Abstract

In this paper, an h/p spectral element method with least-square formulation for parabolic interface problem will be presented. The regularity result of the parabolic interface problem is proven for non-homogeneous interface data. The differentiability estimates and the main stability estimate theorem, using non-conforming spectral element functions, are proven. Error estimates are derived for h and p versions of the proposed method. Specific numerical examples are given to validate the theory.

Keywords: Least-squares method, nonconforming, spectral element method, Linear parabolic interface problems, Sobolev spaces of different orders in space and time

1. Introduction

In this paper, we consider a linear parabolic interface problem of the form

$$L u = u_t - \nabla \cdot (A \nabla u) = F \text{ in } (\Omega_1 \cup \Omega_2) \times I,$$

$$u = f \text{ on } \Omega \times \{0\} \quad \text{(initial condition)}$$

$$u = g \text{ on } \Gamma \times I, \quad \text{(exterior boundary condition)}$$

which satisfies the interface conditions

$$[u] = q_0 \quad \text{and} \quad [n \cdot A \nabla u] = q_1 \text{ on } \Gamma_0 \times I,$$

where $n = (n_1, n_2)^T$ is a unit outward normal vector to the interface Γ_0 and $I = (0, T)$. Here Ω and $\Omega_1 \subset \Omega$ are open bounded domains in \mathbb{R}^2 with C^2 boundaries $\partial \Omega = \Gamma$ and $\partial \Omega_1 = \Gamma_0$, respectively (see Fig. 1). Further, $\Omega_2 = \Omega \setminus \Omega_1$. The symbol $[v]$ denotes the jump of a quantity v across the interface Γ_0, i.e., $[v](x,t) = v_1(x,t) - v_2(x,t), (x,t) \in \Gamma_0 \times I$. Let

$$A = \begin{cases}
A^1 \text{ in } \Omega_1 \times I, \\
A^2 \text{ in } \Omega_2 \times I.
\end{cases} \quad (1.2)$$

Then the jump term $n \cdot A \nabla u$ is defined as follows:

$$[n \cdot A \nabla u] = n \cdot (A^1 \nabla u_1 - A^2 \nabla u_2) \text{ on } \Gamma_0 \times I,$$
where each 2×2 matrix $A^k (k = 1, 2)$ is symmetric and positive definite, uniformly on $\Omega_k \times I$. The components $a^k_{i,j}(x,t)$ of A^k are smooth for each k. Here $n \cdot A^k \nabla u_k$ denotes the conormal derivative on Γ_0, i.e.

$$n \cdot A^k \nabla u_k = \sum_{i,j=1}^2 a^k_{i,j} \frac{\partial u_k}{\partial x_i} n_j, \quad k = 1, 2.$$

In engineering and science, many problems can be formulated in terms of parabolic partial differential equations with discontinuous coefficients. Heat diffusion, electrostatics, multiphase and porous media flow problems are some examples from physics. A special case of parabolic equations with discontinuous coefficients consists of interface problems (1.1) which arise, for example, in heat conduction.

Several methods have been proposed and analyzed both theoretically and computationally for interface problems in [24, 25, 26, 29, 31, 32, 33, 34, 36, 37, 38, 39, 40] (and references cited therein) and have been shown to be very effective.

If the given data, the boundary Γ and the interface Γ_0 of parabolic interface problem (1.1) are smooth then the solution of the problem is also very smooth in the individual regions, while the global regularity of solution becomes low because of non-homogeneous jump terms (see [16, 32, 31]). Many standard finite difference methods are not applicable to interface problems because of lack of this global regularity. The use of an immersed-interface method in the framework of finite difference methods has some disadvantages, which are discussed in [25]. Immersed-interface finite element methods for elliptic interface problems have been presented in [24, 25]. In an immersed-interface method, the jump conditions are enforced through the construction of special finite element basis functions which satisfy homogeneous interface conditions. Immersed-interface finite element methods can achieve optimal convergent rates with linear finite elements. Recently, Albright et al. [29] proposed a high-order accurate difference potential method for parabolic problems. In that paper, they presented two approaches which are second order and fourth order accurate.

Conforming finite element methods are the most used methods to solve interface problems. This requires the triangulation of different subregions to be geometrically conforming at the interface. Conforming methods, however impose serious restrictions on the computational domain when the physical solutions of the interface problems are of different scales in different subregions. Methods that allow relaxation of such conditions are the nonconforming methods like mortar finite element methods and discontinuous Galerkin finite element methods. Schötzau et al. [21] presented time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. Dutt et al. [8] proposed h-version and p-version least-squares spectral element methods for parabolic partial differential equations (PDE) with smooth coefficients on bounded domains. Recently, we proposed the least-squares spectral element method for parabolic initial value problems with non-smooth data in [11, 12]. The method proposed in this paper is a nonconforming least-squares spectral element method (see [8, 11, 12, 13, 14, 15]). Sobolev spaces of different orders in space and time to formulate the results are given in [17].

Bochev and Gunzburger [2] have summarized the least-squares finite element method (LSFEM) for parabolic problems. The obvious advantage of this class of methods is that the discrete problems are positive definite and symmetric. Least-square spectral element methods (LSSEM) have been presented by Proot et al. [20] for the Stokes problem, and Pontaza et al. [19] for the Navier-Stokes equations, combining the least-square formulation with spectral element approximation. Maerschack et al. [30] presented the use of Chebyshev polynomials in a space-time least-squares spectral element method. The advantage of LSSEM is that it has the generality of finite elements methods with the accuracy of spectral methods.
Over the past three decades, spectral methods have been extensively used for solving partial differential equations because of high order of accuracy (see [3, 4, 5, 6, 7, 10] and the references therein). Kumar et al. [26] proposed a least-square spectral element method for two-dimensional elliptic interface problem with a smooth interface, following the approach proposed in [27]. Recently, we proposed a least-squares spectral element method for three-dimensional elliptic interface problem with a smooth interface in [15]. In this method, the domain is divided into a finite number of subdomains such that the sub-divisions match along the interface. The interface is resolved exactly using blending elements [28].

In this paper, an h/p least-squares spectral element method is presented to solve the two dimensional parabolic interface problem with smooth interface. One dimensional parabolic interface problem is particularly case of the proposed theory. In numerical section, we present the results based on one dimensional and two dimensional parabolic interface problem. Our method is based on minimizing the sum of the squares of a weighted squared norm of the residuals in the partial differential equation and the sum of the residuals in the boundary conditions in fractional Sobolev norms and the sum of the jumps in the value and its derivatives across the interface in appropriate fractional Sobolev norms. Our method is nonconforming because the discrete space is not subset of continuous space

$$H^h \times H^p$$

where H^2 denotes the standard Sobolev space of order r. Here $H^0(\Omega) = L^2(\Omega)$ and $H^0,0(\Omega) = L^2(\Omega \times I)$. Let $u_1 = u|_{\Omega_1 \times I}$ and $u_2 = u|_{\Omega_2 \times I}$. Next, we define following spaces

$$H^r(\Omega_1 \cup \Omega_2) = \{ u \in L^2(\Omega) \mid u|_{\Omega_i} \in H^r(\Omega_i) \text{ for } i = 1, 2 \},$$

$$H^{r,s}(\Omega_1 \cup \Omega_2 \times I) = \{ u \in L^2(\Omega \times I) \mid u|_{\Omega_i \times I} \in H^{r,s}(\Omega_i \times I) \text{ for } i = 1, 2 \}. $$

Let

$$||u||_{r,\Omega_1 \cup \Omega_2}^2 = ||u_1||_{r,\Omega_1}^2 + ||u_2||_{r,\Omega_2}^2,$$

$$||u||_{r,s,\Omega_1 \cup \Omega_2 \times I}^2 = ||u_1||_{r,s,\Omega_1 \times I}^2 + ||u_2||_{r,s,\Omega_2 \times I}^2. $$

We also use the following notations in throughout paper:

$$||u||_{L^2(\Omega)} \quad \text{and} \quad ||u||_{L^2(\Omega \times I)}.$$

We now define some Gevrey Spaces [18] which are needed for our error analysis.

\begin{equation*}
\mathcal{D}_1(\Omega) = \{ \Phi \in C^\infty(\overline{\Omega}) \mid \exists A_1, B_1 > 0 : \sup_{x \in \Omega} |D_x^\alpha \Phi(x)| \leq A_1(B_1)^i j! \alpha, \ |\alpha| = i, i = 0, 1, \cdots \} .
\end{equation*}

\begin{equation*}
\mathcal{D}_{2,1}(\Omega \times I) = \{ \psi \in C^\infty(\overline{\Omega} \times I) \mid \exists A_1, B_1 > 0 :
\sup_{x \in \Omega \times I} |D_x^\alpha \psi(x, t)| \leq A_1(B_1)^{i+j} j! |\alpha|^2, \ |\alpha| = i, i = 0, 1, \cdots \} .
\end{equation*}
2.1. Regularity estimate

In general, the solution of problem (1.1) does not belong to $H^{2,1}(\Omega \times I)$ due to the presence of a discontinuity/reduced regularity in A. Moreover, the solution does not belong to $H^{1,0}(\Omega \times I)$ unless the jump term at the interface $[u]$ is equal to zero. We can get better local regularity using local smoothness of the coefficients. An a-priori result for the problem (1.1) is given in Theorem 2.1 with appropriate assumptions on F, g, q_0, q_1 and f. First, we prove the following Lemma 2.1 which we use to obtain our main regularity result.

Lemma 2.1. Consider the problem

\begin{equation}
Lv = v_t - \nabla \cdot (A \nabla v) = \tilde{F} \quad \text{in} \quad \Omega_1 \cup \Omega_2 \times I, \\
v = v_0 \quad \text{on} \quad \Omega_1 \cup \Omega_2 \times \{0\} \quad \text{(initial condition)} \\
v = 0 \quad \text{on} \quad \Gamma \times I, \quad \text{(exterior boundary condition)}
\end{equation}

along with the interface conditions

\begin{equation}
[v] = 0 \quad \text{and} \quad [n \cdot A \nabla v] = 0 \quad \text{on} \quad \Gamma_0 \times I.
\end{equation}

Let $\tilde{F} \in H^{0,0}(\Omega_1 \cup \Omega_2 \times I)$ and $v_0 \in H^1(\Omega_1 \cup \Omega_2 \times \{0\})$. If the interface Γ_0 and the boundary Γ are C^2 and the given data satisfy required compatibility condition (see [17]), then the solution $v \in H^{2,1}(\Omega_1 \cup \Omega_2 \times I)$ and

\begin{equation}
||v||^2_{(2,1), \Omega_1 \cup \Omega_2 \times I} \leq C \left(||\tilde{F}||^2_{(0,0), \Omega_1 \cup \Omega_2 \times I} + ||v_0||^2_{1,0, \Omega_1 \cup \Omega_2 \times \{0\}}\right).
\end{equation}

Here C is a generic constant.

Proof. Our proof is a generalization of the approach of [32, 33]. For a.e. $t \in I$, $v = v(x, t)$ solves

\begin{equation}
-\nabla \cdot (A \nabla v) = \tilde{F} - v_t \quad \text{in} \quad \Omega_1 \cup \Omega_2 \times I, \\
v = 0 \quad \text{on} \quad \Gamma \times I, \quad \text{(exterior boundary condition)}
\end{equation}

along with the interface conditions

\begin{equation}
[v] = 0 \quad \text{and} \quad [n \cdot A \nabla v] = 0 \quad \text{on} \quad \Gamma_0 \times I.
\end{equation}

Applying the regularity result for the elliptic interface problems of [31], it follows:

\begin{equation}
||v||^2_{2, \Omega_1 \cup \Omega_2} \leq C||\tilde{F} - v_t||^2_{0, \Omega_1 \cup \Omega_2}.
\end{equation}

Multiplying v_t both side in equation (2.4) and integrating w. r. to x over $\Omega_1 \cup \Omega_2$, we obtain

\begin{equation}
||v_t||^2_{0, \Omega_1 \cup \Omega_2} - \int_{\Omega_1 \cup \Omega_2} \nabla \cdot (A \nabla v) v_t dx = \int_{\Omega_1 \cup \Omega_2} \tilde{F} v_t dx.
\end{equation}

Here $v \in H^{1,0}((\Omega_1 \cup \Omega_2) \times I)$ and $[v] = 0$ on Γ_0, it follows

\begin{equation}
[v_t] = 0 \quad \text{on} \quad \Gamma_0.
\end{equation}

Using integration by parts and the equation (2.11), we obtain

\begin{equation}
\int_{\Omega_1 \cup \Omega_2} \nabla \cdot (A \nabla v) v_t dx = \int_{\Omega_1 \cup \Omega_2} \sum_{i,j=1}^2 (a_{i,j} v_{x_i}) v_t dx \\
= -\int_{\Omega_1 \cup \Omega_2} \sum_{i,j=1}^2 (a_{i,j} v_{x_i}) (v_t)_{x_i} dx \\
= -\frac{1}{2} \partial_t \int_{\Omega_1 \cup \Omega_2} \sum_{i,j=1}^2 (a_{i,j} v_{x_i}) v_{x_i} dx + \frac{1}{2} \int_{\Omega_1 \cup \Omega_2} \sum_{i,j=1}^2 (a_{i,j})_{x_i} v_{x_i} v_t dx.
\end{equation}
Inserting the equation (2.12) into the equation (2.10), implies
\[
||v_t||^2_{\Omega_1 \cup \Omega_2} + \frac{1}{2} \partial_t \int_{\Omega_1 \cup \Omega_2} \sum_{i,j=1}^2 (a_{i,j} v_{x_j}) v_{x_i} dx = \int_{\Omega_1 \cup \Omega_2} \tilde{F} v_t dx + \frac{1}{2} \int_{\Omega_1 \cup \Omega_2} \sum_{i,j=1}^2 (a_{i,j}) v_{x_j} v_{x_i} dx. \tag{2.13}
\]
Integrating the equation (2.13) w. r. to t over I, it follows:
\[
\int_I ||v_t||^2_{\Omega_1 \cup \Omega_2} dt + \frac{1}{2} \int_{\Omega_1 \cup \Omega_2} \sum_{i,j=1}^2 (a_{i,j} v_{x_j}) v_{x_i} dx \\
= \int_{\Omega_1 \cup \Omega_2 \times I} \tilde{F} v_t dx dt + \frac{1}{2} \int_{\Omega_1 \cup \Omega_2 \times I} \sum_{i,j=1}^2 (a_{i,j}) v_{x_j} v_{x_i} dx dt \\
+ \frac{1}{2} \int_{\Omega_1 \cup \Omega_2 \times \{0\}} \sum_{i,j=1}^2 (a_{i,j} v_{x_j}) v_{x_i} dx. \tag{2.14}
\]
Using Cauchy-Schwarz inequality and applying a standard kickback argument, it holds:
\[
||v_t||^2_{\Omega_1 \cup \Omega_2 \times I} + ||v||^2_{\Omega_1 \cup \Omega_2 \times \{T\}} \leq C \left(\int_I ||\tilde{F}||^2_{\Omega_1 \cup \Omega_2} + ||v||^2_{\Omega_1 \cup \Omega_2 \times \{0\}} \right) \\
+ C \int_I ||v||^2_{\Omega_1 \cup \Omega_2} dt. \tag{2.15}
\]
Applying an application of Gronwall’s lemma, implies the desired result.

