de-
veloped a search procedure that managed to find programs
that solve all tasks within both the training and the test set.

pm Sequence Timeout (ms)
0.01 A* 26.3
0.05 A* 26.4
0.1 Metropolis-Hastings 20.3
0.2 Metropolis-Hastings 19.5

Table 1: Sequences of algorithms evolved for different values of mu-
tation probabilities (pm) in the robot path-planning domain. Time-
out is defined as the time limit for each of the algorithms.

Unfortunately, no interesting chains of search procedures
have been discovered as the best-found programs simply con-
sist of two single search procedures which already scored the
best performance in the evaluation seen in figure 2. Those re-
sults do not come as surprising, as the tasks from the robot do-

6



Figure 3: Average execution times of program synthesizers which
found successful programs in the robot path-planning domain over
generations. Different values of mutation probability parameters are
tested.

main are relatively uncomplicated. A combination of several
search procedures can be expected to introduce an unneces-
sary level of complexity and overhead (each algorithm needs
to be set up beforehand) in the areas, where near-optimal so-
lutions can be found using more elementary methods.

What is interesting, however, is that the results fully sup-
port the proposed hypothesis, as they indicate that higher mu-
tation ratios lead to finding more efficient search procedures.
To analyze the course of the evolution, fitness and execution
time over generations is depicted in figures 3 and 4. As seen
in the graphs, synthesizers with lower mutation rates strug-
gle to explore the whole search space and quickly settle for
a less efficient solution, which is A* instead of Metropolis-
Hastings. On the other hand, higher mutation rates are re-
flected in more chaotic and random behavior, which prevents
the search from being stagnated in local minima. While the
results do not differ widely, it looks like the mutation proba-
bility of 0.1 manages to find a perfect degree of chaos with-
out descending into a fully random and chaotic search. This
claim has been confirmed by the experiments performed in
two other domains.

4.2 String transformations
String transformation aims to find a set of operations that
need to be performed on a string of characters to transfer from
one state to another. Finding an efficient search algorithm for
the tasks derived from the string transformations domain is
not a trivial job, which is pictured in figure 5. The graph
demonstrates, that finding a solution in this domain is much
more challenging than in the case of the robot path-planning
domain. Moreover, A* greatly eclipses all the other consid-
ered domains in terms of performance, as it is the only search
procedure that managed to solve all the training tasks within
10 seconds. What is more, not a single search procedure man-
aged to achieve 100% accuracy on the test set.

Due to the aforementioned difficulties, the other form of fit-

Figure 4: Average fitness of individuals in the robot path-planning
domain over generations. Different values of mutation probability
parameter are tested.

ness evaluation is tested- a weak one, as opposed to the strong
form of fitness evaluation proposed before. Instead of focus-
ing on finding programs that manage to solve all tasks and
then optimize the execution time, I focus on solving as many
tasks as possible in the shortest period. To that end, a new
fitness formula is developed as seen in equation 2. Now, the
genetic algorithm aims to find synthesizers that develop pro-
grams that are fast and manage to solve a satisfactory amount
of tasks. The minimum success rate of the program is 0.5,
however, this constant can be set to different values depend-
ing on what fraction of successfully solved task is deemed
sufficient. The idea behind this approach makes sense, as in
most cases what is looked for in program synthesis are solu-
tions that are proficient at discovering the user intent and, at
the same time, do not take too long to find satisfactory pro-
grams.

With that in mind, a new testing environment has been set
up. Due to the expansive computation costs, the limit of gen-
erations has been set to 30 with 30 individuals in each genera-
tion and a maximum sequence size of 6. Based on the execu-
tion times of individual search methods, the initial generation
has been populated randomly with execution times uniformly
distributed in the range from 0 to 10. Tournament Selection
Procedure has been used with the fitness defined in the equa-
tion 2. Crossover probability has been set to 0.8. To calculate
loss, optimized string alignment has been utilized. The evo-
lution has been carried out on a set of around 150 tasks with
multiple examples each and the accuracy was evaluated on a
separate set of 15000 tasks. Once again, a variety of mutation
probabilities is tested.

