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to detect and classify blob-like input data. An architecture consisting
of three parts a region proposal network, weight calculations, and the
classifier is discussed and implemented.

The region proposal network is build based on a blob detecting
Laplacian of Gaussian function. The architecture is tested and verified
on the Multi MNIST dataset that is generated based on the MNIST
dataset that consists of handwritten digits. Results show that, on
average, the region proposal network can locate the blobs in the input
with an accuracy of within a single pixel distance from the ground
truth. Two different ways of decoding the rate data coming from the
region proposal network where discussed the Peak based decoder could
propose regions even if these regions are situated closely together.
A Center of Mass decoder is slightly more accurate than the Peak
based decoder but at a higher computational cost and performance
degradation when the regions are close together.

The region proposal network at worst only accounts for 3.19%
of inaccuracy. The implementation shows that the architecture is a
viable way of detecting and classifying multiple objects within the
input. The data shows that the region proposal network itself is a
feasible way of detecting blob-like objects within its input.
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Abstract

Spiking Neural Networks have opened new doors in the world of Neural Networks.
This study implements and shows a viable architecture to detect and classify blob-like
input data. An architecture consisting of three parts a region proposal network, weight
calculations, and the classifier is discussed and implemented.

The region proposal network is build based on a blob detecting Laplacian of Gaus-
sian function. The architecture is tested and verified on the Multi MNIST dataset that
is generated based on the MNIST dataset that consists of handwritten digits. Results
show that, on average, the region proposal network can locate the blobs in the input
with an accuracy of within a single pixel distance from the ground truth. Two different
ways of decoding the rate data coming from the region proposal network where dis-
cussed the Peak based decoder could propose regions even if these regions are situated
closely together. A Center of Mass decoder is slightly more accurate than the Peak
based decoder but at a higher computational cost and performance degradation when
the regions are close together.

The region proposal network at worst only accounts for 3.19% of inaccuracy. The
implementation shows that the architecture is a viable way of detecting and classifying
multiple objects within the input. The data shows that the region proposal network
itself is a feasible way of detecting blob-like objects within its input.
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Introduction 1
The introduction of Spiking Neural Networks asks for a new way of thinking about
problems. Regular Arti�cial Neural Networks do not incorporate the notion of time
within their core design, Spiking Neural Networks do. This provides a new way of
processing data that has not been seen before. It opens a world full of possibilities that
can be explored. Spiking Neural Networks already show promising results. Ste�en et
al. [15] wrote a survey about the possibilities in combining neuromorphic stereo vision
and Spiking Neural Networks. They note the following:

"Neuromorphic systems have enormous potential, yet they are rarely used in
a non-academic context. [. . . ] event-based solutions are already far superior
to conventional algorithms in terms of latency and energy e�ciency" [15,
p. 150]

Within the world of Spiking Neural Network research, classi�ers and learning algo-
rithms have been well studied. One of the next steps after image classi�cation networks
is object recognition. Combining both a localization and classi�cation problem within
a single network poses some exciting challenges. The extra dimension of time that
Spiking Neural Networks possess are used within the proposed architecture, providing
an excellent view of one of the many bene�ts of Spiking Neural Networks.

1.1 Motivation

This study started as research on processing radar data with Spiking Neural Networks.
It was quickly discovered that not much research into processing data with Spiking Neu-
ral Networks was done. Even research on radar data processing with regular Arti�cial
Neural Networks was very sparse. Open datasets that were useful to start with radar
research were not suitable for the type of radar data processing using Spiking Neural
Networks. Within the Circuit and Systems research group e�orts have started to create
such datasets. Nevertheless, other interesting problems could already be solved without
having a radar dataset.

Radar data visualized in Range-Doppler format shows multiple targets within a
single image as a blob. Good ways of tracking those blobs and classifying these radar
blobs using Spiking Neural Networks were still missing. This study tries to solve the
�rst problem be looking at the problem with a fresh view about the possibilities of
Spiking Neural Networks.

The evaluation of such a region proposal network raises the need for a good test
set. While radar datasets where hard to come by, the MNIST dataset consisting of
handwritten digits is already used a lot in Spiking Neural Network research. From
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the MNIST dataset, a new dataset was created. This dataset, which also includes
localization data, opened the doors to blob detection using Spiking Neural Networks.

