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ral Networks. This study implements and shows a viable architecture
to detect and classify blob-like input data. An architecture consisting
of three parts a region proposal network, weight calculations, and the
classifier is discussed and implemented.

The region proposal network is build based on a blob detecting
Laplacian of Gaussian function. The architecture is tested and verified
on the Multi MNIST dataset that is generated based on the MNIST
dataset that consists of handwritten digits. Results show that, on
average, the region proposal network can locate the blobs in the input
with an accuracy of within a single pixel distance from the ground
truth. Two different ways of decoding the rate data coming from the
region proposal network where discussed the Peak based decoder could
propose regions even if these regions are situated closely together.
A Center of Mass decoder is slightly more accurate than the Peak
based decoder but at a higher computational cost and performance
degradation when the regions are close together.

The region proposal network at worst only accounts for 3.19%
of inaccuracy. The implementation shows that the architecture is a
viable way of detecting and classifying multiple objects within the
input. The data shows that the region proposal network itself is a
feasible way of detecting blob-like objects within its input.
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Abstract

Spiking Neural Networks have opened new doors in the world of Neural Networks.
This study implements and shows a viable architecture to detect and classify blob-like
input data. An architecture consisting of three parts a region proposal network, weight
calculations, and the classifier is discussed and implemented.

The region proposal network is build based on a blob detecting Laplacian of Gaus-
sian function. The architecture is tested and verified on the Multi MNIST dataset that
is generated based on the MNIST dataset that consists of handwritten digits. Results
show that, on average, the region proposal network can locate the blobs in the input
with an accuracy of within a single pixel distance from the ground truth. Two different
ways of decoding the rate data coming from the region proposal network where dis-
cussed the Peak based decoder could propose regions even if these regions are situated
closely together. A Center of Mass decoder is slightly more accurate than the Peak
based decoder but at a higher computational cost and performance degradation when
the regions are close together.

The region proposal network at worst only accounts for 3.19% of inaccuracy. The
implementation shows that the architecture is a viable way of detecting and classifying
multiple objects within the input. The data shows that the region proposal network
itself is a feasible way of detecting blob-like objects within its input.
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Introduction 1
The introduction of Spiking Neural Networks asks for a new way of thinking about
problems. Regular Artificial Neural Networks do not incorporate the notion of time
within their core design, Spiking Neural Networks do. This provides a new way of
processing data that has not been seen before. It opens a world full of possibilities that
can be explored. Spiking Neural Networks already show promising results. Steffen et
al. [15] wrote a survey about the possibilities in combining neuromorphic stereo vision
and Spiking Neural Networks. They note the following:

”Neuromorphic systems have enormous potential, yet they are rarely used in
a non-academic context. [. . . ] event-based solutions are already far superior
to conventional algorithms in terms of latency and energy efficiency” [15,
p. 150]

Within the world of Spiking Neural Network research, classifiers and learning algo-
rithms have been well studied. One of the next steps after image classification networks
is object recognition. Combining both a localization and classification problem within
a single network poses some exciting challenges. The extra dimension of time that
Spiking Neural Networks possess are used within the proposed architecture, providing
an excellent view of one of the many benefits of Spiking Neural Networks.

1.1 Motivation

This study started as research on processing radar data with Spiking Neural Networks.
It was quickly discovered that not much research into processing data with Spiking Neu-
ral Networks was done. Even research on radar data processing with regular Artificial
Neural Networks was very sparse. Open datasets that were useful to start with radar
research were not suitable for the type of radar data processing using Spiking Neural
Networks. Within the Circuit and Systems research group efforts have started to create
such datasets. Nevertheless, other interesting problems could already be solved without
having a radar dataset.

Radar data visualized in Range-Doppler format shows multiple targets within a
single image as a blob. Good ways of tracking those blobs and classifying these radar
blobs using Spiking Neural Networks were still missing. This study tries to solve the
first problem be looking at the problem with a fresh view about the possibilities of
Spiking Neural Networks.

The evaluation of such a region proposal network raises the need for a good test
set. While radar datasets where hard to come by, the MNIST dataset consisting of
handwritten digits is already used a lot in Spiking Neural Network research. From
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the MNIST dataset, a new dataset was created. This dataset, which also includes
localization data, opened the doors to blob detection using Spiking Neural Networks.

The motivation for this study thus started from the need for processing radar data.
However, the need for a good and straightforward dataset also presented itself. This
study tries to solve both. A dataset that can be used within an object detecting
Spiking Neural Network as well as a architecture and implementation that can locate
and process this generated dataset.

1.2 Thesis Goals

The main goals of this study are to:

• Create a Spiking Neural Network architecture that can be used to locate and
classify blob-like data within a single input sample.

• Implemented the architecture using Spiking Neural Networks to identify and clas-
sify blob-like data.

• Find or create a dataset that can be used to analyze networks that work with
blob-like data.

1.3 Contributions

The main contributions of this thesis are as followed:

• A dataset generator that can be used to generate datasets based on the MNIST
dataset. The generator can be used to generate a dataset according to precise
specifications like minimum separation, the scale of the digits, and rotation.

• Three reference datasets that are used within this study to analyze the perfor-
mance of the implemented region proposal network.

• A Spiking Neural Network architecture for locating and classifying multiple ob-
jects.

• A software framework that can be used to quickly test the proposed architecture
with different region proposal networks or classifiers.

• A region proposal network that can locate blob-like input data to within sub-pixel
precision of the ground truth.

• A full system implementation that combines an off the shelf classifier with the
proposed region proposal network to locate and classify separate digits within the
generated Multi MNIST dataset.

• An analysis of the region proposal network performance and the benefits compared
to existing solutions.

• A full system analysis that is showing that the proposed architecture is a viable
solution to identify and classify multiple blob-like objects within a single input.
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1.4 Thesis Outline

The thesis is divided into four main parts. The first part gives the reader background
knowledge about Neural Networks. The difference between typical Artificial Neural
Networks and Spiking Neural Networks. The neurons and synapse these networks are
based on. How data is pre-processed to be used in these neuron networks. But also
how multiple object detection works right now in Artificial Neural Networks. After
that, the system use case is discussed in chapter 3. Here the input data to the system
will also be explained. Subsequently, the system architecture and implementation are
described in chapter 4. How the network architecture is designed and the different parts
of the architecture are all disclosed here. The implementation is clarifying how a region
proposal network could be implemented and what kind of implementation is used for
the full system implementation. The different parts of the region proposal network, as
well as the full system, are being analyzed and reported in chapter 5. And finally the
conclusion and future work are discussed in chapter 6 and chapter 7
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Background 2
In order to better understand the proposed architecture and implementation, back-
ground information is needed. This chapter introduces the notion of Spiking Neural
Networks and neuromorphic electronic systems in general. It tries to answer the fol-
lowing questions; which simulators are available to run these networks? How is input
data encoded so it can be processed within a neuromorphic system? Furthermore, how
are multiple object detection problems solved within Convolution Neural Networks?

2.1 Artificial Neural Networks

An Artificial Neural Network (ANN) is a network used to perform complex computing
tasks. The computational model introduced by Warren McCulloch and Walter Pitts in
1943 [16] is inspired by the networks that are inside our brains. These networks consist
of a set of nodes, which are sometimes called artificial neurons. These nodes have a
specific value and transmit this value to connected nodes. Connected nodes compute
their value by some non-linear function of the sum of its inputs. Weights increase or
decrease the strength of a connection between the nodes, these weights are usually
adapted during learning and are where the intelligence of an Artificial Neural Network

Figure 2.1: Figure showing an Artificial Neural Network architecture. [1]
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originates. The function the nodes perform can be different per layer. Artificial Neural
Networks are used for complex tasks such as computer vision.

2.2 Spiking Neural Networks

Spiking Neural Networks (SNN) are a special type of neural network. With an Artificial
Neural Network, there is no notion of time. The input nodes of an ANN have a
certain value, and based on that value, the output value is computed. Spiking Neural
Networks try to mimic brain-like behaviour. Our brain is continuously processing
events, which are also called spikes. Spiking Neural Networks consist of neurons and
synapses that connect these neurons. The great benefit of Spiking Neural Networks
is the theoretical lower power consumption and the ability to solve complex problems
very power efficiently. How these Spiking Neural Networks are created and used to
solve tasks such as computer vision problems is described in the next sections.

2.3 Neuromorphic Electronic Systems

In 1990 Carver Mead proposed the concept of neuromorphic electronic systems [17].
Mead states that for many problems, biological solutions exceed digital methods in
terms of their effectiveness by orders of magnitude. The concept uses the analog domain
to perform computation. The idea comes from the effectiveness of the brain. The brain
can perform an estimate of 1016 operations per second once the fundamental limits
of Moore’s law have been reached Douglas et al. estimate that a digital system would
dissipate 10 MW [18] to do the same. Comparing this to the few watts a brain dissipates
shows the potential of neuromorphic computation. The TOP500 Supercomputers [19]
currently show the IBM Summit as the number 1 computer in the world. The peak
performance of this computer is about 200 PetaFlop/s. In other words, it can perform
about 20 times the amount of operations per second the human brain performs, but
the IBM Summit uses 10 MW to do this. This comparison is not truly fair because our
brain does not perform floating-point operations. However, it does show the massive
potential of doing compute in a more biological method.

2.3.1 Neurons

The neuron consists of thee parts, the soma, dendrites, and axon (see Figure 2.2).
The neuron acts as the basic functional block of the human brain. Neurons can be
divided roughly into three groups. The motor neurons which sense signals from the
brain and the spinal cord and control the muscles but also our gland (responsible for
hormones, for example). Sensory neurons are the neurons that receive external stimuli
from our sensory organs. Such as the ears (sound), our eyes (vision) but also our
skin (touch). The stimuli from these external sensory organs are converted to action
potentials, also called spikes. Through the last group of neurons, the interneuron, these
action potentials are connected into a neural circuit. The interneuron can be divided
into two groups: the relay interneurons and the local interneurons. Relay interneurons
have long axons and can connect a specific region of the brain with other regions. The
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Figure 2.2: Figure showing a neuron with the three components, the soma, dendrites, and
axon. [2]

local interneurons form local neural circuits with nearby neurons. These local neural
circuits analyze pieces of information. Local neural circuits and the interaction between
interneurons are a key process that allows the brain to carry out complex functions. It
gives the brain the ability to learn and make decisions [20]. The human brain has an
estimate of eighty-six billion neurons and a quadrillion synaptic connections in a child
and 100 to 500 trillion connections for an adult [21][22].

A neuron responds to input stimuli, and when there are enough stimuli or the
stimuli are large enough, it produces an output spike. These spikes go through the
axon to all axon terminals. The spike is an all or nothing event. All other neurons
that have a synaptic connection with the neuron that just spiked will receive this
event through their dendrites. More on these synaptic connections will be discussed
in subsection 2.3.3. After the neuron fires, the membrane voltage of the neuron resets
itself, and the neuron will enter a refractory period in which the neuron will not produce
new spikes and does not respond to input stimuli. When a neuron receives not enough
input stimuli, the membrane voltage of the neuron slowly goes back to its resting state.
Figure 2.3 shows the progress of responding to input stimuli the reset and the refractory
period.

2.3.2 Neuron Model

To use the potential compute power of neurons, a model of a neuron is needed. Hodgkin
and Huxley created a comprehensive model [23]. The model was created by inserting
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Figure 2.3: Figure showing the action potential in a neuron. The spiking phase, when it
reaches the threshold, the reset, and the refractory period. [3]

micro-electrodes into the axons of a squid the resting and action potentials were mea-
sured [24] and converted into a mathematical model. The model describes the action
potentials in neurons and how these are transmitted through the axons. The model
consists of a set of nonlinear differential equations that describe the electrical character-
istics of neurons. For the interested reader, the equations can be found in [23]. While
this model represents the neuron behaviour to high precision, it is also very complex
and hard to implement in silicon [25].

Izhikevich introduced a model that uses the biologically accurate model of Hodgkin
and Huxley and combines it with the simplicity of the integrate-and-fire model (dis-
cussed below) [26]. This model is still able to reproduce the spiking patterns that can
be found in the human brain but is computationally more efficient than the Hodgkin
and Huxley model. The model is still able to represent the different spike trains that
can be found in the human brain. The limiting factor of this model is the shape of
the spikes. The spike shape is always the same. The Izhikevich model can therefore be
used to study spike patterns and interactions between neurons but not to create and
biologically accurate model.