We are now in a position to state the main regularity result.

Theorem 2.1. Let \(F \in H^{0,0}(\Omega_1 \cup \Omega_2 \times I) \), \(g \in H^{\frac{3}{2}, \frac{3}{2}}(\Gamma \times I) \), \(q_0 \in H^{\frac{3}{2}, \frac{3}{2}}(\Gamma_0 \times I) \), \(q_1 \in H^{\frac{3}{2}, \frac{3}{2}}(\Gamma_0 \times I) \) and \(f \in H^{1}(\Omega_1 \cup \Omega_2 \times \{0\}) \). If the interface \(\Gamma_0 \) and the boundary \(\Gamma \) are \(C^2 \) and the given data satisfy required compatibility condition (see [17, 35]), then the solution \(u \in H^{2,1}(\Omega_1 \cup \Omega_2 \times I) \) and
\[
||u||^2_{\Omega_1 \cup \Omega_2 \times I} \leq C \left(||F||^2_{\Omega_1 \cup \Omega_2 \times I} + ||g||^2_{\frac{3}{2}, \frac{3}{2}}, \Gamma_0 \times I \right) \tag{2.16}
\]
Here \(C \) is a generic constant.

Proof. First, we define \(\tilde{u}_2 \in H^{2,1}(\Omega_2 \times I) \), which satisfies
\[
\tilde{u}_2 = g \text{ on } \Gamma \times I, \quad n \cdot A^2 \nabla \tilde{u}_2 = \tilde{u}_2 = 0 \text{ on } \Gamma_0 \times I. \tag{2.17}
\]
If \(g \in H^{\frac{3}{2}, \frac{3}{2}}(\Gamma \times I) \) and \(\tilde{u}_2(x,0) \in H^{1}(\Omega_2 \times \{0\}) \), and satisfy the compatibility condition, then from Theorem 2.1 of [17], the following estimates hold:
\[
||g||_{\frac{3}{2}, \frac{3}{2}}, \Gamma \times I \leq C ||\tilde{u}_2||_{\Omega_1 \cup \Omega_2 \times I}, \\
||\tilde{u}_2||_{\Omega_1 \cup \Omega_2 \times \{0\}} \leq C ||\tilde{u}_2||_{\Omega_1 \cup \Omega_2 \times I}. \tag{2.18}
\]
Further, using Theorem 2.4 of [35], the following estimate holds:
\[
||\tilde{u}_2||^2_{\Omega_1 \cup \Omega_2 \times I} \leq C ||g||^2_{\frac{3}{2}, \frac{3}{2}}, \Gamma \times I. \tag{2.19}
\]
Similarly, we define \(\tilde{u}_1 \in H^{2,1}(\Omega_1 \times I) \), which satisfies
\[
\tilde{u}_1 = q_0 \text{ on } \Gamma_0 \times I, \quad n \cdot A^1 \nabla \tilde{u}_1 = q_1 \text{ on } \Gamma_0 \times I. \tag{2.20}
\]
If \(q_0 \in H^{\frac{3}{2}, \frac{3}{2}}(\Gamma_0 \times I) \), \(q_1 \in H^{\frac{3}{2}, \frac{3}{2}}(\Gamma_0 \times I) \) and \(\tilde{u}_1(x,0) \in H^{1}(\Omega_1 \times \{0\}) \), and satisfy the compatibility condition, then from Theorem 2.3 of [17], the following estimate holds:
\[
||q_0||_{\frac{3}{2}, \frac{3}{2}}, \Gamma_0 \times I \leq C ||\tilde{u}_1||_{\Omega_1 \cup \Omega_2 \times I}, \\
||q_1||_{\frac{3}{2}, \frac{3}{2}}, \Gamma_0 \times I \leq C ||\tilde{u}_1||_{\Omega_1 \cup \Omega_2 \times I}, \\
||\tilde{u}_1||_{\Omega_1 \cup \Omega_2 \times \{0\}} \leq C ||\tilde{u}_1||_{\Omega_1 \cup \Omega_2 \times I}. \tag{2.21}
\]
Similarly, using Theorem 2.4 of [35], the following estimate holds:

$$
\| \bar{u}_1 \|^2_{(2,1),\Omega_1 \times I} \leq C \left(\| q_1 \|^2_{\frac{3}{2},\Gamma_0 \times I} + \| q_0 \|^2_{\frac{3}{2},\Gamma_0 \times I} \right). \tag{2.22}
$$

Now we define \bar{u} as in $((\Omega_1 \cup \Omega_2) \times I)$ which satisfies the following conditions

1. $\bar{u}|_{\Omega_1} = \bar{u}_1$ and $\bar{u}|_{\Omega_2} = \bar{u}_2$
2. $\bar{u} = g$ on $\Gamma \times I$
3. At interface, \bar{u} is defined as

$$
\bar{u} = \bar{u}_1 - \bar{u}_2 = q_0 \quad \text{and} \quad [n \cdot \nabla \bar{u}] = n \cdot (\mathcal{A}^1 \nabla \bar{u}_1 - \mathcal{A}^2 \nabla \bar{u}_2) = q_1 \text{ on } \Gamma_0 \times I.
$$

Using the definition of the norm (2.3), we obtain

$$
\| \bar{u} \|^2_{(2,1),(\Omega_1 \cup \Omega_2) \times I} = \| \bar{u}_1 \|^2_{(2,1),\Omega_1 \times I} + \| \bar{u}_2 \|^2_{(2,1),\Omega_2 \times I}. \tag{2.23}
$$

From equations (2.19) and (2.22), we establish the following estimate

$$
\| \bar{u} \|^2_{(2,1),(\Omega_1 \cup \Omega_2) \times I} \leq C \left(\| g \|^2_{\frac{3}{2},\Gamma \times I} + \| q_0 \|^2_{\frac{3}{2},\Gamma_0 \times I} + \| q_1 \|^2_{\frac{3}{2},\Gamma_0 \times I} \right). \tag{2.24}
$$

Finally, we define $v = u - \bar{u}$, where u solve the problem (1.1). Then v satisfies the following interface problem

$$
\mathcal{L} v = F - \mathcal{L} \bar{u} \quad \text{in} \quad \Omega_1 \cup \Omega_2 \times I, \tag{2.25}
$$

$$
v = v(x,0) \quad \text{on} \quad \Omega_1 \cup \Omega_2 \times \{0\} \quad \text{(initial condition)}
$$

$$
v = 0 \quad \text{on} \quad \Gamma \times I \quad \text{(exterior boundary condition)}
$$

along with the interface conditions

$$
[v] = 0 \quad \text{and} \quad [n \cdot \nabla u] = 0 \quad \text{on} \quad \Gamma_0 \times I. \tag{2.26}
$$

From Lemma 2.1, $v \in H^{2,1}(\Omega_1 \cup \Omega_2 \times I)$ and satisfies the following estimate:

$$
\| v \|^2_{(2,1),(\Omega_1 \cup \Omega_2) \times I} \leq C \left(\| F - \mathcal{L} \bar{u} \|^2_{(0,0),\Omega_1 \cup \Omega_2 \times I} + \| v \|^2_{1,\Omega_1 \cup \Omega_2 \times \{0\}} \right). \tag{2.27}
$$

Moreover, we get

$$
\| u \|^2_{(2,1),(\Omega_1 \cup \Omega_2) \times I} \leq \| u - \bar{u} \|^2_{(2,1),(\Omega_1 \cup \Omega_2) \times I} + \| \bar{u} \|^2_{(2,1),(\Omega_1 \cup \Omega_2) \times I}. \tag{2.28}
$$

From equation (2.27), it follows:

$$
\| u \|^2_{(2,1),(\Omega_1 \cup \Omega_2) \times I} \leq C \left(\| F - \mathcal{L} \bar{u} \|^2_{(0,0),\Omega_1 \cup \Omega_2 \times I} + \| v \|^2_{1,\Omega_1 \cup \Omega_2 \times \{0\}} \right) + \| \bar{u} \|^2_{(2,1),(\Omega_1 \cup \Omega_2) \times I}
$$

$$
\leq C \left(\| F \|^2_{(0,0),\Omega_1 \cup \Omega_2 \times I} + \| \bar{u} \|^2_{(2,1),(\Omega_1 \cup \Omega_2) \times I} \right). \tag{2.29}
$$

Combining equations (2.24) and (2.29), the final result follows.

\begin{theorem}
Let $F \in H^{2,r}(\Omega_1 \cup \Omega_2 \times I)$, $g \in H^{\frac{3}{2}+2r,\frac{3}{2}+r}(\Gamma \times I)$, $q_0 \in H^{\frac{3}{2}+2r,\frac{3}{2}+r}(\Gamma_0 \times I)$, $q_1 \in H^{\frac{3}{2}+2r,\frac{3}{2}+r}(\Gamma_0 \times I)$ and $f \in H^{2r+2r+1}(\Omega_1 \cup \Omega_2 \times \{0\})$. If the interface Γ_0 and boundary Γ is C^{2r+2} and the given data satisfy the required compatibility condition (see [17]), then the solution $u \in H^{2r+2r+1}(\Omega_1 \cup \Omega_2 \times I)$ and

$$
\| u \|^2_{(2r+1,r+1),(\Omega_1 \cup \Omega_2) \times I} \leq C \left(\| F \|^2_{(2r,r),\Omega_1 \cup \Omega_2 \times I} + \| g \|^2_{\frac{3}{2}+2r,\frac{3}{2}+r},\Gamma \times I} + \| q_0 \|^2_{\frac{3}{2}+2r,\frac{3}{2}+r},\Gamma_0 \times I} + \| q_1 \|^2_{\frac{3}{2}+2r,\frac{3}{2}+r},\Gamma_0 \times I} + \| f \|^2_{(2r+1,\Omega_1 \cup \Omega_2 \times \{0\})} \right).
$$
\end{theorem}

\begin{proof}
The idea of proof is the same as in Theorem 2.1.
\end{proof}
3. Discretization and Stability Estimate

First, the domains Ω_1 and Ω_2 are partitioned into quadrilaterals $\Omega^1_1, \Omega^1_2, \cdots, \Omega^1_{r_1}$ and $\Omega^2_1, \Omega^2_2, \cdots, \Omega^2_{r_2}$ such that the subdomain divisions match on the interface. We define a smooth function $M^i_l = (X^i_{1,l}, X^i_{2,l})$ that maps the unit square S to Ω^i_l, $i = 1, 2$ as in [1, 22] and is given by

$$x^i_{1,l} = X^i_{1,l}(\eta_1, \eta_2) \quad \text{and} \quad x^i_{2,l} = X^i_{2,l}(\eta_1, \eta_2).$$

(3.1)

We now divide S into a mesh of squares of side h. Consequently, the image Ω^i_l, which is divided into a quasi-uniform mesh of curvilinear rectangles of side proportional to h, is the grid of squares S under the mapping M^i_l as shown in Fig 2(b). Moreover, the domains Ω_1 and Ω_2 are divided into curvilinear rectangles $\Omega^1_{1,h}, \Omega^1_{2,h}, \cdots, \Omega^2_{1,h}$ and $\Omega^2_{2,h}, \cdots, \Omega^2_{r_2,h}$ of width proportional to h such that the subdomain divisions match on the interface as shown in Fig 2(a). Thus, $\Omega^i_{1,h}$ is the image of $((j_1 - 1)h \leq \eta_1 \leq j_1 h) \times ((j_2 - 1)h \leq \eta_2 \leq j_2 h)$ under the mapping M^i_l. We choose the time step k proportional to h^2. We introduce new coordinates $s = t/k, y_i = x_i/h$ and define $\tilde{u}(y_1, y_2, s) = u(hy_1, hy_2, ks)$. In this new coordinate system the differential equation becomes

$$\mathcal{L}\tilde{u} = k\tilde{F},$$

(3.2a)

where

$$\mathcal{L}\tilde{u} = \tilde{u}_s - \sum_{i,j=1}^2 (\alpha_{ij}(y,s)\tilde{u}_{y_i})_{y_j}.$$

(3.2b)

Clearly the coefficients satisfy the following condition:

$$|D_y^\alpha D_{\alpha_{ij}}| = O(h^{(|\alpha| - 1)})$$

(3.3)

Let $\tilde{\Omega}_i$ and $\tilde{\Omega}^i_{1,h}$ be the images of Ω_i and $\Omega^i_{1,h}$ in the y-coordinates. Further, let γ_m be the image of the size γ_m common to $\tilde{\Omega}^i_{1,h}$ and $\tilde{\Omega}^i_{2,h}$. Now we define a map N^i_l where $N^i_l : S \rightarrow \tilde{\Omega}^i_{1,h}$ for every l in $i = 1, 2$. The form of N^i_l is as follows:

$$N^i_l(\xi_1, \xi_2) = \frac{1}{h} M^i_l((l_2 - 1)h + h\xi_1, (l_3 - 1)h + h\xi_2).$$

Let J^i_l be the Jacobian of the map N^i_l. Then there exist two uniform constants V_1 and V_2, which depend on the decomposition of $\Omega_i (i = 1, 2)$ into $\tilde{\Omega}^i_{1,h}$, and satisfy the following

$$V_1 \leq |J^i_l(\xi_1, \xi_2)| \leq V_2.$$

(3.4)

for all $l = 1, 2, \cdots, o_1$ with $i = 1$ and $l = 1, 2, \cdots, o_2$ with $i = 2$.