The motivation for this study thus started from the need for processing radar data.
However, the need for a good and straightforward dataset also presented itself. This
study tries to solve both. A dataset that can be used within an object detecting
Spiking Neural Network as well as a architecture and implementation that can locate
and process this generated dataset.

1.2 Thesis Goals

The main goals of this study are to:

� Create a Spiking Neural Network architecture that can be used to locate and
classify blob-like data within a single input sample.

� Implemented the architecture using Spiking Neural Networks to identify and clas-
sify blob-like data.

� Find or create a dataset that can be used to analyze networks that work with
blob-like data.

1.3 Contributions

The main contributions of this thesis are as followed:

� A dataset generator that can be used to generate datasets based on the MNIST
dataset. The generator can be used to generate a dataset according to precise
speci�cations like minimum separation, the scale of the digits, and rotation.

� Three reference datasets that are used within this study to analyze the perfor-
mance of the implemented region proposal network.

� A Spiking Neural Network architecture for locating and classifying multiple ob-
jects.

� A software framework that can be used to quickly test the proposed architecture
with di�erent region proposal networks or classi�ers.

� A region proposal network that can locate blob-like input data to within sub-pixel
precision of the ground truth.

� A full system implementation that combines an o� the shelf classi�er with the
proposed region proposal network to locate and classify separate digits within the
generated Multi MNIST dataset.

� An analysis of the region proposal network performance and the bene�ts compared
to existing solutions.

� A full system analysis that is showing that the proposed architecture is a viable
solution to identify and classify multiple blob-like objects within a single input.
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1.4 Thesis Outline

The thesis is divided into four main parts. The �rst part gives the reader background
knowledge about Neural Networks. The di�erence between typical Arti�cial Neural
Networks and Spiking Neural Networks. The neurons and synapse these networks are
based on. How data is pre-processed to be used in these neuron networks. But also
how multiple object detection works right now in Arti�cial Neural Networks. After
that, the system use case is discussed in chapter 3. Here the input data to the system
will also be explained. Subsequently, the system architecture and implementation are
described in chapter 4. How the network architecture is designed and the di�erent parts
of the architecture are all disclosed here. The implementation is clarifying how a region
proposal network could be implemented and what kind of implementation is used for
the full system implementation. The di�erent parts of the region proposal network, as
well as the full system, are being analyzed and reported in chapter 5. And �nally the
conclusion and future work are discussed in chapter 6 and chapter 7

3



4



Background 2
In order to better understand the proposed architecture and implementation, back-
ground information is needed. This chapter introduces the notion of Spiking Neural
Networks and neuromorphic electronic systems in general. It tries to answer the fol-
lowing questions; which simulators are available to run these networks? How is input
data encoded so it can be processed within a neuromorphic system? Furthermore, how
are multiple object detection problems solved within Convolution Neural Networks?

2.1 Arti�cial Neural Networks

An Arti�cial Neural Network (ANN) is a network used to perform complex computing
tasks. The computational model introduced by Warren McCulloch and Walter Pitts in
1943 [16] is inspired by the networks that are inside our brains. These networks consist
of a set of nodes, which are sometimes called arti�cial neurons. These nodes have a
speci�c value and transmit this value to connected nodes. Connected nodes compute
their value by some non-linear function of the sum of its inputs. Weights increase or
decrease the strength of a connection between the nodes, these weights are usually
adapted during learning and are where the intelligence of an Arti�cial Neural Network

Figure 2.1: Figure showing an Arti�cial Neural Network architecture. [1]
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originates. The function the nodes perform can be di�erent per layer. Arti�cial Neural
Networks are used for complex tasks such as computer vision.

2.2 Spiking Neural Networks

Spiking Neural Networks (SNN) are a special type of neural network. With an Arti�cial
Neural Network, there is no notion of time. The input nodes of an ANN have a
certain value, and based on that value, the output value is computed. Spiking Neural
Networks try to mimic brain-like behaviour. Our brain is continuously processing
events, which are also called spikes. Spiking Neural Networks consist of neurons and
synapses that connect these neurons. The great bene�t of Spiking Neural Networks
is the theoretical lower power consumption and the ability to solve complex problems
very power e�ciently. How these Spiking Neural Networks are created and used to
solve tasks such as computer vision problems is described in the next sections.