The most efficient test procedures can be seen in the table
2. What truly stands out in those results is the fact that, with
the mutation probability of 0.1, I managed to find a combina-
tion of two search procedures that performed better than their
counterparts composed of a single search procedure. As it
turns out, using Brute as the first search procedure followed
by A* results in a search procedure that manages to solve

7



Figure 5: Average execution times of single algorithms in the string
transformations domain. Green dots denote the minimum time, in
which a search algorithm managed to solve a task. The red dots
denote the maximum time. The maximum execution time per task
was set to the maximum of approximately 10 seconds.

pm Seq (ms) Time (ms) Acc (%)
0.01 Brute 51.5 → Brute 51.5 103 50.6
0.05 Brute 40.7 → Brute 47.1 87.8 52
0.1 Brute 38.96 → AS 56.74 95.7 64.5
0.2 Brute 52.9 → AS 31.6 84.5 53.8

Table 2: Sequences of algorithms evolved for different values of mu-
tation probabilities (pm) along with timeouts for each procedure in a
chain. Time column represents the summed timeout. Acc stands for
accuracy which described the average of percentage of tasks solved
by the best programs.

around 65% of train tasks with an average time of 95.7 ms
per task, which results in the highest fitness among all four
evolved chains. One very likely explanation can be found if
we look at the greedy nature of Brute which is heavily uti-
lized in the early stages of the search. First, the search space
is trimmed to then focus on a smaller part of it with a more
exploratory A*.

To validate the obtained results, the synthesized search pro-
cedure mentioned above has been run on a more sizeable test
set, consisting of similar tasks with completely different ex-
amples. Two other search chains made of just one single
search procedure have also been evaluated to provide a solid
comparison. The results can be seen in table 3. It can be no-
ticed that, even though a single A* procedure took shorter on
average to complete tasks, the combination of Brute and A*
managed to solve a larger amount of tasks. The performance
of this combined search procedure stands out even more if
one takes a look at a single Brute search, which falls short
in both the execution time and the average solved number of
tasks. This example clearly proves that one can evolve com-
binations of search procedures, that perform better than their
singular equivalents.

Seq (ms) Avg Time (ms) Acc (%)
AS 38.96 → AS 56.74 14.92 52.48
Brute 38.96 → Brute 56.74 30.08 51.38
Brute 38.96 → AS 56.74 22.25 65.97

Table 3: Comparison of average execution times and accuracy of
three different search procedures performed on a test set. One con-
sisting only of Brute, one only of A*, and one as a combination of
both.

4.3 ASCII (Pixel) art
This domain is especially interesting as both approaches to
fitness calculation can be tested. The main goal here is to
color a board consisting of black and white pixels in a cer-
tain way, that follows a specific pattern. As a loss function,
an optimized combination of Hamming and cursor (which
is used to recolor the pixels) distance is used. Some of the
search procedures (Metropolis-Hastings and A*) manage to
find fully accurate programs with a time limit of 60 seconds
per task. However, their execution times are hardly accept-
able. As seen in the figure 6, the dominance of A* over the
other search procedure is even more noticeable than in the
case of the previous domain. Therefore, I did not suspect to
find any other appealing combinations of search procedures.
However, this test case can still make for a good compari-
son and a bridge between the two fitness methods that were
proposed earlier.

Figure 6: Average execution times of various search algorithms in
the pixel art domain. The maximum task of execution per task was
set to the maximum of approximately 60 seconds.

With that in mind, two experiments have been set up, with
two different fitness formulas introduced before. To assure
that the comparison is fair, all the other parameters are identi-
cal in both cases. The execution times of the initial generation
have been sampled from a uniform distribution ranging from
0 to 10. Each generation is of size 30 with the limit of gener-
ations also set to 30 and the crossover probability of 0.8. The
operators and other procedures have been configured as de-
scribed in the methodology. The experiments have been run

8



several times with a mutation probability of 0.1, which was
verified experimentally in the robot domain as the most suit-
able choice. Two different fitness evaluation methods men-
tioned before have been tested. Table 4 presents the results
obtained on the train set, whereas table 5 depicts the results
from the test set.

Fit Search Timeout (s) Avg t (s) Acc (%)
Strong AS 2.267 0.705 100
Weak AS 0.501 0.361 50

Table 4: Comparison of results returned by the genetic algorithms
running two different fitness functions on the train set in the pixel
art domain. Fit represents the type of fitness equation used. The
Avg t column denotes the average time of execution per one task.

Fitness Search Timeout (s) Avg t (s) Acc (%)
Strong AS 2.267 0.721 99.1
Weak AS 0.501 0.366 47.8

Table 5: Comparison of results returned by the genetic algorithms
running two different fitness functions on the test set in the pixel art
domain.