Furthermore, the step $nk \leq t < (n + 1)k$ is mapped to $n \leq s < (n + 1)$ by the transformation $s = t/k$.

3.1. Stability Estimate

Define the spectral element functions $\hat{w}_{k}^{i}(\xi_1, \xi_2, s), k = 1, 2$, which are polynomials of degree p in each of the space variables ξ_1 and ξ_2 and of degree q in the time variable s, i.e.

$$\hat{w}_{k}^{i}(\xi_1, \xi_2, s) = \sum_{i_1}^{p} \sum_{i_2}^{p} \sum_{i_3}^{q} \delta_{i_1,i_2,i_3,\xi_1^i} \xi_1^{i_1} \xi_2^{i_2} (s-n)^{i_3}$$
for \((\xi_1, \xi_2) \in S\) and \(n \leq s < n+1\). Here \(\phi_{\kappa}^{l,n}\) denote the coefficients. Then
\[
\tilde{w}^l_{\kappa}(y_1, y_2, s) = \tilde{w}^l_{\kappa}(N^l_{\kappa})^{-1}(y_1, y_2), s).
\]
Choosing \(\eta = Kh^2\) and \(\tilde{v}^l_{\kappa} = \tilde{w}^l_{\kappa} e^{-\eta s}\), where \(K\) is a positive constant, then \((\mathcal{L} \tilde{w}^l_{\kappa}) e^{-\eta s} = (\mathcal{L} + \eta) \tilde{v}^l_{\kappa}\). Using the chain rule, we can write
\[
\frac{\partial \tilde{v}^l_{\kappa}}{\partial y_1} = (\tilde{w}^l_{\kappa})_\xi_1(\xi_1)_{y_1} + (\tilde{w}^l_{\kappa})_{\xi_2}(\xi_2)_{y_1} \quad \text{and} \quad \frac{\partial \tilde{v}^l_{\kappa}}{\partial y_2} = (\tilde{w}^l_{\kappa})_\xi_2(\xi_1)_{y_2} + (\tilde{w}^l_{\kappa})_{\xi_2}(\xi_2)_{y_2}.
\]
Define \(\xi = (\xi_1, \xi_2)\). Assume that \((\tilde{\xi}_1)_{y_1}(\xi), (\tilde{\xi}_2)_{y_1}(\xi), (\tilde{\xi}_1)_{y_2}(\xi)\) and \((\tilde{\xi}_2)_{y_2}(\xi)\) are the orthogonal projections of \((\xi_1)_{y_1}(\xi), (\xi_2)_{y_1}(\xi), (\xi_1)_{y_2}(\xi)\) and \((\xi_2)_{y_2}(\xi)\), respectively, into the space of polynomials of degree \(p\) with respect to the inner product in \(H^2(S)\). Let
\[
\tilde{\gamma}_m \quad \text{a side common to } \Omega^m_{\kappa,h} \text{ and } \Omega^m_{\kappa,h} \text{ which is the image of } \xi_1 = 1 \text{ under the map } N^m_{\kappa} \text{ and the image of } \xi_1 = 0 \text{ under the map } N^m_{\kappa}. \text{ Now, we define the jump term at the inter element boundary } \tilde{\gamma}_m:
\]
\[
||\tilde{v}^m||_{(r,s),\tilde{\gamma}_m \times I_n} = ||\tilde{v}^m(1, \xi_2, s) - \tilde{v}^m(0, \xi_2, s)||^2_{(r,s),(0,1) \times I_n}
\]
and the derivative of the jump term at the inter element boundary \(\tilde{\gamma}_m\)
\[
\left(\frac{\partial \tilde{v}^m}{\partial y_j}\right)^a \quad \text{for } j = 1, 2, \text{ where } I_n = (n, n+1). \text{ We then define}
\]
\[
\int_{\tilde{\Omega}^m_{\kappa,h} \times I_n} |\mathcal{L}^m_{\kappa} \tilde{v}^m|^2 dy_1 dy_2 ds \equiv \int_{S \times I_n} |\mathcal{L}^m_{\kappa} \tilde{v}^m|^2 d\xi_1 d\xi_2 ds = ||\mathcal{L}^m_{\kappa} \tilde{v}^m||^2_{S \times I_n},
\]
where \(\mathcal{L}^m_{\kappa} = \mathcal{L} \sqrt{f^m_{\kappa}}\) and \(\mathcal{L}\) is the differential operator \(\mathcal{L}\) in \(\xi_1, \xi_2\) and \(s\) coordinates. Here \(f^m_{\kappa}\) denotes the Jacobian of the map \(N^m_{\kappa}\) from \(S\) to \(\tilde{\Omega}^m_{\kappa,h}\). Define a new differential operator \((\mathcal{L}^m_{\kappa})^a\), so that its coefficients are polynomials of degree \(p\) in each of the space variables \(\xi_1\) and \(\xi_2\) and of degree \(q\) in the time variable \(s\) defined as the orthogonal projections of the coefficients of the corresponding differential operator \(\mathcal{L}^m_{\kappa}\) into the space of polynomials with respect to the usual inner product in \(H^2(S \times I_n)\). Moreover
\[
\int_{\tilde{\Omega}^m_{\kappa,h} \times I_n} |\mathcal{L}^m_{\kappa} \tilde{v}^m|^2 dy_1 dy_2 ds \equiv \int_{S \times I_n} |(\mathcal{L}^m_{\kappa})^a \tilde{v}^m|^2 d\xi_1 d\xi_2 ds = ||(\mathcal{L}^m_{\kappa})^a \tilde{v}^m||^2_{S \times I_n},
\]
up to a negligible error term \([8, 23]\).

Let \(\mathcal{F}^{(n)}_{\nu_1, \nu_2}\) be the spectral element representation of the function \(v\) i.e.
\[
\mathcal{F}^{(n)}_{\nu_1, \nu_2} = \{ \{ \hat{v}_1^l(\xi_1, \xi_2, s) \}_{1 \leq l \leq \nu_1}, \{ \hat{v}_2^l(\xi_1, \xi_2, s) \}_{1 \leq l \leq \nu_2} \}_{n=0}^{M-1} \text{, where } Mk = T.
\]
By \(\mathcal{S}^{(n)}_{\nu_1, \nu_2}(\mathcal{F}^{(n)}_{\nu_1, \nu_2})\), we denote the space of spectral element functions.

Define \(F^l_{\kappa}(\xi, s) = (\mathcal{L}^m_{\kappa})^a \tilde{F}^m_{\kappa}(N^l_{\kappa}(\xi_1, \xi_2) h, sk)\) and assume \(\hat{F}^l_{\kappa}(\xi, s)\) to be the orthogonal projection of \(F^l_{\kappa}(\xi, s)\) into the space of polynomials of degree \(2p\) in each of the space variables \(\xi_1\) and \(\xi_2\) and of degree \(2q\) in the time variable \(s\) with respect to the usual inner product in \(L^2(S \times I_n)\). Similarly, we define \(\mathcal{F}^l_{\kappa}(\xi) = \hat{F}^l_{\kappa}(N^l_{\kappa}(\xi_1, \xi_2) h)\) and let \(\hat{f}^l_{\kappa}(\xi)\) be the orthogonal projection of \(f^l_{\kappa}(\xi)\) into the space of polynomials of degree \(p\) in \(\xi_1\) and \(\xi_2\) with respect to the usual inner product in \(H^4(S)\). For the boundary and interface terms, let \(\hat{\gamma}_m\) belong to either \(\Gamma_0\) or \(\Gamma_0\) and assume that \(\hat{\gamma}_m\) is the image of \(\xi_1 = 1\) under the mapping \(N^m_{\kappa} : S \to \Omega^m_{\kappa,h}\).

Define \(g^l_{\kappa}(\xi_2, s) = g(N^l_{\kappa}(1, \xi_2) h, sk)\) and \(q^l_{\kappa}(\xi_2, s) = q^l_{\kappa}(N^l_{\kappa}(1, \xi_2) h, sk)\). Let \(\hat{g}^l_{\kappa}(\xi_2, s)\) and \(\hat{q}^l_{\kappa}(\xi_2, s)\) denote the orthogonal projection of \(g^l_{\kappa}(\xi_2, s)\) and \(q^l_{\kappa}(\xi_2, s)\) into the space of polynomials of degree \(p\) in \(\xi_2\) and \(q\) in \(s\).

To initialize the scheme, we define
\[
\tilde{w}^l_{\kappa}(\xi, s = 0^-) = f^l_{\kappa}(\xi).
\]
To obtain the solution for $0 \leq s < n$, where n is an integer, we define our approximate solution for $n \leq s < n+1$ to be the unique F_{v_1,v_2} which minimizes the functional

$$
\mathcal{R}^{(n)}(F_{v_1,v_2},f) = \mathcal{R}_{\text{Initial}}(F_{v_1,v_2},f) + \frac{1}{h^2} \left(\mathcal{R}_{PDE}(F_{v_1,v_2},F) + \mathcal{R}_{\text{Jump}}(F_{v_1,v_2}) \right) + \mathcal{R}_{\text{Boundary}}(F_{v_1,v_2},g) + \mathcal{R}_{\text{Interface}}(F_{v_1,v_2},q)
$$

(3.8)

over all $\mathcal{S}_{p,q}(F_{v_1,v_2})$, where

$$
\mathcal{R}_{\text{Initial}}(F_{v_1,v_2},f) = \sum_{\kappa=1}^{m} \left(\int_{S \times \{n+1\}} |\tilde{\partial}_k f - \tilde{\partial}_k (\xi, n^-)|^2 \mathcal{F}^{(n)} d\xi \right)
$$

$$
+ \sum_{i,j=1}^{2} \int_{S \times \{n+1\}} (\tilde{\partial}_k \tilde{f})_{i,j} (\xi, n^-) d\xi
$$

$$
\mathcal{R}_{PDE}(F_{v_1,v_2},F) = \sum_{l=1}^{m} \left(\int_{S \times \{n+1\}} ||(\mathcal{L}_1)^\alpha \tilde{f}_1 - \mathcal{F}_1||^2_{S \times I_n} + \sum_{l=1}^{m} \left(||(\mathcal{L}_2)^\alpha \tilde{f}_2 - \mathcal{F}_2||^2_{S \times I_n} \right) \right)
$$

$$
\mathcal{R}_{\text{Jump}}(F_{v_1,v_2}) = \sum_{\kappa=1}^{m} \sum_{\gamma_m \subseteq \Omega_k} \left(\int_{S \times \{n+1\}} ||(\tilde{\gamma}_m)||^2_{(0,3/4),\gamma_m \times I_n} + \sum_{j=1}^{2} \left(||(\tilde{\gamma}_j)||^2_{(1/2,1/4),\gamma_m \times I_n} \right) \right)
$$

$$
\mathcal{R}_{\text{Boundary}}(F_{v_1,v_2},g) = \sum_{\gamma_m \subseteq \Omega_k} \left(\int_{S \times \{n+1\}} ||(\tilde{\gamma}_m)||^2_{(0,3/4),\gamma_m \times I_n} + \int_{(1/2,1/4),\gamma_m \times I_n} \right)
$$

$$
\mathcal{R}_{\text{Interface}}(F_{v_1,v_2},q) = \sum_{\gamma_m \subseteq \Omega_k} \left(\int_{S \times \{n+1\}} ||(\tilde{\gamma}_m)||^2_{(0,3/4),\gamma_m \times I_n} + \int_{(1/2,1/4),\gamma_m \times I_n} \right)
$$

Here, $(\tilde{\gamma})_\alpha$ and $\tilde{\partial}_\alpha \tilde{\gamma}$ denote the tangential and normal derivatives on γ_m same as defined in [8, 11, 12]. As defined in (3.8), we choose our approximate solution to be the unique F_{v_1,v_2} which minimizes the functional $\mathcal{R}^{(n)}(F_{v_1,v_2})$ over all $\mathcal{S}_{p,q}(F_{v_1,v_2})$. Now, we define the functional

$$
\mathcal{V}^{(n)}(F_{v_1,v_2},F) = \mathcal{R}_{\text{Initial}}(F_{v_1,v_2},f) + \frac{1}{h^2} \left(\mathcal{R}_{PDE}(F_{v_1,v_2},F) + \mathcal{R}_{\text{Jump}}(F_{v_1,v_2}) \right) + \mathcal{R}_{\text{Boundary}}(F_{v_1,v_2},0) + \mathcal{R}_{\text{Interface}}(F_{v_1,v_2},0)
$$

(3.9)

From equations (3.8) and (3.9), it is clear that $\mathcal{V}^{(n)}(F_{v_1,v_2})$ is the functional $\mathcal{R}^{(n)}(F_{v_1,v_2})$ with zero data. We are now in a position to state the main stability theorem.

Theorem 3.1 (Stability theorem). The estimate

$$
g_4 \sum_{\kappa=1}^{m} \left(\sum_{l=1}^{m} \left(h^2 ||\tilde{\gamma}_m||^2_{S \times I_n} + \sum_{l=1}^{m} ||\tilde{\gamma}_m||^2_{S \times I_n} + \sum_{l=1}^{m} ||\tilde{\gamma}_m||^2_{S \times I_n} \right) \right)
$$

$$
+ \sum_{i,j=1}^{2} \int_{S \times \{n+1\}} \tilde{f} (\xi, n^-) (\tilde{\gamma}_m)_{i,j} (\tilde{\gamma}_m)_{i,j} d\xi_1 d\xi_2 \leq (1 + c_1 h^2) \mathcal{V}^{(n)}(F_{v_1,v_2})
$$

holds for large enough $\frac{1}{n}$ and p with $\ln p = o(1/h)$. Here g_4 and c_1 are constants.