2.3 Neuromorphic Electronic Systems

In 1990 Carver Mead proposed the concept of neuromorphic electronic systems [17].
Mead states that for many problems, biological solutions exceed digital methods in
terms of their e�ectiveness by orders of magnitude. The concept uses the analog domain
to perform computation. The idea comes from the e�ectiveness of the brain. The brain
can perform an estimate of 1016 operations per second once the fundamental limits
of Moore's law have been reached Douglas et al. estimate that a digital system would
dissipate 10 MW [18] to do the same. Comparing this to the few watts a brain dissipates
shows the potential of neuromorphic computation. The TOP500 Supercomputers [19]
currently show the IBM Summit as the number 1 computer in the world. The peak
performance of this computer is about 200 PetaFlop/s. In other words, it can perform
about 20 times the amount of operations per second the human brain performs, but
the IBM Summit uses 10 MW to do this. This comparison is not truly fair because our
brain does not perform 
oating-point operations. However, it does show the massive
potential of doing compute in a more biological method.

2.3.1 Neurons

The neuron consists of thee parts, the soma, dendrites, and axon (see Figure 2.2).
The neuron acts as the basic functional block of the human brain. Neurons can be
divided roughly into three groups. The motor neurons which sense signals from the
brain and the spinal cord and control the muscles but also our gland (responsible for
hormones, for example). Sensory neurons are the neurons that receive external stimuli
from our sensory organs. Such as the ears (sound), our eyes (vision) but also our
skin (touch). The stimuli from these external sensory organs are converted to action
potentials, also called spikes. Through the last group of neurons, the interneuron, these
action potentials are connected into a neural circuit. The interneuron can be divided
into two groups: the relay interneurons and the local interneurons. Relay interneurons
have long axons and can connect a speci�c region of the brain with other regions. The
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Figure 2.2: Figure showing a neuron with the three components, the soma, dendrites, and
axon. [2]

local interneurons form local neural circuits with nearby neurons. These local neural
circuits analyze pieces of information. Local neural circuits and the interaction between
interneurons are a key process that allows the brain to carry out complex functions. It
gives the brain the ability to learn and make decisions [20]. The human brain has an
estimate of eighty-six billion neurons and a quadrillion synaptic connections in a child
and 100 to 500 trillion connections for an adult [21][22].

A neuron responds to input stimuli, and when there are enough stimuli or the
stimuli are large enough, it produces an output spike. These spikes go through the
axon to all axon terminals. The spike is an all or nothing event. All other neurons
that have a synaptic connection with the neuron that just spiked will receive this
event through their dendrites. More on these synaptic connections will be discussed
in subsection 2.3.3. After the neuron �res, the membrane voltage of the neuron resets
itself, and the neuron will enter a refractory period in which the neuron will not produce
new spikes and does not respond to input stimuli. When a neuron receives not enough
input stimuli, the membrane voltage of the neuron slowly goes back to its resting state.
Figure 2.3 shows the progress of responding to input stimuli the reset and the refractory
period.

2.3.2 Neuron Model

To use the potential compute power of neurons, a model of a neuron is needed. Hodgkin
and Huxley created a comprehensive model [23]. The model was created by inserting
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Figure 2.3: Figure showing the action potential in a neuron. The spiking phase, when it
reaches the threshold, the reset, and the refractory period. [3]

micro-electrodes into the axons of a squid the resting and action potentials were mea-
sured [24] and converted into a mathematical model. The model describes the action
potentials in neurons and how these are transmitted through the axons. The model
consists of a set of nonlinear di�erential equations that describe the electrical character-
istics of neurons. For the interested reader, the equations can be found in [23]. While
this model represents the neuron behaviour to high precision, it is also very complex
and hard to implement in silicon [25].