The integrate-and-fire model is a very simplistic model [27]. It models the neuron
as a simple summation process (integration). Input stimuli are summed, and when the
sum over time reaches a certain threshold, an output spike is generated. This model is
one of the earliest models introduced in 1907 by Louis Lapicque, and it is still widely
used today. The model is described by Equation 2.1. The equation is the derivative of
the equation for capacitance C = q/V .

I(t) = Cm
dVm(t)

dt
(2.1)

But the equation shown in 2.1 has a problem. The neuron here is modeled in a
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Figure 2.4: Figure showing two neurons with a synaptic connection. [4]

way where it has infinite memory. Once a stimulus has been received, the membrane is
charged to a certain point and will never return to its resting state. To solve this prob-
lem, the leaky-integrate-and-fire model was introduced. The model added a discharge
resistor. The membrane potential would leak through this resistor back to its resting
state. This neuron can be more easily implemented in hardware.

I(t)− Vm(t)

Rm

= Cm
dVm(t)

dt
(2.2)

The leaky-integrate-and-fire model shown in Equation 2.2 is the model that is being
used in the implementation. The added complexity of the Izhikevich model is not
necessary. Also, the implementation does not thrive on being biologically accurate,
so the Hodgkin and Huxley model is not used. Also, the behaviour seen in the leaky-
integrate-and-fire can be modeled using the Izhikevich and Hodgkin and Huxley model.
So the implementation with some conversion should work with those models as well.

2.3.3 Synapse

The neuron itself is described, but to do something meaningful with neurons, a net-
work is needed. The connections between neurons that enable the neurons to form
a network are called synapses. The synapse passes electrical signals between neurons
(see Figure 2.4). When there is a spike event in the sending neuron, it is sent through
the axon terminals to the synaptic cleft. Here neurotransmitters are being released
from the presynaptic side. These neurotransmitters are received by receptors on the
receiving neuron side, also called to postsynaptic side. The dendrite on the receiving
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neuron receives these neurotransmitters and is able to generate postsynaptic events.
These are stimuli for the receiving neuron.

While the biological model of the synapses is complex and not fully understood
yet, it is clear that in order to create neuron networks a connection between neurons
is necessary. In the implementation, a current-based synaptic model is used. When a
presynaptic event happens, the model adds a preset amount of current on the postsy-
naptic side. The amount of current that is added is variable and is called a weight. By
changing the weights of the synaptic connections between neurons, the ability to create
networks with complex behaviour exists.

2.4 Spike Encoding

Within Spiking Neural Networks, information can be encoded in numerous ways. The
two types of encodings used in the implementation are discussed below, spike rate
encoding and temporal coding.

2.4.1 Spike rate encoding

Adrian and Zotterman first introduced rate encoding in 1926 [28]. They showed that
the spikes coming from sensory neurons changed rates based on weights that were hung
from muscles.

Spike rate encoding is used in this study for encoding pixel-based inputs. These
pixel-based inputs are converted to frequencies at which neurons will fire. The input
neurons fire at the rate that corresponds to the converted pixel values. One way of
doing this is by precisely timing the spike events. The periods between these precisely
timed spikes are always the same. There is also the possibility to have a slight phase
shift between the spike trains by applying a random offset. A more natural way of spike
rate encoding is by using a Poisson distribution to generate spike events. This way, the
periods between the spikes are not exact, but on average, the spike rate still corresponds
to the intended rate. Both the Poisson based rate encoding and the precisely timed
encoding will be used in this research. These different types of rate encodings are used
because they illustrate how sensor data could potentially enter a neuromorphic system.
The system should be designed to handle these types of spike trains. Figure 2.5 shows
a visual representation of the generated spike trains using the discussed methods.

2.4.2 Temporal coding

Temporal coding looks at spike timing. The time at which spike events occur conveys
the information. The Spiking Neural Network used for classifications in the implemen-
tation uses Temporal coding for its output. The first spike that occurs after the input
is shown to the network describes the classification output. This process is also called
time to first spike.
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(a) Spike Rate Encoding

(b) Spike Rate Encoding with a random offset

(c) Spike Rate Encoding using a Poisson distribution

Figure 2.5: Figure showing different ways of generating spike trains that represent a certain
spike rate. The spike train with and without a random offset is shown, as well as spike trains
generated using a Poisson distribution.

2.5 Spiking Neural Network Simulation

No hardware that implements the leaky integrate and fire model is currently available
for testing these types of networks. In order to still experiment with Spiking Neural
Networks, various simulators are available. Two simulators are used for the performed
experiments.

Brian2 [29] is a python-based simulator. Its the successor to Brian1, which is a highly
popular Spiking Neural Network simulator. Within Brian2, neuron and synaptic models
are defined as a system of differential equations. Hodgkin and Huxley, Izhikevich,
and leaky-integrate-and-fire can all be implemented within Brian2. One is also free
in defining the synaptic model and how it connects while simulating. The synaptic
connections can also dynamically be adapted while simulating. A feature that is greatly
used within this implementation. The overall system is implemented in Brian2.

Within the Circuits and Systems group of the Delft University of Technology, a
Spiking Neural Network simulator is also being developed. This simulator is highly
performant and runs faster than Brian2. The simulator is hardware-focused and simu-
lates a leaky integrate and fire model based on its resistor and capacitor values. The
synaptic connections are modeled as current-based synaptic connections. This simula-
tor was used for preliminary testing of the region locator and the classifier.

2.6 Detecting Multiple Objects

High performing machine learning techniques have been used to solve the object detec-
tion problem. Two of these techniques have been used as inspiration for the proposed
Spiking Neural Network architecture. The first one is R-CNN, and the second one You
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Figure 2.6: Figure showing a system overview of R-CNN. The system takes an input image
(1). Extract region proposals from that image (2). Computes features for each proposal using
a CNN (3). And classifies each region with a class-specific linear SVM (4). [5]

Only Look Once or YOLO for short. They will be briefly discussed below.

2.6.1 Regions with CNN features

Regions with CNN features or R-CNN for short [5] is a method that uses Convolutional
Neural Networks to do region proposals. Girshick et al. came up with this solution
because they saw object detection performance plateauing. Before, R-CNN object de-
tection was done using complex systems that did feature recognition. Systems like
SIFT [30] and HOG [31] which generate orientation histograms. Girschick et al. rec-
ognized the rise in CNN usage for image classification but knew that in order to do
object detection, the localization problem also had to be solved. Their method gener-
ates about 2000 category-independent region proposals for the VOC 2007 dataset. The
region proposal is done using a selective search, but they argue that the method itself
is agnostic to a particular region proposal method. After the region proposal features
are extracted from the regions using Caffe [32]. These features are then classified using
a Support-vector machine (SVM) [33].

2.6.2 You Only Look Once

You Only Look Once, or YOLO for short, handles the object detection problem in a
single network YOLO[6]. Instead of running a couple of smaller networks, YOLO resizes
the input image to a fixed 488 by 488 pixels running a single Convolutional Neural
Network on that resized image and output its predictions. The predictions consist of
an x and y component, which represents the center of the box. But also the width and
height of this bounding box. The class that belongs to that particular bounding box is
included as well. Furthermore, a confidence level that tells how confident the network is
that that prediction is correct is added. Compared to R-CNN, YOLO already generates
fewer regions. YOLO generates 98 regions compared to the 2000 regions the selective
search of R-CNN generates.
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Figure 2.7: Figure showing a system overview of the You Only Look Once detection system.
Three steps are given. First, the resizing of the image. Second, running the convolutional
network. And third, the non-max suppression to filter out classifiers that were low on the
confidence level. [6]

Figure 2.8: Figure showing the convolutional architecture of the You Only Look Once detector.
Twenty-four convolutional layers are used, and two fully connected layers. [6]
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System Use Case 3
Before the actual system architecture and implementation are discussed, let us briefly
look at the system use case. Radar data is discussed because this is where the architec-
ture has direct possible use cases and is where the reference region proposal system is
designed for. A possible dataset to test this system ImageNet is discussed after. Next,
the MNIST dataset is explained and why it is similar to radar data. The last section
is about Multi MNIST. Multi MNIST is the dataset generator that was used for this
proof of concept implementation. The connection with MNIST and the Multi MNIST
generator are discussed. The contents of a Multi MNIST dataset and how the dataset
is encoded is explained as well.

This study mainly focuses on blob-like data. However, the proposed architecture
has more use cases. If the input data has a larger resolution than the classifier, the
proposed architecture can be used to focus the classifier on a specific part of the input
data. These use cases, outside of blob-like data, will not be discussed further in this
study.

Figure 3.1: Example vehicle data with Range-Doppler data on the bottom.
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Figure 3.2: Example Doppler-Range data. [7]

3.1 Radar Data

Figure 3.1 shows a snapshot of data from a sensor-packed vehicle. On the bottom row,
Range-Doppler data is shown. What one can see here is that persons are detected,
and their specific radar signature is shown. All these blobs are within a single Range-
Doppler data frame. In order to be able to classify these, they first need to be separated
or in other words, located.

While radar data is where the idea for the architecture came from, there are some
problems when using radar data. Suitable sized datasets are hard to find and are mostly
kept private. There are also no existing Spiking Neural Network classifiers for these
kind of datasets. Even research on deep Convolutional Neural Networks using these
datasets is very sparse.

Figure 3.2 shows a figure of radar data. What can be seen here is that the radar
data consists of multiple blobs. These blobs represent certain objects. In order to test
the region proposal network, a dataset consisting of blobs located at different positions
within a data sample is required.

3.2 Available Datasets

Due to the unavailability of radar datasets, alternative datasets that have similarities
or show the same kind of problems as radar like data have been investigated. Three
possibilities are discussed below.
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Figure 3.3: Random subset of images from the ImageNet dataset. [8]

3.2.1 ImageNet

Some very complex classification problems can be solved by neural networks. He et
al. [34] already shows a deep Convolutional Neural Network with 1000 layers. With
networks like that, they are able to solve complex classification problems like the Im-
ageNet [8] dataset. The ImageNet dataset has over 1.2 million training images, 50
thousand images used for validation, and 100 thousand images that can be used for
testing. These images are spread over a thousand classes (see Figure 3.3). This Im-
ageNet dataset contains the labels as ground truth, but also the bounding boxes and
thus it could be used as a localization dataset.

Some research has been done in trying to create a Spiking Neural Network classifier
for ImageNet. Sengupta et al. [35] did this by training an Artificial Neural Network
and converting it to a Spiking Neural Network. One of the main reasons to do it this
way is because training Spiking Neural Networks is still non-trivial.

While datasets like these are available, they do not adequately represent blob-like
data the radar produces. A different dataset is required to test the system implemen-
tation.

3.2.2 MNIST

MNIST[36] is a database of handwritten digits going from zero to nine. It contains
over 70,000 samples. The samples are divided into 60,000 samples as a training set and
10,000 samples used for testing. The digits are centered at the center of mass and are
size-normalized to fit within a 20 by 20 pixel box. The final MNIST dataset is 28 by 28
pixels in size and uses only a single monochrome 8-bit color channel. Figure 3.4 shows
a small subset of the digits inside the MNIST dataset. The MNIST dataset is used
to train classifications networks. There is no need for localization because a sample
consists of only a single object with a defined location.
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Figure 3.4: Visualization of a random subset of the MNIST dataset.

Using the MNIST dataset reasonable results can be achieved when converting net-
works from Artificial Neural Networks to Spiking Neural Networks. Hunsberger et
al. [37] show performance on the MNIST dataset of 98.37% by introducing spiking
behaviour with leaky integrate-and-fire neurons.

Also, learning methods like backpropagation [38] have been implemented in Spiking
Neural Networks to train on the MNIST dataset. Lee et al. [39] show an accuracy of
99.59% when using spike-based backpropagation.

But even unsupervised learning methods that our brain could use, like spike-timing-
dependent plasticity (STDP) [40] are being used to train networks to classify the MNIST
dataset; Diehl et al. [41] show a 95% accuracy using this method.

Datasets like MNIST require fewer layers and less complex networks to get rea-
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sonable results. Lind published a reference implementation of a single-layer Artificial
Neural Network that has a performance of 85% [42].

MNIST is a very suitable dataset to test out new networks and their classification
performance. However, the MNIST dataset only consist of single digits per image
sample. There is no bounding box information, which would also be useless because all
the digits are sized normalized to fit within the 20 by 20 pixel box.

3.2.3 Multi MNIST

To combine the simplicity of MNIST but still be able to solve object detection problems
with simple classifiers, the Multi MNIST generator was created. Multi MNIST is a
dataset that consists of multiple digits from the MNIST dataset. A Multi MNIST
sample consists of a larger input image. The Multi MNIST samples used in this proof
of concept are 84 by 84 pixels, three times larger than MNIST. However, the power of
this dataset is in the generation of it. The output size, which digits to use, how many
digits per sample are all adaptable. A dataset with specific requirements can thus be
very easily created.

