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Preface

This report contains the results of my thesis written in
fulfilment of my studies at the Faculty of Civil Engineering,
Delft University of Technology.
The project which focuses on the determination of river
discharges in mountain streams using dilution measurements,
was a great challenge from both a theoretical and a practical
point of view. I tried to pay attention to the theoretical
(and numerical) description of flow and transpor.t processes,
as weIl as to the practical applicability of the suggested
methode
Results, based on measurements, depend highlyon the quality
of the field work. In this respect, my work at lTS in Surabaya
(East Java, Indonesia) was an enriching experience.
I wish to express my gratitude to my thesis supervisors
prof.dr.ir. M. de Vries, dr.ir. H.L. Fontijn and dr.ir. Z.B.
Wang for their support and valuable suggestions. Also to
Miss ir. Anggrahini M.Sc., who made my stay in Surabaya
possible, I am much obliged.

D.G. Meijer
Delft, February 1992
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1. Introduction

In river engineering problems information on discharges and
water levels is essential for many reasons. For irrigation and
drinking water purposes it is very important to know how much
water can be extracted from a river. Managers of waste water
stations need to know how much they can release without
exceeding the norms, and information on flood waves in the
past help to predict the probability of flood waves in the
future. Discharge measurements are therefore necessary.
Different methods to measure a river discharge exist, such
as the velocity area method, the moving boat method and
methods using structures like flumes and weirs. Another method
is the dilution method, based on the dilution of a soluble,
non-disintegrating substance, to be released in the river. For
steady flows, the principles of this method are rather simpIe,
and recommendations on how to perform the measurements already
exist (ISO Handbook). However, for unsteady flows, this method
is much more complicated, and even its applicability is
questionable.
Studies on this topic, in which rivers were schematised as
prismatic channels have already been carried out. In the
present study the practice is the central issue. The
applicability of the dilution method is investigated for
mountain rivers with irregular cross-sections, big rocks and
unsteady discharges.
In chapter 2 the principles of the dilution method are
explained, and the studies made thus far are outlined, as weIl
as the approach in the present study.
In chapter 3 the basic equations for the motion of water and
transport processes, necessary for a transport model that can
deal with the typical problems of an irregularly shaped
mountain river, are formulated.
A numerical scheme is derived in chapter 4, resulting into a
flow-and-transport-simulating computer program (FATS).
Dilution discharge measurements are simulated in imaginary
rivers under flood wave conditions. The river discharge is
then a time dependent upstream boundary condition, and a few
measurements (water levels, concentrations) are generated.
In chapter 5 a numerical procedure is developed (FINDQ)
to compute the upstream river discharge, which uses only these
measurements without any further information on characteristic
river parameters. Determination of these parameters is an
identification problem, which is solved using the DUD
procedure.
The quality of the discharge determination can be estimated by
comparing the result with the original upstream boundary
condition in FATS, supposed to be 'true'.
Finally, in chapter 6, attention is paid to the field work and
equipment required to obtain real measurements for the
discharge determination. Using the FINDQ-DUD algorithm, the
river discharge as a function of time can then be computed to
a certain degree of accuracy, which is the eventual aim of
this study.
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2. Dilution discharge measurements

2.1 Dilution method for steady flow
2.1.1 Theory
A tracer (for example a salt solution) is continuously
injected into a river and diluted by the flow. Downstream from
the injection point the tracer concentration is measured.

Q, 9S0 .... tlJL_____________________________________________________ x _
(injection) L (observation)t· t

M
1 ....

Q =
tIJ 0 =
M =
9SL =
L =

river discharge [m3/s]
(background) concentration [kg/m3]i.e. [gil]
tracer release [kg/sJ
measured concentration at observation point [kg/m3]
mixing length [m]
fig. 2.1 Dilution method during steady discharge

The river discharge can now be calculated using the mass
balance of the tracer:

(2.1)

The distance between the injection point and the observation
point is of great importance to the mixing of the tracer over
the cross-section.For the mixing length the following is recommended (ISO 1983):

L = 0.13 K If
a

(2.2)

K = C ( 0 • 7 C + 2{g)
g

(2.3)

with: K = dimensionless dispersion coefficient [-]
B = average width [m]
a = average depth [ml
C = Chézy coefficient [~m/s]
g = acceleration due to gravity [m/s2]

The choice of the released tracer quantity M is of great
importance to the accuracy of the calculated discharge. This
can be explained, by an analysis of the propagation of errors.
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Generally:

Wi th respect to sums (c=a+b) and substractions (c=a-b), the
propagation of errors is presented by:

2 2 2
oe = 0a + ob (2.4)

(2.5)

With respect to multiplications (c=a·b) and divisions (c=a/b),
the propagation of errors is likewise given by:

2
oe = (2.6)

(2.7)

with: ° = standard deviation~ = average (expected) value
r = relative deviation (r=o/~)

In these equations a subscript indicates the variabie referred
to. Using (2. 4) through (2. 7) it can be deri ved that the
relative deviation of the computed discharge in (2.1) is found
by:

2 2 2 2
- L r_ L + -0 r_O

(_ L - -0) 2

(2.8)

Assuming a relative deviation in the equipment that measures
the concentra tions (r_ = r_ = r_ ), (2.8) becomes:

o L

(2.9)

The division (last term of equation 2.9) is very significant
to the accuracy of the computed discharge Q.
In the case of relatively clean water (-a = 0 or -0 « -I)' the
term tends to unity, and the deviation r~ remains limited. But
if -!J tends to -0' ra becomes excessively large, which makes
the measurement worthiess.
This means that the release M should be chosen not too small
(for _L - -0 = MI Q). On the other hand, it is desirabie to keep
the environmental pollution caused by the salt release within
reasonable limits.

9



2.1.2 Practice
Two measurements were carried out as described above in the
River Grindulu in East Java (Indonesia)• on different days.
The location was chosen in the upper reach, where the river is
still a small brook.
The mixing length could not be determined byequa tion 2.2,
because the brook was too irregularly shaped to determine
geometrical parameters such as depth a, width Band Chézy-
coefficient C. Through trial-and-error the distance, at which
the concentration was practically constant was found CL = 20
m). The adaptation time was about two minutes.

fig. 2.2 Filling of tbe Hariotte Vessel

fig. 2.3 Direct concentration measurement

The release was performed by means of a Mariotte Vessel,
filled with a NaCl solution (5%), releasing a constant
discharge. The concentrations (background, at the observation
point and in the vessel) were determined using a conductivity
meter.
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The salt concentration and the electrical conductivity of a
solution are nearly linearly related. The discharge was
computed by equation 2.2. In order to check the results, a
velocity area test was carried out, using a current meter. The
differences were respectively 9.1% on the first day, and 6.5%
on the second day. However it is difficult to determine which
of both methods is more accurate, these results are considered
satisfactory.

2.2 Dilution method for unsteady flow
2.2.1 Introduction
Discharge measurements are especially interesting during flood
wave conditions. However, some difficulties show up using the
dilution methode

M
1

Q( 0, t) ...
~O

fig. 2.4

~ (L, t)--4----------------------------------------X-- ...Q(L,t)
Dilution method during flood wave

It is not very easy to predict how the measured concentration
~ (L,t) depends on the discharge Q(O, t) or even Q(L, t). The
adaptation time is not given, since the situation is
continuously changing. Phase shifts are to be expected.
Longitudinal dispersion is now a disturbing 'spreader' of
information, and dead zones have a damping effect on changing
concentrations.
It is clear that equation 2.1 is not valid anymore. A dynamic
flow and transport model is necessary now.
In the following, previous studies and their results are
outlined, and the approach in this project is explained.

2.2.2 Noppeney's approach
Noppeney (1987) described the transport processes by a one-
dimensional model based on the differential equations:

ou + u ou + goa - g.ib +
ua = 0ot

g_
Ox Ox C2a

oa + uoa + a Bu = 0ot Ox Ox

o~ + uo~ o2~
=0ot -K_

Ox ox2
(2.12)

(2.10)

(2.11)
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with: u = flow velocity [mis]
a = depth [m]
_ = tracer concentration [kg/m3]
C = Chézy coefficient [fm/sJ
K = dispersion coefficient [m2/s]
ib = bottom slope [-]

Equations 2.10 and 2.11 represent the flow process for a
prismatic channel, i.e. constant values for width B, bottom
slope ib and Chézy coefficient C. The convection and
dispersion process is described by equation 2.12, in which the
dispersion coefficient K can be chosen constant, or a function
of the flow velocity u.
Aflood-wave discharge was inserted as an upstream boundary
condition Q(O,t). A second upstream boundary condition was the
release of the tracer M. The downstream boundary condition was
the formula of Jones, which gives a Q(h) relation:

(2.13)

This model presented a simulation of the dilution method in a
prismatic channel. The downstream concentration, calculated by
this model, was considered a continuous measurement _(L,t).
The validity of equation 2.1 was investigated. To this aim the
'measured' discharge was considered a continuous measurement:

M
Q. = Q.(L, t) = _ (L, t) (2.14)

although this is theoretically incorrect. The discharge,
calculated by the flow model, was considered to be the 'true'
value:

Qr = Q(L, t) (2.15)

In order to learn about the error caused by using the steady
flow formula (2.1), Qmwas compared with Qr·

t-

fig. 2.3 Phase shift between Qr and Qmaf ter Noppeney (1987)
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Noppeney found that the main error is a phase shift, caused by
the difference between the flow velocity u, and the wave
propagation velocity c. Since c:::: 1.5·u (or u::::0.67·c) ,
the 'information carrier' u drops behind with regard to c.

2.2.3 Vroege's approach
Vroege (1991) used an existing computer model (DUFLOW) to
simulate a non-stationary river flow, and created an own model
to simulate the transport processes using the results from
DUFLOW. The convection and dispersion equation was extended
with dead zones:

DUFLOW - u(x,t) required in (2.16)

(2.16)

(2.17)

with: f/Jd= concentration in dead zone [kg/m3]
Ddt Ds = entrainment coefficients [s·l]

Dead zones contain almost stagnant water, in which the tracer
can be trapped. lts concentration f/Jdslowly adapts to the flow
concentration f/J. The entrainment coefficients Ds and Dd
quantify the exchange between the main stream and the dead
zones.
Vroege simulated, like Noppeney, flood waves by this 'truth'
model, and generated concentration measurements f/J(L,t) at the
downstream boundary.
But, instead of using equation 2.1, a numerical algorithm was
developed to calculate the upstream discharge Q(O,t) based on
the measurements f/J(L,t).
Therefore the convection-dispersion model was inverted to a
back-into-time (b-i-t) mode. A Kalman filtering procedure
improved the results based on the measurements, and ensured
stability of the backward calculation. River parameters were
supposed to be known.
lnitially the b-i-t model used the 'true' velocities u(x,t),
computed by Duflow. Since in reality, these velocities are
unknown, the procedure was extended avoiding the use of these
data:

1. First estimation of velocity distribution u(x,t)
2. Computation of f/J(O,t) by b-i-t model using velocities

u(x,t) and measurements f/J(L,t)
3. Computation of discharge at upstream boundary by:

Q( 0, t) = M/ {f/J(0, t) - f/JOJ
4. Computation of new velocity distribution by DUFLOW

using Q(O, t) as an upstream boundary condition with
known river parameters.