Izhikevich introduced a model that uses the biologically accurate model of Hodgkin
and Huxley and combines it with the simplicity of the integrate-and-�re model (dis-
cussed below) [26]. This model is still able to reproduce the spiking patterns that can
be found in the human brain but is computationally more e�cient than the Hodgkin
and Huxley model. The model is still able to represent the di�erent spike trains that
can be found in the human brain. The limiting factor of this model is the shape of
the spikes. The spike shape is always the same. The Izhikevich model can therefore be
used to study spike patterns and interactions between neurons but not to create and
biologically accurate model.

The integrate-and-�re model is a very simplistic model [27]. It models the neuron
as a simple summation process (integration). Input stimuli are summed, and when the
sum over time reaches a certain threshold, an output spike is generated. This model is
one of the earliest models introduced in 1907 by Louis Lapicque, and it is still widely
used today. The model is described by Equation 2.1. The equation is the derivative of
the equation for capacitanceC = q=V .

I (t) = Cm
dVm (t)

dt
(2.1)

But the equation shown in 2.1 has a problem. The neuron here is modeled in a
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Figure 2.4: Figure showing two neurons with a synaptic connection. [4]

way where it has in�nite memory. Once a stimulus has been received, the membrane is
charged to a certain point and will never return to its resting state. To solve this prob-
lem, the leaky-integrate-and-�re model was introduced. The model added a discharge
resistor. The membrane potential would leak through this resistor back to its resting
state. This neuron can be more easily implemented in hardware.

I (t) �
Vm (t)
Rm

= Cm
dVm (t)

dt
(2.2)

The leaky-integrate-and-�re model shown in Equation 2.2 is the model that is being
used in the implementation. The added complexity of the Izhikevich model is not
necessary. Also, the implementation does not thrive on being biologically accurate,
so the Hodgkin and Huxley model is not used. Also, the behaviour seen in the leaky-
integrate-and-�re can be modeled using the Izhikevich and Hodgkin and Huxley model.
So the implementation with some conversion should work with those models as well.

2.3.3 Synapse

The neuron itself is described, but to do something meaningful with neurons, a net-
work is needed. The connections between neurons that enable the neurons to form
a network are called synapses. The synapse passes electrical signals between neurons
(see Figure 2.4). When there is a spike event in the sending neuron, it is sent through
the axon terminals to the synaptic cleft. Here neurotransmitters are being released
from the presynaptic side. These neurotransmitters are received by receptors on the
receiving neuron side, also called to postsynaptic side. The dendrite on the receiving
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neuron receives these neurotransmitters and is able to generate postsynaptic events.
These are stimuli for the receiving neuron.

While the biological model of the synapses is complex and not fully understood
yet, it is clear that in order to create neuron networks a connection between neurons
is necessary. In the implementation, a current-based synaptic model is used. When a
presynaptic event happens, the model adds a preset amount of current on the postsy-
naptic side. The amount of current that is added is variable and is called a weight. By
changing the weights of the synaptic connections between neurons, the ability to create
networks with complex behaviour exists.

2.4 Spike Encoding

Within Spiking Neural Networks, information can be encoded in numerous ways. The
two types of encodings used in the implementation are discussed below, spike rate
encoding and temporal coding.

2.4.1 Spike rate encoding

Adrian and Zotterman �rst introduced rate encoding in 1926 [28]. They showed that
the spikes coming from sensory neurons changed rates based on weights that were hung
from muscles.

Spike rate encoding is used in this study for encoding pixel-based inputs. These
pixel-based inputs are converted to frequencies at which neurons will �re. The input
neurons �re at the rate that corresponds to the converted pixel values. One way of
doing this is by precisely timing the spike events. The periods between these precisely
timed spikes are always the same. There is also the possibility to have a slight phase
shift between the spike trains by applying a random o�set. A more natural way of spike
rate encoding is by using a Poisson distribution to generate spike events. This way, the
periods between the spikes are not exact, but on average, the spike rate still corresponds
to the intended rate. Both the Poisson based rate encoding and the precisely timed
encoding will be used in this research. These di�erent types of rate encodings are used
because they illustrate how sensor data could potentially enter a neuromorphic system.
The system should be designed to handle these types of spike trains. Figure 2.5 shows
a visual representation of the generated spike trains using the discussed methods.