3.2. Proof of the stability theorem

To calculate the estimate of higher order derivatives of \tilde{f} as in [23], we decompose the problem, which is as follows:

$$
\mathcal{L} \tilde{f} = \tilde{\gamma}_n - \delta \tilde{f}, \quad \text{where} \quad \delta \tilde{f} = \sum_{i,j=1}^{2} (\alpha_{i,j} \tilde{\gamma}_y)_{y_i}.
$$

(3.10)

Assume $\nu = (\nu_1, \nu_2)$ to be the outward normal to the curve γ_m at the point ξ. Now, we define $(\nu \tilde{\gamma})_\alpha (\xi) = \sum_{i,j=1}^{2} \nu_i \alpha_{i,j} (\partial_i \tilde{f})_\alpha (\xi)$ which denotes the conormal derivative at a point on γ_m. Furthermore, let $d\mu$ be an element of arc length along γ_m.
Lemma 3.1. The estimate

\[
\sum_{k=1}^{\alpha_1} \sum_{l=1}^{\alpha_2} \left(\frac{|\tilde{v}|^2}{|\tilde{\omega}|_{k,h} \times (n+1)^2} + b_1 \sum_{l=1}^{\alpha_2} \frac{1}{|\tilde{\omega}|_{k,h} \times I_n} \right) + \frac{3}{2} K h^2 \right]
\]

\[
- \sum_{k=1}^{\alpha_1} \sum_{l=1}^{\alpha_2} \int_{\gamma_m \times I_n} 2 \left[\tilde{v} \left(\frac{\partial \tilde{u}}{\partial v} \right) \right] duds - \sum_{\gamma_m \subseteq \Gamma_0} \int_{\gamma_m \times I_n} 2 \left[\tilde{v} \left(\frac{\partial \tilde{u}}{\partial v} \right) \right] duds
\]

\[
- \sum_{\gamma_m \subseteq \Gamma_0} \int_{\gamma_m \times I_n} 2 \tilde{v} \left(\frac{\partial \tilde{u}}{\partial v} \right) duds \leq \frac{1}{h^2} \sum_{k=1}^{\alpha_1} \sum_{l=1}^{\alpha_2} \left(\frac{|| (\mathcal{L} + \eta) \tilde{v}^\alpha ||^2}{|\tilde{\omega}|_{k,h} \times I_n} + \frac{|| \tilde{v}^\alpha ||^2}{|\tilde{\omega}|_{k,h} \times (n+1)} \right)
\]

holds for large enough \(K \), where \(\eta = Kh^2 \). Here \(m^- \) and \(m^+ \) denote respectively \(\lim_{t \to m} t \) and \(\lim_{t \downarrow m} t \). \(b_1 > 0 \) is a constant.

Proof. From the equation (3.10), we have

\[
\int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha ((\tilde{v}^\alpha)_s - \tilde{\omega}^\alpha \eta) dyds = \int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha ((\mathcal{L} + \eta) \tilde{v}^\alpha) dyds.
\]

Using integration by parts, it follows:

\[
2 \int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha ((\tilde{v}^\alpha)_s)dyds = \int \tilde{\omega}_{k,h} \times (n+1) \tilde{v}^\alpha dy - \int \tilde{\omega}_{k,h} \times \{ n+1 \} \tilde{v}^\alpha dy,
\]

\[
- \int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha (\tilde{\omega}^\alpha dyds = \int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha \sum_{i,j=1}^{\alpha_2} \tilde{v}^\alpha (\tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha dyds
\]

\[
- \int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha \left(\frac{\partial \tilde{v}^\alpha}{\partial v} \right) duds.
\]

Inserting the equations (3.12) - (3.13) into (3.11), we obtain

\[
\frac{1}{2} \int \tilde{\omega}_{k,h} \times (n+1) \tilde{v}^\alpha dy + \int \tilde{\omega}_{k,h} \times \{ n+1 \} \tilde{v}^\alpha dyds
\]

\[
- \int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha \left(\frac{\partial \tilde{v}^\alpha}{\partial v} \right) duds = \int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha ((\mathcal{L} + \eta) \tilde{v}^\alpha) dyds + \int \tilde{\omega}_{k,h} \times \{ n+1 \} \tilde{v}^\alpha dy/2.
\]

Summing over \(l \) for each \(\tilde{\omega}_{k,h} \times I_n \), \(k = 1, 2 \), gives

\[
\sum_{k=1}^{\alpha_1} \sum_{l=1}^{\alpha_2} \left(\int \tilde{\omega}_{k,h} \times (n+1) \tilde{v}^\alpha dy/2 + \int \tilde{\omega}_{k,h} \times \{ n+1 \} \tilde{v}^\alpha dy/2 \right)\]

\[
- \sum_{k=1}^{\alpha_1} \sum_{l=1}^{\alpha_2} \int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha \left(\frac{\partial \tilde{v}^\alpha}{\partial v} \right) duds - \sum_{\gamma_m \subseteq \Gamma_0} \int \tilde{\omega}_{k,h} \times I_n \left(\frac{\partial \tilde{v}^\alpha}{\partial v} \right) duds
\]

\[
- \sum_{\gamma_m \subseteq \Gamma_0} \int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha \left(\frac{\partial \tilde{v}^\alpha}{\partial v} \right) duds = \sum_{k=1}^{\alpha_1} \sum_{l=1}^{\alpha_2} \left(\int \tilde{\omega}_{k,h} \times I_n \tilde{v}^\alpha ((\mathcal{L} + \eta) \tilde{v}^\alpha) dyds + \int \tilde{\omega}_{k,h} \times \{ n+1 \} \tilde{v}^\alpha dy/2 \right).
\]

From (3.3) and choosing \(K \) large enough, where \(\eta = Kh^2 \), the result holds.

Lemma 3.2. The estimate

\[
e_1 \left(\int_{\tilde{\omega}_{k,h} \times I_n} \sum_{|\alpha|=2} |D^\alpha \tilde{v}^\alpha|^2 dyds \right) + \sum_{l=1}^{\alpha_2} \left(\int_{\tilde{\omega}_{k,h} \times I_n} \sum_{|\alpha|=2} |D^\alpha \tilde{v}^\alpha|^2 dyds \right) \leq \mathcal{E}_1.
\]
holds, where

\[E_1 = \sum_{\kappa=1}^{2} \sum_{l=1}^{\alpha_n} \int_{\Omega_{\kappa,u} \times I_n} |\mathcal{S}\tilde{v}_\kappa^l|^2 dy ds + \sum_{\gamma_m \subseteq \Omega_u \cup \Gamma_0} \left(\int_{\gamma_m \times I_n} [\Phi(\tilde{v})] duds + \int_{I_n} [H(\tilde{v})] ds \right) + f_1 h^2 \sum_{l=1}^{\alpha_n} \sum_{\gamma_m \subseteq \Omega_u \cup \Gamma_0} |D_y^\alpha \tilde{v}_\kappa^l|^2 dy ds + f_1 h \sum_{\gamma_m \subseteq \Omega_u \cup \Gamma_0} \int_{\gamma_m \times I_n} |D_y^\alpha \tilde{v}_\kappa^l|^2 dy ds \]

\[+ \sum_{\gamma_m \subseteq \Omega_u \cup \Gamma_0} \int_{\gamma_m \times I_n} \Phi(\tilde{v}) duds + \sum_{\gamma_m \subseteq \Omega_u \cup \Gamma_0} \int_{I_n} H(\tilde{v}) ds \] \(|_{\partial \gamma_m} \),

\[H(\tilde{v}) = \frac{d_1}{2} \tilde{v}_y (-2D \tilde{v}_t - E \tilde{v}_y) \text{ and } \Phi(\tilde{v}) = d_1 \frac{\partial \tilde{v}}{\partial t} + G(\tilde{v}_{y}). \]

Here \(d_1, e_1 \) and \(f_1 \) are positive constants and \(D, E \) and \(F \) are defined as:

\[\begin{bmatrix} D & E \\ E & F \end{bmatrix} = \begin{bmatrix} \tau_1 & \tau_2 \\ \nu_1 & \nu_2 \end{bmatrix} \begin{bmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{bmatrix} \begin{bmatrix} \tau_1 & \tau_2 \\ \nu_1 & \nu_2 \end{bmatrix}^{-1} \]

and the matrix \(\begin{bmatrix} \tau_1 & \tau_2 \\ \nu_1 & \nu_2 \end{bmatrix} \) is orthogonal and \(\alpha_{ij} = \alpha_{ji} \) for each \(\Omega_{\kappa}, \kappa = 1, 2 \).

Proof. To prove the above lemma, we use the result of equation (3.25) from [8], which is as follows:

\[\frac{c}{4} \int_{\tilde{\Omega}_{\kappa,u}} \sum_{l=1}^{\alpha_n} |D_y^\alpha \tilde{v}_\kappa^l|^2 dy \leq \frac{1}{c} \int_{\tilde{\Omega}_{\kappa,u}} |\mathcal{S}\tilde{v}_\kappa^l|^2 dy + Ch^2 \left(\int_{\tilde{\Omega}_{\kappa,u}} \sum_{l=1}^{\alpha_n} |D_y^\alpha \tilde{v}_\kappa^l|^2 dy \right) \]

\[+ Ch \sum_{j=1}^{4} \int_{\tilde{\gamma}_j} \left| D_y^\alpha \tilde{v}_\kappa^l \right|^2 d\mu + \sum_{j=1}^{4} \int_{\tilde{\gamma}_j} (\tilde{v}_\kappa^l)_{\kappa,h} d\mu (E(\tilde{v}_\kappa^l)_t + G(\tilde{v}_\kappa^l)_y) d\mu \]

\[+ \sum_{j=1}^{4} \left(\frac{1}{2} (\tilde{v}_\kappa^l)_y (-2D \tilde{v}_t - E \tilde{v}_y) \right)_{\kappa,h} \] \(|_{\partial \tilde{\gamma}_j} \).

by choosing a small enough \(c > 0 \). Here \(G = F + D \), and \(C \) is a generic constant.

Integrating the equation (3.14) w.r. to \(s \) over \(I_n \) and summing over \(l \) for \(\tilde{\Omega}_{\kappa,u}, \kappa = 1, 2 \), the desired result follows.

Next, we prove the following Lemma 3.3, which we directly use to obtain the main stability result.

Lemma 3.3. The estimate holds

\[\sum_{\kappa=1}^{2} \sum_{l=1}^{\alpha_n} \left(Kh^2 |v^l_\kappa|_{\tilde{\Omega}_{\kappa,u}}^2 \times I_n + e_2 \left(|\partial \tilde{v}_\kappa^l|^2_{\tilde{\Omega}_{\kappa,u}} \times I_n + \sum_{1 \leq |\alpha| \leq 2} |D_y^\alpha \tilde{v}_\kappa^l|^2_{\tilde{\Omega}_{\kappa,u}} \times I_n \right) \right) \]

\[+ \left(|\tilde{v}_\kappa^l|^2_{\tilde{\Omega}_{\kappa,u}} (n+1) + \sum_{i,j=1}^{2} \int_{\tilde{\Omega}_{\kappa,u} \times (n+1)} (\tilde{v}_\kappa^l)_{y} \alpha_{l,j} (\tilde{v}_\kappa^l)_{y} dy \right) \leq E_2 + E_3 \]

for small enough \(h \). Where

\[E_2 = \sum_{\kappa=1}^{2} \sum_{l=1}^{\alpha_n} \left(|\tilde{v}_\kappa^l|^2_{\tilde{\Omega}_{\kappa,u} \times (n+1)} + \sum_{i,j=1}^{2} \int_{\tilde{\Omega}_{\kappa,u} \times (n+1)} (\tilde{v}_\kappa^l)_{y} \alpha_{l,j} (\tilde{v}_\kappa^l)_{y} dy \right) + \frac{1}{h^2} (1 + 2h^2) \sum_{l=1}^{\alpha_n} \| \mathcal{L} + \eta \|_{\tilde{\Omega}_{\kappa,u} \times I_n}^{2} \]
Using integration by parts, we rewrite the following term

Again using integration by parts the first term of R.H.S in (3.17) w. r. to

Proof. Firstly, we calculate

\[\int_{\tilde{t}_{\kappa}^i \times I_n} |\mathcal{L}^{\kappa}_s| dyds = \int_{\tilde{t}_{\kappa}^i \times I_n} |(\tilde{v}_s^i)^{\kappa} - \mathcal{E} \tilde{v}_s^{i\kappa}| dyds, \]

\[= \int_{\tilde{t}_{\kappa}^i \times I_n} (|(\tilde{v}_s^i)^{\kappa}|^2 - 2(\tilde{v}_s^i)^{\kappa} \mathcal{E} \tilde{v}_s^{i\kappa} + |\mathcal{E} \tilde{v}_s^{i\kappa}|^2) dyds. \] (3.16)

Using integration by parts, we rewrite the following term

\[-2 \int_{\tilde{t}_{\kappa}^i \times I_n} (\tilde{v}_s^{i\kappa})_s (\mathcal{E} \tilde{v}_s^{i\kappa}) dyds = 2 \int_{\tilde{t}_{\kappa}^i \times I_n} \sum_{i,j=1}^{2} (\tilde{v}_s^{i\kappa})_{y_i} \alpha_{ij} (\tilde{v}_s^{i\kappa})_{y_j} dyds \]

\[- \sum_{\tilde{r}_m \subseteq \partial \tilde{t}_{\kappa}^i \times I_n} 2 \sum_{\tilde{r}_m \subseteq \partial \tilde{t}_{\kappa}^i \times I_n} (\tilde{v}_s^{i\kappa})_s \left(\frac{\partial \tilde{v}_s^{i\kappa}}{\partial \nu} \right) dyds. \] (3.17)

Again using integration by parts the first term of R.H.S in (3.17) w. r. to s, gives:

\[2 \int_{\tilde{t}_{\kappa}^i \times I_n} \sum_{i,j=1}^{2} (\tilde{v}_s^{i\kappa})_{y_i} \alpha_{ij} (\tilde{v}_s^{i\kappa})_{y_j} dyds = \int_{\tilde{t}_{\kappa}^i \times \{n+\}} \sum_{i,j=1}^{2} (\tilde{v}_s^{i\kappa})_{y_i} \alpha_{ij} (\tilde{v}_s^{i\kappa})_{y_j} dy \]

\[- \int_{\tilde{t}_{\kappa}^i \times \{n+\}} \sum_{i,j=1}^{2} (\tilde{v}_s^{i\kappa})_{y_i} \alpha_{ij} (\tilde{v}_s^{i\kappa})_{y_j} dy - \int_{\tilde{t}_{\kappa}^i \times \{n+\}} \sum_{i,j=1}^{2} (\tilde{v}_s^{i\kappa})_{y_i} (\alpha_{ij})_s (\tilde{v}_s^{i\kappa})_{y_j} dyds. \] (3.18)