3.2.3.1 Generation

The generation of a Multi MNIST dataset happens with a Matlab toolbox. The pro-
cedure is best explained by looking at the pseudo code in algorithm 3.1.

Per output image, the algorithm generates a bunch random numbers. First, how
many digits there will be in this output image. It is configurable what the minimum
and maximum amount of digits in a Multi MNIST image are. Next, the algorithms
randomly picks which digits are being used in this output image. Then for every digit
within this output image, the original MNIST dataset is being sampled randomly for a
digit with the specified label. This MNIST digit is given a random translation, and the
algorithm checks if the digit collides with other digits that are already in the output
image. This is done until the MNIST digit fits or the maximum number of retries has
been reached. If the maximum number of retries has been reached, the algorithm exits.
This normally only happens if very large values for Minseparation are being used, or one
tries to fit a large number of digits in a small output image. The coordinates of the
MNIST digit within the output, the original label, and the index within the MNIST
dataset are all being saved as ground truth. This process is repeated until the output
has the required total number of images. The toolbox also enables the user to generate
a dataset that rotates or scale the original MNIST digits within certain bounds. This
feature is not being used in the verification of this implementation.

3.2.3.2 Used Parameters and Results

A Multi MNIST dataset was generated to be used for this proof of concept implemen-
tation. The dataset has a size of 84 by 84 pixel size. All digits zero to nine were
used. Within each sample of the generated dataset, one to three digits are shown. The
dataset that was finally used to test the performance consisted of 10,000 Multi MNIST
image samples. Multiple datasets with a different minimum separation or even overlap
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Figure 3.5: Visualization of a random subset of the Multi MNIST dataset.

were generated (see chapter 5). For tuning the region proposal network, a test set was
generated that only used digits from the training set of MNIST. For all the performance
metrics, the dataset generator used the test set images of MNIST.

A small subset of this generated dataset is shown in Figure 3.5. The generated
datasets and the used parameters are shown in Table 3.1. The names of these datasets
will be used in chapter 5 as future reference. The minimum separation guarantees a
separation between black pixels of two different MNIST samples. It is still possible
that another black pixel is shown within the 28 by 28 boundaries of the classifier. How
this affects classification performance will be discussed in section 5.2
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Algorithm 3.1: Multi MNIST dataset generation

1 Outputimages ← Zeros(Ncols, Nrows, Nsamples);
2 Outputlabels ← Cell(Nsamples);
3 Outputcoordinates ← Cell(Nsamples);
4 Outputindex ← Cell(Nsamples);
5 for i← 0 to Nsamples do
6 Ndigits ← Random(1,Maxdigits);
7 Useddigits ← Sample([0− 9], Ndigits);
8 for j ← 0 to Ndigits do
9 MNIST ← Sample(MNIST ) where label is Useddigits;

10 repeat
11 Random translate of MNISTSample;
12 Check if random translation has Minseparation with digits in Outputimages[i];
13 if Max number of tries reached then
14 Throw error;
15 Exit;

16 until Separation > Minseparation;
17 Outputimages[i]← Outputimages[i] +MNISTSample;
18 Outputlabels[i][j]←MNIST label);
19 Outputcoordinates[i][j]← CoordinatesofRandomTranslation);
20 Outputindex[i][j]←MNIST index);

21 Save(Outputimages, Outputlabels, Outputcoordinates, Outputindex);

3.2.3.3 Encoding

In section 2.4 possible encodings within Spiking Neural Networks are discussed. For
the proof of concept implementation, the Multi MNIST dataset is encoded using spike
rates. Spike rate encoding has the benefit of continuous spike trains. It does not matter
where one starts looking at the spike train; there is no defined start or end. The benefit
of such an encoding is that the region proposal network can look at the spike train and
determine which regions to propose. There is some time between this region proposal,
setting the synaptic weights, and the classifier receiving its first spike. By not using
an encoding that is time-dependent, the classifier can start its classification anywhere
within the spike train.

For the generation of these spikes trains, three different encoding schemes here used.

• Spikes encoded using a fixed rate, so for the same spike frequency, every spike
happens at the same time.

• Spikes encoded using a fixed rate but with a random starting offset. Spikes with
the same frequency do not possibly happen at the same time anymore, but the
time between two spikes is fixed.

• Spikes generated according to a Poisson distribution. Here the spikes with the
same frequency do not happen at the same time anymore, and the time between
spikes is random.
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While the three schemes use a slightly different approach in generating the spike trains,
the used frequencies to generate the spike trains are all the same. The multi MNIST
data is all encoded into a 0 to 100Hz spike train. These are arbitrary numbers used
for simulation and are taken because the used MNIST classifier already used these
input frequencies. An actual hardware implementation would dictate the possible input
frequency range. Moreover, the system is not designed to a specific frequency range
with some slight parameter tuning the system could be adapted to also work with other
frequencies ranges.

The difference between the performance of these encodings are disccused in sec-
tion 5.2 for the region selection and in section 5.1 for the MNIST classifier. How the
different rate encodings affect the system as a whole is shown in chapter 5.

dataset name Minimum Seperation Overlap allowed

full test set overlap 0 Yes

full test set 3 3 No

full test set 6 6 No

Table 3.1: Table showing the three generated datasets and the used parameters. These three
different datasets are encoded using three different schemes resulting in 9 total tests.
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System Architecture and
Implementation 4
In this chapter, the architectural design is discussed. An overview of the design is
given, the reasoning behind this architecture, and the analysis of the design. The
first section discusses a theoretical architecture. A proof of concept implementation is
discussed in the sections thereafter.

The proposed design consist of three main parts:

• Region Proposal

• Weight Calculation

• Classifier

The function of these parts will be discussed in the next sections. The implementations
of these parts will be explained in the sections thereafter.

4.1 Architecture

Figure 4.1 shows an overview of the proposed architecture. One of the key elements
in this proposal is that the possible high bandwidth sensor data does not have to
leave the neuromorphic system. This severely limits the amount of data a conventional

Neuromorphic  Electronic System

Sensor Data Region Proposal Decoder

Conventional Compute

Weight
Calculation

Classifier Output Decoding

Figure 4.1: Proposed architectural overview. The architecture consists of three main parts;
the Region Proposal network, weight calculations, which adapted the synaptic connections
from the input data to the classifier and the classifier itself.
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Sensor Data Decoder/Encoder

Conventional Compute System or
Neuromorphic Electronic System

Select Regions Decoder/Encoder Classifier Output Decoding

Neuromorphic  Electronic System

Figure 4.2: Architectural overview of network without rerouting of the sensor data input to
the classifier and re-encoding at every step.

compute system needs to process and possibly reducing the power consumption on the
conventional compute side as well.

Sensor data, as discussed in chapter 3, transform the asynchronous events in the
world around us in something electrical systems can process. Spiking Neural Networks
are an ideal platform to process these asynchronous events. Moving the neuromorphic
system close to this sensor possibly removes the need for digitizing the sensor output.
The neuromorphic system would then only report relevant data and not stream all the
raw sensor data to other systems.

Comparing the proposed architecture to an architecture where the region proposal
is not done separately from the classification, one can already see the possible benefit
of this implementation. Compared to an implementation like in Figure 4.2 where the
data is first encoded for a region proposal network. This network could be a Spiking
Neural Network or even a Convolutional Neural Network. The regions themselves
need to be re-encoded to be at the appropriate size of the classifier. Also, one of the
key benefits of using a Spiking Neural Network is the possible lower power usage (see
section 2.2). Using Convolutional Neural Networks and the possible high bandwidth
encoding decoding stages would greatly diminish these benefits.

The proposed architecture has benefits today as well, even though the premises of
neuromorphic sensors that directly output spike trains is something to look forward to.
Conventional digital sensors only have to be spike encoded once, removing the need for
the decoding encoding stages in hardware. The possible high bandwidth data can stay
within the neuromorphic system, keeping the conventional compute relatively simple.

The reference implementation in the next chapters shows an implementation to solve
a specific problem. But the architecture could be implemented for any kind of object
detection problem. The exact implementation of the classifier and possibly the region
proposal changes, but the architecture still stands.

4.1.1 Region Proposal

The need for region proposal arises when the classifier is not able to classify the input
as a whole, but needs to focus on certain regions. This is the case if objects in the
input need to be localized as well as classified. The system now needs to answer two
questions; where and what. Classifiers are usually trained on classifying single objects
(see subsection 4.1.3). The task of the region proposal is to answer the first question,
where.

As discussed in section 2.6 region proposal techniques like R-CNN [5] and YOLO
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[6] show significant improvement in object detection tasks. Both techniques differ in
their approach; R-CNN reuses classifiers, and YOLO threats it as a regression problem.
Nevertheless, the intention of the system are the same, proposing regions that are later
classified.

Within Spiking Neural Networks, complex region proposal mechanisms like R-CNN
and YOLO could be implemented. But Spiking Neural Networks can also be used to
do region proposal based on blob-like structures as discussed in section 4.2.

4.1.2 Decoding and Weight Calculations

The region proposal network encodes possible regions with a spike train. This region
could be encoded in, for example, a time to first spike encoding or rate-based (see
section 2.3). The information of the region proposal network needs to be passed to a
conventional computing system to calculate the weights for the input of the classifier.
For this weight calculation, the position (and possibly other parameters) need to be
passed to the conventional computing system. The region proposal decoder translates
the spike train to the digital input needed to do the weight calculations.

If a neuron spikes at the input of a synapse, this synapse transports a unit of
current to its output neuron (see section 2.3 for more information). By manipulating
the synaptic weights between the sensor output neurons and the classifier input neurons,
certain transformations can be done.

The weight calculations are done based on the output of the region proposal decoder.
In the reference region selection implementation discussed in section 4.2, the output of
the region proposal decoder gives only the coordinates of a possible region. However, by
manipulating the weights from the sensor output to the classifier, more transformations
can be done. In order to do these kinds of translations, the region proposal network
could output more information than positional information alone. Information like
rotation and scale could also be included and used to get more use out of the weight
calculation. If these transformations are necessary is up to the classifier. The classifier
could be trained and build to handle scale and rotational variations. If a classifier is
scale and rotational invariant, these transformations are not necessary. Otherwise, the
input to the classifier should be scale and rotational normalized as well.

4.1.3 Classifier

The classifier is the part of the system that answers the second question of object
detection; what is the object we are looking at? It attaches a label to the input given
to the classifier. The classifier is attached to the input by connecting synapses. These
synapses do not apply a weight function but transform the sensor output to the classifier
input.

The classifier needs to be able to tolerate some error in positioning. A classifier
that is translation invariant will score dramatically better than one that is not. The
region proposal will always have some positional error. This is the same with rotation
and scale. The region proposal can be used to correct for rotation and scale to get
a normalized input to the classifier. However, the classifier still needs to tolerate an
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error. How significant the error is that the classifier needs to tolerate depends on the
precision of the region proposal.

As with the region proposal, the classifier outputs its classification label with a
spike train. In a full neuromorphic system, it might be possible to directly connect
the next system to this spike train and let it interpret the classification. It would
need positional data from the region proposal as well. If this data is processed in
a conventional compute system, the data needs to be decoded. This process is the
same as in the region proposal decoder. Albeit, the way of encoding in the classifier
could be different from the region proposal encoding. If this is the case, a different
implementation of the decoder is required.
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One Pixel

1st Window

Window Moving Direction

2nd Window

1st Window for 2nd row
3rd Window

Figure 4.3: Figure showing a sliding window function [9]. A stride of one would mean that
the sliding window would go from the 1st window immediately to the 3rd window.

4.2 Blob Region Selection

In order to correctly point the classifier at a selection of the input that needs to be clas-
sified, the region itself needs to be known. A couple of methods have been implemented
for this implementation. First, the ground truth, this is not an actual region locator
but uses the data from the dataset to set a performance metric to compare to. Next is
the sliding window discussed in subsection 4.2.2. After that, two different blob locating
techniques are shown. First, the Peak based and after that, the Center of Mass-based
region selector.

4.2.1 Ground Truth Regions

Ground truth regions are coming from the dataset itself. As discussed in chapter 3
within the input data, the center coordinates of the to be classified regions are stored.
The data from the dataset is used to compare the other datasets with, and validate the
implementation. The ground truth should have a perfect score as a region selector.