5. Return to step 2
13



Vroege showed that this iteration procedure converges. The
phase shift of Noppeney was avoided. The original upstream
boundary Q{ 0, t) of the I true I model was approached satis-
factorily; a procedure to compute the discharge based on
dilution measurements was created.
However, this approach is very theoretical, and the practical
applicability is questionable. The flow model DUFLOW is based
on prismatic channels and requires river parameters, and
cannot deal with the specific problems of irregular boulder-
studded mountain rivers with undefinable river parameters.

,oUd : x=ü, ·truth·

dashed : x"'o, 1·" iteration

dotted : x=O, 21'1d iterat ion

dashdot : x=O, )rd iteration

fig. 2.4 Iteration with a 6-hour flood wave (Vroege '91)

2.2.4 Approach in present study
In this study, the applicability of dilution discharge
measurements in mountain streams is the central issue.
Mountain streams have mostly very irregular shapes, with big
rocks, high turbulence and dead zones. Geometrical parameters
such as depth, width, bottom slope and bottom roughness are
extremely time and place dependent, or even undefinable. Flow
velocities are distributed irregularly in the longitudinal
direction, throughout each cross-section, and in time.
Much attention is paid to a flow model that can deal with
these problems. A one-dimensional computer model (FATS) is
developed to simulate the flow and transport processes taking
place. This model is used to simulate dilution measurements
during flood-wave conditions in imaginary mountain rivers.
Measurements are generated: the waterlevels h{O,t) and h{L,t),
and the downstream tracer concentration _(L,t).
A procedure is developed (computer program FINDQ) to compute
the river discharge Q(O,t) using only these measurements, the
constant background concentration -0 and the tracer release M.
No further knowledge about the river parameters is required.

14



fig. 2.5 A mountain river (Grindulu, East Java)

The computer program evaluates the measurements, estimates the
river parameters and reconstructs the flood wave. If an
upstream river discharge and a set of river parameters can be
found that yield results equal to the measurements, then one
can have confidence in the determined river discharge.
This is an identification problem which is solved by a
procedure called DUD which executes a few parameter
improvement iterations.
Finally, attention is paid to the field work device, required
to obtain the measurements.
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3. Flowand trensport equations

3.1 Introduction
In transport processes the flowing water is the carrier of the
transported substance. The water movement influences the
convection and dispersion of the dissolved substance, but the
dissolvant does not influence the water movement (no density
currents) .

water movement influence .... convection and dispersion

fig. 3.1 Diagram of transport process

In the transport model of this study, the flow model and the
convection-dispersion model are initially separated. Later on
they are merged into a model describing transport processes in
rivers.

3.2 Flow processes
3.2.1 Introduction
One-dimensional unsteady flow is usually described by two
differential equations based on the conservation of mass and
momentum, respectively.
These equations are derived below, resulting into a continuity
equation and an equation of motion, suitable to describe flow
processes in mountain rivers. Typical problems such as
irregular shapes, unconstant values for bottom slope, width,
depth and thus cross-sectional area, undefinable roughness and
turbulent velocity distribution make many usual
simplifications impossible.
The fundamental principles of the motion of water are
outlined. For a better understanding, the basic equations for
a two dimensional vertical model (2DV-model) are derived.

3.2.2 Conservation of mass
An elementary volume of water (fig. 3.2) is taken into
consideration. lts dimensions are dx and dz. The horizontal
velocity component is u. The vertical component is w.

aw
w + dz az

T

D- u + dx auaxu .....

Tw
fig. 3.2 Velocity components in a water partiele
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The net inflow should be zero (water is supposed to be
uncompressible). This yields:

ou + ow = 0
Ox Oz

3.2.3 Conservation of momentum

(3.1)

The stresses on an elementary volume are:
- convective stresses pu2, pw2 and puw
- pressure p
- shear stress ~u
- gravitation force per unit of surface pgàz

w + dz owoz
T

pu2 .....
p ( uw+-~zo ( uw) )oz

.....u + dx ouoxu .....

p ..... +- ~dx~ipuw
.....
.....

T ~zz T
P pw2

1
pgàz

T
w

fig. 3.3 Stress components on a water partiele

The acceleration components of the water particle can be found
by the resulting forces:

ou o (u2) + o( uw) + 1 op 1o~xz
0+ +poz =OE ax az pax

ow + o( uw) + o(~) +
1 o~zz + 10p + g = 0OE ax az pax pOz

(3.2)

(3.3)

17



z

y

fig. 3.4 Co-ordinate system of 3D-model

Equations (3.1), (3.2) and (3.3) represent the 2DV-flow model.
In a similar way the three dimensional (3D) equations can be
determined:

au + ê v + aw = 0 (3.4)
Ox Ty Oz

au +
a (ua)

+
o{ uv) +

a{ uw) + 1 ap 1 a'tZ1 1 a'tzz
0 (3.5)

+ P""""DY + =Ot öx öy öz pax poz

ov a (uv) a( v2) a{ vw) 1 a'tZ1 + ~ ap + 1 a't1Z _ (3.6)
Ot + öx + öy + öz + pax pTy poz - 0

aw a (uw) a( vw) a( ~) 1 a'tzz 1 o't tt 10p (3.7)
Ot + öx + öy + öz + pax + p""""DY + paz + g = 0

The local veloeities consist of a time-averaged part and a
fluctuation caused by turbulence:

u=u + u'
(3.8)

v=v + v' (3.9)

W=w + w' (3.10)

u
t

7
AVERAGING INTERVAL (SEVERAL MINUTES)

_t

fig. 3.5 Averaging of turbulent fluctuations
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The shear stresses are caused by turbulence and velocity
gradients. They are defined as follows:

-- ou = p- uv: _ pv ov
1: JIJ = p- u' V' - pvDy Ox

-- ou
= p- u'W' _ pv ow

1:XZ = p. u' W' - pvOz Ox

-- Bv
= p- V'w' _ pv ow

1:1Z = p.V'W' - pvOz Dy

{3.ll}

{3.l2}

{3.l3}

in which v is the kinematic viscosity of water.

3.2.4 Integration over the cross-section
In order to obtain
(3.4 through 3.7)
section.
First, the equation

a one-dimensional flow model, the equations
have to be integrated over the cross-
of mass conservation (3.4) is integrated.

IJ< ou + ov + oW)dydZ = 0
Ox Dy Oz

1

{3.l4}

This integration (Jansen et al. 1979) yields the continuity
equation:

(3.lS)

Integration of the momentum equations (3.5 through 3.7) over
the cross-section can be applied in a similar way.

;tlIudYdZ + aOxlIu2dYdZ + 11;Y (uv) dydz + rJ aDz (uw) dydz +
A 1 1 i

(3.16)

The terms of (3.16) are analysed separately. The first
integral represents the river discharge. The second integral
can be written as:

IIu2dYdZ = arrA = a ~
1

{3.l7}

19



with:

a.= ~ IIU2 dydz
çj A

(3.18)

This a.is the velocity distribution parameter. If the flow is
uniformly distributed over the cross-section, then a.=1. If
there are local deviations, then a.>1.
The third and fourth integrals of (3.16) are assumed to be
zero, because the local velocities Vand W in the river cross-
section are close to zero. In (3.9) and (3".10) it is
reasonable to assume v=0 and w=0. The local lateral velocities
are then expressed by V=v' and W=w'. Their influence is
already incorporated in ~zy and ~u (by 3.11 and 3.12).
The last two terms of (3.16) can be written as:

(3.19)

with:
~b = mean bottom stress [N/m2]
P = wetted perimeter [m]

The meaning of these parameters P en ~b is that all shear
stress acting on the water in the cross-section is caused by
the contact with the 'fixed' boundaries.

fig. 3.6 Wetted perimeter and bottom stress in a
cross-section

Usually the pressure in a river cross-section (3.16, fifth
term) is assumed to be hydrostatic. However, this assumption
cannot be made for a turbulent mountain river, where pressure
fluctuations can occur due to local accelerations.

20



p = pg(h-z) + p' (3.20)

The pressure p consists of a hydrostatic term and a
fluctuation p'. lts gradient is:

(3.21)

The fifth term of (3.16) now becomes:

~IIap dydz = gJf ahdydz + 2 JI ap' dydz = gA ah + 2 a (p' A)
P Ox ax p ox Ox -pax (3.22)

with: p'= cross-sectional averaged pressure deviation [N]
h = waterlevel [m]

Substitutions of these terms into (3.16) gives:

(3.23)

This equation of motion contains terms for the acceleration,
the convection, the slope of the water surface, a gradient of
an averaged pressure fluctuation and a term for the bottom
friction.
The continuity equation (3.15), and the equation of motion
(3.23) together describe the flow process in a river under the
following assumptions:
- constant values for p, g and v
- no feeding or leakage by groundwater flow, rain or

evaporation
- uncompressibility of water
The last two terms between brackets in (3.23) are unknown
functions of x, Q and A (and A is a function of hl. They can
be combined in an empirical function:

f(x, Q, h} = 2 [-! (p' A) + P'tb]
p ux

(3.24)

lt is to be expected that the bottom friction is the decisive
factor.

21



A formula for the bottom friction exists:

(3.25)

with: As = flow cross-section rmZ]
R = AsfP = hydraulic radius [m]

But this equation is based on assumptions that cannot be made,
such as:
- prismatic channel
- constant Chézy parameter based on bottom roughness
- uniform velocity distribution
Therefore (3.25) is not used, and f remains an empirical,
not yet determined function.
This makes the flow model:

aA + aQ = 0
01: Ox

(3.26)

aQ + a (a. Q2) + gA ah + f = 0
ot Ox A Ox

(3.27)

In this model several variables appear. Q and hare the
variables to be solved. In order to make (3.26) and (3.27)
weIl defined, the following relations must be known:

f = f(x, Q, h)

(3.28)
(3.29)
(3.30)

A = A(x,h)

a. = a.(x,h)

3.2.4 Characteristic celereties
The fysical meaning of the characteristic celerities is the
propagation speed of infinite small disturbances in the water
surface.In order to find these celerities, equations (3.26) and (3.27)
are rewritten in Q and h.

Bah + ea = 0
01: Ox

aQ +2a.QaQ + [gA _ B,(a.Q)2] ah =-f
ot Aax A Ox

(3.31)

(3.32)
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with:

B' = a (~)
Oh a.