Inserting the equation (3.18) into (3.17), it follows

\[-2 \int_{\tilde{t}_{\kappa}^i \times I_n} (\tilde{v}_s^{i\kappa})_s (\mathcal{E} \tilde{v}_s^{i\kappa}) dyds = \int_{\tilde{t}_{\kappa}^i \times \{n+\}} \sum_{i,j=1}^{2} (\tilde{v}_s^{i\kappa})_{y_i} \alpha_{ij} (\tilde{v}_s^{i\kappa})_{y_j} dy \]

\[- \int_{\tilde{t}_{\kappa}^i \times \{n+\}} \sum_{i,j=1}^{2} (\tilde{v}_s^{i\kappa})_{y_i} \alpha_{ij} (\tilde{v}_s^{i\kappa})_{y_j} dy - \int_{\tilde{t}_{\kappa}^i \times \{n+\}} \sum_{i,j=1}^{2} (\tilde{v}_s^{i\kappa})_s \left(\frac{\partial \tilde{v}_s^{i\kappa}}{\partial \nu} \right) dyds \]

\[- \int_{\tilde{t}_{\kappa}^i \times \{n+\}} \sum_{i,j=1}^{2} (\tilde{v}_s^{i\kappa})_s (\alpha_{ij})_s (\tilde{v}_s^{i\kappa})_{y_j} dyds. \] (3.19)

From equation (3.3), we have

\[\int_{\tilde{t}_{\kappa}^i \times I_n} \sum_{i,j=1}^{2} \frac{d\alpha_1}{dy} (\tilde{v}_s^{i\kappa})_s (\tilde{v}_s^{i\kappa})_{y_j} dyds \leq C \int_{\tilde{t}_{\kappa}^i \times I_n} \sum_{i,j=1}^{2} |D_2^{\alpha_1} \tilde{v}_s^{i\kappa}|^2 dyds. \] (3.20)
Substituting the result of the equation (3.20) into (3.19), the estimate is as follows:

\[-2 \int_{\hat{\Omega}_{y,h} \times I_n} (\tilde{v}_k^l)_s (\delta \tilde{v}_k^l) dyds \geq \int_{\hat{\Omega}_{y,h} \times \{(n+1)^{-}\}} \sum_{i,j=1}^{2} (\tilde{v}_k^l)_y \alpha_{ij} (\tilde{v}_k^l)_y dy - \int_{\hat{\Omega}_{y,h} \times \{n+1\}} \sum_{i,j=1}^{2} (\tilde{v}_k^l)_y \alpha_{ij} (\tilde{v}_k^l)_y dy - 2 \sum_{\hat{\gamma}_m \subseteq \partial \hat{\Omega}_{y,h}} \int_{\hat{\gamma}_m \times I_n} (\tilde{v}_k^l)_s \left(\frac{\partial \tilde{v}_k^l}{\partial \nu} \right) \alpha duds \]

\[-C h^2 \int_{\hat{\Omega}_{y,h} \times I_n} \sum_{|a|=1} \left| D_y^a \tilde{v}_k^l \right|^2 dyds. \quad (3.21)\]

Inserting the equation (3.21) in (3.16), the estimate holds:

\[\int_{\hat{\Omega}_{y,h} \times I_n} |\mathcal{L} \tilde{v}_k^l|^2 dyds \geq \int_{\hat{\Omega}_{y,h} \times I_n} \left(|(\tilde{v}_k^l)_s|^2 + |\delta \tilde{v}_k^l|^2 \right) dyds \]

\[+ \int_{\hat{\Omega}_{y,h} \times \{(n+1)^{-}\}} \sum_{i,j=1}^{2} (\tilde{v}_k^l)_y \alpha_{ij} (\tilde{v}_k^l)_y dy - \int_{\hat{\Omega}_{y,h} \times \{n+1\}} \sum_{i,j=1}^{2} (\tilde{v}_k^l)_y \alpha_{ij} (\tilde{v}_k^l)_y dy \]

\[\leq \int_{\hat{\Omega}_{y,h} \times \{n+1\}} \sum_{i,j=1}^{2} (\tilde{v}_k^l)_y \alpha_{ij} (\tilde{v}_k^l)_y dy + \int_{\hat{\Omega}_{y,h} \times I_n} |\mathcal{L} \tilde{v}_k^l|^2 dyds \]

\[+ 2 \sum_{\hat{\gamma}_m \subseteq \partial \hat{\Omega}_{y,h}} \int_{\hat{\gamma}_m \times I_n} (\tilde{v}_k^l)_s \left(\frac{\partial \tilde{v}_k^l}{\partial \nu} \right) \alpha duds - C h^2 \int_{\hat{\Omega}_{y,h} \times I_n} \sum_{|a|=1} \left| D_y^a \tilde{v}_k^l \right|^2 dyds. \quad (3.22)\]

After rearranging the equation (3.22), we obtain

\[\int_{\hat{\Omega}_{y,h} \times I_n} \left(|(\tilde{v}_k^l)_s|^2 + |\delta \tilde{v}_k^l|^2 \right) dyds + \int_{\hat{\Omega}_{y,h} \times \{(n+1)^{-}\}} \sum_{i,j=1}^{2} (\tilde{v}_k^l)_y \alpha_{ij} (\tilde{v}_k^l)_y dy \]

\[\leq \int_{\hat{\Omega}_{y,h} \times \{n+1\}} \sum_{i,j=1}^{2} (\tilde{v}_k^l)_y \alpha_{ij} (\tilde{v}_k^l)_y dy + \int_{\hat{\Omega}_{y,h} \times I_n} |\mathcal{L} \tilde{v}_k^l|^2 dyds \]

\[+ 2 \sum_{\hat{\gamma}_m \subseteq \partial \hat{\Omega}_{y,h}} \int_{\hat{\gamma}_m \times I_n} (\tilde{v}_k^l)_s \left(\frac{\partial \tilde{v}_k^l}{\partial \nu} \right) \alpha duds + C h^2 \int_{\hat{\Omega}_{y,h} \times I_n} \sum_{|a|=1} \left| D_y^a \tilde{v}_k^l \right|^2 dyds. \quad (3.23)\]

Combining the equation (3.14) and (3.23), implies

\[c_1 \int_{\hat{\Omega}_{y,h} \times I_n} \left(\sum_{|a|=2} \left| D_y^a \tilde{v}_k^l \right|^2 + \left| (\tilde{v}_k^l)_s \right|^2 \right) dyds + \int_{\hat{\Omega}_{y,h} \times \{(n+1)^{-}\}} \sum_{i,j=1}^{2} (\tilde{v}_k^l)_y \alpha_{ij} (\tilde{v}_k^l)_y dy, \]

\[\leq \int_{\hat{\Omega}_{y,h} \times I_n} |\mathcal{L} \tilde{v}_k^l|^2 dyds + \int_{\hat{\Omega}_{y,h} \times \{n+1\}} \sum_{i,j=1}^{2} (\tilde{v}_k^l)_y \alpha_{ij} (\tilde{v}_k^l)_y dy, \]

\[+ C h^2 \int_{\hat{\Omega}_{y,h} \times I_n} \sum_{|a|=1} \left| D_y^a \tilde{v}_k^l \right|^2 dyds + g_1 h \int_{\hat{\Omega}_{y,h} \times I_n} \sum_{1 \leq |a| \leq 2} \left| D_y^a \tilde{v}_k^l \right|^2 dyds \]

\[+ \sum_{\hat{\gamma}_m \subseteq \partial \hat{\Omega}_{y,h}} \left(\int_{\hat{\gamma}_m \times I_n} J(\tilde{v}) duds + \int_{I_n} H(\tilde{v}) ds \right) \left\| \frac{\partial \tilde{v}_k^l}{\partial \nu} \right\|, \quad (3.24)\]

with the following estimate

\[\sum_{\hat{\gamma}_m \subseteq \partial \hat{\Omega}_{y,h}} \int_{\hat{\gamma}_m \times I_n} \sum_{|a|=1} \left| D_y^a \tilde{v}_k^l \right|^2 dyds \leq g_1 \int_{\hat{\Omega}_{y,h} \times I_n} \sum_{1 \leq |a| \leq 2} \left| D_y^a \tilde{v}_k^l \right|^2 dyds, \]

where \(g_1\) is a uniform constant and \(c_1\) is a positive constant.

From equation (3.10), we obtain:

\[\int_{\hat{\Omega}_{y,h} \times I_n} |\mathcal{L} \tilde{v}_k^l|^2 dyds = \int_{\hat{\Omega}_{y,h} \times I_n} |(\mathcal{L} + \eta) \tilde{v}_k^l - \eta \tilde{v}_k^l|^2 dyds \]

\[\leq 2 \int_{\hat{\Omega}_{y,h} \times I_n} |(\mathcal{L} + \eta) \tilde{v}_k^l|^2 dyds \quad (3.25)\]
with the following estimate
\[\int_{\tilde{\Omega}_{\kappa,h} \times I_n} |\eta \tilde{v}^l_{\kappa}|^2 dyds \leq \int_{\tilde{\Omega}_{\kappa,h} \times I_n} |(\mathcal{L} + \eta) \tilde{v}^l_{\kappa}|^2 dyds. \]
(3.26)

Inserting equation (3.25) in (3.24) and summing over \(l \) on \(\tilde{\Omega}_{\kappa,h} \), \(\kappa = 1, 2 \), the estimate is as follows:
\[\sum_{\kappa=1}^{2} \sum_{l=1}^{o_{\kappa}} \left(\int_{\tilde{\Omega}_{\kappa,h} \times I_n} c_1 |(D^0 \tilde{v}^l_{\kappa}|^2 + |(\tilde{v}^l_{\kappa})_n|^2) dyds + \int_{\tilde{\Omega}_{\kappa,h} \times \{(n+1)\}} \sum_{i,j=1}^{2} (\tilde{v}^l_{\kappa})_y \alpha_{ij}(\tilde{v}^l_{\kappa})_y dy \right) \]
\[\leq \sum_{\kappa=1}^{2} \sum_{l=1}^{o_{\kappa}} \left(\int_{\tilde{\Omega}_{\kappa,h} \times I_n} |(\mathcal{L} + \eta) \tilde{v}^l_{\kappa}|^2 dyds + \int_{\tilde{\Omega}_{\kappa,h} \times \{(n+1)\}} \sum_{i,j=1}^{2} (\tilde{v}^l_{\kappa})_y \alpha_{ij}(\tilde{v}^l_{\kappa})_y dy \right) \]
\[+ Ch \int_{\tilde{\Omega}_{\kappa,h} \times I_n} \sum_{i,j=1}^{2} |D^0 \tilde{v}^l_{\kappa}|^2 dyds + Ch^4 \int_{\tilde{\Omega}_{\kappa,h} \times I_n} |\tilde{v}^l_{\kappa}|^2 dyds + \mathcal{F}(v) \]
\[+ \sum_{\kappa=1}^{2} \sum_{l=1}^{o_{\kappa}} \left(\int_{\gamma_m \times I_n} |J(\tilde{v})|d\mu ds + \int_{I_n} |H(\tilde{v})|ds \right)\]
\[+ \sum_{\gamma_m \subseteq \Gamma_0} \left(\int_{\gamma_m \times I_n} |J(\tilde{v})|d\mu ds + \int_{I_n} |H(\tilde{v})|ds \right) \].
(3.27)

Combining Lemma 3.1 with (3.27), the desired result follows.

Now, we estimate the bound for \(\mathcal{E}_3 \), which is defined in equation (3.15).

Lemma 3.4. The estimate
\[\mathcal{E}_3 \leq \mathcal{E}_4 + \mathcal{E}_5 \]
(3.28)
holds for a constant \(K \), such that, \(\frac{1}{h} \) and \(p \) large enough and \(\ln p = o\left(\frac{1}{h}\right) \).

Proof. Using the equation (3.32) from [8], we conclude
\[\left| \sum_{\gamma_m \subseteq \Omega_\kappa} \left(\int_{\gamma_m \times I_n} \Phi(v) d\mu ds + \int_{I_n} |H(v)|d\mu ds \right) \right| \]
\[\leq \frac{e}{16} \sum_{l=1}^{o_{\kappa}} \sum_{1 \leq |\alpha| \leq 2} ||D^0 \tilde{v}^l_{\kappa}|^2 ||_{\Omega_{\kappa,h} \times I_n} + C(\ln p)^2 \sum_{\gamma_m \subseteq \Omega_\kappa} \left(\sum_{l=1}^{2} \left(||v_{\kappa}^0||_{(1/2,0),\gamma_m \times I_n} \right) \right) \]
for each \(\kappa = 1, 2 \), and
\[\left| \sum_{\gamma_m \subseteq \Gamma} \left(\int_{\gamma_m \times I_n} \Phi(\tilde{v}) d\mu ds + \int_{I_n} |H(\tilde{v})|d\mu ds \right) \right| \]
\[\leq \frac{e}{16} \sum_{l=1}^{o_{\kappa}} \sum_{1 \leq |\alpha| \leq 2} ||D^0 \tilde{v}^l_{\kappa}|^2 ||_{\Omega_{\kappa,h} \times I_n} \]
\[+ C(\ln p)^2 \left(\sum_{\gamma_m \subseteq \Gamma} \left(||v_{\kappa}^0||_{(1/2,0),\gamma_m \times I_n} + \sum_{l=1}^{2} \left(||v_{\kappa}^0||_{(1/2,0),\gamma_m \times I_n} \right) \right) \right). \]
(3.30)
From equations (3.29) and (3.30), the following estimate holds for interface \((\Gamma_0)\)

\[
\left| \sum_{\gamma_m \subseteq \Gamma_0} \left(\int_{\tilde{\gamma}_m \times I_n} [\Phi(\tilde{v})] d\mu ds + \int_{I_n} [H(\tilde{v})] ds \right) \right| \leq \frac{e}{16} \sum_{\kappa=1}^2 \sum_{l=1}^{\alpha_2} \sum_{1 \leq |\alpha_1| \leq 2} ||D^{\alpha_1} \tilde{v}^l_x||^2_{\tilde{\Omega}_{\kappa,h}^{(l)}} \times I_n + C(\ln p)^2 \left(\sum_{\gamma_m \subseteq \Gamma_0} \left(\left| \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} \right| \right)^2 \right)_{(1/2,0),\tilde{\gamma}_m \times I_n} + \sum_{\kappa=1}^2 \sum_{\gamma_m \subseteq \Omega_{k}} \sum_{l=1}^{2} \left(\left| \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} \right| \right)_{(1/2,0),\tilde{\gamma}_m \times I_n}.
\]