The ground truth regions are also used in the overall performance metric. To de-
termine if there are other variables outside of the selected region that influence the
classification performance. For example, if the digits are close together, overlap within
the regions could influence not only the region selection but also the classifier. It could
see edges of other digits that influence the results.

4.2.2 Sliding Window

With a sliding window, there is no intelligent region selection going on. A window the
size of the classifier, in this case, 28 by 28 pixels, slides over the whole input hence the
name sliding window. Every time the windows slides one pixel to the side. It is also
possible that the window generation has a stride; thus skipping a certain amount of
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columns and rows every time (see Figure 4.3). This drastically reduces the number of
windows laid over the input, but the classifier needs to be more positional invariant
(see section 4.3).

Because sliding windows without a stride will try every possible position within the
input, there is always a case where it gets it exactly right. However, in order to do
so for an 84 by 84 pixel input, it tries 3136 regions. The region proposal mechanisms
introduced below tries to reduce the number of regions to the absolute bare minimum.
It is thus also reducing the computational cost by not having to run 3136 regions trough
the classifier. This also causes a time reduction by not having to wait for this classifier.
Moreover, the number of spikes generated within the classifier is significantly reduced,
which in turn reduces power consumption.

Sliding windows add another problem; the system needs to be able to determine
which window had the correct classification. Usually, this is done by pooling the regions
with the highest classification score and omitting the ones with scores below a certain
threshold. Because these techniques introduce a new error to the system outside of the
classification and positional errors, it is not used as a performance metric to gauge full
system performance. However, the number of regions generated by a sliding window
compared to the implemented approach is being discussed.

4.2.3 Peak Based Region Proposal

Peak based region proposal uses a Spiking Neural Network to transform the Multi
MNIST input into blobs. The peak spiking intensity of these blobs correlates with the
center coordinates of the original MNIST digit. This process uses two Spiking Neural
Network layers, a blurring layer using a Gaussian function to calculate the weights and
a blob detector using a weight distribution based on a Laplacian of Gaussian function.

The Gaussian and its Laplacian are often used as a blob detector in image pro-
cessing algorithms [10]. This is usually done by a convolution between a Laplacian of
Gaussian kernel and the input. Here the Gaussian and Laplacian of Gaussian are used
to calculate the weights between the input and subsequent layers. Mimicking the effect
of a convolution within a Spiking Neural Network.

4.2.3.1 Gaussian layer

The 2D representation of the Gaussian curve used in the implementation is defined in
Equation 4.1. The Gaussian is used in the network to mitigate noise and smooth the
image. The Gaussian layer is directly connected to the input with an all-to-all topology.
For every neuron in the Gaussian layer, the weight matrix to all the input neurons is
calculated with Equation 4.1 where x and y are defined as the positional difference
between the neurons.

z(x, y) = exp

(
−
(
x2

2σ2
x

+
y2

2σ2
y

))
(4.1)

The neurons in the Gaussian layer all represent a neuron in the input layer, the
input layer and Gaussian layer have the same size. The index of the input neuron and
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(a) 2D Gaussian (b) 3D Gaussian

Figure 4.4: Figure showing both the 2D as well as the 3D Gaussian. It is plotted here for a
σ value of 1. The values shown would be used as weights within the system. Notice that the
Gaussian does not drop below zero.

a neuron in the Gaussian layer represent a x and y coordinate. The x and y coordinate
can be calculated using Equation 4.2 and 4.3.

x = index mod sizex (4.2)

y =
index

sizex
(4.3)

Using the index of the input neuron and the index of the Gaussian layer neuron
will yield two sets of coordinates. The difference between these coordinates is used
as input for the Gaussian equation. When the index of both the input and Gaussian
layer are the same, the difference of these coordinates will be zero and the center of the
Gaussian curve is used. The 2D Gaussian curve defined in Equation 4.1 will return one
when both x and y are zero. This is done intentionally not to lose spike intensity and
make the time needed until a region can be reported shorter. If the value would be less
than one, there are more spikes necessary in the input layer before the Gaussian layer
will spike. The implication of doing this is that the Gaussian will not filter single-pixel
noise anymore. The smoothing property of the Gaussian still has an effect. The MNIST
input is not that noisy, so not having noise filtering will most likely not be a problem.
If noise filtering is necessary, the Gaussian described by Equation 4.4 can be used. This
will lead to better noise filtering, but it does need more spikes for the membrane to
reach the threshold voltage.
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(a) 2D Laplacian of Gaussian (b) 3D Laplacian of Gaussian

Figure 4.5: Figure showing both the 2D as well as the 3D Laplacian of Gaussian. It is plotted
here for a σ value of 1. The values shown would be used as weights within the system. Notice
that the Laplacian of Gaussian does drop below zero, indicating a negative weight.

Figure 4.6: Figure showing Laplacian of Gaussian kernels with different rotations and sizes.
[10]
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4.2.3.2 Laplacian of Gaussian

Given the following Gaussian function

G(x, y) =
1√

2πσ2
exp

(
−x

2 + y2

2σ2

)
(4.4)

Applying the Laplacian operator to the Gaussian function yields the Laplacian of
Gaussian.

∆G(x, y) = −x
2 + y2 − 2σ2

πσ4
exp

(
−x

2 + y2

2σ2

)
(4.5)

The σ values within this Laplacian of Gaussian function be separated into a σx and
σy component. Using this non-spherical blobs can be detected better. Kong et al. [10]
show even further manipulations of the Laplacian of Gaussian to detected rotation as
well. These manipulated Laplacian of Gaussian kernels can be seen in Figure 4.6.

∆G(x, y) = −
(x2 − σ2

x) + (y2 − σ2
y)

π.σ2
x.σ

2
y

exp

(
−x

2 + y2

σ2
x + σ2

y

)
(4.6)

The power of the Laplacian of Gaussian and why it is frequently used in blob
detection comes from its response in a convolution. The peak intensity of the response
will be the highest when the scale of the Laplacian of Gaussian matches the scale of the
blob. This aspect of the Laplacian of Gaussian can be used to determine the scale of the
blob but also its position. The middle of the object, where the Laplacian of Gaussian
has the highest peak response correspondents to the center of the blob. By using the
Laplacian of Gaussian for the weight calculations of the Spike Neural Network, a similar
effect is achieved.

The Laplacian of Gaussian σ determines the radius of the kernel. If σ is equal
to what is shown in Equation 4.7, the outcome of the Laplacian of Gaussian will be
zero. Looking at Figure 4.4, the Laplacian of Gaussian is zero at a certain radius. By
manipulating σ, the zero-crossing of the Laplacian of Gaussian and this its radius can
be precisely controlled, which is also shown in Figure 4.6.

σ =

√
x2 + y2√

2
⇐⇒ ∆G(x, y) = 0 (4.7)

If the radius of the to be detected objects is known, it can be set by calculating σ
with Equation 4.8.

σ =
r√
2

(4.8)

The Gaussian layer before this Laplacian of Gaussian layer does alter the radius of
the input data and thus affects the needed radius. This needs to be taken into account
when setting the σ value for the Laplacian of Gaussian.
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Figure 4.7: Figure showing the three-sigma rule. [11]

4.2.3.3 Parameter Values

Both the Gaussian and the Laplacian of Gaussian layer have a σ value. The σgaus for the
Gaussian layer and the σlog for the Laplacian of Gaussian layer needs to be determined.
For the reference implementation, two approaches for calculating these values are used.
The first one based on what is known about Gaussian functions, values for σ where
calculated. The second approach is based on using a solver for a set of rules.

4.2.3.4 Calculating σ value

The three-sigma rule [43] states that 99.7% of the values of any Gaussian lay three
standard deviations (3σ) away from its mean. In other words the energy of a Gaussian
is concentrated for 99.7% at 3σ from the center (as seen in Figure 4.7). This is why
Equation 4.9 is usually used to determine the σ value where r is the radius of the to
be detected region. This can be used to both determine σ values for the Laplacian of
Gaussian as the first Gaussian layer.

σ =
r − 1

3
(4.9)

Determining σgaus has no defined best option; it is highly application dependent.
Because it is not possible to calculate an optimal value for the σgaus, some intuition and
testing comes into play. For the testing, the peak based region proposal two possible
σgaus values were used, and the region proposal network was tested without Gaussian
layer altogether. The three possible σgaus come from a minimum, and maximum amount
of blurring that could be applied. The Gaussian layer adds spikes to the network, but
it also increases the size of the MNIST digit by spreading it over the input. If σgaus is
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too large, the MNIST digits will touch more easily, making it harder or impossible to
differentiate between the regions.

By first applying the Gaussian layer with the σgaus value described above and an-
alyzing the output with the MATLAB image processing toolbox, the average radii for
the MNIST training set could be determined. Using Equation 4.9 the values for the
Laplacian of Gaussian layer σlog can be calculated.

4.2.3.5 Solving

Instead of calculating possible σ values, the desired output itself could be expressed
mathematically. There are a few parameters that need to be optimized. The peak
response of the Laplacian of Gaussian needs to be as high as possible. Furthermore, the
σgaus as low as possible to make sure it stays within 28×28 pixels. Using the MATLAB
optimization toolbox, optimal σ values could be determined. The downside of the
MATLAB optimization toolbox that it runs the simulation a couple of thousand times
in order to determine these values. Running the region proposal Spiking Neural Network
on all 60.000 images of the MNIST training set would take months. In order to overcome
this, determining the optimal values was done in MATLAB using convolutions, a slight
error by converting back to a Spiking Neural Network is expected. After preliminary
testing, the peak response of the solved σ values was higher than the calculated ones.
In the final design and performance overview, the solved values where used. The final
values for σ are shown in 4.10 and 4.11.

σblur = 1.09 (4.10)

σlog = 7.75 (4.11)
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(a) Input (b) Gaussian Layer

(c) Laplacian of Gaussian Layer (d) Input of Classifier

Figure 4.8: Figure showing spike rates across the different layers of the system. First, the input
image is shown, which is a sample from the Multi MNIST dataset. After that, the Gaussian
and Laplacian of Gaussian layers are applied. After the region decoder, the following image
is sent to the classifier. A problem can already be spotted, the regions of the 7 and 0 are
merged. This is discussed in chapter 5.
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Figure 4.9: Figure showing an example of the center of mass calculation. [12]

4.2.4 Center of Mass Based Region Proposal

The Center of Mass-based [12] region proposal uses a Center of Mass calculation to
determine a center point. MNIST itself is also centered on its Center of Mass (see
subsection 3.2.2). This method uses the same network as the Peak Based Region
proposal method. However, instead of looking at the peak response, the Center of Mass
is calculated. This is done to determine if the peak response is a good indicator of the
central position of the blob. In order to get multiple regions from an image, regions
need to be extracted from the input images. This is done by connected-component
labeling explained in the section hereafter.

4.2.4.1 Center of Mass Calculations

Figure 4.9 shows an example of a center of mass calculation. Figure 4.9.a is the original
grayscale image. In the reference implementation, this would be an image showing the
spike rates, as shown in Figure 4.8. As an example a pixellated version of this image is
shown in Figure 4.9.b. The values of the pixels are shown in the table at Figure 4.9.c.
The weight of each pixel is defined as the value of that pixel where 255 is completely
black, and 0 is white. Black implies a heavyweight and white no weight at all. The
table on the bottom has three rows r, m and m.r. ri defines the horizontal distance
from the edge. In the next row, mi defines the sum of all the pixels (the summed
weight) in that column of the original image. The last row of the table mi.ri is the
product of both the summed weight and the horizontal distance from the edge. The
division of the sum of these two rows defines where the center of mass of the horizontal
axis lays. In the case of this example, this is at a horizontal distance of 6.1 pixels from
the edge. The table on the far right shows the same but now done for the rows of the
image. The center of mass of the rows is calculated as being 7.4. That puts the center
of mass of the whole image at 6.1 pixels from the left side and 7.4 pixels from the top.
The center of mass is displayed as overlay in Figure 4.9.b.
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(a) Von Neumann neighborhood (4-connected)
(b) Moore neighborhood (8-connected)

Figure 4.10: A figure showing an example of pixel connectivity. [13]

The center of mass calculation can be defined as Equation 4.12. This needs to be
done for every axis. For a picture, this is done for two axes the horizontal and vertical
axes.