2.4.2 Temporal coding

Temporal coding looks at spike timing. The time at which spike events occur conveys
the information. The Spiking Neural Network used for classi�cations in the implemen-
tation uses Temporal coding for its output. The �rst spike that occurs after the input
is shown to the network describes the classi�cation output. This process is also called
time to �rst spike.
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(a) Spike Rate Encoding

(b) Spike Rate Encoding with a random o�set

(c) Spike Rate Encoding using a Poisson distribution

Figure 2.5: Figure showing di�erent ways of generating spike trains that represent a certain
spike rate. The spike train with and without a random o�set is shown, as well as spike trains
generated using a Poisson distribution.

2.5 Spiking Neural Network Simulation

No hardware that implements the leaky integrate and �re model is currently available
for testing these types of networks. In order to still experiment with Spiking Neural
Networks, various simulators are available. Two simulators are used for the performed
experiments.

Brian2 [29] is a python-based simulator. Its the successor to Brian1, which is a highly
popular Spiking Neural Network simulator. Within Brian2, neuron and synaptic models
are de�ned as a system of di�erential equations. Hodgkin and Huxley, Izhikevich,
and leaky-integrate-and-�re can all be implemented within Brian2. One is also free
in de�ning the synaptic model and how it connects while simulating. The synaptic
connections can also dynamically be adapted while simulating. A feature that is greatly
used within this implementation. The overall system is implemented in Brian2.

Within the Circuits and Systems group of the Delft University of Technology, a
Spiking Neural Network simulator is also being developed. This simulator is highly
performant and runs faster than Brian2. The simulator is hardware-focused and simu-
lates a leaky integrate and �re model based on its resistor and capacitor values. The
synaptic connections are modeled as current-based synaptic connections. This simula-
tor was used for preliminary testing of the region locator and the classi�er.

2.6 Detecting Multiple Objects

High performing machine learning techniques have been used to solve the object detec-
tion problem. Two of these techniques have been used as inspiration for the proposed
Spiking Neural Network architecture. The �rst one is R-CNN, and the second one You
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Figure 2.6: Figure showing a system overview of R-CNN. The system takes an input image
(1). Extract region proposals from that image (2). Computes features for each proposal using
a CNN (3). And classi�es each region with a class-speci�c linear SVM (4). [5]

Only Look Once or YOLO for short. They will be brie
y discussed below.

2.6.1 Regions with CNN features

Regions with CNN features or R-CNN for short [5] is a method that uses Convolutional
Neural Networks to do region proposals. Girshick et al. came up with this solution
because they saw object detection performance plateauing. Before, R-CNN object de-
tection was done using complex systems that did feature recognition. Systems like
SIFT [30] and HOG [31] which generate orientation histograms. Girschick et al. rec-
ognized the rise in CNN usage for image classi�cation but knew that in order to do
object detection, the localization problem also had to be solved. Their method gener-
ates about 2000 category-independent region proposals for the VOC 2007 dataset. The
region proposal is done using a selective search, but they argue that the method itself
is agnostic to a particular region proposal method. After the region proposal features
are extracted from the regions using Ca�e [32]. These features are then classi�ed using
a Support-vector machine (SVM) [33].

2.6.2 You Only Look Once

You Only Look Once, or YOLO for short, handles the object detection problem in a
single network YOLO[6]. Instead of running a couple of smaller networks, YOLO resizes
the input image to a �xed 488 by 488 pixels running a single Convolutional Neural
Network on that resized image and output its predictions. The predictions consist of
an x and y component, which represents the center of the box. But also the width and
height of this bounding box. The class that belongs to that particular bounding box is
included as well. Furthermore, a con�dence level that tells how con�dent the network is
that that prediction is correct is added. Compared to R-CNN, YOLO already generates
fewer regions. YOLO generates 98 regions compared to the 2000 regions the selective
search of R-CNN generates.
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Figure 2.7: Figure showing a system overview of the You Only Look Once detection system.
Three steps are given. First, the resizing of the image. Second, running the convolutional
network. And third, the non-max suppression to �lter out classi�ers that were low on the
con�dence level. [6]

Figure 2.8: Figure showing the convolutional architecture of the You Only Look Once detector.
Twenty-four convolutional layers are used, and two fully connected layers. [6]
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