(3.31)

Using the equation (3.33) of [8], it follows that

\[
\sum_{\gamma_m \subseteq \Gamma_0} \int_{\tilde{\gamma}_m \times I_n} \left[2\tilde{v} \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} \right] d\mu ds \leq \sum_{l=1}^{\alpha_2} e_1 \left(\sum_{1 \leq |\alpha_1| \leq 2} ||D^{\alpha_1} \tilde{v}^l_x||^2_{\tilde{\Omega}_{\kappa,h}^{(l)}} + C \sum_{\gamma_m \subseteq \Gamma_0} \left(\left| \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} \right| \right)_{(1/2,0),\tilde{\gamma}_m \times I_n}.
\]

(3.32)

Similarly, the following estimate holds for the interface \((\Gamma_0)\)

\[
\sum_{\gamma_m \subseteq \Gamma_0} \int_{\tilde{\gamma}_m \times I_n} \left[2\tilde{v} \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} \right] d\mu ds \leq \sum_{l=1}^{\alpha_2} e_1 \left(\sum_{1 \leq |\alpha_1| \leq 2} ||D^{\alpha_1} \tilde{v}^l_x||^2_{\tilde{\Omega}_{\kappa,h}^{(l)}} + C \sum_{\gamma_m \subseteq \Gamma_0} \left(\left| \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} \right| \right)_{(1/2,0),\tilde{\gamma}_m \times I_n}.
\]

(3.34)

Using equations (3.36) and (3.38) from [8], we obtain

\[
\sum_{\gamma_m \subseteq \Omega_{k}} \int_{\tilde{\gamma}_m \times I_n} \left[2\tilde{v} \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} \right] d\mu ds \leq \frac{1}{2h^2} \sum_{\gamma_m \subseteq \Omega_{k}} \left(||\tilde{v}||^2_{(0,1/4),\tilde{\gamma}_m \times I_n} + \sum_{j=1}^{2} \left(||\tilde{v}_{y_j}||^2_{(0,1/4),\tilde{\gamma}_m \times I_n} \right) \right) + \sum_{l=1}^{\alpha_2} e_1 \left(\sum_{1 \leq |\alpha_1| \leq 2} ||D^{\alpha_1} \tilde{v}^l_x||^2_{\tilde{\Omega}_{\kappa,h}^{(l)}} + C \sum_{\gamma_m \subseteq \Gamma_0} \left(\left| \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} \right| \right)_{(1/2,0),\tilde{\gamma}_m \times I_n}.
\]

(3.35)

for each \(\kappa = 1,2\). Moreover

\[
\sum_{\gamma_m \subseteq \Gamma_0} \int_{\tilde{\gamma}_m \times I_n} 2\tilde{v} \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} d\mu ds \leq \frac{1}{2h^2} \sum_{\gamma_m \subseteq \Omega_{k}} \left(||\tilde{v}||^2_{(0,1/4),\tilde{\gamma}_m \times I_n} + \sum_{l=1}^{\alpha_2} e_1 \left(\sum_{1 \leq |\alpha_1| \leq 2} ||D^{\alpha_1} \tilde{v}^l_x||^2_{\tilde{\Omega}_{\kappa,h}^{(l)}} + C \sum_{\gamma_m \subseteq \Gamma_0} \left(\left| \left(\frac{\partial \tilde{v}}{\partial \nu} \right)^{\alpha} \right| \right)_{(1/2,0),\tilde{\gamma}_m \times I_n} \right).
\]

(3.36)
In same way, it follows that

\[
\sum_{\gamma_m \subseteq \Gamma_0} \int_{\gamma_m \times I_n} \left[2 \tilde{v}_n \left(\frac{\partial \tilde{v}}{\partial \nu} \right)_\alpha \right] d\mu ds \\
\leq \frac{1}{2h^2} \sum_{\gamma_m \subseteq \Gamma_0} \left(\|\bar{v}\|_{H^{0.3/4}, \gamma_m \times I_n} + \left\| \left(\frac{\partial \tilde{v}}{\partial \nu} \right)_\alpha \right\|_{(0.1/4), \gamma_m \times I_n}^2 \right) \\
+ \frac{\varepsilon_1}{8} \sum_{l=1}^2 \sum_{l=1}^2 \left(\|\partial_i v^l\|_{\Gamma_{k,h} \times I_n} + \sum_{1 \leq |\alpha| \leq 2} \|D_{\gamma}^{\alpha} v^l\|_{\Gamma_{k,h} \times I_n}^2 \right)
\] (3.37)

Combining the equations (3.29) – (3.37), imply the desired result.

Combining the results of Lemma 3.3 and 3.4, implies that

\[
g_4 \sum_{l=1}^2 \sum_{\kappa=1}^2 \left(h^2 \|v^l\|_{\Omega_{k,h} \times I_n}^2 + \|\partial_i v^l\|_{\Omega_{k,h} \times I_n} + \sum_{1 \leq |\alpha| \leq 2} \|D_{\gamma}^{\alpha} v^l\|_{\Omega_{k,h} \times I_n}^2 \right)
\] (3.38)

holds for large enough \(\frac{1}{h} \) and \(p \) with \(\ln p = o(1/h) \). Here \(g_4 \) is a constant independent of \(h, p \) and \(q \), and

\[
\mathcal{W}(n) (\mathcal{F}^{(n)}_{v_1,v_2}) = \sum_{\kappa=1}^2 \sum_{l=1}^2 \left(\|\bar{v}\|_{\Omega_{k,h} \times (n+1)}^2 + \sum_{i,j=1}^2 \int_{\Omega_{k,h} \times (n+1)} (\bar{v}_i)^2 y_i \alpha_{i,j} (\bar{v}_j)^2 y_j dy \right)
\] (3.38)

Let \(\mathcal{J}_r \) be the Jacobian of the map \(N^l_k \) from \(S \) to \(\Omega_{k,h} \) in each \(\Omega_{k,h} \), \(k = 1, 2 \), then there exist matrices \(\{\mathcal{A}_{r,l}^j\}_{i,j} \) such that

\[
\sum_{i,j=1}^2 \int_{\Omega_{k,h} \times (n+1)} (\bar{v}_i)^2 y_i \alpha_{i,j} (\bar{v}_j)^2 y_j dy = \sum_{i,j=1}^2 \int_{S \times \{1\}} (\bar{v}_i)^2 \xi_i (\mathcal{A}_{r,l}^j)_{i,j} (\bar{v}_j)^2 \xi_j d\xi_1 d\xi_2.
\]

Now we define \(\mathcal{J}_r \) and \(\mathcal{A}_{r,l}^j \), which are orthogonal projection of \(\mathcal{J}_r \) and \(\mathcal{A}_{r,l}^j \) into the space of polynomial as before. Recall that \(\eta = Kh^2 \) and \(\bar{v}_k = \bar{v}_k e^{\eta} \). Using these arguments in equation (3.38), we obtain the final result.

4. Error estimate

In this section, we prove a priori error estimate for parabolic interface problems. Let \(u^l_k(\xi, s) = u(N^l_k(\xi_1, \xi_2), s) \), where \(l = 1, 2, \cdots, o_1 \) for \(k = 1 \) and \(l = 1, 2, \cdots, o_2 \) for \(k = 2 \). Now we prove the following approximation result.

Lemma 4.1. For each \(k = 1, 2 \), let \(u_k \) be a smooth function which is defined on \(\Omega_{k} \times [0,T] \). Then there exist functions \(\psi_k(\xi, s) \) defined on \(S \times [0,M] \) (where \(Mk = T \)). Moreover, \(\psi_k(\xi, s) \) is continuous function of \(s \) and is a polynomial in \(\xi_1 \) and \(\xi_2 \) of degree \(p \) separately and in \(s \) of degree \(q \) for \(s \in I_n \) with \(n = 0, 1, \cdots, M - 1 \). Then the following error estimate

\[
\left(\sum_{\kappa=1}^o \sum_{n=0}^{M-1} \|u^l_k - \psi_k^l\|_{L^2(2,1),S \times I_n}^2 \right)^{\frac{1}{2}} \leq C_q h^{2q} \|u\|_{L^{2q+6,q+3}(0\cup I_0 \times \{0\})} (4.1)
\]
holds, provided \(p = 2q + 1 \) and \(k \) is proportional to \(h^2 \) as \(h \to 0 \).

If \(u_\kappa \in D_{2,1}(\Omega_\kappa \times [0,T]) \) for each \(\kappa = 1, 2 \), then
\[
\left(\sum_{k=1}^{2\omega} \sum_{l=1}^{M-1} \sum_{n=0}^{o_n} \| u_{\kappa}^l - \psi_{\kappa}^l \|^2_{(2,1),S \times I_n} \right)^{\frac{1}{2}} \leq Ke^{-\rho_1 p} h^{\rho_3 p}
\]
(4.2)

provided \(q \) is proportional to \(p^2 \), as \(p \) tends to infinity and \(\ln p = o(1/h) \). Where \(K, \rho_1 \) and \(\rho_3 \) are positive constants.

Proof. Let \(\pi_{\xi,s}^{p,q} v(\xi, s) = \pi_{\xi}^{p} \pi_{s}^{q} v(\xi, s) \) be an operator from
\[
H^{2q+6} \rightarrow (P^p \times P^p \times P^p)(S \times I_0)
\]
defined as [8, 22]. Now, we define \(\psi_{\kappa}^l(\xi, s + n) = \pi_{\xi,s}^{p,q} u_{\kappa}^l(\xi, s) \) for \(0 \leq s < 1 \). Thus \(\psi_{\kappa}^l(\xi, s) \) is a continuous function of \(s \) for \(0 \leq s < M \) and separately for \(\kappa = 1, 2 \).

Using the approximation results from equations (5.6) and (5.7) in [8], we obtain
\[
\| u_{\kappa}^l - \psi_{\kappa}^l \|^2_{(0,1),S \times I_0} \leq C^2 - 2 \nu \left(\begin{array}{c} q - \sigma \no \end{array} \right)! \| \partial_{\xi}^{q+1} u_{\kappa}^l \|^2_{(0,0),S \times I_0} + C^2 - 2 \lambda \left(\begin{array}{c} p - \lambda \no \end{array} \right)! \| \partial_{\xi}^{p+1} u_{\kappa}^l \|^2_{(0,0),S \times I_0} + \left(\sum_{j=0}^{2} \| \partial_{\xi}^{q+1} u_{\kappa}^l \|^2_{(0,1),S \times I_0} + \| \partial_{\xi}^{p+1} u_{\kappa}^l \|^2_{(0,1),S \times I_0} \right)
\]
(4.3)

and
\[
\| D_{\xi,\xi}^{\alpha} (u_{\kappa}^l - \psi_{\kappa}^l) \|^2_{(0,0),S \times I_0} \leq C \left(\begin{array}{c} 2 - 2 \nu \no \end{array} \right)! \left(\sum_{j=0}^{2} \left(\begin{array}{c} q - \mu \no \end{array} \right)! \| \partial_{\xi}^{q+1} u_{\kappa}^l \|^2_{(0,0),S \times I_0} \right) + \frac{2 - 2 \mu}{q+1} \left(\begin{array}{c} q - \mu \no \end{array} \right)! \| D_{\xi,\xi}^{\alpha} (u_{\kappa}^l - \psi_{\kappa}^l) \|^2_{(0,0),S \times I_0} \right)
\]
(4.4)

for \(0 \leq |\alpha| \leq 2 \) and separately for \(\kappa = 1, 2 \).

Now, we choose \(p = 2q + 1 \), \(\lambda = 2q + 1 \), \(\sigma = q \), \(\nu = 2q + 1 \) and \(\mu = q \) in equations (4.3)-(4.4) as in [22]. Adding equations (4.3)-(4.4) and summing over \(l \) for \(\Omega_{\kappa}^1, \kappa = 1, 2 \), the desired result holds.

For proving the second estimate, where \(u_{\kappa} \in D_{2,1}(\Omega_\kappa \times [0,T]) \) and the map \(M_{\kappa}^l \) are analytic, we obtain
\[
\sup \left(\xi,s \right) \in S(0,M) \right) \| D_{\xi,\xi}^{j+1} u_{\kappa}^l(\xi, s) \| \leq A_2(B_2)^{(j+1)} \| (\beta_1)^2 h^{2j+1},
\]
for \(|\alpha| = j \). Here \(A_2 \) and \(B_2 \) are constants.

For proving the second estimate, where \(u_{\kappa} \in D_{2,1}(\Omega_\kappa \times [0,T]) \) and the map \(M_{\kappa}^l \) are analytic, we obtain
\[
\|
\sum \left(\begin{array}{c} 2 - 2 \nu \no \end{array} \right)! \left(\begin{array}{c} q - \mu \no \end{array} \right)! \| \partial_{\xi}^{q+1} u_{\kappa}^l \|^2_{(0,0),S \times I_0} \right) + \frac{2 - 2 \mu}{q+1} \left(\begin{array}{c} q - \mu \no \end{array} \right)! \| D_{\xi,\xi}^{\alpha} (u_{\kappa}^l - \psi_{\kappa}^l) \|^2_{(0,0),S \times I_0} \right)
\]
(4.4)

for \(0 \leq |\alpha| \leq 2 \) and separately for \(\kappa = 1, 2 \).

Now, we choose \(p \cong p^2 \), \(\lambda = \ld_1 p \), \(\sigma = \ld_2 p \), \(\nu = \ld_3 p \) and \(\mu = \ld_4 p \) in equations (4.3)-(4.4) as in [22], where \(0 < \ld_i < 1 \) for \(i = 1, \ldots, 4 \). Adding equations (4.3)-(4.4) and summing over \(l \) for \(\Omega_{\kappa}^1, \kappa = 1, 2 \), the desired result holds.

Finally, we prove our main result of this section.