R =

n∑
i=1

mi.ri

n∑
i=1

mi

(4.12)

4.2.4.2 Connected component labeling

The Center of Mass calculation for Figure 4.8 would just yield a single region. If the
input image would only consist of a single region that needs to be located, the Cen-
ter of Mass calculation would be enough. The input data used here consist of one to
three regions. In order to extract these regions, a process called connected component
labeling is used. With the labeling method, every group of pixels that are connected
with one another gets a unique label. Almost all these algorithms work on binary im-
ages. The input image is easily converted to a binary image by setting a threshold.
In the reference implementation, every non-zero pixel in the input image is set to one.
Checking for connected components can be done in the von Neumann neighborhood
[44] or 4 connected pixels see Figure 4.10a, but also in the Moore neighborhood [45]
or 8 connected pixels see Figure 4.10b. For the reference implementation, the Moore
neighborhood is used. This is done because the original MNIST digits have a relatively
low pixel density. There are plenty of cases in which a pixel is connected by a corner-
ing pixel and still belongs to the same MNIST digit. The only downside to using 8
connected is that when MNIST digits are being placed close to each other in the Multi
MNIST dataset, they will be seen as a single region more quickly. However, once the
digits start to come this close to each other, they will most likely be connected in a 4
connected setup as well.

There are a multitude of algorithms to perform connected component labeling. One
method is based on graph traversal as implemented in [46] and [47]. The algorithm
scans the image left to right top to bottom. When the scan finds the first unlabeled
non-background (a non-zero value) pixel, it stops and gives this pixel a unique label.
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The eight connected neighboring pixels are then scanned. If the surrounding pixels have
no non-zero values, the pixel is marked as an unique object. If there is just a single
surrounding pixel that has a non-zero value, this pixel gets labeled, and the process is
repeated from the coordinates of this pixel. If there are multiple pixels with a non-zero
value, the coordinates of these pixels are pushed onto the stack. The process described
earlier for the single-pixel is executed for all pixels on the stack. Finally, when the
whole connected object has a label, the process starts again from where it found the
last unconnected pixel, scanning for a new pixel with a non-zero value that has no label.
This process is repeated until it reaches the last pixel, and all objects received a label
in the image.

Another algorithm called the Hoshen-Kopelman algorithm [48] (also known as the
two-pass algorithm) uses a different approach. Instead of labeling each component
separately, the Hoshen-Kopelman makes two passes over the binary image. The first
pass iterates through each element of the data by doing raster scanning. When a non-
zero value is found, it retrieves the values of the neighboring pixels. If there are no
non-zero neighbours, this pixel gets a unique label, and the algorithm continues. If
there are neighboring pixels with a non-zero value, the current pixel gets assigned the
smallest label. The equivalence between the neighboring labels is stored. This is done
for all pixels. On the second pass, all equivalent labels get relabeled with the lowest
value label.

The reference implementation uses an optimized version of the two-pass algorithm
[49]. In the reference implementation, these calculations are done on a CPU. However,
there are also resource-efficient FPGA implementation of connected component labeling
algorithms. Klaiber et al. [50] show a connected component labeling implementation
on a Kintex 7 FPGA [51]. For a 256× 256 image, this implementation uses 493 LUTs,
296 Registers, and 108k of BRAM. The worst-case throughput is reported as 148.47
megapixels per second. In other words, the implementation is capable of processing the
256× 256 input 2256 times per second.

When the input images are separated by connected component labeling, the Center
of Mass per label (component) in the input image is calculated and returned as a region.
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4.3 MNIST Classifier

To test the full system, a MNIST Classifier is necessary. The reference implementa-
tion focuses on proposing the correct regions. The MNIST classifier was chosen for its
simplicity. The classifier is a simple single layer (no hidden layers) classifier [42]. The
classifier was initially implemented in an Artificial Neural Network and ported to a
Spiking Neural Network. It was chosen because of two reasons. First, the classifier had
a base classification score that was reasonably high of 80.2%. Furthermore, the clas-
sifier does not implement any max-pooling. This means that the classifier is not very
positional invariant. Any shift in the input will result in a loss of performance. Gen-
erally, some sort of max-pooling will significantly help the classification performance.
However, helping the classifier with positional invariance is not the goal. The region
proposal should help position the input to the classifier. In a real-world application
using max-pooling is recommended. Slight errors from the region proposal network will
still be acceptable when using max-pooling [52].

The classifier was first tested in the simulator developed by the CAS group. After
that it was ported to Brian2, where it was also tested with a Poisson input group, and
the reported results are from the Brian2 simulations. Classification performance and
an analysis of this classifier can be found in chapter 5.

Figure 4.11: Figure showing 2 by 2 Max-pooling. Pixel blocks of 2 by 2 pixels are reduced
to a single pixel. The value of that pixel is chosen by taking the maximum pixel value of the
2 by 2 region. This reduces the feature size but makes it more resilient towards positional
errors. [14]
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Results 5
The results are divided into three parts. First, the MNIST classifier, here the perfor-
mance of the MNIST classifier is discussed without a region proposal network and on
the standard MNIST dataset. Also, the positional invariance is investigated in order to
determine the needed precision from the region proposal network. Thereafter, the two
region proposal systems are investigated. The results show the positional precision and
the number of missed regions. And last, the full system implementation. The system
implementation shows the error as a complete system and is broken down into the error
coming from different components.

5.1 MNIST Classifier Performance

In order to set a baseline performance, two types of experiments were performed. First,
a baseline experiment in which the test set of MNIST is spike encoded and fed through
the Classifier network. The spike encoding is again done in three different ways. With
the Poisson input group, rate-based and rate-based with a random start offset. This is
done to determine how the classifier performs when fed different styles of spike trains.
After that, the MNIST test set is shifted, and the network is tested again. The loss
in performance after the MNIST test set is shifted shows how positional invariant this
MNIST classifier is. It also shows what kind of precision is needed from the region
proposal network.

5.1.1 Normal Performance

Test Name Total Correct Total Incorrect Classification Score

MNIST Rate Encoded 7949 2051 79.5%

MNIST Rate Encoded Random 10ms offset 8021 1979 80.2%

MNIST Poisson Rate Encoded 7843 2157 78.4%

Table 5.1: Performance of the MNIST classifier using three different types of spike rate
encodings.

From Table 5.1 it can be seen that the MNIST classifier scores about the same with
different styles of rate encodings. The rate encoded MNIST dataset is deterministic
and will always produce the same results because the spike trains are always the same.
The rate encoding with the random offset and the Poisson rate encoded spike trains
have slight variations per run. The average classification performance stays the same
without high fluctuations. However, the exact digits it classifies incorrectly are different
in each run. This needs to be taken into account when using these types of encodings
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Figure 5.1: Chart showing the average classification error per digit over the 3 different types
of encodings. The chart clearly shows that there are a few digits that perform better. For
example, digit 5 has a higher error rate than any other digit.

within the full system. These results can later be used to compare against the full
system where the positional error will also be taken into account.

Correct Precentage

Digit MNIST Rate MNIST Rate Random 10ms Offset MNIST Poisson Rate Encoded

0 94.9% 93.5% 92.2%

1 96.7% 96.3% 95.2%

2 67.5% 68.3% 66.2%

3 84.3% 84.0% 81.7%

4 82.5% 82.1% 79.6%

5 47.0% 47.3% 47.1%

6 90.6% 91.6% 90.6%

7 82.4% 82.8% 81.6%

8 66.6% 71.0% 67.2%

9 77.8% 80.3% 78.0%

Table 5.2: Performance of the MNIST classifier per digit, using three different types of spike
rate encoding.

Table 5.2 and Figure 5.1 clearly show that the errors are not distributed equally
over the classes within the MNIST dataset. This classifier has more trouble with the
digit five than any other digit within the MNIST dataset. Up to 54.8% of the digits
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with label five are classified incorrectly. The three different types of encodings show
very little difference.

Table 5.3 shows the average response time of the MNIST classifier. This can later be
used to compare it to the region proposal. The exact numbers are not that meaningful.
The simulation was done using an arbitrary 0 to 100Hz input frequency, as discussed in
chapter 3. The speed at which the classifier responds is depended on the neuron model
used in hardware and the speed at which the input is presented to the system. It does
give a good indication of how long the classifier takes compared to region proposal.

Average Response Time

Test Name Correct Classification Incorrect Classification

MNIST Rate Encoded 16ms 24ms

MNIST Rate Encoded Random 10ms Offset 23ms 30ms

MNIST Poisson Rate Encoded 25ms 31ms

Table 5.3: Table showing the average time to first spike for the MNIST classifier.

An interesting thing to note is the slightly higher classification performance when
using a rate encoding with a random 0 to 10 ms offset. The reason can be found by
looking at Figure 5.2. In this figure, the input frequency of A and B are both the
same. However, in the second figure, the inputs are slightly shifted. This results in
more output spikes. For this reason, fewer spikes are lost within the neurons. This is
also more an issue within simulation where spikes can reach a neuron at exactly the
same time, but per delta step, only one output spike can be generated. There is also
no further improvement with the classification score, when going beyond a 10ms offset.
The most common frequency found within the classifier is 100Hz, where the period
between spikes is 10ms. Giving a 100Hz signal an 11ms offset would be the same as
giving it a 1ms offset.

A

B

Output

(a) Spike rate encoded

A

B

Output

(b) Spike rate encoded with random offset

Figure 5.2: Figure showing the difference in spike output of a neuron when using spike rate
encoding with and without a random offset for the same input frequency.
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Figure 5.3: Chart showing the classification scores of the MNIST classifier when a shift to
the input data is applied. A sharp drop in classification performance can be noted. Also no
notable differences in performance when using a different type of rate encoding can be seen.

5.1.2 Positional Invariance

The MNIST classifier is tested again with the original test set of the MNIST dataset.
However, this time, a shift to the input images is applied. This shift would correspond
to what happens if the region proposal network is not 100% accurate with its location
estimation. As discussed in section 4.3, this MNIST classifier does not use any max-
pooling or other techniques to perform better when there are positional inaccuracies. It
is recommended to implement these techniques in a real-life system, as region proposal
will never be 100% accurate. However, for testing the system, this is actually preferred.
The error can, later on, be more easily divided into a classification or positional error.

The classification scores for the applied shift values can be seen in Figure 5.3. The
classification score already has a significant hit of 10% when only a single-pixel shift
is applied. This shows that this classifier is not positional invariant and that a slight
positional error will produce a loss in accuracy.

Figure 5.4 shows the data plotted per digit for only the rate encoded input. Two
things are interesting to see here. First, the digit one has a lower performance degrada-
tion per pixel shift than the other digits. This is because it is a simple digit consisting
of no corners, but it represents just a simple bar. The features that the classifier tries
to recognize are therefor quite blurred and easy to recognize even if there is a slight
shift applied.

The other interesting fact is that the digit six goes up in classification performance
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Figure 5.4: Chart showing the classification scores of the MNIST classifier per digit for the
normal rate encoding, when a shift is applied to the input data. As can be seen here, the
digit one has a lower performance degradation.

slightly from 4-pixel shifts onward. After some investigation, this is only seen in a
horizontal shift. Due to the round bottom part of the six coming back over the original
feature detector, as seen in Figure 5.5. This overlap makes that the output neurons
are still able to send out a classification spike. The six also does not hit any part of
the other features of the digits that would negatively impact the classification score.
The only noticeable difference is that the time to first spike is lower for this shifted six.
Also, compared to its original classification score of 90%, the difference is still notable.

For the interested reader, the raw data and the per digit classification data of the
three different encoding schemes can be found in Appendix A.

Figure 5.5: Figure showing digit six at its original position in red. And a shifted digit six in
blue.
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5.2 Region Selection

Two region proposal mechanisms have been implemented. A peak based region proposal
network and a Center of Mass-based one. While the Center of Mass-based region
proposal is more computational intensive, it is mostly used to verify that the peak
based region proposal network is a valid choice. For the final network, both systems
will be used and compared as well with a classifier attached. Both networks have been
tested on the three generated datasets. Also, the networks have been tested with three
different encoding schemes. The input is rate encoded, rate encoded with a random
start offset, so spikes do not happen at the same time, and encoded by using a Poisson
input group. This is done to test if the networks will still perform in a more natural
environment where input stimuli happen at random and not at precisely timed intervals.
For the interested reader all data is available in Appendix B.

5.2.1 Peak Based Region Proposal

Both the region proposal networks are rate based. In order to determine how long the
rate decoder needs to run to achieve reasonable performance, the error and number of
missed regions for a certain runtime are investigated. Table 5.4 shows the positional
error compared to the runtime. The table starts at 20ms because this is when the
network starts to produce output for all encoding schemes. This is due to the dominant
frequency in the input. This frequency is 100Hz, and thus the second spike of the
rate encoded input arrives at 10ms at the input. There is also no huge difference in
performance between the different types of encoding schemes.