(3.33)

The expressions of the total differentials belonging to the
system are:

(3.34)

(3.35)

Matrix notation gives:

0 1 B 0 eo/e« 0

1 20.0 0 gA-B' (~) 2 aQ/ax -f
A A =

dt dx 0 0 ab/at dQ
0 0 dt dx ah/ax dh

(3.36)

The celerities are found if the system coefficient matrix
equals zero (Jansen et al. 1979). This gives:

yielding:

a.Q ±
A

(3.38)

The sign of crepresents the direction of the wave
propagation.

3.2.5 Flood-wave celerity

For flood waves with a relatively long wave period, the flood
wave celerity can be found using a quasi-steady flow
description. Neglecting the acceleration term in the equation
of motion provides a unique Q(h) relation for steady flow,
transformabIe to a Q(A) relation. The continuity equation can
be rewritten in Q.

23



dA eo +
dQat

aQ = 0
Ox

which is the same as:

aQ + dQ eo = 0
ot dA Ox

(3.39)

(3.40)

Recognise the simple wave structure with a propagation
velocity:

c = dQ
dA

(3.41)

For two standard cases simple expressions can be found.
In the first case a constant width is considered and a uniform
velocity distribution over the entire cross-section.

Bt· +

A

fig. 3.7 Theoretical cross-section

The discharge is given by:

with: a = depth [m]
C = Chézy coefficient [im/s]
i = bottom slope [-]

lts derivative to A is:

dQ =
dA

which can be written as:
3c = u"'2

24
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In the second case, the flow area is only a part of the river
cross-section.

Bt· +
Bt· J •••••••••• t

fig. 3.8 Theoretical cross-section with flow area

An example of such a cross-section is a river with groynes.
The discharge is given by:

(3.45)

lts derivative to A is:

dQ = dQ dAs =
dA dAs dA

(3.46)

yielding:

3 s,c = _-u
2 B

(3.47)

In most cases, expressions like these will not be found so
easily. In streams with irregular shapes and undefinable
geometrical proportions, equation (3.41) requires an empirical
Q(h) relation and alocal river width.

c = dQ dh =
dh dA

1 dQ
Bdh

(3.48)

which is alocal value.

The propagation time over the length L is:

(3.49)
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3.3 Convection, diffusion and dispersion
3.3.1 Introduction
Convection is the longitudinal transport of a dissolved
substance, caused by the stream. Meanwhile, mixing takes place
in three dimensions, caused by:
- molecular diffusion
- turbulent diffusion

dispersion
The influence of molecular diffusion is negligible with regard
to turbulent diffusion and dispersion, and there"fore usually
not taken into account.

3.3.2 Convection and turbulent diffusion
A two-dimensional basic equation for convection and turbulent
diffusion can be found by an analysis of a mass balance.

~ + dZ'O~~)

T

~ .....D~~+ dx-a (~)
OX

T

~

fig. 3.9 Mass flux components in an elemantary volume

A mass balance yields:

O(~) = 0cz (3.50)

On the analogy of (3.8) and (3.10) the time-averaged velocity
is separated from its turbulent fluctuation (fig. 3.5).
Similarly, it is defined:

~ = 9S + 9S' (3.51)

Substitution into (3.50), and averaging over a short time
interval yields:

cOt (9S + 9S') + cOx (u9S + u9S' + u' 9S + u' 9S' ) +

+ a (w9S + w9S' + W' 9S + W' 9S,) = 0Oz
(3.52)
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Evaluation of the terms shows:
~ + ~ , = ~

u~ = u~

u~ • = u·~· = 0

u'~ = u' .~ = 0

because ~. = 0 by definition
convective transport
because ~' = 0

because u' = 0 by definition
The terms u' ~' and w' ~' represent the turbulent diffusive
transport. Taylor (1953) assumed in a one-dimensional
consideration a negative linear relation between the diffusive
transport and the concentration gradient.

u'~' = -K a~
Ox

(3.53)

with: K = diffusion coefficient [m2/s]
In a two-dimensional consideration, a matrix notation gives:

[
u' ~' ] = _ [
w'~'

(3.54)
R21

Assuming that the co-ordinate system is chosen in the main
directions (i.e. Kx=.Kil' Kz=R2a and K12=R21=O), equation (3.52)
becomes:

(3.55)

The second and fourth term of (3.55) can be replaced by:

aax(U~) + aaz(W~) (3.56)

in which the bracketed term equals zero, satisfying the
equation of conservation of mass (3.1).
Substitution, and extension to 3D-mode gives:

(3.57)
a~ + ua~ _ a (K a~) + v a~ _ a (K a~) + w a~ _ a (K a~) = 0
ot Ox Ox zTx Oy Dy lOy Oz Oz zCfZ

with: K = longitudinal diffusion coefficientx
K = transversal diffusion coefficient~ = vertical diffusion coefficientZ
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The assumption of Taylor has proven its validity in practice
for turbulent diffusion. But (3.57) is only a local transport
equation. In order to quantify the transport in a river,
integration over the cross-section is required.

3.3.3 Dispersion
Dispersion is the effect of convection deviations over the
cross-section, caused by a non-uniform velocity distribution.
This is, beside turbulent diffusion, an additional 'spreader'
of substance in longitudinal direction.

LlNE
SQURCE

t =0

fig. 3.10 Mixing process in a river (2DH)

Again the basic continuity equation (3.50) is considered, but
in a 3D-mode:

~ + a(~) + a(~)
Ot dx dy

+ a (~) = 0
dz

(3.58)

Integration over the cross-section gives an expression for the
river transport.

~II~dYdZ + -:XII~dYdZ = 0 (3.59)

The last two terms of (3.58) vanish, because the total lateral
transport must be zero (no external source).
For U and ~ is defined:

U = u + u" (3.60)
(3.61)

with the overbars indicating cross-sectional averaged values,
and the quatation marks alocal deviation.
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r·l u = local velocity
_._._._ u = local time averaged

velocity
I u' turbulent fluctuation=1

---u = cross sectional averaged
velocity

u" = local deviation

u = u + u' and U = u + Uil

fig. 3.11 Cross-sectional velocity distribution

Equation (3.59) now becomes:

The integrated deviations cancel out, yielding:

(3.63)

which can be written as:

The second and third term vanish, because they satisfy the
continuity equation of the water movement (3.26).

Now it
transport
gradient.

is assumed (see also 3.53)
is negative linear to the

that the dispersive
average concentration

u"SI5"= -K~
Ox

(3.66)

with: K = longitudinal dispersion coefficient rmz/sJ
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Notice that this K value includes the effect of turbulent
diffusion (see fig. 3.11). Although assumption (3.66) is very
questionable, it is widely practised (Fischer 1979) in
transport computations. This makes (3.64):

A ~ + Au ~ - 0 (AK Oj") = 0
ot OK Ox OK

(3.67)

3.3.4 Example
In a river with steady flow, a constant cross-sectional area
and a constant dispersion coefficient, a pOllutant with mass M
is instantaneously released at x=O and t=O. Now (3.67) can
be simplified to:

(3.68)

An analytical solution is given by:

fS(X,t) = (3.69)

1 = 0

I
t= t,
/

;\
. point of release
!

1=0

x~o

fig. 3.12 Concentration distributions after tbe Taylor model

This is a Gauss curve, moviJJ.gforward with û,
concentration decreases by t-1/2.

The maximum

30



3.3.5 Skewness
This Gaussianity is a consequence of (3.66). However,
measurements in natural streams usually show a skewness in the
distribution curves. A relatively steep front and a long tail
are characteristic of this skewness.
This skewness is caused by the interaction between lateral
dispersion and longitudinal convection, a process more
complicated than a one-dimensional transport equation can
describe.

PLANE SOURCE

u(z) .--
_x --.x -x

.~

1 Jl
~,

1

_Je --.x _l(

fig. 3.13 Skewness in concentration distribution
(Fischer 1966)

3.3.6 Disintegration of the substanee
If a pollutant disintegrates (for example biologically), its
total mass decreases with time. This can be quantified by:

aM = -kMot (3.70)

with: k = disintegration factor [s-l]
Therefore the concentrations from x=-- to x=- will decrease at
the same rate. For a non-conservative pollutant, (3.67)
becomes:

A ~ + Au ~ - a (Al{ ~) - Ak~ = 0ot Ox Ox Ox
(3.71)

In this study, the transport of tracers in rivers is
investigated. As a tracer material, a conservative substance
is usually chosen. This means that k=O.
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3.3.7 Dead zones
An important extension of (3.71) is the exchange of the dis-
solved substance between the main flow and the dead zones.

fig. 3.14 Dead zone bebind a stone in a mountain river

Examples of dead zones are:
- areas behind obstacles
- areas between groynes

an inland harbour at the river
- non-flowing water particles due to bed roughness and

vegetation
Because these zones are not a part of the stream, they react
more slowly to changing concentrations. For convenience the
overbars will be omitted from now on.

dx~----------------~

1-g

Ad = gA = tAs

A = (l-g) As
u .... .....u St =--l-g

with: Ad = cross-sectional dead zone area rmZ]
As = cross-sectional flow area rmZ]
g = dead zone fraction
t = ratio A~As
Qh = exchange discharge [m'ls]
Vd = volume of dead zone [m]

fig 3.15 Schematisation of a dead zone

Between the dead zone and the main stream, turbulence causes
an exchange discharge Qds.

The net influx equals the storage:

(3.72)
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which is the same as:

(3.73)

with : D = Qds = entrainment coefficient [s-l]
Vd

The entrainment coefficient can be considered as the inverse
of the exchange time, i.e. the time required for the dead zone
to exchange its own volume.
The influence of this exchange on the concentration in the
flow area is:

~~ + E D (~ - ~ d) = 0 (3.74)

The one-dimensional convection-dispersion model with dead
zones is now represented by the equations:

[
a~ + ua~ ~ a (AKa~) + ED(~ - ~d) = 0 (3.75)
OE Ox AsOx s Ox

a~d
- D(~ - ~d) = 0 (3.76)

--;;t

Dead zones also have a skewing effect on passing concentration
clouds, because they behave like internal sources. The effect
of the dead zones on the skewness of the concentration
distribution is of greater importance than the effect of the
non-uniform velocity distribution over the cross-section.
Especially in turbulent, irregularly-shaped mountain streams
the dead zones will be decisive for the skewness in the
observed data.
The skewness of a concentration distribution can be quantified
by the method of moments. Nordin and Troutman (1980) give a
relation between skewness and physical parameters like S, D, K
and u.

z
Q.....
~....
Z
W
Uz
8

,-, \

: \LoeSERVEO,,
PREOICTEO

TIME

fig. 3.16 Skew.ness in observed data
(Thackston and Schnelle 1970)
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3.4 Transport model
3.4.1 Model equations
As explained in section 3.1, the combination of a flow model
and a convection-dispersion model describes the transport
processes of a dissolved substance in a channel.
These model equations are:

aA + eo = 0
TI Ox

(3.77)

aQ + a (a. al) + gA ah + f = 0
Ot Ox As Sax (3.78)

(3.79)

(3.80)

Notice the small change in (3.78) with regard to (3.27). Since
the cross-section is divided into a flow area and dead zones,
the equation of motion should exclude these zones and A should
be replaced by As. The continuity equation (3.77), however,
describes storage over the full cross-section A.