Although the weak fitness function results in a maximum
execution time more than four times greater than its weak
equivalent, the percentage of the solved task is only two times
higher compared to the weak fitness function. This is most
likely caused by the fact, that most tasks can be solved with
a relatively small amount of effort, while a few outliers cause
the discovery of a chain of search procedures that solves all
the examples to be relatively long. What is more interesting,
this property is also reflected in the average execution times,
because, despite the high difference between the maximum
execution times in the two examined cases, average execution
times seem to be directly proportional to the number of solved
tasks.

The results seem to confirm the statement made when in-
troducing the second fitness evaluation method. Both fitness
methods can be considered valid and their suitability relies on
the preference of the user, who needs to answer the question
of whether sacrificing half of the tasks is worth the difference
in the execution time. Certainly, the fitness functions can be
modified to find other optimal success/time ratios. Moreover,
an interesting next step could be restructuring the strong fit-
ness function to start awarding fitness for execution time only
above a certain threshold of successfully completed tasks.

5 Conclusion and Future Work
To answer the main posed research question, I think that the
experiments performed here, especially the one in the string
domain, have proven that it indeed is possible to develop an
efficient, combined search procedure with the use of genetic
algorithms. However, the results are strongly dependent on
the domain, considered search procedures, and what is ex-
actly meant by an ’efficient search procedure’. To reflect
the last dependency, two different fitness functions have been
presented. While one of them maximizes the number of tasks

solved at the cost of the synthesizer’s speed, the other one
aims to find an ideal balance between the satisfactory execu-
tion time and the percentage of the solved tasks. In the case
of the former formula, all of the evolved selection procedures
simply consist of one, the most efficient search procedure.
Whereas the latter manages to prove the point of the research
by providing a combination of two search procedures, namely
Brute and A*, that attains higher results than in the instance of
those two methods running separately in one of the domains.

On the other hand, the fact that multiple evolved proce-
dures consist of just one search does not indicate that those
results are to any degree less valuable. One could still em-
ploy the techniques described here with the fitness function
tailored to their needs to find an acceptable balance between
the time one search procedure is run and the number of tasks
from a domain solved. Therefore, the range of applications
is not restricted by the requirement of having more than one
search procedure.

In the process of this research, I have proposed and thor-
oughly described a method to evolve a search procedure for
program synthesis and answered all the subquestions related
to the design specifications of the genetic algorithm. While
most of the parameters and the operators have been chosen
by carefully examining the existing literature, some of them,
such as mutation probability, have been picked with the help
of experiments in three different domains. All the details can
be found in the methodology and experiments sections.

It is important to note, that there is still a lot of room left
for future work, given the number of different factors that
contribute to the final results. Starting from the type of ini-
tial timeout distributions (what if the distribution is normal
instead of uniform?) to the types of selection strategies and
crossover/mutation operators used, the range of possible aug-
mentations is practically limitless and can be explored by
other researchers. What is more, the created experimental
framework is by no means bound by the search methods listed
in this paper and can be easily extended with newer, more ef-
ficient ones. Analogically, new domains can be considered
apart from the three of them discussed earlier, since other sets
of tokens may be better suited for the sort of search proce-
dures discussed here.

On a final note, one great limitation should be highlighted.
A reader could notice that some of the search procedures were
heavily under-performing compared to the others. This is
mostly due to the fact, that they were still being worked on by
another group of students as my research was performed, thus
it is encouraged to repeat the experiments conducted here,
once the search procedures have been improved.

6 Responsible research
During this research project, several guidelines have been fol-
lowed to ensure that the research is conducted responsibly.
Those guidelines include the topics that were discussed in the
responsible research lecture. Since program synthesis is not
directly associated with any ethical issues, the most important
part of performing responsible research is ensuring that the fi-
nal results are well-founded. The following section looks into
all the steps I have taken to make the final results fully sub-

9



stantiated.
One of the greatest issues that haunts the scientific world is

failing to replicate the results obtained by other researchers.
In order to make my research fully reproducible, several mea-
sures have been adopted. Firstly, all the steps needed to
conduct the same kind of experiments have been thoroughly
listed along with the set parameters. Secondly, the full code,
as well as the commit history and the used data sets, is pub-
licly accessible through the Github platform [14]. Moreover,
the specifications of the employed DelftBlue supercomputer
[15] are detailed in the appendix .1.

Another important matter is ensuring that the used data set
was valid and no data manipulation took place. The data
used consisting of input-output examples from different do-
mains is freely available on the Github repository. To assure
that the data set is diverse enough, samples of many different
sizes representing various difficulties of tasks were consid-
ered. Moreover, the data sets have been divided into train and
test sets so that overfitting could be avoided.