Positional Error in Pixels

Runtime Rate Encoding Rate Encoding with Random Offset Poisson Rate Encoding

20 0.79 0.89 0.83

30 0.79 0.93 0.76

40 0.91 1.05 0.94

50 0.90 1.02 0.86

60 0.86 0.99 0.87

70 0.95 1.08 0.91

80 0.90 1.02 0.86

90 0.92 1.04 0.92

100 0.94 1.06 0.90

Table 5.4: Table showing a comparison of the positional error for the full test set 6 dataset
with the three different encoding schemes and with different runtimes using the Peak Based
Region Proposal network.

As can be seen from Table 5.4, the error hovers around the 0.90 pixels off from
the ground truth. Running longer does not have a tremendous effect on improving
the error. What is interesting to note is the number of missed regions Figure 5.6.
After only 30ms of runtime, there is a sharp drop off detected in the number of missed
regions. After 30ms of runtime, the number of regions that the Peak Based region
proposal network missed has dropped to nearly zero. What is to be noted here is the
significant difference between the number of missed regions at 20ms. With the Poisson

44



Runtime in ms

N
um

be
r o

f M
is

se
d 

R
eg

io
ns

0.00

250.00

500.00

750.00

1000.00

1250.00

20 30 40 50 60 70 80 90 100

Rate Encoding Rate Encoding with Random Offset Poisson Rate Encoding

Figure 5.6: Chart showing the number of missed regions plotted against the runtime in ms
for the full test set 6 dataset for the Peak Based Region Proposal Network.

Rate encoded input, the number of missed regions is the largest. This is mainly due
to insufficient spikes reaching the decoder. The difference between the different input
encoding schemes reduces significantly after 30ms.

Figure 5.7 shows that the network has the most trouble with the digit one. The
same is also seen in the data of the Center of Mass-based region proposal network.
This is actually due to the Laplacian of Gaussian. Because the one is the digit that
misses a real round blob-like structure, which the other digits have, this causes the
blob detecting Laplacian of Gaussian missing it sometimes. The 41 regions that are
missed here only account for 0.20% of the total number of digits and 2.04% of the digits
one. The impact is thus reasonably small, and the problem becomes less with a longer
runtime.
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Figure 5.7: Chart showing the number of missed regions per digit with the full test set 6
dataset for the Peak Based Region Proposal Network.
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5.2.2 Center of Mass Based Region Proposal

Table 5.5 again shows the positional error against the runtime. The error here hovers
around 0.66 pixels from the ground truth, which is better than the Peak Based Region
proposal network. However, what is to be noted here can be seen in Figure 5.8. There
is an initial drop in the number of missed regions, but after that, the number of missed
regions keeps rising. Note that this figure shows the number of missed regions for the
dataset with the largest minimum in the separation of 6 pixels. The reason this happens
is because of the connected component labeling that is discussed in section 4.2. When
two regions start to touch each other, the connected component algorithm sees it as
a single region, this is also the reason that a minimal increase in positional error can
be noted from Table 5.5. The problem can be seen in Figure 5.9. The combination of
the Gaussian and Laplacian of Gaussian layer makes the original MNIST digits slightly
larger even to the point where they touch. The peak based region proposal network has
no problems with them because two separate peaks are generated. But the connected
component algorithm sees this as a single region.

Positional Error in Pixels

Runtime Rate Encoding Rate Encoding with Random Offset Poisson Rate Encoding

20 0.66 0.63 0.71

30 0.63 0.60 0.63

40 0.64 0.61 0.63

50 0.65 0.64 0.64

60 0.68 0.65 0.65

70 0.68 0.67 0.65

80 0.69 0.67 0.66

90 0.70 0.68 0.66

100 0.70 0.68 0.67

Table 5.5: Table showing a comparison of the positional error for the full test set 6 dataset
with the three different encoding schemes and with different runtimes using the Center of
Mass Based Proposal network.
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Figure 5.8: Chart showing the number of missed regions plotted against the runtime in ms
for the full test set 6 dataset for the Center of Mass Based Region Proposal Network.

(a) Input Sample (b) Laplacian of Gaussian layer

Figure 5.9: Figure showing two regions touching after the Laplacian of Gaussian layer. The
connected component labeling sees it as a single region. This results in the Center of Mass
based decoder outputting a single region while the Peak based decoder is able to output two
separate regions.
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5.2.3 Comparison

As can be concluded from the previous two sections, the Center of Mass-based regions
are slightly more accurate. With a 0.2 pixel difference between the two in favour of the
Center of Mass decoder. However, as shown in Figure 5.10, there is a large difference
between the number of regions the Center of Mass decoder misses but the Peak Based
network catches. With the overlapping set, there are more samples in the dataset that
already touch or are very close together in the samples, increasing the problem of the
connected component labeling. The Peak Based Region Proposal network can handle
these situations better.
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Figure 5.10: Chart showing the number of missed regions compared between the Peak Based
and Center of Mass based region proposal, with the three different datasets after 30ms of
runtime which is optimal for the Center Of Mass decoder.
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Figure 5.11: Chart showing baseline performance of the full system. The error is divided into
an error coming from the classifier and one that comes from the dataset.

5.3 Full System Performance

In this section, the full system performance will be discussed. First, the system perfor-
mance when using the regions that are stored within the dataset is analyzed. To see if
there is a performance degradation here coming from the dataset and to gauge the per-
formance of the region locators. After that, the Peak based and Center of Mass-based
region proposal networks will be analyzed. All data from the tests are available in
Appendix D. The data in Appendix D also shows that there is almost no performance
difference between the three different encoding schemes. In both the MNIST results
and the region locator results, the same behaviour is seen. To eliminate the random
variable from the equation, the full system performance analysis will be done using
the rate encoding. From the three encoding schemes, this is the only one without any
random spike generation. The overlapping dataset will only be used in the true region
to show that this only adds a greater error coming from the dataset. The classifier is
not capable of classifying overlapping digits.

5.3.1 True Region Performance

Using the ground truth as region information in this network, also called the true re-
gions, the system performance can be analyzed without the uncertainty of the region
proposal network. This way, a theoretical optimal performance metric can be set. The
original MNIST classifier performance, without the region proposal network, had a
performance of 79.5% for the rate encoded input. As can be seen from Table 5.6, the
performance dropped to 79.1% by going from MNIST to Multi MNIST. Figure 5.11
shows how this error is divided. 20.5% is coming from the classifier incorrectly classi-
fying the digits. This is done by comparing the indexes of the original MNIST digits
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Figure 5.12: Figure showing the input to the classifier where another region is overlapping.
These overlapping region causes misclassifications within the full system. The values shown
in the picture are the spike rate in hertz.

and the Multi MNIST dataset and determining which digits the classifier is not able to
classify. The other 0.4% must be coming from somewhere else. The positional accuracy
is validated by comparing the spike trains between the normal MNIST classifier and
the network that included the region selection. The classifier outputs a wrong label
because, within the dataset, there are regions that are very close to each other and are
included in the region that is being sent to the classifier. This error will be called the
dataset error. It is an error that is not coming from positional inaccuracy or misclas-
sification but from the generated dataset itself. It is likely that with a more complex
multi-layer classifier, this would not be a problem at all.

Table 5.6 also shows the lower performance when using the dataset where overlap is
allowed. The classifier is not able to differentiate two separate digits even if the exact
location is known. Both the classifier, as well as the region proposal network, cannot
handle overlapping digits like discussed in the sections above. The performance is only
slightly lower, but because of the overlapping regions, it is impossible to tell if the
error is coming from the region proposal network or the classifier. The dataset with
overlapping regions will be omitted from the full system performance analysis because
of this reason.

Dataset Classification Performance

full test set 6 79.09%

full test set 3 79.01%

full test set overlap 75.64%

Table 5.6: Table showing classification performance when using the true regions included
within the dataset.
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Figure 5.13: Chart showing the full system performance when using the Peak based regions.

5.3.2 Peak and Center of Mass Based Performance

With the region proposal network, a positional inaccuracy is added to the total error
as well. Of all classified regions, only 3.2% is inaccurately classified because of missing
regions or positional inaccuracies with the Peak based region proposal network. Fig-
ure 5.13 shows how to error is divided for this network. The classifier is still the largest
contributor to the total error. The classification performance of this network is now
75.9%

Dataset Classification Performance

full test set 6 75.68%

full test set 3 73.02%

Table 5.7: Table showing classification performance when using Peak based region proposals.

The performance of the Center of Mass-based region locator is comparable to the
Peak based one. Table 5.8 shows the total classification score for the Center of Mass-
based region network. There is a slight decrease in the percentage of error coming
from positional inaccuracies, as is being shown by Figure 5.14. The differences in
performances between these two networks will be discussed in the next section (see
subsection 5.3.3).

Dataset Classification Performance

full test set 6 77.34%

full test set 3 73.35%

Table 5.8: Table show classification performance when using Center of Mass based region
proposals.
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Figure 5.14: Chart showing the full system performance when using the Center of Mass based
regions.

5.3.3 Comparison

Section 5.2 already showed that the Center of Mass-based proposals were slightly more
positional accurate. This is also shown in the performance. The Center of Mass-based
region proposal network slightly outperforms the Peak based one. In total, only 1.5%
is misclassified due to a positional error using the Center of Mass method compared
to 3.2% when using the Peak Based method. While the error is small, the difference
is notable. Figure 5.15 shows the percentage of the total error coming from positional
inaccuracies. Here one can see that the Center of Mass-based locator outperforms
the Peak based one on both datasets. Even on the dataset of a minimum enforced
separation of 3 pixels. In section 5.2, the loss of regions when using a closer separation
was discussed for the Center of Mass method. The regions the Center of Mass based
method loses because of the closely placed MNIST digits are compensated in the rest
of the dataset by a better positional accuracy. Although the difference between the two
networks for the 3 pixels separated Multi MNIST dataset is minimal.

What both methods have in common is the low region proposal count. Both meth-
ods, on average, propose the minimal number of regions that are within the dataset. A
sliding window with no stride for this input would generate 3136 regions, which would
be a significant performance hit on the system. Comparing to R-CNN or YOLO is not
truely fair because both systems use a different input size and different type of dataset.
However, it is known that R-CNN generates around 2000 regions and YOLO about
98. It is unknown how these systems would perform with a more blob-like dataset.
Nevertheless, both R-CNN and YOLO implement some form of region pooling where
overlapping regions are merged into one, and the label with the highest prediction score
is picked. With both the Peak Based as the Center of Mass-based networks, this is not
necessary. The Center of Mass-based network never proposed an overlapping region,
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Figure 5.15: Chart showing a comparison between the percentage of the error coming from
positional inaccuracies.

and the Peak based did this in 0.04% of the cases, which is neglectable.
The data shows that a network using a Laplacian of Gaussian based blob detector

is a viable way of doing multi-object detection and classification of blob-like structures.
The decision between a Peak or a Center of Mass-based decoder should be based on
the minimum separation of the regions within the incoming data as well as the possible
computer power available. The Center of Mass-based network has to make more loops
over the rate decoded data. This is due to the connected component labeling, which
already needs to do two passes over the data. For every region, the Center of Mass has
to be calculated while the Peak based network is able to detect all the peaks with only
two passes of the rate data regardless of the number of regions.
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Conclusion 6
In this study, a promising architecture is proposed to detect and classify multiple re-
gions within a particular input. The architecture is inspired upon state of the art
architectures that are currently being used with Convolutional Neural Networks but
uses the adaptability of the synaptic connections to steer data towards the classifier.
The architecture consists of three main parts the region proposal, weight calculations,
and the classifier.

In order to experiment with blob-like data that has similarities with radar data,
this study proposed and implemented a dataset generator. This generator is able to
take a dataset of handwritten digits called MNIST and generate datasets consisting of
multiple samples of these digits within a single sample of the output. One is able to
control the minimum separation between digits, the minimum and maximum amount
of digits in the output, but also scale and rotation. This generator enables further
research with blob-like multiple object data where one could also compensate for scale
and rotation.

The study proposes and implements a region proposal network that can locate blob-
like regions within its input. The region proposal network consisting of Gaussian and
a Laplacian of Gaussian layer within a Spiking Neural Network which can accurately
predict the location of blobs with sub-pixel precision on all tested datasets. The im-
plemented region proposal network also does not create an abundance of regions like
other region proposal networks do, and thus no region pooling is required.

A full implementation of the architecture is created and analyzed. The proposed
region proposal network is implemented together with an off the shelf MNIST classifier
to show the capabilities of the architecture and the region proposal network. The data
shows that the architecture is a viable solution to solve a multi-object detection and
classification problem. When using the Peak based regions, only 3.19% of the regions
are misclassified due to the region proposal network.