The symbols in the equations are recapitulated:
System variables (functions of x and t):

Q = river discharge [m3/s]
h = water surface level with respect to reference datum [r,]_ = mean concentration in cross-sectional jlow area [kg/m]
-d = mean concentration in dead zones [kg/m]

Physical constant
g = acceleration due to gravity (~ 9.81 m/s2)

Interrelated parameters
geometrical functions of x and h:

A = cross-sectional area [ml]
As = (l-S)A = cross-sectional flow area [m2]
a. = velocity distribution parameter over As (see 3.18)
S = dead zone fraction
€ = ratio AJlAs = S/(l-S)

flow dependent functions of x, hand a:
f = resistance parameter [m3/sa]
u = Q/ As = mean flow velocity in flow area [mis]
K = one-dimensional dispersion coefficient [ml/s]
D = entrainment coefficient [s-l]
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The influence of the irregular shape of a mountain river bed
and its flow profile is expressed by these parameters. In
order to make the transport model work, these parameter
functions must be known.
Obviously modelling an existing river requires a huge
investigation at different sites of the river in question
during different discharges. However, this is not the aim of
this study.
The transport model of this study is meant to model imaginary
rivers with arbitrarily chosen parameters. In these imaginary
rivers the dilution method is simulated under unsteady flow
conditions. The order of magnitude of most parameters can be
found in literature, so that meaningless imaginary rivers can
be prevented. In the following, a procedure to obtain these
parameter functions is outlined.

3.4.2 System parameter functions
Cross-sectional area
In each position (grid point of the model), the width is
supposed to be known. The cross-sectional area is then defined
by:

b
A(x,h) = IB(X,Z)dZ

zb

(3.81)

Velocity distribution parameter «

Two discharge measurements were carried out in the River
Grindulu using a current meter. The cross-section was divided
in 24 equal and equidistant sections where the flow velocity
was measured. On the first day (relatively high discharge) the
velocity distibution parameter was «=1.51. On the second day
(lower discharge) measurements yielded «=1.56. The value of «
was found by:

D
-1~ 2n LUi
i=l (3.82)a. =

which is statistically:

(3.83)
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The role of a. in the model is not very significant and
estimations between a.=1.2and a.=1.8seem realistic.

fig. 3.17 Measurement of flow veloeities
using a current meter

Dead zone fraction S
In the case of a river with groynes the dead zone proportions
can be easily estimated. In other cases visual approximations
must be carried out. Nordin and Troutman (1980) give values
for mountain streams between S=O.Ol and S=0.06.

Resistance parameter f

For steady flows Q(h)-curves can be found empirically.
However, for unsteady flows this relation is not properly
defined anymore. An hysteresis effect occurs, which is more
significant with increasing time gradients.

k

f

Q-" ClAl'\'oZ. ço.-
ste"'*y ~ow

-11

fig. 3.18 Hysteresis in Q(h)-curve

For this reason, both Q and hare arguments of the resistance
parameter f (see 3.24).
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lts most significant term, the bed friction, can be wri tten
as:

=~P(h)"tb(U)
P

(3.84)

In (3.84) the influences of h resp. u are separated. The
perimeter is geometrically related to the water level. The
bottom shear stress is a function of the shear veloci ties,
i.e. a function of the mean flow velocity u. Usually a square
proportionality is assumed:

"tb- ulul (3.85)

The second term of f, the local pressure deviations due to
turbulence, is expressed by:

p' =p(ul)2 (3.86)

The velocity fluctuations Ui are linearly related to the mean
flow velocity, and so do their gradients. This gives:

a (p'A) _ u2
Ox

(3.87)

If negative discharges are avoided, which is very reasonable
for mountain rivers , then both terms are found to be linear
with the square of the mean flow velocity. Because u=Q/As and
As=As(h), the square of the discharge can be isolated in the
expression.
This simplifies f into:

f (x, h, Q) = ~ (x, h) • Q2 (3.88)

The cross-sectional geometry is now incorporated in ~.
Substitution of (3.88) into (3.78) under steady flow
conditions (aQ/at=O) yields an expression, in which ~ can be
determined by:

(3.89)

in which the water surface slope ah/ax is the decisive term.

Qs is the discharge based on the local steady Q(h) relation.
Using a few steady flow profiles , all ~ (x, h) values in the
model can be calibrated.
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Dispersion coefficient K

A one-dimensional expression for the longi tudinal dispersion
coefficient (Fischer 1979) is given by:

(3.90)

with: II ::::0.011
u* = bed shear-velocity [mis]

Substitution of the Chézy equation into (3.90) yièlds:

-B2C u s
K = ll--{ga

(3.91)

This expression is only indicative. It shows qualitatively the
influence of several geometrie parameters. The value 11 can
deviate with a factor 4.
In the computer model (chapter 4) an overall dispersion
coefficient for the river section is required to calibrate 11·
Equation (3.91) can then be used for local effects.

Entrainment coefficient D

On the analogy to the dispersion coefficient, an overall value
of D is required in the model. Local differentiation is
possible.

~
\
~ -

t>A \~ -
\ U

gA = dead zone area [m2]
Pd = exchange perimeter [m]

fig. 3.19 Exchange of dissolvant between dead zone
and flow area
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Under the following assumptions of linear relations:

P{fi
D - SA

(3.92)

(3.93)

An expression is found for the entrainment coefficient:

(3.94)

in which 6) is a dimensionless coefficient that defines the
overall effect of dead zones.
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4. Numerical approach

4.1 Simulation of transport processes
Computer models simulating open channel flow and transport
processes are available. However, they are usually based on
simplified model equations and assumptions of uniformi ty of
shape. The aim of this chapter is the formulation of a
computional algorithm, based on the equations (3.82) through
(3.85), with all time and place dependent coefficients as
specified in section 3.4.2. The effects of a mountain stream
with an irregular bed can then be incorporated in the model.
These equations are slightly rewritten for the -sake of the
numerical schemes:

(4.1)

(4.2)

(4.3)

(4.4)

It may be clear that such a model requires a large amount of
data and computations. The programming language Matlab proves
to be a powerful tooI for numerical computations of this kind.

4.2 Explicit and implicit schemes
Different methods exist for the transformation of a
differential equation into a numerical algorithm. The choice
of the numerical scheme has to be carried out with great care.
Criteria like accuracy and stability are of great importance.
Numerical schemes can be roughly divided into explicit and
implicit schemes. An explicit scheme usually has the form:

(4.5)

with: yD = state vector of time level n
M = system transition matrix
~1 = vector containing boundary conditions
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The state vector contains the system variables in the grid
points to be calculated (for example river discharges, water
levels, concentrations etc.). The state vector of a new time
level is a function of the previous time level and the
boundary conditions.
An implicit scheme has a slightly different form:

(4.6)

Now the new state vector can only be found after solving a
system of linear equations. Although an implici t scheme is
more complicated to solve, its advantages are great concerning
the stability of the computation. For both the flow equations
and the transport equations an implicit difference scheme is
chosen. Time derivatives of the state vector are defined in
both time levels n and n+1.

4.3 Numerical flow model

4.3.1 Staggered grid or unstaggered grid

In the flow model two system variables are to be integrated: 0
and h : Usually a staggered grid is used for the numerical
integration of 0 and b , This means that the grid points are
divided into 0 points and h points:

0---*---0---*----
h2 h4

----00 *---0---*
hm-2 hm

fig. 4.1 Staggered grid in flow model

The grid points at the boundaries should be chosen so that
they fit the boundary conditions. The state vector then is:

(4.7)

In many cases a staggered grid is very efficient, because the
continui ty equation contains a time differential in b, and a
space differential in O. The equation of motion contains a
time differential in 0, and a space differential in ti, The
state vectors of different time levels are connected by
'integration molecules':

t

0----*----0----*
I0----*----0----*

o = 0 point
* = h point

equation of motion
--- continuity equation

:

j-1 j j+1 j+2

fig. 4.2 Crank-Nicholson integration molecules
in a staggered grid
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The convective term in the equation of motion does not fit
very weIl in the staggered grid. The expression:

needs 0 values in b points. This problem can only be solved by
accepting an effective grid size of 4.6.x for the convective
term.
Another problem connected to the staggered grid is that b
dependent parameters (such as A, As' B, 0., S and E, see
section 3.4.1) can only be defined in b points. But they are
necessary in 0 points as weIl. The 0- and b-dependent
parameters (such as ~, u, K and D) cannot be defined at all,
because no grid point contains both 0 and h, Interpolation
could solve this problem, but this would double the effective
grid size with negative consequences for accuracy and
calculation time.
Moreover , the convection-dispersion model, which cannot be
staggered would not fit conveniently to a staggered grid of
the flow model.
For these reasons an unstaggered grid is chosen: 0 and hare
defined in each grid point, and so are all river parameter
functions.

01 O2
®---..JC®I'----
hl b2

0m-1 Om
___ -'OI® -'OI®

hm-1 -;

fig. 4.3 Unstaggered grid for flow model

In the case of an unstaggered grid, the preissmann method
seems most efficient. Space differentials are defined between
two grid points, which makes the effective grid size .6.X,
instead of Crank-Nicholson' s 2.6.x. Moreover , modification of
the scheme at the boundaries is not necessary.
Now the integration molecules appear as follows:

t:

~11 I

I.
L- ..

j-1

fig. 4.2

I----®
~----~

® Orb point
equation of motion
continuity equation

j j+1 j+2

Preissmann integration molecule
in an unstaggered grid
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4.3.2 Discretisation of the differential equations

Preissmann discretisation of the continuity equation (4.1)
yields:

D+l D
1 n: 1 - n: I. J- J-
2" (BJ-l At

hD.+1 - h~
+ B' J J)) At

D D
Qj - Qj-l

+ (1-8) Ai = 0

(4.8)

with: ~t = numerical time step
~x = numerical spatial step
8 = time level weighing factor

The spatial differentials represent the centre of the grid
interval. Therefore, in order to be central as weIl, the time
differentials in both grid points must be averaged.
The equation of motion (4.2) becomes:

....a+l D
1 Sdj-l - Qj-l
- ( +2 .4t

hD.+ 1 _ h~+ 11
1 J J - 1 ~ ....a+ 1 D+ 1 }

+ 2"g[As,j-l + As,j] 4X + 2" ( [,-Q] j-I Sdj-l + [~Q] j Qj ) +

[ a.AQ]J' QJ~ [ a.Q] QDA j-l j-l
+ (1_8){ __ S -,-_s _

4X

11 D
1 h.-h·lJ J-

+ 2"g[As,j-l + As,jJ AX (1.9)

4.3.3 Boundary conditions

If m is the number of grid points, it is easy to see that
(4.8) and (4.9) can be implemented in the grid only m-1 times.
Two boundary conditions are necessary to make the system
consistent. A boundary condition is a Q value, an h value or a
Q(h) relation at a boundary. In the case of subcritical flow,
each boundary needs a boundary condition. If the flow is
supercritical, two upstream boundary conditions are necessary.
If transitions of sub- and supercritical flow are present,
shock conditions are necessary.