Theorem 4.1. Let \(F_{\omega_1,\omega_2}^{(n)} \in S_{(n)}^{p,q} \) minimize the functional \(\mathcal{F}_{\omega_1,\omega_2}^{(n)}(\mathcal{F}_{\nu_1,\nu_2}^{(n)}) \) over all \(F_{\omega_1,\omega_2}^{(n)} \in S_{(n)}^{p,q} \). If \(u_{\kappa} \) is smooth in \(\Omega_\kappa \times [0,T] \) for each \(\kappa = 1, 2 \), then there exist a constant \(C_q \) such that the estimate
\[
\left(\sum_{k=1}^{2\omega} \sum_{l=1}^{M-1} \sum_{n=0}^{o_n} \| u_{\kappa}^l - \psi_{\kappa}^l \|^2_{(2,1),\Omega_{\kappa}^l \times I_n} \right)^{\frac{1}{2}} \leq C_q h^{2q-1} \| u \|^2_{(2q+6,q+3),\Omega_1 \cup \Omega_2 \times (0,T)}
\]
(4.5)

holds, provided \(p = 2q + 1 \) and \(k \) is proportional to \(h^2 \) as \(h \to 0 \).

If \(u_k \in D_{2,1}(\Omega_\kappa \times [0,T]) \) for each \(\kappa = 1, 2 \), then
\[
\left(\sum_{k=1}^{2\omega} \sum_{l=1}^{M-1} \sum_{n=0}^{o_n} \| u_{\kappa}^l - w_{\kappa}^l \|^2_{(2,1),\Omega_{\kappa}^l \times I_n} \right)^{\frac{1}{2}} \leq Ke^{-\rho_1 p} h^{\rho_3 p}
\]
(4.6)

provided \(q \) is proportional to \(p^2 \), as \(p \) tends to infinity and \(\ln p = o(1/h) \). Where \(K, \rho_1 \) and \(\rho_3 \) are positive constants.
Proof. First, we divide the error into the following terms:
\[\|u^l - w^l\|_{\Omega_{h,k}^2 \times I_n} \leq C(\|u^l - \psi^l\|_{\Omega_{h,k}^2 \times I_n} + \|\psi^l - w^l\|_{\Omega_{h,k}^2 \times I_n}), \]
for some positive constant \(C \). Here the first term of R.H.S. is already estimated from the previous Lemma 4.1. Now, we estimate the second term of R.H.S. Let \(\mathcal{F}^{(0)}_{w_1,w_2} \) minimizes \(\mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{w_1,w_2}) \). Then we have
\[\mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{\psi_1,\psi_2}) = \mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{w_1,w_2}) + \mathcal{R}^{(0)}(\mathcal{E}^{(0)}_{\psi_1,\psi_2}), \]
(4.7)
Therefore, we conclude that
\[\mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{w_1,w_2}) \leq \mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{\psi_1,\psi_2}). \]
(4.8)
Replacing the approximate solution \(\mathcal{F}^{(0)}_{w_1,w_2} \) by exact solution \(\mathcal{F}^{(0)}_{w_1,w_2} \) in the equation (4.7) then we obtain
\[\mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{\psi_1,\psi_2}) = \mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{w_1,w_2}), \]
(4.9)
using \(\mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{w_1,w_2}) \approx 0 \).
Define
\[\mathcal{T}_n = \sum_{\kappa=1}^{2} \sum_{l=1}^{\alpha_1} \left(h^2 \|\hat{w}^l - \psi^l\|^2_{S \times I_n} + \|\partial_\xi(\hat{w}^l - \psi^l)\|^2_{S \times I_n} + \sum_{1 \leq |\alpha| \leq 2} \|D_\xi^\alpha(\hat{w}^l - \psi^l)\|^2_{S \times I_n} \right) \]
and
\[\mathcal{Y}_n = \sum_{\kappa=1}^{2} \sum_{l=1}^{\alpha_1} \left(\|\hat{w}^l - \psi^l\|^2_{S \times I_n} + \sum_{i,j=1}^{n} \int_{S \times I_n} (\hat{w}^l - \psi^l)_{\xi} (\alpha\hat{w}^l)_{i,j} (\hat{w}^l - \psi^l)_{\xi} d\xi_1 d\xi_2 \right). \]
Using Theorem 3.1, the following estimate holds:
\[g_4(\mathcal{T}_0 + \mathcal{Y}_1) \leq e^{\lambda k} \mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{\psi_1,w_2}) \leq e^{\lambda k} \mathcal{R}^{(0)}(\mathcal{F}^{(0)}_{\psi_1,\psi_2}), \]
(4.10)
for choosing \(\lambda \) such that \(1 + ch^2 = e^{\lambda k} \). Now we define
\[\mathcal{R}^{(n)}(\mathcal{F}^{(n)}_{\psi_1,\psi_2}) = \mathcal{R}^{(0)}(\mathcal{F}^{(n)}_{\psi_1,\psi_2}) - \mathcal{I}_n, \]
where
\[\mathcal{I}_n = \sum_{\kappa=1}^{2} \sum_{l=1}^{\alpha_1} \left(\|\hat{v}^l\|^2_{S \times I_n} + \sum_{i,j=1}^{n} \int_{S \times I_n} (\hat{v}^l_{\xi})_{i,j} (\alpha\hat{v}^l)_{i,j} d\xi_1 d\xi_2 \right). \]
From equation (4.8), it follows:
\[\mathcal{R}^{(1)}(\mathcal{F}^{(1)}_{\psi_1,w_2}) \leq \mathcal{R}^{(1)}(\mathcal{F}^{(0)}_{\psi_1,\psi_2}), \]
(4.11)
Again using Theorem 3.1, the following estimate holds as in (4.10):
\[g_4(\mathcal{T}_1 + \mathcal{Y}_2) \leq e^{\lambda k} \mathcal{R}^{(1)}(\mathcal{F}^{(1)}_{\psi_1,w_2}) \leq e^{\lambda k} \mathcal{R}^{(1)}(\mathcal{F}^{(1)}_{\psi_1,\psi_2}) \leq e^{\lambda k} \left(\mathcal{R}^{(1)}(\mathcal{F}^{(0)}_{\psi_1,\psi_2}) + \mathcal{I}_1 \right). \]
(4.12)
Here \(\psi^l_\kappa(\xi,s) \) is continuous in \(s \). Multiplying by \(e^{\lambda k} \) in equation (4.10) and adding equations (4.10) \& (4.12), imply:
\[g_4(e^{\lambda k} \mathcal{T}_0 + \mathcal{T}_1 + \mathcal{Y}_2) \leq e^{2\lambda k} \mathcal{R}^{(0)}(\mathcal{F}_{\psi_1,\psi_2}) + e^{\lambda k} \mathcal{R}^{(1)}(\mathcal{F}_{\psi_1,\psi_2}). \]
(4.13)
Continuing this process up to \(M - 1 \) times, the final result is as follows:
\[g_4 \sum_{l=0}^{M-1} \mathcal{T}_n \leq e^{\lambda MT} \left(\mathcal{R}^{(0)}(\mathcal{F}_{\psi_1,\psi_2}) + \sum_{n=1}^{M-1} \mathcal{R}^{(n)}(\mathcal{F}_{\psi_1,\psi_2}) \right). \]
(4.14)
Combining the equations (4.9) and (4.14), we obtain the following result
\[g_4 \sum_{n=0}^{M-1} T_n \leq e^{\lambda T} \sum_{n=0}^{M-1} \psi_n^2 \text{ for } 0 \leq i,j \leq p, 0 \leq k \leq q, \kappa = 1, 2. \] (4.15)

Using trace theorem from [17], the following result holds
\[\psi_n^2 \text{ for } 0 \leq i,j \leq p, 0 \leq k \leq q, \kappa = 1, 2. \] (4.16)

where \(K \) is a constant. Inserting the equation (4.16) in (4.15), implies
\[g_4 \sum_{n=0}^{M-1} T_n \leq e^{\lambda T} C \sum_{\kappa=1}^{2} \sum_{i=1}^{o_n} \sum_{n=0}^{M-1} ||u_{\kappa}^i||^2_{(2,1), S \times I_n}. \] (4.17)

Applying Lemma 4.1 in equation (4.17), implies the estimates (4.5) and (4.6).

5. Numerical technique and Computational results

5.1. Symmetric formulation

The approach which is used to solve the problem, is based on least squares. The solution to the
least-squares problem can be found using the PCGM for the normal equations. Let the normal equation
be
\[A^T A U = A^T G, \] (5.1)

Let
\[U_{(p+1)^2}^{p,q,\kappa} = u_{\kappa}^i (\xi_1^i, \xi_2^j, s_k^\kappa) \text{ for } 0 \leq i, j \leq p, 0 \leq k \leq q, \kappa = 1, 2. \]

Similarly, we define
\[U_{(p+1)^2}^{2p,2q,\kappa} = u_{\kappa}^i (\xi_1^i, \xi_2^j, s_k^\kappa) \text{ for } 0 \leq i, j \leq 2p, 0 \leq k \leq 2q, \kappa = 1, 2. \]

Integrals which occur in the minimization formulation, are computed by the Guass-Lobatto-Legendre (GLL)
quadrature formula. Then the minimization formulation for each element is as follows:
\[(V_{2p,2q})^T O_{2p,2q}, \]

where \(O_{2p,2q} \) is a \((2p+1)^2(2q+1)\) vector which can be easily calculated. Now there exists a matrix \(G_{p,q} \) such that \(V_{2p,2q} = G_{p,q} V_{p,q} \). Then it follows:
\[(V_{2p,2q})^T O_{2p,2q} = (V_{p,q})^T \left(G_{p,q}^T O_{2p,2q} \right). \]

It can be shown, as in [23], and references therein that there is no need to evaluate any mass and stiffness
matrices and the residuals in the normal equation can be computed inexpensively and efficiently. Next, we
discuss the steps used in computing the discrete Legendre transform. Let \(\gamma^p_i \) and \(\gamma^q_k \) be the normalizing factors
\[\gamma^p_i = \begin{cases} \frac{1}{2} & \text{if } i < p \\ \frac{1}{2} & \text{if } i = p \end{cases}, \]

and
\[\gamma^q_k = \begin{cases} \frac{1}{2} & \text{if } k < q \\ \frac{1}{2} & \text{if } k = q \end{cases}. \]

Let \(\{ O_{i,j,k} \}_{0 \leq i,j \leq 2p, 0 \leq k \leq 2q} \) be denoted as \(O_{i,j,k} = O_{(2p+1)^2}^{2p,2q} \). Next we perform the following operations...
1. Define $O_{i,j,k} \leftarrow O_{i,j,k}/w_i^{2p}w_j^{2p}w_k^{2q}$.
2. Compute $\{O_{i,j,k}\}_{0 \leq i,j \leq 2p, 0 \leq k \leq 2q}$ the Legendre tranforms of $\{O_{i,j,k}\}_{0 \leq i,j \leq 2p, 0 \leq k \leq 2q}$. Then
 \[\Lambda_{i,j,k} \leftarrow \gamma_i^{2p+2p+2q} \Lambda_{i,j,k}. \]
3. Compute $\mu_{i,j,k} \leftarrow \Lambda_{i,j,k}/\gamma_i^{p+2q}$.
4. Compute Ψ, the inverse Legendre transform of μ. Then
 \[\Psi_{i,j,k} \leftarrow w_i^{2p}w_j^{2p}w_k^{2q} \Psi_{i,j,k}, \quad 0 \leq i,j \leq 2p, 0 \leq k \leq 2q. \]
5. Define a vector J of dimension $(p+1)^2(q+1)$ as
 \[J_{k(p+1)^2+j(p+1)+i} = \Psi_{i,j,k} \text{ for } 0 \leq i,j \leq p, 0 \leq k \leq q. \]

Hence $J = (G^W)^T O^{2W}$ which gives us $A^T(G - AU)$. Thus we see that we can compute $A^T(G - AU)$ in twice the time it takes to compute $(G - AU)$. Furthermore storing $A^T(G - AU)$ takes less time memory that it takes to store $(G - AU)$. We can also conclude that the proposed method can be used to cheaply and efficiently compute the residual for the hp-version of FEM. Clearly, we need $O(p^2q)$ operations to compute the residual vector on a parallel computer. Each element is mapped to a single processor for ease of parallelism. During the PCGM process, communication between neighbouring processors is confined to the interchange of information consisting of the value of function and its derivatives at inter-element boundaries. In addition we need to compute two global scalars to update the approximate solution and the search direction. Hence inter-processor communication is quite small.

5.2 Computational results

Let u_{approx} be the spectral element solution obtained from the minimization problem and u be the exact solution. Error in norm is denoted as follows:

\[||e||_2 \overset{||u-u_{\text{approx}}||_H^2}{\leq} \text{ and } ||e||_\infty \overset{||u-u_{\text{approx}}||_L^\infty}{\leq} \text{ and } ||e||_{1,\infty} \overset{||u-u_{\text{approx}}||_W^{1,\infty}}{=} \]

The numerical results presented in this section have been obtained with a FORTRAN90 code. All our computations are carried out on a 372-node HPC cluster which is based on an Intel Xeon Quadcore processors with a total of 2944 cores and high-speed Infiniband network and it has a peak performance of 34.5 TF. To show the exponential rate of convergence the error is plotted on a log-scale. In computational results, we use the notation $P(-Q) = P \times 10^{-Q}$ for real numbers P, Q. O denotes the order of the h-version methods.

![Figure 3: Space domain for (a) Example 5.1 and 5.4, (b) Example 5.2, (c) Example 5.3.](image)

Remark 5.1. In general singularities arise at the corners for 2D square domain. However, we choose our data selectively so that the solution is not singular at the corners.