Two types of rate decoders are being discussed in the implementation to show
performance differences. A Peak-based decoder shows promising results for the least
amount of computing power of the two. While the positional accuracy is still high,
the Center of Mass-based shows a slightly better performance. Due to the classifier
not being positional invariant, only a slight shift of the input results in performance
degradation. This is reflected in the full system results as well. At the same time, the
Center of Mass-based decoder cannot cope with regions that are close together.
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Future work 7
While the study proves that the architecture is a viable idea and shows promising
results, Spiking Neural Networks truly thrive in terms of power consumption with
a hardware implementation. The architecture uses weights that dynamically change
during runtime. While it is known that the hardware implementation requires that the
weights are changeable, otherwise there it would be a fixed network, the consequence
of doing this while running are not fully understood.

A hardware implementation where the input has a special synaptic connection with
the first layer of neurons could also be investigated. These special synaptic connections
would only consist of a gated connection between the input and the first layer of neurons.
A region proposal network could then turn these synaptic connections on or off. This
could potentially be faster than rewriting the synaptic weights.

In order to do more research towards blob-like region proposal and classification, a
database that reflects a real-life problem should be created. The author believes that
high quality and complete radar datasets could profoundly aid future research into
possible use cases of the region locator.

As discussed, the Laplacian of Gaussian has more capabilities than just detecting
round blobs. By using multiple parallel layers of the Laplacian of Gaussian multiple
scales as well as rotation could be detected. By using these characteristics, a region
proposal network could be created that could aid the classifier with scale as well as
rotation invariance.
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MNIST Classifier Positional
Invariance Data A
A.1 Rate Encoded

Percentage Correct

Shift 0 1 2 3 4 5 6 7 8 9 Total

0 94.39% 96.74% 67.54% 84.26% 82.48% 46.97% 90.61% 82.39% 66.63% 77.80% 79.49%

1 91.12% 95.77% 55.04% 73.56% 76.99% 36.21% 77.45% 84.82% 52.77% 48.86% 69.91%

2 68.06% 87.49% 36.53% 40.79% 54.38% 13.12% 47.39% 69.65% 15.30% 7.14% 44.91%

3 27.65% 72.69% 13.66% 9.41% 20.06% 2.47% 24.74% 32.78% 1.95% 0.40% 21.48%

4 5.41% 61.23% 3.78% 1.78% 3.67% 0.45% 20.04% 8.07% 0.31% 0.20% 11.25%

5 0.71% 53.92% 0.87% 1.29% 0.20% 0.22% 26.20% 1.26% 0.10% 0.10% 9.11%

6 0.00% 50.13% 0.48% 1.78% 0.00% 0.67% 32.78% 0.00% 0.21% 0.10% 9.15%

7 0.00% 43.70% 0.87% 2.87% 0.00% 0.22% 31.63% 0.19% 0.10% 0.30% 8.45%

8 0.00% 37.71% 2.62% 2.08% 0.00% 0.11% 30.27% 0.49% 0.00% 0.00% 7.72%

9 0.00% 32.16% 5.91% 4.46% 0.00% 0.11% 41.34% 1.17% 0.21% 0.00% 8.82%

Table A.1: Table showing positional invariance of the MNIST classifier using Rate encoding.

A.2 Rate Encoding with Random Offset

Percentage Correct

Shift 0 1 2 3 4 5 6 7 8 9 Total

0 93.47% 96.30% 68.31% 83.96% 82.08% 47.31% 91.65% 82.78% 71.05% 80.28% 80.21%

1 89.59% 95.24% 54.75% 72.57% 74.44% 37.11% 79.23% 85.99% 54.31% 53.91% 70.35%

2 64.69% 86.61% 33.62% 38.32% 51.73% 12.78% 49.90% 71.40% 15.71% 8.72% 44.26%

3 23.27% 69.25% 12.79% 8.02% 19.14% 1.46% 26.93% 34.14% 2.77% 0.40% 20.68%

4 3.57% 58.94% 3.29% 1.29% 2.55% 0.11% 24.01% 8.75% 0.41% 0.10% 11.02%

5 0.41% 52.07% 0.87% 0.50% 0.00% 0.22% 31.63% 1.07% 0.10% 0.10% 9.27%

6 0.00% 47.14% 0.48% 0.99% 0.00% 0.56% 35.59% 0.19% 0.21% 0.10% 9.01%

7 0.00% 41.59% 0.87% 0.89% 0.00% 0.22% 33.30% 0.19% 0.10% 0.30% 8.17%

8 0.00% 34.19% 1.74% 0.59% 0.00% 0.00% 31.21% 0.68% 0.00% 0.10% 7.19%

9 0.00% 28.99% 4.75% 1.68% 0.00% 0.11% 43.11% 0.97% 0.21% 0.00% 8.21%

Table A.2: Table showing positional invariance of the MNIST classifier using Rate encoding
with a random 0 to 10 ms offset.
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A.3 Poisson Rate Encoded

Percentage Correct

Shift 0 1 2 3 4 5 6 7 8 9 Total

0 92.24% 95.15% 66.18% 81.68% 79.63% 47.09% 90.61% 81.61% 67.25% 78.00% 78.43%

1 86.63% 94.71% 52.62% 70.59% 71.89% 35.31% 75.78% 85.02% 50.31% 50.15% 67.97%

2 61.73% 84.93% 33.14% 36.63% 47.66% 12.78% 48.43% 68.58% 17.76% 7.93% 42.85%

3 22.96% 68.46% 13.08% 7.92% 18.94% 2.02% 26.72% 30.93% 2.98% 0.89% 20.33%

4 4.59% 57.97% 3.78% 1.49% 3.56% 0.45% 23.28% 8.75% 1.03% 0.20% 11.21%

5 0.92% 51.89% 0.78% 0.50% 0.61% 0.22% 28.81% 1.07% 0.51% 0.10% 9.12%

6 0.00% 47.75% 0.48% 0.99% 0.00% 0.22% 33.51% 0.29% 0.41% 0.10% 8.88%

7 0.00% 41.32% 0.78% 1.09% 0.00% 0.11% 31.21% 0.39% 0.21% 0.30% 7.97%

8 0.00% 32.51% 1.84% 0.99% 0.00% 0.00% 27.66% 1.07% 0.10% 0.20% 6.77%

9 0.00% 26.34% 4.26% 2.28% 0.00% 0.22% 39.98% 0.97% 0.41% 0.10% 7.66%

Table A.3: Table showing positional invariance of the MNIST classifier using Poisson rate
encoding.
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Region Proposal Positional
Data B
B.1 Peak Based Region Proposal

B.1.1 Rate Encoded

B.1.1.1 Dataset: full test set 3

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 20073 20073 59.8374 495.2148 nan

30 0 966 20073 270 831 0.89

40 3 243 20073 482 1195 0.93

50 16 138 20073 659 1570 1.05

60 13 98 20073 893 1936 1.02

70 14 124 20073 1082 2290 0.99

80 16 109 20073 1259 2646 1.08

90 15 122 20073 1516 3014 1.02

100 18 116 20073 1705 3393 1.04

Table B.1: Peak Based region proposal network with the full test set 3 dataset rate encoded.
Table showing the number extra regions, missed regions and total regions in the dataset.
As well as the number of spikes in a certain layer and the positional error expressed in the
amount of pixels of from the truth.

B.1.1.2 Dataset: full test set 6

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 682 20023 283 829 0.79

30 0 44 20023 504 1193 0.79

40 19 4 20023 683 1568 0.91

50 0 1 20023 925 1933 0.90

60 3 2 20023 1116 2287 0.86

70 8 1 20023 1301 2641 0.95

80 5 1 20023 1562 3009 0.90

90 9 3 20023 1758 3388 0.92

100 11 2 20023 2025 3771 0.94

Table B.2: Peak Based region proposal network with the full test set 6 dataset rate encoded.
Table showing the number extra regions, missed regions and total regions in the dataset.
As well as the number of spikes in a certain layer and the positional error expressed in the
amount of pixels of from the truth.
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B.1.1.3 Dataset: full test set overlap

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 1 4122 20029 261 796 1.55

30 9 2971 20029 461 1146 1.56

40 26 2733 20029 624 1505 1.59

50 15 2881 20029 846 1856 1.55

60 10 2881 20029 1021 2195 1.48

70 16 2854 20029 1191 2537 1.50

80 15 2930 20029 1428 2890 1.44

90 18 2900 20029 1608 3254 1.47

100 15 2962 20029 1849 3622 1.43

Table B.3: Peak Based region proposal network with the full test set overlap dataset rate
encoded. Table showing the number extra regions, missed regions and total regions in the
dataset. As well as the number of spikes in a certain layer and the positional error expressed
in the amount of pixels of from the truth.
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B.1.2 Rate Encoding with Random Offset

B.1.2.1 Dataset: full test set 3

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 1 836 20073 267 817 0.82

30 1 390 20073 440 1177 0.93

40 14 151 20073 635 1533 1.00

50 14 112 20073 836 1890 0.94

60 13 138 20073 995 2236 0.97

70 12 117 20073 1229 2606 0.98

80 7 133 20073 1412 2968 0.95

90 18 123 20073 1619 3337 1.00

100 12 134 20073 1825 3704 0.98

Table B.4: Peak Based region proposal network with the full test set 3 dataset rate encoding
with a random 0-10ms offset. Table showing the number extra regions, missed regions and
total regions in the dataset. As well as the number of spikes in a certain layer and the
positional error expressed in the amount of pixels of from the truth.

B.1.2.2 Dataset: full test set 6

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 519 20023 282 816 0.71

30 1 52 20023 458 1177 0.75

40 19 7 20023 659 1532 0.85

50 7 3 20023 865 1889 0.80

60 7 1 20023 1028 2234 0.83

70 5 1 20023 1269 2603 0.86

80 8 2 20023 1457 2965 0.83

90 11 2 20023 1670 3334 0.88

100 3 2 20023 1882 3701 0.87

Table B.5: Peak Based region proposal network with the full test set 6 dataset rate encoding
with a random 0-10ms offset. Table showing the number extra regions, missed regions and
total regions in the dataset. As well as the number of spikes in a certain layer and the
positional error expressed in the amount of pixels of from the truth.
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B.1.2.3 Dataset: full test set overlap

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 1 4119 20029 261 788 1.51

30 6 3366 20029 423 1136 1.65

40 23 2972 20029 608 1477 1.59

50 19 3135 20029 796 1819 1.54

60 14 2958 20029 942 2152 1.51

70 14 3007 20029 1165 2508 1.48

80 12 3022 20029 1334 2857 1.47

90 17 3049 20029 1530 3211 1.47

100 8 3036 20029 1722 3564 1.45

Table B.6: Peak Based region proposal network with the full test set overlap dataset rate
encoding with a random 0-10ms offset. Table showing the number extra regions, missed
regions and total regions in the dataset. As well as the number of spikes in a certain layer
and the positional error expressed in the amount of pixels of from the truth.
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B.1.3 Poisson Rate Encoded

B.1.3.1 Dataset: full test set 3

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 1341 20073 231 746 0.91

30 1 426 20073 390 1082 0.92

40 8 207 20073 562 1399 1.07

50 13 102 20073 751 1733 0.99

60 10 120 20073 907 2067 0.99

70 10 111 20073 1124 2404 1.02

80 13 124 20073 1294 2746 0.98

90 16 122 20073 1488 3088 1.03

100 9 131 20073 1671 3422 1.01

Table B.7: Peak Based region proposal network with the full test set 3 dataset poisson rate
encoded. Table showing the number extra regions, missed regions and total regions in the
dataset. As well as the number of spikes in a certain layer and the positional error expressed
in the amount of pixels of from the truth.