In the flow model of this chapter, subcritical flow is
assumed. The downstream boundary condition is given by the
formula of Jones, which gives an unsteady Q(h) relation:

(4.10)
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with: c = propagation speed of the flood wave (see 3.54)
Os = river discharge based on steady Q(h) relation
is = slope of the water surface slope for steady

flow (is < 0)
Another form of this formula is given by (recognise the simple
wave structure):

ah + c ah = c i:ot Ox +s
(4.11)

In a numerical model (4.11) is more convenient to apply than
(4.10). Preissmann discretisation yields:

D+l D
1 h._1 - h._12( At + (4.12)

Modification into a supercritical flow model can be made by
replacing the subscripts m-1 and m by 1 and 2, respectively.
The upstream boundary condition is the river discharge at x=O:

of+l = of + ~11+1 (4.13)

Figure 4.4 shows the areas of the equations and boundary
conditions in the grid.

Q( 0, t) E q u a t i ons o f m 0 t i o n

I r --,
® ® ® =-'IJ ® ®
1 2 3 m-2 m-1 m

I
Jones

IL ___J

C 0 n t i n u i t Y e q u a t i ons

fig. 4.4 Validity areas of model equations
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4.3.4 Initia1 conditions
The initial 0 and h values are based on a steady discharge in
all sections, equalling the initial upstream boundary:

for j = 2, ..,m (4.14)

hl. = hs ].(d·)] , ] for j = 1 ,..,m (4.15)

in which h . is the water level based on the steady O(h)
relation, i~]grid point j.

4.4 Numerica1 convection-dispersion model
4.4.1 Discretisation of equations
Equation (4.3) is discretised using the Crank-Nicholson
scheme:

(4.16)

in which:
1 a

uk = u - -::r= (AsK)
AsrJx

(4.17)

discretised as:

1 As,j+ 1Kj+ 1 - As,j-l Kj-l
vi.i=v i :

As,j 24X
(4.18)

The dead zone differential equation is discretised:

o (4.19)

This equation does not contain any space differential, which
enables implementation in each grid point.
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4.4.2 Boundaries
At the upstream boundary the concentration
cross-sectional flow area is a boundary condition:

in the

11+1
~1

M= ~O +
af+1 (4.20)

with: ~D = background concentration of river water [kg/m3]
M = release of tracer [kg/sJar1= upstream river discharge [m3/s]

The downstream boundary does not allow a second order
derivative, because this requires at least three grid points.

11+1 11 11+1 D+l
~• - ~. el ~• - ~.-1 11+ 1 11+ 1 }At + uk,. 4X + DJ(~J - ~d,J) +

11 11
~ - ~

+ (1-8){Uk,. • 4X.-1 + D.(~! - ~~,.)} = 0

(4.21)

For this reason the dispersion effect is not taken into
account locally and a simple wave scheme is used:

~ (0, t)
I r-----+-----f--
®===========rK:i®'=========rK:i®
1 2 3

Convection-dispersion equations
Simple wave

I

®====_~®!)I-= __ o:NJJ®
.m-2 .m-1 m

D e a d zon e e q u a t ion s

fig. 4.4 Validityareas of model equations

4.4.3 Initia1 conditions
For general use of the model the initial condition is:

1
~j = ~O and 1

~d . = ~O,J for j =1, .. ,m (4.22)

representing the situation of a natural
concentration in the whole river section.

background
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However, if the effects of unsteady flow on dilution discharge
measurements are to be studied, a more efficient initial
condition is:

and for j =1, .. ,m (4.23)

This implies an equilibrium state; the release has been taking
piace continuously for a long time.

4.5 Model performance
4.5.1 Stability
The computation is stabie if the norm of the amplification
factor (to be defined in 4.25 and 4.29) is less than unity.
This is satisfied if:

0.5~8~1 (4.24)

for both the Preissmann scheme and the Crank-Nicholson scheme,
without any limitations for grid size and time step.
Usually 8=0.55 is chosen.

4.5.2 Accuracy of the flow model
It is difficult to give a precise prediction about the
accuracy of a numerical computation because errors may have
several sources. However, a few parameters can be indicative
for the accuracy of the result.
For the flow model something can be said about a propagating
flood-wave. The numerical flood-wave celerity and the wave
damping should not be too deviating from the analytical (true)
values.
First a few parameters are defined:

c = lQ.Q= flood wave celerityB ah
T= period of flood wave
L = c·T = length of flood wave

~t Courant number0 = c - =~x
k = 2n/L = wave number
~ = k~x = relative grid size

The (complex) amplification factor for the Preissmann scheme
is given by (Vreugdenhil 1989):

p = 1-2(1-8)oitan(~/2)
1 + 280 itan (~72)

(4.25)
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If friction is not taken into account, the numerical flood-
wave damping is given by the damping factor dn=

(4.26)

in which n is the number of time steps. Equation 4.26 shows
the accumulating effect of damping in time.
The error
which is
celerity.

in
the

wave-propagation speed is represented by cr'
ratio of the numerical and analytical wave

arg (p)
cr = - 2n4tlT (4.27)

In an ideal model both values tend tounity. Usually the grid
size is not the limiting factor. If ~ is small enough (say
AX/L S 1/20) the time step is decisive for dD and cr

1.2.---------~--------~--------~----------~------~
1 _

theta = 0.55

0.8

0.6

0.4

0.2

OL---------~--------~--------~----------~------~
o 0.05 0.1 0.15 0.2 0.25

delta t I T

fig. 4.5 Damping factor and relative wave celerity for
Preissmann and Crank-Nicholson scheme (after Vreugdenhil 1985)

The numerical damping , caused by friction, can be another
source of inaccuracy. The ratio of the numerical and
analytical damping due to friction is given by the relative
friction damping factor.
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-r4t
ln( 1-(1~)r4t)

1:t8r4t
(4.28)

with: r = linearised friction coefficient [s-1]
The value of r is based on a linearisation of _,thefriction
term (f = rQ). The non-linear relation (f = ~!.!), could be
linearised to:

r = ~Q with ~ = friction coefficient
Figure 4.6 shows the effect of the term rb.t on dI'

-~----'-----"-------.-----,-------.

0.8

lhela = 0.55

0.6

0.4

0.2

o ----~--- __ ~ ~ ~ ~ _
-2 -1.:> - 1 -0.5 0 0.5 1

ln.(r dt.)

fig. 4.6 Relative friction damping factor
(after Vreugdenhil 1985)

4.5.3 Accuracy of the convection-dispersion model
On the analogy of the flood-wave propagation, now a
propagating concentration cloud is considered. In order to
study the accuracy of a discretised convection-dispersion
equation, some of the parameters mentioned earlier, are
redefined.
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These parameters are:
u =
L =
T =
a =
k =
~ =

average flow velocity
length of cloud
L/u = period of cloud

ll.tu ll.X = Courant number
2n/L = wave number
kll.x = relative grid size

The amplification factor of the Crank-Nicholson scheme is
determined by:

1-(1-8) aisinr:p = '-l+90isin(
(4.29)

As already mentioned, for small values of ~, Crank-Nicholson's
amplification factor approaches Preissmann's. Therefore
figure 4.5 can be interpreted for the convection-dispersion
model as weIl.
Diffusion in the model can occur even if K=O. This is caused
by purely numerical effects . The numerical diffusion
coefficient for the Crank-Nicholson scheme is (Vreugdenhil
1987) :

(4.30)

This value is non-negative for e ~ 0.5, in agreement with the
stabili ty analysis. The numerical diffusion effect is
sufficiently limited for 8=0.55.

4.5.4 Wiggles
Even if the computation is stabIe, wiggles can occur. These
are oscillating disturbances , usually caused by large
concentration gradients. Often, wiggles arise with a sudden
change at a boundary (for example a sudden start or stop of a
dissolvant release). Such oscillations can be prevented if the
cell-Péclet condition is satisfied (~2). The cell-Péclet
number is defined by:

P = u4x
]{

(4.31)

Although satisfying the cell-Péclet condition is a guarantee
that wiggles will not occur, they do not necessarily occur if
P>2 in the numerical experiments of this study.
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Two major reasons can be given for this:
- For a contionuous dissolvant release, concentration

gradients will not be high, which makes the system more
immune to wiggles.

- The exchange of dissolvant with dead zones has a stabilizing
effect on these oscillations.

4.6 The computer programs
The considerations of this and the previous chapter result in
a series of computer programs simulating flow and transport
processes in a user-defined river section.
These programs, written in Matlab, must be executed from the
Matlab environment.
A brief outline of the main principles follows. Figure 4.9
shows the structure of the model and the interaction of the
different program files.

1 datafiles

MEASURE .MAT

fig. 4.9 Computer files of flow and transport model

First, the RIVER files (RIVER1.M, RIVER2.M, etc.) are user-
defined input programs. They contain:
- the definition of the grid (section length, grid size)
- definition of river bed per grid point (by B(h) relations

yielding A(h) relations in each grid point)
- definition of flow and dead zone fractions (S(h) relations

yielding Bs(h) and As(h) relations in each grid point)
- definition of the bottom line and a few steady flow

profiles (yielding steady Q(h) relations in each grid point
and ç(h) friction functions)

- average values for K and D for one known discharge
- upstream boundary conditions in time: Q(O,t) and ~(O,t)
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The program produces plots of the river-section geometry and
the boundary conditions, and stores the data in the datafile
RIVER.MAT.
The user can add more RIVER files by editing an existing file
and changing its name (for example: RIVER4.M).
Secondly, the program
contains the time loop
numerical integration
results are written in

FATS.M (flow and
and the numerical
of Q, b , ~ and
datafile FATS.MAT.

transport simulator)
schemes, by which the
~ d takes place. The

Finally, FATSMENU.M shows the results of the computation.
Plots show the effects of wave propagation, convection,
dispersion, dead zone effects, hysteresis in uilsteady Q(h)
curves and the 'measurements' described above.
These sequential programs have a clear Lnputz=oomputie=outiput:
structure. If a RIVER program is executed, FATS and FATSMENU
follow automatically. FATS or FATSMENU can be invoked directly
as weIl. The results, of course, are then based on a
previously-generated datafile.
FATS is used to generate dilution discharge measurements in
imaginary rivers under unsteady flow conditions. These
measurements (h(O,t), h(L,t) and ~(L,t)) are written in
datafile MEASURE.MAT. In the next chapter a method is
developed to find the original upstream boundary condition
Q(O, t) using only these measurements.
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5. Detennination of the river discharge

5.1 Introduction
In the previous chapter dilution discharge measurements were
simulated using the computer model FATS. The upstream river
discharge was a boundary condition in this simulation.
The aim of this chapter is to determine this discharge using
only the following data:

h (O, t)
h{L,t) } 3 continuous measurements
~ (L, t)

L = length of section [m]
~O = background concentration for x<O [kg/m3]
M = quantity of tracer release [kg/sJ

These data can be measured in a real river. In this analysis
the data from datafile MEASURE.MAT are used as generated by
FATS. No other information is used for the upstream discharge
determination.