Example 5.1 (1-D parabolic interface problem). Consider the following interface problem

\[u_x - (\beta u_x)_x = F \quad \text{in } \Omega \times (0,1), \quad u = f \quad \text{on } \Omega \times \{0\}, \quad u = g \quad \text{on } \Gamma \times (0,1), \]

and the following interface conditions:

\[\begin{align*}
|u| & = 0 \quad \text{and } [\beta \frac{\partial u}{\partial n}] = 0 \quad \text{on } \Gamma_0 \times (0,1), \\
\end{align*} \]

where $\beta = \begin{cases} 1 & \text{in } \Omega_1, \\
W & \text{in } \Omega_2. \end{cases}$
The domain of the problem is $\Omega = (0, 1)$ with the interface as a plane $x = 0.5$ as shown in Figure 3(a). In this case, we choose the exact solution with homogeneous interface condition. The exact solution u of the parabolic interface problem is as follows:

$$u = \begin{cases}
e^{-t(x^2 + (W - 1)x)} & \text{in } \Omega_1, \\
e^{-t(x^2 + (\frac{W - 1}{2})x)} & \text{in } \Omega_2. \end{cases}$$

<table>
<thead>
<tr>
<th>$W = 2$</th>
<th>$q = 1$</th>
<th>$q = 2$</th>
<th>$q = 3$</th>
<th>$q = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>$</td>
<td>e</td>
<td>_2$</td>
<td>$</td>
</tr>
<tr>
<td>1/2</td>
<td>1.76(-02)</td>
<td>-</td>
<td>4.14(-04)</td>
<td>-</td>
</tr>
<tr>
<td>1/4</td>
<td>4.44(-03)</td>
<td>1.99</td>
<td>4.00(-05)</td>
<td>3.37</td>
</tr>
<tr>
<td>1/8</td>
<td>1.66(-03)</td>
<td>1.41</td>
<td>4.15(-06)</td>
<td>3.26</td>
</tr>
<tr>
<td>1/16</td>
<td>6.55(-04)</td>
<td>1.34</td>
<td>3.98(-07)</td>
<td>3.38</td>
</tr>
</tbody>
</table>

Table 1: Performance of the h-version method for Example 5.1

<table>
<thead>
<tr>
<th>$W = 10$</th>
<th>$q = 1$</th>
<th>$q = 2$</th>
<th>$q = 3$</th>
<th>$q = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>$</td>
<td>e</td>
<td>_2$</td>
<td>$</td>
</tr>
<tr>
<td>1/2</td>
<td>1.83(-02)</td>
<td>-</td>
<td>5.77(-04)</td>
<td>-</td>
</tr>
<tr>
<td>1/4</td>
<td>5.58(-03)</td>
<td>1.71</td>
<td>3.90(-05)</td>
<td>3.88</td>
</tr>
<tr>
<td>1/8</td>
<td>1.49(-03)</td>
<td>1.89</td>
<td>2.89(-06)</td>
<td>3.75</td>
</tr>
<tr>
<td>1/16</td>
<td>6.50(-04)</td>
<td>1.20</td>
<td>3.42(-07)</td>
<td>3.07</td>
</tr>
</tbody>
</table>

Table 2: Performance of the h-version method for Example 5.1

<table>
<thead>
<tr>
<th>$W = 100$</th>
<th>$q = 1$</th>
<th>$q = 2$</th>
<th>$q = 3$</th>
<th>$q = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>$</td>
<td>e</td>
<td>_2$</td>
<td>$</td>
</tr>
<tr>
<td>1/2</td>
<td>1.64(-02)</td>
<td>-</td>
<td>5.78(-04)</td>
<td>-</td>
</tr>
<tr>
<td>1/4</td>
<td>5.04(-03)</td>
<td>1.70</td>
<td>4.09(-05)</td>
<td>3.82</td>
</tr>
<tr>
<td>1/8</td>
<td>1.91(-03)</td>
<td>1.39</td>
<td>3.97(-06)</td>
<td>3.36</td>
</tr>
<tr>
<td>1/16</td>
<td>8.72(-04)</td>
<td>1.13</td>
<td>4.30(-07)</td>
<td>3.20</td>
</tr>
</tbody>
</table>

Table 3: Performance of the h-version method for Example 5.1

	$W = 2$		$W = 10$		$W = 100$							
p	$	e	_2$	$	e	_2$	$	e	_2$	$	e	_2$
2	2.98058(-05)	3.34184(-05)	3.68437(-03)									
3	6.54282(-08)	7.43653(-08)	9.53064(-08)									
4	6.72184(-11)	7.35442(-11)	8.90168(-11)									
5	1.20951(-13)	3.24169(-13)	9.18346(-13)									
6	1.22336(-14)	2.74610(-14)	8.50310(-14)									

Table 4: Performance of the p-version method for Example 5.1

Discretization of domain is done as in Figure 3(a). Thus the discretization matches along the interface. In Tables 1, 2 and 3, the computed results are shown in the relative error in $H^{2,1}$-norm against q. From Tables 1, 2 and 3, decay in the error is of the order $O(h^{2q-1})$ for different polynomial order q and different values of W. Hence the proposed h-version method validates the error estimate (4.5).
Computational results are presented for p-version method in Table 4 and Figure 4. The error is plotted against polynomial order p on a log-scale. The curve is almost a straight line and it confirms the theoretical estimates obtained. Hence the error decays exponentially for different polynomial order p and different values of W.

Example 5.2 (2-D parabolic interface problem). Consider the following interface problem

$$u_t - \nabla \cdot (\beta \nabla u) = F \text{ in } \Omega \times (0, 1), \quad u = f \text{ on } \Omega \times \{0\}, \quad u = g \text{ on } \Gamma \times (0, 1),$$

and the following interface conditions:

$$[u] = q_0 \quad \text{and} \quad \left[\beta \frac{\partial u}{\partial n} \right] = q_1 \text{ on } \Gamma_0 \times (0, 1), \quad \text{where} \quad \beta = \begin{cases} 1 & \text{in } \Omega_1, \\ W & \text{in } \Omega_2. \end{cases}$$

The space domain of the problem is $\Omega = (0, 1)^2$ with the interface as a line $y = 0.5$ as shown in Figure 3(b). In this case, we choose the exact solution with non-homogeneous interface condition. The exact solution u of the interface problem is as follows:

$$u = \begin{cases} e^{t + \frac{\pi}{2}}(y^2 + 2(W - 1)y + 0.5) & \text{in } \Omega_1, \\ e^{t + \frac{\pi}{2}}(y^2 + y + (W - 1)) & \text{in } \Omega_2. \end{cases}$$

The domain is divided as shown in Figure 3(b). The approximate solution is computed for different values of W. In Tables 5, 6 and 7, the computed results are shown in the relative error in H^2-norm against q. From Tables 5, 6 and 7, the order of error decays $O(h^{2q-1})$ for all values of q. Hence the proposed h-version method validates the error estimate (4.5).

In Table 8 and Figure 5, computational results are provided for p-version method. In Figure 5, the curve is almost a straight line and it confirms the theoretical estimates obtained. Hence the error decays exponentially for all values of p and all different values of W.

<table>
<thead>
<tr>
<th>W = 2</th>
<th>$q = 1$</th>
<th>$q = 2$</th>
<th>$q = 3$</th>
<th>$q = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>$|e|_2$</td>
<td>O</td>
<td>$|e|_2$</td>
<td>O</td>
</tr>
<tr>
<td>1/2</td>
<td>2.159(-02)</td>
<td>-</td>
<td>6.62(-04)</td>
<td>-</td>
</tr>
<tr>
<td>1/4</td>
<td>5.70(-05)</td>
<td>1.92</td>
<td>4.38(-05)</td>
<td>3.91</td>
</tr>
<tr>
<td>1/8</td>
<td>2.32(-03)</td>
<td>1.29</td>
<td>4.57(-06)</td>
<td>3.26</td>
</tr>
<tr>
<td>1/16</td>
<td>9.86(-04)</td>
<td>1.23</td>
<td>5.03(-07)</td>
<td>3.18</td>
</tr>
</tbody>
</table>

Table 5: Performance of the h-version method for Example 5.2

Example 5.3 (2-D parabolic interface problem with lipschitz interface). Consider the same PDE as in Example 5.2 on a domain which is a square $\Omega = (0, 1.5)^2$ with the lipschitz interface as shown in Figure 3(b).
Table 6: Performance of the h-version method for Example 5.2

| h | $||e||_2$ | O | $||e||_2$ | O | $||e||_2$ | O | $||e||_2$ | O |
|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|
| 1/2 | 1.52(−02) | - | 4.88(−04) | - | 1.04(−05) | - | 1.62(−07) | - |
| 1/4 | 4.52(−03) | 1.74| 3.59(−05) | 3.76| 1.90(−07) | 5.78| 7.28(−10) | 7.80|
| 1/8 | 1.87(−03) | 1.27| 4.14(−06) | 3.11| 5.38(−09) | 5.14| 4.81(−12) | 7.23|
| 1/16| 8.46(−04) | 1.14| 5.06(−07) | 3.03| 1.55(−10) | 5.11| 3.13(−14) | 7.26|

Table 7: Performance of the h-version method for Example 5.2

| h | $||e||_2$ | O | $||e||_2$ | O | $||e||_2$ | O | $||e||_2$ | O |
|-----|-----------|-----|-----------|-----|-----------|-----|-----------|-----|
| 1/2 | 1.96(−02) | - | 4.82(−04) | - | 1.02(−05) | - | 1.59(−07) | - |
| 1/4 | 5.56(−03) | 1.82| 3.52(−05) | 3.77| 1.84(−07) | 5.79| 9.00(−10) | 7.46|
| 1/8 | 2.21(−03) | 1.32| 4.10(−06) | 3.09| 4.96(−09) | 5.21| 6.98(−12) | 7.01|
| 1/16| 9.84(−04) | 1.17| 5.01(−07) | 3.03| 1.40(−10) | 5.13| 5.44(−14) | 7.00|

Table 8: Performance of the p-version method for Example 5.2

| p | $||e||_2$ | $||e||_2$ | $||e||_2$ |
|-----|-----------|-----------|-----------|
| 2 | 2.70796(−02) | 7.98550(−02) | 1.07851(−01) |
| 3 | 1.34210(−03) | 4.69518(−03) | 1.04582(−02) |
| 4 | 7.92309(−05) | 2.61409(−04) | 2.05084(−03) |
| 5 | 3.16206(−06) | 7.04589(−06) | 6.68395(−05) |
| 6 | 9.24865(−08) | 1.76085(−07) | 1.73570(−06) |
| 7 | 2.18785(−09) | 3.48131(−09) | 2.72895(−08) |
| 8 | 4.20310(−11) | 6.11652(−11) | 4.72828(−10) |

Figure 5: $||e||_2$ vs. p for p-version method.

$S(c)$. Here $\Omega_1 = (0.5, 1)^2$ and $\Omega_2 = \Omega \setminus \overline{\Omega_1}$. The exact solution u of the interface problem is as follows:
$$ u = \begin{cases} e^{t+x} \sin y & \text{in } \Omega_1, \\ e^{t+x} y & \text{in } \Omega_2. \end{cases} $$

Computational results for h-version are provided in Tables 9, 10 and 11, where the relative error in H^2-norm against q is given. It is immediate that the relative error decays $O(h^{2q-1})$ for different values of q and W.

Results of numerical simulations for q-version method are presented in Table 12 and Figure 6. The
The exact solution u problem

Example 5.4 (1-D parabolic interface problem with variable coefficients). Consider the following interface problem

$$u_t - (K(x)u_x)_x = F \quad \text{in } \Omega \times (0,1), \quad u = f \quad \text{on } \Omega \times \{0\}, \quad u = g \quad \text{on } \Gamma \times (0,1).$$

The exact solution u and $K(x)$ of the parabolic interface problem are as follows:
The domain of the problem is $\Omega = (0, 2h)$ discussed rigorously. In examples 5.1, 5.2 and 5.3, the proposed method for ∇-version method validates the error estimate (4.5) of Theorem 4.1. In Tables 13 and 15, computed results are shown in the relative H^1-norm with the number of iterations against q. In [29], they proposed second and fourth order methods. In from Tables 13 and 15, the order of error is $O(h^{2q-1})$ for polynomial order q and all different values of W. Hence the proposed h-version method validates the error estimate (4.5) of Theorem 4.1.

Computational results are provided for p-version method in Tables 14 and 16. From Figures 7(a) and 7(b), error profiles are nearly a straight line for polynomial order p. This shows exponential convergence.

6. Conclusion

In this paper, we presented a least-square spectral element method for parabolic interface problem. A regularity result for non-homogeneous interface is given. Stability estimates and error estimates are discussed rigorously. In examples 5.1, 5.2 and 5.3, the proposed h-version method, where p is propositional to $2q + 1$, demonstrates the efficiency to achieve the $O(h^{2q-1})$ accuracy with all different possibilities of W. The p-version method, where q is propositional to p^2, also shows exponential accuracy with all different possibilities of W in examples 5.1, 5.2 and 5.3. The proposed methods also show the efficiency to achieve the $O(h^{2q-1})$ accuracy in heterogeneous media for h-version method and exponential accuracy for p-version method.
Table 14: Performance of the p-version method for Example 5.4.

| p | $||e||_2$ | $||e||_\infty$ | $||e||_{1,\infty}$ |
|-----|-----------|----------------|-------------------|
| 2 | 1.77623(−01) | 8.85098(−02) | 3.11828(−01) |
| 3 | 3.44708(−02) | 2.93338(−03) | 2.93401(−02) |
| 4 | 4.48005(−03) | 1.41836(−04) | 2.63731(−03) |
| 5 | 2.32242(−04) | 1.47777(−05) | 8.22163(−05) |
| 6 | 1.75278(−05) | 9.25665(−07) | 8.78009(−06) |
| 7 | 6.58704(−06) | 1.47145(−07) | 1.45143(−06) |
| 8 | 7.53524(−07) | 1.26111(−08) | 3.33826(−07) |
| 9 | 3.53628(−08) | 1.60152(−09) | 2.35901(−08) |
| 10 | 2.50891(−09) | 1.07116(−10) | 1.20554(−09) |

Table 15: Performance of the h-version method for Example 5.4

| h | $||e||_2$ | $||e||_\infty$ | $|e|_{1,\infty}$ |
|-----|-----------|----------------|-----------------|
| 1/2 | 6.90(−01) | 2.94(−01) | 6.90(−02) |
| 1/4 | 2.01(−01) | 1.77 | 1.57(−04) |
| 1/8 | 8.27(−02) | 1.28 | 4.16(−05) |
| 1/16| 3.65(−02) | 1.17 | 1.16(−06) |

Table 16: Performance of the p-version method for Example 5.4

Figure 7: Error vs. p for (a) Case 1 (b) Case 2.

References