Last but not least, both positive and negative results have
been written down so that future researchers do not have to
repeat the already made mistakes. Results from every domain
have been scrupulously listed, no matter if they fell in line
with the expected outcome or not.

References
[1] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh.

Program synthesis. In Foundations and Trends in Pro-
gramming Languages, volume 4, chapter Introduction.
2017. doi: 10.1561/2500000010.

[2] Armando Solar-Lezama. Introduction to Program Syn-
thesis 6.S084/6.887 2020 - MIT course, 4 2022.

[3] Andrew Cropper and Sebastijan Dumancic. Learning
large logic programs by going beyond entailment. In
IJCAI International Joint Conference on Artificial In-
telligence, volume 2021-January, 2020. doi: 10.24963/
ijcai.2020/287.

[4] Stephen Muggleton and Luc de Raedt. Inductive Logic
Programming: Theory and methods. The Journal
of Logic Programming, 19-20(SUPPL. 1):629–679, 5
1994. ISSN 0743-1066. doi: 10.1016/0743-1066(94)
90035-3.

[5] Bas Jenneboer and Sebastijan Dumanči. Program Syn-
thesis with A*. Technical report, 2022.

[6] Stef Rasing and Sebastijan Dumančić. Improving
Inductive Program Synthesis by using Very Large
Neighborhood Search and Variable-Depth Neighbor-
hood Search. Technical report, 2022.

[7] Victor Van Wieringen. Comparative analysis of the
Metropolis-Hastings algorithm as applied to the domain
of program synthesis. Technical report, 2022.

[8] Farhad Azimzade and Sebastijan Dumančić. Vanil-
laGP: Genetic Algorithm for Inductive Program Synthe-
sis. Technical report, 2022.

[9] Michael Negnevitsky. Evolutionary computation. In
Artificial Intelligence A Guide to Intelligent Systems Ar-
tificial Second Edition, pages 219–257. 2005.

[10] David Beasley, David R. Bull, and R. R. Martin. An
overview of genetic algorithms : Part 1, fundamentals.
University Computing, 2(15), 1993. ISSN 0265-4385.

[11] Noraini Mohd Razali and John Geraghty. Genetic algo-
rithm performance with different selection strategies in
solving TSP. In Proceedings of the World Congress on
Engineering 2011, WCE 2011, volume 2, 2011.

[12] Ahmad Hassanat, Khalid Almohammadi, Esra’a Alka-
faween, Eman Abunawas, Awni Hammouri, and
V. B.Surya Prasath. Choosing mutation and crossover
ratios for genetic algorithms-a review with a new dy-
namic approach. Information (Switzerland), 10(12),
2019. ISSN 20782489. doi: 10.3390/info10120390.

[13] David Beasley, David R Bull, and Ralph R Martin. An
Overview of Genetic Algorithms : Part 2 , Research
Topics 1 Introduction 2 Crossover techniques. Univer-
sity Computing, 15(4), 1993. ISSN 02654385.

[14] Michał Okoń, Fabian Radomski, Lucas
Kroes, Nikolaos Efthymiou, and Philip Tem-
pelman. Evolving Program Synthesizers.
https://github.com/FabianRadomski/EvolvingProgramSynthesisers,
2022.

[15] Delft High Performance Computing Centre
(DHPC). DelftBlue Supercomputer (Phase 1).
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1,
2022.

.1 System specifications
The experiments, including training and verification, have
been run on the DelftBlue supercomputer, on the standard
node with 2x Intel XEON E5-6248R 24C 3.0GHz CPU us-
ing 48 cores.

The scripts used to that end can be found on the GitHub
repository and are named ’batchsingle.sbatch’ (running sin-
gle search procedures), ’searchevo.sbatch’ (running the main
evolution process), ’analyzeseraches.sbatch’ (analyzing exe-
cution times of single search procedures).

10


	Introduction
	Related Work
	Program Synthesis
	Brute
	A*
	Very Large Neighborhood Search with Variable-Depth Neighborhood Search (Vlute)
	Metropolis-Hastings
	VanillaGP

	Genetic Algorithms

	Methodology
	Defining a chromosome
	Generating the initial population
	Calculating fitness
	Genetic operators
	Final evaluation of selection procedures

	Experiments and Results
	Robot path-planning
	String transformations
	ASCII (Pixel) art

	Conclusion and Future Work
	Responsible research
	System specifications