~?-, ~O
IQ{O,t) I~ --x x--

h(O, t) L h{L, t)t· t

M
1 ~(L, t)

fig. 5.1 Discharge dilution method under unsteady
flow condi tions

3 Waterlevels b(O.t) and b(L.t).-------2~-- -_
.c

1
_----- __ _:___._-------._-- ----. .--=

0
0 500 1000 1500 2000 2500 3000 3500 4000

t

0.6 Concentrations C(L.t)

0.4
Co)

0.2

0
0 500 1000 1500 2000 2500 3000 3500 4000

t

fig. 5.2 Measurements of h(O,tJ, h(L,tJ and ~(L,tJ,
generated by FATS
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5.2 Reconstruction of the flood wave
5.2.1 Introduction
A dynamic reconstruction model is required to determine
Q{O,t). A first estimation of the river discharge is given by
the steady state formula (see 2.14, or Noppeney 1987):

Q.< t) = M (5.1)
9J (L, t) - 9S0

Q. is considered a 'measured' discharge replacing ~he measured
.downstream concentration. Q contains a phase shift with
regard to the unknown Q{O, t~, caused by the transportation
time from .x=O to .x=L. Besides, its shape is distorted by
dispersion, unsteady velocities, dead zones, etc.

Waterlevels h(O.t.) and h(L.t.)'3r-----~----~--~~~~~~~~~~~--~----~----_,

---.----- -._-------------------------

2 1------------------------- .--------------------------------------------------------------------------
_------------ .. .-----

°OL_----5~O-O----1-O~O-O----1-5~O-O----2-0~O-O----2~50~O----3-0~O-O----3-5~O-O----4~OÓC
t.

Estirnation ot Q(O.t)50r-----~----~----~~~~~~~~L-----~----~----_,

....~""

Qrn.

.' .

°OL_----5~O-O-----10~O-O----1-5~O-O----2-0~O-O----2~50-0----3-0~O-0----3-5~O-O----4~OOC
t.

fig. 5.3 'Measured' discharge Q.

5.2.2 Parameter estimation
In order to reconstruct the flood wave, river parameters such
as widths, bottom levels, roughness, etc. are required. It is
impossible to find all original time and place-dependent
coefficients as pointed out in section 3.4.2, because the
three measurements do not contain all this information.
It is sufficient to find a computational geometry and an
upstream discharge yielding observations equal to the
measurements. This section discusses a procedure to estimate
the parameters of such a geometry.
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Consider a geometry in which nearly all parameters are
constant. Each cross-section is rectangular; the coefficients
S, C, ib, P are constant. The convective term in the equation

System parameters:
Zo ZL BO BL S C II D

Zo

fig. 5.4 Computational geometry for flood wave reconstruction

of motion uses «=1. The width can deviate as a linear function
of x. This enables a manipulation of the flood wave damping on
top of the friction effect.
In order to estimate the parameters, flow formulas (Chézy,
Jones) are used. Although theoretically not entirely correct,
the following expressions yield areasonabIe first-order
approximation:

(5.2)

(5.3)

ib = hO,lin - hL,lin
L

Lc = t (hL,IU ) - t (ho,lax

U L= t (Q.,IU - t (bO,IU

(5.4)

(5.5)

(5.6)

The celerity c and velocity cr have a geometrical relation:

c = ; <l-.8)u (5.7)
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yielding an expression for the dead-zone coefficient:

15= 1 _ 2c
3u

(5.8)

For the lowest water level in .x=0 the steady flow equation
(Chézy) is formulated as:

a.in = (1-15) BO C{hO,lin - zo)3/2 i~2 (5.9)

with unknown BO' C and zO, For the highest water level the flow
equation requires an unsteady extension (Jones):

A third equation, describing the average flow velocity during
the passage of the top of the flood wave, makes BO' C and Zo
defined:

(5.11)

The other parameters are {initially} defined by the following
assumptions:

(5.12)

(5.13)

1.1 = 0.011 (5.14)

D = 0 (5.15)

5.2.3 Reconstruction model
The differential equations used for the reconstruction model
are the same as described in section 4.1 (equations 4.1
through 4.4). The flow equations are again discretised by the
Preissmann scheme, and the transport equations by the Crank-
Nicholson scheme.
The measured water level h{O, t} is an upstream boundary
condition in the flow model. As a downstream boundary
condition heL, t} can be taken, or the Jones formula. Using the
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Jones formula has the great advantage that a new observation
of h(L,t) is generated, which is not necessarily equal to the
measurement. Actually, their alikeness indicates the quality
of the reconstruction.
The flow model directly produces a Q( 0, t), which is
immediately used in the upstream boundary condition of the
transport model:

M
SIS(O,t) = SISO + Q(O,t) (5.16)

The transport model produces a downstream observàtion of the
concentration, which is directly translated into a Q.
measurement. Comparison with the original Q. curve gives a
second impression of the quality of the flood-wave
reconstruction.

Waterlevels h(O,t) and h(L,t) ~--
3 ,------~----~-----~---,-- I
I _.....l1'I'- .,.._ ...... -. - .. - .... ~ ... ---..._ ... - ............... _.__

2 ..... -.. .... .. .....-.- .. -...~ ..... -...-.-",-.-"-",~""_,,-.__'-,,

..c I .....a-o-o-· ..-.",-.",.·_"-o- e-·".."..."._o_o_ .._

ot.~-e-·"_·"'_ -o- -0-"'.- 0--0--0 -0 -"'0' 0- 0- -<> ~._,,-.- ... o--o-

(l 500 1000 1500 2000 2500 3000 3500 4001

l

Of'

o 0, I

• , : • " 0 0 0 0,0 • • • ' •• : : : : : : , • " •••• ~

oO------;OO-----w'öO-ï5'öö 2000 2500 :3000 :3500 -l00{

t

_-,- __ _;:;Est.imation. of Q(O,t)
50

• • .. •• 0 0 e ..0 ~1T1

• • 0

fig 5.5 Reconstruction of the flood wave, plotted with
the measurements (first approximation)

Figure 5.6 shows the sequential procedures, each symbolised by
a letter (H, S, F, /-1). Vector X is the real world (water
levels, discharges, concentrations in time and space), in
which measurements Y were found. Based on Y the river geometry
parameters e are estimated and used in the flood wave
reconstruction. X' is the world inside the model (computed
water levels, discharges, concentration in time and space
grid) containing Q(O,t). A new observation Y' (i.e. h(L,t) and
SIS(L,t).. Q., see fig. 5.5) is an indicator of the confidence
one can have in the reconstruction, and thus in Q(O,t)
(plotted as *, fig. 5.5).
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Parameter Flood wave
Observa tion estimation reconstruction Observation

X Y a X' Y'
H S F

Q(6, t)
H

Real world Computer model

fig. 5.6 Schema tisa tion of reconstruction procedure

If Y' differs from Y, the error could have been introduced in
each part of the chain. The measurement errors in H, caused by
inaccuracy of the equipment, should be limited, but are beyond
control of the model. The numerical errors which occur in the
reconstruction F can be controlled within reason. Por this
reference is made to section 4.5. The greatest error is
introduced in the parameter estimation S. If the river
parameters e can be improved so that Y'=Y, the model and
Q(O,t) as determined can be trusted.

5.3 Parameter identification problems
5.3.1 Introduction
The determination of the parameters in a system is an
identification problem. Various theories exist to solve
identification problems. Por a general consideration, the
following variables are defined:

9 = parameter vector, to be identified
p = number of elements in e

f(9) = operator, using a, producing a new observation
(see fig. 5.6 : f(9) = HF e = Y')

Y = true observation vector
n = number of elements in Y and f
J(9) = I Y - f(S) 12 = cost function to be minimised

The model observation Y' is considered to be a function of the
parameter vector S: Y'=f(a) in the spaces (Rp - RB). The
alikeness of Yand f(a) is a criterium for the quality of the
parameters, expressed by the cost function J(a).
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5.3.2 Procedures using derivatives
Usual methods investigate the influence of each parameter on
each observation (i.e. the influence of each e element on each
Y element). The heart of such an improvement procedure is the
derivative oy/oe. This is a Jacobian matrix of the form:

oY1 . . . . . . oY1
oSl oap

oY (5.17)
oe =

oYn . . . . . . oYn
oa1 oep

This matrix ensures an optimal first-order parameter improve-
ment. The determination of this matrix is a significant time
and memory consuming operation. For one iteration, p function
evaluations are required. In the identification problem of
this study a function evaluation means a complete time loop of
the flood-wave reconstruction.

5.3.3 DUD (doesn't use derivatives)
An attractive alternative for parameter identification
problems is presented by Dun (Ralston and Jennrich 1978). DUD
is a derivative free algorithm, that gives a parameter
improvement iteration for each function evaluation (instead of
p evaluations).
Experiences show that up to ten constant (lumped) parameters
can be identified quite efficiently using DUD. For larger
numbers of parameters convergence problems or even robustness
problems may occur. In the identification problem of this
study eight parameters are to be identified (see fig. 5.4),
and DUD is a useful tooI.
The variables in the identification problem of this study, are
defined by:

e = [ Zo zL BO BL C s II D ]'1'

p = 8

feS) = [ h (L, 0) nt i: T) 9l(L,O} .. 9l(L,T} ]'1'

generated by reconstruction model

(5.18)

(S.19)
(S.20)

Y = [h(L,O} h(L,T) 9l(L,O} •• 9l(L,T) ]'f (5.21)
from datafile MEASURE.MAT
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n = 2 (T/àt + 1) = 2 x number of time steps (5.22)
11

J(e) = E[Yj-fj(S)]2
i=l

(5.23)

DUD needs p+1 function evaluations, generated using different
parameter vectors (non-singular, stretching a p-dimensional
space), before a new e can be created. These vectors must be
numbered (suffix k, k=1, ..,p+1) so that:

(5.24)

implying that iteration p+1 was the best. The parameter
vectors and their evaluations are stored in the matrices:

A9 = ek-eptl
I
I

(5.25)

AF = (5.26)

The sizes of these matrices are pxp and nxp, respectively.
DUD's linear approximation
written as a function of a.
S space) :

of a new parameter vector is
(a. is a vector in p-dimensional

enel = epi'1 + A9 a.