B.1.3.2 Dataset: full test set 6

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 1 1029 20023 245 745 0.83

30 1 97 20023 405 1082 0.76

40 9 13 20023 584 1398 0.94

50 15 3 20023 778 1732 0.86

60 6 2 20023 938 2065 0.87

70 4 1 20023 1162 2402 0.91

80 4 1 20023 1336 2744 0.86

90 3 0 20023 1536 3085 0.92

100 9 1 20023 1724 3418 0.90

Table B.8: Peak Based region proposal network with the full test set 6 dataset poisson rate
encoded. Table showing the number extra regions, missed regions and total regions in the
dataset. As well as the number of spikes in a certain layer and the positional error expressed
in the amount of pixels of from the truth.
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B.1.3.3 Dataset: full test set overlap

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 1 4438 20029 229 722 1.56

30 3 3754 20029 377 1048 1.68

40 18 2991 20029 544 1355 1.69

50 17 3182 20029 719 1675 1.59

60 14 3089 20029 865 1996 1.57

70 6 3065 20029 1070 2321 1.54

80 9 3116 20029 1228 2651 1.52

90 14 3042 20029 1412 2981 1.51

100 9 3095 20029 1583 3302 1.49

Table B.9: Peak Based region proposal network with the full test set overlap dataset poisson
rate encoded. Table showing the number extra regions, missed regions and total regions in the
dataset. As well as the number of spikes in a certain layer and the positional error expressed
in the amount of pixels of from the truth.
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B.2 Center of Mass Based Region Proposal

B.2.1 Rate Encoded

B.2.1.1 Dataset: full test set 3

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 444 20073 482 1195 0.88

30 0 1193 20073 1082 2290 1.14

40 0 1684 20073 1966 3776 1.33

50 0 1906 20073 3023 5589 1.44

60 0 2034 20073 4264 7763 1.50

70 0 2105 20073 5742 10313 1.54

80 0 2165 20073 7425 13203 1.57

90 0 2191 20073 9283 16459 1.58

100 0 2207 20073 11391 20114 1.58

Table B.10: Center of Mass region proposal network with the full test set 3 dataset rate
encoded. Table showing the number extra regions, missed regions and total regions in the
dataset. As well as the number of spikes in a certain layer and the positional error expressed
in the amount of pixels of from the truth.

B.2.1.2 Dataset: full test set 6

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 38 20023 504 1193 0.66

30 0 42 20023 1116 2287 0.63

40 0 113 20023 2025 3771 0.64

50 0 173 20023 3110 5582 0.65

60 0 215 20023 4384 7753 0.68

70 0 239 20023 5900 10300 0.68

80 0 260 20023 7628 13187 0.69

90 0 268 20023 9535 16439 0.70

100 0 279 20023 11699 20090 0.70

Table B.11: Center of Mass region proposal network with the full test set 6 dataset rate
encoded. Table showing the number extra regions, missed regions and total regions in the
dataset. As well as the number of spikes in a certain layer and the positional error expressed
in the amount of pixels of from the truth.
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B.2.1.3 Dataset: full test set overlap

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 4163 20029 461 1146 1.68

30 0 4828 20029 1021 2195 1.93

40 0 5136 20029 1849 3622 2.06

50 0 5255 20029 2839 5361 2.12

60 0 5324 20029 4001 7446 2.16

70 0 5367 20029 5385 9892 2.18

80 0 5395 20029 6960 12666 2.20

90 0 5407 20029 8703 15791 2.21

100 0 5419 20029 10675 19297 2.21

Table B.12: Center of Mass region proposal network with the full test set overlap dataset rate
encoded. Table showing the number extra regions, missed regions and total regions in the
dataset. As well as the number of spikes in a certain layer and the positional error expressed
in the amount of pixels of from the truth.

74



B.2.2 Rate Encoding with Random Offset

B.2.2.1 Dataset: full test set 3

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 472 20073 440 1177 0.85

30 0 1149 20073 995 2236 1.10

40 0 1642 20073 1825 3704 1.31

50 0 1899 20073 2827 5518 1.44

60 0 2005 20073 4021 7686 1.49

70 0 2098 20073 5425 10229 1.54

80 0 2142 20073 7025 13131 1.56

90 0 2165 20073 8829 16401 1.58

100 0 2187 20073 10833 20035 1.59

Table B.13: Center of Mass region proposal network with the full test set 3 dataset rate
encoding with a random 0-10ms offset Table showing the number extra regions, missed regions
and total regions in the dataset. As well as the number of spikes in a certain layer and the
positional error expressed in the amount of pixels of from the truth.

B.2.2.2 Dataset: full test set 6

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 51 20023 458 1176 0.63

30 0 40 20023 1028 2235 0.60

40 0 108 20023 1882 3701 0.61

50 0 171 20023 2912 5514 0.64

60 0 211 20023 4140 7680 0.65

70 0 240 20023 5582 10220 0.67

80 0 255 20023 7227 13120 0.67

90 0 263 20023 9081 16387 0.68

100 0 271 20023 11142 20018 0.68

Table B.14: Center of Mass region proposal network with the full test set 6 dataset rate
encoding with a random 0-10ms offset Table showing the number extra regions, missed regions
and total regions in the dataset. As well as the number of spikes in a certain layer and the
positional error expressed in the amount of pixels of from the truth.
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B.2.2.3 Dataset: full test set overlap

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 4150 20029 424 1136 1.66

30 0 4783 20029 942 2152 1.91

40 0 5100 20029 1722 3565 2.06

50 0 5244 20029 2661 5310 2.14

60 0 5318 20029 3781 7395 2.18

70 0 5360 20029 5095 9840 2.20

80 0 5384 20029 6594 12631 2.22

90 0 5398 20029 8284 15776 2.23

100 0 5407 20029 10162 19271 2.23

Table B.15: Center of Mass region proposal network with the full test set overlap dataset
rate encoding with a random 0-10ms offset Table showing the number extra regions, missed
regions and total regions in the dataset. As well as the number of spikes in a certain layer
and the positional error expressed in the amount of pixels of from the truth.
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B.2.3 Poisson Rate Encoded

B.2.3.1 Dataset: full test set 3

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 1 437 20073 1082 390 0.88

30 0 1039 20073 2067 907 1.08

40 0 1550 20073 3422 1671 1.29

50 0 1812 20073 5107 2609 1.40

60 0 1953 20073 7140 3734 1.47

70 0 2024 20073 9510 5047 1.50

80 0 2079 20073 12206 6542 1.53

90 0 2111 20073 15234 8219 1.54

100 0 2144 20073 18603 10087 1.56

Table B.16: Center of Mass region proposal network with the full test set 3 dataset poisson
rate encoded. Table showing the number extra regions, missed regions and total regions in the
dataset. As well as the number of spikes in a certain layer and the positional error expressed
in the amount of pixels of from the truth.

B.2.3.2 Dataset: full test set 6

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 1 95 20023 1082 405 0.71

30 0 33 20023 2065 938 0.63

40 0 95 20023 3418 1724 0.63

50 0 151 20023 5103 2688 0.64

60 0 195 20023 7134 3846 0.65

70 0 214 20023 9502 5196 0.65

80 0 231 20023 12197 6734 0.66

90 0 241 20023 15223 8459 0.66

100 0 251 20023 18589 10380 0.67

Table B.17: Center of Mass region proposal network with the full test set 6 dataset poisson
rate encoded. Table showing the number extra regions, missed regions and total regions in the
dataset. As well as the number of spikes in a certain layer and the positional error expressed
in the amount of pixels of from the truth.
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B.2.3.3 Dataset: full test set overlap

Average Number of Spikes

Runtime Extra Regions Missed Regions Total Regions LoG Layer Gaussian Layer Average Error in Pixels

20 0 4059 20029 1048 377 1.66

30 0 4707 20029 1996 865 1.91

40 0 5032 20029 3302 1583 2.04

50 0 5194 20029 4925 2463 2.12

60 0 5287 20029 6885 3521 2.17

70 0 5330 20029 9168 4754 2.19

80 0 5357 20029 11766 6158 2.20

90 0 5374 20029 14684 7734 2.22

100 0 5385 20029 17931 9489 2.22

Table B.18: Center of Mass region proposal network with the full test set overlap dataset
poisson rate encoded. Table showing the number extra regions, missed regions and total
regions in the dataset. As well as the number of spikes in a certain layer and the positional
error expressed in the amount of pixels of from the truth.

78



Region Proposal Missed Digit
Data C
C.1 Peak Based Missed Regions

Number of Missed Regions

Dataset Encoding 0 1 2 3 4 5 6 7 8 9

full test set 3 Rate 11 120 14 15 7 14 11 31 2 18

full test set 3 Rate Offset 9 159 24 22 17 31 21 52 11 37

full test set 3 Poisson 10 194 24 26 16 25 28 52 16 35

full test set 6 Rate 0 41 0 0 0 2 0 1 0 0

full test set 6 Rate Offset 0 49 0 0 0 2 0 1 0 0

full test set 6 Poisson 0 88 0 1 0 4 0 3 0 1

Table C.1: Table showing the number of missed regions for the Peak Based Regions.

C.2 Center of Mass Based Missed Regions

Number of Missed Regions

Dataset Encoding 0 1 2 3 4 5 6 7 8 9

full test set 3 Rate 26 147 36 31 21 37 30 48 17 53

full test set 3 Rate Offset 19 167 29 34 22 37 34 57 17 52

full test set 3 Poisson 12 196 27 29 16 26 29 52 14 39

full test set 6 Rate 0 41 0 0 0 2 0 1 0 0

full test set 6 Rate Offset 0 46 0 0 0 2 0 0 0 0

full test set 6 Poisson 0 88 0 1 0 4 0 3 0 1

Table C.2: Table showing the number of missed regions for the Center of Mass based regions.
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Full System Accuracy Data D
D.1 True Regions

Accuracy

Dataset Encoding 0 1 2 3 4 5 6 7 8 9 Total

full test set 3 Rate 94.10% 96.95% 66.95% 84.18% 84.02% 47.25% 90.13% 81.18% 67.74% 77.88% 79.01%

full test set 3 Rate Offset 93.38% 96.65% 67.91% 83.98% 82.54% 47.45% 91.47% 81.93% 71.95% 80.15% 79.71%

full test set 3 Poisson 92.15% 95.75% 66.38% 80.88% 80.32% 46.65% 89.64% 80.67% 68.36% 77.48% 77.80%

full test set 6 Rate 94.47% 96.77% 66.85% 85.08% 83.56% 47.60% 90.65% 82.89% 66.22% 76.82% 79.09%

full test set 6 Rate Offset 93.42% 96.57% 67.71% 84.82% 83.66% 47.85% 91.99% 82.94% 71.78% 79.31% 80.02%

full test set 6 Poisson 92.78% 95.68% 65.44% 81.90% 80.50% 46.64% 90.55% 82.29% 67.31% 77.17% 78.04%

Table D.1: Table showing the classification accuracy for the full system. The accuracy shown
here is using the ground truth for the region generation.

D.2 Peak Based Regions

Accuracy

Dataset Encoding 0 1 2 3 4 5 6 7 8 9 Total

full test set 3 Rate 88.81% 90.39% 60.87% 73.53% 82.78% 42.41% 87.48% 79.11% 60.41% 64.59% 73.02%

full test set 3 Rate Offset 86.55% 88.19% 60.97% 71.45% 79.67% 42.71% 85.79% 79.27% 60.97% 65.53% 72.10%

full test set 3 Poisson 83.11% 86.09% 58.52% 69.93% 78.24% 39.56% 83.53% 77.10% 58.72% 62.77% 69.75%

full test set 6 Rate 92.53% 94.49% 63.43% 76.76% 84.80% 45.54% 89.00% 83.14% 61.21% 65.65% 75.68%

full test set 6 Rate Offset 90.28% 93.40% 63.63% 76.34% 82.63% 44.24% 89.15% 84.47% 62.24% 67.25% 75.39%

full test set 6 Poisson 87.05% 91.06% 60.65% 72.96% 80.21% 43.34% 86.77% 81.75% 61.36% 66.75% 73.23%

Table D.2: Table showing the classification accuracy for the full system. The accuracy shown
here is using the Peak based regions.

D.3 Center of Mass Based Regions

Accuracy

Dataset Encoding 0 1 2 3 4 5 6 7 8 9 Total

full test set 3 Rate 87.99% 89.54% 61.69% 76.17% 80.91% 44.26% 86.03% 78.66% 62.87% 65.63% 73.35%

full test set 3 Rate Offset 86.04% 88.14% 62.02% 75.20% 79.97% 43.31% 86.08% 78.66% 64.87% 67.75% 73.18%

full test set 3 Poisson 83.62% 86.04% 59.24% 71.35% 78.74% 40.01% 83.91% 77.00% 61.69% 64.89% 70.63%

full test set 6 Rate 92.92% 94.54% 64.99% 81.70% 84.01% 47.29% 90.35% 82.74% 64.80% 69.89% 77.34%

full test set 6 Rate Offset 91.73% 93.59% 65.39% 80.55% 83.61% 45.74% 89.85% 83.33% 68.39% 72.83% 77.53%

full test set 6 Poisson 87.74% 91.06% 62.22% 74.88% 79.96% 43.69% 87.46% 81.45% 64.26% 69.24% 74.23%

Table D.3: Table showing the classification accuracy for the full system. The accuracy shown
here is using the Center Of Mass based regions.
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