The linear approximation 1 of f is given by:
(5.27)

(5.28)

The residue of the linearisation is to be minimised:

J!(a.) = I Y - 1(a.) 12
lts solution is given by:

(5.29)

(S.30)
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The algorithm can be described by:

1. Assume p+1 e vectors as in (5.18)
2. Generate the corresponding fee) observations (5.20)
3. Compute their cost functions J(e) by (5.23)
4. Define ~8 and ~F by (5.25) and (5.26), satisfying (5.24)
5. Find the a vector from the linear system (5.30)
6. Find the new 9 vector by (5.27)

Repeated iteration
The new parameter vector can be used for a second iteration.
After another function evaluation using 9ne" p+2 9 vectors and
fee) vectors are available. The vectors w1th the highest cost
function (el and f (el» can be deleted, and the others are
renumbered satisfying (5.24). This extends the algorithm to:

7. Execute the function evaluation f (ene,)
8. Compute its cost function by (5.23)
9. Erase 91 and f(e1), and renumber the remaining

1 to p+1 satisfying (5.24)
10. Return to step 4

vectors from

This process can be repeated until no significant decrease of
the cost function occurs anymore.
The e vector with the lowest J(e) represents the river
geometry that can be trusted most. The Q( 0 ,·t) hereby generated
is the result of the computation.

5.4 The computer programs
The procedures necessary for the discharge determina tion are
executed by two sequential computer programs (fig. 5.7).

1

procedures and functions (xxx.M) among which the
flood wave reconstructing procedure MINIFATS.M

T 1

FINDQ.M

DUD.MAT } datafiles

fig. 5.7 Computer files for discharge determination

First, the program FINDQ.M reads the measurements from
datafile MEASURE.MAT and makes a first parameter estimation as
described in section 5.2.2. The program reconstructs the flood
wave as described in section 5.2.3 using the external
procedure MINIFATS. Eight more such iterations take place
(total nine iterations, p=8), in which FINDQ slightly modifies

61



the elements in the 9 vector. The nine e veetors and their
corresponding f (9) vectors and J(9) values are written in
datafile DUD.MAT. Actually, FINDQ executes steps 1, 2 and 3 of
the algorithm described in the previous section. After this,
the user is asked to start the DUO parameter identification.
Once the datafile DUD.MAT exists, DUO can be invoked directly
without FINDQ. The program executes steps 4 to 10 as described
in section 5.3.3. After each iteration the datafile DUD.MAT is
updated, and the user is asked permission for a next
iteration. This enables the parameter improvement to take
place during different sessions. This makes OUD a learning and
non-forgetting computer program. DUO quits the loop if the
cost function is no longer decreasing.
Both FINDQ and DUD store the most reliable upstrearndischarge
Q(O,t) found thus far (i.e. with the lowest cost function) in
vector '\,e.st in datafile DUD.MAT, and inform the user
continuouslY about the identified parameters and cost
functions.

#J

- 8)
al-....§.
Cl .,

0
0

roxiznation b FINDQ

500 1000 1500 2000
t (s)

2500 3000 3500 4000

..-... lD.§.
Cl .,

0
0

rHth iteration b DUD

500 1000 1500 2000
t (8)

2500 3000 3500 4000

fig. 5.8 Flood wave reconstruction (* determined, -- true)
Upper graph: first approximation by FINDQ
Lower graph: fifth DUD-iteration
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5.5 Experiments

5.5.1 Introduction
The plots in this chapter are results of an experiment using
the computer programs RIVER, FATS, FINDQ and DUD.
The data are arbitrarily chosen:

1: = 10~~ m
~b = 10
B ::::10 to 20 m
S = 0.01
K :::: 12 m21s
D :::: 0.02 s-l

Q.irI = 15 m;/s
Qnx = 35 m Is
T, = 2000 s
T = 4000 s

~O = 0.1 kg Im3
M = 5 kg/s

I::.X = 100 m
I::. t = 300 s

river section length
average bottom slope
width (water level dependent)
dead zone fraction
dispersion coefficient (flow dependent)
entrainment coefficient (flow dependent)

minimum discharge
maximum discharge
flood-wave period
computation period

background concentration
tracer release

spatial step} " "I grl."dtime step l.nnumerl.ca

The discharge is a cosine function remaining steady after one
periode The programs FINDQ and DUD determine this discharge
using the data mentioned in section 5.1. As the figures show,
the iterations converge towards the right solution (fig. 5.8).

5.5.2 Measurement noise
The use of a measured water level as an upstream boundary
condition is questionable.
Since the river discharge is usually more than linearly
related to the water level, measurement noise will be
amplified in the river discharge. This causes propagating
short waves resulting in numerical wiggles (fig. 5.9).
In this experiment deviations were introduced:

OiJ = 0.02 m (5.25)

(5.26)

(5.27)

Deviations in water level measurements are usually of an
absolute magnitude. Measurements of concentration and tracer
release usually contain deviations of a relative magnitude.
This is related to the measurement device (chapter 6).
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fig. 5.9 Flood wave reconstruction using noisy measurements

The wiggles, caused by noise in h(O,t), become dominant in the
cost function. This makes the filtering procedure lose its
effectivity. However, noise in the other two measurements
h(L,t) and ~(L,t) hardly seem to effect the procedure because
they are not used actively. Instead, they are used passively
as observations. A fundamental question about the
implementation of identification procedures arises.
Theoretically an observation should not be used as a boundary
condition in an identification procedure. However, a boundary
condition is required and another one is not available. A
solution to this problem could be the use of an hypothetical
upstream river discharge as a boundary condition. The measured
upstream water level can then be used as an observation.
This discharge then is an object to be identified too,
containing as many elements as there are time steps in the
computation. This means that p=(T/àt+1)+8. In the case of this
simple example, it would mean that p=49 instead of p=8 (5.19).
As explained in section 5.3.2, DUD should not be chosen for an
identification problem of this magnitude. Algorithms, using
derivatives, are required needing 49 function evaluations per
iteration instead of one. On a 12 MHz personal computer each
iteration step would then take more than 3 hours instead of 4
minutes. A better result is not even ensured.
This is not a recommendable way to avoid problems with
measurement noise.
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In practice measurement noise can be smoothed by increasing
the observation frequency (i.e. reducing the observation
interval). If, for example, the observation interval is a
fifth of the numerical time step, the noise is already
significantly reduced (fig. 5.10). This effect can be
sufficient to avoid the wiggles.

4~----~----~----~------~----~----~------~-----r----~------;
3

2

1

oL_----~----~----~----~------~----~----~----~----~~--~
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fig. 5.10 Smootbing effect of observation averaging

The device for the water level measurement recommended in the
next chapter, produces a noise (ah ~ 3.5 mm) much lower than
in this example. Additionally, the observation interval of
automatic registration can be adjusted down to 0.4 s. This
implies that measurement noise effects can be entirely
liquidated.
Steady deviations, however (especially for concentration and
spill measurements), have more serious consequences for the
result. These can only be avoided by regular calibration of
the equipment.

5.3.3 TRISULA
Until now the flood wave reconstruction procedure MINIFATS
uses measurements generated by FATS. Both simulation models
are based on the same numerical schemes and use the same space
and time grid.
As a test for the robustness of the FINDQ-DUD system
measurements are generated using the computer model TRISULA
(Delft Hydraulics). This program simulates a dilution test
under unsteady flow conditions using unknown numerical schemes
and an unknown grid in an unknown river geometry.
The known data are:

L = 10 km
~O = 0 kg/m3
M = 1 kg/s

river section length
backgound concentration
tracer release
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fig. 5.11 Measurements generated by TRISULA

Af ter eleven DUD iterations, the eost funetion ceases to
decrease. The discharge then determined is shown in figure
5.12. Figure 5.13 shows the river discharge, used in the
TRISULA model. In figure 5.14 both are plotted.
Al though unsteady effects in both flow models appear to be
somewhat different, this experiment proves the robustness and
convergenee qualities of the FINDQ-DUD algorithm.

Det.ermination of upst.ream river di.eh.re;' by FINDQ-DUD
460
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.§.

200Q"

150

roo

o
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fig. 5.13 Discharge found by FINDQ-DUD
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fig. 5.12 Discharge used by TRISULA
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fig. 5.14 Both discharges plotted in one figure
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6. Field vork device

6.1 Introduction
The computational algorithm for the determination of an
unsteady river discharge needs measurements that thus far have
been provided by FATS and TRISULA. The results can be compared
to the original upstream boundary condition (fig. 5.8,
fig. 5.14).
Since the DUD iterations prove to converge towards the right
solution, the algorithm seems able to deal with real measure-
ments. This chapter discusses the methods and the device to
obtain the required measurements in a natural stream.

6.2 The measurement network
A possible design of the measurement network consists of the
following elements:

1
I

,SC_. - f. I-=- -

Ie.

1
I

I
IX

Ct. -
c. -.,.... ~

I----I
!

b.

fig. 6.1 Network of measurement and control device

a. Conductance meter (at x<O) for the background concentration
measurement

b. Conductance meter (at x=L) for diluted tracer measurement
c. Water level measurement at x=O
d. Idem at x=L
e. Tracer-releasing device (i.e. vessel, or tank) with

valve
f. Datalogger, digital datarecorder and programmabIe

controller

68



6.3 The device
6.3.1 Conductance meter
Conductance meters connected to conductivity cells are used
for the concentration measurements (see also: chapter 2).

fig. 6.2 Conductance meter and cells with
different cell constants

The cell contains two platinum plates with an adjusted
distance enabling an electric current to pass through the
conductant fluid. The electric current indicates the
conductance of the fluid.

x
t·...p •.. ·t 1v

I

L..-------I --1 Ls

fig. 6.3 Conductance (Ls) of a medium
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The electric conductance is expressed by:

K KI
Ls = =R V

(6.1)

with: V = voltage over electrodes [V]
I = electric current through medium [A]
R = electric resistance of the medium [Q]
K = cell constant (i.e. plate distance per unit of

surface area xl Ap' usually in cm-i)
The conductance, usually expressed in ~S/cm (S=Siemens=a-i),is
very temperature dependent. Therefore, if the concentration is
to be determined from the electric conductivity, the
temperature effect should be compensated. Usually a specific
conductance is defined, representing the fluid conductance for
T=250C. An empiric relation between the specific conductance
and concentration of a NaCl solution is given by:

f/J = 3.24.10-4 L1.058s
(6.2)

with: Ls = specific conductance for T=25°C ('~lS/cm)
f/J = NaCl concentration (t i.e. kg/m3)

This (nearly) linear relation is obtained by a least-square-
fitting in a logarithmic graph, where experimentally found
f/J(Ls) couples were plotted.
Often, conductance meters are able to compensate for the
temperature effect automatically. The cel1 contains a
temperature sensor and the conductance meter interprets the
electric conductance and the temperature, and converts them
directly into the specific conductance.
If a datalogger is used, the cells can be connected directly
to it without the use of the conductance meter. Both the
temperature and the electric conductance must be registered
on the memory card. The tracer concentration can then be
determined.

6.3.2 Measurement of water levels
The simplest device for water level measurement is the staff
gauge.

fig. 6.4 Staff gauge
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The staff gauge is a directly-readable but not very accurate
gauge. Wave fluctuations make the observation inaccurate and
connection to a data-recording device is impossible.

MANOMETER

fig. 6.5 Diaphragm-type pneumatic gauge

RECORDER

ULTRASONIC
SOUND WAVES

OSCILLATOR
(HIGH FREQUENCY)

fig. 6.6 Electro-magnetic gauge

fig. 6.7 Float gauging station
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The pneumatic gauge (fig. 6.5) is a pressure-measuring device.
The diaphragm is placed at a fixed elevation in the stream and
is connected to a manometer by a metal tube.
The electromagnetic gauge (fig. 6.6) is based on the principle
of inverse echo sounding. A high frequency signal is
transmitted by the oscillator and reflected by the water
surface. The time interval between transmission and reception
is measured and converted into a water level. The measurement
takes place in a stilling weIl which is connected to the
stream by a metal tube.
In the floating gauge (fig. 6.7) the elevation of a floating
object is measured in a stilling weIl. A counter weight
tightens the line and enables data recording.

fig. 6.8 Electric manometer

An alternative for the pneumatic gauge (fig. 6.8) is the
electric manometer, to be placed at a fixed elevation in a
stilling tube. The permeable tube damps the wave fluctuations
and the effects of non-hydrostatic pressures caused by local
accelerations. The manometer can be connected directly to a
datalogger . An air tube through the cable of the manometer
ensures that the air pressure is compensated.

6.3.3 The tracer-releasing device
For small-scale experiments a Mariotte Vessel (fig. 2.2) is
used. The tracer release for the experiments discussed in
chapter 2 was carried out using a vessel releasing 40 litres
in 10 minutes (0,067 l/s). An air inlet tube inside the vessel
causes a constant head, ensuring a steady vessel discharge
(fig. 6.10).
For a discharge measurement during a 6-hours flood wave, with
much higher river discharges, a vessel of a much larger
magnitude is required. Different alternatives could be worked
out. For instance, the vessel could be periodically refilled
from backing tanks, or on-line m~x~ng installations could
perform a tracer release. Already existing continuous spilIs
could be used as a tracer material (sewege outlets, factory
pollutants) if weIl quantifiable. If the spill is not steady,
it should be registered continuously. The flood-wave
reconstructing procedure MINIFATS in FINDQ and DUD can handle
unsteady spilIs and unsteady background concentrations.
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fig. 6.10 Air inlet tube in Mariotte Vessel
(design: ITS Surabaya)

The exact design of the tracer releasing device depends highly
on local conditions, the spill duration and the release
discharge. This again depends directlyon the expected maximum
river discharge and the desired accuracy (2.9).

6.3.4 The datalogger

Data-recording devices develope rapidly. Analogie equipment
like tape recorders and graph plotters are being replaced by
digi tal dataloggers . A datalogger is a data-recording
instrument, programmabIe to execute control functions.
The analogue input ports can be directly connected to the
measurement equipment. The data logger can be programmed to
convert the analogue electric input signals into usabIe
digital data and to store them on a memory card. This requires
of course an accurate calibration. The memory card (upto 1 MB)
is to be replaced periodically, and can be connected to a
personal computer.
A few ouput ports enable control functions under progra~~able
(for instanee input dependent) criteria. Examples are:

- opening or closure of the valve under an upstream water
level condition

- control of a pump to refill the vessel
- flood-wave alarm signal
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fig. 6.11 Skipper, a portable datalogger
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fig. 6.12 Basic configuration of the datalogger Skipper
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fig. 6.13 A datalogger registering observations
at a river site

A few other useful applications, outside the scope of this
study, can be mentioned:

continuous water-quality observations using temperature
sensors, pH-electrodes, oxigen electrodes, etc.

- observations and control functions in an irrigation network

Dataloggers are very useful, relatively cheap instruments by
means of which observation and control procedures can be
autornised. Various versions of dataloggers exist with various
possibilities, such as direct communication with personal
computers or datalogger modems for communication over the
telephone network (fig. 6.12).
A datalogger acts like a small portable microcomputer
executing field work (fig. 6.13).

6.4 Implementation of a measurement network

If a measurement network, like the one described in this
chapter, is to be implemented in a naturalopen channel, many
factors play a role in the final design.
A good location must be found and a mixing length must be
determined. The river section, hereby defined, should not
contain confluences or bifurcations, nor any pollutant
releases that could possibly influence the conductance of the
water.
If the conditions are right, an existing continuous spill
could be used as a tracer material , as discussed in the
previous section.
In this chapter a few suggestions have been mentioned for the
implementation of the dilution method for unsteady-discharge
measurements. Tf the measured data, the (possibly unsteady)
tracer release and the background concentration are loaded
into the datafile MEASURE.MAT, the river discharge can be
approximated by the computer programs FINDQ and DUD.
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7. Conclusions and recommendations

The aim
unsteady
methode

of this study
discharges in

is to develop
mountain rivers

a method to
using the

measure
dilution

The discharge has to be determined using three continuous
measurements; two water levels and a concentration. The river
geometry is unknown.
The approach is the recognition of a system id'entification
problem. Because the geometrical parameters in an irregular,
boulder-studded mountain river are physically undefinable and
meaningless, they must be determined by fitting the measure-
ments into a system of flow and transport equations, with
parameters to be defined. For this a DUD procedure is used.
DUD is a derivative-free parameter estimation procedure based
on least-squares-fitting of the observaticns.
This parameter estimation, irnproved by repeated flood wave
reconstructions, results in observations that finally coincide
with the measurements. The determined river discharge proves
to tend towards the right solution.
Some techniques to obtain the necessary measurements are
outlined. The accuracy of the result depends , just as for
steady flow conditions, mainly on the accuracy of the
concentration measurements and the tracer release C2.9}. The
error introduced by the identification procedure is difficult
to quantify. However, indications show that this error is very
limited if the observations fit weIl to the measurements.
The results show that the aim of this study has
A limitation, however, is that the flow model
internal transitions between subcritical and
flow. A recommendation for further study is the
a flow model that can deal with this problem.

been achieved.
cannot handle
supercritical

development of

Laboratory and field experiments are recommended as a topic
for further study.
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List of symbols

c = celerity

[m]

[mis]
a = river depth

0, ~ = short wave celerities
c~ = relative numerical celerity (dimensionless)

d = damping factor [-]

do = relative numerical damping factor
dr = relative friction damping factor

e = 2.7182818284

f = friction function in equation of motion

f(a) = system evaluation using a parameters

g = acceleration due to gravity (z 9.81 m/s2)

h = water level
~

i = irn.aginarynumber (i'=-l )

i = integer

i = slope

~b= bottom slope
1. = steady water surf ace slopes

j = integer (spatial step number)

k = disintegration factor

k = wave number

[m]

[:n]

[-]

[-]

r -1]~s

[-]

i(a) = linear approxirnation of fee}

m = number of grid points [-]

n = integer (-]
n = nurnber of elements in Y and f(e)
n = time step number

p = pressure

p = number of elements in e vector

p' = cross-sectional averaged fluctuation
pi = local fluctuation

77



r = relative deviation [-]

subscript = variabIe referred to

r = linearised friction factor

t = time co-ordinate [sJ

~t = numerical time step

u = longitudinal flow velocity [mis]

u = cross-sectional averaged velocity
u' = turbulent fluctuation
u" = local deviation
u* = bed shear velocity

v = transversal flow velocity [mis]

v' = turbulent fluctuation

v = boundary condition vector

w = vertical flow velocity [mis]

w' = turbulent fluctuation

x = longitudinal spatial co-ordinate [m]

~x = numerical spatial step
xp = distance between electrode plates

y = transversal spatial co-ordinate [m]
Yl' Y2 = co-ordina tes of river banks

y = state vector

Z = vertical spatial co-ordinate [ml

Zb = bottom level~ = bottom level at beginning of river section
~ = bottom level at end of river section

A = surf ace area

A = cross-sectional area
Aa = cross-sectional dead-zone area
As = cross-sectional flow area
Ap = surf ace area of electrode plates
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B = river width [m]

B' = effective flow width (3.39)
BO = river width at beginning of river section
BL = river width at end of river section
Bs = flow width

C = Chézy coefficient [.fm/s]

D = entrainment coefficient [s-1]

Da = dead-zone entrainment coefficient
Ds = entrainment coefficient for flow area

~F = matrix in DUD procedure

J = cost function (summoned squares of errors)

[A]

[-J

I = electric current

J(9) = cost function of system evaluation using e
J!(a) = cost function of linearisation

K = conductivity cell constant [cm-1]
'I

K = diffusion / dispersion coefficient [m~/s]

K = dimensionless dispersion coefficient (2.3 and 2.4)
Kz = longitudinal diffusion coefficient~ = transversal diffusion coefficient
Kz = vertical diffusion coefficient
Kn!Jll = numerical diffusion coefficient

L = length

L = length of concentration cloud
L = length of flood wave
L = length of river section

(m]

L. = specific conductance of a medium (for T=25 °C)
;,

[l1S/ cm]

M = system transition matrix

M1, M2 = matrices in implicit numerical scheme

M = tracer release [kg/sJ

P = cell-Péclet number

P = wetted perimeter

Pa = exchange perimeter between main stream
and dead zone

R = electric resistance

R = hydraulic radius

[-]

Cm]

[Q]

[m]
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T = duration
T = time of flood wave propagation
T = duration of flood wave
T = duration of flow processes to be computed

T = temperature

Q = river discharge

Q~ = 'measured' river discharge (by dilution
method using steady state formula)

Qr = Q{L, t} defined by Noppeney {1987}
Qs = discharge, based on steady Q{h} relation°
Qas = exchange discharge between flow area and

dead zone

u = local longitudinal flow velocity

v = electric voltage

v = loc al transversal flow velocity

Va= dead-zone volume in a river section

W = local vertical flow velocity

x = state of a system

x = reality
X' = computational state

Y = observation vector

Y = real measurements
Y' = computational observation

Greek

~ = vector in e-space

~ = velocity-distribution parameter

g = dead-zone fraction

E = ratio A/As

e = parameter vector

enel = new parameter vector, found by DUD

p = empirical factor in dispersion coefficient

p = statistical average

subscript = variabIe referred to
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[sJ

[mis]

[V]

[mis]

[-]

[-]

[-]

[-]



v = kinematic viscosity

ç = friction factor

ç = relative grid size

TI = 3.1415926536

p = specific density of medium (water)

p = numerical amplification factor (complex)

cr= Courant number

cr= standard deviation

subscript = variable referred to

L = shear stress
Lb = cross-sectional averaged bottom stress
Lb = local bottom stress
Lzy = shear stress in xy-plane of water particle
"Cxz = idem in xz-plane
LJZ = idem in yz-plane

~ = concentration

~' = fluctuation~" = local deviation
~d = mean concentration in dead zone

~ = empirical factor in entrainment coefficient

8 = weighing factor in irnplicit numerical scheme

~8 = matrix in nun procedure, containing p+1 6-vectors

~ = local concentration
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